intel.

8x931AA, 8x931HA
Universal Serial Bus
Peripheral Controller
User’'s Manual

September 1997

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or oth-
erwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of
Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to
sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or
infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life
saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be
obtained from:

Intel Corporation
P.O. Box 7641
Mt. Prospect IL 60056-764

or call 1-800-879-4683

Copyright © Intel Corporation 1997. Third-party brands and names are the property of their respective owners

intel.
CONTENTS

CHAPTER 1
GUIDE TO THIS MANUAL
11 MANUAL CONTENTS ...ttt ettt e e e ttee st et e e e e nne e e snaeesnteeeesseeeesnneeeaneeeennes
1.2 NOTATIONAL CONVENTIONS AND TERMINOLOGY
1.3 RELATED DOCUMENTS ...ttt eeiee et e ettt et e e e st e e smseeesneeeeesaeeessnnaeeanseeennes
13.1 DAta SNEEL ... e e e e e e e s e e
G T2 Y o) o] [To%= Vi fo] g T N o) (= SRR
14 APPLICATION SUPPORT SERVICES
1.4.1 World Wide Web
1.4.2 FaxBack Service
1.4.3 Bulletin Board System (BBS)

CHAPTER 2
ARCHITECTURAL OVERVIEW
2.1 PRODUCT OVERVIEW. ...ttt e e e e e e e e e e ea e e e e aeeaeeaenenes
2.1.1 8Xx931AA Featuresccceeeen.
2.1.2 8x931HA Featuresccccevvennnee.
2.1.3 Keyboard Control Interface
2.1.4 MCS® 51 Architecture Features

2.2 MICROCONTROLLER COREccooiiiiiiititititeeeeeeeee e e e e e e
221 [0 = N
2.2.2 Clock and RESEE UNItcooiiiiiiiiiiiee et e e e e e e e e e e aeaaes

2.2.2.1 State Time and Machine Cycles
2.2.2.2 USB Operating Rate
2.2.2.3 Low-clock Modecc.c......

2224 RESEEUNIL oottt e ettt e ekt e e e e e nte e e e e e e nreeaaeeennnee

2.2.3 INEEITUPE HANAIET ...oeiiiiei et ae e s e
2.3 8X93L MEMORY ...ttt ettt ettt et e e e s st e et et e e e e ate e e entaeatbaeeta e e e anaaeenaean
2.4 UNIVERSAL SERIAL BUS MODULEcciiiiiiiiii ettt ae e

24.1 USB Operation

24.2 Hub Interface

243 Hub Repeaterccoocvvveeiiiiiic e

2.4.4 Serial Bus Interface Engine (SIE)

245 Hub Interface Unit (HIU) ...
2.4.6 HUD FIFOS oot et e ettt e e e et e e e s e aat e e e e e enneas
25 ON-CHIP PERIPHERALS..... ..ottt ette e e ere e e e e e e etaeeeea e
2.5.1 TIMEIHCOUNLEIS oiiieiiiee e e citiieee ettt e e e e e e e et e e e e eta b e e e e e s st b e ee e e sataeeeaeseassaeeaaeanes
25.2 Y= T = TN 1@ TN o o SRS
2.6 OPERATING CONDITIONS ...ttt e e e s saaae e e s e e e e e e e e stvaeeeaean

8x931AA, 8x931HA USER’'S MANUAL Inte|®

CHAPTER 3
ADDRESS SPACES
3.1 MEMORY ORGANIZATION IN 8X931 DEVICESccoioiitiiiieeiie et 3-1
3.1.1 Logical Separation of Program and Data MEMOIYccocceeiimiiiiiiieniiee e 3-1
3.1.2 Program MEMOIYuuiiiiiiiiiiiieie e ee e e e e e e e e e s e s e s s s e b e b anaateeeaeaeaaeeas 3-1
3.1.3 (D2 1= W1V [=T0 o To o TSP UPPPPPPPRPP 3-3
3.2 SPECIAL FUNCTION REGISTERS (SFRS) ..c.utieiiiiiiieiieriite ettt 3-5

CHAPTER 4
PROGRAMMING CONSIDERATIONS

4.1 THE MCS® 51 INSTRUCTION SETovuiiieiiieieeeieee e eseeesesse s
41.1 Program StatuS WOTAcoooiiiiiiie ettt e e e e eas
4.1.2 AJAreSSiNg MOUEScooiiiiiiiiieiiiee ettt e e s

4.1.2.1 DIRECT ADDRESSINGoiiitiiiiiiiie ettt

4.1.2.2 INDIRECT ADDRESSINGcccevvrennee.

4.1.2.3 REGISTER INSTRUCTIONS

4.1.2.4 REGISTER-SPECIFIC INSTRUCTIONS

4.1.25 IMMEDIATE CONSTANTS ...oiiiiiiieiiteie ettt

4.1.2.6 INDEXED ADDRESSING ..ottt
4.1.3 Arithmetic Instructions
4.1.4 Logical Instructions

415 Data Transferscccccvvvveeeeenenn..
4.1.5.1 Internal RAM
4,15.2 External RAM

4.1.5.3 LOOKUP TABIES ...ttt e nab e e e eenen e as
4.1.6 Boolean Instructions
4,1.6.1 Relative Offset

4.1.7 JUMP INSIIUCHIONS .eeiiiiiiiiiiee ettt e e e e ettt e e e e et e e e s e neneee e e e e ennes
CHAPTER 5
INTERRUPT SYSTEM
5.1 OVERVIEW ...ttt ettt et er e et et ebe et ene e e nnn et
5.2 INTERRUPT SOURGCES.......cooiiiiitiititeiee ettt sttt ettt
521 EXIEIrNAl INTEITUDLS ...ttt e e
L 10 T= T [(= (0] o £ PO ERRR
523 Keyboard SCan INTEITUPL ...
5.2.4 Serial POIt INTEITUPDLvviiiiiie ettt e e r e e
5.2.5 USB FUNCHON INTEITUPL ..eeiieiiiciiiieis ettt e sttt e ettt e e st e e e s einae e e e e e raes
5.2.6 USB Start-of-frame INterrUPLoooiiiiiiiiiiiee e
5.2.7 USB HUD INTEITUPL ..ottt
5.2.8 USB Global Suspend/Resume Interrupt
5.2.8.1 Global Suspendcccoceeriiiiinicennnnn.

5.2.8.2 GloODal RESUME ...
5.2.8.3 USB Remote Wake-up
5.2.9 USB Reset Separation

I ntel ® CONTENTS

5.2.9.1 Initialization Required for USB RESELccoiiiiiiiiiiiiiiiiieee e 5-18

5.2.9.2 USB Reset Hardware OPerationSccooioiiieieiiiiiieieaaiiieeaeeaieeeeeseaseeeeeaeenes 5-21
5.2.9.3 USB RESEL ISR ...oiiiiiiiiiiiiiitie ettt ettt 5-21
5.2.9.4 Main Routine CONSIAErationNsSccceeieeiiiiiiieiieeitie et 5-22
5.3 INTERRUPT ENABLEooiiiitiiite it 5-24
5.4 INTERRUPT PRIORITIES ... oottt ittt sttt st 5-26
5.5 INTERRUPT HANDLING ... oottt ettt ettt 5-30
5.6 RESPONSE TIMEiiiiitiieiteie ettt ettt ettt et e nbe e nne e 5-32
CHAPTER 6
USB FUNCTION
6.1 FUNCTION INTERFACEoooiititieittei ettt sttt bbb e 6-1
6.1.1 FUNCtion ENAPOINT PAIMSooiiiiiiiiii e 6-1
6.1.2 FUNCHON FIFOS ..ottt 6-1
6.1.3 ENdpoint-iNdeXed SFRSoooii et 6-5
6.1.4 ENAPOINt SEIECHON ..coiiiiiiiiiii ittt
6.2 USB FUNCTION SFRS
6.3 TRANSMIT FIFOS ... oottt ettt sttt seb ettt e et
6.3.1 Transmit FIFO REQISIEISciiiiiiiiiiiei i ettt e ettt e et e st ae e e s snrbe e e e e e eres 6-15
6.3.2 Transmit FIFO Data Register (TXDAT)uiiiiiiieiieeiiiiiieee et e e 6-16
6.3.3 Transmit FIFO Byte Count Register (TXCNTL) ...ccccovviiirieiiiienee e 6-16
6.3.4 Transmit Data Set ManagemENtcccuuiieiiiiiiiiiee e e e et e ee e e e e e e e s e 6-17
6.4 RECEIVE FIFOS ...ttt et 6-24
6.4.1 RECEIVE FIFO REQISLEISeeiiiiiiiiiiiiiiiitiie ettt e e e e e e e e 6-25
6.4.1.1 Receive FIFO Data Register (RXDAT)ooiiiiiiiiieiiieseesit e 6-25
6.4.1.2 Receive FIFO Byte Count Registers (RXCNTL) ...coocovviiiiiiiiienniee e 6-26
6.4.2 Receive FIFO Data Set Managementcccuuvveeiiiiiiieeeeiiiiieee e e e siieee e e s siireeee s eeneeas 6-27
6.5 SIE DETAILS ...t et e e ere s esre e re e 6-34
6.6 SETUP TOKEN RECEIVE FIFO HANDLINGcccooiiiiiiiiiieeet e 6-34

6.7 ISO DATA MANAGEMENTooocoiiiiiiiiiieneee
6.7.1 Transmit FIFO ISO Data Management
6.7.2 Receive FIFO ISO Data Management

CHAPTER 7
USB HUB
7.1 HUB FUNCTIONAL OVERVIEW
7.1.1 Port Connectivity Statescccveeeeeiinnnne.
7.1.2 Per-packet Signaling Connectivity
7.1.2.1 Connectivity to Downstream Ports Attached With Full-speed Devices 7-6
7.1.2.2 Connectivity to Downstream Ports attached with Low-speed Devices 7-7
7.2 BUS ENUMERATION
7.2.1 Hub Descriptors
7.2.2 The Hub Address Register (HADDR)

8x931AA, 8x931HA USER’'S MANUAL Inte|®

7.3 HUB STATUS Lttt ettt b e s hb e e s be e bt e e st e e s ab e sbeesnbeeens 7-9
7.4 USB HUB ENDPOINTScooiiiitiieitie sttt sttt ettt sttt e sibe e e ssbeesressnbeeseeesnneens 7-10
7.4.1 Hub Endpoint Indexing Using EPINDEXc.cuutiiiiiiiiiiie e 7-11
7.4.2 [[T o = aTe [o o] 1] A @Zo] 11 o H USSR 7-11
7.4.3 Hub Endpoint Transmit and Receive OPErationscccecvveeriieeinireenniieenieeee e 7-12
7.5 USB HUB PORTS ..ottt sttt sttt etttk b et sbe e e e nbeaenneenbee e

7.5.1 Controlling a Port Using HPCON
7.5.2 Examining a Port’s Status Using HPSTAT
7.5.3 Monitoring Port Status Change Using HPSC
7.5.4 Hub Port Indexing Using HPINDEXcccccceovviieneens
755 Embedded Functionccccoooviiiiiininnn.
7.5.5.1 Embedded Function Resetcccccoveciirinieiieninins
7.55.2 Embedded Function Remote Wake-Upccccooiiriiiiieiiiieiieceeiee e
7.6 SUSPEND AND RESUME.......coiitiiiiiiiiiiie ettt ettt sre e ear e sbnesnee e ninens
7.6.1 Hub Global Suspend and Resume
7.6.2 Remote Connectivitycccceecvvveieernnnnnn
7.6.2.1 ReSUME CONNECHIVILY ...uuvviiiiiiiiiiiee it ee e ettt e et e st ee e s s eiae e e e e s e saeeeaaeenes
7.6.2.2 Connectivity Due to Physical Connect/Disconnect
7.6.2.3 Embedded Function Suspend and RESUMEccccooiiiiiiiiiiiiiiiien e
7.7 HUB POWER DISTRIBUTIONccutiiiiiiiiiiiiitie ettt s
7.7.1 POrt POWETr SWILCHING ...vvviiiiiiiii e
7.7.2 OVErCUITeNt DEIECHION ...ceiiiiiiiiee et e e e e e
7.7.3 Ganged PoOWer ENADIEoooi i
7.8 HUB DEVICE SIGNALS ..ottt

CHAPTER 8
USB PROGRAMMING MODELS

8.1 OVERVIEW OF PROGRAMMING MODELScoiiiiiiiiieeieee e 8-1
8.1.1 = 01U g =T =140 o [P RTR
8.1.2 [0 | Lo} = L= SRR UURRPTRRIN
8.1.3 Transmit and Receive Routines
8.14 USB INEEITUPES ...ttt ettt et e e e e e e e e e e e e s e e e sanan b e e e e neteeeeaaeaeaeas

8.2 TRANSMIT OPERATIONS ...ttt ettt et e e s e eesnee e e e naeae s nnaeean
8.2.1 OVEBIVIBW ittt ettt e e e e e e ettt e e e e e ettt et e e e entba et e ae s ntbeee e e s ansateaaeseanseeeaeeeasnsseeeennnnn
8.2.2 Pre-transmit OPEIatiONSccuuiiiiiiiiiiiiieeiiiiie et e e e e e e e et ee e e e snbee s
8.2.3 POSt-transSmit OPEratiONSeoiiiiiiiiiiiiiaa it e e e e e e eens

8.3 RECEIVE OPERATIONS......ooiiiiiiiiiit ettt ettt et ste e e sttt e e st e e sneeeannneee e
8.3.1 OVEIVIEBW ..eiiiieiitieietee ettt e e e et e e e e e ettt e e e e skt te e e e e e saeteeee e e natbe e e e e s nbeeeaeesasbeeeeeeannsnneeenan
8.3.2 POSt-reCeive OPEIatiONSccviiiieiiiiiiiee ettt ee e e e e e st e e e e et e e e e st e e e e s snaaee s

8.4 SETUP TOKEN

8.5 START-OF-FRAME (SOF) TOKEN

8.6 HUB OPERATION .. .eii ettt ettt ettt ste e st eestae e e s ste e e antae s snsaaeasbaeessnneessnseeansseeene
8.6.1 Hub Status and Configurationeeeiiiiiiieiiee e

vi

I ntel ® CONTENTS

8.6.2 Port Status Change Communication

8.6.3 HUb Firmware EXAmPIEScccvvviiiiiiiiiic ettt nvaaae e
8.6.3.1 GetPortStatus Request Firmware
8.6.3.2 SetPortFeature (PORT_SUSPEND) FIrMWAarecccccoeveeiiiiiieeieiiiieeee s 8-26
8.6.3.3 SetPortFeature (PORT_RESET) FirMWareccccceeiiiiiiieiiiiiiie e 8-27
CHAPTER 9
INPUT/OUTPUT PORTS
9.1 INPUT/OUTPUT PORT OVERVIEWcoiiiiiiiiiiii it 9-1
9.2 I/O CONFIGURATIONS. ...ttt 9-2
9.3 PORT 1 AND PORT 3 ..ttt et sr e sr e 9-2
9.4 PORT 0 AND PORT 2 ..ttt sttt ettt st see e s enns 9-2
9.5 READ-MODIFY-WRITE INSTRUCTIONS ...ttt e 9-5
9.6 QUASI-BIDIRECTIONAL PORT OPERATIONutiitiiiieiiee ettt 9-6

9.7 PORT LOADING
9.8 EXTERNAL MEMORY ACCESS

CHAPTER 10

TIMER/COUNTERS
10.1 TIMER/COUNTER OVERVIEW. ..ottt s 10-1
10.2 TIMER/COUNTER OPERATION ...ttt 10-1
10.3 TIMER Du s

10.3.1 Mode 0 (13-bit Timer)
10.3.2 Mode 1 (16-bit Timer)
10.3.3 Mode 2 (8-bit Timer With AUtO-reload)cooiiiieiiiiiiiiiiie e 10-5

10.3.4 Mode 3 (TWO 8-Dit TIMEIS) ... 10-5
01 I 11/t e PSSR 10-6
10.4.1 Mode 0 (13-Dit TIMEI) oooeeeiiiiieiet et 10-9
10.4.2 Mode 1 (16-Dit TIMEI) ..eeeeiiiiiiie e 10-9
10.4.3 Mode 2 (8-bit Timer with Auto-reload)ccccoiiiiiiiiiiiiie e 10-9
O I RV o To [T I = PSSR 10-9
10.5 TIMER O/1 APPLICATIONS.coitii ittt eteee et e ettt et e e e eae e e saae e st e e enta e e e nneaennnaens 10-9
10.5.1 Auto-reload Setup EXamPIEoooiiiiiiiiiiiicciee et 10-9
10.5.2 Pulse Width MEASUIEMENTScoiiiiiiiiiiii et ee e eter e eeee e e et e e e e e e e e e nnees 10-10
L1068 TIMER 2.ttt ettt e et e et e st e e e ste e e e st e e et b e e e bt e e e e nree e enneennneeas 10-10
10.6.1 Capture MOOEooiiiiiiiiiiee ittt e neneeas 10-11
10.6.2 AULO-Tel0ad MOUEoooiiiiiiiiieiiiie ettt naaeeas 10-12
10.6.2.1 Up CoUuNter OPEratiON ...ccceciveieeeeeeiiiiiieeeeiiieeee e s eitr e e e e s ssteeeeaeesrneeeeeaesnneaeeesaennens 10-12

10.6.3 Up/Down Counter OPEIatioNcecurieeiiiiiuiiieieesiiireeesserereeeeesnsaeesesssnsneeesssnnens 10-13
10.6.4 Baud Rate GENErator MOUEcccooeeiiiiiiiiiiiiee e e e e eeeaeeeees 10-14
10.6.5 ClOCK-0ULt MOOEcoiiiiiieieeeee et ee e e e e e e ee e et eeeaeeeenanes 10-14

Vii

8x931AA, 8x931HA USER’'S MANUAL Inte|®

CHAPTER 11
SERIAL /O PORT
111 OVERVIEW ..ottt ettt e et e e ettt e e e s e e e emee e e enneeeanteeeenseeeennneeeanneenn 11-1
11.2 MODES OF OPERATION. ... ittt ettt see st e et e e e rae e e s enaee s nneeeenseeeesneaeeennees 11-2
11.2.1 Synchronous Mode (MOAE 0)coocuieiiiiiiiiiie et 11-2
11.2.1.1 TransmiSSION (MOAE 0)ueeiiiiiiiiiiii et e et e e et e e s e e e e eeeas 11-2
11.2.1.2 ReCeption (MOAE 0)oeiiiiiiiiiieeeiiiiiie ettt e e e ee e s 11-2
11.2.2 Asynchronous Modes (Modes 1, 2, and 3)ccooeeeiieeiiiiiiiee e e eeeeee e 11-7
11.2.2.1 Transmission (Modes 1, 2, 3)
11.2.2.2 Reception (MOAES 1, 2, 3) .eviiiieiiiiiiiee sttt e e e e e ae e s e
11.3 FRAMING BIT ERROR DETECTION (MODES 1, 2, AND 3)....ceoviiiiiiieeniiieeeneee e 11-7
114 MULTIPROCESSOR COMMUNICATION (MODES 2 AND 3)...ccctiiiiiiiiieeeiiiiiieeeeene 11-8
115 AUTOMATIC ADDRESS RECOGNITIONuiiiiiiiiiiee ettt e e 11-8
11.5.1 GIVEN AAAIESSeiiiiiiiieieie ettt et e st e e sabe e e s nabe e s nbbeens
11.5.2 BroadCast AQUIESScuuiiieiiiiiiiie ettt e e e e sttt e e e e e aaab e e e e s annaeeee e s annneeas
11.5.3 RESEEAUUIESSES ..oeeiiiiiiiiiie ettt e e et e e e e e stb e e e e snnnaeeee e nnees
11.6 BAUD RATES
11.6.1 Baud Rate for Mode O
11.6.2 Baud Rates for Mode 2ccccceevvniinnnnn.

11.6.3 Baud Rates for Modes 1 and 3
11.6.3.1 Timer 1 Generated Baud Rates (Modes 1 and 3)

11.6.3.2 Selecting Timer 1 as the Baud Rate Generatorccccoccuveeeeiiiiieeeeeiiiieeeeens
11.6.3.3 Timer 2 Generated Baud Rates (Modes 1 and 3)
11.6.3.4 Selecting Timer 2 as the Baud Rate Generatorccccoccueeeeeiiiiineeeseineeeeenne
CHAPTER 12
KEYBOARD CONTROL
121 OVERVIEW ...cciiiiiiiiiiiee e
122 KEYBOARD SCAN IMPLEMENTATION
12.2.1 Keyboard INtErrupt LOGICoocuueeeeeeeiiiieie ettt e e e e e e e e e eneeeeas
12.3 LED DRIVERS ...ttt ettt ettt bt er e nbe e enn e e sbneeane e ntnen
CHAPTER 13
MINIMUM HARDWARE SETUP
13.1 MINIMUM HARDWARE SETUP ..ottt ettt 13-1
13.2 ELECTRICAL ENVIRONMENT ..ottt sttt 13-1
13.2.1 Power and GroUNd PINSooioiiiiiiaiiiiiii ettt e et e e e e aneee e e s enneeas 13-2
13.2.2 UNUSEA PINS ..ottt ettt ne e e s e e e 13-2
13.2.3 NOISE CONSIAEIALIONSeiiiiiiiiiiiiie ettt ee e e e e et e e e et e e e e s aanneae e e e nnes 13-2
13.3 CLOCK SOURCES......ccttiiitiiiienitiiit ettt sttt ar e bt ene e 13-2
13.3.1 On-chip OSCiIllator (CrySTal)coeeeeeeieiiiee et e e eeaaeeeees 13-2
13.3.2 On-chip Oscillator (CeramiC RESONALOT)ccueiiureiriieeeiiee et 13-3
13.3.3 EXEErNal ClOCKceiiiiiiii e 13-3
L1314 RESET ottt e e 13-5

viii

I ntel ® CONTENTS

13.4.1 Externally-initiated RESELScoeiiiiiiiiiiiiiiieeeite ettt 13-5
13.4.2 USB-iNtiated RESELSoicviiiiiiiiecie i e 13-5
13.4.2.1 USB RESEt SEPArAtION ...ccciiveeiiiiiiiiiiecitiee ettt ettt 13-6

13.4.3 RESEE OPEIALIONeeiiiiiiiieee ettt e e e et e e e e e aaab e e e e et e e ee e s e nnneas 13-6
13.4.4 POWEI-0N RESEL ...ciciiiiieeeieecree ettt e e e et e e e e e aeeeeeataeas e e e eeeeeannaees 13-7

CHAPTER 14
SPECIAL OPERATING MODES

141 OVERVIEW ..ottt sttt nr et enre e en 14-1

142 POWER CONTROL REGISTERS ...ttt 14-1
14.2.1 POWEE Off FIAG .ueeeeieeiiiiie ettt e et e e s e e e e e

14.3 IDLE MODEoiiiiiiiiiiie ettt ekttt e b e er e b bt nan et
14.3.1 ENtering [dIe MOOEcooeiiiiieie et
14.3.2 EXItING 1dI& MOUE ...oiiiiiiiiiie ettt e

144 USB POWER CONTROL
14.41 Global Suspend Mode

14.4.1.1 Powerdown (SUspend) MOGEcccceiiiiiiiie it eaee e 14-8
14.4.1.2 Entering Powerdown (Suspend) MOOEccceiiiieiiiiiiiieeeiiee e 14-8
14.4.1.3 Exiting Powerdown (Suspend) Mode
14.4.2 Global RESUME MOUEooiiiiiiiiiiiie ettt e e e a e s raee e e e
14.4.3 USB REMOLE WaKE-UPeeiiiiiiiiiieiiiitiei ettt ettt e e e e e e e enenees
145 LOW-CLOCK MODEcciitiiiiiiitiiiie ettt
14.5.1 Entering LOW-CIOCK MOooiiiiiiiiieiie ettt
14.5.2 EXiting LOW-CIOCK MOGEcoiiiiiiiiiiiiiii ettt
146 ON-CIRCUIT EMULATION (ONCE) MODE
14.6.1 Entering ONCE Modeccoeevvveeeeviinnennn.
14.6.2 EXIitiNg ONCE MOGEuiiiiiiiiiiiiii ettt e e nnaea e enee
CHAPTER 15
EXTERNAL MEMORY INTERFACE
151 OVERVIEW ..ottt sttt nr et enne e en 15-1
152 EXTERNAL BUS CYCLESoooiiiiiiii et 15-2
15.2.1 BUS CyCle DEfiNItIONScoeeeiiiiiieiiiie ettt e e e e e eeeeenee 15-3
153 PORT O AND PORT 2 STATUS ...ttt sttt st 15-5
15.3.1 Port 0 and Port 2 PiN SEAUScocvviiiiiieeiiee et 15-5
154 EXTERNAL MEMORY DESIGN EXAMPLES..........cooiiiiiteiiieneeniit et 15-6
15.4.1 Example 1: 11-bit Bus, EXternal RAMcccoiiieiiiiiiiee e 15-6
15.4.2 Example 2: 16-bit Bus, External ROMccccooiiiiiiiiiiieiieceeeeieee e 15-7
15.4.3 Example 3: 16-bit Bus, External EPROM and RAMcccccviiiiiiiiiieniiieiee e 15-8
CHAPTER 16
VERIFYING NONVOLATILE MEMORY
16.1 83931 MEMORY ...ttt ettt etttk ettt eb et n et nr e 16-1

8x931AA, 8x931HA USER’'S MANUAL Inte|®

16.2 NONVOLATILE MEMORYuiiiiiiiiieiiieiee sttt ettt sttt st et sibeesaeesnbeeseeenene e 16-1

16.3 VERIFYING ON-CHIP NONVOLATILE MEMORYccoiiiiiiiieiieiieeineesieesiee s 16-1
16.3.1 VEIfY MOUES ..ooeieiiiei ettt e e et e e e e et e e e e s b b aaae e e e sntbeeeeesenres 16-2
TR I €T o 1= = 1S (1] o LSRR 16-2
16.3.3 Verify AIGOITNM ...ooiiiiiiiiii et 16-3
16.3.4 Verifying On-chip Program MEMOIYcccciuuiiieiiiiiiieeeeeiiiieee e e e siviee e e s siveeee e 16-4
16.3.5 Verifying the LOCK BitScooiiiiiiiiiiieiiie et
16.3.6 Verifying the Signature Bytes

16.4 ENCRYPTION ARRAYccccevvverrinnne

16,5 CONSIDERATIONS FOR ON-CHIP PROGRAM CODE MEMORY

APPENDIX A
INSTRUCTION SET REFERENCE

Al NOTATION FOR INSTRUCTION OPERANDScoooiiiieiie et A-2

A.2 OPCODE MAP ..ttt e e e e s e et be e e e e s era e e e e e s satreeaeeaas

A.3 INSTRUCTION SET SUMMARY
A3.1 INSLrUCHION SUMMATIESeviiiiiiiiiiiiiiie e ee e e e e e e e e e e e eeeeeeeeea s s s e s e e srnenrnrnnees

A.4 INSTRUCTION DESCRIPTIONS

APPENDIX B
PIN DESCRIPTIONS

APPENDIX C

REGISTERS
C1 SFRS BY FUNCTIONAL CATEGORY ...ttt C-3
C.2 SFR DESCRIPTIONS ...ttt e s C-6
APPENDIX D

DATA FLOW MODEL

APPENDIX E

8X931AA DESIGN CONSIDERATIONS
E.l DIFFERENCES BETWEEN THE 8X931AA AND THE 8X931HA ...
E.2 8X931AA ENUMERATION PROCESS........cccoiiii e
E.3 8X931AA PIN DESCRIPTIONS ...
E.4 8X931AA SIGNAL DESCRIPTIONS....................
E.5 OPERATING FREQUENCIES..........ooiiiii e
E.6 BX93LAA SFR MAP ...
GLOSSARY
INDEX

I ntel ® CONTENTS

FIGURES

2-1 8X93L 1IN @ USB SYSIEIM ..ttt ettt e e e e e e ebe e e e e e enneee 2-1
2-2 Functional Block Diagram of the 8X93L........ccoiiiiiiiiiiiiiiiiiie e 2-2
2-3 8x931HA USB Module BIOCK DIQIamcccveieiiiiieiiiieiiiieeiiee et
2-4 BXO3L CIOCK CHICUIL .neteeieee ettt ettt e e e et e e e e e e e sbe e e e e e e erneeeeaaanns
2-5 8x931 Clocking Definitions

31 MCS® 51 Program Memory

3-2 8x931 Memory Structure.............

3-3 INtErNal DAta MEIMOIY ...ttt ettt e e e e e et ee e e e e nneeas
3-4 Upper and Lower 128 Bytes of Internal RAMcoociiiiiiiiiiiiiee e 3-4
3-5 SFR Space

4-1 Program Status Word REQISIE........coii ittt e e 4-2
4-2 Shifting BCD Number Two Digits RIght..........cooiiiiiiiiiiiie e 4-9
4-3 Shifting BCD Number One Digit Right

5-1 Interrupt Control System

5-2 Bits of the Interrupt SFRs

5-3 FIE: USB Function Interrupt Enable RegISter...........ccoiviiiiiiiiiiiiiie e 5-9
5-4 FIFLG: USB Function Interrupt Flag REQIStErc.cueviiiiiiiiiiiciiie e 5-11
5-5 SOFH: Start-of-frame High Register..........ccccccoiiiinens

5-6 SOFL: Start-of-frame Low Register

5-7 HIE: Hub Interrupt Enable Register

5-8 HIFLG: Hub Interrupt Status REQISIENcoovviiiiiiiiiieeeiiie e

5-9 USB Reset Separation Operating MOdel.............ooeiiiiiiiiiiiiiee e
5-10 IENO: USB Interrupt Enable Register 0

5-11 IEN1: USB Interrupt Enable Register

5-12 IPHO: Interrupt Priority High Register 0

5-13 IPLO: Interrupt Priority LOW REQISTEN O.........coiiiiiiiiieeiiiiiiee et
5-14 IPH1: Interrupt Priority High REQISEr 1ccoiiiiiiiiie i
5-15 IPL1: Interrupt Priority Low Register 1

5-16 Interrupt Response Timing DIagram..........coooiueiiiiiiiieee et

6-1 Bits of the USB FUNCHON SFRScoiiiiiiiie e
6-2 EPINDEX: Endpoint Index Register

6-3 EPCON: Endpoint Control Register...................

6-4 TXSTAT: Transmit FIFO Status Register

6-5 RXSTAT: Receive FIFO Status ReQISIEN........ccoiiiiiiee et

6-6 FADDR: FUNCtion Address REJISIENuviiiiiieiiie ettt

6-7 Transmit FIFO Outline............cccooeeeeiiiinnenn.

6-8 TXDAT: Transmit FIFO Data Register

6-9 TXCNTL: Transmit FIFO Byte Count Register

6-10 TXCON: Transmit FIFO Control REGISIENc.c.vviiiiiieiiie e
6-11 TXFLG: Transmit FIFO Flag REQISLEroouuiiiiiaiiiiie e
6-12 Receive FIFO ...

6-13 RXDAT: Receive FIFO Data Register

6-14 RXCNTL: Receive FIFO Byte Count Register...

6-15 RXCON: Receive FIFO Control REQISLEcouiiiiiiiiiiiiiieieeiiiieee e
6-16 RXFLG: Receive FIFO Flag REQISIENuvuiieiiiiiiie ettt aa e

Xi

8x931AA, 8x931HA USER’'S MANUAL

7-2

8-6

8-10
8-11
8-12
8-13
8-14
8-15
9-1
9-2
9-3

10-1
10-2
10-3
10-4
10-5
10-6
10-7
10-8
10-9
10-10
10-11
10-12
111
11-2

Xii

8x931HA Hub Functional Diagram
Bits of the USB Hub SFRSccoocoiiiiiinien.
Hub State FIOW..........cccoevviiieeeens
Packet Signaling CONNECTIVILYc.uviiieeiiiiiee e e s erre e e e e
HADDR: HUD AdAresSs REQISIEN........ciiiiiiiiiieiieii e
HSTAT: Hub Status and Configuration Register
TXDAT: Hub Transmit Data Buffer (Endpoint 1)
Status Change Communication To HOStcccceeeenes

HPCON: Hub Port Control REQISIETueeiiiiiiie e
HPSTAT: Hub Port Status REGISTEN........uuuiiiieiiiiii et
HPSC: Hub Port Status Change Register
HPINDEX: Hub POrt INAeX REQISLENvveiiiiieiiie ittt
RESUME CONNECTIVILY ..oeiiiiiiiiiiie ettt ettt ettt e e et e e e eaeeeaeeeees
HPPWR: Hub Port Power Control..................

Program FIOWccoeeiiiieiiiiiecc e

High-level View of Transmit Operations
Pre-transmit ISR (NON-ISOCNIONOUS)coiiiiiiiiiieiiiiiee et
Post-transmit ISR (NON-iISOCNIONOUS)........uuiiiiiiiiiie ettt e
Post-transmit ISR (Isochronous)

High-level View of Receive Operations
Post-receive ISR (Non-isochronous).............

Receive SOF ISR (ISOCHIONOUS)ccccciiiiiiiiiiiiiiie et
POoSt-receive ISR (CONLIOI).....cciiiiiiiiii et
Hardware Operations for SOF Token............

Hub-to-Host Port Status Communication
GetPortStatus Requestccceeecvvveeernnnn.

Firmware Response t0 GetPOrSIatUS.ccoui i
SetPortFeature (PORT_SUSPEND) ROULINEcoiiiiiiiiiiieiiiiieie e
SetPortFeature (PORT_RESET) Routine
POrt 1 and POrt 3 STIUCTUIEveiiiiie e
POt O SEIUCKUIE ...ttt et et e e e e e e e e e esasae e s e annnnnnnnnnnes
Port 2 Structureccccvvvvieeenes
Internal Pullup Configurations
Basic Logic of the Timer/Counters

Timer 0/1 in Mode 0 and MOE 1ooiiiiiiiiiiiiiieiee et
Timer 0/1 in Mode 2, AULO-TEI0Accoviiiiiiiieiiec e s
Timer 0 in Mode 3, Two 8-bit TIMersS.........ccvvvvvvveeieeeeeeenns

TMOD: Timer/Counter Mode Control Register.................

TCON: Timer/Counter Control Registercccoeuuvnee..

Timer 2: Capture MOAEcc.uuiiiiei ittt e s e e e e e e e e eraaaeae s
Timer 2: Auto-reload Mode (DCEN = 0)cocciiiiiieiiiiieiieeceee e
Timer 2: Auto-reload Mode (DCEN =1)........

Timer 2: Clock Out Mode............ccccoeerieennenne

T2MOD: Timer 2 Mode Control Register
T2CON: Timer 2 Control REQISTENeiiiiiiiiiei et
Serial Port BIOCK DIBQIamcoooiuuiiieiiiiiee et e e e ee e
SCON: Serial Port Control REQISLENccciiviiiie et e e eavaee e

I ntel ® CONTENTS

11-3
11-4
11-5
12-1
12-2
12-3
13-1
13-2
13-3
13-4
13-5
14-1
14-2
14-3
14-4
15-1
15-2
15-3
15-4
15-5
15-6
15-7
16-1
B-1

B-3
B-4

E-1
E-2

MOAE O THMNG .1ttt e et e e et e e s e et e e srn e e e snneeantneeans 11-6
Data Frame (Modes 1, 2, @Nd 3) ...cceeeiiiiiiiiaiiiiiiee et et e e e eenee s 11-6
Timer 2 in Baud Rate Generator MOEceiviiieiiiiiieiiiiccieee et 11-14

KBCON: Keyboard Control REGISIENueiiiiiiiiiei et 12-1
Keyboard Scan MatriX APPICALION.eiiiiiiiiiiiiiiee e 12-3
LED Driver APPIICALIONeeieii ettt ettt et e e e e enaee e e e e e 12-4
MINIMUM SEIUP 1ottt e e e e e e e e st b e e e e et b e e e ee s asnraaeeeeennnees 13-1
CHMOS ON-Chip OSCIllALOF.......ciitiieiiiie ittt 13-3

External Clock Connection for the 8X931uuiiiiiiiiiie e 13-4
External Clock Drive Waveforms
Reset Timing Sequence.................

PCON: Power CONtrol REGISTETuviiiiiie ittt
PCON1: USB Power CONtrol REQISTEI........uiieiiiiieiee ettt e e 14-4
Suspend/Resume Program with/without Remote Wake-upcccoccviieiiniiienenne 14-11
Suspend/Resume Program with/without Remote Wake-up (Continued).................. 14-12
BUS SHIUCTUIE.....ce ettt et e e e e e e e e e e e esae e e e e e ennnennnnnes
EXternal Code FEICN ...t
External Data REAMccviiiiiiiiiiecie e e
External Data WIiteccoooveviieiiieeccieee
Bus Diagram for Example 1: 8xX931AA/HA.....
Bus Diagram for Example 2: 8x931AA/HA.....
Bus Diagram for Example 3: 8X931AAIHA ...t
Setup for Verifying Nonvolatile MEmMOTYcooiiiiiiiiiieci e
8x931HA 68-pin PLCC Package
8x931HA 64-pin SDIP Package
8x931HA 64-pin QFP Package
8X931AA 64-pin QFP PaCKageueeiiiiiiii e
8X931AA 68-PiN PLCC PACKAJEeuviieiiiiiiiiee ettt
8x931AA 64-pin QFP Package
8X93LAA B8-PINPLCC ...ttt sttt sttt

xiii

TABLES
1-1
2-1
2-2
2-3
2-4
25
4-1
4-2
4-3
4-4
45
4-6
4-7
4-8
4-9
4-10
5-1
5-2
5-3
5-4
55
5-6
6-1
6-2
6-3
6-4
6-5
6-6
6-7
7-1
7-2
7-3
7-4
75
7-6
7-7
7-8
8-1
8-2
9-1
9-2
9-3
10-1
10-2
10-3

Intel Application Support Services
8X931L MeMOIY OPLIONS ...cceiveiieiieeiiiiieee e et e e e e e e e e e e abaaae e
USB Peripheral Controller Feature Summary and Comparison
8X931LHA Operating FreQUENCYuuiieiiieie ettt a e e e eeae e e e eannes
8x931AA Operating Frequencies
Endpoint Pairs for 8x931...........ccccvvveveeiinnnnn
The Effects of Instructions on the PSW Flags
Addressing Modes for Data Instructions in the MCS® 51 Architecture............ccc.eee.... 4-4
List of MCS® 51 Arithmetic INSIUCHONScc.evveveeeeeeeereeeeeeeeeeeeee s
List of MCS® 51 Logical Instructions.............
List of MCS® 51 Data Transfer Instructions
Transfer Instructions for Accessing External Data Memory Space
MCS® 51 Read INSIUCHONSc.cvvereereeeeereeieeseseeseesee s
MCS® 51Boolean Instructions
Unconditional Jumps in MCS® 51 Devices ...
Conditional JUMPS iN MCS® 5L DEVICESc.eeeeeeeeeeeeeeeeeeeeeeeeeeeee e eese e s
Interrupt System INPUL SIGNAISeeviiiiieiie e
Interrupt System Special Function Registers

8x931AA/HA Interrupt Control Matrix.............

8x931 USB/Hub Interrupt Control Matrix
LEVEI OF PrIONILY ...eeiutieeeieie ettt ettt
Interrupt Priority Within LEVElooo e
Function and Hub FIFO Configurations
Non-hub USB Signal Descriptions.................

USB Function SFRScoooiiiiiiiiiiiee e

Writing to the Byte COUNt REJISTENc..uviiiiiiiiiie e
Truth Table for Transmit FIFO Management...........cccoccvvieeeiiiiiiee e
Status of the Receive FIFO Data Sets
Truth Table for Receive FIFO Management.............oooiiiiiiieeiiiiiee e
USB HUD SFRS ...ttt
8x931 Descriptors
Hub Descriptors........ccoccvvvevneeennnee.
Hub Endpoint Configuration
USB Requests Ignored by Hardware (by Port State)
Encoded Hub Port Control Commands
UPWEN# Pin State Truth Table
Signal DeSCIIPLONS........cciiiiiiiiiiieiiiieie e
Firmware Actions for USB Requests Sent to Hub
Firmware Action for Hub Class-Specific REQUESES...........coevviiiiiiieiiiecciee e
Input/Output Port PiN DESCHPLIONS ...c.ooiiiiiiie ettt e e e e
Read-Modify-Write Instructions......................
Instructions for External Data Moves.............
External Signalsccccooiiiiiiiiiiiiiiec
Timer/Counter and Watchdog Timer SFRs
Timer 2 Modes Of OPEIatiONcciiiuiiie e e a e e sraaeeae s

I ntel ® CONTENTS

11-1
11-2
11-3
11-4
11-5
11-6
12-1
14-1
15-1
15-2
16-1
16-2
16-3
16-4

A-2
A-3
A-4
A-5
A-6
A-7
A-8

A-10
A-11
A-12
A-13
A-14
A-15
B-1
B-2
B-3

B-5
B-6
B-7
C-1
C-2
C-3
C-4
C-5
C-6

C-8
D-1
D-2
D-3

Serial PO SIGNAIS......coiiiii it 11-1
Serial Port Special Function Registers
Summary of BaUd RAIEScoooiiiiiiiiiiiie e 11-10
Timer 1 Generated Baud Rates for Serial I/O Modes 1 and 3..........ccccoecevvverieninine 11-12
Selecting the Baud Rate Generator(s)
Timer 2 Generated Baud Rates

Keyboard Control Signals............ccccceeeernnnen.

Pin Conditions in Various Modes...................

External Memory Interface Signals...........oooo i
Port 0 and Port 2 Pin Status In Normal Operating Mode..............coooiiiiieeiiiieieeeennnns 15-5
Signal Descriptions (Verify Mode)
VEITY IMOUES ..ttt ettt e et nnee
[Yo 1l 211 4 U (o1 i o o SRR
Contents of the Signature Bytes.....
Notation for Register Operands......
Notation for Direct Addresses...........ccccoeuueee.
Notation for Immediate Addressing
Notation for Bit ADAreSSINGcciiviiiiee et e raae e
Notation for Destinations in Control Instructions

Instructions for 8x931 Peripheral Controllers

Summary of Add and Subtract Instructions.......................

Summary of Increment and Decrement Instructions
Summary of Multiply, Divide, and Decimal-adjust INStructions.............ccccceevveieieeeeenens A-5
Summary of Logical Instructions
Summary of Move Instructions......................
Summary of Exchange, Push, and Pop Instructions
Summary of Bit INSTIUCHIONS......c.coiuiiiiieeiii et e e e eeeee
Summary of Control Instructions
Flag Symbols.........cccoeeeeiiiiiniencnns

68-pin PLCC PiN ASSIGNMENT......iiiiiiiieiiiiceiiet ettt e e
64-pin SDIP PiN ASSIONMENTcoiiiiiiiiiiei ettt e et ee e e eee e e e e s aseeeeaaeeaees
64-pin QFP Pin Assignment
68-pin PLCC Signal Assignments Arranged by Functional Category...........cccceevvuneen.
64-pin SDIP Signal Assignments Arranged by Functional Category...
64-pin QFP Signal Assignments Arranged by Functional Category..............ccccee....
SIGNAI DESCIIPLION ..t ie et e e ae e e e s rbe e e e e s e ata e e e e e e entaeseeeas
8x931HA SFR Map
COre SFRS.....uiiiiiiieieiieeeeeeees
Interrupt System SFRs
/O POM SFRS ...ttt et
SEIAL /O SFRS .ottt ettt e ettt e e s st ae e e s e e e e e e e e nraeeeeeannes
USB Function SFRs
USB Hub SFRs
Timer/Counter SFRS........ccovviieeeiiiie e
Non-isochronous Transmit Data Flow
Isochronous Transmit Data Flow in Dual-packet Mode............ccccoouiiieiinniiiiiieeninienn.
Non-isochronous Receive Data Flow in Single-packet Mode (RXSPM = 1) D-8

8x931AA, 8x931HA USER’'S MANUAL Inte|®

D-4
D-5
E-1
E-2

E-4

XVi

Non-isochronous Receive Data Flow in Dual-packet Mode (RXSPM = 0)................ D-11
Isochronous Receive Data Flow in Dual-packet Mode (RXSPM =0)cccceeeeneneee. D-18
8x931AA Signals Arranged by Functional Categoryc..ccocuveiiiiiiiiiiiee e E-5
8X93LAA Signal DESCHPLIONS ...eveeiiiiiiiee e it ee e e et e et s s rrae e e s see e e e e e s e sraeeeaeenes E-6
8X931AA Operating FreQUENCIESoouieieiiiieeiiie ettt E-9
BXOBLAA SFR MAP....ctiiiiiiitieeitie ittt ettt ettt ettt ettt eit e nbb et b e rae et e ee e neeas E-10

intel.

Guideto this Manual

intel.

CHAPTER 1
GUIDE TO THIS MANUAL

This manual describes the 8x931 microcontroller for universal serial bus (USB) applications.
This manual isintended for use by both firmware and hardware designers familiar with the prin-
ciples of microcontroller architecture.

1.1 MANUAL CONTENTS

This chapter provides an overview of the manual with brief summaries of the chapters and appen-
dices. It dso explains the terminology and notational conventions used throughout the manual,
provides references to related documentation, and tells how to contact Intel for additional infor-
mation.

Chapter 2, “Architectural Overview’— provides an overview of device hardware. It covers
core functions (CPU, clock and reset unit, and interrupts), 1/0O ports, on-chip memory, the USB
module, and on-chip peripherals (timer/counters and serial 1/O port).

Chapter 3, “Address Spaces"—describes the three address spaces of the 8x931: memory ad-
dress space, specia function register (SFR) space, and the register file. It also provides a map of
the SFR space showing the location of the SFRs and their reset values and explains the mapping
of the address spaces rel ative to the MCS® 51 architecture into the address spaces of the 8x931.

Chapter 4, “Programming Considerations”’— provides an overview of the instruction set. It
describes each instruction type (control, arithmetic, logical, etc.) and lists the instructionsin tab-

ular form. This chapter a so discusses the addressing modes, bit instructions, and the program sta-

tus words. Appendix A, “Instruction Set Reference” provides a detailed description of each
instruction.

Chapter 5, “Interrupt System”— describes the 8x931 interrupt circuitry which provides ten
maskable interrupts: three external interrupts, three timer interrupts, a serial port interrupt, and
three USB interrupts. This chapter also discusses the interrupt priority scheme, interrupt enable,
interrupt processing, and interrupt response time.

Chapter 6, “USB Function”— describes the FIFOs and special function registers (SFRs) asso-
ciated with the USB function interface. This chapter describes the operation of function interface
on the 8x931 USB microcontrollers.

Chapter 7, “USB Hub”— describes the operation of the Intel Universal Serial Bus (USB) on-
chip hub. This chapter introduces on-chip hub operation and includesinformation on bus enumer-
ation, hub endpoint status and configuration, hub port control, hub suspend and resume, and hub
power control.

Chapter 8, “USB Programming Models"— describes the programming models of the 8x931
USB function interface. This chapter provides flow charts of suggested firmware routines for us-
ing the transmit and receive FIFOs to perform data transfers between the host PC and the embed-
ded function and describes how the firmware interacts with the USB module hardware.

I 11

8x931AA, 8x931HA USER’'S MANUAL Inte|®

Chapter 9, “Input/Output Ports"— describes the four 8-bit /O ports (ports 0-3) and discusses
their configuration for general-purpose 1/0O. This chapter also discusses external memory access-
es (ports 0, 2) and alternative special functions.

Chapter 10, “Timer/Counters”"— describes the three on-chip timer/counters and discusses their
application.

Chapter 11, “Serial /O Port"— describes the full-duplex serial 1/0 and explains how to pro-
gram it to communicate with external peripherals. This chapter also discusses baud rate genera-
tion, framing error detection, multiprocessor communications, and automatic address
recognition.

Chapter 12, “Keyboard Control”— describes thex®31 keyboard control interface, including
the keyboard scan output lines, the keyboard scan input lines, and the LED drivers.

Chapter 13, “Minimum Hardware Setup”— describesthe basic requirementsfor operating the
8x931 in asystem. It also discusses on-chip and external clock sources.

Chapter 14, “Special Operating Modes"—provides an overview of the idle, powerdown, and
on-circuit emulation (ONCE) modes and describes how to enter and exit each mode. This chapter
also describesthe power control (PCON) special function register and lists the status of the device
pins during the special modes.

Chapter 15, “External Memory Interface”— describes the external memory signals and bus
cycles and provides examples of externa memory design. It aso provides waveform diagrams
for the bus cycles.

Chapter 16, “Verifying Nonvolatile Memory”— provides instructions for verifying on-chip
program memory, signature bytes, and lock bits.

Appendix A, “Instruction Set Reference”— provides reference information for the instruction
set. It describes each instruction; defines the bits in the program status word register (PSW);
shows the rel ationships between instructions and PSW flags; and lists hexadecimal opcodes, in-
struction lengths, and execution times.

Appendix B, “Pin Descriptions”— describes the function(s) of each device pin. Descriptions
are listed alphabetically by signal name. This appendix also providesalist of the signals grouped
by functional category.

Appendix C, “Registers”— accumulates, for convenient reference, copies of the register defi-
nition figures that appear throughout the manual.

Appendix D, “Data Flow Model"— describes the data flow model for the 8x931 USB transac-
tions.

Appendix E, “8x931AA Design Considerations”"—describes the differences between the hub-
less 8x931AA and the 8x931HA.

Glossary— a glossary of terms has been provided for reference of technical terms.

Index — an index has been included for your convenience.

1-2 I

intel.

GUIDE TO THIS MANUAL

1.2 NOTATIONAL CONVENTIONS AND TERMINOLOGY

The following notations and terminology are used in this manual. The Glossary defines other
terms with special meanings.

#

italics

XXXX, XXXX

Assert and Deassert

Instructions

Logic 0 (L ow)

Logic 1 (High)

The pound symbol (#) has either of two meanings, depending on the
context. When used with a signal hame, the symbol means that the
signa is active low. When used with an instruction mnemonic, the
symbol prefixes an immediate value in immediate addressing mode.

Italicsidentify variables and introduce new terminology. The context
in which italics are used distinguishes between the two possible
meanings.

Variablesin registers and signal names are commonly represented by

x and y, where x represents the first variable and y represents the
second variable. For example, in register Px.y, X represents the
variable [1-4] that identifies the specific port, antepresents the
register bit variable [7:0]. Variables must be replaced with the correct
values when configuring or programming registers or identifying
signals.

Uppercase X (no italics) and lowercase x (no italics) represent
unknown values or a “don’t care” states or conditions. The value may
be either binary or hexadecimal, depending on the context. For
example, 2xAFH (hex) indicates that bits 11:8 are unknown; 10xx in
binary context indicates that the two LSBs are unknown.

The termsassert and deassert refer to the act of making a signal
active (enabled) and inactive (disabled), respectively. The active
polarity (high/low) is defined by the signal name. Active-low signals
are designated by a pound symbol (#) suffix; active-high signals have
no suffix. To assert RD# is to drive it low; to assert ALE is to drive it
high; to deassert RD# is to drive it high; to deassert ALE is to drive it
low.

Instruction mnemonics are shown in upper case to avoid confusion.
When writing code, either upper case or lower case may be used.

An input voltage level equal to or less than the maximum value of
V,,_ or an output voltage level equal to or less than the maximum
value of \j,, . See data sheet for values.

An input voltage level equal to or greater than the minimum value of
V,, or an output voltage level equal to or greater than the minimum
value of \j,,,. See data sheet for values.

1-3

8x931AA, 8x931HA USER’'S MANUAL Inte|®

Numbers Hexadecimal numbers are represented by a string of hexadecimal
digits followed by the character H. Decimal and binary numbers are
represented by their customary notations. That is, 255 is a decimal
number and 1111 1111 isabinary number. In some cases, the letter B
isadded for clarity.

Register Access All register hits support read/write access unless noted otherwise in
the bit description. Other types of access include read-only, write-
only, read/conditional-write, etc.

Register Bits Bit locations are indexed by 7:0 for byte registers, 15:0 for word
registers, and 31:0 for double-word (dword) registers, where bit 0 is
the least-significant bit and 7, 15, or 31 isthe most-significant bit. An
individual bit is represented by the register name, followed by a
period and the bit number. For example, PCON.4 is hit 4 of the
power control register. In some discussions, bit names are used. For
example, the name of PCON.4 is POF, the power-off flag.

Register Names Register names are shown in upper case. For example, PCON is the
power control register. If a register name contains a lowercase
character, it represents more than one register. For example,
CCAPMX represents the five registers: CCAPMO through CCAPMA4.

Reserved Bits Some registers contain reserved bits. These bits are not used in this
device, but they may be used in future implementations. Do not write
a “1” to a reserved bit. The value read from a reserved bit is indeter-
minate.

Set and Clear The termsset andclear refer to the value of a bit or the act of giving
it a value. If a bit isset, its value is “1”;setting a bit gives it a “1”
value. If a bit isclear, its value is “0”;clearing a bit gives it a “0”
value.

Signal Names Signal names are shown in upper case. When several signals share a
common name, an individual signal is represented by the signal name
followed by a number. Port pins are represented by the port abbrevi-
ation, a period, and the pin number (e.g., P0.0, P0.1). A pound
symbol (#) appended to a signal name identifies an active-low signal.

Units of Measure The following abbreviations are used to represent units of measure:
A amps, amperes
DCV direct current volts
Kbyte kilobytes
KQ kilo-ohms

1-4 I

mA
Mbyte
MHz
ms
mw
ns

pF

HA
HF
us
[\

milliamps, milliamperes
megabytes

megahertz

milliseconds

milliwatts

nanoseconds

picofarads

watts

volts

microamps, microamperes
microfarads
microseconds

microwatts

GUIDE TO THIS MANUAL

1-5

8x931AA, 8x931HA USER’'S MANUAL Inte|®

1.3 RELATED DOCUMENTS

The following documents contain additiona information that is useful in designing systems that
incorporate the 8x931. To order documents, please call Intel Literature Fulfillment (1-800-548-
4725 in the U.S. and Canada; +44(0) 793-431155 in Europe).

Embedded Microcontrollers Order Number 270646
Embedded Processors Order Number 272396
Embedded Applications Order Number 270648
Packaging Order Number 240800
Universal Serial Bus Specification Order Number 272904
MCS® 51 Microcontroller Family User’'s Manuall Order Number 272383

1.3.1 Data Sheet

The data sheet is includedBmbedded Microcontrollersand is also available individually.

8x931AA/8x931HA Universal Serial Bus Microcontroller Order Number 273108

1.3.2 Application Notes
The following MCS 51 microcontroller application notes also apply to X888

AP-70, Using the Intel MCS® 51 Boolean Processing Capabilities Order Number 203830

AP-223, 8051 Based CRT Terminal Controller Order Number 270032
AP-252, Designing With the 80C51BH Order Number 270068
AP-425, Small DC Motor Control Order Number 270622
AP-410, Enhanced Serial Port on the 83C51FA Order Number 270490
AP-476, How to |mplement 12C Serial Communication Order Number 272319

Using Intel MCS® 51 Microcontrollers

1.4 APPLICATION SUPPORT SERVICES

You can get up-to-date technical information from a variety of electronic support systems: the
World Wide Web, the FaxBack* service, and Intel's Brand Products and Applications Support

1-6 I

Inte|® GUIDE TO THIS MANUAL

bulletin board service (BBS). These systems are available 24 hours aday, 7 days aweek, provid-
ing technical information whenever you need it.

Inthe U.S. and Canada, technical support representatives are avail able to answer your questions
between 5 am. and 5 p.m. Pacific Standard Time (PST). Outside the U.S. and Canada, please
contact your local distributor. Y ou can order product literature from Intel literature centers and
sales offices.

Table 1-1 lists the information you need to access these services.

Table 1-1. Intel Application Support Services

Service U.S. and Canada Asia-Pacific and Japan Europe
World Wide URL:http://www.intel.com/ | URL:http://www.intel.com/ | URL:http://www.intel.com/
Web
World Wide URL:http://www.intel.com/ | URL:http://www.intel.com/ | URL:http://www.intel.com/
Web design/usb/ design/usb/ design/usb/
FaxBack* 800-525-3019 503-264-6835 +44(0)1793-496646
916-356-3105
BBS 503-264-7999 503-264-7999 +44(0)1793-432955
916-356-3600 916-356-3600
Help Desk 800-628-8686 Please contact your local Please contact your local
916-356-7999 distributor. distributor.
Literature 800-548-4725 708-296-9333 +44(0)1793-431155
+81(0)120 47 88 32 England
+44(0)1793-421777
France
+44(0)1793-421333
Germany

1.4.1 World Wide Web

We offer avariety of technical and product information through the World Wide Web (URL: ht-
tp://lwww.intel.com/design/usb). Also visit Intel's Web site for financials, history, news and USB
information at: www.intel.com/design/.

1.4.2 FaxBack Service

The FaxBack service is an on-demand publishing system that sends documents to your fax ma-
chine. You can get product announcements, change notifications, product literature, device char-
acteristics, design recommendations, and quality and reliability information from FaxBack 24
hours a day, 7 days a week.

Think of the FaxBack service as a library of technical documents that you can access with your
phone. Just dial the telephone number and respond to the system prompts. After you select a doc-
ument, the system sends a copy to your fax machine.

1-7

8x931AA, 8x931HA USER’'S MANUAL Inte|®

Each document is assigned an order number and islisted in a subject catalog. The first time you
use FaxBack, you should order the appropriate subject catalogs to get a complete listing of doc-
ument order numbers. Catalogs are updated twice monthly. In addition, daily update catalogs list
thetitle, status, and order number of each document that has been added, revised, or deleted dur-
ing the past eight weeks. The daily update catalogs are numbered with the subject catalog number
followed by a zero. For example, for the complete microcontroller and flash catal og, request doc-
ument number 2; for the daily update to the microcontroller and flash catalog, request document
number 20.

The following catalogs and information are available at the time of publication:
1. Solutions OEM subscription form

Microcontroller and flash catalog

Development tool s catalog

Systems catalog

Multimedia catalog

Multibus and iRM X® firmware catalog and BBS file listings

Microprocessor, PCI, and peripheral catalog

Quality and reliability and change notification catalog

iAL (Intel Architecture Labs) technology catalog

© © N o gk~ w DN

1.4.3 Bulletin Board System (BBS)

Intel's Brand Products and Applications Support bulletin board system (BBS) lets you download
files to your PC. The BBS has the lategiBUILDER firmware, hypertext manuals and
datasheets, firmware drivers, firmware upgrades, application notes and utilities, and quality and
reliability data.

Any customer with a PC and modem can access the BBS. The system provides automatic config-
uration support for 1200- through 19200-baud modems. Use these modem settings: no parity, 8
data bits, and 1 stop bit (N, 8, 1).

To access the BBS, just dial the telephone number (see Table 1-1 on page 1-7) and respond to the
system prompts. During your first session, the system asks you to register with the system oper-
ator by entering your name and location. The system operator will set up your access account
within 24 hours. At that time, you can access the files on the BBS.

NOTE

In the U.S. and Canada, you can get a BBS user’s guide, a master list of BBS
files, and lists of FaxBack documents by calling 1-800-525-3019. Use these
modem settings: no parity, 8 data bits, and 1 stop bit (N, 8, 1).

1-8 I

intel.

Ar chitectural
Overview

intel.

CHAPTER 2
ARCHITECTURAL OVERVIEW

The 8x931AA and 8x931HA are PC periphera controllers for Universal Serial Bus (USB) appli-
cations. These peripheral controllers provide the means for connecting PC peripheras such as
monitors, keyboards, joysticks, telephones, and modems to USB-equipped personal computers.
For keyboard applications, both devices include an on-chip keyboard control interface. The USB
material in this document relies heavily on the Universal Serial Bus Specification which provides
a detailed description of the USB system.

In the language of the USB specification, the 8x931AA/HA isa USB device. A USB device can
serve as afunction by providing an interface for a PC peripheral, and it can serve asahub by pro-
viding USB ports for additional PC peripherals.

The 8x931AA is a hubless USB periphera controller which serves as a USB function. The
8x931HA serves as both a USB function and as a hub; it supports one embedded function and
provides four external downstream ports. Figure 2-1 depicts the 8x931 in an example USB sys-
tem.

| 8x931Hx I | 8x931Hx I

USB Hub USB Hub
Monitor Keyboard

L L L L LILl_I_‘LILI

[exes0Ax |

Printer

USB Function

— 1 |
| 8X930AX | | 8X931Ax I | 8Xx930Ax I | 8x931Ax I
Digital Camera Joystick Speakers Telephone
USB Function USB Function USB Function USB Function

A4519-01

Figure 2-1. 8x931 in a USB System

I 2-1

8x931AA, 8x931HA USER’'S MANUAL Inte|®

Data Program
Address :> RAM ROM <: Address <: Fgggr:?er? Upstream
Register Register Port

T 1 T 8

<:> MLCJEEIe
“ _ Stack <:> g

Pointer

|
| Downstream

|
— >\ AW | Ports |

—
Data HA only
Pointer <:>

On-chip
Instruction A <:> Peripherals

Sequencer H

A
Clock Parallel
and Ports

T

Figure 2-2. Functional Block Diagram of the 8x931

2\

A4518-01

2.1 PRODUCT OVERVIEW

The 8x931 employs the architecture of the MCS® 51 microcontroller family. Specificaly, it is
derived from the 8xC51Fx core which is optimized for control operations with extensive boolean
processing capabilities. The 8x931 executes the standard instruction set of the MCS 51 architec-
ture.

A functional block diagram of the 8x931 is shown in Figure 2-2. The 8x931 contains a microcon-
troller core, aUSB module, akeyboard control interface, on-chip ROM (optional) and RAM, four
8-bit parallel ports, and on-chip peripheras (timer/counters and serial port). The USB modul e op-
erates in conjunction with the CPU to provide the capabilities of a USB device. It supports all
four types of USB datatransfers: control, isochronous, interrupt, and bulk. Dedicated pinouts are
provided for USB signals.

The8x931 isavailablein ROMIess and factory-programmed ROM versionsin 64-pin S-DIP, 64-
pin QFP, and 68-pin PLCC packages. See Appendix B for package diagrams, pin assignments,
and signal descriptions. Table 2-1 liststhe on-chip RAM and ROM memory options.

2-2 I

Inte|® ARCHITECTURAL OVERVIEW

Table 2-1. 8x931 Memory Options

On-chip Memory
8Xx931AA 8x931HA
(Hubless) (Hub) ROM RAM
(Kbytes) (Bytes)
80931AA 80931HA 0 256
83931AA 83931HA 8 256

The 8x931 provides a rich set of microcontroller features. The following sections describe the
major features. Table 2-2 on page 2-4 summarizes these features and provides an item-by-item
comparison of the 8x930Hx and 8x931Hx and the 8x930Ax and 8x931Ax. The 8x931 is based on
the MCS® 51 architecture, whereas the 8x930Hx is based on the MCS® 251 architecture.

For detailed description of the 8xC51Fx hardware, programmer’s model, and instruction set, see
the MCS 51 Microcontroller Family User's Manualbrder number 272383.

For further information on the 8x931, see “Microcontroller Core” on page 2-6, and “Universal
Serial Bus Module” on page 2-11.

2.1.1 8x931AA Features

The &931AA provides a USB interface for one PC peripheral. 98 B8AA function interface
provides three function endpoint pairs with corresponding transmit/receive FIFO pairs. Function
endpoint 0 supports control data transfers only, while function endpoints 1 and 2 support control,
interrupt, and bulk data transfers. Function endpoint 1, which has 16-byte FIFOs, also supports
isochronous data transfers. See Table 2-5 on page 2-12 for endpoint pair information.

2.1.2 8x931HA Features

The &931HA also provides a USB hub capability, permitting the connection of additional PC
peripherals or hubs. In addition to an upstream port to the host PC (USB root por)3hie /8
provides four external downstream ports (with ganged power switching), and an internal down-
stream port for the embedded function. TRBRHA provides on-chip transceivers for each of
the external USB ports.

The &931HA has two hub endpoint pairs: endpoint O which supports 8-byte control data trans-
fers and endpoint 1 which transmits a status change byte to the host PC. See Table 2-2 for a sum-
mary of USB features and Table 2-5 on page 2-12 for endpoint pair information. See Figure 2-3
for the 8&931HA USB module block diagram.

NOTE

The &931AA microcontroller does not support hub operations. Specific
details of the 8931AA are covered in Appendix E, “8x931AA Design
Considerations”.

I 2-3

8x931AA, 8x931HA USER’'S MANUAL

2.1.3 Keyboard Control Interface

intel.

The 8x931 contains a keyboard control interface with a 20-bit by 8-bit scan capability and four
LED drivers. Chapter 12, “Keyboard Control”, describes this further.

Table 2-2. USB Peripheral Controller Feature Summary and Comparison

8x931Hx 8x931Ax 8x930Hx 8x930A X
General Features
On-chip ROM 0, 8 Kbytes | 0, 8 Kbytes 0,80r16 0,8o0r16
Kbytes Kbytes
On-chip RAM 256 bytes 256 bytes 1024 bytes 1024 bytes
On-chip peripherals:
Timer/counters 3 3 3 3
Serial /O port Yes Yes Yes Yes
PCA, Hardware Watchdog Timer No No Yes Yes
Code compatible with MCS® 51 Microcontrollers Yes Yes Yes Yes
Code compatible with MCS® 251 Microcontrollers No No Yes Yes
Keyboard control interface Yes Yes No No
General USB Features
Complete Universal Serial Bus Specification, Yes Yes Yes Yes
Rev. 1.0 compatibility
On-chip USB transceivers Yes Yes Yes Yes
Automatic transmit/receive FIFO management Yes Yes Yes Yes
Time base (crystal/PLL) 12 MHz 12 MHz 12 MHz 12 MHz
USB rate (full speed) 12 Mbps 12 Mbps 12 Mbps 12 Mbps
Low-clock mode Yes Yes Yes Yes
Suspend/resume Yes Yes Yes Yes
USB interrupt vectors (hub, function, and Yes Yes Yes Yes
suspend/resume)
Reset Separation Yes Yes No Yes
6 Endpoint Pair Option No No No Yes
USB Function Features
Function endpoint pairs 3 3 4 4 (or 6)
Transmit/receive FIFO sizes:
Endpoint 0 8 bytes 8 bytes 16 bytes 16 bytes
Endpoint 1 16 bytes 16 bytes 0-1024 bytes 0-1024 bytes
(or 256 bytes)
Endpoint 2 8 bytes 8 bytes 16 bytes 16 (or 32 bytes)
Endpoint 3 — — 16 bytes 16 (or 32 bytes)
Endpoint 4 — — — (32 bytes)
Endpoint 5 — — — (16 bytes)
USB Hub Features
Internal downstream port USB port 1 — USB port 4 —
USB rate (full speed) 12 Mbps — 12 Mbps —

TINT2:0# are external interrupts.T2:0 are timer/counter interrupts.

2-4

intel.

ARCHITECTURAL OVERVIEW

Table 2-2. USB Peripheral Controller Feature Summary and Comparison (Continued)

8x931Hx 8x931Ax 8x930Hx 8x930A X
USB Hub Features (cont.)
External downstream ports 4 (USB ports — 4 (USB ports —
2,3,4,5) 1,2,3,5)
USB rate (full speed/low speed) 12 Mbps/ — 12Mbps/ —
1.5 Mbps 1.5 Mbps
Hub endpoint 0: transmit/receive FIFOs 8 bytes — 16 bytes —
Hub endpoint 1: one transmit data buffer register 1 byte — 1 byte —
Core Microcontroller Features
Architecture MCs® 51 Mcs®51 | Mcs®251 Mcs® 251
(Accumu- (Accumu- (Register- (Register-
lator-based) lator- based) based)
based)
Address spaces:
Program memory 64 Kbytes 64 Kbytes | (Single 256- (Single 256-
Data memory 64 Kbytes 64 Kbytes Kbyte Kbyte
address address space)
space)
External bus (multiplexed)
Address 16 bits 16 bits 16, 17, or 18 16, 17, or 18
bits bits
Data 8 bits 8 bits 8 bits 8 bits
Number of Registers 8 8 40 40
Core interrupt vectors:
INTO#, INT1#, TO, T1, T2T, and Serial /O Yes Yes Yes Yes
Keyboard (INT2#)" Yes Yes No No
PCA No No Yes Yes
Parallel 1/O ports 4 4 4 4
Powerdown and idle power-saving modes Yes Yes Yes Yes

TINT2:0# are external interrupts.T2:0 are timer/counter interrupts.

2.1.4 MCS® 51 Architecture Features

The 8x931 retains the basic features of and is code-compatible with the MCS 51 microcontroller.
Features of the MCS 51 architecture are discussed in the following paragraphs and summarized

in Table 2-2.

The MCS 51 architecture has separate program memory and data memory addresses spaces. A
sixteen-bit address bus permits the 8x931 to address 64 Kbytes of program memory (up to 8
Kbytes of on-chip ROM and the remainder in externa program memory) and 64 Kbytes of data
memory (256 bytes of on-chip RAM and the remainder in external data memory). The general

purpose registers (four banks of RO—R7) and the special function registers (SFRs) are located in
the data memory address space. Refer to Chapter 3, “Address Spaces” for a description of the ad-

dress modes.

The MCS 51 architecture has four 8-bit parallel /O ports. The pins of these ports can be individ-
ually programmed to provide an external bus, to support special functions (keyboard scanning,
timer/counter, interrupts, etc.), or for general I1/0O use. Ports PO and P2 comprise a 16-line external

2-5

8x931AA, 8x931HA USER’'S MANUAL Inte|®

bus, which transmits a 16-bit address multiplexed with eight databits. Ports P1 and P3 carry bus-
control and peripheral signals. See Table B-7, “Signal Description,” on page B-12.

The MCS 51 architecture has two power-saving modes. In idle mode, the CPU clock is stopped,
while clocks to the peripherals continue to run. In global suspend mode (powerdown), the on-chip
oscillator is stopped, and the chip enters a static state. In addition to idle and powerdown, the
8x931 has a special power-saving mode, low-clock mode, which it enters following a device re-

set. Refer to Chapter 14, “Special Operating Modes,” for details on power-saving modes.

2.2 MICROCONTROLLER CORE

The microcontroller core contains the central processor unit (CPU), the clock and reset unit, the
interrupt handler, the bus interface, and the peripheral interface (Figure 2-2).

221 CPU

The CPU contains the ALU, program counter, instruction decoder, data memory interface, gen-
eral-purpose registers RO — R7, and special function registers ACC, B, stack pointer (SP) and data
pointer (DPTR).

The CPU executes the instruction set of the MCS 51 architecture. The instruction set is optimized
for control operations. It provides fast addressing modes to facilitate byte operations on small
data structures and extensive support for one-bit variables as a separate data type. For information
on the instruction set refer to tleCS® 51 Microcontroller Family User's Manuahd the MCS®

51 Macro Assembler User’s Guide

To provide fast context switching, the 8x931 implements registers RO — R7 as four banks of eight
registers, with the active bank selected by the program status word (PSW). The register banks oc-
cupy the lowest 32 bytes of RAM memory in the data memory address space.

2-6 I

ARCHITECTURAL OVERVIEW

USB Upstream Port

(Hub Root Port)

Dyio €
Dpo ~€—

Transceiver

/-

To
CPU <

Y

USB External
Downstream Ports

Control

Transceiver M2
] —> Dp,
< iver > Dwms
3 Transceiver > Dps
Repeater
] . —> D14
< Transceiver Dpy
- . —>» D5
| Transceiver > Dpe
Y
Serial Bus Interface Engine
(SIE)
A A
Y Y
Hub Function
Interface Interface
Unit Unit
(HIV) (FIV)

$4

Al

| Transmit/Receive Bus |

X

Data Bus

JVLI

<

KControl —)'

{

FIFOs

2.2.2

Thewaveform at X TAL 1isthe 8x931 system clock. It can be supplied by an external source con-
nected to X TAL1 or generated by an on-chip oscillator which has its resonant circuit (crystal or
ceramic resonator) connected across X TAL1 and XTAL2. See Figure 2-4 for the 8x931 clock cir-

Cuit.

Figure 2-3. 8x931HA USB Module Block Diagram

Clock and Reset Unit

8x931AA, 8x931HA USER’'S MANUAL Inte|®

2221 State Time and Machine Cycles

Thebasic unit of timefor 8x931 periphera controller isthe statetime (or state). Statesare divided
into two phasesidentified as phase 1 and phase 2. The 8x931 machine cycle equals six states. See
Figure 2-5 on page 2-10 for 8x931 clocking definitions. A specific time within a machine cycle
is denoted by its state and phase. For example, when a timer/counter counts external events, the
externa input is sampled during state 5, phase 2 (S5P2) of every machine cycle.

The 8x931 executes single-cycle instructions in one machine cycle. With a12 MHz crystal, Fe

= 6 MHz and the duration of a machine cycle is 1 ys. Instruction execution begins in state 1 of a

machine cycle when the opcode is latched into the instruction register. Execution is complete at

the end of state 6. On-chip peripherals such as the timer/counter also operate on a machine cycle.

2222 USB Operating Rate

Because of its hub capability, thed81HA (including the embedded function) always operates

as a full-speed (12 Mbps) USB device. Root port data transfers with the host PC are always full
speed. Data transfer rates on the external downstream ports are matched to the type of USB device
attached — i.e., full speed or low speed (1.5 Mbps). For full speed operation, the PLL provides
the 4X USB sampling rate.

The &931AA can operate as a full-speed (12Mbps) or low-speed (1.5Mbps) device.

2.2.2.3 Low-clock Mode

Low-clock mode is a special power-reduction mode in which the CPU and the on-chip peripher-
als operate at 3 MHz following device reset. To exit low-clock mode, clear the LC bit in the
PCON register. During low-clock modeg k = 3 MHz, so the timing definitions in Figure 2-5

do not apply to the CPU and on-chip peripherals. Low-clock mode does not affect the USB rate.
Also see Chapter 14, “Special Operating Modes”.

2224 Reset Unit

The reset unit resets thed81 to a known state. A chip reset is initiated by asserting the RST pin
or by a USB-initiated reset. For information on resets refer to Chapter 13, “Minimum Hardware
Setup”.

NOTE

The &931 can be programmed so a USB-initiated reset does not cause a chip
reset. For additional information, see “USB Reset Separation” on page 5-17.

2-8 I

ARCHITECTURAL OVERVIEW

F
(12%?,31) Internal Clock
xTALL [} Clock . Fewk
Generator 2 On-chip
3 | Peripherals
XTAL2 3 MHz
Op cPU
[Po]
PCON.1 PCON.5 PCON.0
(Powerdown) (Low-clock Mode) (Idle Mode)
A5324-01
Figure 2-4. 8x931 Clock Circuit
Table 2-3. 8x931HA Operating Frequency
Internal XTALL
XTAL1 Clocks per
PLLSEL Frequency USEzl?ate F“Eg”er)‘cy State Comments
(Fosc) (CZL)K (Tosc/state)
(3
0(4) - - - - -
1 12 MHz 12 Mbps 6 MHz (3) 2 PLL On
(Full Speed)
NOTES:

1. The sampling rate is 4 times the USB rate.

2. Theinternal frequency, F¢ « = 1/T¢y, is the clock signal distributed to the CPU and the
on-chip peripherals,

3. Following device reset, the CPU and on-chip peripherals operate in low-clock mode
(Feuk = 3 MHZ) until the LC bit in the PCON register is cleared. In low clock mode,
there are four Tyg. periods per state. Low-clock mode does not affect the USB rate.

4. PLLSEL =0 is used during factory test only.

2-9

8x931AA, 8x931HA USER’'S MANUAL

Table 2-4. 8x931AA Operating Frequencies

intel.

PLL.SEL FssEL LC Bit Fr)é;—ﬁé_:cy U(IS:Ig/Eig;e Fre%?:reicy Comment
Pin Pin 1) (MHz) 2) (E/IChL;)
0 0 0 6 LS 3 PLL Off
0 0 1 6 LS 3 PLL Off
1 0 0 12 LS 6 PLL Off
1 0 1 12 LS 3 PLL Off
1 1 0 12 FS 6 PLL On
1 1 1 12 FS 3 PLL On

NOTES:

1. Reset and power up routines set the LC bit in PCON to put the 8x931AA in low-clock mode (core
frequency = 3 MHz) for lower I prior to device enumeration. Following completion of device
enumeration, firmware should clear the LC bit to exit the low-clock mode. The user may switch the
core frequency back and forth at any time, as needed.

2. USB rates: Low speed = 1.5 Mbps; Full speed = 12 Mbps. The USB sample rate is 4X the USB rate.

Phase 1 Phase 2
P1 P2
XTAL1 |
Tosc

2 Tpsc = State Time

‘ State 1 ‘ State 2 ‘ State 3 ‘ State 4 ‘ State 5 ‘ State 6 ‘

P1L|P2 | PL|P2 |P1|P2 |P1L|P2|PL|P2 | P1]|P2
I Machine Cycle |

A5325-01

Figure 2-5. 8x931 Clocking Definitions

2-10

Inte|® ARCHITECTURAL OVERVIEW

2.2.3 Interrupt Handler

Theinterrupt handler processesinterrupt requests from maskabl e interrupt sources (USB module,
keyboard control interface, timer/counters and external). When the interrupt handler grants an in-
terrupt request, the CPU discontinues the normal sequence of instruction execution and branches
to aroutinethat servicestheinterrupt source. Y ou can enable or disablethe interruptsindividually
and you can assign one of four priority levelsto each interrupt. Refer to Chapter 5, “Interrupt Sys-
tem” for a detailed description.

2.3 8x931 MEMORY

The &931 has separate 64-Kbyte program memory and data memory address spaces. A sixteen-
bit address bus permits thed81 to address 64 Kbytes of program memory (up to 8 Kbytes of
on-chip ROM and the remainder in external program memory) and 64 Kbytes of data memory
(256 bytes of on-chip RAM and the remainder in external data memory). See Table 29Bfor 8
memory options.

The 8931 is available with 8 Kbytes of on-chip ROM memory located at the lowest addresses
of program memory, or without ROM. Program memory is read only. Following chip reset, the
first instruction is fetched from location 0000H in program memory. For ROM devices, this will
be from on-chip program memory and EA# should be tied o For devices without on-chip
ROM, all instruction fetches are from external memory and EA# should be tied to ground.

The &931 has 256 bytes of on-chip RAM located at the lowest addresses of the data memory.
Data memory locations can be accessed with direct and indirect addressing. Sixteen of these lo-
cations (20H-2FH) are bit addressable. The general purpose registers (four banks of RO—R7) re-
side at data memory locations O0OH-1FH.

Special functions registers (SFRs) are also located in the data memory space at locations 80H —
FFH. SFRs are accessed by direct addressing, while general purpose RAM in this address range
is accessed by indirect addressing.

2.4 UNIVERSAL SERIAL BUS MODULE

The 89Q31HA USB module operates in conjunction with the CPU to provide both USB function
and USB hub capabilities. The block diagram in Figure 2-3 on page 2-7 shows the main compo-
nents of the ®31HA USB module and how they interface with the CPU.

The hub provides the electrical interface between the host PC and downstream devices connected
to the USB. The repeater and the hub interface, which is made up of the Serial Bus Interface Unit
(SIE), the Hub Interface Unit (HIU), and the hub FIFOs, provide the hub capability (Figure 2-3).
The USB function interface manages communications between the host PC and the embedded
function. The function interface is made up of the SIE, the function interface unit (FIU), the func-
tion FIFOs (Figure 2-3).

The &931HA USB module communicates with the host PC by means of an upstream data port

(USB port 0). The USB module communicates with devices attached to the USB by means of an

internal downstream port (USB port 1) and the four external downstream p@3d.k8A only).

See Figure 2-3 and Figure 7-1 on page 7-2 for a hub block diagram. For USB port descriptions
and pin assignments, see Appendix B. The external USB ports are differential data ports that are

I 2-11

8x931AA, 8x931HA USER’'S MANUAL Inte|®

fully compliant with the Universal Serial Bus Specification. The 8x931HA provides on-chip
transceivers for each external USB port and ganged-switched port power on the external down-
stream ports.

A complete description of the USB can be found in Universal Serial Bus Specification. For a de-
scription of the transceiver see the “Driver Characteristics” and “Receiver Characteristics” sec-
tions of the “Electrical” chapter of th&niversal Serial Bus Specification. For electrical
characteristics and data signal timing, see the “Bus Timing/Electrical Characteristics” and “Tim-
ing Diagram” sections of the same chapter.

NOTE

The &931AA microprocessor does not support a hub interface. Specific
details of the 8931AA are covered in Appendix E, “8x931AA Design
Considerations”.

2.4.1 USB Operation

Operation of the USB module is controlled through the use of special function registers (SFRSs).
SFRs associated with the USB module are described in Chapter 5, “USB Function,” Chapter 6,
“USB Hub,” and Chapter 4, “Interrupt System.” Register definition tables in these chapters de-
scribe register usage and define the register bits. The register definition tables also appear in Ap-
pendix C in alphabetical order. A memory map of tk@33 SFRs is presented in Chapter 3,
“Address Spaces” and Table C-1 on page C-2.

Data transfers with the host are made to/from endpoint pairs (EPPs) on the USB module. The
8x931HA provides three function endpoint pairs, a hub control endpoint pair, and a transmit-only
hub status change endpoint. Table 2-5 lists the hub and function endpoint pairs available on the
8x931 along with the associated transmit and receive FIFO data buffers. For any given data trans-
fer operation, the EPINDEX register specifies the endpoint pair involved and the HPINDEX reg-
ister specifies the downstream port.

Table 2-5. Endpoint Pairs for 8x931

Device EPINDEX Endpoint Pair Transmit Receive USB Data Transfer
FIFOs FIFOs Types
8x931AA/HA | 0000 0000 | Function Endpoint O 8 bytes 8 bytes Control
0000 0001 | Function Endpoint 1 16 bytes 16 bytes Control, Interrupt,

BXI3LAAHA Bulk, Isochronous
8X931AAHA 0000 0010 | Function Endpoint 2 8 bytes 8 bytes gglrlltrol, Interrupt,

8x931HA 1000 0000 | Hub Endpoint O 8 bytes 8 bytes Control

8x931HA 1000 0001 | Hub Endpoint 1 (1) N/A N/A Interrupt
NOTES:

1. Hub endpoint 1 assembles status-change information in a buffer register (TXDAT) and transmits it to
the host PC. Hub endpoint 1 does not require FIFOs.

2-12

Inte|® ARCHITECTURAL OVERVIEW

The CPU runs the firmware associated with the operation of the hub and the function interface.
It also reads the receive FIFOs, loads the transmit FIFOs, and decodes and executes U SB requests
for the hub. Control transaction stages are tracked by firmware.

2.4.2 Hub Interface

Hub operation is implemented by reading and writing the hub SFRs. The repeater, the SIE, the
hub interface unit (HIU), and the hub FIFOs provide the hub capability. The hub interface has
two endpoint pairs. Hub endpoint O supports only control data transfers. Hub endpoint 1 is used
to transmit hub status change information to the host PC.

8x931HA USB hub operationsfall into two categories: hub repeater operations and hub controller
operations. The hub controller is split among four modules: the serial bus interface engine, the
hub interface unit, the hub endpoint 0 transmit and receive FIFOs, and the 8x931HA CPU. See
Chapter 7, “USB Hub”. The following subsections discuss the role of each module.

2.4.3 Hub Repeater

The repeater is the connectivity manager for tk@3&8HA. It detects the connection or discon-
nection of devices on the external downstream ports and manages the upstream/downstream con-
nectivity for data packets. It keeps track of hub port status, manages connectivity, and performs
power management for external downstream ports. The repeater supports both full-speed (12
Mbps) and low-speed (1.5 Mbps) data traffic. The repeater also controls bus fault detection and
recovery. Downstream port control is managed primarily by the HIU.

2.4.4 Serial Bus Interface Engine (SIE)

The SIE is the USB communication protocol interpreter. It places data on and accepts data from
the bus. On theX®31HA, the hub interface and the function interface share the SIE. This is pos-
sible because the host communicates with only one USB device during any given transaction.

The internal downstream port is permanently attached to the SIE. The SIE provides serial-to-par-
allel conversion for data transfers from the host and parallel-to-serial conversion for data transfers
to the host. For additional information on the SIE, see “SIE Details” on page 6-34.

2.4.5 Hub Interface Unit (HIV)

The HIU uses special function registers (SFRs) to control the operation of the hub and to maintain
the status of the hub and its downstream ports. Control SFRs are set by firmware in response to
USB requests. Status SFRs are set by the repeater hardware. Refer to Chapter 7, “USB Hub” and
Chapter 8, “USB Programming Models” for a discussion on the use of the HIU SFRs.

2.4.6 Hub FIFOs

Hub FIFOs operate in the same manner as the function interface FIFOs. See Chapter 6, “USB
Function” for a detailed description of their operation. Hub endpoint O handles only control data
transfers. It is implemented with 8-byte transmit and receive FIFO data buffers. The maximum
packet size for hub control data transfers is eight bytes. Data received from the USB for endpoint

I 2-13

8x931AA, 8x931HA USER’'S MANUAL Inte|®

Oisstored inthereceive FIFO for reading by firmware. Datato be sent to the host from hub end-
point O is loaded into the transmit FIFO.

Hub endpoint 1 transmits single-byte interrupt tokens to the host and does not have FIFO data
buffers.

2.5 ON-CHIP PERIPHERALS

The on-chip peripheral s reside outside the microcontroller core. They perform specialized func-
tions in hardware. Firmware controls the peripherals via their special function registers (SFRs).
The 8x931 has two peripherals: the timer/counter unit and the serial 1/0 port.

2.5.1 Timer/Counters

Thetimer/counter unit has three programmable 16-bit timer/counters. They can be clocked by the
divided-down system clock or an external timebase (timer operation) or by external events
(counter operation). They can be set up as8-bit, 13-bit, or 16-bit timer/counters. Y ou can program
them for special applications, such as capturing the time of an event on an external pin, outputting
aprogrammable clock signal on an external pin, or generating a baud rate for the serial 1/0 port.
Timer/counter events generate interrupt requests.

2.5.2 Serial I/O Port

The seria /O port provides one synchronous and three asynchronous communication modes.
The synchronous mode (mode 0) is half-duplex: the serial port outputs a clock signal on one pin
and transmits or receives data on another pin.

The asynchronous modes (modes 1-3) are full-duplex (i.e., the port can send and receive simul-
taneously). Mode 1 uses a serial frame of 10 bits: a start bit, 8 data bits, and a stop bit. The baud
rate is generated by the overflow of timer 1 or timer 2. Modes 2 and 3 use a serial frame of 11

bits: a start bit, eight data bits, a programmable ninth data bit, and a stop bit. The ninth bit can be
used for parity checking or to specify that the frame contains an address and data. In mode 2, you
can use a baud rate of 1/32 or 1/64 of the oscillator frequency. In mode 3, you can use the over-
flow from timer 1 or timer 2 to determine the baud rate.

In its asynchronous modes (modes 1-3) the serial port can operate as a slave in an environment
where multiple slaves share a single serial line. It can accept a message intended for itself or a
message that is being broadcast to all of the slaves, and it can ignore a message sent to anothe
slave.

2.6 OPERATING CONDITIONS

The 8931 is designed for a commercial operating environment and to accommodate the operat-
ing rates of the USB interface. For detailed specifications, refer to the current
8x931AA/8x931HA Universal Serial Bus Peripheral Controller datasheet (order number:
273108-001). For USB module operating rates, see “Clock and Reset Unit” on page 2-7.

2-14 I

intel.

Address Spaces

CHAPTER 3
ADDRESS SPACES

3.1 MEMORY ORGANIZATION IN 8x931 DEVICES

3.1.1 Logical Separation of Program and Data Memory

8x931 devices have separate address spaces for Program and Data Memory, as shown in Figure
3-2. Thelogical separation of Program and Data M emory allowsthe Data Memory to be accessed
by 8-bit addresses, which can be more quickly stored and manipulated by an 8-bit CPU. Never-
theless, 16-bit Data Memory addresses can also be generated through the DPTR register.

Program Memory can only be read, not written to. There can be up to 64K bytes of Program
Memory. In the ROM version, the lowest 8K bytes of Program Memory are provided on-chip.
Refer to Table 2-1 on page 2-3 for the amount of on-chip ROM on each device. In the ROMless
versions, al Program Memory is externa. The read strobe for external Program Memory is the
signa PSEN# (Program Store Enable).

Data Memory occupies a separate address space from Program Memory. Up to 64K bytes of ex-
ternal RAM can be addressed in the external Data Memory space. The CPU generates read and
write signals, RD# and WR#, as needed during external Data Memory accesses.

External Program Memory and external Data Memory may be combined if desired by applying
the RD# and PSEN# signals to the inputs of an AND gate and using the output of the gate as the
read strobe to the external Program/Data memory.

3.1.2 Program Memory

Figure 3-1 shows a map of the lower part of the Program Memory. After reset, the CPU begin
execution from location 0000H.

Asshown in Figure 3-1, each interrupt is assigned a fixed location in Program Memory. The in-
terrupt causesthe CPU to jump to that location, where it commences execution of the service rou-
tine. Externa Interrupt O, for example, is assigned to location 0003H. If External Interrupt O is
going to be used, its service routine must begin at location 0003H. If the interrupt is not going to
be used, its service location is available as general purpose Program Memory.

I 3-1

8x931AA, 8x931HA USER’'S MANUAL

Interrupt < e
Locations

—_—]
—_—]

\ »
RESET —3»

002BH

0023H

001BH

0013H

000BH

0003H

0000H

.

8 Bytes

A4480-01

Figure 3-1. MCS® 51 Program Memory

The interrupt service locations are spaced at 8-byte intervals: 0003H for External Interrupt O,
000BH for Timer 0, 0013H for External Interrupt 1, 001BH for Timer 1, etc. If an interrupt ser-
vice routine is short enough (as is often the case in control applications), it can reside entirely
within that 8-byte interval. Longer service routines can use a jump instruction to skip over sub-
sequent interrupt locations, if other interrupts arein use.

The lowest 8K bytes of Program Memory can be either in the on-chip ROM or in an external
ROM. This selection is made by strapping the EA# (External Access) pin to either V. or Vg

Inthe 8K byte ROM devices, EA# =V . selects addresses 0000H through 1FFFH to beinternal,
and addresses 2000H through FFFFH to be external.

If the EA# pin is strapped to V4, then all program fetches are directed to external ROM. The
ROM less parts must have this pin externally strapped to V 44 to enable them to execute properly.

Theread strobe to external ROM, PSEN#, isused for al externa program fetches. PSEN# is not
activated for internal program fetches.

Program Memory addresses are always 16 bits wide, even though the actual amount of Program
Memory used may belessthan 64K bytes. External program execution sacrificestwo of the 8-bit
ports, POand P2, to the function of addressing the Program Memory.

3-2 I

Inte|® ADDRESS SPACES

3.1.3 Data Memory

Figure 3-2 shows the internal and external Data Memory spaces available to the 8x931 user.

Program Memory Data Memory
(Read Only) (Read/Write)
E- FFFFH b FFFFH :
1 1 1
: 1 1 1
1 ! 1 1
1 ! 1 1
\ External 1 1 1
1 ! 1 1
1 ! 1 1
1 : : 1
| SRS Lo i
1 ! 1 1
1 ! 1 1
1 1 1
! 1 | External h
: 1 1 1
1 ! 1 1
1 ! 1 1
1 : : 1
| Lo SR
! * * o i
1 : 1 1
. [| P i
: 1 1 1
1 ! 1 1
1 ! 1 1
1 ! 1 1
1 : : Internal :
T e T N SR [
i | EA#=0 EAr=1 | |1 FRHI !
1 External Internal [1 H
1 1 1 1
: 1 1 1
1 ! 1 1
1 ! 1 1
1 : 1 1
! <0000 i 1 00 0000 |
1 1 1
e 1______________________' b e ? __4___-
PSEN# RD# WR#
A 4475-01

Figure 3-2. 8x931 Memory Structure

Internal Data Memory is mapped in Figure 3-3. The memory space is shown divided into three
blocks, which are generaly referred to asthe Lower 128, the Upper 128, and SFR space. Internal
Data Memory addresses are always one byte wide, which implies an address space of only 256
bytes. However, the addressing modes for internal RAM can in fact accommodate 384 bytes, us-
ing asimple trick. Direct addresses higher than 7FH access one memory space, and indirect ad-
dresses higher than 7FH access a different memory space. Thus Figure 3-3 shows the Upper 128
and SFR space occupying the same block of addresses, 80H through FFH, although they are phys-
ically separate entities.

The Lower 128 bytes of RAM are present in all MCS® 51 devices as mapped in Figure 3-4. The
lowest 32 bytes are grouped into 4 banks of 8 registers. Program instructions call out these regis-
tersas RO through R7. Two bitsin the Program Status Word (PSW) select which register bank is

I 3-3

8x931AA, 8x931HA USER’'S MANUAL Inte|®

in use. This allows more efficient use of code space, since register instructions are shorter than
instructions that use direct addressing.

FFH ~~~====7=777 FFH
1 Accessible ;
Upper : by indirect At(;; %?rselgie
128 : addressing addressing only
| only
80H 80H
7FH Accessible Ports
by direct Status and control bits
Lower ’
128 and indirect Special Timer
addressing function Registers
0 registers | stack pointers
accumulator
(etc.)
A 4477-01

Figure 3-3. Internal Data Memory

The next 16 bytes above the register banks form a block of bit-addressable memory space. The
MCS® 51 instruction set includes a wide selection of single-bit instructions, and the 128 bitsin
this area can be directly addressed by these instructions. The bit addresses in this area are 00H
through 7FH. All of the bytes in the Lower 128 can be accessed by either direct or indirect ad-
dressing. The Upper 128 can only be accessed by indirect addressing.

FFH
No bit-addressable
spaces
Available as stack space in
devices with 256 bytes RAM
80H
7FH
2FH
Bank select Bit-addresseable space
bits in PSW (Bit addresses 0 - 7F)
_1 20H
1FH
H { 18H
10 { 10H e 4 Banks of 8 registers
(RO - R7)
o1 { OFH
08H
00 07H Reset value of
0 stack pointer
A 4476-01

Figure 3-4. Upper and Lower 128 Bytes of Internal RAM

Inte|® ADDRESS SPACES

3.2 SPECIAL FUNCTION REGISTERS (SFRS)

The special function registers (SFRS) residein the microcontroller core, the USB module, and the
on-chip peripherals. Memory maps showing the location of all the 8x931HA SFRs are presented

in Appendix C, “Registers”.®31AA SFRs are shown in Appendix E, “8x931AA Design Con-
siderations”. The content of each register following device reset is given. An “X” indicates the bit
value following reset is indeterminate.

Figure 3-5 gives a brief look at the Special Function Register (SFR) space. SFRs include the Port
latches, timers, peripheral controls, etc. These registers can only be accessed by direct addressing

FFH
EOH ACC Register-mapped ports
Addresses that end in
Port 3 OH or 8H are also
BOH - Bit-addressable
— Port Pins
AOH Port 2 — Accumulator
- PSW
90H Port 1 (etc.)
80H Port O

Figure 3-5. SFR Space

Blank locations in the SFR map are unimplemented, i.e., no register exists. If an instruction at-
tempts to write to an unimplemented SFR location, the instruction executes, but nothing is actu-
ally written. If an unimplemented SFR location is read, it returns an unspecified value.

Endpoint-indexed SFRs are implemented as banks of registers. There is a set or bank of registers
for each endpoint pair. Endpoint-indexed SFRs are accessed by means of the SFR address and al
index value. The EPINDEX register specifies hub/function and the endpoint number (which
serves as the index value). See “Endpoint-indexed SFRs” on page 6-5 and “Hub Endpoint Index-
ing Using EPINDEX" on page 7-11.

Port-indexed SFRs (HPCON, HPSC, and HPSTST) are implemented in a similar manner. There
is a set or bank of these registers for each USB downstream port. Port-indexed SFRs are accessec
by means of the SFR address and an index value. The HPINDEX register contains the port num-
ber which serves as the index value. See “Hub Port Indexing Using HPINDEX" on page 7-23.

Individual SFRs are presented in alphabetical order in Appendix C. Tables listing the SFRs by
functional category are also given in Appendix C.

I 3-5

intel.

Programming
Considerations

intel.

CHAPTER 4
PROGRAMMING CONSIDERATIONS

Theinstruction set for the 8x931 supports the instruction set for the MCS® 51 architecture. This
chapter describes the addressing modes and summarizesthe instruction set, which isdivided into

data instructions, bit instructions, and control instructions. The program status word register is

also described. Appendix A, “Instruction Set Reference” contains an opcode map and a detailed
description of each instruction.

4.1 THE MCS®51 INSTRUCTION SET

All members of the MCS 51 family execute the same instruction set. The MCS-51 instruction set
is optimized for 8-bit control applications. It provides a variety of fast addressing modes for ac-
cessing theinternal RAM to facilitate byte operations on small data structures. Theinstruction set
provides extensive support for one-bit variables as a separate data type, allowing direct bit ma-
nipulation in control and logic systems that require Boolean processing.

An overview of the MCS 51 instruction set is presented below, with a brief description of how

certain instructions might be used. References to “the assembler” in this discussion are to Intel's
MCS 51 Macro Assembler, ASM51. More detailed information on the instruction set can be
found in the MCS 51 Macro Assembler User’s Guide (Order No. 9800937 for ISIS Systems, Or-
der No. 122752 for DOS Systems).

4.1.1 Program Status Word

The Program Status Word (PSW) contains several status bits that reflect the current state of the
CPU. The PSW, shown in Figure 4-1, resides in SFR space. It contains the Carry bit, the Auxil-
iary Carry (for BCD operations), the two register bank select bits, the Overflow flag, a Parity bit,
and two user-definable status flags.

The Carry bit, other than serving the functions of a Carry bit in arithmetic operations, also serves
as the “Accumulator” for a number of Boolean operations.

The bits RS0 and RSI are used to select one of the four register banks shown in Figure 3-4 on
page 3-4. A number of instructions refer to these RAM locations as RO through R7. The selection
of which of the four banks is being referred to is made on the basis of the bits RSO and RS1 at
execution time.

The Parity bit reflects the number of 1s in the Accumulator P = 1 if the Accumulator contains an
odd number of 1s, and P = 0 if the Accumulator contains an even number of 1s. Thus the number
of 1s in the Accumulator plus P is always even.

Two bits in the PSW are uncommitted and may be used as general purpose status flags.

Table 4-1 shows the effects of instructions on the PSW flags.

I 4-1

8x931AA, 8x931HA USER’'S MANUAL Inte|®

PSW Address: S:DOH
Reset State: 0000 0000B
! 0
cy AC FO RS1 || Rso ov uD P
NuEr;ILer Mne?nltonic Function
7 CcY Carry Flag:

The carry flag is set by an addition instruction (ADD, ADDC) if there is a
carry out of the MSB. It is set by a subtraction (SUB, SUBB) or compare
(CMP) if a borrow is needed for the MSB. The carry flag is also affected
by logical bit, bit move, multiply, decimal adjust, and some rotate and
shift instructions (see Table 4-1).

6 AC Auxiliary Carry Flag:

The aucxiliary carry flag is affected only by instructions that address 8-bit
operands. The AC flag is set if an arithmetic instruction with an 8-bit
operand produces a carry out of bit 3 (from addition) or a borrow into bit
3 (from subtraction). Otherwise, it is cleared. This flag is useful for BCD
arithmetic (see Table 4-1).

5 FO Flag 0:
This general-purpose flag is available to the user.
4:3 RS1:0 Register Bank Select Bits 1 and 0:

These bits select the memory locations that comprise the active bank of
the register file (registers RO—R7).

RS1 RSO Bank Address

0 0 0 00H-07H

0 1 1 08H-0FH

1 0 2 10H-17H

1 1 3 18H-1FH
2 ov Overflow Flag:

This bit is set if an addition or subtraction of signed variables results in
an overflow error (i.e., if the magnitude of the sum or difference is too
great for the seven LSBs in 2's-complement representation). The
overflow flag is also set if a multiplication product overflows one byte or if
a division by zero is attempted.

1 ub User-definable Flag:
This general-purpose flag is available to the user.
0 P Parity Bit:

This bit indicates the parity of the accumulator. It is set if an odd number
of bits in the accumulator are set. Otherwise, it is cleared. Not all
instructions update the parity bit. The parity bit is set or cleared by
instructions that change the contents of the accumulator (ACC).

Figure 4-1. Program Status Word Register

4-2

Inte|® PROGRAMMING CONSIDERATIONS

Table 4-1. The Effects of Instructions on the PSW Flags

Flags Affected (1), (4)
Instruction Type Instruction
CcY OV | AC(2)
ADD, ADDC, SUBB, X X X
CMP
Arithmetic INC, DEC
MUL, DIV (3) 0 X
DA X
ANL, ORL, XRL, CLR A,
Logical CPL A, RL, RR, SWAP
RLC, RRC
CJINE X
Program Control
DJINZ

NOTES:

1. X =the flag can be affected by the instruction.
0 =the flag is cleared by the instruction.

2. The AC flag is affected only by operations on 8-bit operands.

3. If the divisor is zero, the OV flag is set, and the other bits are
meaningless.

4. The parity bit (PSW.0) is set or cleared by instructions that change
the contents of the accumulator (ACC).

4.1.2 Addressing Modes

The addressing modes in the MCS 51 instruction set are as follows.

4121 DIRECT ADDRESSING

In direct addressing the operand is specified by an 8-bit address field in the ingtruction. Only in-
ternal Data RAM and SFRs can be directly addressed.

41.2.2 INDIRECT ADDRESSING

Inindirect addressing the instruction specifies a register which contains the address of the oper-
and. Both internal and external RAM can be indirectly addressed. The address register for 8-bit
addresses can be RO or R1 of the selected register bank, or the Stack Pointer. The address register
for 16-bit addresses can only be the 16-bit "data pointer” register, DPTR.

41.2.3 REGISTER INSTRUCTIONS

The register banks, containing registers RO through R7, can be accessed by certain instructions
which carry a 3-bit register specification within the opcode of the instruction. Instructions that
access the registersthis way are code efficient, since this mode eliminates an address byte. When
the instruction is executed, one of the eight registersin the selected bank is accessed. One of four
banksis selected at execution time by the two bank select bitsin the PSW.

4-3

8x931AA, 8x931HA USER’'S MANUAL Inte|®

41.2.4 REGISTER-SPECIFIC INSTRUCTIONS

Someinstructions are specific to a certain register. For example, some instructions always oper-
ate on the Accumulator, or Data Pointer, etc., so ho address byteis needed to point to it. The op-
code itself does this. Instructions that refer to the Accumulator as A, assemble as accumulator-
specific opcodes.

41.25 IMMEDIATE CONSTANTS

The value of aconstant can follow the opcode in Program Memory. For example,
MOV A, # 100

loads the Accumulator with the decimal number 100. The same number could be specified in hex
digits as 64H.

41.2.6 INDEXED ADDRESSING

Only Program Memory can be accessed with indexed addressing, and it can only be read. This
addressing mode is intended for reading look-up tables in Program Memory. A 16-bit base reg-
ister (either DPTR or the Program Counter) points to the base of the table, and the Accumulator
is setup with the table entry number. The address of the table entry in Program Memory isformed
by adding the Accumulator data to the base pointer.

Another type of indexed addressing is used in the "case jJump" instruction. In this case the desti-
nation address of a jump instruction is computed as the sum of the base pointer and the Accumu-
lator data.

Table 4-2. Addressing Modes for Data Instructions in the MCS® 51 Architecture

Address Range of Assembly Language
Mode Operand Reference Comments
. RO-R7
Register O0H—1FH (Bank selected by PSW)
Immediate Operand in Instruction | #data = #00H—#FFH
00H-7FH dir8 = 00H—7FH On-chip RAM
Direct irg = —
SFRs dirg = 80H—FFH SFR address
or SFR mnemonic.
Accesses on-chip RAM or the
O00H-FFH @RO, @R1 lowest 256 bytes of external
data memory (MOVX).
Indirect Accesses external data
0000H-FFFFH @DPTR, @A+DPTR memory (MOVX).
Accesses code memory
0000H-FFFFH @A+DPTR, @A+PC (MOVC).

4-4

Inte|® PROGRAMMING CONSIDERATIONS
41.3

Arithmetic Instructions

The menu of arithmetic instructions is listed in Table 4-3. The table indicates the addressing
modes that can be used with each instruction to access the <byte> operand. For example, the
ADD A, <byte> instruction can be written as:

ADD A,7FH (direct addressing)
ADD A,@RO (indirect addressing)
ADD A, R7 (register addressing)
ADD A, # 127 (immediate constant)

The execution times listed in Table 4-3 assume a 12 MHz clock frequency. All of the arithmetic
instructions execute in 1us except the INC DPTR instruction, which takes 2 us, and the Multiply
and Divide instructions, which take 4 ps.

NOTE

Any byte in the internal Data Memory space can be incremented or
decremented without going through the Accumulator.

One of the INC instructions operates on the 16-bit Data Pointer. The Data Pointer is used to gen-
erate 16-bit addresses for external memory, so being able to increment it in one 16-bit operation
is a useful feature.

The MUL AB instruction multiplies the Accumulator by the data in the B register and puts the
16-bit product into the concatenated B and Accumulator registers.

Table 4-3. List of MCS® 51 Arithmetic Instructions

_ ‘ Addressing Modes Execution
Mnemonic Operation : Time (us)
Dir Ind Reg Imm
ADD A, <byte> A=A + <byte> X X X X 1
ADDOA, <byte> A= A+< byte>+C X X X 1
SUBB A, <byte> A= A—<byte>-C X X X X 1
INC A A=A+1 Accumulator only 1
INC . <byte> <byte> =<byte> + 1 X x | x 1
INC DPTR DPTR=DPTR +1 Data Pointer only 2
DEC A A=A-1 Accumulator only 1
DEC <byte> <byte> = <byte> — 1 X X \ X 1
MUL AB B:A=Bx A ACC and B only 4
DIV AB A= Int [A/B]

B = MOd[A/B] ACC and B only 4
DA A Decimal Adjust Accumulator only 1

4-5

8x931AA, 8x931HA USER’'S MANUAL Inte|®

The DIV AB ingtruction divides the Accumulator by the datain the B register and leaves the 8-
bit quotient in the Accumulator, and the 8-bit remainder in the B register.

Oddly enough, DIV AB finds less use in arithmetic "divide" routines than in radix conversions

and programmabl e shift operations. An example of the use of DIV AB in aradix conversion will

be given later. In shift operations, dividing anumber by 2nshiftsits n bitsto theright. Using DIV

AS to perform the division completes the shift in 4 us and leaves the B register holding the bits
that were shifted out.

The DA A instruction is for BCD arithmetic operations. In BCD arithmetic, ADD and ADDC in-
structions should always be followed by a DA A operation, to ensure that the result is also in
BCD.

NOTE

DA A will not convert a binary number to BCD. The DA A operation produces
a meaningful result only as the second step in the addition of two BCD bytes.

Table 4-4. List of MCS® 51 Logical Instructions

Mnemonic Operation . Addressing Modes I'EI')i(ri((:au(ﬂcs);
Dir Ind Reg Imm
ANL A, <byte> A = A .AND. <byte> X X X X 1
ANL <byte>, A <byte> = <byte> .AND. A X 1
ANL <byte>, #data | <byte> = <byte> .AND. #data X 2
ORL A, < byte> A = A.OR. <byte> X X X X 1
ORL <bvte>,A <byte> = <byte> .OR. A X 1
ORL <byte>, #data <byte> = <byte> .OR. #data X 2
XRL A< byte> A=A XOR. <byte> X X X X 1
XRL <byte> A <byte> = <byte> .XOR. A X 1
XRL <byte>, #data | <byte> = <byte> .XOR. #data X 2
CLR A A=00H Accumulator only 1
CPLA A= .NOT.A Accumulator only 1
RL A Rotate ACC Left 1 bit Accumulator only 1
RLC A Rotate Left through Carry Accumulator only 1
RR A Rotate ACC Right 1 bit Accumulator only 1
RRC A Rotate Right through Carry Accumulator only 1
SWAP A Swap Nibbles in A Accumulator only 1

Inte|® PROGRAMMING CONSIDERATIONS

4.1.4 Logical Instructions

Table 4-4 shows the list of MCS 51 logical instructions. The instructions that perform Boolean
operations (AND, OR, Exclusive OR, NOT) on bytes perform the operation on a bit-by-bit basis.
That is, if the Accumulator contains 00110101B and <byte> contains 01010011B, then

ANL A, <byte>
will leave the Accumulator holding 00010001B.

The addressing modes that can be used to access the <byte> operand arelisted in Table 4-4. Thus,
the ANL A, <byte> instruction may take any of the forms:

ANL A,7FH (direct addressing)
ANL A,@RI (indirect addressing)
ANL A,R6 (register addressing)
ANL A, #53H (immediate constant)

All of the logical instructions that are Accumulator-specific execute in | pus (using a 12 MHz
clock). The others take 2 ps.

Note that Boolean operations can be performed on any byte in the lower 128 internal Data Mem-
ory space or the SFR space using direct addressing, without having to use the Accumulator. The
XRL <byte >, #data instruction, for example offers a quick and easy way to invert port bits, as in

XRL PIL,#0FFH

If the operation is in response to an interrupt, not using the Accumulator saves the time and effort
to stack it in the service routine. The Rotate instructions (RL & RLC A, etc.) shift the Accumu-
lator 1 bit to the left or right. For a left rotation, the MSB rolls into the LSB position. For a right
rotation, the LSB rolls into the MSB position.

The SWAP A instruction interchanges the high and low nibbles within the Accumulator. This is
a useful operation in BCD manipulations. For example, if the Accumulator contains a binary
number which is known to be less than 100, it can be quickly converted to BCD by the following
code:

MOV B, # 10
DIV AB
SWAP A
ADD A,B

Dividing the number by 10 leaves the tens digit in the low nibble of the Accumulator, and the
ones digit in the B register. The SWAP and ADD instructions move the tens digit to the high nib-
ble of the Accumulator, and the ones digit to the low nibble.

I 4-7

8x931AA, 8x931HA USER’'S MANUAL Inte|®

415 Data Transfers

4,151 Internal RAM

Table 4-5 shows the menu of instructions that are available for moving data around within the
internal memory spaces, and the addressing modes that can be used with each one. With a 12
MHz clock, all of these instructions execute in either 1 or 2 pus.

The MOV <dest>, <src> instruction allows data to be transferred between any two internal RAM
or SFR locations without going through the Accumulator. Remember the Upper 128 bytes of data
RAM can be accessed only by indirect addressing, and SFR space only by direct addressing.

Table 4-5. List of MCS® 51 Data Transfer Instructions

_ ‘ Addressing Modes Execution
Mnemonic Operation : Time (us)
Dir | Ind [Reg |Imm
MOV A, <src> A = <src> X X X X 1
MOV <dest> A <dest>=A X X X 1
MOV <dest>, <src> | <dest> = <src> X X X X 2
MOV DPTR,#datal6 | dptr = 16-bit immediate constant X 2
PUSH <src> INC SP:MOV"@SP”,<src> X 2
POP <dest> MOV <dest>, “@SP”; DEC SP X 2
XCH A, <byte> ACC and <byte> exchange data X X X 1
XCHD A, @Ri ACC and @Ri exchange low nibbles X 1
NOTE

In all MCS 51 devices, the stack resides in on-chip RAM and grows upwards.

The PUSH instruction first increments the Stack Pointer (SP), then copies the byte into the stack.
PUSH and POP use only direct addressing to identify the byte being saved or restored, but the
stack itself is accessed by indirect addressing using the SP register. This means the stack can gc
into the Upper 128, if they are implemented, but not into SFR space.

In devices that do not implement the Upper 128, if the SP points to the Upper 128, PUSHed bytes
are lost, and POPped bytes are indeterminate.

The Data Transfer instructions include a 16-bit MOV that can be used to initialize the Data Point-
er (DPTR) for look-up tables in Program Memory, or for 16-bit external Data Memory accesses.

The XCH A, <byte> instruction causes the Accumulator and addressed byte to exchange data.
The XCHD A, @Ri instruction is similar, but only the low nibbles are involved in the exchange.

To see how XCH and XCHD can be used to facilitate data manipulations, consider first the prob-
lem of shifting an 8-digit BCD number two digits to the right. Figure 4-2 shows how this can be
done using direct MOVs, and for comparison how it can be done using XCH instructions. To aid
in understanding how the code works, the contents of the registers that are holding the BCD num-
ber and the content of the Accumulator are shown alongside each instruction to indicate their sta-
tus after the instruction has been executed.

4-8

intel.

PROGRAMMING CONSIDERATIONS

After the routine has been executed, the Accumulator containsthe two digitsthat were shifted out

on the right. Doing the routine with direct MOVs uses 14 code bytes and 9 us of execution time
(assuming a 12 MHz clock). The same operation with XCHs uses less code and executes almost

twice as fast.

To right-shift by an odd number of digits, a one-digit shift must be executed. Figure 4-3 shows a
sample of code that will right-shift a BCD number one digit, using the XCHD instruction. Again,
the contents of the registers holding the number and of the Accumulator are shown alongside each

instruction.

MOV
MOV
MOV
MOV
MOV

CLR
XCH
XCH
XCH
XCH

A,2EH
2EH,2DH
2DH,2CH
2CH,2BH

2BH,#0

(a) Using direct MOVs:

A
A,2BH
A,2CH
A,2DH
A,2EH

2A 2B 2C 2D 2E | ACC
00 12 34 56 78 78
00 12 34 56 56 78
00 12 34 34 56 78
00 12 12 34 56 78
00 00 12 34 56 78
14 bytes, 9 uys
2A | 2B | 2C | 2D | 2E | ACC
00 12 34 56 78 00
00 00 34 56 78 12
00 00 12 56 78 34
00 00 12 34 78 56
00 00 12 34 56 78

(b) Using XCHs: 9 bytes, 5 us

Figure 4-2. Shifting BCD Number Two Digits Right

4-9

8x931AA, 8x931HA USER’'S MANUAL Inte|®

2A | 2B | 2C | 2D | 2E |ACC
MOV R1#2EH 00 12 34 56 78 XX
MOV RO,#2DH 00 12 34 56 78 XX
loop for R1 = 2EH
LOOP: MOV A,@R1 00 12 34 56 78 78
XCHD A,@RO 00 12 34 58 78 76
SWAP A 00 12 34 58 78 67
MOV @R1,A 00 12 34 58 67 67
DEC R1 00 12 34 58 67 67
DEC RO 00 12 34 58 67 67
CINE R1#2AH, LOOP
loop for R1 = A,2DH: 00 12 38 45 67 45
loop for R1 = A,2CH: 00 18 23 45 67 23
loop for R1 = A,2BH: 08 01 23 45 67 01
CLR A 08 01 23 45 67 00
XCH A,2AH 00 01 23 45 67 08

Figure 4-3. Shifting BCD Number One Digit Right

First, pointers R1 and RO are set up to point to the two bytes containing the last four BCD digits.
Then aloop is executed which leaves the last byte, location 2EH, holding the last two digits of
the shifted number. The pointers are decremented, and theloop is repeated for location 2DH. The
CINE instruction (Compare and if Not Equal) is aloop control that will be described later.

The loop is executed from LOOP to CINE for R1=2EH, 2DH, 2CH and 2BH. At that point the
digit that was originally shifted out on the right has propagated to location 2AH. Since that |oca-
tion should be left with Os, the lost digit is moved to the Accumulator.

4.15.2 External RAM

Table 4-6 shows allist of the Data Transfer instructions that access external Data Memory. Only
indirect addressing can be used. The choice is whether to use a one-byte address, @Ri, where Ri
can be either RO or R1 of the selected register bank, or atwo-byte address, @DPTR. The disad-
vantage to using 16-bit addresseesif only afew K bytes of external RAM areinvolved isthat 16-
bit addresses use all 8-bits of Port 2 as address bus. On the other hand, 8-bit addresses allow one
to address afew K bytes of RAM, as shown in Figure 5, without having to sacrifice all of Port 2.

All of these instructions execute in 2 ps, with a 12 MHz clock.

4-10

Inte|® PROGRAMMING CONSIDERATIONS

Table 4-6. Transfer Instructions for Accessing External Data Memory Space

A\Cljvcljéfﬁ s Mnemonic Operation I':_I')i(nizu(ﬂg)n
8bits | MOVX A @Ri Read g‘é‘fma' 2
8bits | MOVX@Ri,A e g‘gma' 2
16 bits | MOVX A@DPTR | Road éxée;ﬁe' 2
16 bits | MOVX@DPTR,A \F’eVA';i,t\Ae g‘éﬂ?‘g 2

NOTE

In al external Data RAM accesses, the Accumulator is always either the
destination or source of the data.

The read and write strobes to external RAM are activated only during the execution of aMOV X
instruction. Normally these signals are inactive, and in fact if they’re not going to be used at all,
their pins are available as extra I/O lines.

4153 Lookup Tables

Table 4-7 shows the two instructions that are available for lookup tables in Program Memory.
Since these instructions access only Program Memory, the lookup tables can only be read, not
updated The mnemonic is MOVC for “move constant”.

If the table access is to external Program Memory, then the read strobe is PSEN#.
Table 4-7. MCS® 51 Read Instructions

. . Execution

Mnemonic Operation Time (us)
MOVC A,@A+DPTR | Read Pgm Memory at (A+DPTR) 2
MOVC A,@A+PC Read Pgm Memory at (A+PC) 2

The first MOVC instruction in Table 4-7 can accommodate a table of up to 256 entries, numbered
0 through 255. The number of the desired entry is loaded into the Accumulator, and the Data
Pointer is set up to point to beginning of the table. Then

MOVC A, @A+DPTR
copies the desired table entry into the Accumulator.

The other MOVC instruction works the same way, except the Program Counter (PC) is used as
the table base, and the table is accessed through a subroutine. First the number of the desired entry
is loaded into the Accumulator, and the subroutine is called:

MOV A, ENTRY_NUMBER

4-11

8x931AA, 8x931HA USER’'S MANUAL Inte|®

CALL TABLE
The subroutine “TABLE” would look like this:

TABLE: MOVC A,@A+PC
RET

The table itself immediately follows the RET (return) instruction in Program Memory. This type

of table can have up to 255 entries, numbered 1 through 255. Number 0 can not be used, because
at the time the MOVC instruction is executed, the PC contains the address of the RET instruction.
An entry numbered 0 would be the RET opcode itself.

4.1.6 Boolean Instructions

MCS® 51 devices contain a complete Boolean (single-bit) processor. Theinternal RAM contains
128 addressable bits, and the SFR space can support up to 128 other addressable bits. All of the
port lines are bit-addressable, and each one can be treated as a separate single-bit port. The in-
structions that access these bits are not just conditional branches, but a complete menu of move,
set, clear, complement, OR, and AND instructions. These kinds of bit operations are not easily
obtained in other architectures with any amount of byte-oriented software.

Table 4-8. MCS® 51Boolean Instructions

Mnemonic Operation ?i(rﬁgu(ﬂg)n
ANL C, bit C =C . AND.bit 2
ANL C,/bit C =C . AND..NOT.bit 2
ORL C,bit C =C .OR. bit 2
ORL C,/bit C =C. OR. .NOT. bit 2
MOQV C,bit C = hit 1
MOV bit,C bit=C 2
CLRC Cc=0 1
CLR bit bit=0 1
SETBC Cc=1 1
SETB bit bit=0 1
CPLC C =.NOT.C 1
CPL bit bit = .NOT. bit 1
JC rel JumpifC=1 2
JINC rel JumpifC=0 2
JB bit,rel Jump if bit =1 2
JNB bit,rel Jump if bit=0 2
JBC bit,rel Jump if bit = 1; CLR bit 2

4-12

Inte|® PROGRAMMING CONSIDERATIONS

The instruction set for the Boolean processor is shown in Table 4-8. All bit accesses are by direct
addressing. Bit addresses O0H through 7FH arein the Lower 128, and bit addresses 80H through
FFH arein SFR space.

Note how easily an interna flag can be moved to a port pin:

MOV C FLAG
MOV P1.0,C

Inthisexample, FLAG isthe name of any addressable bit in the Lower 128 or SFR space. An |/O
line (the LSB of Port 1, in this case) is set or cleared depending on whether the flag bitis 1 or 0.

The Carry bit in the PSW is used as the single -bit Accumulator of the Boolean processor. Bit
instructions that refer to the Carry bit as C assemble as Carry-specific instructions (CLR C, etc).
The Carry bit also has adirect address, since it resides in the PSW register, which is bit-address-
able.

Note that the Boolean instruction set includes ANL and ORL operation, but not the XRL (Exclu-
sive OR) operation. An XRL operation is simple to implement in software. Suppose, for example,
it is required to form the Exclusive OR of two bits:

C =bitl .XRL. hit2
The software to do that could be as follows:

MOV C, hitl
INB bit2, OVER
CPL C

OVER: (continue)

First, bitl is moved to the Carry. If bit2 = 0, then C now contains the correct result. That is, bitl
XRL. bit2 = hitl if bit2 = 0. On the other hand, if bit2 = 1, C now contains the complement of
the correct result. It need only be inverted (CPL C) to complete the operation.

This code uses the INB instruction, one of a series of bit-test instructions which execute ajump
if the addressed bit is set (JC, JB, JBC) or if the addressed bit is not set (JNC, JNB). In the above
case, bit2 is being tested, and if bit2 = 0, the CPL C instruction isjumped over.

JBC executesthe jump if the addressed bit is set, and & so clears the bit. Thus aflag can be tested
and cleared in one operation.

All the PSW hits are directly addressable, so the Parity bit, or the general purpose flags, for ex-
ample, are also available to the bit-test instructions.

4,1.6.1 Relative Offset

The destination address for these jumps is specified to the assembler by a label or by an actual
addressin Program Memory. However, the destination address assemblesto arelative offset byte.

This is a signed (two’s complement) offset byte which is added to the PC in two’'s complement
arithmetic if the jump is executed.

The range of the jump is therefore —128 to +127 Program Memory bytes relative to the first byte
following the instruction.

I 4-13

8x931AA, 8x931HA USER’'S MANUAL Inte|®

4.1.7 Jump Instructions

Table 4-9 shows the list of unconditional jumps.

Table 4-9. Unconditional Jumps in MCS® 51 Devices

Mnemonic Operation ET:ZU(HE)H
JMP addr Jump to addr 2
JMP @A+DPTR Jump to A+DPTR 2
CALL addr Call subroutine at addr 2
RET Return from subroutine 2
RETI Return from interrupt 2
NOP No operation 1

The table lists a single “JMP addr” instruction, but in fact there are three—SJIJMP, LIMP and
AJMP—which differ in the format of the destination address. JMP is a generic mnemonic which
can be used if the programmer does not care which way the jump is encoded.

The SIMP instruction encodes the destination address as a relative offset, as described above. The
instruction is 2 bytes long, consisting of the opcode and the relative offset byte. The jump distance
is limited to a range of —128 to +127 bytes relative to the instruction following the SIMP.

The LIMP instruction encodes the destination address as a 16-bit constant. The instruction is 3
bytes long, consisting of the opcode and two address bytes. The destination address can be any-
where in the 64K Program Memory space.

The AJMP instruction encodes the destination address as an 11-bit constant. The instruction is 2
bytes long, consisting of the opcode, which itself contains 3 of the 11 address bits, followed by
another byte containing the low 8 bits of the destination address. When the instruction is execut-
ed, these 11 bits are simply substituted for the low 11 bits in the PC. The high 5 bits stay the same.
Hence, the destination has to be within the same 2K block as the instruction following the AJMP.

In all cases the programmer specifies the destination address to the assembler in the same way:
as a label or as a 16-bit constant. The assembler will put the destination address into the correct
format for the given instruction. If the format required by the instruction will not support the dis-
tance to the specified destination address, a “Destination out of range” message is written into the
List file.

The IMP @A+DPTR instruction supports case jumps. The destination address is computed at ex-
ecution time as the sum of the 16-bit DPTR register and the Accumulator. Typically, DPTR is set
up with the address of a jump table, and the Accumulator is given an index to the table. In a 5-
way branch, for example, an integer 0 through 4 is loaded into the Accumulator. The code to be
executed might be as follows:

MOV DPTR,#JUMP_TABLE
MOV A,INDEX_NUMBER

4-14

Inte|® PROGRAMMING CONSIDERATIONS

RL A
JMP @A+DPTR

The RL A instruction converts the index number (0 through 4) to an even number on the range 0
through 8, because each entry in the jump tableis 2 bytes long:

JUMP_TABLE:

AJMP CASE 0
AJMP CASE_1
AJMP CASE 2
AJMP CASE 3
AJMP CASE 4

Table 4-9 shows a single “CALL addr” instruction, but there are two of them—LCALL and
ACALL—which differ in the format in which the subroutine address is given to the CPU. CALL

is a generic mnemonic which can be used if the programmer does not care which way the address
is encoded.

The LCALL instruction uses the 16-bit address format, and the subroutine can be anywhere in
the 64K Program Memory space. The ACALL instruction uses the 11-bit format, and the subrou-
tine can be anywhere in the 64K Program Memory space. The ACALL instruction uses the 11-
bit format, and the subroutine must be in the same 2K block as the instruction following the
ACALL.

In any case, the programmer specifies the subroutine address to the assembler in the same way:
as a label or as a 16-bit constant. The assembler will put the address into the correct format for
the given instructions.

Subroutines should end with a RET instruction, which returns execution to the instruction follow-
ing the CALL.

RETI is used to return from an interrupt service routine. The only difference between RET and
RETI is that RETI tells the interrupt control system that the interrupt in progress is done. If there
is no interrupt in progress at the time RETI is executed, then the RETI is functionally identical to
RET.

Table 4-10 shows the list of conditional jumps available to the MCS 51 user. All of these jumps
specify the destination address by the relative offset method, and so are limited to a jump distance
of —128 to +127 bytes from the instruction following the conditional jump instruction. Important

to note, however, the user specifies to the assembler the actual destination address the same way
as the other jumps: as a label or a 16-bit constant.

I 4-15

8x931AA, 8x931HA USER’'S MANUAL Inte|®

Table 4-10. Conditional Jumps in MCS® 51 Devices

Addressing Modes .
.) Execution
Mnemonic Operation Time (us)
Dir | Ind |Reg |Imm H
JZ rel JumpifA=0 Accumulator only 2
JINZ rel Jump if A not equal to O Accumulator only 2
DJINZ <byte> , rel Decrement and jump if not zero X X 2
CJINE A, <byte> , rel Jump if A not equal to <byte> X X 2
CJINE <byte>, #data,rel | Jump if <byte> not equal to #data X X 2

Thereisno Zero bit in the PSW. The JZ and JNZ instructions test the Accumul ator data for that
condition.

The DINZ instruction (Decrement and Jump if Not Zero) is for loop control. To execute a loop
N times, load a counter byte with N and terminate the loop with a DINZ to the beginning of the
loop, as shown below for N = 10:

MOV COUNTER#10
LOOP: (begin loop)

*
*

*

(end loop)
DJINZ COUNTER,LOOP

(continue)

The CINE instruction (Compare and Jump if Not Equal) can also be used for loop control asin
Figure 4-3. Two bytes are specified in the operand field of the instruction. The jump is executed
only if the two bytes are not equal. In the example of Figure 4-3, the two bytes are the datain R1
and the constant 2AH. Theinitia datain R1is 2EH. Every time the loop is executed, R1 is dec-
remented, and the looping is to continue until the R1 data reaches 2AH.

Another application of this instruction is in “greater than, less than” comparisons. The two bytes
in the operand field are taken as unsigned integers. If the first is greater than or equal to the sec-
ond, then the Carry bit is cleared.

4-16

intel.

Interrupt System

CHAPTER 5
INTERRUPT SYSTEM

51 OVERVIEW

The 8x931, like other control -oriented microcontroller architectures, employsaprogram interrupt
method. This operation branches to a subroutine and performs some service in response to the
interrupt. When the subroutine compl etes, execution resumes at the point where the interrupt oc-
curred. Interrupts may occur as a result of internal 8x931 activity (e.g., timer overflow) or at the
initiation of electrical signals external to the microcontroller(e.g., keyboard scan). Inall cases, in-
terrupt operation is programmed by the system designer, who determines priority of interrupt ser-
vice relative to normal code execution and other interrupt service routines. All of the interrupts
are enabled or disabled by the system designer and may be manipulated dynamically.

A typical interrupt event chain occurs as follows:

1. Aninterna or externa deviceinitiates an interrupt-request signal. This signal, connected
to an input pin (see Table 5-1) and periodically sampled by the 8x931, latches the event
into aflag buffer.

2. Theinterrupt handler comparesthe priority of the flag to the priority of other interrupts. A
high priority causes the handler to set an interrupt flag. This signals the instruction
execution unit to execute a context switch.

3. Thiscontext switch breaksthe flow of the instruction sequence. The execution unit
completes the current instruction prior to asave of the program counter (PC) and reloads
the PC with the start address of afirmware service routine.

4. The firmware service routine executes assigned tasks and as afinal activity performs a
RETI (return from interrupt instruction).

5. The RETI instruction signals completion of the interrupt, resets the interrupt-in-progress
priority, and reloads the program counter.

6. Program operation then continues from the original point of interruption.
Table 5-1. Interrupt System Input Signals

Signal I Multiplexed
Name Type Description With
INT1:0# | External Interrupts 0 and 1. These inputs set bits IE1:0 in the P3.3:2
TCON register. If bits IT1:0 in the TCON register are set, bits IE1:0
are controlled by a negative-edge trigger on INT1#/INTO#. If bits
IT1:0 are clear, bits IE1:0 are controlled by a low-level trigger on
INT1:0#.
KSI7:0 | Keyboard Scan Input. Schmitt-trigger inputs with firmware- AD7:0/
enabled internal pullup resistors used for the input side of the P0.7:0
keyboard scan matrix.

NOTE: Other signals are defined in their respective chapters and in Appendix B, “Pin Descriptions”.

5-1

8x931AA, 8x931HA USER’'S MANUAL Inte|®

Figure 5-1 illustrates the interrupt control system. The 8x931 has ten maskable interrupt sources.
These include two external interrupts (INTO# and INT1#), three timer interrupts (timers 0, 1 and
2), aseria port interrupt, a keyboard scan interrupt, and three USB interrupts (one of which dou-
blesasahub interrupt). Each interrupt has an interrupt request flag, which can be set by firmware
aswell as by hardware (see Table 5-6 on page 5-26). For some interrupts, hardware clears the
request flag when it grantsthe interrupt. Firmware can clear any request flag to cancel animpend-
ing interrupt.

Therearethreetypes of USB interrupts, asshownin Figure5-1. The USB function interrupt, used
to control the flow of non-isochronous data; the hub/any start-of-frame interrupt (SOF), used to
signa a hub interrupt or to monitor the transfer of isochronous data; and the global suspend/re-
sumeinterrupt, used to allow USB power control and to provide a USB reset separation interrupt.
Theseinterrupts are enabled using the |IEN1 register. See Table 5-6 on page 5-26 and Figure 5-11.

5-2 I

Interrupt Enable Priority Select Highest
Priority
IENO IPHO/IPLO
External To %‘l:rrupt
EA
INTO# []—‘ (TCON 0) _l>—' o—:r
0 1 1 o
IEO e __—o—o o1—¢ b
\ TCON.1 EX0 ! —T— P
Timer O - 1 - _,f.._);
ETO] _ |
External TCON.5 1 b
ITL 2 I 17 ol
INT1# (TCON 2) a 7 :—*)
EX1 | “N
\ TCON.3 ¢
' 0 7 >
Timer 1 3 5
_ 1 TF1 e o o ol 1s” ST N
Serial Port |
Receive —) >
7 o=
-) > !
Transmit 1 L e
SCON.1 '
Timer 2 : —>
) D tee” S0
ol o o
ET2 ! 5]
T2ex [J > i c T
' >
T2CON.6 EA &
0 IEN1 ! IPH1/IPL1 (%]
Start of ASOF " SOFIE | g
Frame 3
SOFH.6 " SOFH.5 1 2
USB Hub 0 ; - =3
i 0 1 o £
Receive | ! o £ o
g = - | £
ESOF/Hub c | =
HIFLG 0 HIE I
1
Transmit —)-0)
1 @ HTXEO :
USB Function 0 1
1
Receive FRXDx 1 _ -
FIFLG % 1 ! g o b
w.—-‘ L o
= 1 Ps))
Transmit FTXDX oFXIEX |)
1
uSB GRSM !
Resume 1
USB PCON1.1 1 +° >
2 1 g o
Suspend . [——2 1 o—
PCONL.0 B i a1
USB 1
Reset URST o URDIS 1
Separation PCON1.3 PCON1.4 !
1
Keyboard Scan !
(INT2#) :
T2 | o—1 >
7
(KBCON.4) 1o°E0 IE2 e oo Lot o O] \
1 KBCON.5 EX2 1
o—
KSI7:0 T \ KBCON.7
Lowest Priority Interrupt <J
A5538-01
Figure 5-1. Interrupt Control System

8x931AA, 8x931HA USER’'S MANUAL Inte|®

SFRs used by the interrupt system are listed in Table 5-2. Figure 5-2 shows the bits contained in
the interrupt SFRs.

Table 5-2. Interrupt System Special Function Registers

Mnemonic Description Address Page

FIE USB Function Interrupt Enable Register. Enables and A2H page 5-9
disables the receive and transmit done interrupts for the
function endpoints.

FIFLG USB Function Interrupt Flag Register. Contains the USB COH page 5-11
function’s transmit and receive done interrupt flags for non-
isochronous endpoints.

HIE Hub Interrupt Enable Register. Contains the hub interrupt AlH page 5-15
enable bits.

HIFLG Hub Interrupt Flag Register. Contains the hub interrupt status E8H page 5-16
flags.

IENO Interrupt Enable Register 0. Enables individual programmable A8H page 5-24

interrupts. Also provides a global enable for the programmable
interrupts. The reset value for this register is zero (interrupts
disabled).

IEN1 Interrupt Enable Registerl. Enables individual programmable B1H page 5-25
interrupts for the USB interrupts. The reset value of this register
is zero (interrupts disabled).

IPLO Interrupt Priority Low Register 0. Establishes relative priority B8H page 5-28
for programmable interrupts. Used in conjunction with IPHO.

IPHO Interrupt Priority High Register 0. Establishes relative priority B7H page 5-27
for programmable interrupts. Used in conjunction with IPLO.

IPL1 Interrupt Priority Low Register 1. Establishes relative priority B2H page 5-30
for programmable interrupts. Used in conjunction with IPH1.

IPH1 Interrupt Priority High Register 1. Establishes relative priority B3H page 5-29
for programmable interrupts. Used in conjunction with IPL1.

KBCON Keyboard Control Register. This register controls the F8H page 12-1
keyboard scan input and output activity, enables and configures
the keyboard scan interrupt, and drives the keyboard LEDs.

PCON1 USB Power Control. Contains USB global suspend and DFH page 14-4
resume interrupt bits. Also contains the USB reset separation
enable and interrupt bits.

SOFH Start of Frame High Register. Contains isochronous data D3H page 5-12
transfer enable and interrupt bits and the upper-three bits of the
11-bit time stamp received from the host.

SOFL Start of Frame Low Register. Contains the lower-eight bits of D2H page 5-13
the 11-bit time stamp received from the host.

NOTE: Other SFRs are described in their respective chapters and in Appendix C,
“Registers”.

5-4

Inte|® INTERRUPT SYSTEM

FIE |7 — | — | FRxe2 | FTxiE2 || FRXIEL | FTXIEL | FRXIEO | FTXIE00|
FFLG | — | — | FRxp2 | Frxp2 || FRxD1 | FTXD1 | FRXDO | FTXDO |
HIE | — | — | = [= || = | = [#=rxeo | Hrxeo |
e | — | — | — | — || = | — | Hrxpo | HTxpo |
ENo | EA | — | em2 | es || Em [exa | E0 | Exo |
Eent | exe | — | — | — || — | EesR | EF | EsoF |
o | — | — [pos | poa || o3 | ipro2 | ipoa | ipLoo |
PHO | — | — | 1PHO5 | IPHO4 || IPHO3 | IPHO2 | IPHO.1 | IPHOO |
P ez | — | — | — || — [,a2 | Pua | puo |
PH1 | pH7 | — | — | — || — [PHL2 | IPH11 | IPH1O |
kecon | 1E2 | — | ksen | m2 || teps | tep2 | LEp1 | LEDO |
pcont | — | — | — | urois || ursT | RwU | GRsM | Gsus |
SOFH [SOFACK | ASOF | SOFIE |FTLOCK ||soFopis| Tsio | Ts9 | Tss |
SOFL | TS7:0 ‘

Figure 5-2. Bits of the Interrupt SFRs

Many 8x931 interrupts are similar to the interrupts of other MCS® 51 microprocessors. Thesein-
terrupts are shown in Table 5-4. Particulars of the USB and hub interrupts are given in Table 5-6.
5.2 INTERRUPT SOURCES

Interrupt sources for the 8x931 include externa interrupts, timer interrupts, a keyboard scan in-
terrupt, USB function transmit and receive interrupts, a USB start-of-frame interrupt, aUSB glo-
bal suspend and resume interrupt, and a separate USB-only reset interrupt.

These interrupts are described in the following subsections.

I 5-5

8x931AA, 8x931HA USER’'S MANUAL Inte|®

5.2.1 External Interrupts

External interrupts INTO# and INT1# (INTx#) pins may each be programmed to be level-trig-
gered or edge-triggered, dependent upon bits ITO and IT1 in the TCON register (see Figure 10-6
on page 10-8). If ITx =0, INTx# is triggered by a detected low at the pin. If ITx =1, INTx# is
negative-edge triggered. External interrupts are enabled with bits EX0 and EX1 (EXX) in the
IENO register (see Figure 5-10 on page 5-24). Events on the external interrupt pins set the inter-
rupt request flags | Ex in TCON. These request bits are cleared during the hardware vector to the
service routine only if the interrupt is negative-edge triggered. If the interrupt is level-triggered,
the interrupt service routine must clear the request bit. External hardware must deassert INTx#
before the service routine completes or an additional interrupt isrequested. External interrupt pins
must be deasserted for at |east four state times prior to arequest.

External interrupt pins are sampled once every six state times (a frame length of 1 us at 6 MHz).
A level-triggered interrupt pin held low or high for any five-state time period guarantees detec-
tion. Edge-triggered external interrupts must hold the request pin low for at least seven state
times. This ensures edge recognition and sets interrupt requesibitlEeXCPU clears EXau-
tomatically during service routine fetch cycles for edge-triggered interrupts.

Table 5-3. 8x931AA/HA Interrupt Control Matrix

Interrupt Namet

Keyboard Serial
Scan Timer 2 Port Timer 1 INT1# Timer O INTO#
[INT2#]

Bit Name in IENO — ET2 ES ET1 EX1 ETO EX0
Register
Bit l_lame in IEN1 EX2 _ _ _ _ _ _
Register
Interrupt Priority-
Within-Level
(11 = Low Priority, 7 6 5 4 3 2 1
1 = High Priority)
Bit Names in:

IPHO IPH1.7 IPHO.5 IPHO.4 IPHO.3 IPHO.2 IPHO.1 IPHO0.0

IPLO IPL1.7 IPLO.5 IPLO.4 IPLO.3 IPLO.2 IPLO.1 IPLO.O
Programmable for
Negative-edge Yes No No No Yes No Yes
triggered or Level-
triggered Detect?
Interrupt Request kBCON: | TCON= | SCON 1 3eon: | Tcon: | Tcon: | Tcon:
Flag in TCON or IE2 TF2 RI TE1 IE1 TEO IEO
KBCON Register EXF2 TI
Interrupt Request Edge Edge
Flag Cleared by No No No Yes Yes, Yes Yes,
Hardware? Level No Level No
ISR Vector Address 003BH 002BH 0023H 001BH 0013H 000BH 0003H

T Additional interrupts specific to USB and USB hub operation appear in Table 5-11.

5-6

INTERRUPT SYSTEM

Table 5-4. 8x931 USB/Hub Interrupt Control Matrix

Interrupt Name
USB Global USB Function USB Hub/SOF
Suspend/Resume | [Non-lsochronous [lsochronous
and USB Reset Endpoint] Endpoint]

Bit Name in IEN1 ESR EF ESOF
Register
Interrupt Priority-
Within-Level
(11 = Low Priority, 1 10 9
1 = High Priority)
Bit Names in:

IPH1 IPH1.2 IPH1.1 IPH1.0
IPL1 IPL1.2 IPL1.1 IPL1.0
rermupt Request Pohe FIFLG: SOFH:ASOF,
g GRSM FTXDx, FRXDx HIFLG:

URST x=0,1,2 HTXDO, HRXDO
Interrupt Request
Flag Cleared by No No No
Hardware?
ISR Vector Address 0053H 004BH 0043H

5.2.2 Timer Interrupts

Two timer-interrupt request bits TFO and TF1 (see TCON register, Figure 10-6 on page 10-8) are
set by timer overflow. The exceptionis Timer 0 in Mode 3, see Figure 10-4 on page 10-6. When
atimer interrupt is generated, the bit is cleared during the hardware vector to the interrupt service
routine. Timer interrupts are enabled by bits ETO and ET1 in the IENO register (see Figure 5-10
on page 5-24).

Timer 2 interrupts are generated by alogical OR of bits TF2 and EXF2 in register T2CON. Nei-
ther flag is cleared by a hardware vector to a service routine. In fact, the interrupt service routine
must determine if TF2 or EXF2 generated the interrupt, and then clear the bit. Timer 2 interrupt
is enabled by ET2 in register IENO (Figure 5-10).

5.2.3 Keyboard Scan Interrupt

The keyboard scan interrupt (INT2#) is actually an external interrupt similar to INTO# and
INT1#, except that it is based on the ANDed inputs KSI7:0. When any one of the KSI7:0 signals
dropsto O, the keyboard scan interrupt istriggered. This can happen on either alevel 0 or the neg-
ative edge of a KSI7:0 signal, depending on the value of IT2 in KBCON (Figure 12-1 on page
12-1).

If the keyboard scan enablebit isset (KSEN in KBCON), the keyboard scan interrupt flag (called
the Interrupt 2 Flag and represented by the IE2 bit in KBCON) is set when one of the KSI 7:0 sig-

I 5-7

8x931AA, 8x931HA USER’'S MANUAL Inte|®

nals becomes zero. If external interrupt 2 is enabled (by setting EX2 in IEN1), a hardware inter-
rupt is triggered and program control vectors to 003BH.

See “Keyboard Interrupt Logic” on page 12-3 for additional information.

5.2.4 Serial Port Interrupt

Serial port interrupts are generated by the logical OR of bits Rl and Tl in the SCON register. Nei-
ther flag is cleared by a hardware vector to the service routine. The service routine resolves Rl or
Tl interrupt generation and clears the serial port request flag. The serial port interrupt is enabled
by bit ES in the IENO register (see Figure 5-10).

5.2.5 USB Function Interrupt

The USB function generates two types of interrupts to control the transfer of non-isochronous da-
ta: the receive done interrupt and the transmit done interrupt. Individual USB function interrupts
in the &931 are enabled by setting the corresponding bits in the FIE register (Figure 5-3).

NOTE

To use any of the USB function interrupts, the EF bit in the IEN1 register must
be enabled.

The USB Function Interrupt Flag register (FIFLG, as shown in Figure 5-4) is used to indicate
pending function interrupts for a given endpoint. For all bits in FIFLG, a ‘1’ indicates that an in-
terrupt is actively pending for that endpoint; a ‘0’ indicates that the interrupt is not active. The
interrupt status is shown in the FIFLG register regardless of the state of the corresponding inter-
rupt enable bit in the FIE register (Figures 5-3).

5-8 I

Inte|® INTERRUPT SYSTEM

FIE Address: A2H
Reset State: xx00 0000B

Function Interrupt Enable Register. Enables and disables the receive and transmit done interrupts for
the three function endpoints.

7 0
= = FRXIE2 FTXIE2 H FRXIE1 FTXIEL FRXIEO FTXIEO

Bit Bit

Number Mnemonic Function

7:6 Reserved:
Write zeros to these bits.

5 FRXIE2 Function Receive Interrupt Enable 2:
Enables the receive done interrupt for endpoint 2 (FRXD2).
4 FTXIE2 Function Transmit Interrupt Enable 2:
Enables the transmit done interrupt for endpoint 2 (FTXD2).

3 FRXIE1 Function Receive Interrupt Enable 1:
Enables the receive done interrupt for endpoint 1 (FRXD1).
2 FTXIEL Function Transmit Interrupt Enable 1:
Enables the transmit done interrupt for endpoint 1 (FTXD1).

1 FRXIEO Function Receive Interrupt Enable 0:
Enables the receive done interrupt for endpoint 0 (FRXDO).

0 FTXIEO Function Transmit Interrupt Enable O:
Enables the transmit done interrupt for endpoint 0 (FTXDO).

NOTE: For all bits, a ‘1’ means the interrupt is enabled and will cause an interrupt to be signaled to
the microcontroller. A ‘0’ means the associated interrupt source is disabled and cannot
cause an interrupt, even though the interrupt bit's value is still reflected in the FIFLG register.

Figure 5-3. FIE: USB Function Interrupt Enable Register

The USB function generates a receive done interrupt for an endpoint x (x = 0-2) by setting the
FRXDx bit in the FIFLG register (Figure 5-4). Only a non-isochronous transfer can cause a re-
ceive done interrupt. Receive done interrupts are generated onlyalharihe following are

true:

e Avdid SETUP or OUT token is received to function endpoint x.
* Endpoint x is enabled for reception (RXEPEN in EPCON = ‘1").

* Receive is enabled (RXIE = ‘1") and STALL is disabled (RXSTL = ‘0’) for OUT tokens (
the token received is a SETUP token).

* A data packet is received with no time-outregardless of transmission errors (CRC, bit-
stuffing) or FIFO errors (overrun, underrun).

5-9

8x931AA, 8x931HA USER’'S MANUAL Inte|®

* Thereisno data sequence PID error.

Because the FRXDx hit is set (and areceive done interrupt is generated) regardless of transmis-
sion errors, this condition means either:

¢ Valid dataiswaiting to be serviced in the receive FIFO for function endpoint x and that the
datawas received without error and has been acknowledged.

¢ Datawasreceived with areceive data error and requires firmware intervention to be
cleared. This could be either atransmission error or a FIFO-related error. Y ou must check
for these conditions and respond accordingly in the interrupt service routine (I1SR).

The USB function generates a transmit done interrupt for an endpoint x (x = 0-2) by setting the
FTXDx bitin the FIFLG register (Figure 5-4). Only a non-isochronous transfer can cause a trans-
mit done interrupt. Transmit done interrupts are generated onlyalihafrthe following are true:

¢ A vdid IN token isreceived to function endpoint x.
* Endpoint x is enabled for transmission (TXEPEN = ‘1").
* Transmit is enabled (TXIE = ‘1’) and STALL is disabled (TXSTL = ‘0’).

¢ A data packet/byte count has been loaded in the transmit FIFO and was transmitted in
response to the IN token +egardless of whether or not a FIFO error occurs.

¢ An ACK isreceived from the host or there was a time-out in the SIE.

Because the FTXDx bit is set (and atransmit done interrupt is generated) regardless of transmis-
sion errors, this condition means either:

* Thetransmit data has been transmitted and the host has sent an acknowledgment to indicate
that iswas successfully received.

¢ A transmit data error occurred during transmission of the data packet, which requires
servicing by firmware to be cleared. Y ou must check for these conditions and respond
accordingly in the ISR.

NOTE
Setting an endpoint interrupt’s bit in the Function Interrupt Enable register
(FIE, as shown in Figure 5-3) means that the interrupt is enabled and will
cause an interrupt to be signaled to the microcontroller. Clearing a bit in the
FIE register disables the associated interrupt source, which can no longer
cause an interrupt even though its value will still be reflected in the FIFLG
register (Figure 5-4).

5-10 I

Inte|® INTERRUPT SYSTEM

FIFLG Address: COH
Reset State: xx00 0000B

Function Interrupt Flag Register. Contains the USB function’s transmit and receive done interrupt

flags for non-isochronous endpoints.

7 0
— — FRXD2 FTXD2 ‘ ‘ FRXD1 FTXD1 FRXDO FTXDO
Bit Bit :

Number Mnemonic Function

7:6 — Reserved:

Write zeros to these bits.

5 FRXD2 Function Receive Done Flag, Endpoint 2

4 FTXD2 Function Transmit Done Flag, Endpoint 2

3 FRXD1 Function Receive Done Flag, Endpoint 1

2 FTXD1 Function Transmit Done Flag, Endpoint 1

1 FRXDO Function Receive Done Flag, Endpoint O

0 FTXDO Function Transmit Done Flag, Endpoint 0

NOTES:

1. For all bits in the Interrupt Flag Register, a ‘1’ indicates that an interrupt is actively pending; a ‘0’
indicates that the interrupt is not active. The interrupt status is shown regardless of the state of the
corresponding interrupt enable bit in the FIE.

2. Bits are set-only by hardware and clearable in firmware. Firmware can also set the bits for test
purposes, allowing the interrupt to be generated in firmware. This SFR is bit-addressable.

3. Asetbitindicates either:

Valid data waiting to be serviced in the RX FIFO for the indicated endpoint and that the data was
received without error and has been acknowledged; or
Data was received with a Receive Data Error requiring firmware intervention to be cleared.

Figure 5-4. FIFLG: USB Function Interrupt Flag Register

5.2.6 USB Start-of-frame Interrupt

The USB start-of-frame interrupt (SOF) is used to control the transfer of isochronous data. The
8x931 frame timer attempts to synchronize with the host frame time automatically. When the
frame timer is locked to the USB frame time, hardware sets the FTLOCK bit in SOFH (Figure
5-5). To enable the SOF interrupt, set the SOFIE bit in SOFH.

The8x931 generates an SOF interrupt whenever astart-of-frame packet isreceived from the USB
lines, or whenever astart-of-frame packet should have been received (i.e., an artificial SOF). The
8x931 generates an SOF interrupt by setting the ASOF bit in the SOFH SFR. When an SOF in-
terrupt occurs, the 8x931 loads the current value of the 11-bit frame number issued with an SOF
token into the SOFH/SOFL registers (Figures 5-5 and 5-6). If an artificial SOF is generated, the
time stamp remains at its previous value — leaving it up to the firmware for updating.

5-11

8x931AA, 8x931HA USER’'S MANUAL Inte|®

NOTE
For the 8x931HA, the start-of-frame interrupt shares an interrupt vector with
the hub interrupt. When thisinterrupt is triggered, firmware must examine the
ASOF bit in the SOFH SFR to determine that it was the start-of-frame
interrupt that was triggered, and not the hub interrupt.

SOFH Address: D3H
Reset State: 0000 1000B

Start-of-frame High Register. Contains isochronous data transfer enable and interrupt bits and the
upper three bits of the 11-bit time stamp received from the host.

7 0
SOFACK ASOF SOFIE FTLOCK ‘ | SOFODIS TS10 TS9 TS8

Bit Bit

Number | Mnemonic Function

7 SOFACK SOF Token Received without Error (read-only):

When set, this bit indicates that the 11-bit time stamp stored in SOFL and
SOFH is valid. This bit is updated every time an SOF token is received from
the USB bus, and it is cleared when an artificial SOF is generated by the
frame timer. This bit is set and cleared by hardware.

6 ASOF Any Start of Frame:

This bit is set by hardware to indicate that a new frame has started. The
interrupt can result either from reception of an actual SOF packet or from an
artificially-generated SOF from the frame timer. This interrupt is asserted in
hardware even if the frame timer is not locked to the USB bus frame timing.
When set, this bit is an indication that either an actual SOF packet was
received or an artificial SOF was generated by the frame timer. This bit must
be cleared by firmware or inverted and driven to the SOF# pin. The effect of
setting this bit by firmware is the same as hardware: the external pin will be
driven with an inverted ASOF value for eight T ,S.

This bit also serves as the SOF interrupt flag. This interrupt is only asserted

in hardware if the SOF interrupt is enabled (SOFIE set) and the interrupt
channel is enabled.

5 SOFIE SOF Interrupt Enable:

When this bit is set, setting the ASOF bit causes an interrupt request to be
generated if the interrupt channel is enabled. Hardware reads but does not
write this bit.

4 FTLOCK Frame Timer Locked (read-only):

When set, this bit indicates that the frame timer is presently locked to the
USB bus’ frame time. When cleared, this bit indicates that the frame timer is
attempting to synchronize to the frame time.

Figure 5-5. SOFH: Start-of-frame High Register

5-12

Inte|® INTERRUPT SYSTEM

SOFH (Continued) Address: D3H
Reset State: 0000 1000B

Start-of-frame High Register. Contains isochronous data transfer enable and interrupt bits and the
upper three bits of the 11-bit time stamp received from the host.

7 0
SOFACK ASOF SOFIE FTLOCK ‘ | SOFODIS TS10 TS9 TS8

Bit Bit

Number | Mnemonic Function

3 SOFODIS | SOF# Pin Output Disable:

When set, the SOF# pin will be disabled and will respond like a port pin. The
SOF# pin will be driven to ‘1’ when SOFODIS is set. When this bit is clear,
setting the ASOF bit causes the SOF# pin to be toggled with a low pulse for
eight T S.

2.0 TS10:8 Time stamp received from host:

TS10:8 are the upper three bits of the 11-bit frame number issued with an
SOF token. This time stamp is valid only if the SOFACK bit is set. If an
artificial SOF is generated, the time stamp remains at its previous value and
it is up to firmware to update it. These bits are set and cleared by hardware.

Figure 5-5. SOFH: Start-of-frame High Register (Continued)

SOFL Address: D2H
Reset State: 0000 0000B

Start-of-frame Low Register. Contains the lower eight bits of the 11-bit time stamp received from the
host.

7 0
TS7:0

Bit Bit

. Function
Number | Mnemonic

7:0 TS7:0 Time stamp received from host:

This time stamp is valid only if the SOFACK bit in the SOFH register is set.
TS7:0 are the lower eight bits of the 11-bit frame number issued with an
SOF token. If an artificial SOF is generated, the time stamp remains at its
previous value and it is up to firmware to update it. These bits are set and
cleared by hardware.

Figure 5-6. SOFL: Start-of-frame Low Register

5-13

8x931AA, 8x931HA USER’'S MANUAL Inte|®

The 8x931 uses the SOF interrupt to signal either of two complementary events:

1. When transmitting: The next isochronous data packet needs to be retrieved from memory
and loaded into the transmit FIFO in preparation for transmission in the next frame; or

2. When receiving: An isochronous packet has been received in the previous frame and
needs to be retrieved from the receive FIFO.

Sincethe SOF packet could be corrupted, thereisachance that anew frame could be started with-

out successful reception of the SOF packet. For this reason, an artificial SOF is provided. The

frame timer signals a time-out when an SOF packet has not been received within the allotted

amount of time. In this fashion, the 8x931 generates an SOF interrupt reliably once each frame

within 1 us of accuracy, except when this interrupt is suspended or when the frame timer gets out-
of-sync with the USB bus frame time.

In summary, to use the USB start-of-frame functionality for isochronous data tramsfellow-
ing must all betrue:

¢ Theglobal enable bit must be set. That is, the EA bit must be set in the IENO register
(Figure 5-10).

* Theisochronous endpoint Any SOF interrupt must be enabled. That is, the ESOF bit must
be set in the IEN1 register (Figure 5-11).

* The SOF interrupt must be enabled. That is, the SOFIE bit must be set in the SOFH Register
(Figure 5-5).

NOTE

The SOF interrupt is brought out to an external pin (SOF#) in order to provide
a1l mspulse, subject to the accuracy of the USB start-of-frame. Thispin is
enabled by clearing the SOFODI S hit in the SOFH register.

5-14 I

Inte|® INTERRUPT SYSTEM

5.2.7 USB Hub Interrupt

The USB hub interrupt is used to signal areceive done or transmit done for hub endpoint 0.
To enable the hub interrupt:

1. Setthegloba enablebit (EA) in the IENO register (Figure 5-10)

2. Enablethe hub endpoint O transmit done and receive done interrupts individually:

a. To enablethe receive done interrupt, set the HRXEQO bit in the Hub Interrupt Enable
SFR (HIE, as shown in Figure 5-7)

b. To enablethe transmit done interrupt, set the HTXEOQ bit in HIE

NOTE
The 8x931A x microprocessor does not support hub operations or a hub

interrupt. Specific details of the 8x931Ax are covered in Appendix E,
“8x931AA Design Considerations”.

HIE Address: AlH
Reset State: XXXX xx00B

Hub Interrupt Enable Register. Enables and disables the receive and transmit done interrupts for hub
endpoint 0.

7 0
_ — — — H — —_ HRXEO | HTXEO

Bit Bit . Function
Number Mnemonic

7:2 — Reserved:
Write zeros to these bits.

1 HRXEO HRXEOQ:
Enable the hub endpoint 0 receive done interrupt (HRXDO0).t

0 HTXEO HTXEO:
Enable the hub endpoint 0 transmit done interrupt (HTXDO).t

T A ‘1’ means the interrupt is enabled, and will cause an interrupt to be signaled to the
microcontroller. A ‘0’ means the associated interrupt source is disabled and cannot cause an
interrupt, even though its value is still reflected in the HIFLG register.

Figure 5-7. HIE: Hub Interrupt Enable Register

The USB Hub Interrupt Flag Register (HIFLG) is shown in Figure 5-8. This register is used to
indicate pending hub interrupts. For all bits in HIFLG, a ‘1’ indicates that an interrupt is actively
pending; a ‘0’ indicates that the interrupt is not active. The interrupt status is shown in the HIFLG
register regardless of the state of the corresponding interrupt enable bit in the HIE register (Figure

5-7).

5-15

8x931AA, 8x931HA USER’'S MANUAL Inte|®

NOTE
For the 8x931HA, the hub interrupt shares an interrupt vector with the SOF
interrupt. When thisinterrupt is triggered, firmware must examine the HIFLG
SFR to determine that it was the hub interrupt that was triggered and not the
SOF interrupt.

HIELG Address: E8H
Reset State: XXxx xx00B

Hub Interrupt Flag Register. Contains the hub’s transmit and receive done interrupt flags for hub
endpoint 0.

7 0
_ _ _ _ H — — HRXDO HTXDO

Bit Bit .
Number Mnemonic Function
7:2 — Reserved:
Write zeros to these bits.
1 HRXDO Hub Receive Done, Endpoint 0.:

Hardware sets this bit to indicate that there is either: (1) valid data
waiting to be serviced in the receive data buffer for hub endpoint 0 and
that the data was received without error and has been acknowledged; or
(2) that data was received with a FIFO error requiring firmware
intervention to be cleared.

0 HTXDO Hub Transmit Done, Endpoint O:

Hardware sets this bit to indicate that one of two conditions exists in the
transmit data buffer for hub endpoint 0: (1) the transmit data has been
transmitted and the host has sent acknowledgment which was
successfully received; or (2) a FIFO-related error occurred during
transmission of the data packet, which requires servicing by firmware to
be cleared.

NOTES:

1. Note that because the HIFLG appears in the first SFR column, it is a bit-addressable SFR. All bits
are set in hardware and cleared by firmware. Firmware can also set these bits for test purposes,
allowing the interrupt to be generated by firmware.

2. For both HRXDO and HTXDO, a ‘1’ indicates that an interrupt is actively pending; a ‘0’ indicates
that the interrupt is not active. The interrupt status is shown regardless of the state of the
corresponding interrupt enable bit in the HIE.

Figure 5-8. HIFLG: Hub Interrupt Status Register

5-16

Inte|® INTERRUPT SYSTEM

5.2.8 USB Global Suspend/Resume Interrupt

The 8x931 supports USB power control through firmware. The USB power control register
(PCON1, asshown in Figure 9-2 on page 9-3) facilitates USB power control of the 8x931, includ-
ing global suspend/resume and USB function resume.

5.2.8.1 Global Suspend

When aglobal suspend is detected by the 8x931, the global suspend bit (GSUS of PCON1) is set,
and the global suspend/resume interrupt is generated if IENO.7 (EA) and IEN1.2 are set. Global
suspend is defined as bus inactivity for more than 3 ms on the USB lines. For additional informa-
tion, see “Global Suspend Mode” on page 14-7.

5.2.8.2 Global Resume

When a global resume is detected by k@38, the global resume bit (GRSM of PCONL1) is set,

and the global suspend/resume interrupt is generated if IENO.7 (EA) and IEN1.2 are set. As soon
as resume signaling is detected on the USB lines, the oscillator is restarted. After executing the
resume interrupt service routine, th@®81 resumes operation from where it was when it was in-
terrupted by the suspend interrupt. For additional information, see “Global Resume Mode” on
page 14-9.

5.2.8.3 USB Remote Wake-up

The &931 can also initiate resume signaling to the USB lines through remote wake-up of the
USB function while it is in powerdown/idle mode. While in powerdown mode, remote wake-up
has to be initiated through assertion of an enabled external interrupt. The external interrupt has to
be enabled and it must be configured with level trigger and with higher priority than a suspend/re-
sume interrupt. An external interrupt restarts the clocks to xB818and program execution
branches to the external interrupt service routine.

Within this external interrupt service routine, you must set the remote wakeup bit (RWU in
PCONL1) to drive resume signaling on the USB lines to the host or upstream hub. After executing
the external ISR, the program continues execution from where it was put into powerdown mode
and the 8931 resumes normal operation. For additional information, see “USB Remote Wake-
up” on page 14-10.

5.2.9 USB Reset Separation

The 8931 features an optional USB reset that functions independently from the chip reset. When
the PCON1 SFR’s URDIS bit is set, thek981 core and peripherals will not reset when a USB
reset signal is detected. After ax081 with URDIS set detects a USB reset signal, it resets all
the USB blocks (including the USB SFRs), sets the URST bit in PCON1, and generates a USB
reset interrupt. USB reset signals can originate only from the host PC or upstream hub.

NOTE

The use of a separate USB reset is recommended only for applications where
the device is required to be operated continually, even when the PC is
powered-off, as is the case with Computer Telephony Integration (CTI). All

I 5-17

8x931AA, 8x931HA USER’'S MANUAL Inte|®

other applications are advised against using the separate USB reset. Leaving
the URDI S bit clear will ensure arobust, chip-level reset.

The USB reset must be implemented partially in firmware, including an
initialization routine as part of chip start-up. To ensure compliance with USB-
specified timing constraints and minimize the potential for data corruption,
you must implement flag checking as part of your main routine, subroutines,
and I SRs. These requirements increase the complexity of your firmware code.

If the 8x931 isin powerdown or suspend mode when the separate USB reset interrupt is generat-
ed, the device will wake up from powerdown or suspend mode upon receiving the USB reset sig-
nal. The ISR of abus-powered device must set the L C bit of PCON (Figure 14-1 on page 14-3)
in order to operate at 3 MHz. This ensures that the device meets the 100 mA current limit during
enumeration, as required by the Universal Serial Bus Specification. Self-powered devices (i.e.,
devices drawing less than 100mA from the USB wires) may choose not to switch to Low Clock
mode after detecting the USB reset.

NOTE
If desired, your firmware can handle the separate USB reset without using an
ISR. To do this, you must clear the ESR bit in the IEN1 SFR. The USB reset
hardware operationswill still take place, but the ISR will not be called. That is,
step 1 and step 2 under “USB Reset Hardware Operations” on page 5-21 will
still occur, but step 3 will not. Your firmware must poll the URST flag
periodically to detect the USB reset and take the appropriate action.

Since the global suspend and global resume interrupts share the same interrupt
vector as USB reset, your firmware must also poll the GRSM and GSUS bits
in PCONL1 to detect global suspend or resume.

If instead you choose to implement a separate USB reset using an ISR, follow the procedure out-

lined in the following subsections and displayed in Figure 5-9.

5.2.9.1 Initialization Required for USB Reset

Because USB reset implementation depends heavily on firmware, your code must perform the

following initialization prior to execution of the main routine (See Figure 5-9):
1. To enable the USB reset interrupt on tk@3, your initialization routine must set the
following bits to ‘1"
a. the EA bit of IENO (Figure 5-10)
b. the ESR bit of IEN1 (Figure 5-11)
c. the URDIS bit of PCON1 (Figure 14-2 on page 14-4)

2. Use hit 2 of IPH1/IPL1 to set the priority of the USB reset interrupt (See “Interrupt
Priorities” on page 5-26).

5-18 I

Inte|® INTERRUPT SYSTEM

NOTE
It is recommended that you set the USB reset interrupt to the highest priority.

3. After enabling the USB reset interrupt and assigning it a priority, your initialization
routine should clear the USB_RST_FL G flag. Thisflag isaglobal variable declared in
your firmware, not a bit in an SFR.

Thisflag, an indicator that a USB reset has occurred, will be examined at various pointsin
your main routine, subroutines, and ISRs.

I 5-19

8x931AA, 8x931HA USER’'S MANUAL

Loop continuously

Initialization Routine:
Set IENO.EA;
Set IEN1.ESR;
Set PCON1.URDIS;
Set Interrupt Priority;
USB_RST_FLG =0;

Main Routine:
(normal processing
until interrupt occurs)

USB reset triggered

USB Reset
Hardware

Continue with
Main Routine

Reset all USB blocks;
Set PCON1.URST;
Generate USB Reset
Interrupt;

USB Reset,
Global Suspend,
Resume ISR

Check
PCON1.URST

Periodically Test
USB_RST _FLG

USB_RST_FLG
=17

Yes

Initialization Routine

Continue with
Main Routine

Clear USB_RST_FLG;
Initialize USB-related SFRs;
Flush USB FIFOs;

Perform Global
Suspend/Resume
ISR

Clear PCON1.URST;
USB_RST_FLG=1
(Bus Powered?—
Set PCON.LC)

ISR
Complete

A5206-01

5-20

Figure 5-9. USB Reset Separation Operating Model

Inte|® INTERRUPT SYSTEM

5.2.9.2 USB Reset Hardware Operations

When the host initiates a USB reset signal, the following series of eventsis performed by the
8x931 hardware (See Figure 5-9):

1. Upon detecting a USB reset signal, the 8x931 hardware resets all the USB blocks (i.e., the
FIFOs, the SIU, the SIE, and the USB transceiver).

Asaresult of this process, all USB-related SFRs are reset to their default reset states. This
includes EPINDEX, EPCON, SOFL, SOFH, FIE, FIFLG, FADDR, TXSTAT, TXDAT,
TXCON, TXFLG, TXCNTL, TXCNTH, RXSTAT, RXDAT, RXCON, RXFLG,

RXCNTL, RXCNTH, and PCONL1. Note that PCONL1 is only partially reset — the URDIS
and URST bits retain their original values.

Because of this hardware reset, any USB-related operations (e.g., MOV TXDAT,A) will
not provide valid data.

The &931 sets the PCON1.URST bit to indicate a USB reset to the ISR.

3. Ifthe ESR bitin IEN1 is set, the®31 generates a USB reset interrupt, which causes a
branch to the interrupt service routine whose vector is located at FF:0053H. This ISR
services both the USB reset interrupt and the global suspend/resume interrupt.

5.2.9.3 USB Reset ISR

Because the USB reset interrupt shares an interrupt vector with the USB global suspend/resume
interrupt, the interrupt service routine must play a dual role. The ISR must first check PCON1’s
URST bit to ensure that this interrupt is indeed a USB reset interrupt.

If URST = ‘07, then this interrupt must be a global suspend/resume interrupt and the ISR must
branch to service that type of interrupt. See “USB Global Suspend/Resume Interrupt” on page
5-17 for a description of this portion of the ISR.

If the URST bit is set to ‘1’, then this interrupt is a USB reset interrupt. The ISR must perform
the following procedure (See Figure 5-9):

1. Clear PCON1's URST bit — to indicate that the USB reset interrupt has been serviced.
2. Setthe user flag USB_RST_FLG that was cleared as part of your initialization routine.

This flag is discussed in “Initialization Required for USB Reset” on page 5-18. Setting this
flag is necessary to inform your firmware routines that a USB reset has occurred and that
USB initialization must be performed.

3. Bus-powered devices must set the LC bit of PCON (Figure 14-1 on page 14-3) in order to
operate at 3 MHz. This ensures that the device meetdrilersal Serial Bus
Specification’s 100 mA current limit during enumeration.

4. Restore any register values and return from interrupt.

The rest of the USB reset procedure will be initiated by a USB initialization routine that can be
called from the main routine, subroutines, or other ISRs.

I 5-21

8x931AA, 8x931HA USER’'S MANUAL Inte|®

5.2.9.4 Main Routine Considerations

Although the USB-related SFRs were reset by the USB reset ISR, they must also be initialized
by a specia USB initialization routine called by the main routine. Since the USB reset interrupt
can occur at any time, the only way the main routine will know that a USB reset occurred is to
periodically check the USB reset flag (USB_RST_FLG). Thisisthe firmware flag that was set in
Step 2 of the “USB Reset ISR” on page 5-21.

When a set reset flag is detected, the main routine branches to a USB initialization routine, which
performs the following tasks (See Figure 5-9):

1. Clear the user flag USB_RST_FLG.

Clearing this flag indicates that USB initialization is not required. Clear this flag first in
case a second USB reset occurs during this initialization routine, rendering this
initialization invalid.

2. Initialize the USB-related SFRs to the values required by your program.

If your application requires any other SFRs to be initialized upon USB reset (e.g., SCON),
now is the time to do so.

Restore any USB-related user flags specific to your application.

4. Flush all USB FIFOs. This is done by setting RXCLR in RXCON and TXCLR in
TXCON. This must be done for each function endpoint.

5. Return to the calling routine.

At this point, the main routine can resume normal processing. Eventually, the host PC will trans-
mit a SETUP token. This will trigger an interrupt that will perform USB enumeration.

NOTE

USB specifications require that all devices must be able to accept a device
address via a SET_ADDRESS command no later than 10 ms after the reset is
removed.

It is recommended that you ensure that the total time required for the following is less than 10ms:

1. The time to complete and exit from the USB reset ISR (accounting for latency — see
“Response Time” on page 5-32)

2. The time for the maximum number of instructions that could execute before your code
recognizes that a USB reset has occurred (by checking USB_RST_FLG) and calls your
USB initialization routine

3. The time to execute your USB initialization routine

This time constraint may require you to check USB_RST_FLG at multiple points in your code
(and within any ISRs that may take longer than 10ms to perform). By inserting this checkpoint,
your program can branch from a routine (or ISR) after the USB reset without having to complete
the routine (or ISR). Your program can continue the interrupted routine after ensuring that the
device is ready for USB enumeration.

5-22 I

Inte|® INTERRUPT SYSTEM

CAUTION
If aUSB reset interrupt occurs during execution of a USB receive ISR (e.g.,
receive done or start-of-frame), the 8x931 will reset the USB hardware. This
will render invalid any data received during the USB transfer. If thisis not
detected by your firmware, misprocessing can occur.

Therisk of USB reset-related misprocessing can be reduced if your USB receive/transmit |SRs
check USB_RST_FL G before returning. If this flag is set, your code should branch to the USB
initialization routine to initialize the USB-related SFRs and flush the FIFOs. If thisis done, the
only potential opportunity for misprocessing would beif the USB reset interrupt occurs between
the test of USB_RST_FL G and the branch to the USB initialization routine.

NOTE
Because of therisk of misprocessing, however slight, it isrecommended that
applications that will not substantially benefit from a separate USB reset
disable this option (by leaving the URDIS bit in PCON1 cleared) to simplify
firmware coding and ensure arobust, chip-level reset.

I 5-23

8x931AA, 8x931HA USER’'S MANUAL Inte|®

5.3 INTERRUPT ENABLE

Each interrupt source may beindividually enabled or disabled by the appropriate interrupt enable
bit in the IENO register at A8H (see Figure 5-10) or the IEN1 register at B1H (see Figure 5-11).
Note |[ENO also containsaglobal disablebit (EA). If EA isset, interruptsareindividually enabled
or disabled by bitsin IENO and IENL. If EA isclear, al interrupts are disabled.

IENO Address: A8H
Reset State: 0000 0000B

Interrupt Enable Register 0. IENO contains two types of interrupt enable bits. The global enable bit
(EA) enables/disables all of the interrupts (including those in IEN1). The remaining bits enable/disable
the other individual interrupts.

7 0
EA — ET2 ES H ET1 EX1 ETO EX0

Bit Bit

. Function
Number Mnemonic unctio

7 EA Global Interrupt Enable:

Setting this bit enables all interrupts that are individually enabled by the
other bits of this register, as well as the interrupts enabled by the bits in
the IEN1 SFR.

Clearing this bit disables all interrupts, except the TRAP interrupt, which
are always enabled.

6 — Reserved:
Write a zero to this bit.

5 ET2 Timer 2 Overflow Interrupt Enable:
Setting this bit enables the timer 2 overflow interrupt.
4 ES Serial I/O Port Interrupt Enable:

Setting this bit enables the serial I/O port interrupt.

3 ET1 Timer 1 Overflow Interrupt Enable:
Setting this bit enables the timer 1 overflow interrupt.

2 EX1 External Interrupt 1 Enable:
Setting this bit enables external interrupt 1.

1 ETO Timer O Overflow Interrupt Enable:
Setting this bit enables the timer 0 overflow interrupt.

0 EXO External Interrupt O Enable:
Setting this bit enables external interrupt 0.

NOTE: Note that because IENO appears in the first SFR column, it is a bit-addressable SFR.
Figure 5-10. IENO: USB Interrupt Enable Register 0

5-24

Inte|® INTERRUPT SYSTEM

IEN1 Address: B1H
Reset State: Xxxx x000B

Interrupt Enable Register 1. Contains the enable bits for the USB interrupts.
7 0
EX2 — — — || = ESR EF ESOF

Bit Bit

. Function
Number Mnemonic unctio

7 EX2 External Interrupt 2 Enable (Keyboard Scan):

Setting this bit enables the external interrupt used for the keyboard scan.

NOTE: Setting this bit causes the 8x931 to trigger a hardware interrupt
when a keyboard scan interrupt occurs, but only if the KSEN bit
in the KBCON register is also set.

6:3 — Reserved:

Write zeros to these bits.
2 ESR Enable Suspend/Resume/Reset:

USB global suspend/resume/reset interrupt enable bit.
1 EF Enable Function:

Transmit/Receive Done interrupt enable bit for non-isochronous USB
function endpoints.

0 ESOF Enable USB Hub/Start of Frame:

Any start-of-frame interrupt enable for isochronous endpoints, or USB
hub interrupt enable.

Figure 5-11. IEN1: USB Interrupt Enable Register

5-25

8x931AA, 8x931HA USER’'S MANUAL Inte|®

5.4 INTERRUPT PRIORITIES

The 8x931 interrupt sources may be individually programmed to one of four priority levels. This
isaccomplished with the IPHX.x/IPLX.x bit pairsin theinterrupt priority high (IPHL/IPHO in Fig-
ure 5-12 and 5-14) and interrupt priority low (IPL 1/1PLO) registers (Figures5-13 and 5-15). Spec-
ify the priority level as shown in Table 5-5 using IPHO.x (or IPH1.x) asthe MSB and IPLO.x (or
IPL1.x) asthe LSB.

Table 5-5. Level of Priority

Priority Level IPH1.x, IPL1.x | IPHO.x, IPLO.x
0 (Lowest Priority) 00 00
1 01 01
2 10 10
3 (Highest Priority) 11 11

A low-priority interrupt is alwaysinterrupted by a higher priority interrupt but not by another in-
terrupt of equal or lower priority. The highest priority interrupt is not interrupted by any other
interrupt source. Higher priority interrupts are serviced before lower priority interrupts. The re-
sponse to simultaneous occurrence of equal priority interrupts (i.e., sampled within the samefour-
state interrupt cycle) is determined by a hardware priority-within-level resolver (see Table 5-6).

Table 5-6. Interrupt Priority Within Level

Priority Number Interrupt Name

1 (Highest Priority) INTO#
2 Timer O
3 INT1#
4 Timer 1
5 Serial Port
6 Timer 2
7 Keyboard Scan (INT2#)
8 J—
9 USB Hub / SOF
10 USB Function

11 (Lowest Priority) USB Global Suspend/Resume

5-26

intel.

INTERRUPT SYSTEM

IPHO

Address:
Reset State:

B7H
x000 0000B

Interrupt Priority High Control Register 0. IPHO, together with IPLO, assigns each interrupt in IENO a
priority level from 0 (lowest) to 3 (highest):

IPHOXx IPLOx Priority Level
0 0 0 (lowest priority)
0 1 1
1 0 2
1 1 3 (highest priority)
7 0
— — IPHO.5 | IPHO.4 || IPHO.3 | IPHO.2 | IPHO.1 | IPHOO
Bit Bit . Function
Number Mnemonic
7:6 — Reserved:
Write zeros to these bits.
5 IPHO.5 Timer 2 Overflow Interrupt Priority Bit High.
4 IPHO.4 Serial /0 Port Interrupt Priority Bit High.
3 IPHO.3 Timer 1 Overflow Interrupt Priority Bit High.
2 IPHO.2 External Interrupt 1 Priority Bit High.
1 IPHO.1 Timer 0 Overflow Interrupt Priority Bit High.
0 IPHO.0 External Interrupt O Priority Bit High.

Figure 5-12. IPHO: Interrupt Priority High Register 0

5-27

8x931AA, 8x931HA USER’'S MANUAL Inte|®

IPLO Address: B8H
Reset State: x000 0000B

Interrupt Priority Low Control Register 0. IPLO, together with IPHO, assigns each interrupt in IENO a
priority level from 0 (lowest) to 3 (highest):

IPHOx IPLOx Priority Level

0 0 0 (lowest priority)

0 1 1

1 0 2

1 1 3 (highest priority)

7 0

— — IPLO.5 IPLO.4 || IPLO3 IPLO.2 IPLO.1 IPLO.0
Bit Bit Function

Number Mnemonic

7:6 — Reserved:
Write zeros to these bits.

5 IPLO.5 Timer 2 Overflow Interrupt Priority Bit Low.
4 IPLO.4 Serial I1/0 Port Interrupt Priority Bit Low.

3 IPLO.3 Timer 1 Overflow Interrupt Priority Bit Low.
2 IPLO.2 External Interrupt 1 Priority Bit Low.

1 IPLO.1 Timer 0 Overflow Interrupt Priority Bit Low.
0 IPLO.O External Interrupt O Priority Bit Low.

Figure 5-13. IPLO: Interrupt Priority Low Register 0

5-28

intel.

INTERRUPT SYSTEM

IPH1

Address:
Reset State:

Interrupt Priority High Control Register 1. IPH1, together with IPL1, assigns each interrupt in IEN1 a
priority level from 0 (lowest) to 3 (highest):

B3H
Xxxx x000B

IPH1.x IPL1.x Priority Level
0 0 0 (lowest priority)
0 1 1
1 0 2
1 1 3 (highest priority)
7 0
IPH1.7 — — — || wHL3 | PHL2 | IPHL1 [IPHLO
Bit Bit . Function
Number Mnemonic
7 IPH1.7 Keyboard Scan Interrupt Priority Bit High.
6:3 — Reserved:
Write zeros to these bits.
2 IPH1.2 Global Suspend/Resume/Reset Interrupt Priority Bit High.
IPH1.1 USB Function Interrupt Priority Bit High.
0 IPH1.0 USB Hub/SOF Interrupt Priority Bit High.

Figure 5-14. IPHL1: Interrupt Priority High Register 1

5-29

8x931AA, 8x931HA USER’'S MANUAL Inte|®

IPL1 Address: B2H
Reset State: Xxxx x000B

Interrupt Priority Low Control Register 1. IPL1, together with IPH1, assigns each interrupt in IEN1 a
priority level from 0 (lowest) to 3 (highest):

IPH1.x IPL1.x Priority Level

0 0 0 (lowest priority)
0 1 1
1 0 2
1 1 3 (highest priority)
7 0
IPL1.7 — — — || = IPL1.2 IPL1.1 IPL1.0
Bit Bit ’ Function
Number Mnemonic
7 IPL1.7 Keyboard Scan Interrupt Priority Bit Low.
6:3 — Reserved:
Write zeros to these bits.
2 IPL1.2 Global Suspend/Resume/Reset Interrupt Priority Bit Low.
IPL1.1 USB Function Interrupt Priority Bit Low.
0 IPL1.0 USB Hub/SOF Interrupt Priority Bit Low.

Figure 5-15. IPL1: Interrupt Priority Low Register 1

5.5 INTERRUPT HANDLING

The interrupt flags are sampled at S5P2 of every machine cycle. The samples are polled during
the following machine cycle. The Timer 2 interrupt cycleisdlightly different, as described in the
Response Time section. If one of the flags was in a set condition at S5P2 of the preceding cycle,
the polling cyclewill find it and the interrupt system will generate an LCALL to the appropriate-
service routine, provided this hardware-generated LCALL is not blocked by any of the following
conditions:

1. Aninterrupt of equal or higher priority level is already in progress.

2. Thecurrent (polling) cycleis not the final cyclein the execution of the instruction in
progress.

3. Theingtruction in progressis RETI or any writeto the IENX or IPx registers.

Any of thesethree conditionswill block the generation of the LCALL to theinterrupt service rou-
tine. Condition 2 ensures that the instruction in progress will be completed before vectoring to
any service routine. Condition 3 ensuresthat if theinstruction in progressis RETI or any writeto
IENX or IPx, then at least one more instruction will be executed before any interrupt is vectored
to.

5-30

Inte|® INTERRUPT SYSTEM

The polling cycle is repeated with each machine cycle and the values polled are the values that
were present at S5P2 of the previous machine cycle. If the interrupt flag for alevel-sensitive ex-
ternal interrupt is active but not being responded to for one of the above conditionsand is not till
active when the blocking condition is removed, the denied interrupt will not be serviced. In other
words, the fact that the interrupt flag was once active but not serviced is not remembered. Every
polling cycleisnew. The polling cycle/LCALL sequenceisillustrated in Figure 5-17.

Note that if an interrupt of a higher priority level goes active prior to S5P2 of the machine cycle
labeled C3 in Figure 5-17, then in accordance with the above rules it will be vectored to during
C5 and C6, without any instruction of the lower priority routine having been executed.

Thus the processor acknowledges an interrupt request by executing a hardware-generated
LCALL to the appropriate servicing routine. The hardware-generated LCALL pushes the con-
tents of the Program Counter onto the stack (but it does not save the PSW) and reloads the PC
with an address that depends on the source of the interrupt being vectored to.

Execution proceeds from that location until the RETI instruction is encountered. The RETI in-
struction informs the processor that this interrupt routine is no longer in progress, then pops the
top two bytes from the stack and reloads the Program Counter. Execution of the interrupted pro-
gram continues from where it left off.

Note that a simple RET instruction would also have returned execution to the interrupted pro-
gram, but it would have left the interrupt control system thinking interrupt was still in progress.

Note that the starting addresses of consecutive interrupt service routines are only 8 bytes
apart. That meansif consecutive interrupts are being used (IEO and TFO for example, or TFO and
IEl), and if the first interrupt routine is more than 7 bytes long, then that routine will have to ex-
ecute ajump to some other memory |ocation where the service routine can be compl eted without
overlapping the starting address of the next interrupt routine.

----- C1 } Cc2 } C3 >| C4 {f< C5—---
S5P2
S6 —>
3 : 3 : 49 : -
—— L - X 1 -
t Interrupt Interrupts are Long call to interrupt Inter.rupt
latched polled vector address routine
Interrupt
goes
active

Note: This is the fastest possible response when C2 is the final cycle of an instruction other than
RETI or write IE or IP.

A4462-01

Figure 5-16. Interrupt Response Timing Diagram

5-31

8x931AA, 8x931HA USER’'S MANUAL Inte|®

5.6 RESPONSE TIME

TheINTO# and INT1# levelsareinverted and latched into the Interrupt Flags IEO and | E1 at S5P2
of every machine cycle. Similarly, the Timer 2 flag EXF2 and the serial Port flagsRI and Tl are
set at S5P2. The values are not actually polled by the circuitry until the next machine cycle.

The Timer 0 and Timer 1 flags, TFO and TFI, are set at S5P2 of the cyclein which thetimersover-
flow. The values are then polled by the circuitry in the next cycle. However, the Timer 2 flag TF2
isset at S2P2 and is polled in the same cycle in which the timer overflows.

If arequest is active and conditions are right for it to be acknowledged, a hardware subroutine

call to the requested service routine will be the next instruction to be executed. The call itself
takestwo cycles. Thus, aminimum of three compl ete machine cycles el apses between activation

of an external interrupt request and the beginning of execution of the service routine’s first in-
struction. Figure 5-16 shows interrupt response timing.

A longer response time would result if the request is blocked by one of the 3 previously listed
conditions. If an interrupt of equal or higher priority level is already in progress, the additional
wait time obviously depends on the nature of the other interrupt's service routine. If the instruc-
tion in progress is not in its final cycle, the additional wait time cannot be more than 3 cycles,
since the longest instructions (MUL and DIV) are only 4 cycles long, and if the instruction in
progress is RETI or write to IENX or IPx, the additional wait time cannot be more than 5 cycles
(a maximum of one or more cycles to complete the instruction in progress, plus 4 cycles to com-
plete the next instruction if the instruction is MUL or DIV). Thus, in a single-interrupt system,
the response time is always more than 3 cycles and less than 9 cycles.

CAUTION
It is recommended that programmers set the contents of EPINDEX and/or
HPINDEX once at the start of each routine, instead of writing to the
EPINDEX register prior to each access of an endpoint-indexed SFR (and to
HPINDEX prior to each access of a port-indexed SFR). This means that
interrupt service routines must save the contents of the EPINDEX and
HPINDEX registers at the start of the routine and restore the contents at the
end of the routine to prevent the EPINDEX and HPINDEX registers from
being corrupted.

5-32

intel.

USB Function

intel.

CHAPTER 6
USB FUNCTION

This chapter describes the FIFOs and special function registers (SFRs) associated with the USB
function interface. This chapter (along with Chapter 2, “Architectural Overview” and Chapter 8,
“USB Programming Models”) describes the operation of function interface orx@34 & SB
microcontroller.

A data flow model for USB transactions, intended to bridge the hardware and firmware layers of
the &931, is presented in truth table form in Appendix D, “Data Flow Model”. The model de-
scribes 8931 behavior in response to a particular USB event, given a known state/configuration.

The SFRs described in this chapter are listed in Table 6-3. The SFR definition tables that appear
in this chapter also appear in alphabetical order in Appendix C, “Registers”.

6.1 FUNCTION INTERFACE

The function interface provides a USB interface capability for one USB function. The main com-
ponents of the function interface are the serial bus interface engine (SIE) and the function inter-
face unit (FIU). Refer to the block diagram in Figure 2-3 on page 2-7. The operation of the
function interface is discussed in section 2.4, “Universal Serial Bus Module” (pg. 2-11). On the
8x931HA, the hub accesses the function interface through the internal downstream port.

6.1.1 Function Endpoint Pairs

The endpoint pairs implemented on th@3&1 are listed in Table 2-5 on page 2-12. The EPIN-
DEX register selects the endpoint pair for any given data transaction. xX38&HA supports

three function endpoint pairs and two hub endpoint pairs. See “USB Hub Endpoints” on page
7-10.

6.1.2 Function FIFOs

The &931 provides a transmit/receive FIFO pair for each endpoint pair. Transmit FIFOs are writ-
ten by the CPU and then read by the FIU for transmission on the USB. Receive FIFOs are written
by the FIU following reception from the host PC, then read by the CPU. All transmit FIFOs have
the same architecture, and all receive FIFOs have the same architecture. Table 6-1 shows the
FIFO size and configuration for the hub and function endpoint pairs.

I 6-1

8x931AA, 8x931HA USER’'S MANUAL Inte|®

Table 6-1. Function and Hub FIFO Configurations

Endpoint | Control | Bulk Interrupt Isochronous | Dual-packet RX .FIFO ™ FIFO
Size Size
Hub EPO Yes No No No No 8 bytes 8 bytes
Hub EP1 No No Yes No No N/A 1 byte
Function Yes No No No No 8 bytes 8 bytes
EPO
Function Yes Yes Yes Yes Yes 16 bytes 16 bytes
EP1
Function Yes Yes Yes No No 8 bytes 8 bytes
EP2

The USB signalsdiscussed in this chapter are described in Table 6-2. The pinout diagramsfor the
8x931 appear in Appendix B, “Pin Descriptions”.

Table 6-2. Non-hub USB Signal Descriptions

Signal - Alternate
Name Type Description Function
PLLSEL | Phase-locked Loop Select. For normal operation, connect —

PLLSEL to logic high. PLLSEL = 0 is used for factory test (see
Table 2-3 on page 2-9).

SOF# o Start of Frame. The SOF# pin is asserted for eight states when —
an SOF token is received.

Do, Do 1/0 | USB Port 0. Dyg and D,,q are the data plus and data minus —

lines of differential USB upstream port 0. These lines do not

have internal pullup resistors. For low-speed devices, provide

an external 1.5 KQ pullup resistor at D,,q. For full-speed

devices, provide an external 1.5 KQ pullup resistor at Dp.

NOTE: Provide an external 1.5 KQ pullup resistor at Dpg SO
the device indicates to the host that it is a full-speed
device.

ECAP | External Capacitor. Must be connected to a 1 pF capacitor (or —
larger) to ensure proper operation of the differential line driver.
The other lead of the capacitor must be connected to V.

The FIU controls operations through the use of four sets of special functions registers (SFRs): the
FIU SFRs, the transmit FIFO SFRs, the receive FIFO SFRs, and the USB interrupt SFRs. Table
6-3 lists the SFRs described in this chapter. Figure 6-1 provides a quick reference to the bit as-
signments in the SFRs.

USB interrupt SFRs are described in Chapter 5, “Interrupt System”. Table C-1 on page C-2 shows
a memory map of all thex831HA SFRs. Table E-4 on page E-10 shows a memory map of all
the 8031AA SFRs.

6-2

intel.

Table 6-3. USB Function SFRs

USB FUNCTION

Mnemonic Description Address Page

EPCON Endpoint Control Register. Configures the operation of the E1H page 6-7
endpoint specified by EPINDEX.

EPINDEX Endpoint Index Register. Selects the appropriate endpoint pair. F1H page 6-6

FADDR Function Address Register. Stores the USB function address 8FH page 6-14
for the device. The host PC assigns the address and informs the
device via endpoint 0.

FIE USB Function Interrupt Enable Register. Enables and disables A2H page 5-9
the receive and transmit done interrupts for the function
endpoints.

FIFLG USB Function Interrupt Flag Register. Contains the USB COH page 5-11
function’s transmit and receive done interrupt flags for non-
isochronous endpoints.

RXCNTL Receive FIFO Byte-Count Low Register. Stores the byte count E6H page 6-26
for the data packets received in the receive FIFO specified by
EPINDEX.

RXCON Receive FIFO Control Register. Controls the receive FIFO E4H page 6-29
specified by EPINDEX.

RXDAT Receive FIFO Data Register. Receive FIFO data is read from E3H page 6-26
this register (specified by EPINDEX).

RXFLG Receive FIFO Flag Register. These flags indicate the status of E5H page 6-31
data packets in the receive FIFO specified by EPINDEX.

RXSTAT Endpoint Receive Status Register. Contains the endpoint E2H page 6-11
status of the receive FIFO specified by EPINDEX.

TXCNTL Transmit Count Low Register. Stores the byte count for the F6H page 6-16
data packets in the transmit FIFO specified by EPINDEX.

TXCON Transmit FIFO Control Register. Controls the transmit FIFO F4H page 6-19
specified by EPINDEX.

TXDAT Transmit FIFO Data Register. Transmit FIFO data is written to F3H page 6-16
this register (specified by EPINDEX).

TXFLG Transmit Flag Register. These flags indicate the status of data F5H page 6-21
packets in the transmit FIFO specified by EPINDEX.

TXSTAT Endpoint Transmit Status Register. Contains the endpoint FAH page 6-9

status of the transmit FIFO specified by EPINDEX.

6-3

8x931AA, 8x931HA USER’'S MANUAL Inte|®

EPCON ‘7RXSTL | TxsTL | cTler | RxSPM || RXIE [RXEPEN | TxOE ‘TXEPENO‘

cenoex o | = [= | = [=] — Jewa [0

FADDR | — | Function Address |

FIE | — | — | Frxe2 | Frxie2 || FRXIEL | FTXIEL | FRXIEO | FTXIEO |

FIFLG | — | — [FrRxp2 | FTxp2 || FRXD1 | FTXD1 | FRXDO | FTXDO |

wewn [= [= | =] ser][ew [sez | s | s |
|

RXCON | RXCLR — | — | RXFFRC || RXISO | ARM |ADVWM | REVWP |

RXDAT ‘ Receive Data Byte ‘

RXFLG | RXFIF1 ‘ RXFIFO ‘ — | — || RXEMP |RXFULL| RXURF ‘ RXOVF |

RXSTAT ‘ RXSEQ ‘RXSETUP‘ STovw ‘ EDOVW HRXSOVW| RXVOID | RXERR ‘ RXACK ‘

entt | — | — | — [Bca || Bes | Bc2 | BC1 | BCO |
TXCON | TXclR | — | — | — || Txs0o | ATM | ADVRM | REVRP |
TXDAT | Transmit Data Byte ‘
TXFLG | TXFFL | TxFIF0 | — | — || TXEMP | TXFULL | TXURF | TXOVF |
TXSTAT ‘ TXSEQ ‘ — ‘ — ’TXFLUSH ‘ |szovw| TXVOID | TXERR ‘ TXACK ‘

Figure 6-1. Bits of the USB Function SFRs

The registersin the FIU SFR set are: EPINDEX, EPCON, TXSTAT, RXSTAT, SOFL, SOFH,
and FADDR. The SOFH and SOFL SFRs are defined in Figure 5-5 on page 5-12 and Figure 5-6
on page 5-13. The remaining registers are defined in Figures 6-2 through 6-6.

Theregistersin the transmit FIFO SFR set are TXDAT, TXCON, TXFLG, and TXCNTL. These
registers are defined in Figures 6-8 through 6-11 beginning on page 6-16.

Theregistersin thereceive FIFO SFR set are RXDAT, RXCON, RXFLG, and RXCNTL. These
registers are defined in Figures 6-13 through 6-16 beginning on page 6-26.

The transmit SFR set, the receive SFR set, EPCON, TXSTAT, and RXSTAT are endpoint-in-
dexed

6-4 I

Inte|® USB FUNCTION

CAUTION
Unless otherwise noted in the bit definition, SFRs can be read and written by
firmware. All SFRs should be written using read-modify-write instructions
only, due to the possibility of simultaneous writes by hardware and firmware.
Theseinstructions are listed in “Read-Modify-Write Instructions” on page 9-5.

6.1.3 Endpoint-indexed SFRs

As indicated in the SFR memory maps in Table C-1 on page C-2, certain USB SFRs are endpoint-
indexed. These SFRs are implemented as banks of registers. Endpoint-indexed SFRs are accesse
by means of the SFR address and the current contents of the EPINDEX register (which selects
the appropriate bank).

With the exception of hub endpoint 1, there is a bank of SFRs (TXDAT, TXCON, TXFLG, etc.)
for each hub and function endpoint pair. Thus k838, with three function endpoint pairs, plus

hub endpoint 0, has four TXCON registers. When EPINDEX = 0000 0001, the function endpoint
1 TXCON is accessed. When EPINDEX = 0000 0010, the function endpoint 2 TXCON is access-
ed. The contents of a given SFR are retained when other endpoints are selected.

Only SFRs necessary for device operation are implemented. For example, since hub endpoint 1
is transmit only, RXDAT for that endpoint is not implemented.

6.1.4 Endpoint Selection

The most significant bit of the endpoint index register (EPINDEX, Figure 6-2) selects hub or
function.The low-order bits (EPINX1:0) indicate the endpoint and serve as an index value for se-
lecting the SFR bank. To specify the endpoint pair, write a value of the form Zxxx xYYYB or
Zxxx xxYYB to EPINDEX, where Z specifies hub or function and YYY and YY specify the end-
point number.

It is recommended that programmers set the contents of EPINDEX once, at the start of each rou-
tine, instead of writing the EPINDEX register prior to each access of an endpoint-indexed SFR.
This means that interrupt service routines must save the contents of the EPINDEX register at the
start of the routine and restore the contents at the end of the routine to prevent the EPINDEX reg-
ister from being corrupted.

I 6-5

8x931AA, 8x931HA USER’'S MANUAL Inte|®

EPINDEX Address: F1H
Reset State: 1xxx xx00B

Endpoint Index Register. This register identifies the endpoint pair. Its contents select the transmit and
receive FIFO pair and serve as an index to endpoint-specific SFRs.

7 0

HORF — — — H — — EPINXL | EPINXO

Bit Bit

Number | Mnemonic Function

7 HORF Hub/Function Bit:

1 = Hub. Selects USB hub FIFOs and SFRs.
0 = Function. Selects USB function FIFOs and SFRs.

6:2 — Reserved:
Write zeros to these bits.
1:0 EPINX1:0 Endpoint Index:
EPINDEX? EPINDEX?
Oxxx xx00 Function Endpoint 0 1xxx xx00 Hub Endpoint 0
0xxx xx01 Function Endpoint 1 1xxx xx01 Hub Endpoint 1

Oxxx xx10 Function Endpoint 2

T The EPINDEX register identifies the endpoint pair and selects the associated transmit and receive FIFO
pair. The value in this register plus SFR addresses select the associated bank of endpoint-indexed SFRs
(TXDAT, TXCON, TXFLG, TXCNTL, RXDAT, RXCON, RXFLG, RXCNTL, EPCON, TXSTAT, and
RXSTAT).

Figure 6-2. EPINDEX: Endpoint Index Register

6-6

Inte|® USB FUNCTION

6.2 USB FUNCTION SFRS
This section contains the specia function registers (SFRs) used by the 8x931 USB function.

EPCON Address: E1H
(Endpoint-indexed) Reset State: Endpoint 0 0011 0101B
Function Endpoints 1, 2 0001 0000B

Endpoint Control Register. This SFR configures the operation of the endpoint specified by EPINDEX.
7 0

RXSTL TXSTL CTLEP RXSPM | | RXIE RXEPEN TXOE TXEPEN

Bit Bit

. Function
Number | Mnemonic

7 RXSTL Stall Receive Endpoint:

Set this bit to stall the receive endpoint. Clear this bit only when the host has
intervened through commands sent down endpoint 0. When this bit is set
and RXSETUP is clear, the receive endpoint will respond with a STALL
handshake to a valid OUT token. When this bit is set and RXSETUP is set,
the receive endpoint will NAK. This bit does not affect the reception of
SETUP tokens by a control endpoint.

6 TXSTL Stall Transmit Endpoint:

Set this bit to stall the transmit endpoint. This bit should be cleared only
when the host has intervened through commands sent down endpoint 0.
When this bit is set and RXSETUP is clear, the receive endpoint will
respond with a STALL handshake to a valid IN token. When this bit is set
and RXSETUP is set, the receive endpoint will NAK.

5 CTLEP Control Endpoint:t
Set this bit to configure the endpoint as a control endpoint. Only control
endpoints are capable of receiving SETUP tokens.

4 RXSPM Receive Single Packet Mode:t

Set this bit to configure the receive endpoint for single data packet
operation. When enabled, only a single data packet is allowed to reside in
the receive FIFO.

NOTE: For control endpoints (CTLEP=1), this bit should be set for single
packet mode operation as the recommended firmware model.
However, it is possible to have a control endpoint configured in
dual packet mode as long as the firmware handles the endpoint
correctly.

3 RXIE Receive Input Enable:

Set this bit to enable data from the USB to be written into the receive FIFO.
If cleared, the endpoint will not write the received data into the receive FIFO
and at the end of reception, but will return a NAK handshake on a valid OUT
token if the RXSTL bit is not set.This bit does not affect a valid SETUP
token. A valid SETUP token and packet override this bit if it is cleared, and
place the receive data in the FIFO.

T For hub endpoint 0 (EPINDEX = 1000 0000), bits 5 and 4 are hard-wired to ‘1’ since hub endpoint 0 is
always a control endpoint.

Figure 6-3. EPCON: Endpoint Control Register

6-7

8x931AA, 8x931HA USER’'S MANUAL Inte|®

EPCON (Continued)
(Endpoint-indexed)

Address: E1H
Reset State: Endpoint 0 0011 0101B
Function Endpoints 1, 2 0001 0000B

Endpoint Control Register. This SFR configures the operation of the endpoint specified by EPINDEX.

7

0

RXSTL

TXSTL

CTLEP RXSPM | | RXIE RXEPEN TXOE TXEPEN

Bit
Number

Bit
Mnemonic

Function

2

RXEPEN

Receive Endpoint Enable:

Set this bit to enable the receive endpoint. When disabled, the endpoint
does not respond to a valid OUT or SETUP token. This bit is hardware read-
only and has the highest priority among RXIE and RXSTL. Note that
endpoint 0 is enabled for reception upon reset.

TXOE

Transmit Output Enable:

This bit is used to enable the data in TXDAT to be transmitted. If cleared, the
endpoint returns a NAK handshake to a valid IN token if the TXSTL bit is not
set.

TXEPEN

Transmit Endpoint Enable:

This bit is used to enable the transmit endpoint. When disabled, the
endpoint does not respond to a valid IN token. This bit is hardware read
only. Note that endpoint 0 is enabled for transmission upon reset.

T For hub endpoint 0 (EPINDEX = 1000 0000), bits 5 and 4 are hard-wired to ‘1’ since hub endpoint 0 is
always a control endpoint.

6-8

Figure 6-3. EPCON: Endpoint Control Register (Continued)

Inte|® USB FUNCTION

TXSTAT Address: F2H
(Endpoint-indexed) Reset State: 0xx0 0000B

Endpoint Transmit Status Register. Contains the current endpoint status of the transmit FIFO specified
by EPINDEX.

7 0
TXSEQ — — TXFLUSH ‘ | TXSOVW | TXVOID TXERR TXACK
Bit Bit Function
Number | Mnemonic
7 TXSEQ Transmitter's Current Sequence Bit (read, conditional write): T

This bit will be transmitted in the next PID and toggled on a valid ACK
handshake. This bit is toggled by hardware on a valid SETUP token. This bit
can be written by firmware if the TXSOVW bit is set when written together
with the new TXSEQ value.

6:5 — Reserved:
Write zeros to these bits.
4 TXFLUSH | Transmit FIFO Packet Flushed (read-only):

When set, this bit indicates that hardware flushed a stale ISO data packet
from the transmit FIFO due to a TXFIF1:0 = 11 at SOF. To guard against a
missed IN token in ISO mode, if, with TXFIF1:0 = 11, no IN token is received
for the current endpoint, hardware automatically flushes the oldest packet
and decrements the TXFIF1:0 value.

3 TXSOVW | Transmit Data Sequence Overwrite Bit: T

Write a ‘1’ to this bit to allow the value of the TXSEQ bit to be overwritten.
Writing a ‘0’ to this bit has no effect on TXSEQ. This bit always returns ‘0’
when read. Tt

2 TXVOID Transmit Void (read-only): T11

A void condition has occurred in response to a valid IN token. Transmit void
is closely associated with the NAK/STALL handshake returned by the
function after a valid IN token, due to the conditions that cause the transmit
FIFO to be unenabled or not ready to transmit.

Use this bit to check any NAK/STALL handshake returned by the function.

This bit does not affect the FTXDx, TXERR or TXACK bits. This bit is
updated by hardware at the end of a non-isochronous transaction in
response to a valid IN token. For isochronous transactions, this bit is not
updated until the next SOF.

T Under normal operation, this bit should not be modified by the user.

Tt The SIE will handle all sequence bit tracking. This bit should be used only when initializing a new
configuration or interface.

11 For additional information on the operation of these bits see Appendix D, “Data Flow Model.”

Figure 6-4. TXSTAT: Transmit FIFO Status Register

6-9

8x931AA, 8x931HA USER’'S MANUAL Inte|®

TXSTAT (Continued)
(Endpoint-indexed)

by EPINDEX.
7

Address: F2H
Reset State: 0xx0 0000B

Endpoint Transmit Status Register. Contains the current endpoint status of the transmit FIFO specified

0

TXSEQ —

— TXFLUSH | | TXSOVW | TXVOID | TXERR | TXACK

Bit Bit
Number | Mnemonic

Function

1 TXERR

Transmit Error (read-only):tt

An error condition has occurred with the transmission. Complete or partial
data has been transmitted. The error can be one of the following:

1. Data transmitted successfully but no handshake received
2. Transmit FIFO goes into underrun condition while transmitting

The corresponding transmit done bit, FTXDx in FIFLG, is set when active.
For non-isochronous transactions, this bit is updated by hardware along with
the TXACK bit at the end of the data transmission (this bit is mutually
exclusive with TXACK). For isochronous transactions, this bit is not updated
until the next SOF.

0 TXACK

Transmit Acknowledge (read-only): T

Data transmission completed and acknowledged successfully. The
corresponding transmit done bit, FTXDx in FIFLG, is set when active. For
non-isochronous transactions, this bit is updated by hardware at the end of
data transmission (along with the TXERR bit — this bit is mutually exclusive
with TXERR). For isochronous transactions, this bit is not updated until the
next SOF.

T Under normal operation,

this bit should not be modified by the user.

Tt The SIE will handle all sequence bit tracking. This bit should be used only when initializing a new
configuration or interface.

11 For additional information on the operation of these bits see Appendix D, “Data Flow Model.”

Figure 6-4.

6-10

TXSTAT: Transmit FIFO Status Register (Continued)

Inte|® USB FUNCTION

RXSTAT Address: E2H
(Endpoint-indexed) Reset State: 0000 0000B

Endpoint Receive Status Register. Contains the current endpoint status of the receive FIFO specified
by EPINDEX.

7 0
RXSEQ | RXSETUP | STOVW EDOVW ‘ | RXSOVW | RXVOID RXERR RXACK

Bit Bit Function
Number | Mnemonic
7 RXSEQ Receiver Endpoint Sequence Bit (read, conditional write):

This bit will be toggled on completion of an ACK handshake in response to
an OUT token. This bit will be set (or cleared) by hardware after reception of
a SETUP token.

This bit can be written by firmware if the RXSOVW bit is set when written

along with the new RXSEQ value.

NOTE: Always verify this bit after writing to ensure that there is no conflict
with hardware, which could occur if a new SETUP token is
received.

6 RXSETUP | Received Setup Token:

This bit is set by hardware when a valid SETUP token has been received.
When set, this bit causes received IN or OUT tokens to be NAKed until the
bit is cleared to allow proper data management for the transmit and receive
FIFOs from the previous transaction.

IN or OUT tokens are NAKed even if the endpoint is stalled (RXSTL or
TXSTL) to allow a control transaction to clear a stalled endpoint.

Clear this bit upon detection of a SETUP token after the firmware is ready to
complete the status stage of a control transaction.

5 STOVW Start Overwrite Flag (read-only):

Set by hardware upon receipt of a SETUP token for any control endpoint to
indicate that the receive FIFO is being overwritten with new SETUP data.
When set, the FIFO state (FIF and read pointer) resets and is locked for this
endpoint until EDOVW is set. This prevents a prior, ongoing firmware read
from corrupting the read pointer as the receive FIFO is being cleared and
new data is being written into it. This bit is cleared by hardware at the end of
handshake phase transmission of the setup stage.

This bit is used only for control endpoints.

T Under normal operation, this bit should not be modified by the user.
Tt For additional information on the operation of these bits see Appendix D, “Data Flow Model.”

1t The SIE will handle all sequence bit tracking. This bit should be used only when initializing a new
configuration or interface.

Figure 6-5. RXSTAT: Receive FIFO Status Register

6-11

8x931AA, 8x931HA USER’'S MANUAL Inte|®

RXSTAT (Continued) Address: E2H
(Endpoint-indexed) Reset State: 0000 0000B

Endpoint Receive Status Register. Contains the current endpoint status of the receive FIFO specified
by EPINDEX.

7 0
RXSEQ RXSETUP | STOVW EDOVW | | RXSOVW | RXVOID RXERR RXACK

Bit Bit

) Function
Number | Mnemonic

4 EDOVW End Overwrite Flag:

This flag is set by hardware during the handshake phase of a SETUP stage.

It is set after every SETUP packet is received and must be cleared prior to

reading the contents of the FIFO. When set, the FIFO state (FIF and read

pointer) remains locked for this endpoint until this bit is cleared. This

prevents a prior, ongoing firmware read from corrupting the read pointer

after the new data has been written into the receive FIFO.

This bit is only used for control endpoints.

NOTE: Make sure the EDOVW bit is cleared prior to reading the contents
of the FIFO.

3 RXSOVW | Receive Data Sequence Overwrite Bit: T

Write a ‘1’ to this bit to allow the value of the RXSEQ bit to be overwritten.
Writing a ‘0’ to this bit has no effect on RXSEQ. This bit always returns ‘0’
when read. Tt

2 RXVOID Receive Void Condition (read-only):tt

This bit is set when no valid data is received in response to a SETUP or
OUT token due to one of the following conditions:

1. The receive FIFO is still locked.
2. The EPCON register's RXSTL bit is set.

This bit is set and cleared by hardware. For non-isochronous transactions,
this bit is updated by hardware at the end of the transaction in response to a
valid OUT token. For isochronous transactions, it is not updated until the
next SOF.

T Under normal operation, this bit should not be modified by the user.

Tt For additional information on the operation of these bits see Appendix D, “Data Flow Model.”

1t The SIE will handle all sequence bit tracking. This bit should be used only when initializing a new
configuration or interface.

Figure 6-5. RXSTAT: Receive FIFO Status Register (Continued)

6-12

Inte|® USB FUNCTION

RXSTAT (Continued) Address: E2H
(Endpoint-indexed) Reset State: 0000 0000B

Endpoint Receive Status Register. Contains the current endpoint status of the receive FIFO specified
by EPINDEX.

7 0
RXSEQ RXSETUP | STOVW EDOVW | | RXSOVW | RXVOID RXERR RXACK

Bit Bit

) Function
Number | Mnemonic

1 RXERR Receive Error (read-only):tt

Set when an error condition has occurred with the reception. Complete or
partial data has been written into the receive FIFO. No handshake is
returned. The error can be one of the following conditions:

1. Data failed CRC check.

2. Bit stuffing error.

3. Areceive FIFO goes into overrun or underrun condition while receiving.
This bit is updated by hardware at the end of a valid SETUP or OUT token
transaction (non-isochronous) or at the next SOF on each valid OUT token
transaction (isochronous).

The corresponding FRXDx bit of FIFLG is set when active. This bit is

updated with the RXACK bit at the end of data reception and is mutually
exclusive with RXACK.

0 RXACK Receive Acknowledged (read-only): Tt

This bit is set when data is received completely into a receive FIFO and an
ACK handshake is sent. This read-only bit is updated by hardware at the
end of a valid SETUP or OUT token transaction (non-isochronous) or at the
next SOF on each valid OUT token transaction (isochronous).

The corresponding FRXDx bit of FIFLG is set when active. This bit is
updated with the RXERR bit at the end of data reception and is mutually
exclusive with RXERR.

T Under normal operation, this bit should not be modified by the user.

Tt For additional information on the operation of these bits see Appendix D, “Data Flow Model.”

1t The SIE will handle all sequence bit tracking. This bit should be used only when initializing a new
configuration or interface.

Figure 6-5. RXSTAT: Receive FIFO Status Register (Continued)

6-13

8x931AA, 8x931HA USER’'S MANUAL Inte|®

FADDR Address: 8FH
Reset State: 0000 0000B

Function Address Register. This SFR holds the address for the USB function. During bus enumeration
it is written with a unique value assigned by the host.

7 0

— Function Address

Bit Bit :
Number | Mnemonic Function
7 — Reserved:
Write a zero to this bit.
6:0 A6:0 7-bit Programmable Function Address:

This register is programmed through the commands received via endpoint O
on configuration, which should be the only time the firmware should change
the value of this register. This register is hardware read-only.

Figure 6-6. FADDR: Function Address Register

6.3 TRANSMIT FIFOS

The8x931 has a transmit FIFO for each function endpoint pair. In this manual, the term “transmit
FIFO” refers to the transmit FIFO associated with the current endpoint pair specified by the
EPINDEX register. 8931 FIFOs are listed in Table 2-4.

The transmit FIFOs are circulating data buffers with the following features:
* endpoint 1 supports up to two separate data sets of variable sizest
¢ abyte count register to store the number of bytesin the data sets
* protection against overwriting datain afull FIFO
¢ capability to retransmit the current data set

All transmit FIFOs have the same architecture (Figure 6-7). The transmit FIFO and its associated
logic can manage up to two data sets, dataset 0 (dsO) and data set 1 (dsl). The ability to have two
data sets in the FIFO supports back-to-back transmissions.

T When operating in dual packet mode, the maximum packet size should be, at amaximum, half the FIFO size to ensure
both packets will simultaneoudly fit in the FIFO (see the Endpoint description in the Universal Serial Bus
Foecification).

6-14

Inte|® USB FUNCTION

CPU Writes to FIFO
From CPU> | write Pointer }——
Data Set 1
l FIU Reads FIFO
<—| Read Pointer | |To USB Interface>
Data Set 0 REVRP ADVRM
Byte Count
Register
[xentt | [«<—] Read Marker |

A5305-01

Figure 6-7. Transmit FIFO Outline

The transmit process uses a write pointer, as well as aread pointer and aread marker. The CPU
writesto the FIFO location specified by the write pointer, which automatically incrementsby one
after awrite. The read marker points to the first byte of data written to a data set, and the read
pointer pointsto the next FIFO location to beread by the function interface. The read pointer au-
tomatically increments by one after a read.

When agood transmission is completed, the read marker can be advanced to the position of the
read pointer to set up for reading the next data set. When a bad transmission is completed, the
read pointer can be reversed to the position of the read marker to enable the function interface to
re-read thelast data set for retransmission. The read marker advance and read pointer reversal can
be accomplished two ways: explicitly by firmware or automatically by hardware, as specified by
bits in the transmit FIFO control register (TXCON).

6.3.1 Transmit FIFO Registers
There arefiveregisters directly involved in the operation of the transmit FIFOs:
¢ TXDAT, the transmit FIFO data register
e TXCNTL, the transmit FIFO byte count register
¢ TXCON, the transmit FIFO control register
* TXFLG, thetransmit FIFO flag register

These registers are endpoint indexed. This means they are used as a set to control the operation
of thetransmit FIFO associated with the current endpoint, as specified by the EPINDEX register.
Figures 6-8 through 6-11 beginning on page 6-16 describe the transmit FIFO registers and pro-
vide bit definitions.

I 6-15

8x931AA, 8x931HA USER’'S MANUAL Inte|®

6.3.2 Transmit FIFO Data Register (TXDAT)
Bytes are written to the transmit FIFO via TXDAT, the transmit FIFO dataregister (Figure 6-8).

TXDAT Address: F3H
(Endpoint-indexed)* Reset State: XXxX XXxxB

USB Transmit FIFO Data Register. Data to be transmitted by the FIFO specified by EPINDEX is first
written to this register.

7 0

Transmit Data Byte

Bit Bit

. Function
Number | Mnemonic unctio

7:0 TXDAT7:0 | Transmit Data Byte (write-only):

To write data to the transmit FIFO, write to this register. The write pointer is
incremented automatically after a write.

T For hub endpoint 1, TXDAT is used in a different manner. See Figure 7-7 on page 7-12.
Figure 6-8. TXDAT: Transmit FIFO Data Register

6.3.3 Transmit FIFO Byte Count Register (TXCNTL)

The transmit FIFO byte count register is used as afive-hit ring buffer, as shown in Figure 6-9.

TXCNTL? Address: F6H
(Endpoint-indexed) Reset States: XXXX XXXXB

Transmit FIFO Byte-count Register. Ring buffer used to store the byte count for the data packets in the
transmit FIFO specified by EPINDEX.

7 0
— _ _ BC4 || BC3 BC2 BC1 BCO

Bit Bit

. Function
Number Mnemonic

75 — Reserved.
Write zeros to these bits.

4:0 BC4:0 Transmit Byte Count. (write, conditional read)
Five-bit, ring buffer. Stores transmit byte count for endpoints 0 and 2.

T Byte count registers are not implemented for hub endpoint 1.
Tt Read these bits only if TXFIF1:0 = 0; otherwise underrun errors may occur.

Figure 6-9. TXCNTL: Transmit FIFO Byte Count Register

6-16

USB FUNCTION

intel.

TXCNTL stores the number of bytesin either of the two data sets, data set 0 (ds0) and data set 1
(dsl). The FIFO logic for maintaining the data sets assumes that data is written to the FIFO in the
following sequence:

1. The CPU writes databytesto TXDAT.

2. The CPU writes the number of bytes that were written to TXDAT to the byte count
register TXCNTL. TXCNTL must be written after the writeto TXDAT to guarantee data
integrity.

The function interface reads the byte count register to determine the number of bytesin the set.

6.3.4 Transmit Data Set Management

Two read-only data set index bits, FIF1:0 in the TXFLG register, indicate which data sets (dsO
and/or dsl) have been written into the FIFO and are armed (ready for transmission). See the left
sideof Table 6-4. FIFx= 1indicatesthat data set x has been written and isarmed. Following reset,
FIF1:0 = 00, signifying an empty FIFO. FIF1:0 also determine which data set is written next.
Note that FIFO specifies the next data set to be written, except for the case of FIF1:0 = 11. Inthis
case further writesto TXDAT or TXCNTL are ignored.

NOTE

To simplify firmware devel opment, it is recommended that you utilize control
endpointsin single-packet mode only.

Two events cause the data set index bits to be updated:

* A new data set iswritten to the FIFO: The 8x931 writes bytesto the FIFO via TXDAT and
writes the number of bytesto TXCNTL. The data set index bits are updated after the write
to TXCNTL. Thisprocessisillustrated in Table 6-4.

¢ A dataset in the FIFO is successfully transmitted: The function interface reads a data set
from the FIFO, and when a good transmission is acknowledged, the read marker is
advanced to the read pointer. The data set index bits are updated after the read marker is
advanced. Note that in SO mode, this happens at the next start-of-frame (SOF).

Table 6-4. Writing to the Byte Count Register

FIELO Data Sets Written Settfc‘)”TQgﬁT"f”te Wite bytes FIEL0
ds1 dso0 to TXDAT.
0 0 No No (Empty) ds0 —> Write byte —> |0 1
0 1 |No Yes (1 set) dsl .ﬁ)?grlllt.;i 1 1
1 0 |Yes No (1 set) ds0 1 1
1 1 |Yes Yes (2 sets) Write ignored 1 1
6-17

8x931AA, 8x931HA USER’'S MANUAL

Table 6-5 summarizes how the actions following a transmission depend on the TXI1SO, ATM,
TXACK, and TXERR bits.

intel.

Table 6-5. Truth Table for Transmit FIFO Management

TXISO ATM TXERR TXACK .
(TXCON.3) | (TXCON.2) | (TXSTAT.1) | (TXSTAT.0) Action at End of Transfer Cycle

X X 0 0 No operation.

X 0 0 1 Read marker, read pointer, and TXFIF bits
remain unchanged. Managed by firmware.

X 0 1 0 Read marker, read pointer, and TXFIF bits
remain unchanged. Managed by firmware.

0 1 0 1 Read marker advanced automatically. The
TXFIF bit for the corresponding data set is
cleared.

0 1 1 0 Read pointer reversed automatically. The
TXFIF bit for the corresponding data set
remains unchanged.

1 1 X X Read marker advanced automatically.The
TXFIF bit for the corresponding data set is
cleared at the SOF.

NOTE

For normal operation, set the ATM bit in TXCON. Hardware will
automatically control the read pointer and read marker, and track the TXFIF

bits.

NOTE

To send a status stage after a control write or no data control command or a
null packet, write 0 to TXCNTL.

6-18

Inte|® USB FUNCTION

TXCON Address: F4H
(Endpoint-indexed) Reset State: Oxxx 0100B

USB Transmit FIFO Control Register. Controls the transmit FIFO specified by EPINDEX.

7 0
TXCLR _ _ _ || TXISO ATM ADVRM | REVRP

Bit Bit

) Function
Number | Mnemonic

7 TXCLR Transmit Clear:

Setting this bit flushes the transmit FIFO, resets all the read/write pointers
and markers, sets the EMPTY bit in TXFLG, and clears all other bits in
TXFLG. After the flush, hardware clears this bit. Setting this bit does not
affect the ATM, TXISO, and FFSZ bits, or the TXSEQ bit in the TXSTAT
register.

6:4 — Reserved:
Values read from this bit are indeterminate. Write zeros to these bits.

3 TXISO Transmit Isochronous Data:

Firmware sets this bit to indicate that the transmit FIFO contains
isochronous data. The FIU uses this bit to set up the handshake protocol at
the end of a transmission. This bit is not reset when TXCLR is set and must
be cleared by firmware.

2 ATM Automatic Transmit Management:

Setting this bit (the default value) causes the read pointer and read marker
to be adjusted automatically as indicated:

TXISO TX Status Read Pointer Read Marker

X ACK Unchanged Advanced (1)
0 NAK Reversed (2) Unchanged
1 NAK Unchanged Advanced (1)
(1) to origin of next data set (2) to origin of the data set last read

This bit should always be set, except for test purposes. Setting this bit
disables ADVRM and REVRP. This is a sticky bit that is not reset when
TXCLR is set, but can be set and cleared by firmware. Hardware neither
clears nor sets this bit.

T ATM mode is recommended. ADVRM and REVRP, which control the read marker and read pointer when
ATM = 0, are used for test purposes.

Figure 6-10. TXCON: Transmit FIFO Control Register

6-19

8x931AA, 8x931HA USER’'S MANUAL Inte|®

TXCON (Continued) Address: F4H
(Endpoint-indexed) Reset State: Oxxx 0100B

USB Transmit FIFO Control Register. Controls the transmit FIFO specified by EPINDEX.
7 0
TXCLR — — || Tiso ATM ADVRM | REVRP

Bit Bit

Number | Mnemonic Function

1 ADVRM Advance Read Marker Control (non-ATM mode only):

Setting this bit prepares for the next packet transmission by advancing the
read marker to the origin of the next data packet (the position of the read
pointer). Hardware clears this bit after the read marker is advanced. This bit
is effective only when the REVRP, ATM, and TXCLR bits are all clear.

0 REVRP Reverse Read Pointer Control (non-ATM mode only)*:

In the case of a bad transmission, the same data stack may need to be
available for retransmit. Setting this bit reverses the read pointer to point to
the origin of the last data set (the position of the read marker) so that the FIU
can reread the last set for retransmission. Hardware clears this bit after the
read pointer is reversed. This bit is effective only when the ADVRM, ATM,
and TXCLR bits are all clear.

T ATM mode is recommended. ADVRM and REVRP, which control the read marker and read pointer when
ATM = 0, are used for test purposes.

Figure 6-10. TXCON: Transmit FIFO Control Register (Continued)

6-20

Inte|® USB FUNCTION

TXFLG Address: F5H
(Endpoint-indexed) Reset State: 00xx 1000B

Transmit FIFO Flag Register. These flags indicate the status of data packets in the transmit FIFO
specified by EPINDEX.

7 0
TXFIF1 TXFIFO — — ‘ | TXEMP TXFULL TXURF TXOVF

Bit Bit

. Function
Number | Mnemonic unctio

7:6 TXFIF1:0 FIFO Index Flags (read-only):

These flags indicate which data sets are present in the transmit FIFO. The
FIF bits are set in sequence after each write to TXCNTL to reflect the
addition of a data set. Likewise, TXFIF1 and TXFIFO are cleared in
sequence after each advance of the read marker to indicate that the set is
effectively discarded. The bit is cleared whether the read marker is
advanced by firmware (setting ADVRM) or automatically by hardware
(ATM = 1). The next-state table for the TXFIF bits is shown below:

TXFIF1:0 Operation Flag Next TXFIF1:0 Next Flag
00 Wr TXCNTL X 01 Unchanged
01 Wr TXCNTL X 11 Unchanged
10 Wr TXCNTL X 11 Unchanged
11 Wr TXCNTL X 11 TXOVF =1
00 Adv RM X 00 Unchanged
01 Adv RM X 00 Unchanged
11 Adv RM X 10/01 Unchanged
10 Adv RM X 00 Unchanged
XX Rev RP X Unchanged Unchanged

In ISO mode, TXOVF, TXURF, and TXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. TXFIF is “incremented” by firmware and
“decremented” by the USB. Therefore, writes to TXCNTL “increment” TXFIF
immediately. However, a successful USB transaction any time within a
frame “decrements” TXFIF only at SOF. You must check the TXFIF flags
before and after writes to the transmit FIFO and TXCNTL for traceability.
See the TXFLUSH bit in TXSTST.
NOTE: To simplify firmware development, configure control endpoints in
single-packet mode.

5:4 — Reserved:
Values read from these bits are indeterminate. Write zeros to these bits.

T When set, all transmissions are NAKed.

Figure 6-11. TXFLG: Transmit FIFO Flag Register

6-21

8x931AA, 8x931HA USER’'S MANUAL Inte|®

TXFLG (Continued) Address: F5H
(Endpoint-indexed) Reset State: 00xx 1000B

Transmit FIFO Flag Register. These flags indicate the status of data packets in the transmit FIFO
specified by EPINDEX.

7 0
TXFIF1 TXFIFO = = | | TXEMP TXFULL TXURF TXOVF

Bit Bit

. Function
Number | Mnemonic

3 TXEMP Transmit FIFO Empty Flag (read-only):

Hardware sets this bit when the write pointer has not rolled over and is at the
same location as the read pointer. Hardware clears this bit when the
pointers are at different locations.

Regardless of ISO or non-1ISO mode, this bit always tracks the current
transmit FIFO status.

2 TXFULL Transmit FIFO Full Flag (read-only):

Hardware sets this bit when the write pointer has rolled over and equals the
read marker. Hardware clears this bit when the full condition no longer
exists.

Regardless of ISO or non-ISO mode, this bit always tracks the current
transmit FIFO status. Check this bit to avoid causing a TXOVF condition.

T When set, all transmissions are NAKed.

Figure 6-11. TXFLG: Transmit FIFO Flag Register (Continued)

6-22

Inte|® USB FUNCTION

TXFLG (Continued) Address: F5H
(Endpoint-indexed) Reset State: 00xx 1000B

Transmit FIFO Flag Register. These flags indicate the status of data packets in the transmit FIFO
specified by EPINDEX.

7 0
TXFIF1 TXFIFO — — | | TXEMP TXFULL TXURF TXOVF
Bit Bit :
Number | Mnemonic Function
1 TXURF Transmit FIFO Underrun Flag (read, clear only):

Hardware sets this flag when an additional byte is read from an empty
transmit FIFO or TXCNTL. This is caused when the value written to
TXCNTL is greater than the number of bytes written to TXDAT. This is a
sticky bit that must be cleared through firmware. When this flag is set, the
FIFO is in an unknown state, thus it is recommended that you reset the FIFO
in your error management routine using the TXCLR bit in TXCON.

When the transmit FIFO underruns, the read pointer will not advance — it
remains locked in the empty position.

If the byte count in TXCNTL does not agree with the data, hardware sets
TXURF. This indicates that the transmitted data was corrupted by a bit-
stuffing or CRC error.

In 1ISO mode, TXOVF, TXURF, and TXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. Since underrun can only be caused by
USB, TXURF is updated at the next SOF regardless of where the underrun
occurs in the frame.

0 TXOVF Transmit FIFO Overrun Flag':

This bit is set when an additional byte is written to a full FIFO or full TXCNTL
with TXFIF1:0 = 11. This is a sticky bit that must be cleared through
firmware. When this bit is set, the FIFO is in an unknown state, thus it is
recommended that you reset the FIFO in your error management routine
using the TXCLR bit in TXCON.

When the receive FIFO overruns, the write pointer will not advance — it
remains locked in the full position. Check this bit after loading the FIFO prior
to writing the byte count register.

In 1ISO mode, TXOVF, TXURF, and TXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. Since overrun can only be caused by
firmware, TXOVF is updated immediately. Check the TXOVF flag after
writing to the transmit FIFO before writing to TXCNTL.

T When set, all transmissions are NAKed.

Figure 6-11. TXFLG: Transmit FIFO Flag Register (Continued)

6-23

8x931AA, 8x931HA USER’'S MANUAL Inte|®

6.4 RECEIVE FIFOs

The 8x931 has a receive FIFO for each function endpoint pair. In this manual, the term “receive
FIFO” refers to the receive FIFO associated with the current endpoint pair specified by the EPIN-
DEX register. 8931 FIFOs are listed in Table 2-4.

The receive FIFOs are circulating data buffers with the following features:
* endpoint 1 supports up to two separate data sets of variable sizest
* abyte count register that accesses the number of bytesin the data sets
* flagsto signa afull FIFO and an empty FIFO
¢ capability to re-receive the last data set

Figure 6-12 illustrates areceive FIFO. A receive FIFO and its associated logic can manage up to
two data sets. data set 0 (dsO) and data set 1 (dsl). The ability to have two data sets in the FIFO
supports back-to-back receptions.

In many ways, the receive FIFO is symmetrical to the transmit FIFO. The FIU writesto the FIFO
location specified by the write pointer, which increments by one automatically following awrite.
The write marker pointsto the first byte of data written to a data set, and the read pointer points
to the next FIFO location to be read by the 8x931. The read pointer increments by one automati-
cally following aread.

FIU Writes to FIFO

<—| Write Pointer I From USB Interface

Data Set 1

< To CPU | I Read Pointer |—> <—| Write Marker I

CPU Reads FIFO

Data Set 0

Byte Count
Register

I RXCNTL I

A5306-01

Figure 6-12. Receive FIFO

When agood reception iscompleted, thewrite marker can be advanced to the position of thewrite
pointer to set up for writing the next data set. When abad reception is completed, the write pointer

T When operating in dual packet mode, the maximum packet size should be at most half the FIFO size to ensure that
both packets will simultaneoudly fit in the FIFO (see the Endpoint description in the Universal Serial Bus
Foecification).

6-24

Inte|® USB FUNCTION

can be reversed to the position of the write marker to enable the FIU to rewrite the last data set
after receiving the data again. The write marker advance and write pointer reversal can be accom-
plished two ways: explicitly by firmware or automatically by hardware, as specified by bitsin the
receive FIFO control register.

The 8x931 should not read data from the receive FIFO before all bytes are received and success-
fully acknowledged because the reception may be bad.

The FIU can monitor the FIFO full flag (RXFULL bit in RXFLG) to avoid overwriting data in
the receive FIFO. In the single packet mode, 8x931 can monitor the FIFO empty flag (RXEMP
bit in RXFLG) to avoid reading a byte when the FIFO is empty.

6.4.1 Receive FIFO Registers

There arefiveregisters directly involved in the operation of the receive FIFOs:
* RXDAT, the receive FIFO data register
* RXCNTL, the receive FIFO byte count register
¢ RXCON, the receive FIFO control register
* RXFLG, thereceive FIFO flag register

These registers are endpoint indexed, i.e., they are used as a set to control the operation of the
receive FIFO associated with the current endpoint specified by the EPINDEX register. Figures
6-13 through 6-15 beginning on page 6-26 describe the receive FIFO registers and provide bit
definitions.

6.4.1.1 Receive FIFO Data Register (RXDAT)
Received data bytes are written to the receive FIFO viathe receive FIFO dataregister (RXDAT).

I 6-25

8x931AA, 8x931HA USER’'S MANUAL Inte|®

RXDAT Address: E3H
(Endpoint-indexed) Reset: XXXX XXXXB

Receive FIFO Data Register. Receive FIFO data specified by EPINDEX is stored and read from this
register.

7 0

Receive Data Byte

Bit Bit

Number Mnemonic Function

7:0 RXDAT7:0 Receive Data Byte:

To write data to the receive FIFO, the FIU writes to this register. To read
data from the receive FIFO, the 8x931 reads from this register. The write
pointer and read pointer are incremented automatically after a write and

read, respectively.

Figure 6-13. RXDAT: Receive FIFO Data Register

6.4.1.2 Receive FIFO Byte Count Registers (RXCNTL)

Thereceive FIFO byte count register (RXCNTL) is used as five-bit ring buffer to accommodate
packet sizes of 0to 16 bytes. This format is shown in Figure 6-14.

RXCNTL' Address: EGH
(Endpoint-indexed) Reset State: XXXX XXXXB

Receive FIFO Byte-count Low Register. Ring buffer used to store the byte count for the data packets
received in the receive FIFO specified by EPINDEX.

7 0
— — — BC4 | | BC3 BC2 BC1 BCO
Bit Bit Function
Number Mnemonic
75 — Reserved. Write zeros to these bits.

4:0 BC4:0 Receive Byte Count.
Five-bit, ring buffer. Stores receive byte count.

+

Not implemented for hub endpoint 1.

Figure 6-14. RXCNTL: Receive FIFO Byte Count Register

RXCNTL stores the number of bytesin either of the two data sets, data set 0 (dsO) and data set 1
(dsl). The FIFO logic for maintaining the data sets assumes that datais written to the FIFO in the
following sequence:

6-26

Inte|® USB FUNCTION

1. The USB interface writes the received data packet into the receive FIFO.

2. The USB interface writes the number of bytes written into the receive FIFO to the byte
count register RXCNTL.

The CPU reads the byte count register to determine the number of bytesin the set.

The receive byte count register has a read/write index that allows it to access the byte count for
either of the two data sets. This is similar to the methodology used for the transmit byte count
register. After reset, the read/write index points to data set 0. Thereafter, the following logic de-
termines the position of the read/write index:

e After aread of RXCNTL, the read/write index (RXFIF) is unchanged.
o After awrite of RXCNTL, the read/writeindex (RXFIF) is toggled.

The position of the read/write index can also be determined from the data set index bits, FIF1:0
(see “Receive FIFO Data Set Management” on page 6-27).

CAUTION
Do not read RXCNTL to determine if data is present in the receive FIFO. A
read attempt to RXCNTL during the time the receive FIFO is empty causes the
RXURF flag in RXFLG to be set. Always read the RXFIF bits in RXFLG to
determine if data is present in the receive FIFO. The RXFIF bits are updated
after RXCNTL is written (at the end of the receive operation and at the SOF
for ISO data).

6.4.2 Receive FIFO Data Set Management

As in the transmit FIFO, the receive FIFO uses a pair of bits (FIF1:0 in the RXFLG register) to

indicate which data sets are present in the receive FIFO (see Table 6-6).

Table 6-6. Status of the Receive FIFO Data Sets

Data Sets Written
FIF1:0
dsi ds0
0 0 No No (Empty)
0 1 No Yes (1 set)
1 0 |Yes No (1 set)
1 1 Yes Yes (2 sets)

I 6-27

8x931AA, 8x931HA USER’'S MANUAL

intel.

Table 6-7 summarizes how the actions foll owing areception depend on the RX1SO bit, the ARM
bit, and the handshake issued by the 8x931.

Table 6-7. Truth Table for Receive FIFO Management

RXISO ARM RXERR RXACK .
(RXCON.3) | (RXCON.2) | (RXSTAT.1) | (RXSTAT.0) Action at End of Transfer Cycle

X X 0 0 No operation.

X 0 0 1 Write marker, write pointer, and RXFIF bits
remain unchanged. Managed by firmware.

X 0 1 0 Write marker, write pointer, and RXFIF bits
remain unchanged. Managed by firmware.

0 1 0 1 Write marker advanced automatically. The
RXFIF bit for the corresponding data set is
set.

0 1 1 0 Write pointer reversed automatically. The
RXFIF bit for the corresponding data set is
cleared.

1 1 X X Write marker advanced automatically. If data
was written to the receive FIFO, the RXFIF bit
for the corresponding data set is set.

NOTE

For normal operation, set the ARM bit in RXCON: hardware will
automatically control the write pointer and write marker and track the RXFIF
bits.

CAUTION
Do not read RXCNTL to determine if datais present in the receive FIFO.
Always read the FIF bitsin the RXFLG register. RXCNTL contains random
data during areceive operation. A read attempt to RXCNTL during the time
the receive FIFO is empty causes the RXURF flag in RXFLG to be set.
Always read the FIF bitsto determine if datais present in the receive FIFO.
The RXFLG FIF bits are updated after RXCNTL iswritten (at the end of the
receive operation).

6-28

Inte|® USB FUNCTION

RXCON Address: E4H
(Endpoint-indexed) Reset State: 0xx0 0100B

Receive FIFO Control Register. Controls the receive FIFO specified by EPINDEX.

7 0
RXCLR _ _ RXFFRC || RXISO ARM ADVWM | REVWP

Bit Bit

) Function
Number | Mnemonic

7 RXCLR Clear the Receive FIFO:

Set this bit to flush the entire receive FIFO. All flags in RXFLG revert to their
reset states (RXEMP is set; all other flags clear). The ARM, RXISO, and
RXWS bits in this register and the RXSEQ bit in the RXSTAT register are
not affected by this operation. Hardware clears this bit when the flush
operation is completed.

6:5 — Reserved:
Values read from this bit are indeterminate. Write zero to this bit.
4 RXFFRC FIFO Read Complete:

Set this bit to release the receive FIFO when a data set read is complete.
Setting this bit “clears” the RXFIF “bit” (in the RXFLG register)

corresponding to the data set that was just read. Hardware clears this bit
after the RXFIF bit is cleared. All data from this data set must have been

read.
NOTE: FIFO Read Complete only works if STOVW and EDOVW are
cleared.
3 RXISO Isochronous Data Type:

Set this bit to indicate that the receive FIFO is programmed to receive
isochronous data and to set up the USB Interface to handle an isochronous
data transfer. This bit is not reset when the RXCLR bit is set; it must be
cleared by firmware.

2 ARM Auto Receive Management:

When set, the write pointer and write marker are adjusted automatically
based on the following conditions:

RXISO RX Status Write Pointer Write Marker
X ACK Unchanged Advanced
0 NAK Reversed Unchanged
1 NAK Unchanged Advanced

When this bit is set, setting REVWP or ADVWM has no effect. Hardware
neither clears nor sets this bit. This is a sticky bit that is not reset when
RXCLR is set.

NOTE: This bit should always be set, except for testing.

 ARM mode is recommended. ADVWM and REVWP, which control the write marker and write pointer
when ARM = 0, are used for test purposes,

Figure 6-15. RXCON: Receive FIFO Control Register

6-29

8x931AA, 8x931HA USER’'S MANUAL Inte|®

RXCON (Continued)
(Endpoint-indexed)

Address: E4H
Reset State: 0xx0 0100B

Receive FIFO Control Register. Controls the receive FIFO specified by EPINDEX.

7 0
RXCLR — — RXFFRC ‘ | RXISO ARM ADVWM REVWP
Bit Bit Function
Number | Mnemonic
1 ADVWM Advance Write Marker: T
(For non-ARM mode only) Set this bit to advance the write marker to the
origin of the next data set. Advancing the write marker is used for back-to-
back receptions. Hardware clears this bit after the write marker is advanced.
Setting this bit is effective only when the REVWP, ARM, and RXCLR bits
are clear.
0 REVWP Reverse Write Pointer: T

(For non-ARM mode only) Set this bit to return the write pointer to the origin
of the last data set received, as identified by the write marker. The FIU can
then receive the last data packet again and write to the receive FIFO starting
from the same origin when the host re-sends the same data packet.
Hardware clears this bit after the write pointer is reversed. Setting this bit is
effective only when the ADVWM, ARM, and RXCLR bits are all clear.
REVWP is used when a data packet is bad. When the function interface

receives the data packet again, the write starts at the origin of the previous
(bad) data set.

 ARM mode is recommended. ADVWM and REVWP, which control the write marker and write pointer
when ARM = 0, are used for test purposes,

6-30

Figure 6-15. RXCON: Receive FIFO Control Register (Continued)

Inte|® USB FUNCTION

RXFLG Address: E5H
(Endpoint-indexed) Reset State: 00xx 1000B

Receive FIFO Flag Register. These flags indicate the status of data packets in the receive FIFO
specified by EPINDEX.

7 0
RXFIF1 RXFIFO = = | | RXEMP RXFULL RXURF RXOVF

Bit Bit

) Function
Number | Mnemonic

7:6 RXFIF1:0 Receive FIFO Index Flags: (read-only)

These read-only flags indicate which data packets are present in the receive
FIFO. The RXFIF bits are updated after each write to RXCNTL to reflect the
addition of a data packet. Likewise, the RXFIF bits are cleared in sequence
after each setting of the RXFFRC bit. The next-state table for RXFIF bits is
shown below for operation in dual-packet mode.

RXFIF1:0 Operation Flag Next RXFIF1:0 Next Flag

00 Adv WM X 01 Unchanged
01 Adv WM X 01 Unchanged
10 Adv WM X 11 Unchanged
00 SetRXFFRC X 00 Unchanged
01 SetRXFFRC X 00 Unchanged
11 SetRXFFRC X 10/01 Unchanged
10 Set RXFFRC X 00 Unchanged
XX Rev WP X Unchanged Unchanged

When the receive FIFO is programmed to operate in single-packet mode
(RXSPM set in EPCON), valid RXFIF states are 00 and 01 only.

In 1ISO mode, RXOVF, RXURF, and RXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. RXFIF is “incremented” by the USB and
“decremented” by firmware.Therefore, setting RXFFRC “decrements”
RXFIF immediately. However, a successful USB transaction within a frame
“increments” RXFIF only at SOF. For traceability, you must check the RXFIF
flags before and after reads from the receive FIFO and the setting of
RXFFRC in RXCON.
NOTE: To simplify firmware development, it is recommended that you
utilize control endpoints in single-packet mode only.

5:4 — Reserved:
Values read from these bits are indeterminate. Write zeros to these bits.

T When set, all transmissions are NAKed.

Figure 6-16. RXFLG: Receive FIFO Flag Register

6-31

8x931AA, 8x931HA USER’'S MANUAL Inte|®

RXFLG (Continued)
(Endpoint-indexed)

Address: E5H
Reset State: 00xx 1000B

Receive FIFO Flag Register. These flags indicate the status of data packets in the receive FIFO
specified by EPINDEX.

7

0

RXFIF1

RXFIFO

— — || RXEMP | RXFULL | RXURF | RXOVF

Bit
Number

Bit
Mnemonic

Function

3

RXEMP

Receive FIFO Empty Flag (read-only):

Hardware sets this flag when the write pointer is at the same location as the
read pointer and the write pointer equals the write marker and neither
pointer has rolled over. Hardware clears the bit when the empty condition no
longer exists. This is not a sticky bit and always tracks the current status of
the receive FIFO, regardless of ISO or non-ISO mode.

RXFULL

Receive FIFO Full Flag (read-only):

Hardware sets this flag when the write pointer has rolled over and equals
the read pointer. Hardware clears the bit when the full condition no longer
exists. This is not a sticky bit and always tracks the current status of the
receive FIFO, regardless of ISO or non-ISO mode.

T When set, all transmissions are NAKed.

6-32

Figure 6-16. RXFLG: Receive FIFO Flag Register (Continued)

Inte|® USB FUNCTION

RXFLG (Continued) Address: E5H
(Endpoint-indexed) Reset State: 00xx 1000B

Receive FIFO Flag Register. These flags indicate the status of data packets in the receive FIFO
specified by EPINDEX.

7 0
RXFIF1 RXFIFO = = | | RXEMP RXFULL RXURF RXOVF

Bit Bit

) Function
Number | Mnemonic

1 RXURF Receive FIFO Underrun Flagt:

Hardware sets this bit when an additional byte is read from an empty receive
FIFO or RXCNTL. Hardware does not clear this bit, so you must clear it in
firmware. When the receive FIFO underruns, the read pointer will not
advance — it remains locked in the empty position.

In ISO mode, RXOVF, RXURF, and RXFIF are handled using the following

rule: Firmware events cause status change immediately, while USB events

cause status change only at SOF. Since underrun can only be caused by

firmware, RXURF is updated immediately. You must check the RXURF flag

after reads from the receive FIFO before setting the RXFFRC bit in RXCON.

NOTE: When this bit is set, the FIFO is in an unknown state. It is
recommended that you reset the FIFO in the error management
routine using the RXCLR bit in the RXCON register.

0 RXOVF Receive FIFO Overrun Flagt:

This bit is set when the FIU writes an additional byte to a full receive FIFO or
writes a byte count to RXCNTL with FIF1:0 = 11. This is a sticky bit that
must be cleared through firmware, although it can be cleared by hardware if
a SETUP packet is received after an RXOVF error had already occurred.t

When this bit is set, the FIFO is in an unknown state; thus it is
recommended that you reset the FIFO in the error management routine
using the RXCLR bit in the RXCON register. When the receive FIFO
overruns, the write pointer will not advance — it remains locked in the full
position.

In ISO mode, RXOVF, RXURF, and RXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. Since overrun can only be caused by the
USB, RXOVF is updated only at the next SOF regardless of where the
overrun occurred during the current frame.t

T When set, all transmissions are NAKed.

Figure 6-16. RXFLG: Receive FIFO Flag Register (Continued)

6-33

8x931AA, 8x931HA USER’'S MANUAL Inte|®

6.5 SIE DETAILS

The USB employs differential data signaling; refer to the signaling levels table in the “Electrical”
chapter oUniversal Serial Bus Specification. The specification defines: differential’l’, differen-
tial’'0’, idle ('J’ state), non-idle ('K’ state), start-of-packet, end-of-packet, disconnect, connect, re-
set, and resume. The USB employs NRZI data encoding when transmitting packets. Refer to
“Data Encoding/Decoding” in theniversal Serial Bus Specification for a description of NRZI

data encoding and decoding. To ensure adequate signal transitions, bit stuffing is employed by
the SIE when transmitting data. The SIE also performs bit unstuffing when receiving data. Con-
sult the “Flow Diagram for Bit Stuffing” figure in the “Bit Stuffing” section of the “Electrical”
chapter for more information on bit stuffing.

Bits are sent out onto the bus, least significant bit (LSb) first, followed by the next LSh, and so
on. Bytes are sent out onto the bus least significant byte (LSB) first, followed by the next LSB
and so on. The serial bus interface engine (SIE) ensures that the LSb is first, k@8thpr8-
grammer must ensure the order of the bytes.

The SIE decodes and takes care of all packet types and packet fields mentioned in “Protocol Lay-
er” chapter olUniversal Serial Bus Specification. The FIU communicates data information and
handshaking instructions to the SIE. Programmers should consult the “Interconnect Description,”
“USB Devices,” and “USB Host” chapters dhiversal Serial Bus Specification for detailed in-
formation on how the host and function communicate.

6.6 SETUP TOKEN RECEIVE FIFO HANDLING

SETUP tokens received by a control endpoint must be ACKed even if the receive FIFO is not
empty. When a SETUP token is detected by the FIU, the FIU sets the STOVW bit of RXSTAT
and then flushes the receive FIFO by hardware, setting the RXCLR bit of RXCON. The STOVW
indicates a SETUP-initiated over-write (flush) is in progress. After the SETUP transaction is
completed (i.e., ACK handshake), the FIU clears STOVW and sets EDOVW, indicating the re-
ceive FIFO over-write is complete and FIFO contents are stable. Reception of any SETUP packet,
regardless of whether the receive FIFO is full or empty always sequences through the STOVW,
EDOVW sequence described above.

Note that if the receive FIFO flush occurs in the middle of>®@88 CPU data read cycle (from

a previous USB transaction), the receive FIFO could underrun, thus setting the RXURF bit of
RXFLG and positioning the read pointer in an unknown state. To prevent this, STOVW resets
and locks the read pointer. The read pointer will remain locked until both the STOVW and
EDOVW bits are cleared.

CAUTION

For SETUP packets only, firmware must clear EDOVW prior to reading data
from the FIFO. If this is not done, data read from the FIFO will be invalid.

After processing a SETUP packet, firmware should always check the STOVW and EDOVW
flags before setting the RXFFRC bit. When a SETUP packet either has been or is being received,
setting RXFFRC has no effect if either STOVW or EDOVW is set. It is up to the user to clear
EDOVW which disables the RXFFRC blocking mechanism. Also note that the RXSETUP = 1
condition causes IN and OUT tokens to be NAKed automatically until RXSETUP is cleared. This

6-34 I

Inte|® USB FUNCTION

is true even if the transmit and/or receive endpoint is stalled (TXSTL = 1, RXSTL =1), and is
done to allow the clearing of astall condition on a control endpoint.

NOTE

To simplify firmware development, it is recommended that you utilize control
endpointsin single-packet mode only.

6.7 1SO DATA MANAGEMENT

I SO data management must always be performed in dual-packet mode. Interrupts are not gener-
ated when an ISO transmit or receive cycle is completed; | SO protocols should always be syn-
chronized to the SOF interrupt.

When transmitting, data written into the transmit FIFO at frame n is pre-buffered to be transmit-
ted inframen+1. Thisguaranteesthat datais aways avail able to the host when requested anytime
in aframe. When receiving, data written into the receive FIFO at frame n is pre-buffered to be
read-out in framen + 1. This guarantees that datafrom the host is always available to the function
every frame.

Isochronous data transfer isalways guaranteed if the OUT or IN tokens from the host are not cor-
rupted. When IN or OUT tokensto afunction are corrupted, the host does not re-send the token.
Function firmware needs to recognize this error condition and reconfigure the endpoints accord-

ingly.

6.7.1 Transmit FIFO ISO Data Management

When an IN token is corrupted, the datato be transmitted from the transmit FIFO for an isochro-
nous endpoint in the current frame will be flushed. Due to latency concerns, this is handled by
hardware. This error condition can be detected by checking TXFIF1:0 = 11 at SOF. When this
occurs, the oldest data packet will be flushed and the transmit FIFO read-pointers and read-mark-

ers will be advanced to the start “address” of the second data packet. The TXFIF will also be up-
dated. Therefore, the second packet will be ready to be transmitted for the next frame. The first
data packet is lost. The transmit flush bit, TXFLUSH in TXSTAT, is also set when this occurs.

For firmware traceability of FIFO status flags, some flags are updated immediately while others
are updated only at SOF. TXOVF, TXURF, and TXFIF are handled using the following rule:
firmware events cause status change immediately while USB events only cause status change at

SOF. For example:
¢ TXOVF: Since overrun can only be caused by firmware, TXOVF is updated immediately.
* TXURF: Since underrun can only be caused by SIE, TXURF isupdated at SOF.

e TXFIF: TXFIF is “incremented” by firmware and “decremented” by hardware. Therefore,

writes to TXCNTL will “increment” TXFIF immediately. However, a successful USB
transaction anytime in a frame will only “decrement” TXFIF at SOF.

The following bits do not follow the above rule:
e TXEMP/TXFULL: These always reflect the current status of the FIFO.

I 6-35

8x931AA, 8x931HA USER’'S MANUAL Inte|®

¢ TXFLUSH: Firmware can detect a flush by monitoring this bit.

6.7.2 Receive FIFO ISO Data Management

For firmware traceability of FIFO status flags, some flags are updated immediately while others
are updated only at SOF. RXOVF, RXURF, and RXFIF are handled using the following rule:
firmware events cause status change immediately while USB events only cause status change at
SOF. For example:

¢ RXUREF: Since underrun can only be caused by firmware, RXURF is updated immediately.
* RXOVF: Since overrun can only be caused by SIE, RXOVF is updated at SOF.

* RXFIF: RXFIF is “incremented” by hardware and “decremented” by firmware. Therefore,
setting RXFFRC will “decrement” RXFIF immediately. However, a successful USB
transaction anytime in a frame will only “increment” RXFIF at SOF.

¢ RXEMP/RXFULL: Therule does not apply to the RXEMP and RXFULL flags, which
always reflect the current status of the FIFO.

6-36 I

intel.

USB Hub

intel.

CHAPTER 7
USB HUB

This chapter describes the operation of the Intel Universal Serial Bus (USB) on-chip hub, asim-
plemented in the 8xX931HA. This chapter introduces on-chip hub operation and includes informa-
tion on bus enumeration, hub endpoint status and configuration, hub port control, hub suspend
and resume, and hub power control.

To see how the hub fitsin the 8X931HA architecture, see Chapter 2, “Architectural Overview”.

NOTE

The &931AA microcontroller does not support hub operations. Specific
details of the 8931AA are covered in Appendix E, “8x931AA Design
Considerations”.

7.1 HUB FUNCTIONAL OVERVIEW

The on-chip hub provides an electrical interface between the USB host and the downstream ports.

In many cases, this relationship exists as an interface between a USB host and other discrete USB
devices. Besides serving as a control interface between the host and the downstream ports, the
hub is also a USB device and must respond to the standard USB requests and hub class-specific
requests described in thiniversal Serial Bus Specification.

The functionality between the PC host and the downstream ports that is handled by the hub in-
cludes:

¢ Connectivity management

¢ Downstream device connect/disconnect detection

¢ Power management, including suspend and resume functions
¢ Busfault detection and recovery

¢ Full and low-speed device support

The hub functionality can be divided into two sub-functions: the hub repeater and the hub con-
troller. The hub architecture is described in “Universal Serial Bus Module” on page 2-11.

The hub controller function is split among four modules:
¢ Hub interface unit (HIU)
* Seria businterface engine (SIE)
¢ Transmit and receive FIFOs for hub endpoint 0 and endpoint 1
¢ 8x931HA CPU

I 7-1

8x931AA, 8x931HA USER’'S MANUAL Inte|®

A functional diagram of the hub is shown in Figure 7-1 on page 7-2. The diagram shows the root
port, which isthe upstream port (port 0); the repeater, which is responsible for managing connec-
tivity on aper-packet basis; the hub controller, which provides status and control and permits host
access to the hub; four external downstream ports, which provide a means of expanding the USB
by permitting the connection of additional PC peripherals; and the internal downstream port,
which provides an interface to the embedded function.

Root Port

I Port 0 |

Hub
Controller HADDR

Hub Endpoint 0, Endpoint 1

| Internal

Downstream Port
Hub Repeater

Function Interface

Port 1

FADDR

CPU

Function Endpoints

I Port2| IPort3 I IPort4 I I Port5|
External Downstream Ports

A5255-02

Figure 7-1. 8x931HA Hub Functional Diagram

Refer to chapter 11 of Universal Serial Bus Specification for a more detailed description of the

hub and its functionality. For a description of the transceiver see the “Driver Characteristics” and
“Receiver Characteristics” sections of theiversal Serial Bus Specification’s “Electrical” chap-

ter. For electrical characteristics and data signal timing, see the “Bus Timing/Electrical Charac-
teristics” and “Timing Diagram” sections of the same chapter.

SFRs used to control and access USB hub functionality are listed in Table 7-1. Figure 7-2 shows
the bits contained in the hub SFRs.

7-2

intel.

USB HUB
Table 7-1. USB Hub SFRs
Mnemonic Name Address Page
HADDR Hub Address Register. Used by the HIU to perform token 97H page 7-8
address decoding.
HIE Hub Interrupt Enable Register. Contains the hub interrupt AlH page 5-15
enable bits.
HIFLG Hub Interrupt Flag Register. Contains the hub interrupt E8H page 5-16
status flags.
HPCON Hub Port Control. Enables, disables, resets, suspends, and CFH page 7-15
resumes the hub ports. USB port-indexed using HPINDEX.
HPINDEX Hub Port Index Register. Provides port indexing into the D4H page 7-24
HPSC, HPSTAT, and HPCON registers.
HPPWR Hub Port Power Control. Controls power to the 9AH page 7-28
downstream ports.
HPSC Hub Port Status Change. Indicates a change in reset, D5H page 7-21
suspend, enable, disable, or connect status. USB port-
indexed using HPINDEX.
HPSTAT Hub Port Status. Provides D, D,,, low-speed device, D7H page 7-18
power, reset, suspend, enable, and disable status for the
hub ports. USB port-indexed using HPINDEX.
HSTAT Hub Status and Configuration. Used to examine or enable AEH page 7-9
remote wake-up, stall feature, endpoint 1, over-current
status, and local power status
7 0
HADDR | — | Hub Address |
HIE | — | — | = | = || = | — [#rxeo | Hrxeo |
e | — | — [— | — J| = | = | Hrxoo | Hrxpo |
wpcon | — | — | — | — || — [HPconz|HPCON1 | HPCONO |
Henoex| — | — [— | — || — [wHpPibxe | HPiDx1 | HPIDXO |
HPPWR | — | — [HPPWRS|HPPWR4||HPPWR3|HPPWR2 |[HPPWR1| — |
wesc | — | — | — [|wmstsc|| —] pssc | pesc | pcsc |

HPSTAT | DPSTAT | DMSTAT| PPSTAT | LSSTAT | | PRSTAT | PSSTAT | PESTAT | PCSTAT |

HSTAT ‘ OVRIEN |HRWUPE| EP1STL | EP1EN H ovIsC ‘

\ ovi

Figure 7-2. Bits of the USB Hub SFRs

7-3

8x931AA, 8x931HA USER’'S MANUAL Inte|®

7.1.1 Port Connectivity States

In addition to the root port (port 0), the hub contains four external downstream ports (ports 2, 3,
4, and 5) and one internal downstream port, port 1.

Hub downstream ports may be in one of five possible states:

powered-off — Power-switched ports are a USB option supported byx38&.8A powered
off port supplies no power downstream, ignores all upstream-directed bus activity on the
port, and its signal output buffers are placed in the high impedance state.

disconnected — Initial state upon power-up or reset, the port cannot propagate any
upstream or downstream signaling. The port can detect a connect event, which causes it to
transition to the disabled state.

disabled — Port can only propagate downstream-directed signaling arising from a reset
request. A disabled port does not propagate upstream signaling if the hub is awake, but will
detect disconnects and initiate resume signaling to the root port if the hub is suspended.

enabled — Port propagates all downstream and upstream signaling.

suspended — When suspended, the port will not stop propagating in the middle of a
transaction. If hub is awake, no upstream or downstream connectivity can propagate
through the port, except for downstream-directed reset signaling. If hub is suspended, idle-
to-resume is propagated.

The transitions between these states are shown in Figure 7-3.

7-4

Inte|® USB HUB

PORT_POWER = OFF or
Reset on root port

Powered Off Else

(&}

PORT_POWER = ON

|

Disconnected Else

(&}

Connect Detect

Disconnect Detect

Disabled Else

(&}

PORT_ENABLE or PORT_RESET
PORT_DISABLE - -

or Frame error

Y
Enabled E@
T
Disconnect Detect PORT_SUSPEND
PORT_RESUME or
i
Disconnect Detect |

A5121-01

Figure 7-3. Hub State Flow

These port states are tracked and managed in the hub repeater based on hardware events (e.g.,

physical connection/disconnection of a device on a port) and firmware execution of host com-

mands. Normal packet traffic is allowed to propagate through ports that are in the “enabled” state
only, as described in “Per-packet Signaling Connectivity” on page 7-6.

The root port is the only upstream port; it is permanently powered on and enabled. Hub ports 2,
3, 4, and 5 are external downstream ports. They are power-switched ports that must be powered-
on by host command, detect a device connection and then become enabled via host command pri-
or to propagating USB packet traffic. Hub port 1 is an internal downstream port that is always
powered on and always physically connected. It functionally supports port enabling. That is, the
downstream port connectivity will not be enabled unless a port enable has been received from the
host.

7-5

8x931AA, 8x931HA USER’'S MANUAL Inte|®

7.1.2 Per-packet Signaling Connectivity

The hub repeater establishes connectivity between ports for upstream and downstream traffic on
aper-packet basis. Packet signaling connectivity for downstream, upstream, and idle traffic isil-
lustrated in Figure 7-4. While the host can communicate with all the downstream ports simulta-
neously, as shown in the “downstream connectivity” illustration in Figure 7-4, only one port can
communicate with the host at one time, as shown in the “Upstream Connectivity” illustration of
the same figure. The host selects one of the downstream ports for upstream communication.

Root Port r*_l Root Port |¢| Root Port I_I
T F T
£ £ £
i) i) i)
—1 > C c c
_I - = =
— — —
S S S
a o o
f (Disabled) (Disabled) (Disabled)
Port2 Port3 Port4 Port5 Port2 Port3 Port4 Port5 Port2 Port3 Port4 Port5
Downstream Upstream Idle
Connectivity Connectivity

A5258-01

Figure 7-4. Packet Signaling Connectivity

Connections made by the repeater also depend on whether the port is attached to a full-speed or
low-speed device and whether the USB packet is a full-speed or low-speed packet. Low-speed
packets are identified by a PREamble token. Connections are made by the repeater using asyn-
chronous control logic in order to meet the USB signal propagation requirements.

7.1.2.1 Connectivity to Downstream Ports Attached With Full-speed Devices

Downstream connectivity is established upon detection of a start of packet (SOP) transmitted on
the root or upstream port by the USB host. As shown in Figure 7-4, the connection is made from
the root port (port 0) to all enabled downstream ports attached with full-speed devices (ports 2
and 3 in this case). Connectivityrist established to any enabled ports attached with low-speed
devices. Upon detection of the end-of-packet (EOP), the repeater terminates the connectivity, re-
verting to the idle state, as shown in Figure 7-4.

Upstream connectivity is established upon detection of a SOP transmitted on any enabled down-
stream port. The connection is only made between a single downstream port and the root port by
the repeater, as shown in “upstream connectivity” in Figure 7-4. The USB protocol does not allow
packets to be transmitted by more than one downstream port simultaneously, but in an error sce-
nario where this happens, the repeater would choose only one downstream port to connect up-
stream. Once again, upon detection of an EOP, the connectivity is terminated.

7-6

Inte|® USB HUB

7.1.2.2 Connectivity to Downstream Ports attached with Low-speed Devices

Downstream connectivity is established in the same fashion for low-speed packets as for full-
speed packets, with the following exceptions:

1. Downstream low-speed packets are routed to all enabled ports, including ports attached
with low-speed and full-speed devices.

2. Downstream low-speed packets contain alow-speed PREamble field which is recognized
by the SIE. Upon detection of the PREamble, the repeater establishes the connection to all
enabled |ow-speed downstream ports.

3. Packet dataisinverted at the ports attached to |ow-speed devices for both upstream and
downstream traffic.

Upstream connectivity is established in the same fashion for low-speed packets as for full-speed
packets, with the exception that no PREambleis propagated prior to low-speed packets. The root
port propagates low-speed packets upstream using full-speed signaling (edge rates).

7.2 BUS ENUMERATION

The USB host manages bus enumeration at system start-up or whenever anew USB deviceis at-

tached to the host or to a hub’s downstream port. Initially, the USB hub is in the unenumerated
state and the hub address register (HADDR) contains the default value 0O0H. The host PC per-
forms bus enumeration in which it identifies and addresses devices attached to the bus. During
enumeration, a unique address assigned by the host is written to the HADDR of every hub device.

Information on descriptors and the HADDR register, required for bus enumeration, is provided
in the following subsections.

7.2.1 Hub Descriptors

The 8931 has five descriptors, as shown in Table 7-2. All are standard USB descriptors except
the hub descriptor, which is class-specific. There is no descriptor for endpoint 0. A hub has only
one valid configuration and interface. The actual descriptor field values are given in the section
of Universal Serial Bus Specification referenced in the table.

The host reads the hub descriptors during bus enumeration. The host uses the values within the
descriptors to determine device configuration. The hub descriptor is divided into several parts,
which are shown in Table 7-3.

Table 7-2. 8x931 Descriptors

Descriptor | Size | o Reference
Device 18 bytes Section 9.7.1
Configuration 9 bytes Section 9.7.2
Interface 9 bytes Section 9.7.3
Endpoint 7 bytes Section 9.7.4
Hub 9 bytes Section 11.11.2

I 7-7

8x931AA, 8x931HA USER’'S MANUAL Inte|®

Table 7-3. Hub Descriptors

Field Size Offset Description
bDescLength 1 byte 0 Number of bytes in this descriptor, including this byte.
bDescriptorType 1 byte 1 Descriptor Type
bNbrPorts 1 byte 2 Number of downstream ports this hub supports.
wHubCharacteristics | 2 bytes 3 Determines power switching mode, identifies device as a

compound device, and describes the over-current protection
mode used by the device.

bPwrOn2PwrGood 1 byte 5 Time elapsed from when the power on sequence begins on a
port until power is good on that port.

bHubContrCurrent 1 byte 6 Maximum current requirements of the hub controller.

DeviceRemovable 1 byte 7 Indicates if a port has a removable device attached.

PortPwrCtrIMask 1 byte | Variable | Indicates if a port is affected by a gang-mode power control
request.

7.2.2 The Hub Address Register (HADDR)

During bus enumeration, the host PC communicates a unique address for the hub through hub
endpoint O using the set address command. Device firmware must interpret and write this hub ad-
dress to the Hub Address register (HADDR, as shown in Figure 7-5). This procedure is outlined
in “Enumeration” on page 8-2.

HADDR Address: 97H
Reset State:0000 0000B

Hub Address Register. This SFR holds the address for the hub device. During bus enumeration it is
written with a unique value assigned by the host.

7 0
| — ‘ Hub Address
Bit .
Number Function
7 Reserved.

Write a zero to this bit.

6:0 Hub address register:

Updated using a SET_ADDRESS USB host request. This address is used by the HIU to
perform token decoding.

Figure 7-5. HADDR: Hub Address Register

7-8

Inte|® USB HUB

7.3 HUB STATUS

Status and configuration of the USB hub function is performed by both standard and hub class-
specific USB requests. Theserequests, generated by the host PC, manage and configure the status
of the hub and its downstream ports. These USB requests are listed and explained in “Hub Status
and Configuration” on page 8-17.

The hub has an internal downstream port (port 1) which operates differently than the external
downstream ports. Because this port is physically connected to the embedded function and is
powered-on at all times, USB requests intended for the internal downstream port are handled dif-
ferently than similar requests to the other downstream ports. The management of the individual
hub ports is discussed in “USB Hub Ports” on page 7-14.

The host PC may request that firmware check and change bits of the HSTAT SFR (Figure 7-6).
See Table 8-1 on page 8-17 for a list of USB requests and their associated firmware actions.

HSTAT Address: AEH
Reset State: 0000 0000B

Hub Status and Configuration Register. This SFR contains bits for remote wake-up request, status
and status change indicators for over-current and hub endpoint 1 stall and enable.
7 0

OVRIEN | HRWUPE | EPI1STL EP1EN || OVISC — ovi —

Bit Bit

. Function
Number Mnemonic

7 OVRIEN Overcurrent Detect Enable Bit:

This bit is used to gate off the overcurrent input detect which is
multiplexed with P3.0. When set, a low on P3.0/OVRI# pin will trigger
over current detection logic. When this bit is '0’ the over current detection
logic is disabled.

6 HRWUPE Hub Remote Wake-up Enable Bit:

Set if the device is currently enabled to request remote wake-up. This bit

is modified through the SetFeature and ClearFeature requests using the

DEVICE_REMOTE_WAKEUP feature selector. When ‘0, the hub blocks

resume signaling for connect/disconnect and resume events detected on

downstream ports.

NOTE: Do not set this bit until after the hub is enumerated and the host
issues a SET_FEATURE command with a DEVICE_
REMOTE_WAKEUP feature selector.

T Bits 1 and 3 are returned in response to a Get Hub Status request from the USB host. This response is
a four-byte field with zero padding (MSB at left): 0000 0000 0000 00[3] 0 0000 0000 0000 00[1] O.

Figure 7-6. HSTAT: Hub Status and Configuration Register

7-9

8x931AA, 8x931HA USER’'S MANUAL Inte|®

HSTAT (Continued) Address: AEH
Reset State: 0000 0000B

Hub Status and Configuration Register. This SFR contains bits for remote wake-up request, status
and status change indicators for over-current and hub endpoint 1 stall and enable.
7 0

OVRIEN | HRWUPE | EPI1STL EP1EN H OVISC — ovi —

Bit Bit

. Function
Number Mnemonic

5 EP1STL Hub Endpoint 1 Stall Field:

Set to ‘1’ via the USB SetFeature request with endpoint stall feature
selector. When ‘1, will force a stall response when endpoint 1 is
addressed. Reset with USB ClearFeature request with endpoint stall
feature selector.

4 EP1EN Hub Endpoint 1 Enable:

Set to ‘1’ upon receipt of a USB SetConfiguration request value of

0001H. Endpoint 1 cannot respond unless this bit is set. Bit is reset upon

receipt of configuration value other than 0001H or a system or USB

reset.

NOTE: This bit must be set in order for the UPWEN# pin to enable
power to the downstream ports. Downstream power cannot be
applied until this is done.

3 oVvIsC Hub Over-current Indicator Status Change (read/clear-only):

Set to ‘1’ if change is detected in the over-current status, even if the
condition goes away before it is detected by firmware. Cleared via a
USB ClearFeature request with C_HUB_OVER_CURRENT feature
selector. Cleared to ‘0’ if no change.

2 — Reserved:
The value read from this bit is indeterminate. Write a zero to this bit.

1 ovi Latest Over-current Indicator (read-only): T

Hardware sets and clears this bit via the OVRI# input pin.‘1’ indicates an
over-current condition. ‘0’ indicates normal power operation.

0 — Reserved:
The value read from this bit is indeterminate. Write a zero to this bit.

T Bits 1 and 3 are returned in response to a Get Hub Status request from the USB host. This response is
a four-byte field with zero padding (MSB at left): 0000 0000 0000 00[3] 0 0000 0000 0000 00[1] O.

Figure 7-6. HSTAT: Hub Status and Configuration Register (Continued)

7.4 USB HUB ENDPOINTS

Table 7-4 gives the packet size, transfer type and implementation of the 8x931 hub endpoints.
Bulk and isochronous transfers are not supported by the hub endpoints. The hub handles control
transfers using endpoint 0 with a maximum packet size of eight bytes.

7-10

Inte|® USB HUB

Hub endpoint 1 supports interrupt transfers only and has no endpoint receive buffer. Endpoint 1
is used to inform the host of a hub or port status change. Figure 7-8 on page 7-13 illustrates the
format used to transmit status change information to the host. Since endpoint 1 transmitsasingle
byte of information, TXDAT (Figure 7-7 on page 7-12) serves as the data buffer. Endpoint 1 op-
erations are primarily controlled by hardware and do not involve firmware, except for the
EP1STL and EP1EN bitsin HSTAT (Figure 7-6).

Table 7-4. Hub Endpoint Configuration

Hub Max Packet Transfer Type Implementation
Endpoint Size yp P
0 8 bytes Control Firmware-
controlled
1 1 byte Status Change Hardware-
Interrupt controlled

7.4.1 Hub Endpoint Indexing Using EPINDEX

The 8x931 hub endpoint 0 uses the same communication registers (TXCNTL, RXCNTL, TX-
DAT, RXDAT, TXFLG, RXFLG, TXSTAT, RXSTAT, TXCON, and RXCON) asthe embedded
USB function endpoints. The EPINDEX register (), used to access the registers of the USB func-
tion endpoints, is also used to access the registers for hub endpoints.

To access the communication SFRs for the hub endpoints, first write a ‘1’ to bit 7 of EPINDEX.
To access the internal USB function’s registers, write ‘0’ to EPINDEX’ bit 7. Regardless of
whether you are accessing the hub or function endpoints, the LSbs of EPINDEX are used to con-
trol which endpoint’s registers are accessed.

For additional information on how to use EPINDEX, see “Endpoint Selection” on page 5-4.

7.4.2 Hub Endpoint Control
Hub endpoint 1 of thex®31 is controlled primarily by hardware, with these exceptions:
* Firmware can read endpoint 1's TXDAT SFR

* Firmware can stall hub endpoint 1 in response to a Set_Feature (ENDPOINT_STALL)
request from the host by setting the EP1STL bitin HSTAT (Figure 7-6). Firmware can also
clear this bit in response to a Clear_Feature request.

* Firmware can enable hub endpoint 1 in response to a Set_Configuration request from the
host by setting the EP1EN bit in HSTAT (Figure 7-6 on page 7-9)

Firmware can control hub endpoint O through its EPCON register () when EPINDEX has previ-
ously been set to 80H. Hub endpoint control for endpoint 0 behaves identically to function end-
point control, except that hub endpoint O is always a single-packet, control endpoint. Therefore,
the corresponding bits (CTLEP and RXSPM) of its EPCON SFR are hardwired to ‘1'.

I 7-11

8x931AA, 8x931HA USER’'S MANUAL Inte|®

7.4.3 Hub Endpoint Transmit and Receive Operations

The 8x931 hardware uses hub endpoint 1's TXDAT register (Figure 7-7) to transmit a port status
change interrupt to the host. Figure 7-8 shows how a hub or port status change is reflected in TX-
DAT.

TXDAT is cleared by firmware upon a ClearPortFeature request from the host. See “Monitoring
Port Status Change Using HPSC” on page 7-20 for a description of how firmware interacts with
the host to communicate a change in port status.

NOTE
Although the bits of hub endpoint 1's TXDAT SFR are firmware read-only,
bits 5:1 of TXDAT can be cleared indirectly by writing to a port's HPSC SFR.
Clearing all bits in a port's HPSC causes hardware to clear the bit associated
with that port in hub endpoint 1's TXDAT. Hub endpoint 1's TXDAT.O can be
cleared indirectly by clearing HSTAT's OVISC bit.

TXDAT (For hub endpoint 1 only) EPINDEX=81HT Address: F3H
Reset State: XXXX XXXXB

7 0
— — TXDATS5 | TXDAT4 | | TXDAT3 | TXDAT2 TXDAT1 | TXDATO

Bit Bit

Number | Mnemonic Function
7:6 — Reserved:
Values read from this bit(s) are indeterminate.
5.0 TXDAT5:0 | Hub Endpoint 1 Status Change (read-onlyt™):

Hardware communicates status changes to the host by setting the
appropriate bit:

TXDATO hub status change

TXDAT1 port 1 status change

TXDAT2 port 2 status change

TXDAT3 port 3 status change

TXDAT4 port 4 status change

TXDATS port 5 status change

A ‘1" indicates a status change and ‘0’ indicates no status change. When
endpoint 1 is addressed via an IN token, the entire byte is sent if at least one
bitis a ‘1'. If all bits are zero, a NAK handshake is returned.

T TXDAT SFRs are also used for function (and hub endpoint 0) data transmission (EPINDEX=0xH or
80H). In that case, the bits are defined differently as shown in Figure 6-8 on page 6-16.

1 Bits 5:1 can be set indirectly by firmware by writing to a port's HPSC SFR. Setting any bit in port x's
HPSC results in the hardware setting bit xin TXDAT. TXDAT bits can be cleared indirectly in firmware by
clearing all bits in that port's HPSC.

Figure 7-7. TXDAT: Hub Transmit Data Buffer (Endpoint 1)

7-12

Inte|® USB HUB

Host PC
W Hub Endpoint 1

7 6 5 4 3 2 1 0

TXDAT A T
ovISC

ovi
HSTAT
RSTSC
POvsC
PSSC
] PESC
. ~) PCSC
ORed HPSC HPSC
(Ports 2, 3, 4, 5) (Port 1)
A5256-01

Figure 7-8. Status Change Communication To Host

The remaining hub transmit and receive registers communicate control information between the
host and either the internal function or the downstream ports. The 8x931 communicates this con-

trol information through endpoint O using procedures identical to those outlined for the function
control endpoint (function endpoint 0) in “Transmit FIFOs” on page 6-14 and “Receive FIFOs”
on page 6-24.

NOTE
Hub endpoint 0’s transmit SFRs (e.g., TXDAT, TXCNTL, TXFLG, and
TXSTAT) behave identically to their function counterparts. For example,
when firmware writes to endpoint 0's TXDAT, hardware automatically
transfers the byte into the transmit FIFO before the next write to TXDAT.
Placing the byte count into hub endpoint 0's TXCNTL prepares the bytes to be
transmitted from the FIFO through hub endpoint O at the next IN token.

I 7-13

8x931AA, 8x931HA USER’'S MANUAL Inte|®

7.5 USB HUB PORTS

In addition to the root port (port 0) and the embedded function addressed by port 1, the hub con-
tains four external downstream ports, ports 2, 3, 4, and 5.

7.5.1 Controlling a Port Using HPCON

You can change a port’s status by writing an encoded hub port control command to the hub port
control register (HPCON, as shown in Figure 7-9). All ports can be controlled by HPCON using
the HPINDEX SFR for indexing. See “Hub Port Indexing Using HPINDEX” on page 7-23 for a
description of how port indexing works. Table 7-6 on page 7-16 gives a complete description of
the encoded hub port control commands. TH88& hardware can also change the status of a port,
and some port features (i.e., low-speed/full-speed and connect/disconnect) can only be changed
by hardware.

8x931 hardware ignores certain USB port requests if the request has ho meaning within the con-
text of the current port state. For example, there is no need to activate power to a port that is en-
abled, disabled, or suspended, because a port in one of these states already has power applied. Al
activate power request (SetPortFeature with a port power feature selector) is supported for a given
port only when that port is in the powered-off state. For all other states, the request is ignored by
hardware. Table 7-5 depicts the state-related USB requests and the port states for which they are
ignored. Upon receipt of a state-related USB request, firmware must examine the HPSTAT SFR
to determine the current port state. If the port is in a state where the request will be ignored by
hardware, firmware must respond to the host by sending a STALL during the transaction status
stage to indicate the command was not completed. Port states are discussed in “Port Connectivity
States” on page 7-4 and shown in Figure 7-3 on page 7-5.

Table 7-5. USB Requests Ignored by Hardware (by Port State)

Response by Port State [as indicated by the given bit in HPSTAT]
USB Request Powered-Off | Disconnected Disabled Enabled Suspended
[PPSTAT=0] | [PCSTAT=0] | [PESTAT=0] | [PESTAT =1] | [PSSTAT = 1]

o
Coaporeatre | inoreg
Seporeatre | ignores | tgnored
gjl:(a)?tn;ﬁggli?ture Ignored Ignored Ignored Ignored
Sz | pores | nons
(Port Suspend) lgnored lgnored lgnored lgnored
Coaborbeatie | ignored | lgnored | Ignored | Ignored

7-14

Inte|® USB HUB

After you request a port status change through HPCON, it may take the 8x931 hardware a period
of time to affect the change, depending on the current state of the hub port and its current opera-
tion. You can check the HPSC SFR to see that your latest change has taken effect, as described
in “Monitoring Port Status Change Using HPSC” on page 7-20.

NOTE

Port connect status cannot be changed through HPCON. This port feature is
controlled by physically connecting or disconnecting a device from the port.

HPCON Address: CFH
(Indexed by HPINDEX) Reset State: xxxx x000B

Hub Port Control Register. Firmware writes to this register to disable, enable, reset, suspend, and
resume a port.

. 0
_ _ _ — H — HPCON2 | HPCON1 | HPCONO

Bit Bit .
Number | Mnemonic Function
7:3 — Reserved:

Write zeros to these bits.
2:0 HPCON2:0 | Encoded Hub Port Control Commands:

All bits should be set and cleared by firmware after receiving the USB
requests ClearPortFeature and SetPortFeature from the host. The bits are
encoded as follows (all other bit combinations are ignored by the hardware):

000 — Disable port

001 — Enable port

010 — Reset and enable port
011 — Suspend port

100 — Resume port

See Table 7-6 on page 7-16 for a complete description of the encoded hub
port control commands.

Figure 7-9. HPCON: Hub Port Control Register

Port 1 represents the internal downstream port and differs from the external downstream ports.
The internal downstream port is always connected (and cannot be disconnected). Hub port control
commands have a different effect on port 1 than they do on the external downstream ports, as

shown in Table 7-6 below.

7-15

8x931AA, 8x931HA USER’'S MANUAL

intel.

Table 7-6. Encoded Hub Port Control Commands

Code | Command Condition Re?)tjzltzs,&izc))]rt X Results [Port 1]
000 Disable Firmware should Places port in the Same
port write ‘000’ to disabled state the next

HPCON upon time the bus is idle.
receipt of a
ClearPortFeature
with a
PORT_ENABLE
feature selector.
001 Enable Firmware should Places port in the Same
port write ‘001’ to enabled state the next
HPCON upon time the bus is idle.
receipt of a
SetPortFeature with
a PORT_ENABLE
feature selector.

010 | Resetand | Firmware should Causes port x to Causes an internal hardware reset of
enable write ‘010’ to immediately drive an the FIU and FIFO circuitry relating to
port HPCON upon SEO downstream for at | the embedded function. Certain

receipt of least 15 msec and then | embedded function SFRs are reset

SetPortFeature with | places the port in the to their default values (as listed in

PORT_RESET enabled state. “Embedded Function Reset” on page

feature selector. 7-24). After at least 15 ms, hardware
automatically places the port in the
enabled state. Firmware should
handle reset of any other firmware
and hardware features relating to the
embedded function immediately after
initiating the reset and enable
through this SFR (must be complete
by 15 ms from start of reset).

011 | Suspend Firmware should Places the port in an Suspends the embedded function’s
port write ‘011’ to idle “J” state the next port the next time the bus is idle,

HPCON upon time the bus is idle and | preventing port 1 from generating
receipt of prevents the port from any USB traffic. Firmware should
SetPortFeature with | propagating USB traffic. | suspend port 1 only after doing any
PORT_SUSPEND necessary processing (i.e., putting
feature selector. any external components in a low-
power state) to place the embedded
function into a suspended state.
100 Resume Firmware should Causes port x to Places port 1 into the enabled state
port write ‘100’ to immediately drive a “K” | after 20 ms. Firmware should
HPCON upon state downstream for resume port 1 only after doing any
receipt of at least 20 msec necessary processing to take the
ClearPortFeature followed by a low- embedded function out of the
with speed EOP, and then suspended (low-power) state.

PORT_SUSPEND
feature selector.

places the port back in
the enabled state.

7-16

Inte|® USB HUB

7.5.2 Examining a Port’s Status Using HPSTAT

You can examine a port’s status using the hub port status register (HPSTAT, as shown in Figure
7-10 on page 7-18). The HPSTAT SFR can show the status for any of the ports by using the
HPINDEX SFR for indexing. See “Hub Port Indexing Using HPINDEX” on page 7-23 for a de-
scription of how this indexing works.

HPSTAT gives the current.and O, values for the selected port; these implement the Get Bus
State diagnostic aid to facilitate system debug (Se&tihveersal Serial Bus Specification). HP-

STAT contains a bit that indicates when a low-speed device is attached to a port. HPSTAT also
shows a given port’s reset status, and whether the port is powered on or off, connected or discon-
nected, enabled or disabled, or suspended.

NOTE

Firmware-initiated port status changes are not reflected in HPSTAT until the
next end-of-frame.

The HPSTAT SFR is read-only. To change the status of a port feature, you must do so indirectly
using the HPCON SFR. The@31HA hardware can also change the status of a port, and some
features can only be changed by hardware. See “Controlling a Port Using HPCON” on page 7-14.

I 7-17

8x931AA, 8x931HA USER’'S MANUAL Inte|®

HPSTAT

(Indexed by HPINDEX)

Address: D7H
Reset State: 100d 0000B

Hub Port Status Register. This register indicates the current status for a port, including power, reset,
suspend, low-speed device, enable, connect, D,, and D,, status.

7 0
DPSTAT | DMSTAT LSSTAT | PPSTAT ‘ | PRSTAT | PSSTAT | PESTAT | PCSTAT
Bit Bit Function
Number | Mnemonic
7 DPSTAT D, Status (read-only):
Value of D, for port x at end of last frame. Firmware must return this bit in
response to a GetBusState request from the host.
Port x (x=2,3,4,5): Set and cleared by hardware at the EOF2 point near the
end of a frame (used for diagnostics).
Port 1: Hard-wired to '1’, since there is no D, signal for the embedded port
6 DMSTAT D,, Status (read-only):
Value of D,, for port x at end of last frame. Firmware must return this bit in
response to a GetBusState request from the host.
Port x (x=2,3,4,5): Set and cleared by hardware at the EOF2 point near the
end of a frame (used for diagnostics).
Port 1: Hard-wired to '0’", since there is no D,, signal for the embedded port.
5 LSSTAT Low-speed Device Attach Status (read-only):
Port x (x=2,3,4,5): Set and cleared by hardware upon detection of the
presence or absence of a low-speed device at the EOF2 point near end-of-
frame. ‘1’ = low-speed device is attached to port x. ‘0" = full-speed device is
attached to port x.
Port 1: Hard-wired to 'O’ (full-speed), since port 1 is permanently attached to
the embedded USB function.
4 PPSTAT Port Power Status (read-only):
Port x (x=2,3,4,5): Set and cleared by hardware based on the present power
status of the port, as controlled either by firmware using the HPPWR
register, or by an overcurrent condition in hardware. ‘1’ = port x is powered
on. ‘0’ = port x is powered off. The port x power status is only sampled at the
EOF2 point near end-of-frame.
Port 1: Hard-wired to '1’, since the internal function is always powered-on.
NOTES:

Firmware returns the bits of this register in the first word of the 8x931’ response to the host's GetPortStatus
request. See “GetPortStatus Request Firmware” on page 8-25.

Overcurrent indication is not represented on a per-port basis because the 8x931 supports ganged power
control and overcurrent indication.

7-18

Figure 7-10. HPSTAT: Hub Port Status Register

Inte|® USB HUB

HPSTAT (Continued) Address: D7H
(Indexed by HPINDEX) Reset State: 100d 0000B

Hub Port Status Register. This register indicates the current status for a port, including power, reset,
suspend, low-speed device, enable, connect, D, and D,, status.

7 0
DPSTAT DMSTAT LSSTAT PPSTAT | | PRSTAT PSSTAT PESTAT | PCSTAT

Bit Bit

) Function
Number | Mnemonic

3 PRSTAT Port Reset Status (read-only):

Port x ((x=2,3,4,5): Set and cleared by hardware as a result of initiating a
port x reset by writing to HPCON. ‘1’ = reset signaling is currently asserted
for port x. ‘0’ = reset signaling is not asserted. Sampled only at the EOF2
point near end of frame.

Port 1: Same as port x.

2 PSSTAT Port Suspend Status (read-only):

Port x (x=2,3,4,5): Set and cleared by hardware as controlled by firmware
via HPCON. ‘1" = port x is currently suspended. ‘0’ = not suspended.
Sampled only at the EOF2 point near end of frame.

Port 1: Same as port x.

1 PESTAT Port Enable/Disable Status (read-only):

Port x (x=2,3,4,5): Set and cleared by hardware as controlled by firmware
via HPCON. ‘1’ = port x is currently enabled. ‘0’ = port is disabled. Sampled
only at the EOF2 point near end of frame.

Port 1: Same as port x.

0 PCSTAT Port Connect Status (read-only):
Port x connect status from previous frame time.

Port x (x=2,3,4,5): Set and cleared by hardware after sampling the connect
state at EOF2 near the end of the present frame. ‘1’ = device is present on
port x. ‘0’ = device is not present. This bit will be set if either a physical
connection is detected, or during a hub reset when a downstream device is
already connected. This bit will be cleared if a disconnect is detected.

Port 1: Hard-wired to ‘1’, since the internal function is permanently
connected.

NOTES:

Firmware returns the bits of this register in the first word of the 8x931’ response to the host's GetPortStatus
request. See “GetPortStatus Request Firmware” on page 8-25.

Overcurrent indication is not represented on a per-port basis because the 8x931 supports ganged power
control and overcurrent indication.

Figure 7-10. HPSTAT: Hub Port Status Register (Continued)

7-19

8x931AA, 8x931HA USER’'S MANUAL Inte|®

7.5.3 Monitoring Port Status Change Using HPSC

When firmware changes the status of a port, there may be adelay between the time firmware re-

quests the status change (using the HPCON register, as described in “Controlling a Port Using
HPCON?” on page 7-14) and the time hardware actually changes the state. This occurs because
some port changes require hardware to perform auxiliary functions (such as driving a state down-
stream for up to 20ms). Additionally, some status changes are initiated by hardware. Firmware
can determine when a port status change has occurred by monitoring the HPSC register (Figure
7-11).

NOTE

Firmware-initiated port status changes are not reflected in HPSC until the next
end-of-frame.

The &931HA uses the 1-byte TXDAT register associated with endpoint 1 to communicate a port
status change to the host (Figure 7-7 on page 7-12). Bits in this register are set®3 A3
hardware to indicate which ports (or the hub itself) have changed status.

After receiving notification of a port status change through endpoint 1, the host may request ad-

ditional information regarding the status change using a GetPortStatus reg98%t A/ firm-

ware must respond to the GetPortStatus request by transmitting the contents of the HPSTAT and
HPSC registers to the host in a two-word format. This process is described in “GetPortStatus Re-
quest Firmware” on page 8-25.

The HPSC register (Figure 7-11) indicates which port feature has changed status. Port features
whose status changes are reflected by HPSC include reset, suspend, enable, and connect.

7-20 I

Inte|® USB HUB

HPSC Address: D5H
(Indexed by HPINDEX) Reset State: xxx0 0000B

Hub Port Status Change Register. This register indicates a change in status for a port, including over-
current, reset, suspend, low-speed device, enable and connect status.
7 0

_ — — RSTSC H _ PSSC PESC PCSC

Bit Bit

Number | Mnemonic Function

7:5 — Reserved:
Write zeros to these bits.

4 RSTSC Reset Status Change (read-, clear-only):

This bit is cleared in firmware via the USB host request ClearPortFeature
with a C_PORT_RESET feature selector. ‘1’ indicates reset of port
complete; ‘0’ indicates no change.

Port x (x=2,3,4,5): This bit is set by hardware approximately 10 msec after
receipt of a port reset and enable command (SetPortFeature with
PORT_RESET feature selector).

Port 1: This bit is set by hardware at the EOF2 point near the end of a frame
after completion of the hardware-timed reset due to firmware execution of a
port reset and enable command (SetPortFeature with PORT_RESET
feature selector).

3 — Reserved:
Write a zero to this bit.

2 PSSC Port Suspend Status Change (read-, clear-only):

This bit is cleared by firmware upon a USB host request ClearPortFeature
with C_PORT_SUSPEND feature selector. ‘1’ = resume process complete;
‘0’ = no change. The resume process is initiated by firmware upon reception
of a SetPortFeature request with a PORT_SUSPEND feature selector.

Port x (x=2,3,4,5): This bit is set by hardware upon completion of the
firmware-initiated resume process.

Port 1: This bit is set by hardware 20 msec after the next EOF2 point after
completion of the resume process.

NOTE: Bits are returned as part of the second word (2 bytes) in response to a Get Port Status request
from the USB host. The upper 11 MSbs are reserved and always ‘0’ per USB 1.0: 0000 0000
000.4.3.2.1.0 (MSB at left).

Figure 7-11. HPSC: Hub Port Status Change Register

7-21

8x931AA, 8x931HA USER’'S MANUAL Inte|®

HPSC (Continued) Address: D5H
(Indexed by HPINDEX) Reset State: xxx0 0000B

Hub Port Status Change Register. This register indicates a change in status for a port, including over-
current, reset, suspend, low-speed device, enable and connect status.

7 0
— — — RSTSC || — PSSC PESC PCSC
Bit Bit :
Number | Mnemonic Function
1 PESC Port Enable/Disable Status Change (read, clear-only):

This bit’s status does not change due to USB requests. This bit is cleared by
firmware via the USB host request ClearPortFeature with a
C_PORT_ENABLE feature selector. ‘1’ indicates port enabled/ disabled
status change; ‘0’ indicates no change.

Port x (x=2,3,4,5): This bit is set by hardware due to hardware events only
(this bit indicates the port was disabled due to babble, physical disconnects,
or overcurrent).

Port 1: This bit is set by hardware at the EOF2 point near the end of frame
due to hardware events only (e.g., the port was disabled due to babble).

0 PCsSC Port Connect Status Change (read-, clear-only):

This bit is cleared by firmware via a USB host request ClearPortFeature with
C_PORT_CONNECTION feature selector. ‘1’ indicates connect status
change; ‘0’ indicates no change.

Port x (x=2,3,4,5): This bit is set by hardware at the EOF2 point near the end
of a frame due to hardware connects and disconnects.

Port 1: This bit is set by hardware at the next EOF2 after completion of a hub
reset (since the internal port is always connected).

NOTE: Bits are returned as part of the second word (2 bytes) in response to a Get Port Status request
from the USB host. The upper 11 MSbs are reserved and always ‘0’ per USB 1.0: 0000 0000
000.4.3.2.1.0 (MSB at left).

Figure 7-11. HPSC: Hub Port Status Change Register (Continued)

7-22

Inte|® USB HUB

NOTE
While the HPSC register indicates which port features have changed status, it
does not show the current status of any feature. Firmware must examine the
HPSTAT register to determine if a given port is currently reset, suspended,
powered on or off, connected or disconnected, enabled or disabled. See
“Examining a Port’s Status Using HPSTAT” on page 7-17 for details.

7.5.4 Hub Port Indexing Using HPINDEX

A port indexing scheme is used for port-specific SFRs for reasons similar to those described in
“Endpoint Selection” on page 5-4 for endpoint-specific registers. Three sets of SFRs have been
mapped into the port-indexed scheme: HPSC, HPSTAT, and HPCON.

Ports 1-4 are indexed by the binary value of the two lower bits of HPINDEX (Figure 7-12). Port
0 is reserved for the root port, but it is not indexed by HPINDEX since there are no port-specific
SFRs for the root port.

CAUTION

Firmware writers may choose to set the contents of HPINDEX once at the start
of each routine instead of writing to HPINDEX prior to each access of a port-
indexed SFR. Because of this, interrupt service routines must save the contents
of the HPINDEX register at the start of the routine and restore the contents at
the end of the ISR. This will prevent HPINDEX from being corrupted.

I 7-23

8x931AA, 8x931HA USER’'S MANUAL Inte|®

HPINDEX Address D4H
Reset State XXxx x000B

Hub Port Index Register. This register contains the binary value of the port whose HPSC, HPSTAT,
and HPCON registers are to be accessed.

; 0
_ _ _ _ H — HPIDX2 | HPIDX1 | HPIDXO0

Bit Bit :
Number | Mnemonic Function
7:3 — Reserved:

Write zeros to these bits.
2:0 HPIDX.2:0 Port Index Select:

Used to select the port to be indexed by the following registers: HPSC,
HPSTAT, and HPCON. This register is hardware read-only. The ports are
addressed using the following HPIDX2:0 bit combinations:

Port 1 = “001” (internal port)

Port 2 =“010"
Port 3 =“011"
Port 4 =“100"
Port 5 =“101"

NOTE: Port0="000" (the root port) and all other combinations not shown above are not valid port indexes
and are ignored.

Figure 7-12. HPINDEX: Hub Port Index Register

7.5.5 Embedded Function

The following subsections discuss considerations involved with the embedded function on inter-
na downstream port 1. See “Embedded Function Suspend and Resume” on page 7-26 for addi-
tional embedded function information.

755.1 Embedded Function Reset

The USB host can generate an embedded port reset command to the hub to reS8tth& 8
embedded function. When this command is received, the embedded function’s EPCON, FIFLG,
FIE, TXSTAT, RXSTAT, TXCON, RXCON, FADDR, and PCON1 SFRs are reset to their de-
fault values, as are the SOFACK, ASOF, SOFIE, and SOFODIS bits of SOFH. The EPINDEX
and SOFL SFRs remain unchanged. These SFRs are reset immediately after the write to HPCON,
however bus traffic to the embedded function remains inactive for 15 ms. You may use this time
frame to initialize the embedded function.

After an embedded function reset, the internal function must be re-enumerated by the host. This
procedure is given in “Enumeration” on page 8-2.

7-24

Inte|® USB HUB

7.55.2 Embedded Function Remote Wake-up

The HRWUPE bit in HSTAT (Figure 7-6 on page 7-9) must be set in order for any downstream
port to initiate resume signaling. Thisincludes hub port 1, theinternal downstream port. This port
must be suspended and the HRWUPE bit in HSTAT must be set before the embedded function
can initiate a remote wake-up. This is done by setting the RWU bit in PCON1 (Figure 14-2 on
page 14-4).

7.6 SUSPEND AND RESUME

7.6.1 Hub Global Suspend and Resume

USB requirements state that a USB device must be capable of being placed in alow-power sus-

pend mode in which the device draws less than 500 YA from the USB lines. The hub and the em-
bedded function are placed in suspend mode when a continuous idle state of more than 3.0 msec
is detected on the hub root port. For an in-depth discussiox98fl&uspend and resume, see
“USB Power Control” on page 14-7.

Once the suspend has been detected, the GSUS bit in the PCON1 SFR is set and a microcontrollet
interrupt is generated (See).

Firmware services the global suspend interrupt by setting the PD bit of the PCON SFR. This shuts
off the device’s clocks and crystal oscillator, placing the hub and embedded function in a USB
suspend mode.

A resume event can be signaled in any of three ways:

1. The hub repeater asynchronously detects a resume state due to resume signaling or a
connect/disconnect on the bus

The hub repeater detects a reset state on the bus’ root port

3. An external interrupt powers-up the entire device, with a resume sequence initiated in
firmware by setting the RWU bit in the PCON1 SFR (Figure 14-2 on page 14-4)

7.6.2 Remote Connectivity

During the suspend state of the hub, logical connectivity can also be established if a physical con-
nection/disconnection is made on one of the downstream ports, or if a resume condition is sig-
naled on a port, as shown in Figure 7-13 on page 7-26.

7.6.2.1 Resume Connectivity

The HRWUPE bit must be set in the HSTAT register (Figure 7-6 on page 7-9) before the connect
or disconnect of a downstream device can initiate a remote wake-up. If this bit is not set, the
downstream connect or disconnect will be ignored as a remote wake-up event. If a remote wake-
up device signals a resume on a downstream port when the hub is in the suspend state (see Figure
7-13), the following process occurs:

1. The resume signaling causes the hub to wake up.

I 7-25

8x931AA, 8x931HA USER’'S MANUAL Inte|®

2. Therepeater then establishes a connection from the port with the resume signal to the root
port and al other enabled downstream ports.

3. The connectivity is then changed to downstream-only from the root port to all enabled
downstream ports. This allows the host to drive the resume signaling downstream to the
rest of the USB bus.

NOTE

The 8x931HA hub cannot request a remote wake-up, although its embedded
function can. For thisto happen, the HRWUPE bit must be set in HSTAT and
the embedded function must be enabled. The embedded function triggers the
remote wake-up by setting the RWU bit in PCON1.

A J
Root Port Root Port Root Port Y
2 i} 2
S — 5 — - c
jC 1T < — 1> <=
- — -
g & g
Ll L L
(Disabled) " (Disabled) V (Disabled)
Port2 Port3 Port4 Port5 Port2 Port3 Port4 Port5 Port 2 Port3 Port4 Port5
Suspended Hub Resume Downstream
with Resume (Port 2) Connectivity (Port 2) Connectivity
A5257-01

Figure 7-13. Resume Connectivity
7.6.2.2 Connectivity Due to Physical Connect/Disconnect

If adisconnect is made to a disabled port and the hub isin a global suspend state, aresume state
is signaed as described in “Resume Connectivity” on page 7-25.

7.6.2.3 Embedded Function Suspend and Resume

Selective suspend is initiated on a downstream port when a SetPortFeature (suspend) command
is received from the host via the USB bus. Individual external ports or the internal port can be
suspended by USB command; however, the hub cannot be suspended by command. Refer to
Universal Serial Bus Specification for more detail on the behavior of selective suspend in the
USB system.

USB requirements state that the host can suspend the embedded function by issuing a SetPort-
Feature (PORT_SUSPEND) request to the hub’s port 1. Since the hub and function share hard-

7-26

Inte|® USB HUB

ware such asthe SIE, it is not possible to simply shut-off the clock to all circuitry associated with
the function when the hub is to remain operational .

When placed into the suspended state, the embedded function must behave asif it were connected
to a hub whose actua downstream port was suspended. This means that the embedded function
must not respond to SOFs or any normal bus traffic. This is done automatically by hardware.
Firmware should place any external circuitry associated with the embedded function in a low-
power state, if one exists. The embedded function should remain in this suspended state until the
host initiates a ClearPortFeature (PORT_SUSPEND) or a SetPortFeature (PORT_RESET) re-
quest to the hub, or until a remote wake-up is signaled by the embedded function via an external
interrupt.

7.7 HUB POWER DISTRIBUTION

USB hubs can supply a specified amount of power to their downstream components and are re-
sponsible for reporting their power distribution capabilitiesto the host during enumeration. Hubs
may be either locally powered, bus powered, or a combination of thetwo. The distinction ismade
depending on how the user implements the power scheme at the board level, which should be in-
dicated in the value of the bmAttributesfield of the configuration descriptor.

A hub can only supply power in a downstream direction and must never drive power upstream.
Bus-powered hubs must have port power switching for the downstream ports and are required to
power off al downstream ports when the hub comes out of power-up or when it receives a reset
onitsroot port. Port power can al so be switched on or off under control of the host PC. Port power
switching is optional for self-powered devices.

NOTE
Port power switching and over-current detection (discussed in the following
subsections) are mutually exclusive. Over-current detection isrequired only
for self-powered hubs, while port power switching is required only for bus-
powered hubs.

7.7.1 Port Power Switching

Port power switching is only supported on a ganged basis, therefore there is only one output pin
used to enable power to the downstream devices.

From aUSB perspective, power can be enabled on a per-port basis, but the power enableisactive
if any of the ports are powered-on by the host. The host PC can selectively switch power on or
off for a given port using a Set_Feature request with a Port_Power feature selector. The 8x931
firmware must respond to this port power request by setting or clearing the appropriate bit in the
HPPWR SFR (Figure 7-14). An exception to this is the internal downstream port, port 1, which
is statically powered-on. The host PC may inquire about a port’s power status using Get_Feature
(Port_Power). Firmware must respond to thisinquiry by checking and reporting on the PPSTAT
bit (bit 4) of HPSTAT (see Section 7.5.2, Examining a Port’s Status Using HPSTAT).

I 7-27

8x931AA, 8x931HA USER’'S MANUAL Inte|®

HPPWR Address: 9AH
Reset State: xxx0 001xB

Hub Port Power Control Register. This register is used to control power to the hub’s downstream ports.
7 0
— — HPPWR5 | HPPWR4 ‘ | HPPWR3 | HPPWR2 | HPPWR1 —

Bit Bit

Number | Mnemonic Function
7:6 — Reserved:

Write zeros to these bits.
5:2 HPPWRS5:2 | Port Power Control for USB Ports 5-2:

Bit 5 is power control for port 5, bit 4 for port 4, bit 3 for port 3, and bit 2 for
port 2. These bits are set and cleared by firmware via a USB host request
SetPortFeature with the PORT_POWER feature selector. These bits will
also be cleared by hardware upon detection of an over-current condition.
This is done to prevent oscillation of the UPWEN# pin during an over-
current condition with bus-powered devices.

A value of ‘1’ enables power to the downstream port and puts the portin a

disconnected state. A value of ‘0’ turns the downstream port power off.

NOTE: The UPWEN# pin is setto ‘1’ only if all port power enable bits are
‘0,’ due to the use of a ganged (shared) power enable scheme.

1 HPPWR1 Port Power Control for USB Port 1 (read-only):
Port 1 is an internal port and is always powered on. This bit is hard-wired to
Q.

0 — Reserved:

Write a zero to this bit.

Figure 7-14. HPPWR: Hub Port Power Control

7-28

Inte|® USB HUB

7.7.2 Overcurrent Detection

The OVRI# pinisan input pin that indicates when an overcurrent condition has been detected on

one of the downstream devices at the board level. OVRI# is enabled by setting HSTAT.7 and is

used to asynchronoudly disable the UPWEN# output pin, which switches power off to al external

ports. When the overcurrent condition is removed, the OVRI# pin is deasserted to a ‘1’ state;
however, the UPWEN# signal remains inactive since the HPPWRS5:2 bits are reset when an over-
current condition is detectedr{essfirmware has asserted one or more of these bits since the time
the overcurrent was first detected). Due to the asynchronous nature of this signal, the user must
be careful to guarantee that the OVRI# input is not “glitchy” or noisy, since glitches on this signal
could have a detrimental impact on the system.

The state of the OVRI# pin can be read by the USB host via firmware, using the HSTAT (Figure
7-6 on page 7-9) OVI (HSTAT.1 — latest overcurrent indicator) and OVISC (HSTAT.3 — hub
overcurrent status change) bits. OVI indicates if the overcurrent bit is presently asserted (‘0’) or
de-asserted (‘1'). OVISC indicates whether the overcurrent status has changed since this bit was
initially cleared by firmware (i.e., this bit acts as a “sticky” bit which must be cleared in firm-
ware).

Another fact to consider about the overcurrent condition is that all external ports are placed in the
“powered off” state. This is true for both bus-powered and self-powered ports, even though self-
powered ports may still be powered. This condition will remain until the host enables power to
the ports via one of the HPPWR5:2 bits. To disable OVRI# pin, clear OVRIEN (HSTAT.7 —
overcurrent detect enable bit).

7.7.3 Ganged Power Enable

The &931HA uses a ganged power enable scheme to enable power to the external downstream
ports. This means that a single output pin, UPWEN# should be used at the board-level to switch
power to all of the downstream ports. The state of this power enable pin is controlled in two ways:

* by the collective ORed value of bits 5:2 of the HPPWR SFR (Figure 7-14) under control of
firmware, and

* by the present state of the overcurrent sense input pin, OVRI#.

If any of the HPPWR bits are set, then the UPWEN# signal will be asserted (to a ‘0’) as long as
the OVRI# signal is not asserted (i.e., OVRI # = ‘1"). If the OVRI# signal is asserted (‘0’), or if

all of the power enable bits in HPPWR are cleared, then the UPWEN# signal will be deasserted
(toa'l).

Table 7-7 describes the state of the UPWEN# signal for all conditions of the HPPWR5:2 signals
and the OVRI# pin. Port power enable bits in the HPPWR SFR (Figure 7-14 on page 7-28) are
set via the SetPortFeature PORT_POWER request from the USB host. They are cleared via the

ClearPortFeature PORT_POWER request, or by hardware upon detection of an overcurrent con-
dition.

I 7-29

8x931AA, 8x931HA USER’'S MANUAL Inte|®

Table 7-7. UPWEN# Pin State Truth Table

HPPWRS HPPWR4 HPPWR3 HPPWR2 OVRI# UPWEN#
0 (disabled) 0 (disabled) 0 (disabled) 0 (disabled) 1 (disabled) | 1 (disabled)
X X X 1 1 0 (enabled)

X X 1 X 1 0

X 1 X X 1 0

1 X X X 1 0

X X X X 0 (enabled) 1

Since a single power enable output is used for all downstream ports, the value of the correspond-

ing HPPWR bit does not necessarily reflect the actua state of the port power, since all HPPWR

bits must be disabled for power to be disabled. Similarly, a ‘1’ bit in the HPPWR SFR might not
reflect that power is actually enabled to any devices in the event of an overcurrent condition.

Note that the power enable signal for the internal port, HPPWR1, does not affect the state of the
UPWEN# pin. Also, note that bus-powered devitest use the UPWEN# signal to switch pow-
er to downstream ports, however, port power switching for self-powered devices is optional.

NOTE

Before the UPWEN# pin can be enabled, the EP1EN bit in the HSTAT SFR
(Figure 7-6 on page 7-9) must be set. See Section 11.9 Ohitersal Serial
Bus Specification.

7.8 HUB DEVICE SIGNALS

Table 7-8 lists device signals associated with the hub. Pin assignments are shown in Appendix B.

Table 7-8. Signal Descriptions

Signal _ Alternate
Name Type Description Function
Do, Do /0 | USB (Upstream) Port 0. D,g and D, are the data plus and —

data minus lines of USB port 0. These lines do not have internal
pullup resistors. For low-speed devices, provide an external 1.5
KQ pullup resistor at D,,q. For full-speed devices, provide an
external 1.5 KQ pullup resistor at Dgy,.

NOTE: For the 8xX931HA, provide an external 1.5 KQ pullup
resistor at Dpq S0 the device indicates to the host that it is a full-
speed device.

Dp2, Dy /O | USB Downstream Ports 2,3,4,5. These pins are the data plus —
Dp3 Dy3 and data minus lines for the four USB external downstre_:am

’ ports. You must supply an external 15 KQ pulldown resistor for
De4s Dua these lines. If the USB downstream ports are not used, the two
Dps, Dys data lines are still required to be pulled low externally (similar to
a disconnect) so that the inputs are not left floating.

7-30

intel.

USB Programming
Models

intel.

CHAPTER 8
USB PROGRAMMING MODELS

This chapter describes the programming models of the USB function interface and the hub inter-

face. It provides flow charts of firmware routines needed to perform data transfers between the

host PC and the embedded function, as well as routines needed to handle hub-oriented USB re-

quests. It also describes briefly how the firmwareinteractswith the USB module hardware during

these operations. Data operations refer to data transfers over the USB, whereas event operations

are hardware operations such as attach and detach. For a description of the USB function interface

aswell asits FIFOs and special functions registers (SFRs), refer to Chapter 6, “USB Function”.

For further information about the USB hub interface, see Chapter 7, “USB Hub”. For details on
data flow in USB transactions refer to Appendix D, “Data Flow Model".

\

| Initialization |

\

| Enumeration |

\

:I Idle/Application Code |

IN
token

Receive

/ /

Figure 8-1. Program Flow

A4260-02

8.1 OVERVIEW OF PROGRAMMING MODELS

The USB function interface employs four types of routines: receive, transmit, setup, and receive

SOF. Program flow is depicted in Figure 8-1 along with the type of token associated with each

routine. Following device reset, the USB function enters the unenumerated state and after enu-
meration by the host, the idle state. From the idle state, it can enter any of the four routines.

I 8-1

8x931AA, 8x931HA USER’'S MANUAL Inte|®

8.1.1 Enumeration

Following device reset, the USB hub and function enter the unenumerated state. Initialy, the hub

address register HADDR and the function address register FADDR contain the default value

O0H. The host PC performs bus enumeration at system start-up or whenever a new USB device

is attached to the host or to a hub’s downstream port. During bus enumeration the host identifies
and addresses devices attached to the bus. During enumeration, a unique address assigned by th
host is written to HADDR and FADDR.

NOTE

Since the 8931AA microcontroller does not support a hub interface (and
hence, has no HADDR SFR or downstream ports), its enumeration process is
simpler. The 831AA enumeration process is given in Appendix E,

“8x931AA Enumeration Process” on page E-2.

An example enumeration for the hub and downstream ports is given here:

1. Get device descriptor. The host requests and reads the device descriptor to determine
maximum packet size.

2. Set address. The host sends tk888HA’s hub address in a data packet using hub
endpoint 0. Device firmware interprets the data and instructs the CPU to write the hub
address to HADDR. See “The Hub Address Register (HADDR)” on page 7-8.

3. Getdevice descriptor. The host requests and reads the device descriptor to determine such
information as device class, USB specification compliance level, maximum packet size
for endpoint 0, vendor id, product id, etc. For additional information onx®@181A
descriptors, see “Hub Descriptors” on page 7-7.

4. Get configuration descriptor. The host requests and reads the device’s configuration
descriptor to determine such information as the number of interfaces and endpoints;
endpoint transfer type, packet size, and direction; power source; maximum power; etc.
When the host requests the configuration descriptor, all related interface endpoint
descriptors are returned. For additional information on X88 BHA descriptors, see “Hub
Descriptors” on page 7-7.

NOTE

Some versions of the operating system send a Get string descriptor at this point
in the enumeration process.

5. Set configuration. The host assigns a configuration value to the device to establish the
current configuration.

6. Get hub descriptor. The host requests and reads the hub descriptor to determine such
information as number of downstream ports, hub characteristics, controller current,
removable devices, etc. For additional information, see Table 7-3, “Hub Descriptors” .

7. Next, the hub downstream ports start the state flow shown in Figure 7-3 on page 7-5. The
host issues a SetPortPowerFeature request to the downstream ports that were declared in
the hub descriptor. This moves the hub downstream ports to the disconnect state.

8-2

Inte|® USB PROGRAMMING MODELS

8. Asconnect detects occur, the host is notified through hub endpoint 1 (status change
endpoint). The host then issues a GetPortStatus command retrieving the contents of
HPSTAT and HPSC to determine the change for a specific downstream port. The host
then issues a ClearPortConnectionFeature command which should cause the firmware to
clear the PCSC hit in the HPSC register. Thiswill indirectly clear the appropriate bit in
TXDAT for hub endpoint 1. This moves the hub downstream port to the disabled state.

9. Thehost sends a SetPortResetFeature request for the specified downstream port. The host
receives a response through hub endpoint 1 (status change endpoint). The host issues a
GetPortStatus command retrieving the contents of HPSTAT and HPSC to determine the
change for the specified downstream port. The host then issues a ClearPortResetFeature
command, causing firmware to clear the RSTSC hit in the HPSC register. This moves the
hub downstream port to the enabled state.

10. At this point, the downstream ports go through the function enumeration process,
beginning with the embedded function:

a. Get descriptor. The host requests and reads the device descriptor to determine such
information as device class, USB specification compliance level, maximum packet size
for endpoint 0, vendor id, product id, etc. For detailed information on device
descriptors, see the “Device Framework” chaptésriversal Serial Bus Specification.

b. Set address. The host sends the function address in a data packet using function
endpoint 0. Device firmware interprets the data and instructs the CPU to write the
function address to FADDR.

c. Get configuration. The host requests and reads the device configuration descriptor to
determine such information as the number of interfaces and endpoints; endpoint
transfer type, packet size, and direction; power source; maximum power; etc. For
detailed information on configuration descriptors, see the “Device Framework” chapter
in Universal Serial Bus Specification. When the host requests the configuration
descriptor, all related interface and endpoint descriptors are returned.

d. Set configuration. The host assigns a configuration value to the device to establish the
current configuration. Devices can have multiple configurations.

11. The external ports must go through steps 8 through 10.

8.1.2 Idle State

Following bus enumeration, the USB function enters the idle state. In this stateQ3iee&e-

cutes application code associated with the embedded function. Upon receipt of a token with the
assigned address, the module enters the designated routinex9Ber@mains in the idle state
when not processing USB transmissions.

8.1.3 Transmit and Receive Routines

When the 8931 is sending and receiving packets in the transmit and receive modes, its operation
depends on the type of data that is transferred—isochronous or non-isochronous—and the adjust-
ment of the FIFO markers and pointers—automatic or manual. These differences affect both the
8x931 firmware and the operation of the€81 hardware. For isochronous data, a failed transfer

is not retried (lossy data). For non-isochronous data, a failed transfer can be repeated. Data that

I 8-3

8x931AA, 8x931HA USER’'S MANUAL Inte|®

can berepeated is considered lossless data. Automatic adjustment of the FIFO markers and point-
ers is accomplished by the function interface hardware. Manual adjustment is accomplished by
the 8x931 firmware.

8.1.4 USB Interrupts

For an explanation of the USB global suspend/resume, function, hub, and SOF interrupts, see
Chapter 5, “Interrupt System”.

8.2 TRANSMIT OPERATIONS

8.2.1 Overview

A transmit operation occurs in three major steps:
1. Pre-transmit data preparation by firmware
2. Data packet transmission by function interface hardware
3. Post-transmit management by firmware

These steps are depicted in a high-level view of transmit operations (Figure 8-2). The pre-trans-
mit and post-transmit operations are executed by the two firmware routines shown on the left side
of the figure. Function interface hardware (right side of the figure) transmits the data packet over
the USB line. Details of these operations are described in “Pre-transmit Operations” on page 8-7
and “Post-transmit Operations” on page 8-8.

Transmit operations for non-isochronous data begin with an interrupt request from the embedded
function (e.g., a keyboard entry). The pre-transmit routine (ISR) for the function writes the data
from the function to the transmit FIFO where it is held until the next IN token. Upon receipt of
the next valid IN token, the function interface shifts the data out of the FIFO and transmits it over
the USB. If the data packet is not ready for transmissik¥8 Bhardware responds to the IN token

with a NAK. The post-transmit routine checks the transmission status and performs data manage-
ment tasks.

Completion of data transmission is indicated by a handshake returned by the host. This is then
used to generate a transmit done interrupt to signal the end of data transmission to the CPU. The
interrupt can also be used for activity tracking and fail-safe management. Fail-safe management
permits recovery from lockups that can only be cleared by firmware.

Because a transmit done interrupt is generated regardless of transmission errors, this condition
means either:

1. The transmit data has been transmitted and the host has sent an acknowledgment to
indicate that is was successfully received; or

2. A transmit data error occurred during transmission of the data packet, which requires
servicing by firmware to be cleared. You must check for these conditions and respond
accordingly in the ISR.

8-4

Inte|® USB PROGRAMMING MODELS

For 1 SO data transmission, the cycleis similar. The significant differences are: the cycleisiniti-
ated by a start-of-frame (SOF) interrupt, there is no handshake associated with I SO transfer, and
atransmit doneinterrupt is not generated. For SO datatransfers, the transaction statusis updated
at the end of the USB frame. The 8x931 supports one | SO packet per frame per endpoint.

Two bitsin the transmit FIFO control register (TXCON, Figure 6-10 on page 6-19) have amajor
influence on transmit operation:

¢ The TXISO bit (TXCON.3) determines whether the transmission is for isochronous data
(TX1SO = 1) or non-isochronous data (TXISO = 0). For non-isochronous data only, the
function interface receives a handshake from the host, toggles or does not toggle the
sequence bit, and generates a transmission done interrupt (Figure 8-2). Also, for non-
isochronous data, the post-transmit routine is an | SR; for isochronous data the post-transmit
routineis an ISR initiated by an SOF token.

¢ The ATM bit (TXCON.2) determines whether the FIFO read marker and read pointer are
managed automatically by the FIFO hardware (ATM = 1) or manually by the second
firmware routine (ATM = 0). Use of the ATM mode is recommended. The ADVRM and
REV RP bits, which control the read marker and read pointer when ATM =0, are used
primarily for test purposes. See bit definitionsin TXCON (Figure 5-12).

I 8-5

8x931AA, 8x931HA USER’'S MANUAL

Pre-transmit
Routine

Post-
Transmit
Routine

Firmware

Interrupt

(keyboard, joystick, modem)

!

Hardware
(SIE, FIU, FIFOs)

ISR

» Write data to transmit FIFO
o Write TXCNT

IN Token

TN

RETI

TXISO = 0: Transmit done interrupt
TXISO = 1: SOF interrupt

!

» Send data over USB
*IfATM = 1:
— Adjust FIFO read marker and
read pointer
* If TXISO = 0:
— Receive host handshake
— Manage TXSEQ bit
* Generate transmit done interrupt
or SOF interrupt

ISR

» Check status
*If ATM =0:
— Adjust FIFO read
marker and read pointer

-

Y

RETI

A4262-02

8-6

Figure 8-2. High-level View of Transmit Operations

Inte|® USB PROGRAMMING MODELS

8.2.2 Pre-transmit Operations

Transmitted data originates in the embedded function, which might be a keyboard, mouse, joy-
stick, scanner, etc. In event-control applications, the end function signals the availability of data
with an interrupt request for the pre-transmit interrupt service routine (ISR). The ISR should pre-
pare the data for transmission and initiate the transmission process. The flow chart in Figure 8-3
illustrates atypical pre-transmit ISR.

For the case of isochronous data, the interrupt is triggered by the USB function in response to a
start-of-frame (SOF) packet.

Start: Non-ISO

Vacancy
in Transmit
FIFO?

No

TXFIF1:0 # 11 in Dual-packet Mode

Yes TXFIF1:0 = 00 in Single-packet Mode

Transfer Packet to
Transmit FIFO through
TXDAT

Error in Yes

Transmit FIFO? /3L Sur— 1 (overflow)

No

Error
Recovery

Write Packet Size to
TXCNT

RETI

A5071-01

Figure 8-3. Pre-transmit ISR (Non-Isochronous)

8-7

8x931AA, 8x931HA USER’'S MANUAL Inte|®

8.2.3 Post-transmit Operations

Transmission status is updated at the end of data transmission based on the handshake received

from the host (non-isochronous data) or based on the transmission process itself (isochronous

data). For a non-isochronous transfer, the function interface generates a transmit done interrupt.

The purpose of the post-transmit service routines is to manage the transmitter’s state and to ensure
data integrity for the next transmission. For isochronous data, the post-transmit routine should be
embedded within the transfer request routine because both are triggered by an SOF. The flow of

operations of typical post-transmit ISRs is illustrated in Figure 8-4 (non-isochronous data) and
Figure 8-5 (isochronous data).

Start: Transmit Done ISR

l

Identify Interrupt and Endpoint
(check FTXDx bits in FIFLG register)

Clear Interrupt Flag
(FTXDx Bit)

Read Transaction Status
(TXSTAT Register)

Trank Yes (TXERR = 1)

Error?

(TXACK = 1)

Failed CRC,
Bit-stuffing, or
Timeout from Host No

(Underrun Flag
TXURF = 1?)

Errorin
Transmit
FIFO?

Data Error recovery

T T
Advance Transmit FIFO to Reverse Transmit FIFO to
Next Packet Transmit Current Packet Retry
RETI

t Buffer Segmentation Management. Executed automatically by hardware, based on transaction
status, if ATM bit in TXCON is set.

A5072-01

Figure 8-4. Post-transmit ISR (Non-isochronous)

te|® USB PROGRAMMING MODELS

+

Start: SOF ISR

For
Each Endpoint,

TXACK =1 No
() Read Transaction Status

Yes (TXERR = 1)

(TXSTAT)
Transmit Error?,
+ (Failed CRC, Bit
Advance Transmit Stuffing, or Timeout
FIFO to next packet from Host) No TranI'Es:\rw?trller]FO’>
Check TXFLUSH Yes (TXURF = 1)
(error tracking)
Transmit FIFO
Error Recovery
Write Next Packet
to Transmit FIFO
+
Advance Transmit
FIFO to Next Packet
Overflow '\ Yes (TXOVF = 1)
Error in Transmit Write Next Packet
FIFO? to Transmit FIFO
Write Packet Size Overflow
to TXCNT Yes Error in Transmit
0
(TXOVF =1) FIFO?

| Error Recovery I

Write Packet Size
to TXCNT

i

/

RETI

Buffer Segmentation Management. Executed automatically by hardware at the end of a data transaction if ATM bit
in TXCON is set. For isochronous transactions, there is no retry of current packet regardless of transaction status.

A5073-02

Figure 8-5. Post-transmit ISR (Isochronous)

8x931AA, 8x931HA USER’'S MANUAL Inte|®

8.3 RECEIVE OPERATIONS

8.3.1 Overview

A receive operation is always initiated by the host, which sendsan OUT token to the 8x931. The
operation occurs in two major steps:

1. Datapacket reception by the function interface (hardware)
2. Post-receive management by firmware

These steps are depicted in a high-level view of the receive operations in Figure 8-6. The post-
receive operations are executed by the firmware routine shown on the left side of the figure. For
details see “Post-receive Operations” on page 8-11. Function interface hardware (right side of fig-
ure) receives the data packet over the USB line.

Receive operations for non-isochronous data begin wherx@3d 8eceives a valid OUT token
from the host. The received data is written to a data buffer FIFO.XBI34 &dicates completion
of data received by returning a handshake to the host.

At the end of the receive cycle, thed81 generates a receive done interrupt to notify the CPU
that a receive operation has occurred. Program execution branches to the interrupt service routine
and transfers the data packet from the receive FIFO to its destination. The interrupt can also be
used for fail-safe management and activity tracking.

For isochronous data, receive cycles are somewhat different. Data transactions are initiated by an
OUT token. At the end of the OUT transaction, th@3 does not return handshake to the host

and the receive done interrupt is not generated. Instead, the SOF interrupt is used for post receive
management. The data reception status is updated at the next SORRIheupports one ISO

packet per frame per endpoint.

Two bits in the receive FIFO control register (RXCON, Figure 6-15 on page 6-29) have a major
influence on receive operation:

¢ ThelSO bit (RXCON.3) determineswhether the reception is for isochronous data (1SO = 1)
or non-isochronous data (SO = 0). For non-isochronous data only, the function interface
sends a handshake to the host, checks the sequence bit, and generates a receive-done
(FRXDx) interrupt. Also, for non-isochronous data, the post-receive routineis an ISR; for
isochronous data the post-receive routine can be a normal subroutine or ISR initiated by an
SOF token.

¢ The ARM bit (RXCON.2) determines whether the FIFO write marker and write pointer are
managed automatically by the FIFO hardware (ARM = 1) or manually by the firmware
routine (ARM = 0). Use of the ARM mode is recommended. The ADVWM and REVWP
bits, which control the write marker and write pointer when ARM = 0, are used primarily
for test purposes. See bit definitionsin RXCON (Figure 6-15 on page 6-29).

8-10 I

Inte|® USB PROGRAMMING MODELS

Hardware
(SIE, FIU, FIFOs)

OUT Token

{

« Send data over USB
*If ARM = 1:
Firmware — Adjust FIFO write marker and
write pointer
RXISO = 0: Receive done interrupt *If ISO=0:
RXISO = 1: SOF interrupt — Send host handshake
¢ — Adjust RXSEQ bit
* Generate receive done interrupt
or SOF interrupt
ISR
R esgi\s/te_ * Check status and read data

Routine «|If ARM =0:

— Adjust FIFO write marker
and write pointer

'

RETI

A4265-02

Figure 8-6. High-level View of Receive Operations

8.3.2 Post-receive Operations

Reception statusis updated at the end of data reception based on the handshake received from the

host (non-isochronous data) or based on the transmission process itself (isochronous data). For a
non-isochronous transfer, the function interface generates areceive done interrupt (FRXDx). The

purpose of the post-receive service routine is to manage the receiver’s state to ensure data integ-
rity and latency for the next reception. The post-receive routine also transfers the data in the re-
ceive FIFO to the end function. For isochronous data, the post-receive routine should be called
by the SOF ISR.

Flow diagrams for typical post-receive routines are presented in Figure 8-7 (non-isochronous da-
ta) and Figure 8-8 (isochronous data).

8-11

8x931AA, 8x931HA USER’'S MANUAL

Start: Receive Done ISR

}

Identify Function Interrupt and Endpoint
(Check FRXDx Bits in FIFLG Register)

| ClearinterruptFlag |

Check
(RXACK=1) No RXSTAT for Yes

(RXERR=1)

Receive
Error

Advance Receive FIFO
to next packet

(Failed CRC or Bit Stuffing)

(RXOVF=1)

No Errorin

Y .
Reverse Receive FIFO
to current packet retry

Check for
‘Another Packet in
Receive FIFO
(RXFIF1:0 # 00 in Dual
Port Mode)

Read Data Packet(s) |

No

Error in
Receive
FIFO?

Yes (RXURF = 1)

Receive FIFO
Error Recovery

Unlock Current Packet from
Receive FIFO (set RXFFRC
Bit in RXCON)

{

Receive FIFO?

Yes (RXOVF=1)

Receive FIFO
Error Recovery

/

RETI

if ARM bit in RXCON is set.

Buffer Segmentation Management. Executed automatically by hardware at the end of a data transaction

A5070-01

Figure 8-7. Post-receive ISR (Non-isochronous)

8-12

Inte|® USB PROGRAMMING MODELS

Start: SOF ISR

For
Each Endpoint,

RXACK =1 No
() Read Transaction Status

Yes (RXERR = 1)

(RXSTAT)
Transmit Error?,
T .
Advance Receive (Failed CRC]
FIFO to Next Packet or Bit Stuffing) No Error in
Receive FIFO?
+
| Read Data Packet I Advance Receive FIFO Yes (RXOVF = 1)
to Next Packet Receive
Receive FIFO
Error Recovery
Error
in Receive No
FIFO?
Data Reconstruction
Yes by Application for
(RXURF =1) Lost Data
Receive FIFO
Error Recovery
Dgta Re?_ons_truition Unlock Current Packet
y ALpp ;CS“?“ or from Receive FIFO
ost Data (set RXFFRC bit in RXCON)
Unlock FIFO
(set RXFFRC)

/

RETI

T Buffer Segmentation Management. Executed automatically by hardware at the end of a data
transaction if ARM bit in TXCON is set. For isochronous transactions, there is no retry of current
packet regardless of transaction status.

A5074-01

Figure 8-8. Receive SOF ISR (Isochronous)

8-13

8x931AA, 8x931HA USER’'S MANUAL Inte|®

8.4 SETUP TOKEN

An endpoint must be configured as a control endpoint in order to respond to SETUP tokens. (This

will only be endpoint 0, since it must serve as a control endpoint.) Refer to the “Protocol Layer”
section of théJniversal Serial Bus Specification for details of SETUP token transactions and pro-
tocol.

A control data transfer is initiated by a valid SETUP token (i.e., the token PID received is good).
Receive data transfer operations for a control endpoint are very similar to data transfers on non-
control endpoints for non-setup tokens. However, the response of a control endpoint is different
when it receives a setup token.

USB protocol specifies that setup tokens must be received and ACKed. Following receipt of a
setup token, a control endpoint flushes the contents of the receive FIFO before writing it with re-
ceived setup data. This may create an error condition in the FIFO due to the asynchronous nature
of FIFO reads by the CPU and simultaneous writes by the function interface. To prevent this,
STOVW and EDOVW are used to track when an overwrite is occurring. When the overwrite is
complete, the user must clear EDOVW to read the SETUP packet. If EDOVW is not cleared, user
firmware will only be able to read the first byte of the SETUP packet. Figure 8-9 illustrates the
operations of a typical post-receive routine for a control endpoint.

8-14

USB PROGRAMMING MODELS

+

Start: Receive Done ISR

Identify Interrupt Endpoint

(check FRXDx bits in the FIFLG register)

Clear Interrupt Flag

Check

(RXACK =1) No RXSTAT for Yes (RXERR =1)
Receive
Error
Setup No
Token?
Normal
Yes (RXSETUP =1) Error
Handling
Setup Token Received OUT Token
Clear EDOVW Received
T
Read Data Packet
(STOVW =0 and
Receive FIFO~SNO EDOVW = 0)
Qverwrite,
Yes
(STOVW =1 or
EDOVW = 1) Error in
Receive FIFO?
Overwrite No
Completed +
Unlock Current Packet Error
Yes from Receive FIFO Recovery
(STOVW =0 and (set RXFFRC bit in RXCON)
EDOVW = 1) |
Clear Overwrite Bit (STOVW =0 and
(EDOVW) Receive FIFO EDOVW = 0)
| Overwrite?
(STOVW =1 or
EDOVW = 1)
Overwrite Clear Firmware
Completed? Setup Flag
(STOVW =0 and Yes
EDOVW = 1)
Clear Overwrite Bit
(EDOVW)

Inhibited in hardware if STOVW or EDOVW are asserted.

RETI

A5075-01

Figure 8-9. Post-receive ISR (Control)

8-15

8x931AA, 8x931HA USER’'S MANUAL Inte|®

8.5 START-OF-FRAME (SOF) TOKEN

Figure 8-10 illustrates the hardware operations performed by the function interface for a start-of-
frame (SOF) token. The host issues an SOF token at anominal rate of once every 1.0 ms. An SOF
token isvalid if the PID is good. The SOF token is not endpoint-specific; it should be received
by every node on the bus.

Valid SOF Token

(SOFH.6)| setAsOFBit |

End of
Transfer

Clear |(SOFH.7)

SOFACK
Bit

(SOFH.7) Set SOFACK.
(SOF token received
without error)

(SOFH, SOFL)l Write SOF Registers

Y

Generate SOF Pulse
by Asserting SOF# Pin

i

Done

A4267-02

Figure 8-10. Hardware Operations for SOF Token

8-16

Inte|® USB PROGRAMMING MODELS

8.6 HUB OPERATION

The primary objective of the programming model suggested here is to explain the linkage be-
tween the hardware and firmware of the 8x931HA in operation.

NOTE
Since the 8x931AA microprocessor does not support a hub interface, the
programming models in this section are unnecessary. Specific details of the
8X931AA are covered in Appendix E, “8x931AA Design Considerations”.

8.6.1 Hub Status and Configuration

USB communication with the USB hub function is performed via the standard and hub class-spe-
cific USB requests. These requests control status management and configuration of the hub and
its downstream ports. Since the hub is part of a compound device, it has an internal downstream
port (port 1) which is unique from the external downstream ports. This is because port 1 is phys-
ically connected to the embedded function and is powered-on at all times. Thus several USB re-
guests intended for internal downstream port 1 are handled differently from similar requests to
the other downstream ports, as shown in Table 7-6 on page 7-16.

Table 8-1 is a summary of firmware actions required for standard USB requests sent to hub end-
point 0.

Table 8-1. Firmware Actions for USB Requests Sent to Hub

Feature Selector /

USB Request Firmware Action Required

Type
DEVICE_REMOTE | Set the HRWUPE bit of the HSTAT SFR. See “Hub
_WAKEUP Status” on page 7-9.

Stall the endpoint specified in the Setup PID. See “Hub
Endpoint Control” on page 7-11.

SET_FEATURE Endpoint 0 specified:
ENDPOINT STALL | 1. Load 80H into EPINDEX (for hub endpoint 0)
- 2. Set RXSTL and TXSTL bits of EPCON SFR.
Endpoint 1 specified:

Set EP1STL bit of HSTAT SFR.

DEVICE_REMOTE | Clear HRWUPE bit of HSTAT SFR. See “Hub Status and
_WAKEUP Configuration” on page 8-17.

Cancel stall for the specified endpoint. See “Hub
Endpoint Control” on page 7-11.
CLEAR_FEATURE Endpoint 0 specified:
ENDPOINT STALL | 1. Load 80H into EPINDEX (for hub endpoint 0)
- 2. Clear RXSTL and TXSTL bits of EPCON SFR
Endpoint 1 specified:

Clear EP1STL bit of HSTAT SFR.

8-17

8x931AA, 8x931HA USER’'S MANUAL

intel.

Table 8-1. Firmware Actions for USB Requests Sent to Hub (Continued)

USB Request

Feature Selector /

Firmware Action Required

Type
1. Store hub endpoint 1 configuration value from value
field in memory
SET_CONFIGURATION N/A 2. Set EP1EN bit of HSTAT SFR (Figure 7-6 on page
7-9) after the Status stage if 2-byte configuration
value = 0001H
Read configuration value (one byte) from memory and
GET_CONFIGURATION N/A send to the host.
Device Read device descriptor from memory and transmit to

GET_DESCRIPTOR

USB host through hub endpoint 0.

Configuration

Read configuration, interface, endpoint, and hub
descriptors from memory and transmit to USB host
through hub endpoint 0.

GET_INTERFACE

N/A

Optional request for hubs which is not supported.

1. Load 80H into EPINDEX (for hub endpoint 0)

2. Set TXSTL bit of EPCON SFR so STALL is sent
during status stage

GET_STATUS

Device

Read HSTAT SFR bit HRWUPE (Figure 7-6 on page
7-9) and power configuration from memory and transmit
to USB host using hub endpoint 0.

Interface

Load 2 bytes of zero into transmit buffer and transmit to
USB host. These bits are reserved in the initial version of
USB.

Endpoint

Endpoint 0 specified:

Load transmit buffer with value of zero if endpoint 0 is not
stalled. No data can be returned if endpoint 0 is stalled,
since STALL will be transmitted instead.

Endpoint 1 specified:

Load value of EP1STL bit of HSTAT SFR into transmit
buffer (Figure 7-6 on page 7-9).

SET_ADDRESS

N/A

Read address value contained in request value field and
store in HADDR SFR (Figure 7-5 on page 7-8) after
successful completion of control transaction status
stage.

SET_DESCRIPTOR

N/A

Optional request for hubs which is not supported.

1. Load 80H into EPINDEX (for hub endpoint 0)

2. Set TXSTL bit of EPCON SFR so STALL is sent
during status stage

SET_INTERFACE

N/A

Optional request for hubs which is not supported.

1. Load 80H into EPINDEX (for hub endpoint 0)

2. Set TXSTL bit of EPCON SFR so STALL is sent
during status stage

SYNCH_FRAME

N/A

Optional request for hubs which is not supported.

1. Load 80H into EPINDEX (for hub endpoint 0)

2. Set TXSTL bit of EPCON SFR so STALL is sent
during status stage

8-18

Inte|® USB PROGRAMMING MODELS

Table 8-2 summarizes firmware action for hub class-specific USB requests.

NOTE
Upon receipt of astate-related USB request (i.e., SetPortFeature,
ClearPortFeature), firmware must examine the HPSTAT SFR to determine the
current port state. If the port isin a state where the request will be ignored by
hardware, instead of performing the action given in Table 8-2, firmware must
respond to the host by sending a STALL during the transaction status stage to
indicate the command was not completed. Table 7-6 on page 7-16 depicts the
state-related USB requests and the port states for which they are ignored.
See“Controlling a Port Using HPCON” on page 7-14 for additional
information.

I 8-19

8x931AA, 8x931HA USER’'S MANUAL

intel.

Table 8-2. Firmware Action for Hub Class-Specific Requests

USB Requests

Feature Selector
/ Type / Index

Firmware Action Required

SetHubFeature

Unsupported request since there are no current feature selectors

to match this request in the initial version of USB.

1. Load 80H into EPINDEX (for hub endpoint 0)

2. Set TXSTL bit of EPCON SFR so STALL is sent during status
stage

ClearHubFeature

C_HUB_OVER_ | Clear HSTAT SFR bit OVISC (hub over-current status change
CURRENT bit). HSTAT is shown in Figure 7-6 on page 7-9.
Unsupported request.
C_HUB_LOCAL_ | 1. Load 80H into EPINDEX (for hub endpoint 0)
POWER 2. Set TXSTL bit of EPCON SFR so STALL is sent during status

stage

GetBusState

Port number

Transfer the port bus signal values (D, and D, to the host for

diagnostic purposes.

1. Load xxxB into HPINDEX2:0, where xxx is the binary
representation of the port index

2. Transfer the DPSTAT and DMSTAT bits of HPSTAT (Figure
7-10 on page 7-18) to the transmit buffer of hub endpoint 0.
Transmit these bits in a single byte, with DMSTAT as bit 0,
DPSTAT as bit 1, and bits 2-7 as ‘0".

GetHubDescriptor

N/A

Read hub descriptor from memory and transmit to USB host using
hub endpoint 0.

SetHubDescriptor

N/A

Optional request for hubs which is not supported.

1. Load 80H into EPINDEX (for hub endpoint 0)

2. Set TXSTL bit of EPCON SFR so STALL is sent during status
stage

GetHubStatus

N/A

Communicate the hub over-current status change, local power
status change, current-overcurrent indicator, and current local
power status to the host:

Load HSTAT bits OVISC and OVI into transmit buffer, with LPS
as the LSbh. The HSTAT SFR is shown in Figure 7-6 on page 7-9.

GetPortStatus

Port number

Load the indicated port's HPSTAT and HPSC SFRs into the
transmit buffer.

See “GetPortStatus Request Firmware” on page 8-25 for
additional information, including bit ordering and a flowchart.

8-20

intel.

USB PROGRAMMING MODELS

Table 8-2. Firmware Action for Hub Class-Specific Requests (Continued)

USB Requests

Feature Selector
/ Type /Index

Firmware Action Required

SetPortFeature

PORT_ENABLE

Enables address and endpoint decoding for the downstream

ports. For hub port 1, this enables address and endpoint decoding

for the embedded function.

1. Load xxxB into HPINDEX2:0, where xxx is the binary
representation of the port index

2. Write “001” to bits 2:0 of the port's HPCON SFR (Figure 7-9
on page 7-15)

PORT_SUSPEND

Write “011” to bits 2:0 of the port's HPCON SFR.

If hub port 1 is specified, the user cannot suspend the embedded
function without also suspending the hub. Firmware must
suspend any non-hub functionality associated with the embedded
function prior to writing to HPCON. This is done by placing any
external device hardware into a low-power suspend mode.

See “SetPortFeature (PORT_SUSPEND) Firmware” on page
8-26 for additional information and a flowchart.

PORT_RESET

Write “010” to bits 2:0 of the port's HPCON SFR.

If port 1 is specified, firmware needs to reset all non-hub
functionality in the microcontroller. Upon writing to the embedded
function’s HPCON SFR, a hardware reset is generated for the FIU
and function FIFOs. Firmware must gracefully shut-down the
application code, peripherals, etc. prior to writing to port 1's
HPCON. Once written, the reset will be active in hardware for 10-
11 ms.

See “SetPortFeature (PORT_RESET) Firmware” on page 8-27 for
additional information and a flowchart.

PORT_POWER

Set bit x of HPPWR (where x is the port specified in the request
index field)

Port power-on is also supported for port 1, but only for reasons of
port compatibility since power for the embedded function cannot
be switched (i.e., writing bit 1 of HPPWR does not affect any
hardware).

8-21

8x931AA, 8x931HA USER’'S MANUAL

intel.

Table 8-2. Firmware Action for Hub Class-Specific Requests (Continued)

USB Requests

Feature Selector
/ Type /Index

Firmware Action Required

ClearPortFeature

PORT_ENABLE

Requests port disable.

1. Load xxxB into HPINDEX2:0, where xxx is the binary
representation of the port index

2. Write “000” to bits 2:0 of the port's HPCON SFR (Figure 7-9
on page 7-15)

For hub port 1, this will disable address and endpoint decoding for

the embedded function.

PORT_SUSPEND

Requests port resume.

1. Load xxxB into HPINDEX2:0, where xxx is the binary
representation of the port index

2. Write “100” to bits 2:0 of the port's HPCON SFR (Figure 7-9
on page 7-15)

If port 1 is specified, firmware must also resume any non-hub

functionality associated with the embedded function prior to

writing to port 1's HPCON. This requires taking any external

device hardware out of a low-power suspend mode.

Request port power off.
If any port other than port 1 is specified:

Clear bit x of HPPWR (where x is the port specified in the
request index field)

PORT_POWER
Port power off is not supported for port 1. If port 1 is specified:
1. Load 80H into EPINDEX (for hub endpoint 0)
2. Set TXSTL bit of EPCON SFR so STALL is sent during status
stage
Request to clear port connect status change.
C_PORT_ 1. Load xxxB into HPINDEX2:0, where xxx is the binary
CONNECTION representation of the port index
2. Clear PCSC bit of HPSC SFR (Figure 7-11 on page 7-21)
Request to clear hardware-initiated port enable/disable status
change.
C_PORT_ 1. Lgoad xxxB into HPINDEX2:0, where xxx is the binary
ENABLE h :
representation of the port index
2. Clear PESC bit of HPSC SFR (Figure 7-11 on page 7-21)
Request to clear port suspend status change.
C_PORT_ 1. Load xxxB into HPINDEX2:0, where xxx is the binary
SUSPEND representation of the port index
2. Clear PSSC hit of HPSC SFR (Figure 7-11 on page 7-21)
Unsupported request to clear port over-current status change.
The 8x931HA implements over-current detection on a hub-wide
C_PORT_ basis, not on a per-port basis. If received:
OVERCURRENT | 1. Load 80H into EPINDEX (for hub endpoint 0)

2. Set TXSTL bit of EPCON SFR so STALL is sent during status
stage

C_PORT_RESET

Request to clear port reset status change.

1. Load xxxB into HPINDEX2:0, where xxx is the binary
representation of the port index

2. Clear RSTSC bit of HPSC SFR (Figure 7-11 on page 7-21)

8-22

Inte|® USB PROGRAMMING MODELS

8.6.2 Port Status Change Communication

Theflowchart in Figure 8-11 shows how the hub communicatesachangein port statusto the host.
This processinvolves 8x931HA hardware, 8X931HA firmware, and PC host firmware. The flow-
chart illustrates the complete process at a high level. The process contains the following steps:

1. Any change in a port's reset, suspend, enable, or connect status is communicated to the
host via hub endpoint 1's TXDAT register, as shown in Figure 7-8 on page 7-13. The
information passed through hub endpoint 1 is sufficient to indicate which port (or the hub
itself) changed status, but it does not indicate which status value changed or the current
value of any status indicator.

Firmware has no involvement with USB communication to hub endpoint 1 (status change
endpoint 1). This communication is handled completely in hardware and is discussed in
“USB Hub Endpoints” on page 7-10.

2. After the host receives notice of a change in port status through hub endpoint 1, host
firmware can determine which status value changed and the current value of all the port’s
status indicators by transmitting a GetPortStatus request through hub endpoint 0. This
request includes a Port_Index to tell tk@BLHA which port is of interest to the host. See
theUniversal Serial Bus Specification for additional information.

3. The host's GetPortStatus request triggers 88 BHA GetPortStatus routine. The
firmware response to the GetPortStatus request provides the host with the port’s current
status along with an indication of any status changes that have occurred. See
“GetPortStatus Request Firmware” on page 8-25 for a complete description of this
routine.

4. The host resets the port status change indicators by issuing a separate ClearPortFeature
request for each bit in HPSC that showed a change. Each ClearPortFeature request will
include one of the following feature selectors:

a. C_PORT_CONNECTION — to clear HPSC.PCSC
b. C_PORT_ENABLE — to clear HPSC.PESC

c. C_PORT_SUSPEND— to clear HPSC.PSSC

d. C_PORT_RESET — to clear HPSC.RSTSC

5. 8x931HA firmware responds to each ClearPortFeature request by performing the actions
shown in Table 8-2 on page 8-20.

6. Finally, the host must perform any actions necessitated by the status change.

I 8-23

8x931AA, 8x931HA USER’'S MANUAL Inte|®

Status Change
Communication

l

8X930Hx
communicates change
in port status to host
via hub endpoint 1

Host inquires into
status change via a
GetPortStatus
command

Firmware
responds through the
GetPortStatus
request routine

Host clears bits of HPSC
one at a time through
ClearPortFeature
commands

Firmware clears
HPSC bits through
ClearPortFeature
routines

Host performs any
actions necessitated by
status change

l

End

A5207-01

Figure 8-11. Hub-to-Host Port Status Communication

8.6.3 Hub Firmware Examples

Several of the firmware routines given in Table 8-2 have been selected as examples. The remain-
ing routines should be coded similarly. The following subsections contain a flowchart and an ad-
ditional explanation for these routines:

8-24

Inte|® USB PROGRAMMING MODELS

* GetPortStatus (Port_Index)
* SetPortFeature (PORT_SUSPEND)
¢ SetPortFeature (PORT_RESET)

8.6.3.1 GetPortStatus Request Firmware

Firmware responds to a GetPortStatus call by returning four bytesto the host using the flowchart
procedure shown in Figure 8-12. The four bytes are arranged into atwo-byte port status field and
atwo-byte port change field containing the contents of the HPSTAT and HPSC SFRs, respective-
ly. Figure 8-13 shows the relationship between the four bytes returned by firmware and the con-
tents of the HPSTAT and HPSC registers.

Start:
GetPortStatus Request

1

Write 80H to
EPINDEX to access
hub endpoint 0's
TX registers

Write xxxB to HPINDEX
(xxx = port number)
to access port's
HP registers

Transfer HPSTAT to
TXDAT using
two-byte format

Transfer HPSC to
TXDAT using two-byte
format

Put 04H in TXCNTL
(to indicate 4 bytes
ready to transmit)

l

End

A5208-01

Figure 8-12. GetPortStatus Request

8-25

8x931AA, 8x931HA USER’'S MANUAL Inte|®

Transferring the contents of HPSTAT and HPSC into TXDAT requires additional code not

shown in the flowchart. The bits of HPSTAT must be “converted” into a two-byte port status
field, as shown in Figure 8-13, and transmitted to the host LSB first. The bits of HPSC must also
be transmitted in a two-byte format, called the port change field.

The bit names are given in Figure 8-13, along with their position in the register (shown below the
bit name) and their position in the transmitted two-byte field (shown above the bit names). Firm-
ware must transmit the four bytes to the host in the byte order indicated (above the bit position).

NOTE
The HPSTAT bits are not directly mapped into the port status field. Firmware
must clear bit three of byte one to indicate that power is normal (not
overcurrent) for the port. This is done because ¥88BHA indicates
overcurrent on a ganged, not per-port, basis.

Port Status Field Port Change Field
Byte 2 Byte 1 Byte 4 Byte 3

15 8|7 0 15 817 0

Get 2l S| &&= 9l lololo
Port Reserved [Sl5] & [E]o|EIE[E Reserved Plo |alala
22l (2] 19|23 ol |2]¥]e

Status 21 Pl s 121518 x
64 '3210) T T 43210
~ \/—/
HPSTAT HPSC
A5117-01

Figure 8-13. Firmware Response to GetPortStatus

8.6.3.2 SetPortFeature (PORT_SUSPEND) Firmware

This USB request suspends the downstream ports. The number of the port to be suspended is in-
cluded in the request from the host. If hub port 4 is specified, firmware must also suspend any
non-hub functionality associated with the embedded function and place any external device hard-
ware into low-power suspend mode prior to writing to hub port 4's HPCON SFR.

To implement this routine, firmware must write “011” to bits 2:0 of the port's HPCON SFR. The
flowchart in Figure 8-14 illustrates the process.

8-26

Inte|® USB PROGRAMMING MODELS

SetPortFeature
(PortSuspend)

Y

Write xxxB to
HPINDEX
(xxx = port number)
to select the port

¢

Place embedded
function and its
external device
hardware into low-
power suspend
mode

Is Suspend
for port 4?

Write 011B to
HPCON to -
suspend the port

End

A5166-01

Figure 8-14. SetPortFeature (PORT_SUSPEND) Routine

8.6.3.3 SetPortFeature (PORT_RESET) Firmware

This USB request resets the downstream ports. The number of the port to be reset isincluded in

the request from the host. To implement this routine, firmware must write “010” to bits 2:0 of the
port's HPCON SFR. The flowchart in Figure 8-15 illustrates the process. Refer to Section 11.6.2
of theUniversal Serial Bus Specification for a detailed description of this USB command.

8-27

8x931AA, 8x931HA USER’'S MANUAL Inte|®

SetPortFeature
(PortReset)

Y

Write xxxB to
HPINDEX
(xxx = port number)
to select the port

Shut down
application code,
peripherals, etc.,

for embedded
function

Is Reset
for port 4?

Write 010B to
HPCON to
reset the port

A

End

A5167-01

Figure 8-15. SetPortFeature (PORT_RESET) Routine

If port 4 is specified, firmware must reset al non-hub functionality in the microcontroller. Firm-
ware must gracefully shut-down the application code, peripherals, etc. prior to writing to port 4's
HPCON.

Upon writing to port 4's HPCON SFR, a hardware reset is applied to the FIU and function FIFOs.
When this reset is applied, the embedded function’s EPCON, FIFLG, FIE, TXSTAT, RXSTAT,
TXCON, RXCON, FADDR, and PCON1 SFRs are reset to their default values, as are the SO-
FACK, ASOF, SOFIE, and SOFODIS bits of SOFH. The EPINDEX and SOFL SFRs remain un-
changed. These SFRs are reset immediately after the write to HPCON, however bus traffic to the
embedded function remains inactive for 15 ms. You may use this time frame to initialize the em-
bedded function.

8-28 I

intel.

| nput/Output Ports

intel.

CHAPTER 9
INPUT/OUTPUT PORTS

The 8x931 has four 8-bit input/output (1/0O) ports for general-purpose 1/0, external memory op-
erations, and specific alternate functions (see Table 9-1). Thischapter describesthe portsand pro-
vides information on port loading, read-modify-write instructions, and external memory

accesses. Chapter 16, “External Memory Interface,” contains additional information about exter-

nal memory operations.

9.1 INPUT/OUTPUT PORT OVERVIEW

All four 8x931 I/0O ports are bidirectional. Each port contains a latch, an output driver, and an in-
put buffer. Port 0 and port 2 output drivers and input buffers facilitate external memory opera-
tions. Port O drives the lower address byte onto the parallel address bus, and port 2 drives the
upper address byte onto the bus. The data is multiplexed with the lower address byte on port O.

Port 1 and port 3 provide both general-purpose I/O and special alternate functions.
Table 9-1. Input/Output Port Pin Descriptions

Nzimne Type ;\ilrtle’;r;z:;i Alternate Description AIEI_eyrS:te
P0.7:0 /0 AD7:0/KSI7:0 Address/Data Lines, Keyboard Scan Input /0
P1.0 1/0 T2/KSO0 Timer 2 Clock Input/Output, Keyboard Scan Output 110
P1.1 /0 T2EX/KSO1 Timer 2 External Input, Keyboard Scan Output /0
P1.5:2 110 KSO05:2 Keyboard Scan Output (0]
P1.6 1/0 RXD/KSO6 Receive Serial Data, Keyboard Scan Output /O
P1.7 110 TXD/KSO7 Transmit Serial Data, Keyboard Scan Output (0]
pP2.7:0 /0 A15:8/KS0O15:8 Address Lines, Keyboard Scan Output (0]
P3.0 110 OVRI# Overcurrent Sense Input |
P3.1 /0 | SOF# Start of Frame)
P3.2 /0 INTO# External Interrupt O |
P3.3 110 INT1# External Interrupt 1 |
P3.4 /0 TO/KSO16 Timer 0 Input/Keyboard Scan Output /0
P3.5 110 T1/KSO17 Timer 1 Input/Keyboard Scan Output 110
P3.6 /0 WR#/KSO19 Write Signal to External Memory/Keyboard Scan (0]

Output
pP3.7 /0 RD#/KSO18 Read Signal to External Memory/Keyboard Scan (0]

Output

8x931AA, 8x931HA USER’'S MANUAL Inte|®

9.2 I/O CONFIGURATIONS

Each port SFR operates viatype-D latches, asillustrated in Figure 9-1 for ports 1 and 3. A CPU

“write to latch” signal initiates transfer of internal bus data into the type-D latch. A CPU “read
latch” signal transfers the latched Q output onto the internal bus. Similarly, a “read pin” signal
transfers the logical level of the port pin. Some port data instructions activate the “read latch” sig-
nal while others activate the “read pin” signal. Latch instructions are referred to as read-modify-
write instructions (see “Read-Modify-Write Instructions” on page 9-5). Each 1/O line may be in-
dependently programmed as input or output.

9.3 PORT 1 AND PORT 3

Figure 9-1 shows the structure of ports 1 and 3, which have internal pullups. An external source
can pull the pin low. Each port pin can be configured either for general-purpose 1/O or for its al-
ternate input or output function (Table 9-1).

To use a pin for general-purpose output, set or clear the corresponding bit xrelgéster X =
1, 3). To use a pin for general-purpose input, set the bit incthegiter. This turns off the output
driver FET.

To configure a pin for its alternate function, set the bit in theeBister. When the latch is set,
the “alternate output function” signal controls the output level (Figure 9-1). The operation of
ports 1 and 3 is discussed further in “Quasi-bidirectional Port Operation” on page 9-6.

9.4 PORT 0 AND PORT 2

Ports 0 and 2 are used for general-purpose I/O or as the external address/data bus. Port 0, showr
in Figure 9-2, differs from the other ports in not having internal pullups. Figure 9-3 on page 9-4
shows the structure of port 2. An external source can pull a port 2 pin low.

To use a pin for general-purpose output, set or clear the corresponding bit xreigéster X =
0, 2). To use a pin for general-purpose input, set the bit inxhegister to turn off the output
driver FET.

9-2 I

INPUT/OUTPUT PORTS

Vee
Alternate |
Read Output Igteﬁna
Latch LI Function ullup
N | P3.x
Internal
Bus pax O
; Latch
Write to
Latch CL Q#
1 . 1
P L.
Repa}d Alternate
in
Input
Function
A2239-01
Figure 9-1. Port 1 and Port 3 Structure
Address/
Read Data Control Vee
Latch
4 :
g PO.x
Internal 0 _D
Bus PO.x N
) Latch 1
Write to 0
Latch CL Q#
1
Read l\l
Pin

A2238-01

Figure 9-2. Port O Structure

8x931AA, 8x931HA USER’'S MANUAL

Read
Latch

Internal
Bus

Write to
Latch

Read
Pin

Lx—

CL

P2.x
Latch

Q#

Address

| Control

cc

Internal
Pullup

v

(]

P2.x

j

A2240-01

Figure 9-3. Port 2 Structure

When port 0 and port 2 are used for an external memory cycle, aninternal control signal switches
the output-driver input from the latch output to the internal address/dataline. “External Memory
Access” on page 9-7 discusses the operation of port 0 and port 2 as the external address/data bus

NOTE

Port 0 and port 2 are precluded from use as general purpose 1/O ports when

used as address/data bus drivers.

Port 0 internal pullups assist the logic-one output for memory bus cycles only.
Except for these bus cycles, the pullup FET is off. All other port O outputs are

open drain.

9-4

Inte|® INPUT/OUTPUT PORTS

9.5 READ-MODIFY-WRITE INSTRUCTIONS

Some ingtructions read the latch data rather than the pin data. The latch based instructions read

the data, modify the data, and then rewrite the latch. These are called “read-modify-write” in-
structions. Table 9-2 contains a complete list of these special instructions. When the destination
operand is a port, or a port bit, these instructions read the latch rather than the pin.

Table 9-2. Read-Modify-Write Instructions

Instruction Description
ANL logical AND, e.g., ANL P1, A
ORL logical OR, e.g., ORL P2, A
XRL logical EX-OR, e.g., XRL P3, A
JBC jump if bit = 1 and clear bit, e.g., JBC P1.1, LABEL
CPL complement bit, e.g., CPL P3.0
INC increment, e.g., INC P2
DEC decrement, e.g., DEC P2
DJINZ decrement and jump if not zero, e.g., DINZ P3, LABEL
L\:IIOV PX.Y, move carry bit to bit Y of port X
CLR PX.Y clear bit Y of port X
SETB PX.Y set bit Y of port x

It is not obvious that the last three instructions in Table 9-2 are read-modify-write instructions.
These instructions read the port (all eight bits), modify the specifically addressed bit, and write
the new byte back to the latch. These read-modify-write instructions are directed to the latch rath-
er than the pin in order to avoid possible misinterpretation of voltage (and therefore, logic) levels
at the pin. For example, a port bit used to drive the base of an external bipolar transistor cannot
rise above the transistor’'s base-emitter junction voltage (a value lower,{hawith a logic one

written to the bit, attempts by the CPU to read the port at the pin are misinterpreted as logic zero.
A read of the latch rather than the pin returns the correct logic-one value.

9-5

8x931AA, 8x931HA USER’'S MANUAL Inte|®

9.6 QUASI-BIDIRECTIONAL PORT OPERATION

Port 1, port 2, and port 3 have fixed internal pullups and are referred to as “quasi-bidirectional”
ports. When configured as an input, the pin impedance appears as logic one and sources current
(see the L0931 datasheet) in response to an external logic-zero condition. Port 0 is a “true bidirec-
tional” pin. The pin floats when configured as input. Resets write logical one to all port latches.

If logical zero is subsequently written to a port latch, it can be returned to input conditions by a
logical one written to the latch. For additional electrical information, refer to the cux@3it 8
datasheet.

NOTE
Port latch values change near the end of read-modify-write instruction cycles.
Output buffers (and therefore the pin state) update early in the instruction after
the read-modify-write instruction cycle.

Logical zero-to-one transitions in port 1, port 2, and port 3 utilize an additional pullup to aid this
logic transition (see Figure 9-4). This increases switch speed. The extra pullup briefly sources 100
times the normal internal circuit current. The internal pullups are field-effect transistors rather
than linear resistors. Pullups consist of three p-channel FET (pFET) devices. A pFET is on when
the gate senses logical zero and off when the gate senses logical one. pFET #1 is turned on for
two oscillator periods immediately after a zero-to-one transition in the port latch. A logic one at
the port pin turns on pFET #3 (a weak pullup) through the inverter. This inverter and pFET pair
form a latch to drive logic one. pFET #2 is a very weak pullup switched on whenever the associ-
ated nFET is switched off. This is a traditional CMOS switch convention. Current strengths are
1/10 that of pFET #3.

2 Osc. Periods Vee Vee Vee

n Lo AL

Port

Q#
From
. | [n

Port !

Latch
Input Data (] oﬁ :><}
Read Port Pin | >

A2242-01

Figure 9-4. Internal Pullup Configurations

9-6

Inte|® INPUT/OUTPUT PORTS

9.7 PORT LOADING

Output buffers of port 1, port 2, and port 3 can each sink 1.6 mA at logic zero (see V, specifi-
cations in the 8x931 data sheet). These port pins can be driven by open-collector and open-drain
devices. Logic zero-to-one transitions occur owly as limited current pulls the pin to alogic-one
condition (Figure 9-4 on page 9-6). A logic-zero input turns off pFET #3. Thisleaves only pFET
#2 weakly in support of the transition. In external bus mode, port O output buffers each sink 3.2
mA at logic zero (see V1 in the 8x931 data sheet). However, the port O pins require external
pullupsto drive external gate inputs. See the latest revision of the 8x931 datasheet for complete
electrical design information. External circuits must be designed to limit current requirements to
these conditions.

9.8 EXTERNAL MEMORY ACCESS

Port 2 outputs the upper address byte; the lower address byte and the data are multiplexed on port
0. Port 0 uses a strong internal pullup FET to output ones or a strong internal pulldown FET to
output zeros for the lower address byte and the data. Port 0 isin a high-impedance state for data
input. Port 2 uses a strong internal pullup FET to output ones or a strong internal pulldown FET
to output zeros for the upper address byte.

There are two types of external memory accesses. externa program memory and external data

memory (see Chapter 15, “External Memory Interface”). External program memories utilize sig-

nal PSEN# as a read strobe. Accesses to external data memory use RD# (read) or WR# (write) to
strobe the memory.

During instruction fetches, external program memory transfer instructions with 16-bit addresses.

External data memory transfers use an 8-bit or 16-bit address bus, depending on the instruction.
Table 9-3 lists the instructions that can be used for these bus widths.

Table 9-3. Instructions for External Data Moves

Bus Width Instructions
8 MOVX @Ri, A; MOVX A, @Ri
16 MOVX @DPTR, A; MOVX A, @DPTR

Whenever a 16-bit address is used, the high byte of the address comes out on Port 2, where it is
held for the duration of the read or write cycle. The Port 2 drivers use the strong pullups during
the entire time that they are emitting address bits that are 1s. This occurs when the MOVX @
DPTR instruction is executed. During this time, the Port 2 latch (the special function register)
does not have to contain 1s, and the contents of the Port 2 SFR are not modified. If the external
memory cycle is not immediately followed by another external memory cycle, the undisturbed
contents of the Port 2 SFR will reappear in the next cycle.

If an 8-bit address is being used (MOVX @ Ri), the contents of the Port 2 SFR remain at the Port
2 pins throughout the external memory cycle. In this case, Port 2 pins can be used to page the
external data memory.

I 9-7

8x931AA, 8x931HA USER’'S MANUAL Inte|®

In either case, the low byte of the address is time-multiplexed with the data byte on Port 0. The
ADDRESS/DATA signal drives both FETs in the Port O output buffers. Thus, in external bus
mode the Port 0 pins are not open-drain outputs and do not require external pullups.

During any accessto external memory, the CPU writes OFFH to the Port O latch (the special func-
tion register), thus obliterating the information in the Port 0 SFR.

NOTE

Avoid MOV PO instructions for external memory accesses. These instructions
can corrupt input code bytes at port O.

External signal ALE (address |atch enable) facilitates external address latch capture. The address
byte is valid after the ALE pin drives V, . For write cycles, valid data is written to port O just
prior to the write (WR#) pin asserting V, . Dataremainsvalid until WR# is deactivated. For read
cycles, data returned from external memory must appear at port 0 before the read (RD#) pinis
deactivated (refer to the 8x931 datasheet for specifications).

9-8 I

intel.

10

Timer/Counters

intel.

CHAPTER 10
TIMER/COUNTERS

This chapter describes the timer/counter peripherals on the 8x931. When operating as atimer, a
timer/counter runs for a programmed length of time, then issues an interrupt request. When op-
erating as a counter, atimer/counter counts negative transitions on an external pin. After a preset
number of counts, the counter issues an interrupt request.

10.1 TIMER/COUNTER OVERVIEW

The 8x931 contains three general-purpose, 16-bit timer/counters. Although they areidentified as
timer O, timer 1, and timer 2, you can independently configure each to operate in a variety of
modes as atimer or as an event counter. Each timer employs two 8-bit timer registers, used sep-
arately or in cascade, to maintain the count. The timer registers and associated control and capture
registers areimplemented as addressable special function registers (SFRs). Four of the SFRs pro-
vide programmabl e control of the timers asfollows:

¢ Timer/counter mode control register (TMOD) and timer/counter control register (TCON)
control timer O and timer 1

¢ Timer/counter 2 mode control register (T2MOD) and timer/counter 2 control register
(T2CON) control timer 2

Table 10-1 describes the external signals referred to in this chapter. Table 10-2 briefly describes
the SFRsreferred to in this chapter. For amap of the SFR address space, see Table C-1 on page
C-2.

10.2 TIMER/COUNTER OPERATION

The block diagram in Figure 10-1 depicts the basic logic of the timers. Here timer registers THx
and TLx (x =0, 1, and 2) connect in cascade to form a 16-bit timer. Setting the run control bit
(TRX) turns the timer on by alowing the selected input to increment TLx. When TLx overflows
it increments THx; when THx overflows it sets the timer overflow flag (TFx) in the TCON or
T2CON register. Setting the run control bit does not clear the THx and TLx timer registers. The
timer registers can be accessed to obtain the current count or to enter preset values. Timer 0 and
timer 1 can also be controlled by externa pin INTx# to facilitate pulse width measurements.

The C\Tx# control bit selects timer operation or counter operation by selecting the divided-down
system clock or external pin Tx as the source for the counted signal.

For timer operation (C/Tx# = 0), the timer register counts the divided-down system clock. The
timer register is incremented once every peripheral cycle (once every six states). That is, at the
internal clock frequency divided by six (F., «/6) or at the external oscillator frequency (Fog/12).
Exceptions are the timer 2 clock-out and baud rate modes, in which the timer register is incre-
mented at the internal clock rate (F, «). See “Clock and Reset Unit” on page 2-7. Table 2-5 on
page 2-12 and Figure 2-5 on page 2-10 show the relationship betygefR.F, state times, and
peripheral cycles. Also see thed81 clock circuit block diagram in Figure 2-4 on page 2-9.

I 10-1

8x931AA, 8x931HA USER’'S MANUAL

NOTE

intel.

The timing calcul ationsin this chapter are based on the value of Fg, « (Fosc/2).

Setting the low clock (PCON.5) bit forces the internal clock (F,) distributed

to the CPU and peripheralsto 3MHz. This bit is automatically set after areset.

Clearing this bit through firmware returns F, , to the normal clock frequency
(Fosc/2).

For counter operation (C/Tx# = 1), the timer register counts the negative transitions on the Tx ex-

ternal input pin. The external input is sampled during every SbP2 state. “Clock and Reset Unit”

on page 2-9 describes the notation for the states in a peripheral cycle. When the sample is high in
one cycle and low in the next, the counter is incremented. The new count value appears in the
register during the next S3P1 state after the transition was detected. Since it takes two peripheral
cycles to recognize a negative transition, the maximum count ratg/$E There are no restric-

tions on the duty cycle of the external input signal, but to ensure that a given level is sampled at
least once before it changes, it should be held for at least one full peripheral cycle.

Table 10-1. External Signals

Signal
Name

Type

Description

Alternate
Function

T2

110

Timer 2 Clock Input/Output. This signal is the external clock input
for the timer 2 capture mode; and it is the timer 2 clock-output for the
clock-out mode.

P1.0

T2EX

Timer 2 External Input. In timer 2 capture mode, a falling edge
initiates a capture of the timer 2 registers. In auto-reload mode, a
falling edge causes the timer 2 registers to be reloaded. In the up-
down counter mode, this signal determines the count direction:
high = up, low = down.

INT1:0#

External Interrupts 1:0. These inputs set the IE1:0 interrupt flags in
the TCON register. TCON bits IT1:0 select the triggering method:
IT1:0 = 1 selects edge-triggered (high-to-low);IT1:0 = 0 selects level-
triggered (active low). INT1:0# also serves as external run control for
timer 1:0 when selected by TCON bits GATEL:0#.

P3.3:2

Timer 1:0 External Clock Inputs. When timer 1.0 operates as a
counter, a falling edge on the T1:0 pin increments the count.

P3.5:4

10-2

TIMER/COUNTERS

Fook — | =6

Interrupt
| Request
THx | TLx Overflow
> @ bits) | (@ Bits) TFx >
1
Tx D
CITx#
x=0,1,0r2 TRx
A5197-01
Figure 10-1. Basic Logic of the Timer/Counters
Table 10-2. Timer/Counter and Watchdog Timer SFRs
Mnemonic Description Address
TLO Timer O Timer Registers. Used separately as 8-bit counters or in cascade 8AH
THO as a 16-bit counter. Counts an internal clock signal with frequency F, /6 8CH
(timer operation) or an external input (event counter operation).
TL1 Timer 1 Timer Registers. Used separately as 8-bit counters or in cascade 8BH
TH1 as a 16-bit counter. Counts an internal clock signal with frequency F /6 8DH
(timer operation) or an external input (event counter operation).
TL2 Timer 2 Timer Registers. TL2 and TH2 connect in cascade to provide a CCH
TH2 16-bit counter. Counts an internal clock signal with frequency F, /6 (timer CDH
operation) or an external input (event counter operation).
TCON Timer 0/1 Control Register. Contains the run control bits, overflow flags, 88H
interrupt flags, and interrupt-type control bits for timer 0 and timer 1.
TMOD Timer 0/1 Mode Control Register. Contains the mode select bits, 89H
counter/timer select bits, and external control gate bits for timer 0 and
timer 1.
T2CON Timer 2 Control Register. Contains the receive clock, transmit clock, and C8H
capture/reload bits used to configure timer 2. Also contains the run control
bit, counter/timer select bit, overflow flag, external flag, and external enable
for timer 2.
T2MOD Timer 2 Mode Control Register. Contains the timer 2 output enable and C9H
down count enable bits.
RCAP2L Timer 2 Reload/Capture Registers (RCAP2L, RCAP2H). Provide values CAH
RCAP2H to and receive values from the timer registers (TL2,TH2). CBH

10-3

8x931AA, 8x931HA USER’'S MANUAL Inte|®

10.3 TIMER O

Timer O functions as either a timer or event counter in four modes of operation. Figures 10-2,
10-3, and 10-4 show thelogical configuration of each mode.

Timer O is controlled by the four low-order bits of the TMOD register (Figure 10-5) and bits 5,
4, 1, and 0 of the TCON register (Figure 10-6). The TMOD register selects the method of timer
gating (GATEQ), timer or counter operation (T/C0#), and mode of operation (M 10 and M00). The
TCON register provides timer 0 control functions: overflow flag (TFO), run control (TRO), inter-
rupt flag (IEO), and interrupt type control (1TO0).

For normal timer operation (GATEO = 0), setting TRO allows TLO to be incremented by the se-
lected input. Setting GATEO and TRO allows external pin INTO# to control timer operation. This
setup can be used to make pulse width measurements. See “Pulse Width Measurements” on page
10-10.

Timer 0 overflow (count rolls over from all 1s to all 0s) sets the TFO flag generating an interrupt
request.
10.3.1 Mode 0 (13-bit Timer)

Mode 0 configures timer 0 as a 13-bit timer which is set up as an 8-bit timer (THO register) with
a modulo 32 prescalar implemented with the lower five bits of the TLO register (Figure 10-2). The
upper three bits of the TLO register are indeterminate and should be ignored. Prescalar overflow
increments the THO register.

10.3.2 Mode 1 (16-bit Timer)

Mode 1 configures timer 0 as a 16-bit timer with THO and TLO connected in cascade (Figure
10-2). The selected input increments TLO.

Fook ——1 +6

Interrupt
! Request
THx |, TLx |Overflow q
> (8 Bits) | (8 Bits) TFx >
l
Tx D
CITx#
TRx Mode 0: 13-bit Timer/Counter
Mode 1: 16-bit Timer/Counter
GATEX x=0orl
INTX#

A5198-01

Figure 10-2. Timer 0/1 in Mode 0 and Mode 1

10-4 I

Inte|® TIMER/COUNTERS

10.3.3 Mode 2 (8-bit Timer With Auto-reload)

Mode 2 configures timer 0 as an 8-bit timer (TLO register) that automatically reloads from the
THOregister (Figure 10-3). TLO overflow setsthetimer overflow flag (TFO) inthe TCON register
and reloads TLO with the contents of THO, which is preset by firmware. When the interrupt re-
quest isserviced, hardware clears TFO. The reload leaves THO unchanged. See “Auto-reload Set-
up Example” on page 10-9.

Fook — +6
Interrupt
TLx Overflow Request
> (8 Bits) TFx
™[AN
CITx# /\
Reload
TRx
THx
GATEX A
INTx# x=0or1
A5199-01

Figure 10-3. Timer 0/1in Mode 2, Auto-reload

10.3.4 Mode 3 (Two 8-bit Timers)

Mode 3 configures timer 0 such that registers TLO and THO operate as separate 8-bit timers (Fig-
ure 10-4). This mode is provided for applications requiring an additional 8-bit timer or counter.
TLO uses the timer O control bits C/TO# and GATEO in TMOD, and TRO and TFO in TCON in
the normal manner. THO is locked into a timer function (countjpg) and takes over use of

the timer 1 interrupt (TF1) and run control (TR1) bits. Thus, operation of timer 1 is restricted
when timer 0 is in mode 3. See the last paragraph of “Timer 1” on page 10-6 and “Mode 3 (Halt)”
on page 10-9.

I 10-5

8x931AA, 8x931HA USER’'S MANUAL Inte|®

Overdl Interrupt
THO vertiow Request
FcLk — =6 N . e
I:I (8 Bits)
TR1
Interrupt
0 N TLO Overflow TFO Request
o (3 !1) (8 Bits)
C/TO#
TRO
GATEO
INTO#
A5200-01

Figure 10-4. Timer 0 in Mode 3, Two 8-bit Timers

10.4 TIMER 1

Timer 1 functions as either atimer or event counter in three modes of operation. Figures 10-2 and
10-3 show the logical configuration for modes 0, 1, and 2. Timer 1's mode 3 is a hold-count
mode.

Timer 1 is controlled by the four high-order bits of the TMOD register (Figure 10-5) and bits 7,
6, 3, and 2 of the TCON register (Figure 10-6). The TMOD register selects the method of timer
gating (GATEL), timer or counter operation (T/C1#), and mode of operation (M11 and M01). The
TCON register provides timer 1 control functions: overflow flag (TF1), run control (TR1), inter-
rupt flag (IE1), and interrupt type control (IT1).

Timer 1 operation in modes 0, 1, and 2 is identical to timer 0. Timer 1 can serve as the baud rate
generator for the serial port. Mode 2 is best suited for this purpose.

For normal timer operation (GATEL = 0), setting TR1 allows timer register TL1 to be increment-
ed by the selected input. Setting GATE1 and TR1 allows external pin INT1# to control timer op-
eration. This setup can be used to make pulse width measurements. See “Pulse Width
Measurements” on page 10-10.

Timer 1 overflow (count rolls over from all 1s to all 0s) sets the TF1 flag, generating an interrupt
request.

10-6 I

Inte|® TIMER/COUNTERS

When timer 0 is in mode 3, it uses timer 1's overflow flag (TF1) and run control bit (TR1). For
this situation, use timer 1 only for applications that do not require an interrupt (such as a baud rate
generator for the serial interface port) and switch timer 1 in and out of mode 3 to turn it off and on.

TMOD Address: S:89H
Reset State: 0000 0000B

Timer/Counter Mode Control Register. Contains mode select, run control select, and counter/timer
select bits for controlling timer O and timer 1.

7 0
GATE1 C/T1# M11 MO1 I ‘ GATEO C/TO# M10 MO0

Bit Bit

. Function
Number Mnemonic

7 GATE1 Timer 1 Gate:

When GATEL1 = 0, run control bit TR1 gates the input signal to the timer
register. When GATEL = 1 and TR1 = 1, external signal INT1 gates the
timer input.

6 CIT1# Timer 1 Counter/Timer Select:

C/T1# = 0 selects timer operation: timer 1 counts the divided-down
system clock. C/T1# = 1 selects counter operation: timer 1 counts
negative transitions on external pin T1.

54 M11, MO1 Timer 1 Mode Select:

M11 MO1
0 0 Mode 0: 8-bit timer/counter (TH1) with 5-bit prescalar (TL1)
0 1 Mode 1: 16-bit timer/counter
1 0 Mode 2: 8-bit auto-reload timer/counter (TL1). Reloaded
from TH1 at overflow.
1 1 Mode 3: Timer 1 halted. Retains count.

3 GATEO Timer 0 Gate:

When GATEO = 0, run control bit TRO gates the input signal to the timer
register. When GATEO = 1 and TRO = 1, external signal INTO gates the
timer input.

2 CITO# Timer O Counter/Timer Select:

C/TO# = 0 selects timer operation: timer O counts the divided-down
system clock. C/TO# = 1 selects counter operation: timer O counts
negative transitions on external pin TO.

1,0 M10, MOO Timer 0 Mode Select:

M10 MOO
0 0 Mode 0: 8-bit timer/counter (TO) with 5-bit prescalar (TLO)
0 1 Mode 1: 16-bit timer/counter
1 0 Mode 2: 8-bit auto-reload timer/counter (TLO). Reloaded
from THO at overflow.
1 1 Mode 3: TLO is an 8-bit timer/counter. THO is an 8-bit timer
using timer 1's TR1 and TF1 bits

Figure 10-5. TMOD: Timer/Counter Mode Control Register

10-7

8x931AA, 8x931HA USER’'S MANUAL Inte|®

TCON Address: S:88H
Reset State: 0000 0000B

Timer/Counter Control Register. Contains the overflow and external interrupt flags and the run control
and interrupt transition select bits for timer 0 and timer 1.

7 0
TF1 TR1 TFO TRO H IEL IT1 IEO ITO

Bit Bit

. Function
Number Mnemonic

7 TF1 Timer 1 Overflow Flag:

Set by hardware when the timer 1 register overflows. Cleared by
hardware when the processor vectors to the interrupt routine.

6 TR1 Timer 1 Run Control Bit:
Set/cleared by firmware to turn timer 1 on/off.
5 TFO Timer O Overflow Flag:

Set by hardware when the timer O register overflows. Cleared by
hardware when the processor vectors to the interrupt routine.

4 TRO Timer 0 Run Control Bit:
Set/cleared by firmware to turn timer O on/off.

3 IE1 Interrupt 1 Flag:

Set by hardware when an external interrupt is detected on the INT1# pin.
Edge- or level- triggered (see IT1). Cleared when interrupt is processed
if edge-triggered.

2 IT1 Interrupt 1 Type Control Bit:

Set this bit to select edge-triggered (high-to-low) for external interrupt 1.
Clear this bit to select level-triggered (active low).

1 IEO Interrupt O Flag:

Set by hardware when an external interrupt is detected on the INTO# pin.
Edge- or level- triggered (see IT0). Cleared when interrupt is processed
if edge-triggered.

0 ITO Interrupt O Type Control Bit:

Set this bit to select edge-triggered (high-to-low) for external interrupt 0.
Clear this bit to select level-triggered (active low).

Figure 10-6. TCON: Timer/Counter Control Register

10-8

Inte|® TIMER/COUNTERS

10.4.1 Mode 0 (13-bit Timer)

Mode O configurestimer 0 as a 13-bit timer, which is set up as an 8-bit timer (TH1 register) with
a modulo-32 prescalar implemented with the lower five bits of the TL1 register (Figure 10-2).
The upper three bits of the TL 1 register are ignored. Prescalar overflow incrementsthe TH1 reg-
ister.

10.4.2 Mode 1 (16-bit Timer)

Mode 1 configures timer 1 as a 16-bit timer with TH1 and TL1 connected in cascade (Figure
10-2). The selected input increments TL 1.

10.4.3 Mode 2 (8-bit Timer with Auto-reload)

Mode 2 configures timer 1 as an 8-bit timer (TL1 register) with automatic reload from the TH1
register on overflow (Figure 10-3). Overflow from TL 1 setsoverflow flag TF1 in the TCON reg-
ister and reloads TL1 with the contents of TH1, which is preset by firmware. The reload leaves
TH21 unchanged. See “Auto-reload Setup Example” on page 10-9.

10.4.4 Mode 3 (Halt)

Placing timer 1 in mode 3 causes it to halt and hold its count. This can be used to halt timer 1
when the TR1 run control bit is not available (i.e., when timer 0 is in mode 3). See the final para-
graph of “Timer 1” on page 10-6.

10.5 TIMER 0/1 APPLICATIONS

Timer 0 and timer 1 are general purpose timers that can be used in a variety of ways. The timer
applications presented in this section are intended to demonstrate timer setup, and do not repre-
sent the only arrangement nor necessarily the best arrangement for a given task. These examples
employ timer 0, but timer 1 can be set up in the same manner using the appropriate registers.

10.5.1 Auto-reload Setup Example
Timer 0 can be configured as an eight-bit timer (TLO) with automatic reload as follows:

1. Program the four low-order bits of the TMOD register (Figure 10-5) to specify: mode 2
for timer 0, C/TO# = 0O to select /6 as the timer input, and GATEO = 0 to select TRO as
the timer run control.

2. Enter an eight-bit initial value ghin timer register TLO, so that the timer overflows after
the desired number of peripheral cycles.

3. Enter an eight-bit reload valuesjrn register THO. This can be the same @em
different, depending on the application.

4. Setthe TRO bit in the TCON register (Figure 10-6) to start the timer. Timer overflow
occurs after FFH + 1 grperipheral cycles, setting the TFO flag and loadipmto TLO
from THO. When the interrupt is serviced, hardware clears TFO.

I 10-9

8x931AA, 8x931HA USER’'S MANUAL Inte|®

5. Thetimer continuesto overflow and generate interrupt requests every FFH + 1 - ng
peripheral cycles.

6. To halt thetimer, clear the TRO bhit.

10.5.2 Pulse Width Measurements

For timer 0 and timer 1, setting GATEX and TRx alows an external waveform at pin INTx# to
turn the timer on and off. This setup can be used to measure the width of a positive-going pulse
present at pin INTx#. Pulse width measurements using timer 0 in mode 1 can be made asfollows:

1. Program the four low-order bits of the TMOD register (Figure 10-5) to specify: mode 1
for timer 0, C/T0# = O to select F, /6 asthetimer input, and GATEO = 1 to select INTO as
timer run control.

2. Enter aninitia value of al zerosin the 16-bit timer register THO/TLO, or read and store
the current contents of the register.

Set the TRO bit in the TCON register (Figure 10-6) to enable INTO.

4. Apply the pulse to be measured to pin INTO. The timer runs when the pulse waveformis
high.

5. Clear the TRO bit to disable INTO.

6. Read timer register THO/TLO to obtain the new value.

7. Caculate pulsewidth = 6T x (new value - initial value).

8. Example: B = 12 MHz, R« = 6 MHz, T, = 0.16667 ps. If the new value = 10,090
counts and the initial value = 0, the pulse width = 6(0.16667) x (10,000 —0) = 1 us x
10,000 =10 ms.

10.6 TIMER 2

Timer 2 is a 16-bit timer/counter. The count is maintained by two 8-bit timer registers, TH2 and
TL2, connected in cascade. The timer/counter 2 mode control register (T2MOD) as shown in Fig-
ure 10-11 on page 10-16) and the timer/counter 2 control register (T2CON) as shown in Figure
10-12 on page 10-17) control the operation of timer 2.

Timer 2 provides the following operating modes: capture mode, auto-reload mode, baud rate gen-
erator mode, and programmable clock-out mode. Select the operating mode with T2MOD and
TCON register bits as shown in Table 10-3 on page 10-15. Auto-reload is the default mode. Set-
ting RCLK and/or TCLK selects the baud rate generator mode.

Timer 2 operation is similar to timer 0 and timer 1. C/T2# selects the divided-down system clock
(timer operation) or external pin T2 (counter operation) as the timer register input. Setting TF2
allows TL2 to be incremented by the selected input.

The operating modes are described in the following paragraphs. Block diagrams in Figures 10-7
through 10-10 show the timer 2 configuration for each mode.

10-10 I

Inte|® TIMER/COUNTERS

10.6.1 Capture Mode

In the capture mode, timer 2 functions as a 16-bit timer or counter (Figure 10-7). An overflow
condition sets bit TF2, which you can use to request an interrupt. Setting the external enable bit
EXEN2 alowsthe RCAP2H and RCAP2L registersto capture the current value in timer registers
TH2 and TL2 in response to a 1-to-0 transition at external input T2EX. The transition at T2EX
also sets bit EXF2 in T2CON. The EXF2 bit, like TF2, can generate an interrupt.

T
TH2 | T2 [Ove
(8 Bits) | (8 Bits) > TR2
1
M M
,
Capture Interrupt
v v Request
RCAP2H|RCAP2L
T2EX D—)\
> EXF2
EXEN2
A5201-01

Figure 10-7. Timer 2: Capture Mode

I 10-11

8x931AA, 8x931HA USER’'S MANUAL Inte|®

10.6.2 Auto-reload Mode

The auto-reload mode configurestimer 2 asa 16-bit timer or event counter with automatic reload.
The timer operates an as an up counter or as an up/down counter, as determined by the down
counter enable bit (DCEN). At devicereset, DCEN is cleared, so in the auto-reload mode, timer
2 defaults to operation as an up counter.

10.6.2.1 Up Counter Operation

When DCEN = 0, timer 2 operates asan up counter (Figure 10-8). The external enable bit EXEN2
in the T2CON register provides two options (Figure 10-12). If EXEN2 = 0, timer 2 counts up to
FFFFH and sets the TF2 overflow flag. The overflow condition loads the 16-bit value in the re-
load/capture registers (RCAP2H, RCAP2L) into the timer registers (TH2, TL2). The values in
RCAP2H and RCAP2L are preset by firmware.

If EXEN2 = 1, the timer registers are reloaded by either atimer overflow or a high-to-low tran-
sition at external input T2EX. Thistransition also setsthe EXF2 bit in the T2CON register. Either
TF2 or EXF2 bit can generate atimer 2 interrupt request.

FcLk —>» +6 0 N TH2 TL2 Overflow

(8 Bits)

1 I/I (8 Bits)
30 TR2
CIT2#
Reload

I
RCAP2H : RCAP2L

L TF2

EXF2

Interrupt
Request

T2EX D—)\

EXEN2
A5202-01

Figure 10-8. Timer 2: Auto-reload Mode (DCEN = 0)

10-12 I

Inte|® TIMER/COUNTERS

10.6.3 Up/Down Counter Operation

When DCEN = 1, timer 2 operates as an up/down counter (Figure 10-9). External pin T2EX con-
trolsthe direction of the count (Table 10-1 on page 10-2). When T2EX ishigh, timer 2 counts up.
Thetimer overflow occurs at FFFFH which setsthe timer 2 overflow flag (TF2) and generates an
interrupt request. The overflow a so causesthe 16-bit valuein RCAP2H and RCAP2L to beload-
ed into the timer registers TH2 and TL 2.

When T2EX islow, timer 2 counts down. Timer underflow occurs when the count in the timer
registers (TH2, TL2) equals the value stored in RCAP2H and RCAP2L. The underflow sets the
TF2 bit and reloads FFFFH into the timer registers.

The EXF2 bit toggles when timer 2 overflows or underflows, changing the direction of the count.
When timer 2 operates as an up/down counter, EXF2 does not generate an interrupt. This bit can
be used to provide 17-bit resolution.

(Down Counting Reload Value)
|
FFH : FFH
l
Toggle
L ' A4 Interrupt
—0 TH2 | TL2 [Overflow TE2 Request
- : —————
—11 (8 Bits) 1 (8 Bits)
l
T2 D TR2
CIT2# /\ Count
A Direction
1=Up
0 = Down
|
RCAPZH: RCAP2L D
I T2EX
(Up Counting Reload Value)
A5203-01

Figure 10-9. Timer 2: Auto-reload Mode (DCEN = 1)

I 10-13

8x931AA, 8x931HA USER’'S MANUAL Inte|®

10.6.4 Baud Rate Generator Mode

Thismode configurestimer 2 asabaud rate generator for use with the serial port. Select thismode
by setting the RCLK and/or TCLK bits in T2CON. See Table 10-3. For details regarding this
mode of operation, refer to “Baud Rates” on page 13-10.

10.6.5 Clock-out Mode

In the clock-out mode, timer 2 functions as a 50%-duty-cycle, variable-frequency clock (Figure
10-10). The generated clock signal appears on pin T2. The input clock increments TLO at the in-
ternal clock frequency (Fy). The timer repeatedly counts to overflow from a preloaded value.
At overflow, the contents of the RCAP2H and RCAP2L registers are loaded into TH2/TL2. In
this mode, timer 2 overflows do not generate interrupts. The formula gives the clock-out frequen-
cy as a function of , (Table 2-4 on page 2-10) and the value in the RCAP2H and RCAP2L
registers:

Ferk
2 x (65535 - RCAP2H, RCAP2L)

Clock-out Frequency =

For a 12MHz system clock {f = 6 MHz), timer 2 has a programmable frequency range of 45.8
Hz to 3 MHz.

Timer 2 is programmed for the clock-out mode as follows:
1. Setthe T20E bit in T2MOD. This gates the timer register overflow to the +2 counter.

2. Clear the C/T2# bit in T2CON to select Fas the timer input signal. This also gates the
output of the +2 counter to pin T2.

3. Determine the 16-bit reload value from the formula and enter in the RCAP2H/RCAP2L
registers.

4. Enter a 16-bit initial value in timer register TH2/TL2. This can be the same as the reload
value, or different, depending on the application.

5. To start the timer, set the TR2 run control bit in T2CON.

Operation is similar to timer 2 operation as a baud rate generator. It is possible to use timer 2 as
a baud rate generator and a clock generator simultaneously. For this configuration, the baud rates
and clock frequencies are not independent since both functions use the values in the RCAP2H
and RCAP2L registers.

10-14 I

TIMER/COUNTERS

Feik 0 N TH2 | TL2
1) (8 Bits) | (8 Bits)
l
2 [(—e
TR2 ﬁ—‘
i
RCAP2H!RCAP2L
CIT2# :
T20E
Interrupt
Request
T2Ex [3 \ I/II\ EXF2 d
EXEN2
A5204-01
Figure 10-10. Timer 2: Clock Out Mode
Table 10-3. Timer 2 Modes of Operation
Mode RCLK OR TCLK CP/RL2# T20E
(in T2CON) (in T2CON) | (in T2MOD)
Auto-reload Mode 0 0
Capture Mode 0 1 0
Baud Rate Generator Mode 1 X X
Programmable Clock-Out X 0 1

10-15

8x931AA, 8x931HA USER’'S MANUAL Inte|®

T2MOD Address: S:C9H
Reset State: XXXX XxX00B
Timer 2 Mode Control Register. Contains the timer 2 down count enable and clock-out enable bits for
timer 2 .
7 0
— — — — | = — T20E DCEN
Nulrgnltber MneEr;r:tonic Function

7:2 — Reserved:

Values read from these bits are indeterminate. Write zeros to these bits.
1 T20E Timer 2 Output Enable Bit:

In the timer 2 clock-out mode, connects the programmable clock output
to external pin T2.

0 DCEN Down Count Enable Bit:
Configures timer 2 as an up/down counter.

Figure 10-11. T2MOD: Timer 2 Mode Control Register

10-16

intel.

TIMER/COUNTERS

T2CON

Timer 2 Control Register. Contains the receive clock, transmit clock, and capture/reload bits used to
configure timer 2. Also contains the run control bit, counter/timer select bit, overflow flag, external flag,
and external enable for timer 2.

Address: S:C8H
Reset State: 0000 0000B

7 0
TF2 EXF2 RCLK TCLK I ‘ EXEN2 TR2 CIT2# CP/RL2#
Bit Bit :

Number Mnemonic Function

7 TF2 Timer 2 Overflow Flag:

Set by timer 2 overflow. Must be cleared by firmware. TF2 is not set if
RCLK=1o0r TCLK = 1.

6 EXF2 Timer 2 External Flag:

If EXEN2 = 1, capture or reload caused by a negative transition on T2EX
sets EFX2. EXF2 does not cause an interrupt in up/down counter mode
(DCEN =1).

5 RCLK Receive Clock Bit:

Selects timer 2 overflow pulses (RCLK = 1) or timer 1 overflow pulses
(RCLK = 0) as the baud rate generator for serial port modes 1 and 3.

4 TCLK Transmit Clock Bit:

Selects timer 2 overflow pulses (TCLK = 1) or timer 1 overflow pulses
(TCLK = 0) as the baud rate generator for serial port modes 1 and 3.

3 EXEN2 Timer 2 External Enable Bit:

Setting EXEN2 causes a capture or reload to occur as a result of a
negative transition on T2EX unless timer 2 is being used as the baud
rate generator for the serial port. Clearing EXEN2 causes timer 2 to
ignore events at T2EX.

2 TR2 Timer 2 Run Control Bit:

Setting this bit starts the timer.

1 CIT2# Timer 2 Counter/Timer Select:

C/T2# = 0 selects timer operation: timer 2 counts the divided-down
system clock. C/T2# = 1 selects counter operation: timer 2 counts
negative transitions on external pin T2.

0 CP/RL2# Capture/Reload Bit:

When set, captures occur on negative transitions at T2EX if EXEN2 = 1.
When cleared, auto-reloads occur on timer 2 overflows or negative
transitions at T2EX if EXEN2 = 1. The CP/RL2# bit is ignored and timer 2
forced to auto-reload on timer 2 overflow, if RCLK =1 or TCLK = 1.

Figure 10-12. T2CON: Timer 2 Control Register

10-17

intel. 11

Serial 1/0O Port

intel.

CHAPTER 11
SERIAL I/O PORT

The serial input/output port supports communication with modems and other external peripheral
devices. Thischapter providesinstructionsfor programming the serial port and generating the se-
rial 1/0 baud rates with timer 1 and timer 2.

11.1 OVERVIEW

The serial 1/0 port provides both synchronous and asynchronous communi cation modes. It oper-
ates as a universal asynchronous receiver and transmitter (UART) in three full-duplex modes
(modes 1, 2, and 3). Asynchronous transmission and reception can occur simultaneously and at
different baud rates. The UART supports framing-bit error detection, multiprocessor communi-
cation, and automatic address recognition. The seria port also operates in a single synchronous
mode (maode 0).

The synchronous mode (mode 0) operates at a single baud rate. Mode 2 operates at two baud
rates. Modes 1 and 3 operate over awide range of baud rates, which are generated by timer 1 and
timer 2. Baud rates are detailed in “Baud Rates” on page 11-10.

The serial port signals are defined in Table 11-1, and the serial port special function registers are
described in Table 11-2. Figure 11-1 is a block diagram of the serial port.

For the three asynchronous modes, the UART transmits on the TXD pin and receives on the RXD
pin. For the synchronous mode (mode 0), the UART outputs a clock signal on the TXD pin and
sends and receives messages on the RXD pin (Figure 11-1). The SBUF register, which holds re-
ceived bytes and bytes to be transmitted, actually consists of two physically different registers.
To send, firmware writes a byte to SBUF; to receive, firmware reads SBUF. The receive shift reg-
ister allows reception of a second byte before the first byte has been read from SBUF. However,
if firmware has not read the first byte by the time the second byte is received, the second byte will
overwrite the first. The UART sets interrupt bits Tl and RI on transmission and reception, respec-
tively. These two bits share a single interrupt request and interrupt vector.

The serial port control (SCON) register (Figure 11-2) configures and controls the serial port.

Table 11-1. Serial Port Signals

Function I Multiplexed
Name Type Description With
TXD O Transmit Data. In mode 0, TXD transmits the clock signal. In P17

modes 1, 2, and 3, TXD transmits serial data.

RXD 110 Receive Data. In mode 0, RXD transmits and receives serial P1.6
data. In modes 1, 2, and 3, RXD receives serial data.

I 11-1

8x931AA, 8x931HA USER’'S MANUAL Inte|®

Table 11-2. Serial Port Special Function Registers

Mnemonic Description Address

SBUF Serial Buffer. Two separate registers, accessed with same address 99H
comprise the SBUF register. Writing to SBUF loads the transmit buffer;
reading SBUF accesses the receive buffer.

SCON Serial Port Control. Selects the serial port operating mode. SCON enables 98H
and disables the receiver, framing bit error detection, multiprocessor
communication, automatic address recognition, and the serial port interrupt

bits.
SADDR Serial Address. Defines the individual address for a slave device. A9H
SADEN Serial Address Enable. Specifies the mask byte that is used to define the B9H

given address for a slave device.

11.2 MODES OF OPERATION

The serial 1/0O port can operate in one synchronous and three asynchronous modes.

11.2.1 Synchronous Mode (Mode 0)

Mode 0 is a haf-duplex, synchronous mode, which is commonly used to expand the I/O capabil-
ities of adevicewith shift registers. The transmit data (TXD) pin outputs a set of eight clock puls-
es while the receive data (RXD) pin transmits or receives a byte of data. The eight data bits are
transmitted and received least-significant bit (L Sb) first. Shifts occur in the last phase (S6P2) of
every peripheral cycle, which corresponds to a baud rate of Fy/12. Figure 11-3 on page 11-6
shows the timing for transmission and reception in mode 0.

11.2.1.1 Transmission (Mode 0)
Follow these steps to begin atransmission:
1. Writeto the SCON register, clearing bits SM0, SM 1, and REN.
2. Write the byte to be transmitted to the SBUF register. This write starts the transmission.

Hardware executes the write to SBUF in the last phase (S6P2) of a peripheral cycle. At S6P2 of
the following cycle, hardware shifts the L Sb (D0) onto the RXD pin. At S3P1 of the next cycle,
the TXD pin goes low for the first clock-signal pulse. Shifts continue every peripheral cycle. In
the ninth cycle after the write to SBUF, the MSB (D7) ison the RXD pin. At the beginning of the
tenth cycle, hardware drives the RXD pin high and asserts TI (S1P1) to indicate the end of the
transmission.

11.2.1.2 Reception (Mode 0)

To start areception in mode O, write to the SCON register. Clear bits SM0, SM1, and Rl and set
the REN bit.

Hardware executesthewrite to SCON in thelast phase (S6P2) of a peripheral cycle (Figure 11-3).
In the second peripheral cycle following the write to SCON, TXD goes low at S3P1 for the first

11-2

Inte|® SERIAL I/0 PORT

clock-signal pulse, and the L Sb (DO0) is sampled onthe RXD pin at S5P2. The DO bit isthen shift-
ed into the shift register. After eight shiftsat S6P2 of every peripheral cycle, the LSb (D7) is shift-
ed into the shift register, and hardware asserts Rl (S1P1) to indicate a completed reception.
Firmware can then read the received byte from SBUF.

IB Bus
Write SBUF Read SBUE ﬁ
™0 [(J= SBUF SBUF
(Transmit) (Receive)
Mode 0
‘ Transmit Load SBUF
Receive
RxD [|V Shift Register
N\ - Interrupt
“ Request
RI TI
Serial 1/0 SCON

Control

A4123-01

Figure 11-1. Serial Port Block Diagram

I 11-3

8x931AA, 8x931HA USER’'S MANUAL Inte|®

SCON Address: 98H
Reset State: 0000 0000B

Serial Port Control Register. SCON contains serial I/O control and status bits, including the mode
select bits and the interrupt flag bits.

7 0
FE/SMO SM1 SM2 REN H TBS RB8 TI RI

Bit Bit

. Function
Number Mnemonic

7 FE Framing Error Bit:
To select this function, set the SMODO bit in the PCON register. Set by
hardware to indicate an invalid stop bit. Cleared by firmware, not by valid
frames.
SMO Serial Port Mode Bit 0:
To select this function, clear the SMODO bit in the PCON register.
Firmware writes to bits SMO and SM1 to select the serial port operating
mode. Refer to the SM1 bit for the mode selections.
6 SM1 Serial Port Mode Bit 1:
Firmware writes to bits SM1 and SMO (above) to select the serial port
operating mode.

SMO SM1 Mode Description Baud Rate'

0 0 0 Shift register Fosc/12
0 1 1 8-bit UART Variable
1 0 2 9-bit UART Fosc/6411 or Fogo/321t
1 1 3 9-bit UART Variable

TFosc = Oscillator frequency.

ttSelect by programming the SMOD1 bit in the PCON register (see
section “Baud Rates” on page 11-10).

5 SM2 Serial Port Mode Bit 2:

Firmware writes to bit SM2 to enable and disable the multiprocessor
communication and automatic address recognition features. This allows
the serial port to differentiate between data and command frames and to
recognize slave and broadcast addresses.

4 REN Receiver Enable Bit:
To enable reception, set this bit. To disable reception, clear this bit.
3 TB8 Transmit Bit 8:

In modes 2 and 3, firmware writes the ninth data bit to be transmitted to
TB8. Not used in modes 0 and 1.

Figure 11-2. SCON: Serial Port Control Register

11-4

Inte|® SERIAL I/0 PORT

SCON (Continued) Address: 98H
Reset State: 0000 0000B

Serial Port Control Register. SCON contains serial I/O control and status bits, including the mode
select bits and the interrupt flag bits.

7 0
FE/SMO SM1 SM2 REN H TB8 RBS TI RI

Bit Bit

Number Mnemonic Function

2 RB8 Receiver Bit 8:
Mode 0: Not used.

Mode 1 (SM2 clear): Set or cleared by hardware to reflect the stop bit
received.

Modes 2 and 3 (SM2 set): Set or cleared by hardware to reflect the ninth
data bit received.

1 TI Transmit Interrupt Flag Bit:
Set by the transmitter after the last data bit is transmitted. Cleared by
firmware.

0 RI Receive Interrupt Flag Bit:

Set by the receiver after the last data bit of a frame has been received.
Cleared by firmware.

Figure 11-2. SCON: Serial Port Control Register (Continued)

11-5

8x931AA, 8x931HA USER’'S MANUAL

Transmit
TD L[[L L
S3P1 S6P1 I—HJ
Write to
SBUF Jl_l 45
S6P2
shit I I o I
S6P2 S6P2 S6P2 S6P2
RXD | N_po X b1 Xp2 “peX D7 /
S6P2 S6P2 ?
Tl B |
|
Receive SiP1
TXD L[[L L
S3P1 S6P1 I—HJ
V\giéeotﬁ |I | setreN, clearri y
S6P2
Shift I I | I
S6P2 S6P2 S6P2 S6P2
o A o A
RXD — —] (] (]
S6P2 S6P2 SSIP2 .
RI | »
S1P1
A4124-02
Figure 11-3. Mode 0 Timing
\ /DO><DIXDZXD3XD4XD5XD6XD7XD8>/
T{ Data Byte
Start Bit Ninth Data Bit (Modes 2 and 3 only)
Stop Bit
A2261-01

11-6

Figure 11-4. Data Frame (Modes 1, 2, and 3)

Inte|® SERIAL I/0 PORT

11.2.2 Asynchronous Modes (Modes 1, 2, and 3)

The seria port has three asynchronous modes of operation:

* Mode 1. Mode 1 isafull-duplex, asynchronous mode. The data frame (Figure 11-4)
consists of 10 bits: one start bit, eight data bits, and one stop bit. Serial datais transmitted
on the TXD pin and received on the RXD pin. When a messageis received, the stop bitis
read in the RB8 bit in the SCON register. The baud rate is generated by overflow of timer 1
or timer 2 (see“Baud Rates” on page 11-10).

* Modes2 and 3. Modes 2 and 3 are full-duplex, asynchronous modes. The data frame
(Figure 11-4) consists of 11 bits: one start bit, eight data bits (transmitted and received L Sb
first), one programmable ninth data bit, and one stop bit. Serial datais transmitted on the
TXD pin and received on the RXD pin. On receive, the ninth bit isread from the RB8 bit in
the SCON register. On transmit, the ninth data bit is written to the TB8 bit in the SCON
register. Alternatively, you can use the ninth bit as a command/data flag.

— In mode 2, the baud rate is programmable to 1/32 or 1/64 of the oscillator frequency,
(Foso)-
— In mode 3, the baud rate is generated by overflow of timer 1 or timer 2.

11.2.2.1 Transmission (Modes 1, 2, 3)

Follow these steps to initiate a transmission:

1. Write to the SCON register. Select the mode with the SMO and SM1 bits, and clear the
REN bit. For modes 2 and 3, also write the ninth bit to the TB8 bit.

2. Write the byte to be transmitted to the SBUF register. This write starts the transmission.

11.2.2.2 Reception (Modes 1, 2, 3)

To prepare for a reception, set the REN bit in the SCON register. The actual reception is then ini-
tiated by a detected high-to-low transition on the RXD pin.

11.3 FRAMING BIT ERROR DETECTION (MODES 1, 2, AND 3)

Framing bit error detection is provided for the three asynchronous modes. To enable the framing
bit error detection feature, set the SMODO bit in the PCON register (see Figure 15-1 on page
15-3). When this feature is enabled, the receiver checks each incoming data frame for a valid stop
bit. An invalid stop bit may result from noise on the serial lines or from simultaneous transmission
by two CPUs. If a valid stop bit is not found, the hardware sets the FE bit in the SCON register
(see Figure 11-2).

Firmware may examine the FE bit after each reception to check for data errors. Once set, only
firmware or a reset can clear the FE bit. Subsequently received frames with valid stop bits cannot
clear the FE bit.

I 11-7

8x931AA, 8x931HA USER’'S MANUAL Inte|®

11.4 MULTIPROCESSOR COMMUNICATION (MODES 2 AND 3)

Modes 2 and 3 provide a ninth-bit mode to facilitate multiprocessor communication. To enable
this feature, set the SM2 bit in the SCON register (see Figure 11-2). When the multiprocessor
communication feature is enabled, the serial port can differentiate between data frames (ninth bit
clear) and address frames (ninth bit set). This alows the microcontroller to function as a slave
processor in an environment where multiple slave processors share a single serid line.

When the multiprocessor communication feature is enabled, the receiver ignores frames with the

ninth bit clear. The receiver examines frames with the ninth bit set for an address match. If the

received address matches the slave’s address, the receiver hardware sets the RB8 bit and the R
bit in the SCON register, generating an interrupt.

NOTE
The ES bit must be set in the IENO register to allow the RI bit to generate an
interrupt. The IENO register is described in Chapter 8, Interrupts.

The addressed slave’s firmware then clears the SM2 bit in the SCON register and prepares to re-
ceive the data bytes. The other slaves are unaffected by these data bytes because they are waitin
to respond to their own addresses.

11.5 AUTOMATIC ADDRESS RECOGNITION

The automatic address recognition feature is enabled when the multiprocessor communication
feature is enabled (i.e., the SM2 bit is set in the SCON register).

Implemented in hardware, automatic address recognition enhances the multiprocessor communi-
cation feature by allowing the serial port to examine the address of each incoming command
frame. Only when the serial port recognizes its own address does the receiver set the RI bit in the
SCON register to generate an interrupt. This ensures that the CPU is not interrupted by command
frames addressed to other devices.

If desired, you may enable the automatic address recognition feature in mode 1. In this configu-
ration, the stop bit takes the place of the ninth data bit. The RI bit is set only when the received
command frame address matches the device’s address and is terminated by a valid stop bit.

NOTE
The multiprocessor communication and automatic address recognition features
cannot be enabled in mode O (i.e., setting the SM2 bit in the SCON register in
mode 0 has no effect).

To support automatic address recognition, a device is identifiedjiweraaddress and laroad-
cast address.

11-8 I

Inte|® SERIAL I/0 PORT

11.5.1 Given Address

Each device has an individual address that is specified in the SADDR register; the SADEN reg-

ister is a mask byte that contains don't-care bits (defined by zeros) to form the dgveress-

dress. These don't-care bits provide the flexibility to address one or more slaves at a time. To
address a device by its individual address, the SADEN mask byte must be 1111 1111 The follow-
ing example illustrates how a given address is formed:

SADDR = 01010110
SADEN = 11111100
Given = 0101 01XX

The following is an example of how to use given addresses to address different slaves:

Slave A: SADDR = 11110001 Slave C: SADDR = 11110010
SADEN = 11111010 SADEN = 11111101
Given = 1111 0X0X Given = 1111 00X1

Slave B: SADDR = 11110011
SADEN = 11111001
Given 1111 OXX1

The SADEN byte is selected so that each slave may be addressed separately. For Slave A, bit 0
(the LSb) is a don't-care bit; for Slaves B and C, bit 0 is a 1. To communicate with Slave A only,
the master must send an address where bit O is clear (e.g., 1111 0000).

For Slave A, bit 1 is a 0; for Slaves B and C, bit 1 is a don’t-care bit. To communicate with Slaves
B and C, but not Slave A, the master must send an address with bits 0 and 1 both set (e.g.,
1111 0011).

For Slaves A and B, bit 2 is a don’t-care bit; for Slave C, bit 2 is a 0. To communicate with Slaves
A and B, but not Slave C, the master must send an address with bit O set, bit 1 clear, and bit 2 set
(e.g., 1111 0101).

To communicate with Slaves A, B, and C, the master must send an address with bit O set, bit 1
clear, and bit 2 clear (e.g., 1111 0001).
11.5.2 Broadcast Address

A broadcast address is formed from the logical OR of the SADDR and SADEN registers with
zeros defined as don't-care bits, e.g.:

SADDR = 01010110
SADEN = 11111100
(SADDR) OR (SADEN) = 1111 111X

The use of don't-care bits provides flexibility in defining the broadcast address, however, in most
applications, a broadcast address is OFFH.

I 11-9

8x931AA, 8x931HA USER’'S MANUAL

Thefollowing is an example of using broadcast addresses:

Slave A: SADDR
SADEN
Broadcast

intel.

= 1111 0001 Slave C: SADDR = 1111 0010

= 11111010 SADEN = 11111101

= 11111X11 Broadcast = 11111111
Slave B: SADDR = 11110011
SADEN = 11111001

Broadcast = 1111 1X11

For Slaves A and B, bit 2 is a don’t-care bit; for Slave C, bit 2 is set. To communicate with all of
the slaves, the master must send an address FFH.

To communicate with Slaves A and B, but not Slave C, the master can send an address FBH.

11.5.3 Reset Addresses

On reset, the SADDR and SADEN registers are initialized to 00H, that is, the given and broadcast
addresses are xxxx xxxx (all don't-care bits). This ensures that the serial port is backwards-com-
patible with MCS 51 microcontrollers that do not support automatic address recognition.

11.6 BAUD RATES

Y ou must select the baud rate for the serial port transmitter and receiver when operating in modes
1, 2, and 3. (The baud rate is preset for mode 0.) In its asynchronous modes, the serial port can
transmit and receive simultaneously. Depending on the mode, the transmission and reception
rates can be the same or different. Table 11-3 summarizes the baud rates that can be used for the

four seria 1/0 modes.

NOTE

Setting the low clock (PCON.5) bit forces the internal clock (F¢, «) frequency
distributed to the CPU and peripheralsto 3MHz. This bit is automatically set
after areset. Clearing this bit through firmware returns F, to the normal

clock frequency (Fogc /2).

11.6.1 Baud Rate for Mode 0

The baud rate for mode O isfixed at Fog /12.
Table 11-3. Summary of Baud Rates

Mode No. of Send and Receive Senq and Receive
Baud Rates | at the Same Rate | at Different Rates

0 1 N/A N/A

1 Many tt Yes Yes

2 2 Yes No

3 Many tt Yes Yes

t Baud rates are determined by overflow of timer 1 and/or timer 2.

11-10

Inte|® SERIAL I/0 PORT

11.6.2 Baud Rates for Mode 2

Mode 2 has two baud rates, which are selected by the SMOD1 bit in the PCON register (Figure
15-1 on page 15-3). The following expression defines the baud rate:

SMOD1 x FOSC

Serial /0 Mode 2 Baud Rate = 2 62

11.6.3 Baud Rates for Modes 1 and 3

Inmodes 1 and 3, the baud rate is generated by overflow of timer 1 (default) and/or timer 2. You
may select either or both timer(s) to generate the baud rate(s) for the transmitter and/or the receiv-
er.

11.6.3.1 Timer 1 Generated Baud Rates (Modes 1 and 3)

Timer 1 isthe default baud rate generator for the transmitter and the receiver in modes 1 and 3.
The baud rateis determined by the timer 1 overflow rate and the value of SMOD, as shown in the
following formula:

SMOD1 Timer 1 Overflow Rate

Serial I/0 Modes 1 and 3 Baud Rate = 2 35

11.6.3.2 Selecting Timer 1 as the Baud Rate Generator
To select timer 1 as the baud rate generator:

¢ Disablethetimer interrupt by clearing the ET1 bit in the IENO register (Figure 6-12 on page
6-25).

¢ Configuretimer 1 asatimer or an event counter (set or clear the C/T# bit in the TMOD
register, Figure 11-5 on page 11-7).

¢ Select timer mode 0-3 by programming the M1 and MO bits in the TMOD register.

In most applications, timer 1 is configured as a timer in auto-reload mode (high nibble of TMOD
= 0010B). The resulting baud rate is defined by the following expression:

SMOD1 FOSC

Serial I/0 Modes 1 and 3 Baud Rate = 2 x 33 X 12 X[256 —(TH1)]

Timer 1 can generate very low baud rates with the following setup:
¢ Enablethetimer 1 interrupt by setting the ET1 bit in the IENO register.
* Configuretimer 1 to run as a 16-bit timer (high nibble of TMOD = 0001B).
¢ Usethetimer 1 interrupt to initiate a 16-bit firmware reload.
Table 11-4 lists commonly used baud rates and shows how they are generated by timer 1.

I 11-11

8x931AA, 8x931HA USER’'S MANUAL Inte|®

Table 11-4. Timer 1 Generated Baud Rates for Serial /O Modes 1 and 3

Rate (Fosc) C/T# | Mode Fi/ealllouid
62.5 Kbaud (Max) 12.0 MHz 1 0 2 FFH
19.2 Kbaud 11.059 MHz 1 0 2 FDH
9.6 Kbaud 11.059 MHz 0 0 2 FDH
4.8 Kbaud 11.059 MHz 0 0 2 FAH
2.4 Kbaud 11.059 MHz 0 0 2 F4H
1.2 Kbaud 11.059 MHz 0 0 2 E8H
137.5 Baud 11.986 MHz 0 0 2 1DH
110.0 Baud 6.0 MHz 0 0 2 72H

110.0 Baud 12.0 MHz 0 0 1 FEEBH

11.6.3.3 Timer 2 Generated Baud Rates (Modes 1 and 3)

Timer 2 may be selected as the baud rate generator for the transmitter and/or receiver (Figure
11-5). The timer 2 baud rate generator mode is similar to the auto-reload mode. A rollover in the
TH2 register reloads registers TH2 and TL2 with the 16-bit value in registers RCAP2H and
RCAP2L, which are preset by firmware.

Thetimer 2 baud rate is expressed by the following formula

Timer 2 Overflow Rate
16

Serial I/O Modes 1 and 3 Baud Rate =

11.6.3.4 Selecting Timer 2 as the Baud Rate Generator

To select timer 2 as the baud rate generator for the transmitter and/or receiver, program the
RCLCK and TCLCK bitsinthe T2CON register as shown in Table 11-5. (Y ou may select differ-
ent baud rates for the transmitter and receiver.) Setting RCLK and/or TCLK putstimer 2 into its
baud rate generator mode (Figure 11-5). In this mode, arollover in the TH2 register does not set
the TF2 bit in the T2CON register. Also, a high-to-low transition at the T2EX pin setsthe EXF2
bit in the T2CON register but does not cause areload from (RCAP2H, RCAP2L) to (TH2, TL2).
Y ou can usethe T2EX pin asan additional external interrupt by setting the EXEN2 bitin T2CON.

NOTE
Turn the timer off (clear the TR2 bit in the T2CON register) before accessing
registers TH2, TL2, RCAP2H, and RCAP2L.

Y ou may configuretimer 2 asatimer or acounter. In most applications, it is configured for timer
operation (i.e., the C/T2# bit is clear in the T2CON register).

11-12 I

Inte|® SERIAL I/0 PORT

Table 11-5. Selecting the Baud Rate Generator(s)

RCLCK | TCLCK Receiver Transmitter
Bit Bit Baud Rate Generator | Baud Rate Generator
0 0 Timer 1 Timer 1
0 1 Timer 1 Timer 2
1 0 Timer 2 Timer 1
1 1 Timer 2 Timer 2

Note that timer 2 increments every state time (2T o¢) when it isin the baud rate generator mode.
In the baud rate formula that follows, “RCAP2H, RCAP2L” denotes the contents of RCAP2H
and RCAP2L taken as a 16-bit unsigned integer:

Fosc
32 x[65536 —(RCAP2H,RCAP2L)]

Serial /0 Modes 1 and 3 Baud Rate =

NOTE
When timer 2 is configured as a timer and is in baud rate generator mode, do
not read or write the TH2 or TL2 registers. The timer is being incremented
every state time, and the results of a read or write may not be accurate. In
addition, you may read, but not write to, the RCAP2 registers; a write may
overlap a reload and cause write and/or reload errors.

Table 11-6 lists commonly used baud rates and shows how they are generated by timer 2.

11-13

8x931AA, 8x931HA USER’'S MANUAL

Timer 1 Overflow

Note availability of additional external interrupt.

SMOD1
Fewk 0 TH2 | TL2 \
. | .
8 Bits 8 Bits . RX
T2 [}F——1 (8 Bits) 1 (8 Bits) +16 3 RX
——0
CiT2#
TR2 RCLCK:
1
. TX
+16 >
0 0 Clock
RCAPZH: RCAP2L
] TCLCK
T2EX [N EXF2 > Interrupt
I/I’ Request
EXEN2

A5205-01

11-14

Figure 11-5. Timer 2 in Baud Rate Generator Mode

Table 11-6. Timer 2 Generated Baud Rates

Oscillator
Baud Rate Frequency RCAP2H | RCAP2L
(FOSC)
375.0Kbaud 12 MHz FFH FFH
9.6 Kbaud 12 MHz FFH D9H
4.8 Kbaud 12 MHz FFH B2H
2.4 Kbaud 12 MHz FFH 64H
1.2Kbaud 12 MHz FEH C8H
300.0 baud 12 MHz FBH 1EH
110.0baud 12 MHz F2H AFH
300.0 baud 6 MHz FDH 8FH
110.0 baud 6 MHz F9H 57H

intel.

12

Keyboard Control

intel.

CHAPTER 12
KEYBOARD CONTROL

This chapter describes the 8x931 keyboard control interface.

12.1 OVERVIEW

The 8x931 keyboard control interface consists of 20 keyboard scan output lines, eight keyboard
scan input lines, and four LED drivers. The output lines, input lines, and LEDs are controlled by
the KBCON SFR, shown in Figure 12-2 below.

KBCON Address: F8H
Reset State: 0xx0 0000B

Keyboard Control Register. This register controls the keyboard scan input and output activity, enables
and configures the keyboard scan interrupt, and drives the keyboard LEDs.

7 0
IE2 — KSEN IT2 H LED3 LED2 LED1 LEDO

Bit Bit

) Function
Number | Mnemonic

7 IE2 Interrupt 2 Flag:

Set when external interrupt 2 is detected if the KSEN bit is set. Firmware
must clear this bit when the interrupt is serviced.

6 — Reserved:
Write a zero to this bit.
5 KSEN Keyboard Scan Enable:

Setting this bit enables the pullup resistors on the KSI input lines, enables

the keyboard scan interrupt (INT2#), and enables the LED drivers.

NOTE: The EX2 bitin the IENO SFR must also be set to enable the KSI
external interrupt.

4 IT2 Interrupt 2 Type Control Bit:

If set, a negative edge detect on any of the KSI pins causes IE2 to be set.
When clear, IE2 acts as a level 0 triggered interrupt.

3.0 LED3:0 LED Driver Control:

Clearing one of these bits turns on the associated LED. Setting a bit turns off

the associated LED.

NOTE: The KSEN (Keyboard Scan Enable) bit must be set in order to
activate the LED drivers. After reset, the LED driver control bits are
cleared. This means that when KSEN is set, the LEDs will turn on.
Firmware must set the LED driver control bits to turn off the LEDs.

Figure 12-1. KBCON: Keyboard Control Register

12-1

8x931AA, 8x931HA USER’'S MANUAL

Table 12-1. Keyboard Control Signals

intel.

Signal L Multiplexed
Name Type Description With
KS019 (@) Keyboard Scan Output. Quasi-bidirectional ports with weak P3.7/RD#
KSO18 internal pullup resistors used for the output side of the keyboard | P3.6/WR#
KSO17:16 scan matrix. P3.5:4/T1:0
KSO15:8 A15:8/P2.7:0
KSO7:0 P1.7:0
KSI7:0 | Keyboard Scan Input. Schmitt-trigger inputs with firmware- AD7:0/P0.7:0
enabled internal pullup resistors used for the input side of the
keyboard scan matrix.
LED3:0 (0] LED Drivers. These drive LEDs connected directly to V.. The —
current each driver is capable of sinking is given as V, , in the
datasheet.

NOTE: Other signals are defined in their respective chapters and in Appendix B, “Pin Descriptions”.

12.2 KEYBOARD SCAN IMPLEMENTATION

The keyboard scan matrix supports up to 160 keys using 20 keyboard scan outputs (KSO) and
eight keyboard scan inputs (KSI). The KSOs are implemented as quasi-bidirectiona ports with
weak interna pullup resistors. To reduce overall system cost, each KS| is implemented as a
Schmitt-trigger input incorporating an on-chip pullup resistor that may be enabled or disabled
through firmware.

A typical implementation of the keyboard scan matrix is shown in Figure 12-2. Note that the pul-
lup resistors are inactive until the pullup enable bit (KSEN in KBCON) is set.

12-2

Inte|® KEYBOARD CONTROL

Vee
A A
i i
B kso))
Vee .
Keyboard .
Data and .
Interrupt . /» /0
- KSI7 _J J
Pullup
Oe Enable |ksoo
/1 KSEN
"~ "KBCON.S5
KS0O20
8x931Hx
A5319-01

Figure 12-2. Keyboard Scan Matrix Application

12.2.1 Keyboard Interrupt Logic

Firmware must perform the keyboard scan polling operation by generating a running O through

the KSO outputs. The sampling operation is interrupt-driven using external interrupt 2 (INT2#).

All KSI inputs are ANDed together so that a negative edge (or level 0) on any of the KSI inputs
causes INT2# to be generated, setting KBCON'’s IE2 bit. When this interrupt occurs, firmware
must read the KSI inputs to determine which one(s) caused the interrupt.

In order for the keyboard scan interrupt to work properly, the following bits must be set in
KBCON (Figure 12-1) and IEN1 (Figure 5-11 on page 5-25):
* The global interrupt enable bit must be set (EA of IENO) — to allow the maskable interrupts
to be individually enabled.

¢ The enable bit for external interrupt 2 (INT2#) must be set (EX2 of IEN1) — to allow an
interrupt to be triggered in hardware.

* The keyboard scan enable bit must be set (KSEN of KBCON) — to activate the KSI pullups
and enable the keyboard scan interrupt flag (IE2 of KBCON). If KSEN is set, the IE2 flag
may be set even if the hardware interrupt is disabled (i.e., EX2 = 0).

¢ Additionally, the Interrupt 2 Type control bit (IT2 of KBCON) must be set or cleared to
specify whether the interrupt will be triggered on negative edge or level 0.

I 12-3

8x931AA, 8x931HA USER’'S MANUAL Inte|®

12.3 LED DRIVERS

TheLED drivers enable external LEDs to be connected directly betweenV .. and the LED driver
pins without the need for external resistors. The current each driver is capable of sinking isgiven
asV, » in the datasheet.

NOTE
The KSEN (keyboard scan enable) bit must be set to activate the LED drivers.

Power Supply

LED3:0
8x931

A5321-01

Figure 12-3. LED Driver Application

12-4

intel.

13

Minimum Hardware
Setup

intel.

CHAPTER 13
MINIMUM HARDWARE SETUP

This chapter discusses the basic operating requirements of the 8x931 and describes a minimum
hardware setup. Topics covered include power, ground, clock source, and device reset. For pa-
rameter values, refer to the device data sheet.

13.1 MINIMUM HARDWARE SETUP

Figure 13-1 shows a minimum hardware setup that employs the on-chip oscillator for the system

clock and provides power-on reset. Control signals, Ports 0—3, and the USB ports are not shown.
See “Clock Sources” on page 13-2 and “Power-on Reset” on page 13-7. PLLSEL selects the USB
operating rate. Refer to Table 2-4 on page 2-10.

v,
8X931 =<
Microcontroller
VCC
AVge
—— 0.3uF
XTALL RST _—I_
c1
— }:— Yoo
| T c2 PLLSEL _-I
* XTAL2
v A Ve (ROM)
ss EA# ® V¢ (ROMIess)
ECAP
1 1uF

HH

A4452-01

Figure 13-1. Minimum Setup

13.2 ELECTRICAL ENVIRONMENT

The &931 is a high-speed CHMOS device. To achieve satisfactory performance, its operating
environment should accommodate the device signal waveforms without introducing distortion or
noise. Design considerations relating to device performance are discussed in this section. See the
device data sheet for voltage and current requirements, operating frequency, and waveform tim-

ing.

I 13-1

8x931AA, 8x931HA USER’'S MANUAL Inte|®

13.2.1 Power and Ground Pins

Power the 8x931 from awell-regulated power supply designed for high-speed digital loads. Use
short, low impedance connections to the power (V) and ground (V ¢) pins.

13.2.2 Unused Pins

To provide stable, predictable performance, connect unused input pins to Vg or V.. Untermi-
nated input pins can float to amid-voltage level and draw excessive current. Unterminated inter-
rupt inputs may generate spurious interrupts.

For the 8x931HA, if the USB downstream ports are not used, the two datalines are still required
to be pulled low externally using 15K pulldown resistors so inputs are not floating.

13.2.3 Noise Considerations

Thefast rise and fall times of high-speed CHMOS logic may produce noise spikes on the power
supply lines and signal outputs. To minimize noise and waveform distortion, follow good board
layout techniques. Use sufficient decoupling capacitors and transient absorbers to keep noise
within acceptable limits. Connect 0.1 puF bypass capacitors betwgW,. and each Y pin.
Place the capacitors close to the device to minimize path lengths.

Multi-layer printed circuit boards with separatg\and ground planes help minimize noise. For
additional information on noise reduction, see Application Note AP-125, “Designing Microcon-
troller Systems for Electrically Noisy Environments.”

13.3 CLOCK SOURCES

The &931 can use an external clock (Figure 13-3), an on-chip oscillator with crystal or ceramic
resonator (Figure 13-2), or an on-chip phase-locked oscillator (locked to the external clock or the
on-chip oscillator) as its clock source. For USB operating rates, see Table 2-3 on page 2-9.

13.3.1 On-chip Oscillator (Crystal)

This clock source uses an external quartz crystal connected from XTALL to XTAL2 as the fre-
guency-determining element (Figure 13-2). The crystal operates in its fundamental mode as an
inductive reactance in parallel resonance with capacitance external to the crystal. Oscillator de-
sign considerations include crystal specifications, operating temperature range, and parasitic
board capacitance. Consult the crystal manufacturer’s data sheet for parameter values. With high
guality components, C1 = C2 = 30 pF is adequate for this application.

Pins XTAL1 and XTAL2 are protected by on-chip electrostatic discharge (ESD) devices, D1 and
D2, which are diodes parasitic to the RETs. They serve as clamps tg\and V.. Feedback
resistor R in the inverter circuit, formed from paralleled n- and p- channel FETSs, permits the PD
bit in the PCON register (Figure 14-1 on page 14-3) to disable the clock during powerdown.

Noise spikes at XTAL1 and XTALZ2 can disrupt microcontroller timing. To minimize coupling
between other digital circuits and the oscillator, locate the crystal and the capacitors near the chip
and connect to XTAL1, XTAL2, and) with short, direct traces. To further reduce the effects

of noise, place guard rings around the oscillator circuitry and ground the metal crystal case.

13-2 I

Inte|® MINIMUM HARDWARE SETUP

For amore in-depth discussion of crystal specifications, ceramic resonators, and the selection of
C1 and C2 see Application Note AP-158<tillators for Microcontrollers,” in the Embedded
Applications handbook. See Table 1.3 on page 1-6 for the order number.

13.3.2 On-chip Oscillator (Ceramic Resonator)

In cost-sensitive applications, you may choose a ceramic resonator instead of a crystal. Ceramic
resonator applications may require slightly different capacitor values and circuit configuration.
Consult the manufacturer’s data sheet for specific information.

To Internal
Timing Circuit

External

Quartz Crystal

: PD# —]
or Ceramic Resonator XTALL D1 :DO—
o r o
\J_ = el v
D2 p
—
C2 -
7

Re

A4143-03

Figure 13-2. CHMOS On-chip Oscillator

13.3.3 External Clock

To operate theX®31 from an external clock, connect the clock source to the XTALL pin as
shown in Figure 13-3. Leave the XTALZ2 pin floating. The external clock driver can be a CMOS
gate. If the clock driver is a TTL device, its output must be connectegd tthkough a 4.7 ®

pullup resistor.

For external clock drive requirements, see the device data sheet. Figure 13-4 shows the clock
drive waveform. The external clock source must meet the minimum high and low tigigs (T

and T <) and the maximum rise and fall times,({, and T,) to minimize the effect of ex-

ternal noise on the clock generator circuit. Long rise and fall times increase the chance that ex-
ternal noise will affect the clock circuitry and cause unreliable operation.

The external clock driver may encounter increased capacitance loading at XTAL1 when power
is applied, due to the interaction between the internal amplifier and its feedback capacitance (i.e.,
the Miller effect). Once the input waveform requirements are met, the input capacitance remains
under 20 pF.

13-3

8x931AA, 8x931HA USER’'S MANUAL Inte|®

External D
Clock XTAL1
CMOS
Clock Driver

N/C —— XTAL2

| VSS

Note: If TTL clock driver is used, connect a 4.7kQ pullup resistor from driver output to V.

A4142-03
Figure 13-3. External Clock Connection for the 8x931
~—— Tchex
Vee—05----
0.45V
TereL ;I
A4119-01

Figure 13-4. External Clock Drive Waveforms

13-4

Inte|® MINIMUM HARDWARE SETUP

13.4 RESET

A device reset initializes the 8x931 and vectors the CPU to address 0000H. A reset is ameans of
exiting the idle and powerdown modes or recovering from firmware malfunctions, and could be
aUSB reset initiated by the host or upstream hub.

NOTE
A reset isrequired after applying power.

To achieve avalid reset, V. must be within its normal operating range (see device data sheet)
and the reset signal must be maintained for at least two machine cycles (24 oscillator periods) af -
ter the oscillator has stabilized.

Devicereset isinitiated in two ways:
¢ externaly, by asserting the RST pin
* over the bus, by a USB-initiated reset
These reset mechanisms are ORed to create a single reset signal for the 8x931.

The power off flag (POF) in the PCON register indicates whether areset isawarm start or acold

start. A cold start reset (POF = 1) is areset that occurs after power has been off or V. hasfallen

below 3V, so the contents of volatile memory are indeterminate. POF is set by hardware when

V risesfrom lessthan 3V to itsnormal operating level. See “Power Off Flag” on page 14-1. A

warm start reset (POF = 0) is a reset that occurs while the chip is at operating voltage, for exam-
ple, an external reset used to terminate the idle or powerdown modes.

13.4.1 Externally-initiated Resets

To reset the 831, hold the RST pin at a logic high for at least two machine cycles (24 oscillator
periods) while the oscillator is running. Reset can be accomplished automatically at the time pow-
er is applied by capacitively coupling RST tg (see Figure 13-1 on page 13-1 and “Power-on
Reset” on page 13-7). The RST pin has a Schmitt trigger input and a pulldown resistor.

13.4.2 USB-initiated Resets

The &931 can be reset by the host or upstream hub if a reset signal is detected by the SIE. This
reset signal is defined as an SEO held longer than 2.5 ps. A USB-initiated reset will reset all of
the &931 hardware, even if the device is suspended (in which case it would first wake-up, then
reset). See “USB Power Control” on page 14-7 for additional information about USB-related sus-
pend and resume.

A peripheral that is reset must be re-enumerated. This procedure is given in “Enumeration” on
page 8-2.

NOTE

You must ensure that the time from connection of this USB device to the bus
until the entire reset process is complete (including firmware initialization of

I 13-5

8x931AA, 8x931HA USER’'S MANUAL Inte|®

the 8x931) isless than 10 ms. After 10 ms, the host may attempt to
communicate with the 8x931 to set its device address. If the 8x931 firmware
cannot respond to the host at this time, the host may disable the device after
three attempts to communicate.

13.4.2.1 USB Reset Separation

The 8x931 features an optional USB reset that functionsindependently from the chip reset. When

the PCON1 SFR’s URDIS bit is set, the981 core and peripherals will not reset when a USB
reset signal is detected. After ax081 with URDIS set detects a USB reset signal, it resets all
the USB blocks (including the USB SFRs), sets the URST bit in PCON1, and generates a USB
reset interrupt. For a complete description of the optional USB reset foraBg,&ee “USB Re-

set Separation” on page 5-17.

13.4.3 Reset Operation

When a reset is initiated, whether externally or over the bus, the port pins are immediately forced
to their reset condition as a fail-safe precaution, whether the clock is running or not.

The external reset signal and the USB-initiated reset signals are combined internally. For an ex-
ternal reset the voltage on the RST pin must be held high for at least two machine cycles after the
oscillator and on-chip PLL stabilize (approximately 5 ms). For USB-initiated resets, a five-bit
counter in the reset logic maintains the signal for the required time. Refer to Table 2-3 on page
2-9.

The external reset signal is asynchronous to the internal clock. The RST pin is sampled during
State 5 Phase 2 of every machine cycle. ALE and PSEN will maintain their current activities for
19 oscillator periods after a logic 1 has been sampled at the RST pin; that is, for 19 to 31 oscillator
periods after the external reset signal has been applied to the RST pin. The port pins are driven to
their reset state as soon as a valid high is detected on the RST pin, regardless of whether the clock
is running.

When a reset is detected, the CPU responds by triggering the internal reset routine. The reset rou-
tine loads the SFRs, including the ACC, B, stack pointer, and data pointer registers, with their
reset values (see Table C-1 on page C-2). Reset does not affect on-chip data RAM or the register
file. (However, following a cold start reset, these are indeterminate becgu$md/fallen too

low or has been off.) Following a synchronizing operation, the CPU vectors to address 0000. Fig-
ure 13-5 shows the reset timing sequence.

While the RST pin is high ALE, PSEN#, and the port pins are weakly pulled high. After RST is
pulled low, it will take 1 to 2 machine cycles for ALE and PSEN# to start clocking. For this rea-
son, other devices can not be synchronized to the internal timings ofBie. 8

13-6 I

Inte|® MINIMUM HARDWARE SETUP

NOTE

Externally driving the ALE and/or PSEN# pinsto O during the reset routine
may cause the device to go into an indeterminate state.

Powering up the 8x931 without areset may improperly initialize the program
counter and SFRs and cause the CPU to execute instructions from an
undetermined memory location.

13.4.4 Power-on Reset

To automatically generate a reset when power is applied, connect the RST pin to the V. pin
through a 0.3 yF capacitor as shown in Figure 13-1 on page 13-1.

When . is applied, the RST pin rises tq\ then decays exponentially as the capacitor charg-

es. The time constant must be such that RST remains high (above the turn-off threshold of the
Schmitt trigger) long enough for the oscillator to start and stabilize, plus two machine cycles. At
power up, \. should rise within approximately 10 ms. Oscillator start-up time is a function of
the crystal frequency. During power up, the port pins are in a random state until forced to their
reset state by the asynchronous logic. Reduciggaddickly to O causes the RST pin voltage to
momentarily fall below 0 V. This voltage is internally limited and does not harm the device.

|[«—— 12 Osc. Periods ——>]
|SS|SG|51|SZ|S3|S4|SS|SG|Sl|SZ|S3|S4|SS|SG|81|SZ|S3|S4|

RST / /:

= -)
Sample RST Sample RST (— Internal reset signal
| |
| |
T t
| |
|
ALE |
1
| | |
' |
PSEN# | |
! I
| |
PO X INST XADD X INST XADDRX INST XADDRX INST XADDRX INST XADRI

'«—— 11 Osc. Periods ——> P — 19 Osc. Periods —»I

A4457-01

Figure 13-5. Reset Timing Sequence

13-7

intel.

14

Special Operating
Modes

intel.

CHAPTER 14
SPECIAL OPERATING MODES

This chapter describesthe idle, powerdown, low-clock, and on-circuit emulation (ONCE) device
operating modes and the USB function suspend and resume operations. The SFRs associated with
these operations (PCON and PCONL1) are also described.

14.1 OVERVIEW

Theidle, low clock, and powerdown modes are power reduction modes for use in applications
where power consumption is a concern. User instructions activate these modes by setting bitsin
the PCON register. Program execution halts, but resumeswhen the modeis exited by aninterrupt.
Whileinidle or powerdown modes, the V.. pin is the input for backup power.

Following chip reset, the 8x931 operates in low-clock mode, wherein the CPU and on-chip pe-
ripherals are clocked at areduced rate until bus enumeration is accomplished. Thisreduces| . to
meet the 100 mA USB requirement.

Suspend and resume are low current modes used when the USB busisidle. The 8x931 enters sus-

pend when there is a continuous idle state on the bus lines for more than 3.0 msec. When adevice

is in suspend state, it draws less than 500 pA from the bus. Once a device is in the suspend state
its operation can be resumed by receiving resume signaling on the bus.

ONCE is a test mode that electrically isolates tk#3& from the system in which it operates.

Table 14-1 on page 14-6 lists the condition of the out pins for the various operating modes.

14.2 POWER CONTROL REGISTERS

The PCON special function register (Figure 14-1) provides bits for selecting: the idle, low-clock,
and powerdown modes, the power off flag, and two general purpose flags.

The PCONL1 SFR (Figure 14-2) provides USB power control, including the USB global sus-
pend/resume and USB function suspend. The PCON1 SFR is discussed further in “USB Power
Control” on page 14-7.

14.2.1 Power Off Flag

The Power Off Flag (POF) located at PCON.4, is set by hardware wheris¥s from 0 to 5
Volts. POF can also be set or cleared by software. This allows the user to distinguish between a
“cold start” reset and a “warm start” reset.

A cold start reset is one that is coincident with thg being turned on to the device after it was
turned off. A warm start reset occurs whilg.\is still applied to the device and could be gener-
ated, for example, by an exit from Power Down.

I 14-1

8x931AA, 8x931HA USER’'S MANUAL Inte|®

Immediately after reset, the user’s software can check the status of the POF bit. POF = 1 would
indicate a cold start. The software then clears POF and commences its tasks. POF = 0 immediate-
ly after reset would indicate a warm start.

NOTE
V cc must remain above 3 volts for POF to retain a 0.

14-2

intel.

SPECIAL OPERATING MODES

PCON

7

Address: 87H
Reset State: 001X 0000B

Power Control Register. Contains the power off flag (POF) and bits for enabling the idle and
powerdown modes and two general-purpose flags.

SMOD1

SMODO

LC POF || GF1 GFO PD IDL

Bit
Number

Bit
Mnemonic

Function

7

SMOD1

Double Baud Rate Bit:

When set, doubles the baud rate when timer 1 is used and mode 1, 2, or
3 is selected in the SCON register. See “Baud Rates” on page 11-10.

SMODO

SCON.7 Select:

When set, read/write accesses to SCON.7 are to the FE bit.
When clear, read/write accesses to SCON.7 are to the SMO bit.See the
SCON register (Figure 11-2 on page 11-4).

LC

Low-clock Mode Enable:

Setting this bit forces the internal clock (F) distributed to the CPU and
peripherals (but not the USB module) to 3 MHz. This bit is automatically
set after a reset. Clearing this bit through firmware returns F to the
normal clock frequency.

POF

Power Off Flag:

Set by hardware on the rising edge of Vcc. set or cleared by software.
This flag allows detection of a reset caused by a power failure. Vcc must
remain above 3 volts to retain this bit.

GF1

General Purpose Flag:

Set or cleared by firmware. One use is to indicate whether an interrupt
occurred during normal operation or during idle mode.

GFO

General Purpose Flag:

Set or cleared by firmware. One use is to indicate whether an interrupt
occurred during normal operation or during idle mode.

PD

Powerdown Mode Bit:

When set, activates powerdown mode. This bit should only be set if the
GSUS bit is also set. Cleared by hardware when an interrupt or reset
occurs.

IDL

Idle Mode Bit:

When set, activates idle mode.
Cleared by hardware when an interrupt or reset occurs.
If IDL and PD are both set, PD takes precedence.

Figure 14-1. PCON: Power Control Register

14-3

8x931AA, 8x931HA USER’'S MANUAL Inte|®

PCON1 Address: DFH
Reset State: XXxX X000B

USB Power Control Register. Facilitates the control and status relating to global suspend and
resume, USB reset separation, and remote wake-up of the 8x931.

7 0
— — — URDIS | | URST RWU GRSM GSUS
Bit Bit .
Number Mnemonic Function
75 — Reserved:
Write zeros to these bits.
4 URDIS USB Reset Disable:

When cleared by firmware, a chip reset occurs upon receiving of a USB
reset signal. This resets the MCS® 51 microcontroller core, USB blocks
and all peripherals.

When set by firmware, the core and peripherals will not reset when a
USB reset signal is detected. Upon detecting a USB reset signal, the
8x931 resets all the USB blocks (FIFOs, FIU, SIE, and transceiver), sets
the URST bit and generates a USB reset interrupt (refer to the
description of URST).

3 URST USB Reset Flag:

This flag will be set by hardware when a USB reset occurs, regardless of
whether the ESR bit in the IENL1 register is enabled or disabled. The
URST also serves as the interrupt bit, ORed with GRSM and GSUS bits
to generate an interrupt. Should be cleared by firmware when serving
the USB reset interrupt.

2 RWU Remote Wake-up Bit:

1 = wake-up. This bit is used by the USB function to initiate a remote

wake-up. Set by firmware to drive resume signaling on the USB lines to

the host or upstream hub. Cleared by hardware when resume signaling

is done.

NOTE: Do not set this bit unless the USB function is suspended
(GSUS =1 and GRSM = 0). See Figure 14-3 on page 14-11.

T Firmware should prioritize GRSM over GSUS if both bits are set simultaneously.

Figure 14-2. PCON1: USB Power Control Register

14-4

Inte|® SPECIAL OPERATING MODES

PCONL1 (Continued) Address: DFH
Reset State: xxxx x000B

USB Power Control Register. Facilitates the control and status relating to global suspend and
resume, USB reset separation, and remote wake-up of the 8x931.

7 0
— — — URDIS H URST RWU GRSM GSUS

1 GRSM Global Resume Bit:

1 = resume. Set by hardware when a global resume is detected on the
USB lines. This bit is ORed with GSUS to generate the interrupt®
Cleared by firmware when servicing the global suspend/resume
interrupt. (This bit can also be set/cleared by firmware for testability.)
This bit is not set if remote wakeup is used (see RWU). See Figure 14-3
on page 14-11.

0 GSUS Global Suspend Bit:

1 = suspend. This bit is set by hardware when global suspend is
detected on the USB lines. This bit is ORed with the GRSM bit to
generate the interrupt.t During the global suspend ISR, firmware should

set the PD bit to enter the suspend mode. Cleared by hardware when a
resume occurs. See Figure 14-3 on page 14-11.

T Firmware should prioritize GRSM over GSUS if both bits are set simultaneously.
Figure 14-2. PCON1: USB Power Control Register (Continued)

14-5

8x931AA, 8x931HA USER’'S MANUAL

intel.

14.3 IDLE MODE
Table 14-1. Pin Conditions in Various Modes
Reset Idle Mode Powerdown Mode Once Mode
Pin — Internal External Internal External —

Program Memory Program Memory

Memory Memory
ALE Weak High | 1 1 0 0 Float
PSEN# Weak High | 1 1 0 0 Float
Port 0 Pins Float Data Float Data Float Float
Port 1 Pins Weak High | Data Data Data Data Float
Port 2 Pins Weak High | Data Weak High | Data Weak High | Float
Port 3 Pins Weak High | Data Data Data Data Float
SOF# Weak High | Data Data Data Data Weak High
Dpo Float Data Data Float Float Weak High
Do Float Data Data Float Float Float
Dps:o Float Data Data Float Float Float
Dys:2 Float Data Data Float Float Float
UPWEN# Weak High | Data Data Data Data Float

Idle mode is a power reduction mode that reduces power consumption to approximately 40% of
normal. In thismode, program execution halts. |dle mode freezes the clocksto the CPU at known
states whil e the peripherals continue to be clocked (Figure 2-4 on page 2-9). The CPU status be-
fore entering idle mode is preserved. That is, the program counter, program status word register,
and register fileretain their datafor the duration of idle mode. The contents of the SFRsand RAM
are a so retained. The status of the port pins depends upon the location of the program memory:

* Internal program memory: the ALE and PSEN# pins are pulled high and the ports 0, 1, 2,
and 3 pins are driving the port SFR value (Table 14-1).

¢ Externa program memory: the ALE and PSEN# pins are pulled high; the port O pins are
floating; and the pins of parallel ports 1 and 3 are driving the port SFR value (Table 14-1);
port 2 pins are weakly pulled high.

14.3.1 Entering Idle Mode

To enter idle mode, set the PCON register IDL bit. The 8x931 enters idle mode upon execution
of theinstruction that sets the IDL bit. The instruction that setsthe IDL bit is the last instruction
executed.

CAUTION

If the IDL bit and the PD bit are set simultaneoudly, the 8x931 enters
powerdown mode.

14-6

Inte|® SPECIAL OPERATING MODES

14.3.2 Exiting Idle Mode

There are two ways to exit idle mode:

* Generate an enabled interrupt. Hardware clears the PCON register IDL bit which restores
the clocks to the CPU. Execution resumes with the interrupt service routine. Upon
completion of the interrupt service routine, program execution resumes with the instruction
immediately following the instruction that activated idle mode. The general purpose flags
(GF1 and GF0 in the PCON register) may be used to indicate whether an interrupt occurred
during normal operation or during idle mode. When idle mode is exited by an interrupt, the
interrupt service routine may examine GF1 and GFO.

¢ Reset the chip. A logic high on the RST pin clearsthe IDL bit in the PCON register directly
and asynchronoudly. This restores the clocks to the CPU. Program execution momentarily
resumes with the instruction immediately following the instruction that activated theidle
mode and may continue for anumber of clock cycles before the internal reset algorithm
takes control. Reset initializes the 8x931 and vectors the CPU to address 0000H.

NOTE
During the time that execution resumes, the internal RAM cannot be accessed;
however, it is possible for the port pinsto be accessed. To avoid unexpected
outputs at the port pins, the instruction immediately following the instruction
that activated idle mode should not writeto a port pin or to the external RAM.

14.4 USB POWER CONTROL

The 8x931 supports USB power control through firmware, including global suspend/resume and
remote wake-up. For flow charts of these operations, see Figure 14-3 on page 14-11.

14.4.1 Global Suspend Mode

When aglobal suspend is detected by the 8x931, the global suspend bit (GSUSin PCON1) is set
and the global suspend/resume interrupt is generated. Global suspend is defined as businactivity
for morethan 3 mson the USB root port. A devicethat isalready in suspend mode will not change
state. Hardware does not invoke any particular power-saving mode on detection of a global sus-
pend. You must implement power control through firmware within the global suspend/resume
ISR.

NOTE
Firmware must set the PD bit (PCON.1 in Figure 14-1 on page 14-3).

For global suspend on abus powered device, firmware must put the 8x931 into powerdown mode

to meet the USB limit of 500 pA. For self-powered devices, there is no hard requirement to put
the &931 into powerdown mode. To reduce power consumption, idle mode and low clock mode
can be used instead.

I 14-7

8x931AA, 8x931HA USER’'S MANUAL Inte|®

14.4.1.1 Powerdown (Suspend) Mode

The powerdown mode places the 8x931 in a very low power state. Powerdown mode stops the
oscillator and freezes all clocks at known states (Figure 2-4 on page 2-7). The CPU status prior
to entering powerdown mode is preserved (i.e., the program counter, program status word regis-
ter, and register file retain their data for the duration of powerdown mode). In addition, the SFRs
and RAM contents are preserved. The status of the port pins depends on the location of the pro-
gram memory:

¢ |nternal program memory: the ALE and PSEN# pins are pulled low and the pins of parallel
ports O - 3 are driving the port SFR value (Table 14-1 on page 14-6).

¢ Externa program memory: the ALE and PSEN# pins are pulled low; the port O pins are
floating; and the pins of ports 1 and 3 are reading data, and Port 2 pins are weakly pulled
high. (Table 14-1).

NOTE
V o may be reduced to as low as 2 V during powerdown to further reduce
power dissipation. Take care, however, that V - is not reduced until power-
down isinvoked.

14.4.1.2 Entering Powerdown (Suspend) Mode

To enter powerdown mode, set the PCON register PD bit. The 8x931 enters powerdown mode
upon execution of the instruction that sets the PD bit. The instruction that sets the PD bit is the
last instruction executed.

CAUTION
Do not put the 8x931 into powerdown mode unless the USB suspend signal is
detected on the USB lines (GSUS = 1). Otherwise, the device will not be able
to wake up from powerdown mode by aresume signal sent through the USB
lines. See“USB Power Control” on page 14-7.

14.4.1.3 Exiting Powerdown (Suspend) Mode

CAUTION

If V .. was reduced during the powerdown mode, do not exit powerdown until
V . is restored to the normal operating level.

There are two ways (other than USB signaling) to exit the powerdown mode:

1. Generate an enabled external interrupt (including the keyboard scan interrupt). The
interrupt signal must be held active long enough for the oscillator to restart and stabilize
(normally less than 10 ms). Hardware clears the PD bit in the PCON register which starts
the oscillator and restores the clocks to the CPU and peripherals. Execution resumes with
the interrupt service routine. Upon completion of the interrupt service routine, program
execution resumes with the instruction immediately following the instruction that
activated powerdown mode.

14-8 I

Inte|® SPECIAL OPERATING MODES

To enable an external interrupt, set the IENO register EX0 and/or EX1 bit[s]. The external
interrupt used to exit powerdown mode must be configured as level-sensitive and must be
assigned the highest priority. Holding the interrupt pin (INTO#, INT1#, or the keyboard
scan interrupt INT2#) low restarts the oscillator and bringing the pin high completes the
exit. The duration of theinterrupt signal must be long enough to allow the oscillator to
stabilize (normally less than 10 ms).

2. Generate areset. A logic high on the RST pin clears the PD bit in the PCON register
directly and asynchronously. This starts the oscillator and restores the clocks to the CPU
and peripherals. Program execution momentarily resumes with the instruction
immediately following the instruction that activated powerdown and may continue for a
number of clock cycles before the internal reset a gorithm takes control. Reset initializes
the 8x931 and vectors the CPU to address 0000H.

NOTE

During the time that execution resumes, the internal RAM cannot be accessed;
however, it is possible for the port pinsto be accessed. To avoid unexpected
outputs at the port pins, the instruction immediately following the instruction
that activated the powerdown mode should not write to a port pin or to the
external RAM.

14.4.2 Global Resume Mode

Upon detection of a global resume, the 8x931 sets the global resume bit (GRSM of PCON1),

clears the globa suspend bit (GSUS of PCON1), and generates the globa suspend/resume inter-

rupt. The 8x931 restarts the oscillator as soon as resume signaling is detected on the USB lines.

A resume condition is defined as a “J to anything” transition. This could be a K transition, or reset
signaling on the root port. A resume condition could be an enabled downstream port or con-
nect/disconnect of a downstream port in the disconnected, disabled, or suspended states.

NOTE
Since the 8931AA microcontroller does not support a hub interface, there are
no downstream ports to signal a resume condition. A resume condition can still
be caused by any of the other conditions mentioned above, however. Specific
details of the 8931AA are covered in Appendix E, “8x931AA Design
Considerations”.

Upon detection of a resume condition, tk8@3L applies power to the USB transceivers, the crys-
tal oscillator, and the PLL (although the PLL output is still gated-off). The device begins timing
two different time points, T1 and T2, as described in Chapter 11 bfiilwersal Serial Bus Spec-
ification.

After the clocks are restarted, the CPU program continues execution from where it was when the
device was put into powerdown mode. The device then services the resume interrupt service rou-
tine. After executing the resume ISR, th®31 continues operation from the point where it was
interrupted by the suspend interrupt.

I 14-9

8x931AA, 8x931HA USER’'S MANUAL Inte|®

14.4.3 USB Remote Wake-up

The 8x931 can initiate resume signaling to the USB lines through remote wake-up of the USB
function while it isin powerdown mode. While in powerdown mode, remote wake-up has to be
initiated through assertion of an enabled external interrupt. The external interrupt has to be en-
abled and it must be configured with level trigger and with higher priority than a suspend/resume
interrupt. A function resume restarts the clocks to the 8x931 and program execution branches to
an external interrupt service routine.

Within this external interrupt service routine, you must ensure GRSM = 0. If GRSM isclear, set

the remote wake-up bit (RWU in PCON1 — Figure 14-2) to drive resume signaling on the USB
lines to the host or upstream hub and to the enabled downstream ports). After executing the ex-
ternal ISR, the program continues execution from where it was put into powerdown mode and the
8x931 resumes normal operation.

14-10 I

SPECIAL OPERATING MODES

Suspend Command

Y

Host sends Suspend
down USB

Y

Suspend is detected by
USB device, setting GSUS
and causing interrupt

Y

Suspend ISR should
shut down all
external peripherals

Y

Suspend ISR sets PD bit
T (GSUS must not
be cleared)

Y

Setting PD bits causes
USB device to enter
powerdown mode.
Entire function must draw
less than 500 pA from USB.

Suspend Mode Entered

Remote Wake-up using
an external interrupt

Y

Hold external interrupt pin
(INTO#, INT1#, or INT2#)
low until oscillator stabilizes.
Normally 10ms or less

!

External ISR entered

Y

External ISR serviced

Y

RETI (from external ISR)

Y

Program returns to
command immediately
following the 'setb PD*
command in the original

Suspend ISR

Resume Command
from Host

Y

Host sends Resume
down USB

Y

USB device detects resume,
hardware sets GRSM,
clears GSUS and
starts oscillator

Y

When oscillator stabilizes,
program begins execution
at location immediately
following the
'setb PD' command.

Y

TIf GSUS is cleared, the USB device will not be able to detect resume signaling from the host.

A5307-01

Figure 14-3. Suspend/Resume Program with/without Remote Wake-up

14-11

8x931AA, 8x931HA USER’'S MANUAL Inte|®

(continued) (continued)

GRSM =1
GRSM bit = 0?
T
GRSM =0
Y
| Software sets RWU bit | Global Resume already Y
applied by host. | RSM
GSUS cleared by —)l Software clears GRS
Y hardware. No need to send
Remote Wake-up to host.
| Hardware clears GSUS bit |

Y

Y
RWU will clear Software enables
automatically when - .
RESUME signaling is done external peripherals

!

RETI
(from suspend ISR)

T Check to see if host has driven a resume onto the bus before function drives resume onto bus.

A5090-01

Figure 14-4. Suspend/Resume Program with/without Remote Wake-up (Continued)

14-12

Inte|® SPECIAL OPERATING MODES

145 LOW-CLOCK MODE

L ow-clock modeisthe default operation mode for the 8x931 upon reset. After reset, the CPU and
peripherals (excluding the USB module€) default to a3 MHz clock rate. The USB module always
runs at full speed. Low-clock mode ensures that the | . drawn by the 8x931, while in the unenu-
merated state following chip reset, isless than one unit load (100 mA).

After USB enumeration (and given that the request for more than one unit load of | . is granted),
firmware can clear the LC bit in PCON to clock the CPU and on-chip peripherals at the normal
rate.

14.5.1 Entering Low-clock Mode

Low-clock mode can be invoked through firmware anytime the device is unconfigured by the
host PC. To invoke low-clock mode, set the LC bit in the PCON register (Figure 14-1).

NOTE
The device reset routine sets the L C bit placing the 8x931 in low-clock mode.

14.5.2 Exiting Low-clock Mode

To switch the clock of the CPU and the peripheral s to the hardware-selected clock rate, clear the
LC bitinthe PCON register (Figure 14-1). The hardware clock rate sel ection determinesthe high-
est operating clock rate for the 8x931.

14.6 ON-CIRCUIT EMULATION (ONCE) MODE

The on-circuit emulation (ONCE) mode permits external testers to test and debug 8x931-based
systems without removing the chip from the circuit board. A clamp-on emulator or test CPU is
used in place of the 8x931 which is electrically isolated from the system.

14.6.1 Entering ONCE Mode
To enter the ONCE mode:
1. Assert RST toinitiate adevice reset.

2. While holding RST asserted, apply and hold logic levelsto 1/0 pins as follows: PSEN# =
high, ALE = low, and EA# = high.

3. Deassert RST, then remove the logic levels from PSEN# and ALE.

These actions cause the 8x931 to enter the ONCE mode. The pins of parallel ports O - 3, ALE,
and PSEN# pins are floating (Table 14-1 on page 14-6). Thus the device is electricaly isolated
from the remainder of the system which can then be tested by an emulator or test CPU. Note that
in the ONCE mode the device oscillator remains active.

14.6.2 Exiting ONCE Mode

To exit ONCE mode, reset the device.

I 14-13

intel.

15

External Memory
| nterface

intel.

CHAPTER 15
EXTERNAL MEMORY INTERFACE

This chapter covers various aspects of the external memory interface. It describes the signals as-
sociated with external memory operations and external bus cycle timing. This chapter also gives
the status of the pins for ports PO and P2 during bus cycles and busidle, and includes several ex-
ternal memory design examples.

15.1 OVERVIEW

The 8x931 interfaces with avariety of external memory devices. Datatransfer operations (8 bits)
are multiplexed on the lower address bits (A7:0).

The external memory interface comprisesthe external bus (ports 0 and 2) and the bus control sig-
nals described in Table 15-1. Figure 15-1 shows the structure of the externa address bus.

Microcontroller RAM / EPROM /
Flash
A15:8 N
P2 Ol A15:8
L4
A7:0
D7:0

A5358-01

Figure 15-1. Bus Structure

I 15-1

8x931AA, 8x931HA USER’'S MANUAL

Table 15-1. External Memory Interface Signals

intel.

Signal I Alternate
Name Type Description Function
A15:8 O | Address Lines. Upper byte of external memory address. P2.7:0/KSO15:8
AD7:0 1/0 | Address/Data Lines. Lower byte of external memory address P0.7:0/KSI7:0

multiplexed with data
ALE O Address Latch Enable. ALE signals the start of an external bus —
cycle and indicates that valid address information is available on
lines A15:8 and AD7:0. An external latch can use ALE to
demultiplex the address from the address/data bus (AD7:0).
EA# | External Access. Directs program memory accesses to on-chip —
or off-chip code memory. For EA# strapped to ground, all program
memory accesses are off-chip. For EA# strapped to V., program
accesses on-chip ROM if the address is within the range of the on-
chip ROM; otherwise the access is off-chip. The value of EA# is
latched at reset. For devices without on-chip ROM, EA# must be
strapped to ground.
PSEN# (@) Program Store Enable. Read signal output. Asserted for read —
accesses to external program memory.
RD# O | Read. Read signal output. Asserted for read accesses to external | P3.7/KSO19
data memory.
WR# O Write. Write signal output to external memory. P3.6/KSO18

15.2 EXTERNAL BUS CYCLES

This section describes the bus cycles the 8x931 executes to fetch code, read data, and write data
in external memory.

NOTE

For simplicity, the accompanying figures depict the bus cycle waveformsin
idealized form and do not provide precise timing information. For bus cycle
timing parameters refer to the 8x931AA, 8x931HA datasheet (order number:
273108-01).

An “i nadive exernd bus” exists whanthe8x931 is nd executing externa bus cycles. THsoccurs
under ary of the three following conditions:

¢ Busldle (Thechip isin normal operating mode but no external bus cycles are executing.)

* Thechipisinidle mode

¢ Thechipisin powerdown mode

15-2

Inte|® EXTERNAL MEMORY INTERFACE

15.2.1 Bus Cycle Definitions

There are three types of bus cycles: code fetch, data read, and data write. The external bus struc-
tureis the same as for MCS® 51 microcontrollers. The upper address bits (A15:8) are on port 2,
and the lower address hits (A7:0) are multiplexed with the data (D7:0) on port O.

Normally, two program fetches are generated during each machine cycle, even if the instruction
being executed doesn’t need more code bytes, the CPU simply ignores the extra fetch and the
Program Counter is not incremented.

If the Program Memory is external, then the Program Memory read strobe PSEN# is normally
activated twice per machine cycle. If access to external Data Memory occurs, two PSEN#'s are
skipped. This is a result of the address bus and data bus being used for Data Memory access.

NOTE

A Data Memory bus cycle takes twice as much time as a Program Memory bus
cycle.

When the CPU is executing from internal Program Memory, PSEN# is not activated, and pro-
gram addresses are not emitted. However, ALE continues to be activated twice per machine cycle
and is available as a clock output signal. Note that one ALE is skipped during the execution of
the MOVX instruction.

ALE ﬂ /—L

PSEN# / \ / | U
Port0 H AT:0 — istRIN) X AT:0 —

Port 2 X A15:8 X A15:8

A5359-01

Figure 15-2. External Code Fetch

15-3

8x931AA, 8x931HA USER’'S MANUAL

ALE / \

PsEn [

A

RD# \ /

Port 0 :)—(A7:0 from Rl or DPL))—(Data In) XA7:0 from PCL)—(Inst. In

Port 2 :)-(P2.7:0 or A15:8 from DPH

X A15:8 from PCH

A5360-01

Figure 15-3. External Data Read

ALE _/_\ /_\—/

PsENt [

A

WR# \ /

Port 0 :)—(A7:0 from RI or DPL X Data Out) X A7:0 from PCL)—(Inst. In

Port 2 :)-(P2.7:0 or A15:8 from DPH

A

A15:8 from PCH

A5361-01

15-4

Figure 15-4. External Data Write

Inte|® EXTERNAL MEMORY INTERFACE

15.3 PORT 0 AND PORT 2 STATUS

This section summari zes the status of the port 0 and port 2 pins when these ports are used as the
external bus. A more comprehensive description of the ports and their use is given in Chapter 9,
“Input/Output Ports”.

When port 0 and port 2 are used as the external memory bus, the signals on the port pins can orig-
inate from three sources:

¢ the 8x931 CPU (address bits, data bits)
¢ the port SFRs: PO and P2 (logic levels)
¢ an external device (data bits)

The port 0 pins (but not the port 2 pins) can aso be held in a high-impedance state. Table 15-2
lists the status of the port 0 and port 2 pins when the chip in is the normal operating mode and the
external busisidle or executing abus cycle.

Table 15-2. Port 0 and Port 2 Pin Status In Normal Operating Mode

8-bit/16-bit
Port Addressing Bus Cycle Bus Idle
Port 0 8 or 16 AD7:0 (1) High Impedance
8 P2 (2) P2
Port 2
16 A15:8 P2
NOTES:

1. During external memory accesses, the CPU writes FFH to
the PO register and the register contents are lost.

2. The P2 register can be used to select 256-byte pages in
external memory.

15.3.1 Port 0 and Port 2 Pin Status

The port pins have the same signals as those on the 8XC51FX. For an external memory instruc-
tion using a 16-bit address, the port pins carry address and data bits during the bus cycle. How-
ever, if theinstruction uses an 8-bit address (e.g., MOV X @Ri), the contents of P2 are driven onto
the pins. These pin signals can be used to select 256-hit pages in external memory.

During abus cycle, the CPU always writes FFH to PO, and the former contents of PO are lost. A
bus cycle does not change the contents of P2. When the busisidle, the port O pinsare held at high
impedance, and the contents of P2 are driven onto the port 2 pins.

I 15-5

8x931AA, 8x931HA USER’'S MANUAL Inte|®

15.4 EXTERNAL MEMORY DESIGN EXAMPLES

This section presents severa external memory designs for 8x931 systems. Many designs are pos-
sible. The examples apply for both 8x931AA and 8x931HA devices.

15.4.1 Example 1: 11-bit Bus, External RAM

Figure 15-5 shows a hardware configuration for accessing up to 2K bytes of external RAM. The
CPU inthis caseisexecuting from internal ROM. Port 0 serves as a multiplexed address/data bus
tothe RAM, 3 linesof port 2 are being used to page the RAM. If the Program Memory isinternal,
the other bits of P2 are available as input/output. The CPU generates RD# and WR# signals as
needed during external RAM accesses.

A N
<:> P1 PO K-)| PATA
Microcontroller |

with on-chip Vee _ RAM
code memory I Y] Latch k)
EA# v
ALE >
s ADDR
— >
[>
P3 P2 o '
RD# \4_ >1 |
page bits
WR# <:>|/o
WE# CE#

1

A A

A4463-01

Figure 15-5. Bus Diagram for Example 1: 8x931AA/HA

15-6 I

Inte|® EXTERNAL MEMORY INTERFACE

15.4.2 Example 2: 16-bit Bus, External ROM

The hardware configuration for external program execution is shown in Figure 15-6 below. Note
that the 16 1/0 lines (ports 0 and 2) are dedicated to bus functions during external Program Mem-
ory fetches. Port 0 (PO in Figure 15-6) serves as a multiplexed address/data bus. It emits the low
byte of the Program Counter (PCL) as an address, and then goes into a float state awaiting the
arrival of the code byte from the Program Memory. During the time that the low byte of the Pro-
gram Counter isvalid on PO, the signal ALE (Address Latch Enable) clocks this byte into an ad-
dress latch. Meanwhile, port 2 (P2 in Figure 15-6) emits the high byte of the Program Counter
(PCH). Then PSEN# strobes the EPROM and the code byteis read into the microcontroller.

Microcontroller EPROM
without on-chip
code memory
A N
<:> P1 Po K Dl nsTr
EA# __l |__>
= Latch >
ALE >
ADDR
P2 >
) P
PSEN# 3| OE#

A5005-01

Figure 15-6. Bus Diagram for Example 2: 8x931AA/HA

I 15-7

8x931AA, 8x931HA USER’'S MANUAL Inte|®

15.4.3 Example 3: 16-bit Bus, External EPROM and RAM

In this example, an 8x931AA/HA operates with a 16-bit external address bus interfaced to 64
Kbytes of EPROM and 64 Kbytes of RAM (Figure 15-7). The 8xX931AA/HA will assert RD# and
WR# signals as needed during external RAM accesses. The read strobe to external EPROM,
PSEN#, is used for external program fetches.

Microcontroller EPROM RAM
(without on-chip (64 Kbytes) (64 Kbytes)
code memory)
EA# 1 _E CE# _E CE#
A15:8 N
P2] A58 A15:8

ALE

Code Data

A/D7:0 A7:0

PO K D Latch [N A7:0

D7:0 D7:0
WR# RD# PSEN# OE# OE# WE#

A4287-03

Figure 15-7. Bus Diagram for Example 3: 8x931AA/HA

15-8

intel.

16

Verifying Nonvolatile
Memory

intel.

CHAPTER 16
VERIFYING NONVOLATILE MEMORY

This chapter discusses the 83931 on-chip memory and provides the procedure for verifying on-
chip nonvolatile memory.

16.1 83931 MEMORY

The MCS® 51 architecture provides separate 64-Kbyte address spaces for program memory and
data memory (see “8x931 Memory” on page 2-11). Table 2-1 on page 2-3 lists the available on-
chip ROM and RAM memory options for the 83931.

16.2 NONVOLATILE MEMORY

For ROM devices (83931), on-chip program memory is located at the lowest addresses of the pro-
gram memory address space. ROM devices also make provision for storing signature bytes, an
encryption array, and lock bits in on-chip nonvolatile memory outside the program and data
memory address spaces.

In some applications, it is desirable that program code be secure from unauthorized access. The
83931 offers two types of protection for on-chip program code. On-chip program code is encrypt-
ed when read out for verification if the encryption array is programmed. Lock bits restrict external
access to on-chip program memory.

16.3 VERIFYING ON-CHIP NONVOLATILE MEMORY

This section provides instructions for verifying the contents of the following nonvolatile memory
functions on the 83931 ROM device:

¢ on-chip program memory (8 Kbytes)
¢ Jock bits (3 bits)
* signature bytes (3 bytes)

The 83931 is verified in the same manner as MCS 51 microcontrollers. Verify operations differ
from normal device operation. Verify operations are performed with the device installed in a
ROM or EPROM programmer. The CPU does not execute instructions. Memory accesses are
made one byte at a time using addresses externally applied to ports P3:4-5, P2:0-5 and P1. See
Table 16-2 on page 16-3 for pin usage during verify operations. For acompletelist of device sig-
nal descriptions, see Appendix B.

To preserve the security of on-chip program code, the encryption array cannot be verified.

I 16-1

8x931AA, 8x931HA USER’'S MANUAL

Table 16-1. Signal Descriptions (Verify Mode)

intel.

Signal - Alternate
Name Type Description Function
P0.7:0 (@] Port 0. Eight-bit, open-drain, bidirectional I/O port. For verify
operations, use as the data port. See Table 16-2 and Figure 16-1.
P1.7:0 | Port 1. Eight-bit, bidirectional I/O port with internal pullups. For
verify operations, use for low byte of address. See Table 16-2 and
Figure 16-1.
P2.7:0 | Port 2. Eight-bit, bidirectional I/O port with internal pullups. For
verify operations, use P2.5:0 as A8-13 and P2.6 and P2.7 to
ground. See Table 16-2 and Figure 16-1.
P3.7:0 | Port 3. Eight-bit, bidirectional I/O port with internal pullups. For
verify operations, use P3.4 and P3.5 as A14 and A15, P3.3 to
ground. For P3.6 and P3.7, see Table 16-2 and Figure 16-1.
ALE | Address Latch Enable. For verify operations, connect this pin to
VCC
EA# | External Enable. For verify operations, connect this pin to V.
PSEN# | Program Store Enable. For verify operations, connect this pin to
VSS
RST | Reset. For verify operations, connect this pin to V¢

16.3.1 Verify Modes

Table 16-2 lists the verify modes and provides details about the setup. The encryption array, lock
bits, and signature bytes reside in nonvolatile memory outside the program and data memory ad-
dress spaces.

16.3.2 General Setup

Figure 16-1 showsthe general setup for verifying nonvolatile memory on the 83931. The control-
ler must be running with an oscillator frequency of 4 MHz to 6 MHz. Set up the controller as
shown in Table 16-2 to verify on-chip program memory, signature bytes and lockbits. Data ap-
pears on port 0. Connect RST, ALE, and EA# to V . and PSEN# to ground.

16-2

Inte|® VERIFYING NONVOLATILE MEMORY

Table 16-2. Verify Modes

Verify Modes RST | PSEN# | EA# | ALE P3[7:3] P2[7:0] P1[7:0]
Verify On-chip Program Memory | 1 0 1 1 11AA0 00AAAAAA | AAAAAAAA
Verify Signature Bytes 1 0 1 1 00..0 00...... AAAAAAAA
Verify Lock bit 1 0 1 1 10..0 00...... |........
+5V
N om i}
A0 - A7 P1
Address —V po| Data >
(16 Bits) N +5V
A8 - A13 P2.0-P2.5 T
V EA#
Al4 —— P3.4 ALE
Al5 —— P35 RST
XTAL2 PSEN#
4 MHz | I P3.3
to 3 P2.7
6 MHz | T P2.6
- XTAL1 —
Vss P3.7 ——" Control Signals
P3.6 (see Table 16-2)
A4520-01

Figure 16-1. Setup for Verifying Nonvolatile Memory

16.3.3 Verify Algorithm

Use this procedure to verify program code, signature bytes, and lock bits stored in nonvolatile
memory on the 83931. To preserve the secrecy of the encryption key byte sequence, the encryp-
tion array cannot be verified. Verification can be performed on a block of bytes. The procedure
for verifying the 83931 is as follows:

1. Set up the microcontroller for operation in the appropriate mode according to Table 16-2.
2. Input the 16-bit address on ports P1 and P2.0 - P2.5 and P3.4:5.

3. Wait for the data on port PO to become valid (T oy gy = 48 clock cycles), then compare the
data with the expected value.

4. Repeat steps 1 through 3 until all memory locations are verified.

16-3

8x931AA, 8x931HA USER’'S MANUAL Inte|®

16.3.4 Verifying On-chip Program Memory

To verify that on-chip program memory is correctly programmed, perform the procedure de-
scribed in “Verify Algorithm” on page B-3 using the veify on-chip program menory mode(Ta-
ble 16-2). For information about using on-chip program memay, see “Considerations for On-
chip Program de Memay” on page 16-5.

16.3.5 Verifying the Lock Bits

The 8x931 provides lock hitsfor protecting program coa stored inthe orchip programmemory
from ureuthorized acess. To \erify that the lock bitsare correctly programmed, prformthe po-
cedure described in“Verify Algorithm” on page B-3 using theverify lock bit mode(Tale 162).

Table 16-3. Lock Bit Function

Program Lock Bits
Protection Type

LBl | LB2 | LB3

1 U U U No program lock features enabled. (Code verify will still be
encrypted by the encryption array if programmed.)

2 P U U MOVC instructions executed from external program memory
are disabled from fetching code bytes from internal memory,
EA is sampled and latched upon reset.

3 P P U Same as 2, verify disabled.

4 P P P Same as 3, external execution is disabled.

P = Programmed
U = Unprogrammed
Any other combination of the Lock Bits is undefined.

16.3.6 Verifying the Signature Bytes

The 83931 mntains fectory-programmed gynature bytes. Thes bytes ae locaedin nonvolatile
memay outside the program ard data memaoy address spaceat 30H, 31H,60H. Toread the sig-
nature bytes, perform the pocedure described in “Verify Algorithm” on page B-3 using the ver-
ify signature mock (Table 16-2). Signaure byte values arelisted in Table 16-4.

Table 16-4. Contents of the Signature Bytes

ADDRESS CONTENTS DEVICE TYPE
30H 89H Indicates Intel devices
31H 59H Indicates 51Fx + USB core product
60H 1AH Indicates 83931AA/HA device

16-4

Inte|® VERIFYING NONVOLATILE MEMORY

16.4 ENCRYPTION ARRAY

The 83931 includes a 64-byte encryption array located in nonvolatile memory outside the pro-
gram and data memory address spaces. To preserve the secrecy of the encryption key byte se-
guence, the encryption array cannot be verified.

Program code verification is performed as usual, except as each byte of program code is read, it
is exclusve-NORed (XNOR) with the corresponding key byte from the encryption array. If the
encryption array is programmed with key bytes, the program code is encrypted during verifica-
tion and can not be used without knowledge of the key byte sequence. If the encryption array is
not programmed (till all 1s), the program codeis placed on the databusin its original, unencrypt-
ed form.

CAUTION
If the encryption feature isimplemented, the portion of the on-chip program
code memory that does not contain program code should be filled with
“random” byte values other than FFH to prevent the encryption key sequence
from being revealed.

16.5 CONSIDERATIONS FOR ON-CHIP PROGRAM CODE MEMORY

On-chip, nonvolatile code memory is located at the lowest addresses of program memory address
space. The first instruction following device reset is fetched from 0000H. It is recommended that
user program code start at address 0100H. Use a jump instruction to 0100H to begin execution of

the program. For information on address spaces, see “8x931 Memory” on page 2-11.

Addresses outside the range of on-chip code memory access external memory. With EA# =1 and
both on-chip and external code memory implemented, you can place program code at the highest
on-chip memory addresses. When the highest on-chip address is exceeded during execution, pro-

gram code fetches automatically rollover from on-chip memory to external memory.

With EA# = 1 and only on-chip program code memory, multi-byte instructions and instructions
that result in call returns or prefetches should be located a few bytes below the maximum address

to avoid inadvertently exceeding the top address.

CAUTION
Execution of program code located in the top few bytes of the on-chip memory
may cause prefetches from the next higher addresses (i.e., external memory).
External memory fetches make use of port 0 and port 2 and may disrupt
program execution if the program uses port 0 or port 2 for a different purpose.

I 16-5

intel.
A

| nstruction Set
Reference

APPENDIX A
INSTRUCTION SET REFERENCE

This appendix contains reference material for the 8x931 instruction set, which isidentical to in-
struction set for the MCSP® 51 architecture. The appendix includes an opcode map, a detailed de-
scription of each instruction, and the following tables that summarize notation, addressing,
instructions types, instruction lengths and execution times:

* Tables A-1 through A-4 describe the notation used for the instruction operands. Table A-5
describes the notation used for control instruction destinations.

¢ Table A-6 on page A-3 contains the opcode map for the instruction set.
¢ Thefollowing tables list the instructions giving length (in bytes) and execution time:
Add and Subtract Instructions, Table A-7 on page A-4
Increment and Decrement Instructions, Table A-8 on page A-4
Multiply, Divide, and Decimal-adjust I nstructions, Table A-9 on page A-5
Logica Ingtructions, Table A-10 on page A-5
Move Instructions, Table A-11 on page A-6
Exchange, Push, and Pop Instructions, Table A-12 on page A-7
Bit Instructions, Table A-13 on page A-7
Control Instructions, Table A-14 on page A-8

“Instruction Descriptions” on page A-9 contains a detailed description of each instruction.

I A-1

8x931AA, 8x931HA USER’'S MANUAL

A.1 NOTATION FOR INSTRUCTION OPERANDS

A-2

Table A-1. Notation for Register Operands

Register Notation

@Ri 8-bit internal data RAM location (OOH-FFH) addressed indirectly via
byte register RO or R1
Rn Byte register RO—R7 of the currently selected register bank
n Byte register index: n = 0-7
rrr Binary representation of n
Table A-2. Notation for Direct Addresses
Direct Description
Address. P
dir8 An 8-bit internal data address. This can be internal data RAM
(OOH-7FH) or an SFR address (80H - FFH).
Table A-3. Notation for Immediate Addressing
Immediate Description
Data P
#data An 8-bit constant that is immediately addressed in an instruction.
#datal6 A 16-bit constant that is immediately addressed in an instruction.
Table A-4. Notation for Bit Addressing
Bit _—
Address Description
bit A directly addressed bit (bit number = 00H-FFH) in internal data RAM
or an SFR. Bits 00H-7FH are the 128 bits in byte locations 20H-2FH in
the on-chip RAM. Bits 80H-FFH are the 128 bits in the 16 SFR’s with
addresses that end in OH or 8H: 80H, 88H, 90H, . . ., FOH, F8H.
Table A-5. Notation for Destinations in Control Instructions
Destination Description
Address P
rel A signed (two's complement) 8-bit relative address. The destination is
-128 to +127 bytes relative to first byte of the next instruction.
addrll An 11-bit destination address. The destination is in the same 2-Kbyte
block of memory as the first byte of the next instruction.
addrl6 A 16-bit destination address. A destination can be anywhere within
the same 64-Kbyte region as the first byte of the next instruction.

N

tel.

A.2 OPCODE MAP

INSTRUCTION SET REFERENCE

Table A-6. Instructions for 8x931 Peripheral Controllers

Bin 0 1 2 3 4 5 6-7 8-F
0 | NOP AIJMP | LIMP RR INC INC INC INC
addrll | addrl6 | A A dir8 @Ri Rn
1 |JBC ACALL | LCALL | RRC DEC DEC DEC DEC
bit,rel addrll | addri6 | A A dir8 @Ri Rn
2 |JB AJMP | RET RL ADD ADD ADD ADD
bit,rel addrll A A #data A,dir8 A,@Ri A,Rn
3 | JNB ACALL | RETI RLC ADDC ADDC ADDC ADDC
bit,rel addrll A A #data A,dir8 A,@Ri A,Rn
4 |JC AJMP | ORL ORL ORL ORL ORL ORL
rel addrll | dir8,A | dir8#data A #data A,dir8 A @RI A,Rn
5 | JNC ACALL | ANL ANL ANL ANL ANL ANL
rel addrll | dir8,A | dir8#data A #data A,dir8 A @RI A,Rn
6 [JZ AJMP | XRL XRL XRL XRL XRL XRL
rel addrll | dir8,A | dir8#data A #data A,dir8 A @RI A,Rn
7 |JINZ ACALL | ORL JMP MOV MOV MOV MOV
rel addrll [CY,bit | @A+DPTR A #data dir8, @Ri#data | Rn#data
#data
8 | SIMP AIJMP | ANL MOVC DIV MOV MOV MOV
rel addrll | CY,bit | A/ @A+PC AB dir8,dir8 dir8, @Ri dir8,Rn
9 | MOV ACALL | MOV MOVvC SUBB SUBB SUBB SUBB
DPTR, addrll | bit,CY | A, @A+DPTR | A#data A,dir8 A @RI A,Rn
#datal6
A | ORL AJMP | MOV INC MUL Reserved | MOV MOV
CY,/bit addrll | CY,bit | DPTR AB @Ri,dir8 Rn,dir8
B | ANL ACALL | CPL CPL CJINE CJINE CJINE CJINE
CY,/bit addrll | bit CcY A #data,rel | A, dir8,rel | @Ri#data, | Rn#data,
rel rel
C | PUSH AJMP | CLR CLR SWAP XCH XCH XCH
dir8 addrll | bit CY A A,dir8 A @RI A,Rn
D |POP ACALL | SETB | SETB DA DJNZ XCHD DJINZ
dir8 addrll | bit CY A dir8,rel A Q@RI Rn,rel
E | MOVX AIMP MOVX CLR MOV MOV MOV
A,@DPTR | addrll A,@Ri A A,dir8 A @RI A,Rn
F | MOVX ACALL MOVX CPL MOV MOV MOV
@DPTR,A | addrl1 @RIi,A A dir8,A @Ri,A Rn,A

A-3

8x931AA, 8x931HA USER’'S MANUAL

A.3

This section contains tables that summarize the instruction set. For each instruction there is a

INSTRUCTION SET SUMMARY

intel.

short description, its length in bytes, and its execution time in states and machine cycles.

A.3.1 Instruction Summaries
Table A-7. Summary of Add and Subtract Instructions
Add ADD <dest>,<src> dest opnd ~ dest opnd + src opnd
Add with Carry ADDC <dest>,<src> (A) — (A) +src opnd + carry bit
Subtract with Borrow SUBB <dest>,<src> (A) < (A) - src opnd - carry bit
Mnemonic | <dest>,<src> Notes Bytes | States Machine
Cycles
A,Rn Reg to acc 1 6 1
A,dir8 Dir byte to acc 2 6 1
ADD - -
A Q@RI Indir addr to acc 1 6 1
A#data Immediate data to acc 2 6 1
A,Rn Reg to/from acc with carry 1 6 1
ADDC; A,dir8 Dir byte to/from acc with carry 2 6 1
SUBB A @Ri Indir RAM to/from acc with carry 1 6 1
A #data Immediate data to/from acc with carry 2 6 1
Table A-8. Summary of Increment and Decrement Instructions
Increment INC DPTR (DPTR) « (DPTR) +1
Increment INC byte byte — byte +1
Decrement DEC byte byte « byte—1
Mnemonic |<dest>,<src> Notes Bytes States Machine
Cycles
INC; A acc 1 6 1
DEC RN Reg 1 6 1
dir8 Dir byte 2 6 1
@Ri Indir RAM 1 6 1
DPTR Data pointer 1 12 2

A-4

Inte|® INSTRUCTION SET REFERENCE

Table A-9. Summary of Multiply, Divide, and Decimal-adjust Instructions

Multiply MUL AB (B:A) = AxB
Divide DIV AB (A) = Quotient; (B) = Remainder
Decimal-adjust ACC DA A (1)
for Addition (BCD)
Mnemonic | <dest>,<src> Notes Bytes | States Machine
Cycles
MUL AB Multiply A and B 1 24 4
DIV AB Divide A by B 1 24 4
DA A Decimal adjust acc 1 6 1
NOTES:
1. See “Instruction Descriptions” on page A-9.
Table A-10. Summary of Logical Instructions
Logical AND ANL <dest><src> dest opnd ~dest opnd A src opnd
Logical OR ORL <dest>,<src> dest opnd ~ dest opnd V src opnd
Logical Exclusive OR XRL <dest>,<src> dest opnd ~ dest opnd O src opnd
Clear CLRA (A) <0
Complement CPLA (Ai) <« D(AI)
Rotate RXX A 1
SWAP A A3:0 - A74
Mnemonic |<dest>,<src> Notes Bytes States Machine
’ N Cycles
A,Rn Reg to acc 1 6 1
A,dir8 Dir byte to acc 2 6 1
ANL; - -
A @RI Indir addr to acc 1 6 1
ORL; -
XRL: A #data Immediate data to acc 2 6 1
dir8,A Acc to dir byte 2 6 1
dir8,#data Immediate data to dir byte 3 12 2
CLR A Clear acc 1 6 1
CPL A Complement acc 1 6 1
RL A Rotate acc left 1 6 1
RLC A Rotate acc left through the carry 1 6 1
RR A Rotate acc right 1 6 1
RRC A Rotate acc right through the carry 1 6 1
SWAP A Swap nibbles within the acc 1 6 1
NOTES:

1. See “Instruction Descriptions” on page A-9.

A-5

8x931AA, 8x931HA USER’'S MANUAL

Table A-11. Summary of Move Instructions

intel.

Move (1)
Move Code Byte
Move to External Mem

MOV <dest>,<src>
MOVC <dest>,<src>
MOVX <dest>,<src>

Move from External Mem

MOVX <dest>,<src>

destination ~ src opnd

A — code byte
external mem ~ (A)

A — source opnd in external mem

A-6

Mnemonic <dest>,<src> Notes Bytes | States N(I:E;Ccr;g;e
A,Rn Reg to acc 1 6 1
A,dir8 Dir byte to acc 2 6 1
A @RI Indir RAM to acc 1 6 1
A#data Immediate data to acc 2 6 1
Rn,A Acc to reg 1 6 1
Rn,dir8 Dir byte to reg 2 12 2
Rn,#data Immediate data to reg 2 6 1
MOV dir8,A Acc to dir byte 2 1
dir8,Rn Reg to dir byte 2 12 2
dir8,dir8 Dir byte to dir byte 3 12 2
dir8, @Ri Indir RAM to dir byte 2 12 2
dir8,#data Immediate data to dir byte 3 12 2
@RIi,A Acc to indir RAM 1 6 1
@Ri,dir8 Dir byte to indir RAM 2 12 2
@RI #data Immediate data to indir RAM 2 6 1
DPTR,#datal6 Load Data Pointer with a 16-bit const 3 12 2
A,@A+DPTR Code byte relative to DPTR to acc 1 12 2
Move A,@A+PC Code byte relative to PC to acc 1 12 2
A,@Ri External mem (8-bit addr) to acc 1 12 2
MOVX A,@DPTR External mem (16-bit addr) to acc 1 12 2
@RI,A Acc to external mem (8-bit addr) 1 12 2
@DPTR,A Acc to external mem (16-bit addr) 1 12 2
NOTES:

1. |Instructions that move bits are in Table A-13.

intel.

INSTRUCTION SET REFERENCE

Table A-12. Summary of Exchange, Push, and Pop Instructions

Exchange Contents XCH <dest>,<src> A o srcopnd
Exchange Digit XCHD <dest>,<src> A3:0 -~ on-chip RAM bits 3:0
Push PUSH <src> SP - SP+1; (SP) ~ src
Pop POP <dest> dest —~ (SP); SP -« SP-1
Mnemonic <dest>,<src> Notes Bytes States Machine
Cycles
A,Rn Acc and reg 1 6 1
XCH A,dir8 Acc and dir addr 2 6 1
A,@Ri Acc and on-chip RAM (8-bit addr) 1 6 1
A,@Ri Acc and low nibble in on-chip RAM 1 6 1
XCHD (8-bit addr)
PUSH dir8 Push dir byte onto stack 2 12 2
POP Dir8 Pop dir byte from stack 2 12 2
Table A-13. Summary of Bit Instructions
Clear Bit CLR bit bit -0
Set Bit SETB bit bit ~ 1
Complement Bit CPL bit bit ~ @bit
AND Carry with Bit ANL CY,bit CY ~ CY Abit
AND Carry with Complement of Bit ~ ANL CY,/bit CY ~ CYA@bit
OR Carry with Bit ORL CY,bit CY ~ CYVhit
ORL Carry with Complement of Bit ORL CY,/bit CY ~ CYV@bit
Move Bit to Carry MOV CY,bit CY < bit
Move Bit from Carry MOV bit,CY bit ~ CY
Mnemonic |<src>,<dest> Notes ELytes States Machine
Cycles
CY Clear carry 1 6 1
CLR
bit Clear dir bit 2 6 1
CY Set carry 1 6 1
SETB
bit Set dir bit 2 6 1
CY Complement carry 1 6 1
CPL - —
bit Complement dir bit 2 6 1
ANL CY,bit AND dir bit to carry 2 12 2
ANL CY,/bit AND complemented dir bit to carry 2 12 2
ORL CY,bit OR dir bit to carry 2 12 2
ORL CY,/bit OR complemented dir bit to carry 2 12 2
MOV CY,bit Move dir bit to carry 2 12 1
bit,CY Move carry to dir bit 2 12 2

A-7

8x931AA, 8x931HA USER’'S MANUAL

Table A-14. Summary of Control Instructions

intel.

Mnemonic | <dest>,<src> Notes Bytes States Machine
Cycles
ACALL addrll Absolute subroutine call 2 12 2
LCALL addrl6 Long subroutine call 3 12 2
RET Return from subroutine 1 12 2
RETI Return from interrupt 1 12 2
AIMP addrll Absolute jump 2 12 2
LIMP addrl6 Long jump 3 12 2
SIMP rel Short jump (relative addr) 2 12 2
JMP @A+DPTR Jump indir relative to the DPTR 1 12 2
JC rel Jump if carry is set 2 12 2
JNC rel Jump if carry not set 2 12 2
JB bit,rel Jump if dir bit is set 3 12 2
JNB bit,rel Jump if dir bit is not set 3 12 2
JBC bit,rel Jump if dir bit is set & clear bit 3 12 2
Jz rel Jump if acc is zero 2 12 2
JINZ rel Jump if acc is not zero 2 12 2
A.dir8,rel Compare dir byte to acc and jump 3 12 2
if not equal
A #data,rel Compare immediate to acc and 3 12 2
jump if not equal
CJNE - -
Rn,#data,rel Compare immediate to reg and 3 12 2
jump if not equal
@Ri,#data,rel | Compare immediate to indir and 3 12 2
jump if not equal
Rn,rel Decrement reg and jump if not 2 12 2
zero
DJINZ - - - -
dir8,rel Decrement dir byte and jump if not 3 12 2
zero
NOP — No operation 1 6 1

A-8

Inte|® INSTRUCTION SET REFERENCE

A.4 INSTRUCTION DESCRIPTIONS
This section describes each instruction in the 8x931 architecture.

Table A-15 defines the symbols (—, 3, 1, 0,?) used to indicate the effect of theinstruction on the
flags in the PSW register. For a conditional jump instruction, “!” indicates that a flag influences
the decision to jump.

Table A-15. Flag Symbols

Symbol Description

— The instruction does not modify the flag.

The instruction sets or clears the flag, as appropriate.

The instruction sets the flag.

The instruction clears the flag.

N | O k| W

The instruction leaves the flag in an indeterminate state.

For a conditional jump instruction: The state of the flag before the
instruction executes influences the decision to jump or not jump.

ACALL <addr11>
Function: Absolute call

Description: Unconditionally calls a subroutine at the specified address. The instruction increments the 3-
byte PC twice to obtain the address of the following instruction, then pushes bytes 0 and 1 of
the result onto the stack (byte O first) and increments the stack pointer twice. The destination
address is obtained by successively concatenating bits 15-11 of the incremented PC,
opcode bits 7-5, and the second byte of the instruction. The subroutine called must
therefore start within the same 2-Kbyte “page” of the program memory as the first byte of the
instruction following ACALL.

Flags:
CcY AC ov
Example: The stack pointer (SP) contains 07H and the label "'SUBRTN" is at program memory location
0345H. After executing the instruction
ACALL SUBRTN
at location 0123H, SP contains 09H; on-chip RAM locations 08H and 09H contain 01H
and 25H, respectively; and the PC contains 0345H.
Bytes: 2
States: 12
Cycles: 2

[Encoding] al0 a9 a8 1 0001 | | a7a6a5a4 | a3a2alao

A-9

8x931AA, 8x931HA USER’'S MANUAL Inte|®

Operation: ACALL
(PC) - (PC)+2
(SP) « (SP) +1
((SP)) ~ (PC.7:0)
(SP) « (SP) +1
((SP)) ~ (PC.15:8)
(PC.10:0) — page address

ADD <A><src-byte>

Function: Add

Description: Adds the source operand to the accumulator, leaving the result in the accumulator. If there is
a carry out of bit 7 (CY), the CY flag is set. If byte variables are added, and if there is a carry
out of bit 3 (AC), the AC flag is set. For addition of unsigned integers, the CY flag indicates
that an overflow occurred.

If there is a carry out of bit 6 but not out of bit 7, or a carry out of bit 7 but not bit 6, the OV
flag is set. When adding signed integers, the OV flag indicates a negative number produced
as the sum of two positive operands, or a positive sum from two negative operands.

Bit 6 and bit 7 in this description refer to the most significant byte of the operand (8, 16, or 32
bit).

Four source operand addressing modes are allowed: register, direct, register-indirect, and

immediate.
Flags:
CcY AC ov
3 3 3
Example: The accumulator hods OC3H (11000011B) and register 0 holds 0OAAH (10101010B). The
instruction,
ADD A,RO
will leave 6DH (01101101B) in the accumulator with the AC flag cleared and both the carry
flag and OV set to 1.
Variations
ADD A #data
Bytes: 2
States:
Cycles:

[Encoding] 0010 0100 | | immed. data

Operation: ADD
(A) < (A) + #data

A-10

intel.

INSTRUCTION SET REFERENCE

ADD A dir8

Bytes: 2
States:
Cycles:

[Encoding] 0010

| | direct addr

Operation: ADD
(A) < (A) + (dir8)

ADD A,@Ri

Bytes: 1
States:
Cycles:

[Encoding]

011i

Operation: ADD
(A) « (A) + ((Ri)

ADD A,Rn

Bytes:
States:
Cycles:

[Encoding]

Irrr

Operation: ADD
(A) - (A) + (Rn)

ADDC A,<src>

Function: Add with carry

Description: Simultaneously adds the specified byte variable, the CY flag, and the accumulator contents,
leaving the result in the accumulator. If there is a carry out of bit 7 (CY), the CY flag is set; if
there is a carry out of bit 3 (AC), the AC flag is set. When adding unsigned integers, the CY

flag indicates that an overflow occurred.

If there is a carry out of bit 6 but not out of bit 7, or a carry out of bit 7 but not bit 6, the OV
flag is set. When adding signed integers, the OV flag indicates a negative number produced
as the sum of two positive operands, or a positive sum from two negative operands.

Bit 6 and bit 7 in this description refer to the most significant byte of the operand (8, 16, or 32

bit)

A-11

8x931AA, 8x931HA USER’'S MANUAL Inte|®

Four source operand addressing modes are allowed: register, direct, register-indirect, and

immediate.
Flags:
CcY AC oV
3 3 3
Example: The accumulator contains 0C3H (11000011B), register 0 contains 0AAH (10101010B), and
the CY flag is set. After executing the instruction
ADDC A,RO
the accumulator contains 6EH (01101110B), the AC flag is clear, and the CY and OV flags
are set.
Variations

ADDC A #data

Bytes: 2
States:
Cycles:
[Encoding] 0011 0100 ‘ | immed. data
Operation: ADDC
(A) < (A) + (CY) + #data
ADDC A,dir8
Bytes: 2
States:
Cycles:
[Encoding] 0011 0101 | | direct addr
Operation: ADDC
(A) < (A) + (CY) + (dir8)
ADDC A,@Ri
Bytes: 1
States:
Cycles:
[Encoding] 0011 011i
Operation: ADDC

(A) < (A) +(CY) + ((RD))

A-12

intel.

INSTRUCTION SET REFERENCE

ADDC A,Rn

Bytes:
States:
Cycles:

Operation:

[Encoding]

ADDC

(A) ~ (A)+(CY) + (Rn)

0011

lrrr

AJMP addrl1

Function: Absolute jump
Description:
Flags:
CcY

Example:

AJMP JMPADR
Bytes: 2
States: 12
Cycles: 2

[Encoding] al0da9a80

Operation: AIMP

Transfers program execution to the specified address, which is formed at run time by
concatenating the upper five bits of the PC (after incrementing the PC twice), opcode bits 7—
5, and the second byte of the instruction. The destination must therefore be within the same
2-Kbyte “page” of program memory as the first byte of the instruction following AJMP.

AC

ov

The label "JMPADR" is at program memory location 0123H. After executing the instruction

at location 0345H, the PC contains 0123H.

0001

‘ | a7 a6 a5 a4 a3 a2al a0

(PC) - (PC)+2

(PC.10:0) ~ page address

ANL <dest>,<src>

Function:

Logical-AND

A-13

8x931AA, 8x931HA USER’'S MANUAL Inte|®

Description: Performs the bitwise logical-AND (A) operation between the specified variables and stores
the results in the destination variable.
The two operands allow 10 addressing mode combinations. When the destination is the
register or accumulator, the source can use register, direct, register-indirect, or immediate
addressing; when the destination is a direct address, the source can be the accumulator or
immediate data.
Note: When this instruction is used to modify an output port, the value used as the original
port data is read from the output data latch, not the input pins.

Flags:

CcY AC oV

Example: If the accumulator contains 0C3H (11000011B) and register 0 contains 55H (01010101B).
After executing the instruction
ANL A,RO
Accumulator 1 contains 41H (01000001B).
When the destination is a directly addressed byte, this instruction clears combinations of bits
in any RAM location or hardware register. The mask byte determining the pattern of bits to
be cleared would either be an immediate constant contained in the instruction or a value
computed in the register or accumulator at run time. The instruction
ANL P1,#01110011B
clears bits 7, 3, and 2 of output port 1.

Variations

ANL dir8,A

Bytes: 2

States: 6

Cycles:

[Encoding] 0101 0010 ‘ | direct addr
Operation: ANL

(dir8) — (dir8) A (A)

ANL dir8#data

Bytes: 3
States: 12
Cycles: 2
[Encoding] 0101 0011 | ‘ direct addr ‘ ‘ immed. data
Operation: ANL

A-14

(dir8) ~ (dir8) A #data

intel.

INSTRUCTION SET REFERENCE

ANL A #data

Bytes: 2
States:
Cycles:

[Encoding]

0101

0100 | | immed. data

Operation: ANL
(A) « (A) A #data

ANL A,dir8

Bytes: 2
States:
Cycles:

[Encoding]

0101

0101 | | direct addr

Operation: ANL
(A) < (A) A (dir8)

ANL A,@Ri

Bytes:
States:
Cycles:

[Encoding]

Operation: ANL
(A) = (AA((RD)

0101 011i

ANL A,Rn
Bytes:
States:
Cycles:

[Encoding]

Operation: ANL
(A) - (A)A(Rn)

0101 lrrr

ANL CY,<src—hit>

Function: Logical-AND for bit variables

A-15

8x931AA, 8x931HA USER’'S MANUAL Inte|®

Description: If the Boolean value of the source bit is a logical 0, clear the CY flag; otherwise leave the CY
flag in its current state. A slash ("/") preceding the operand in the assembly language
indicates that the logical complement of the addressed bit is used as the source value, but
the source bit itself is not affected.

Only direct addressing is allowed for the source operand.

Flags:
CcY AC oV
3 — —

Example: Set the CY flag if, and only if, P1.0 =1, ACC. 7 =1, and OV = 0:

MOV CY,P1.0 ;Load carry with input pin state

ANL CY,ACC.7 ;AND carry with accumulator bit 7

ANL CY,/OV ;AND with inverse of overflow flag
ANL CY,bit
Bytes: 2
States: 12
Cycle: 2

[Encoding] 1000 0010 | | bitaddr

Operation: ANL

(CY) ~ (CY) A (bit51)
ANL CY,/bit
Bytes: 2
States: 12
Cycles: 2

[Encoding] 1011 0000 | [bitaddr

Operation: ANL

(CY) < (CY) A @ (bit)

CJINE <dest>,<src>rel

Function: Compare and jump if not equal.

Description: Compares the magnitudes of the first two operands and branches if their values are not
equal. The branch destination is computed by adding the signed relative displacement in the
last instruction byte to the PC, after incrementing the PC to the start of the next instruction. If
the unsigned integer value of <dest-byte> is less than the unsigned integer value of <src-
byte>, the CY flag is set. Neither operand is affected.

The first two operands allow four addressing mode combinations: the accumulator may be

compared with any directly addressed byte or immediate data, and any indirect RAM
location or working register can be compared with an immediate constant.

A-16

Inte|® INSTRUCTION SET REFERENCE

CYy AC ov

Example: The accumulator contains 34H and R7 contains 56H. After executing the first instruction in
the sequence

CJINE R7,#60H,NOT_EQ
; L. - ;R7 = 60H
NOT_EQ: JC REQ_LOW ; IF R7 < 60H
; :R7 > 60H

the CY flag is set and program execution continues at label NOT_EQ. By testing the CY flag,
this instruction determines whether R7 is greater or less than 60H.

If the data being presented to Port 1 is also 34H, then executing the instruction,
WAIT: CINE A,P1,WAIT

clears the CY flag and continues with the next instruction in the sequence, since the
accumulator does equal the data read from P1. (If some other value was being input on P1,
the program loops at this point until the P1 data changes to 34H.)

Variations

CJINE A #data,rel

Bytes: 3
States: 12
Cycles: 2
[Encoding] 1011 0100 ‘ | immed. data rel. addr
Operation: (PC) - (PC)+3
IF (A) # #data
THEN

(PC) — (PC) + relative offset
IF (A) < #data

THEN
(CY) « 1
ELSE
(CY) -0
CJINE A, dir8,rel
Bytes: 3
States: 12
Cycles: 2
[Encoding] 1011 0101 ‘ | direct addr rel. addr

A-17

8x931AA, 8x931HA USER’'S MANUAL

Operation: (PC) - (PC)+3
IF (A) # dir8
THEN
(PC) ~ (PC) + relative offset
IF (A) < dir8
THEN

CJINE @Ri #data,rel

Bytes: 3
States: 12
Cycles: 2
[Encoding] 1011 011i | | immed. data rel. addr
Operation: (PC) - (PC)+3
IF ((Ri)) # #data
THEN

(PC) ~ (PC) + relative offset
IF ((Ri)) <#data
THEN

CJINE Rn #data,rel

Bytes: 3
States: 12
Cycles: 2
[Encoding] 1011 lrrr | | immed. data rel. addr
Operation: (PC) - (PC)+3
IF (Rn) # #data
THEN

(PC) « (PC) + relative offset
IF (Rn) < #data

THEN
(CY) « 1
ELSE
(CY) -0
CLRA
Function: Clear accumulator

Description: Clears the accumulator (i.e., resets all bits to zero).

A-18

INSTRUCTION SET REFERENCE

Flags:
CcY AC oV
Example: The accumulator contains 5CH (01011100B). The instruction
CLR A
clears the accumulator to 0OH (00000000B).
Bytes:
States:
Cycles:
[Encoding] 1110 0100
Operation: CLR
(A) -0
CLR bit
Function: Clear bit
Description: Clears the specified bit. CLR can operate on the CY flag or any directly addressable bit.
Flags: Only for instructions with CY as the operand.
CcY AC oV
3 — —
Example: Port 1 contains 5DH (01011101B). After executing the instruction
CLR P1.2
port 1 contains 59H (01011001B).
Variations
CLR bit
Bytes: 2
States: 6
Cycles:
[Encoding] 1100 0010 | | Bitaddr
Operation: CLR
(bit51) ~ O

A-19

8x931AA, 8x931HA USER’'S MANUAL Inte|®

CLR CY
Bytes:
States:
Cycles:
[Encoding] 1100 0011
Operation: CLR
(CY) -0
CPL A
Function: Complement accumulator
Description: Logically complements (&) each bit of the accumulator (one's complement). Clear bits are
set and set bits are cleared.
Flags:
CcY AC ov
Example: The accumulator contains 5CH (01011100B). After executing the instruction
CPLA
the accumulator contains 0OA3H (10100011B).
Bytes:
States:
Cycles:
[Encoding] 1111 0100
Operation: CPL
(A) - D(A)
CPL bit
Function: Complement bit
Description: Complements (&) the specified bit variable. A clear bit is set, and a set bit is cleared. CPL
can operate on the CY or any directly addressable bit.
Note: When this instruction is used to modify an output pin, the value used as the original
data is read from the output data latch, not the input pin.
Flags: Only for instructions with CY as the operand.

A-20

CY

AC

ov

3

intel.

INSTRUCTION SET REFERENCE

Example: Port 1 contains 5BH (01011101B). After executing the instruction sequence

CPLP11

CPLP1.2

port 1 contains 5BH (01011011B).
Variations
CPL bit
Bytes: 2
States: 6
Cycles:

[Encoding] 1011 0010 | | bitaddr

Operation: CPL

(bit) — S(bit)
CPL CY
Bytes:
States:
Cycles:

[Encoding] 1011 0011

Operation: CPL

(CY) « B(CY)
DA A
Function: Decimal-adjust accumulator for addition
Description: Adjusts the 8-bit value in the accumulator that resulted from the earlier addition of two

variables (each in packed-BCD format), producing two 4-bit digits. Any ADD or ADDC
instruction may have been used to perform the addition.

If accumulator bits 3:0 are greater than nine (XXXX1010-XXXX1111), or if the AC flag is
set, six is added to the accumulator, producing the proper BCD digit in the low nibble. This
internal addition sets the CY flag if a carry out of the lowest 4 bits propagated through all
higher bits, but it does not clear the CY flag otherwise.

If the CY flag is now set, or if the upper four bits now exceed nine (1010XXXX-1111XXXX),
these four bits are incremented by six, producing the proper BCD digit in the high nibble.
Again, this sets the CY flag if there was a carry out of the upper four bits, but does not clear
the carry. The CY flag thus indicates if the sum of the original two BCD variables is greater
than 100, allowing multiple-precision decimal addition. The OV flag is not affected.

All of this occurs during one instruction cycle. Essentially, this instruction performs the
decimal conversion by adding 00H, 06H, 60H, or 66H to the accumulator, depending on
initial accumulator and PSW conditions.

Note: DA A cannot simply convert a hexadecimal number in the accumulator to BCD
notation, nor does DA A apply to decimal subtraction.

A-21

8x931AA, 8x931HA USER’'S MANUAL Inte|®

Flags:
CcY AC ov
3 — —
Example: The accumulator contains 56H (01010110B), which represents the packed BCD digits of the
decimal number 56. Register 3 contains 67H (01100111B), which represents the packed
BCD digits of the decimal number 67. The CY flag is set. After executing the instruction
sequence
ADDC A,R3
DA A
the accumulator contains OBEH (10111110) and the CY and AC flags are clear. The
Decimal Adjust instruction then alters the accumulator to the value 24H (00100100B),
indicating the packed BCD digits of the decimal number 24, the lower two digits of the
decimal sum of 56, 67, and the carry-in. The CY flag is set by the Decimal Adjust instruction,
indicating that a decimal overflow occurred. The true sum of 56, 67, and 1 is 124.
BCD variables can be incremented or decremented by adding 01H or 99H. If the
accumulator contains 30H (representing the digits of 30 decimal), then the instruction
sequence,
ADD A,#99H
DA A
leaves the CY flag set and 29H in the accumulator, since 30 + 99 = 129. The low byte of the
sum can be interpreted to mean 30 — 1 = 29.
Bytes:
States:
Cycles:
[Encoding] 1101 0100
Operation: DA
(Contents of accumulator are BCD)
IF [[(A.3:0) > 9] V [(AC) = 1]]
THEN (A.3:0) - (A.3:0) +6
AND
IF [[(A.7:4) > 9] V [(CY) =1]]
THEN (A.7:4) — (A.7:4)+6
DEC byte
Function: Decrement
Description: Decrements the specified byte variable by 1. An original value of 0OH underflows to OFFH.

A-22

Four operands addressing modes are allowed: accumulator, register, direct, or register-
indirect.

Note: When this instruction is used to modify an output port, the value used as the original
port data is read from the output data latch, not the input pins.

INSTRUCTION SET REFERENCE

Flags:
CcY AC ov
Example: Register 0 contains 7FH (01111111B). On-chip RAM locations 7EH and 7FH contain 00H
and 40H, respectively. After executing the instruction sequence
DEC @RO
DEC RO
DEC @RO
register 0 contains 7EH and on-chip RAM locations 7EH and 7FH are set to OFFH and 3FH,
respectively.
Variations
DECA
Bytes:
States:
Cycles:
[Encoding] 0001 0100
Operation: DEC
(A) - (A)-1
DEC dir8
Bytes: 2
States: 6
Cycles:
[Encoding] 0001 0101 | | diraddr
Operation: DEC
(dir8) ~ (dir8) -1
DEC @Ri
Bytes:
States:
Cycles:
[Encoding] 0001 011i
Operation: DEC

((R)) ~ ((Ri) -1

A-23

8x931AA, 8x931HA USER’'S MANUAL Inte|®

DEC Rn
Bytes:
States:
Cycles:
[Encoding] 0001 Irrr
Operation: DEC
(Rn) « (Rn)-1
DIV AB
Function: Divide
Description: Divides the unsigned 8-bit integer in the accumulator by the unsigned 8-bit integer in register
B. The accumulator receives the integer part of the quotient; register B receives the integer
remainder. The CY and QV flags are cleared.
Exception: if register B contains O0H, the values returned in the accumulator and register B
are undefined; the CY flag is cleared and the OV flag is set.
Flags:
CcY AC ov
0 — 3
For division by zero:
CcY AC ov
0 — 1
Example: The accumulator contains 251 (OFBH or 11111011B) and register B contains 18 (12H or
00010010B). After executing the instruction
DIV AB
the accumulator contains 13 (ODH or 00001101B); register B contains 17 (11H or
00010001B), since 251 = (13 X 18) + 17; and the CY and OV flags are clear.
Bytes: 1
States: 24
Cycles: 4
[Encoding] 1000 0100
Operation: DIV

(A) ~ quotient (A)/(B)
(B) — remainder (A)/(B)

A-24

intel.

INSTRUCTION SET REFERENCE

DJNZ <byte>,<rel-addr>

Function: Decrement and jump if not zero

Description: Decrements the specified location by 1 and branches to the address specified by the second
operand if the resulting value is not zero. An original value of 00H underflows to OFFH. The
branch destination is computed by adding the signed relative-displacement value in the last
instruction byte to the PC, after incrementing the PC to the first byte of the following
instruction.
The location decremented may be a register or directly addressed byte.
Note: When this instruction is used to modify an output port, the value used as the original
port data is read from the output data latch, not the input pins.

Flags:

CcY AC ov

Example: The on-chip RAM locations 40H, 50H, and 60H contain 01H, 70H, and 15H, respectively.
After executing the following instruction sequence
DJNZ 40H,LABEL1
DJNZ 50H,LABEL2
DJNZ 60H,LABEL3
on-chip RAM locations 40H, 50H, and 60H contain 00H, 6FH, and 14H, respectively, and
program execution continues at label LABEL2. (The first jump was not taken because the
result was zero.)
This instruction provides a simple way of executing a program loop a given number of times,
or for adding a moderate time delay (from 2 to 512 machine cycles) with a single instruction.
The instruction sequence,

MOV R2#8
TOGGLE: CPLP1.7
DJINZ R2,TOGGLE

toggles P1.7 eight times, causing four output pulses to appear at bit 7 of output Port 1. Each
pulse lasts three machine cycles: two for DJNZ and one to alter the pin.

Variations

DJINZ dir8,rel

Bytes: 3

States: 12

Cycles: 2

[Encoding] 1101 0101 | ‘ direct addr ‘ ‘ rel. addr

A-25

8x931AA, 8x931HA USER’'S MANUAL

Operation: DJNZ
(PC) - (PC)+2
(dir8) ~ (dir8) —1
IF (dir8) > 0 or (dir8) < 0
THEN
(PC) ~ (PC) +rel

DJINZ Rn,rel
Bytes: 2
States: 12
Cycles: 2
[Encoding] 1101 Irrr | | rel. addr
Operation: DJINZ
(PC) - (PC)+2
(Rn) « (Rn)-1
IF(Rn)>0o0r(Rn)<0
THEN
(PC) ~ (PC) +rel
INC <Byte>
Function: Increment
Description: Increments the specified byte variable by 1. An original value of FFH overflows to 00H.
Three addressing modes are allowed for 8-bit operands: register, direct, or register-indirect.
Note: When this instruction is used to modify an output port, the value used as the original
port data is read from the output data latch, not the input pins.
Flags:
CcY AC ov
Example: Register 0 contains 7EH (011111110B) and on-chip RAM locations 7EH and 7FH contain
OFFH and 40H, respectively. After executing the instruction sequence
INC @RO
INC RO
INC @RO
register 0 contains 7FH and on-chip RAM locations 7EH and 7FH contain 00H and 41H,
respectively.
Variations
INC A
Bytes:
States:
Cycles:

[Encoding] 0000

0100

A-26

Inte|® INSTRUCTION SET REFERENCE

Operation: INC
A) « (A)+1
INC dir8
Bytes: 2
States:
Cycles:
[Encoding] 0000 0101 | | direct addr
Operation: INC
(dir8) — (dir8) +1
INC @Ri
Bytes: 1
States:
Cycles:
[Encoding] 0000 011i
Operation: INC
((Ri) — ((Ri))+1
INC Rn
Bytes:
States:
Cycles:
[Encoding] 0000 lrrr
Operation: INC
(Rn) « (Rn)+1
INC DPTR
Function: Increment data pointer
Description: Increments the 16-bit data pointer by one. A 16-bit increment (modulo 216) is performed; an
overflow of the low byte of the data pointer (DPL) from OFFH to O0H increments the high
byte of the data pointer (DPH) by one. An overflow of the high byte (DPH) does not
increment the high word of the extended data pointer (DPX = DR56).
Flags:

CY AC ov

A-27

8x931AA, 8x931HA USER’'S MANUAL

intel.

Example: Registers DPH and DPL contain 12H and OFEH, respectively. After the instruction
sequence
INC DPTR
INC DPTR
INC DPTR
DPH and DPL contain 13H and 01H, respectively.
Bytes: 1
States: 12
Cycles: 2
[Encoding] 1010 0011
Operation: INC
(DPTR) ~ (DPTR) + 1
JB bit,rel
Function: Jump if bit set
Description: If the specified bit is a one, jump to the address specified; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative displacement
in the third instruction byte to the PC, after incrementing the PC to the first byte of the next
instruction. The bit tested is not modified.
Flags:
CcYy AC ov
Example: Input port 1 contains 11001010B and the accumulator contains 56 (01010110B). After the
instruction sequence
JB P1.2,LABEL1
JB ACC.2,LABEL2
program execution continues at label LABEL2.
Variations
JB bit,rel
Bytes: 3
States: 12
Cycles: 2
[Encoding] 0010 0000 | ‘ bit addr ‘ ‘ rel. addr
Hex Codein: Binary Mode = [Encoding]

A-28

Source Mode = [Encoding]

intel.

INSTRUCTION SET REFERENCE

Operation: JB
(PC) - (PC) +3
IF (bit51) =1
THEN
(PC) « (PC) +rel
JBC bit,rel
Function: Jump if bit is set and clear bit
Description: If the specified bit is one, branch to the specified address; otherwise proceed with the next
instruction. The bit is not cleared if it is already a zero. The branch destination is computed
by adding the signed relative displacement in the third instruction byte to the PC, after incre-
menting the PC to the first byte of the next instruction.
Note: When this instruction is used to test an output pin, the value used as the original data
is read from the output data latch, not the input pin.
Flags:
CcY AC ov
Example: The accumulator contains 56H (01010110B). After the instruction sequence
JBC ACC.3,LABEL1
JBC ACC.2,LABEL2
the accumulator contains 52H (01010010B) and program execution continues at label
LABEL2.
Variations
JBC bit,rel
Bytes: 3
States: 12
Cycles: 2
[Encoding] 0001 0000 | ‘ bit addr ‘ ‘ rel. addr
Operation: JBC
(PC) - (PC)+3
IF (bit) =1
THEN
(bit) - O
(PC) « (PC) +rel
JCrel
Function: Jump if carry is set
Description: If the CY flag is set, branch to the address specified; otherwise proceed with the next

instruction. The branch destination is computed by adding the signed relative displacement
in the second instruction byte to the PC, after incrementing the PC twice.

A-29

8x931AA, 8x931HA USER’'S MANUAL

Flags:

Example:

Bytes:
States:
Cycles:

Operation:

CYy AC ov

The CY flag is clear. After the instruction sequence

JC LABEL1
CPLCY
JC LABEL 2

the CY flag is set and program execution continues at label LABEL2.

2
12
2

[Encoding] 0100 0000 ‘ | rel. addr

JC
(PC) « (PC)+2
IF(CY)=1
THEN
(PC) « (PC) +rel

JMP @A+DPTR

Function:

Description:

Flags:

Example:

A-30

Jump indirect

Add the 8-bit unsigned contents of the accumulator with the 16-bit data pointer and load the
resulting sum into the lower 16 bits of the program counter. This is the address for
subsequent instruction fetches. The contents of the accumulator and the data pointer are

not affected.

CY AC ov

The accumulator contains an even number from 0 to 6. The following sequence of instruc-
tions branch to one of four AJMP instructions in a jump table starting at JMP_TBL:

MOV DPTR,#JMP_TBL
JMP @A+DPTR
. AIMP LABELO
IMP_TBL: AIJMP LABEL1
AIMP LABEL2
AIMP LABEL3

If the accumulator contains 04H at the start this sequence, execution jumps to LABEL2.
Remember that AJMP is a two-byte instruction, so the jump instructions start at every other

address.

intel.

INSTRUCTION SET REFERENCE

Bytes: 1
States: 12
Cycles: 2
[Encoding] 0111 0011
Operation: JMP
(PC.15:0) ~ (A) + (DPTR)
JNB bit,rel
Function: Jump if bit not set
Description: If the specified bit is clear, branch to the specified address; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative displacement
in the third instruction byte to the PC, after incrementing the PC to the first byte of the next
instruction. The bit tested is not modified.
Flags:
CcY AC ov
Example: Input port 1 contains 11001010B and the accumulator contains 56H (01010110B). After
executing the instruction sequence
JNB P1.3,LABEL1
JNB ACC.3,LABEL2
program execution continues at label LABEL2.
Variations
JNB bit,rel
Bytes: 3
States: 12
Cycles: 2
[Encoding] 0011 0000 bitaddr | | rel addr
Operation: JNB
(PC) - (PC)+3
IF (bit) =0
THEN (PC) « (PC) +rel
JNC rel
Function: Jump if carry not set

A-31

8x931AA, 8x931HA USER’'S MANUAL

intel.

Description: Ifthe CY flag is clear, branch to the address specified; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative displacement
in the second instruction byte to the PC, after incrementing the PC twice to point to the next
instruction. The CY flag is not modified.

Flags:

CcY AC oV
| J— —

Example: The CY flag is set. The instruction sequence
JNC LABEL1
CPLCY
JNC LABEL2
clears the CY flag and causes program execution to continue at label LABEL2.

Bytes: 2

States: 12

Cycles: 2

Operation: JNC
(PC) - (PC)+2
IF(CY)=0

THEN (PC) « (PC) +rel

JINZ rel

Function: Jump if accumulator not zero

Description: If any bit of the accumulator is set, branch to the specified address; otherwise proceed with
the next instruction. The branch destination is computed by adding the signed relative
displacement in the second instruction byte to the PC, after incrementing the PC twice. The
accumulator is not modified.

Flags:

CcY AC ov

Example: The accumulator contains O0H. After executing the instruction sequence
JNZ LABEL1
INC A
JNZ LABEL2
the accumulator contains 01H and program execution continues at label LABEL2.

Bytes: 2

States: 12

Cycles: 2

[Encoding] 0111 0000 | | rel addr

A-32

intel.

INSTRUCTION SET REFERENCE

Operation: JINZ
(PC) - (PC)+2
IF(A)Z0
THEN (PC) — (PC) + rel
JZrel
Function: Jump if accumulator zero
Description: If all bits of the accumulator are clear (zero), branch to the address specified; otherwise
proceed with the next instruction. The branch destination is computed by adding the signed
relative displacement in the second instruction byte to the PC, after incrementing the PC
twice. The accumulator is not modified.
Flags:
CcY AC oV
Example: The accumulator contains 01H. After executing the instruction sequence
JZ LABEL1
DEC A
JZ LABEL2
the accumulator contains O0OH and program execution continues at label LABEL2.
Bytes: 2
States: 12
Cycles: 2
[Encoding] 0110 0000 | | rel. addr
Operation: Jz
(PC) - (PC)+2
IF(A)=0

THEN (PC) — (PC) + rel

LCALL addri16
Function:

Description:

Flags:

Long call

Calls a subroutine located at the specified address. The instruction adds three to the
program counter to generate the address of the next instruction and then pushes the 16-bit
result onto the stack (low byte first). The stack pointer is incremented by two. The high and
low bytes of the PC are then loaded, respectively, with the second and third bytes of the
LCALL instruction. Program execution continues with the instruction at this address. The
subroutine may therefore begin anywhere in the 64-Kbyte region of memory where the next
instruction is located.

CY AC ov

A-33

8x931AA, 8x931HA USER’'S MANUAL

intel.

Example: The stack pointer contains 07H and the label "SUBRTN" is assigned to program memory
location 1234H. After executing the instruction
LCALL SUBRTN
at location 0123H, the stack pointer contains 09H, on-chip RAM locations 08H and 09H
contain 01H and 26H, and the PC contains 1234H.
Bytes: 3
States: 12
Cycles: 2
[Encoding] 0001 0010 addrl5- addr7—addr0
addr8
Operation: LCALL

(PC) — (PC) + 3
(SP) « (SP) + 1
((SP)) — (PC.7:0)
(SP) « (SP) + 1
((SP)) — (PC.15:8)
(PC) < (addr.15:0)

LIMP addr16

Function: Long Jump
Description: Causes an unconditional branch to the specified address, by loading the high and low bytes
of the PC (respectively) with the second and third instruction bytes. The destination may
therefore be anywhere in the 64-Kbyte memory region where the next instruction is located.
Flags:
CcY AC ov
Example: The label "JMPADR" is assigned to the instruction at program memory location 1234H. After
executing the instruction
LIMP JMPADR
at location 0123H, the program counter contains 1234H.
Bytes: 3
States: 12
Cycles: 2
[Encoding] 0000 0010 addrl5- addr7—addrO
addr8
Operation: LIMP

A-34

(PC) ~ (addr.15:0)

Inte|® INSTRUCTION SET REFERENCE

MOV <dest>,<src>
Function: Move byte variable

Description: Copies the byte variable specified by the second operand into the location specified by the
first operand. The source byte is not affected.

This is by far the most flexible operation. Fifteen combinations of source and destination
addressing modes are allowed.

Flags:
CcY AC ov
Example: On-chip RAM location 30H contains 40H, on-chip RAM location 40H contains 10H, and
input port 1 contains 11001010B (OCAH). After executing the instruction sequence
MOV RO,#30H ;RO < =30H
MOV A @RO :A < =40H
MOV R1,A ;R1 < =40H
MOV B,@R1 ;B <=10H
MOV @R1,P1 ;RAM (40H) < = OCAH
MOV P2,P1 ;P2 #OCAH
register 0 contains 30H, the accumulator and register 1 contain 40H, register B contains
10H, and on-chip RAM location 40H and output port 2 contain OCAH (11001010B).
Variations
MOV A #data
Bytes: 2
States:
Cycles:
[Encoding] 0111 0100 | | immed. data
Operation: MOV
(A) ~ #data
MOV dir8,#data
Bytes: 3
States: 12
Cycles: 2
[Encoding] 0111 0101 | ‘ direct addr ‘ ‘ immed. data
Operation: MOV

(dir8) ~ #data

A-35

8x931AA, 8x931HA USER’'S MANUAL

MOV @Ri,#data

Bytes: 2
States:
Cycles:
[Encoding] 0111 011i | | immed. data
Operation: MOV
((Ri)) « #data
MOV Rn #data
Bytes: 2
States:
Cycles:
[Encoding] 0111 Irrrr ‘ | immed. data
Operation: MOV
(Rn) ~ #data
MOV dir8,dir8
Bytes: 3
States: 12
Cycles: 2
[Encoding] 1000 0101 | ‘ direct addr ‘ ‘ direct addr
Operation: MOV
(dir8) — (dir8)
MOV dir8,@Ri
Bytes: 2
States: 12
Cycles: 2
[Encoding] 1000 011i | | directaddr
Operation: MOV
(dir8) « ((Ri))
MOV dir8,Rn
Bytes: 2
States: 12

A-36

Inte|® INSTRUCTION SET REFERENCE

Cycles: 2
[Encoding] 1000 Irrr | | direct addr
Operation: MOV
(dir8) ~ (Rn)
MOV @Ri,dir8
Bytes: 2
States: 12
Cycles: 2
[Encoding] 1010 011i | | directaddr
Operation: MOV
((Ri)) ~ (dir8)
MOV Rn,dir8
Bytes: 2
States: 12
Cycles: 2
[Encoding] 1010 Irrr ‘ | direct addr
Operation: MOV
(Rn) < (dir8)
MOV A.dir8
Bytes: 2
States:
Cycles:
[Encoding] 1110 0101 | | directaddr
Operation: MOV
(A) « (dir8)
MOV A,@Ri
Bytes:
States:
Cycles:
[Encoding] 1110 011i

A-37

8x931AA, 8x931HA USER’'S MANUAL

Operation:

MOV
(A) — ((RD)

MOV A,Rn

Bytes:
States:
Cycles:

Operation:

[Encoding] 1110 Irrr

MOV
(A) — (Rn)

MOV dir8,A

Bytes:
States:
Cycles:

Operation:

[Encoding] 1111 0101

| | direct addr

MOV
(dir8) — (A)

MOV @Ri,A

Bytes:
States:
Cycles:

Operation:

[Encoding] 1111 011i

MOV
((RD)) ~ (A)

MOV Rn,A

Bytes:
States:
Cycles:

Operation:

A-38

[Encoding] 1111 111r

MOV
(Rn) — (A)

intel.

INSTRUCTION SET REFERENCE

MOV <dest-bit>,<src—bit>

Function: Move bit data
Description: Copies the Boolean variable specified by the second operand into the location specified by
the first operand. One of the operands must be the CY flag; the other may be any directly
addressable bit. Does not affect any other register.
Flags:
CcY AC ov
3 — —
Example: The CY flag is set, input Port 3 contains 11000101B, and output Port 1 contains 35H
(00110101B). After executing the instruction sequence
MOV P1.3,CY
MOV CY,P3.3
MOV P1.2,CY
the CY flag is clear and Port 1 contains 39H (00111001B).
Variations
MOV bit,CY
Bytes: 2
States: 12
Cycles: 2
[Encoding] 1001 0010 | | bitaddr
Operation: MOV
(bit51) ~ (CY)
MOV CY,bit
Bytes: 2
States: 6
Cycles: 1
[Encoding] 1010 0010 | | bit addr
Operation: MOV

(CY) < (bit51)

MOV DPTR #datal6

Function:

Description:

Flags:

Load data pointer with a 16-bit constant

Loads the 16-bit data pointer (DPTR) with the specified 16-bit constant. The high byte of the
constant is loaded into the high byte of the data pointer (DPH). The low byte of the constant
is loaded into the low byte of the data pointer (DPL).

CYy AC ov

A-39

8x931AA, 8x931HA USER’'S MANUAL Inte|®

Example: After executing the instruction
MOV DPTR,#1234H

DPTR contains 1234H (DPH contains 12H and DPL contains 34H).

Bytes: 3
States: 12
Cycles: 2
[Encoding] 1001 0000 | ‘ data hi ‘ ‘ data low
Operation: MOV

(DPTR) ~ #datal6
MOVC A,@A+<base-reg>

Function: Move code byte

Description: Loads the accumulator with a code byte or constant from program memory. The address of
the byte fetched is the sum of the original unsigned 8-bit accumulator contents and the
contents of a 16-bit base register, which may be the 16 LSBs of the data pointer or PC. In
the latter case, the PC is incremented to the address of the following instruction before being
added with the accumulator; otherwise the base register is not altered. Sixteen-bit addition is

performed.
Flags:
CcYy AC oV
Example: The accumulator contains a number between 0 and 3. The following instruction sequence
translates the value in the accumulator to one of four values defined by the DB (define byte)
directive.
RELPC: INC A
MovC A, @A+PC
RET
DB 66H
DB T7H
DB 88H
DB 99H
If the subroutine is called with the accumulator equal to 01H, it returns with 77H in the
accumulator. The INC A before the MOVC instruction is needed to “get around” the RET
instruction above the table. If several bytes of code separated the MOVC from the table, the
corresponding number would be added to the accumulator instead.
Variations

MOVC A,@A+PC

Bytes: 1
States: 12

A-40

Inte|® INSTRUCTION SET REFERENCE

[Encoding] 1000 0011

Operation: MOVC
(PC) - (PC) +1
(A) « ((A) +(PC))

MOVC A,@A+DPTR

Bytes: 1
States: 12
Cycles: 2
[Encoding] 1001 0011
Operation: MOVC

(A) ~ ((A) + (DPTR))
MOVX <dest>,<src>

Function: Move external

Description: Transfers data between the accumulator and a byte in external data RAM. There are two
types of instructions. One provides an 8-bit indirect address to external data RAM; the
second provides a 16-bit indirect address to external data RAM.

In the first type of MOV X instruction, the contents of RO or R1 in the current register bank
provides an 8-bit address on port 0. Eight bits are sufficient for external I/O expansion
decoding or for a relatively small RAM array. For larger arrays, any port pins can be used to
output higher address bits. These pins would be controlled by an output instruction
preceding the MOVX.

In the second type of MOVX instruction, the data pointer generates a 16-bit address. Port 2
outputs the upper eight address bits (from DPH) while port 0 outputs the lower eight address
bits (from DPL).

For both types of moves, the data is multiplexed with the lower address bits on port 0.

It is possible in some situations to mix the two MOVX types. A large RAM array with its
upper address lines driven by P2 can be addressed via the data pointer, or with code to
output upper address bits to P2 followed by a MOVX instruction using RO or R1.

Flags:

CY AC ov

Example: An external 256-byte RAM using multiplexed address/data lines (e.g., an Intel 8155
RAM/I/O/Timer) is connected to port 0. Port 3 provides control lines for the external RAM.
ports 1 and 2 are used for normal I/0. RO and R1 contain 12H and 34H. Location 34H of the
external RAM contains 56H. After executing the instruction sequence

MOVX A,@R1
MOVX @RO,A

the accumulator and external RAM location 12H contain 56H.

A-41

8x931AA, 8x931HA USER’'S MANUAL

Variations

MOVX A,@DPTR

Bytes: 1
States: 12
Cycles: 2
[Encoding] 1110 0000
Operation: MOVX
(A) ~ ((DPTR))
MOVX A,@Ri
Bytes: 1
States: 12
Cycles: 2
[Encoding] 1110 001i
Operation: MOVX
(A) - ((RD)
MOVX @DPTR,A
Bytes: 1
States: 12
Cycles: 2
[Encoding] 1111 0000
Operation: MOVX
((DPTR)) - (A)
MOVX @Ri,A
Bytes: 1
States: 12
Cycles: 2
[Encoding] 1111 001i
Operation: MOVX

((R)) ~ (A)

A-42

intel.

INSTRUCTION SET REFERENCE

MUL AB
Function: Multiply
Description: Multiplies the unsigned 8-bit integers in the accumulator and register B. The low byte of the
16-bit product is left in the accumulator, and the high byte is left in register B. If the product is
greater than 255 (OFFH) the OV flag is set; otherwise it is clear. The CY flag is always clear.
Flags:
CcY AC ov
0 — 3
Example: The accumulator contains 80 (50H) and register B contains 160 (0AOH). After executing the
instruction
MUL AB
which gives the product 12,800 (3200H), register B contains 32H (00110010B), the
accumulator contains 00H, the OV flag is set, and the CY flag is clear.
Bytes: 1
States: 24
Cycles: 4
[Encoding] 1010 0100
Operation: MUL
(A) — low byte of (A) X (B)
(B) ~ high byte of (A) X (B)
NOP
Function: No operation
Description: Execution continues at the following instruction. Affects the PC register only.
Flags:
CcY AC oV
Example: You want to produce a low-going output pulse on bit 7 of Port 2 that lasts exactly 11 states.
A simple CLR-SETB sequence generates an one-cycle pulse, so four additional cycles must
be inserted. You can insert the four additional cycles (if no interrupts are enabled) with the
following instruction sequence:
CLR P27
NOP
NOP
NOP
NOP
SETB P2.7
Bytes:
States:

A-43

8x931AA, 8x931HA USER’'S MANUAL Inte|®

Cycles: 1

[Encoding] 0000 0000

Operation: NOP
(PC) ~ (PC) +1

ORL <dest> <src>
Function: Logical-OR for byte variables

Description: Performs the bitwise logical-OR operation (V) between the specified variables, storing the
results in the destination operand.

The destination operand can be an accumulator or direct address.

The two operands allow six addressing mode combinations. When the destination is the
accumulator, the source can be register, direct, register-indirect, or immediate addressing;
when the destination is a direct address, the source can be the accumulator or immediate
data.

Note: When this instruction is used to modify an output port, the value used as the original
port data is read from the output data latch, not the input pins.

Flags:
CcY AC ov
Example: The accumulator contains 0C3H (11000011B) and RO contains 55H (01010101B). After
executing the instruction
ORL A,RO
the accumulator contains OD7H (11010111B).
When the destination is a directly addressed byte, the instruction can set combinations of
bits in any RAM location or hardware register. The pattern of bits to be set is determined by
a mask byte, which may be a constant data value in the instruction or a variable computed in
the accumulator at run time. After executing the instruction
ORL P1,#00110010B
sets bits 5, 4, and 1 of output Port 1.
ORL dir8,A
Bytes: 2
States:
Cycles:
[Encoding] 0100 0010 ‘ | direct addr
Operation: ORL

(dir8) — (dir8) V (A)

A-44

intel.

INSTRUCTION SET REFERENCE

ORL dir8,#data

Bytes: 3
States: 12
Cycles: 2
[Encoding] 0100 0011 | | direct addr | | immed. data

Operation: ORL

(dir8) ~ (dir8) V #data
ORL A #data
Bytes: 2
States:
Cycles:

[Encoding] 0100 0100 | | immed.data

Operation: ORL

(A) « (A) V #data
ORL A,dir8
Bytes: 2
States:
Cycles:

[Encoding] 0100 0101 ‘ | direct addr

Operation: ORL

(A) < (A)V (dir8)
ORL A,@Ri
Bytes:
States:
Cycles:

[Encoding] 0100 011i

Operation: ORL

(A) « (A)V (RD)
ORL A,Rn
Bytes:
States:

A-45

8x931AA, 8x931HA USER’'S MANUAL Inte|®

Cycles: 1

[Encoding] 0100 Irrr

Operation: ORL
(A) - (A)V (Rn)

ORL CY,<src-bit>

Function: Logical-OR for bit variables

Description: Sets the CY flag if the Boolean value is a logical 1; leaves the CY flag in its current state
otherwise . A slash ("/") preceding the operand in the assembly language indicates that the
logical complement of the addressed bit is used as the source value, but the source bit itself
is not affected.

Flags:
CcY AC ov
3 — —

Example: Set the CY flag if and only if P1.0 =1, ACC. 7 =1, or OV = 0:

MOV CY,P1.0 ;LOAD CARRY WITH INPUT PIN P10

ORL CY,ACC.7 ;OR CARRY WITH THE ACC. BIT 7

ORL CY,/OV ;OR CARRY WITH THE INVERSE OF OV.
Variations
ORL CY,bit
Bytes: 2
States: 12
Cycles: 2

[Encoding] 0111 0010 | [bitadar

Operation: ORL

(CY) ~ (CY) V (bit51)
ORL CY,/bit
Bytes: 2
States: 12
Cycles: 2

[Encoding] 1010 0000 | | bitaddr

Operation: ORL

(CY) « (CY) V= (bit51)
POP dir8
Function: Pop from stack

A-46

intel.

INSTRUCTION SET REFERENCE

Description: Reads the contents of the on-chip RAM location addressed by the stack pointer, then
decrements the stack pointer by one. The value read at the original RAM location is
transferred to the newly addressed location, which can be 8-bit or 16-bit.

Flags:

CcY AC oV

Example: The stack pointer contains 32H and on-chip RAM locations 30H through 32H contain 01H,
23H, and 20H, respectively. After executing the instruction sequence
POP DPH
POP DPL
the stack pointer contains 30H and the data pointer contains 0123H. After executing the
instruction
POP SP
the stack pointer contains 20H. Note that in this special case the stack pointer was
decremented to 2FH before it was loaded with the value popped (20H).

Bytes: 2

States: 12

Cycles: 2

[Encoding] 1101 0000 ‘ | direct addr

Operation: POP
(dir8) < ((SP))

(SP) —~ (SP)-1

PUSH dir8

Function: Push onto stack

Description: Increments the stack pointer by one. The contents of the specified variable are then copied
into the on-chip RAM location addressed by the stack pointer.

Flags:

CcY AC ov

Example: On entering an interrupt routine, the stack pointer contains 09H and the data pointer
contains 0123H. After executing the instruction sequence
PUSH DPL
PUSH DPH
the stack pointer contains OBH and on-chip RAM locations OAH and OBH contain 01H and
23H, respectively.

Bytes: 2

States: 12

A-47

8x931AA, 8x931HA USER’'S MANUAL Inte|®

Cycles: 2
[Encoding] 1100 0000 | | directaddr

Operation: PUSH
(SP) « (SP)+1
((SP)) — (dir8)

RET

Function: Return from subroutine

Description: Pops the high and low bytes of the PC successively from the stack, decrementing the stack
pointer by two. Program execution continues at the resulting address, which normally is the
instruction immediately following ACALL or LCALL.

Flags:

CcY AC ov

Example: The stack pointer contains OBH and on-chip RAM locations 0AH and OBH contain 01H and
23H, respectively. After executing the instruction,
RET
the stack pointer contains 09H and program execution continues at location 0123H.

Bytes: 1

States: 12

Cycles: 2

[Encoding] 0010 0010

Operation: RET
(PC).15:8 ~ ((SP))
(SP) - (SP)-1
(PC).7:0 — ((SP))
(SP) - (SP)-1

RETI

Function: Return from interrupt

Description: RETI pops the high and low bytes of the PC successively from the stack and uses them as
the 16-bit return address. The stack pointer is decremented by two. No other registers are
affected, the PSW is not automatically restored to its pre-interrupt status.
Hardware restores the interrupt logic to accept additional interrupts at the same priority level
as the one just processed. Program execution continues at the return address, which
normally is the instruction immediately after the point at which the interrupt request was
detected. If an interrupt of the same or lower priority is pending when the RETI instruction is
executed, that one instruction is executed before the pending interrupt is processed.

Flags:

A-48

CY AC ov

intel.

INSTRUCTION SET REFERENCE

Example: The stack pointer contains O0BH. An interrupt was detected during the instruction ending at
location 0122H. On-chip RAM locations OAH and OBH contain 01H and 23H, respectively.
After executing the instruction
RETI
the stack pointer contains 09H and program execution continues at location 0123H.
Bytes: 1
States 12
Cycles: 2
[Encoding] 0011 0010
Operation:
RETI
(PC).15:8 ~((SP))
(SP) - (SP)-1
(PC).7:0 " ((SP))
(SP) ~(SP)-1
RL A
Function: Rotate accumulator left
Description: Rotates the eight bits in the accumulator one bit to the left. Bit 7 is rotated into the bit 0
position.
Flags:
CcY AC ov
Example: The accumulator contains OC5H (11000101B). After executing the instruction,
RL A
the accumulator contains 8BH (10001011B); the CY flag is unaffected.
Bytes:
States:
Cycles: 1
[Encoding] 0010 0011
Operation: RL
(A).a+l « (A).a
(A).0 « (A).7
RLC A
Function: Rotate accumulator left through the carry flag

A-49

8x931AA, 8x931HA USER’'S MANUAL

intel.

Description: Rotates the eight bits in the accumulator and the CY flag one bit to the left. Bit 7 moves into
the CY flag position and the original state of the CY flag moves into bit O position.
Flags:
CcY AC ov
3 — —
Example: The accumulator contains 0C5H (11000101B) and the CY flag is clear. After executing the
instruction
RLC A
the accumulator contains 8AH (10001010B) and the CY flag is set.
Bytes: 1
States:
Cycles:
[Encoding] 0011 0011
Operation: RLC
(A).a+l « (A).a
(A).0 < (CY)
(CY) « (A).7
RR A
Function: Rotate accumulator right
Description: Rotates the 8 bits in the accumulator one bit to the right. Bit 0 is moved into the bit 7 position.
Flags:
CcY AC ov
Example: The accumulator contains OC5H (11000101B). After executing the instruction
RR A
the accumulator contains OE2H (11100010B) and the CY flag is unaffected.
Bytes:
States:
Cycles:
[Encoding] 0000 0011
Operation: RR
(A).a « (A).a+1
(A).7 <« (A) .0

A-50

intel.

INSTRUCTION SET REFERENCE

RRC A
Function: Rotate accumulator right through carry flag
Description: Rotates the eight bits in the accumulator and the CY flag one bit to the right. Bit 0 moves into
the CY flag position; the original value of the CY flag moves into the bit 7 position.
Flags:
CcY AC ov
3 — —
Example: The accumulator contains OC5H (11000101B) and the CY flag is clear. After executing the
instruction
RRC A
the accumulator contains 62 (01100010B) and the CY flag is set.
Bytes:
States:
Cycles:
[Encoding] 0001 0011
Operation: RRC
(A).a « (A).a+1
(A).7 < (CY)
(CY) « (A).O
SETB <bit>
Function: Set bit
Description: Sets the specified bit to one. SETB can operate on the CY flag or any directly addressable
bit.
Flags: No flags are affected except the CY flag for instruction with CY as the operand.
CcY AC ov
3 — —
Example: The CY flag is clear and output Port 1 contains 34H (00110100B). After executing the
instruction sequence
SETB CY
SETB P1.0
the CY flag is set and output Port 1 contains 35H (00110101B).
SETB bit
Bytes: 2
States: 6

A-51

8x931AA, 8x931HA USER’'S MANUAL Inte|®

Cycles: 1
[Encoding] 1101 0010 | | bitaddr

Operation: SETB
(bit51) ~ 1

SETB CY

Bytes:

States:

Cycles:

[Encoding] 1101 0011

Operation: SETB
(CY) -1

SIMP rel

Function: Short jump

Description: Program control branches unconditionally to the specified address. The branch destination
is computed by adding the signed displacement in the second instruction byte to the PC,
after incrementing the PC twice. Therefore, the range of destinations allowed is from 128
bytes preceding this instruction to 127 bytes following it.

Flags:

CcY AC oV

Example: The label "RELADR" is assigned to an instruction at program memory location 0123H. The
instruction
SJMP RELADR
assembles into location 0100H. After executing the instruction, the PC contains 0123H.
(Note: In the above example, the instruction following SIMP is located at 102H. Therefore,
the displacement byte of the instruction is the relative offset (0123H—0102H) = 21H. Put
another way, an SIMP with a displacement of OFEH would be a one-instruction infinite
loop.)

Bytes: 2

States: 12

Cycles: 2

[Encoding] 1000 0000 | | rel. addr
Operation: SIMP

A-52

(PC) « (PC) +2
(PC) ~ (PC) +rel

intel.

INSTRUCTION SET REFERENCE

SUBB A,<src-byte>

Function: Subtract with borrow

Description: SUBB subtracts the specified variable and the CY flag together from the accumulator,
leaving the result in the accumulator. SUBB sets the CY (borrow) flag if a borrow is needed
for bit 7, and clears CY otherwise. (If CY was set before executing a SUBB instruction, this
indicates that a borrow was needed for the previous step in a multiple precision subtraction,
so the CY flag is subtracted from the accumulator along with the source operand.) AC is set
if a borrow is needed for bit 3, and cleared otherwise. OV is set if a borrow is needed into bit
6, but not into bit 7, or into bit 7, but not bit 6.
When subtracting signed integers the OV flag indicates a negative number produced when a
negative value is subtracted from a positive value, or a positive result when a positive
number is subtracted from a negative number.
Bit 6 and bit 7 in this description refer to the most significant byte of the operand (8, 16, or 32
bit).
The source operand allows four addressing modes: register, direct, register-indirect, or
immediate.

Flags:

CcY AC ov
3 3 3

Example: The accumulator contains 0C9H (11001001B), register 2 contains 54H (01010100B), and
the CY flag is set. After executing the instruction
SUBB AR2
the accumulator contains 74H (01110100B), the CY and AC flags are clear, and the OV flag
is set.
Notice that 0C9H minus 54H is 75H. The difference between this and the above result is due
to the CY (borrow) flag being set before the operation. If the state of the carry is not known
before starting a single or multiple-precision subtraction, it should be explicitly cleared by a
CLR CY instruction.

Variations

SUBB A, #data

Bytes: 2

States:

Cycles:

[Encoding] 1001 0100 ‘ | immed. data

Operation: SUBB
(A) < (A) — (CY) — #data

SUBB A,dir8

Bytes: 2

A-53

8x931AA, 8x931HA USER’'S MANUAL

States:
Cycles:
[Encoding] 1001 0101 \ | direct addr
Operation: SUBB
(A) < (A) - (CY) —(dir8)
SUBB A,@Ri
Bytes:
States:
Cycles: 1
[Encoding] 1001 011i
Operation: SUBB
(A) - (A) - (CY) - ((Ri)
SUBB A,Rn
Bytes:
States:
Cycles:
[Encoding] 1001 Irrr
Operation: SUBB
(A) = (A)—(CY)-(Rn)
SWAP A
Function: Swap nibbles within the accumulator
Description: Interchanges the low and high nibbles (4-bit fields) of the accumulator (bits 3—-0 and bits 7—
4). This operation can also be thought of as a 4-bit rotate instruction.
Flags:
CcY AC oV
Example: The accumulator contains 0OC5H (11000101B). After executing the instruction
SWAP A
the accumulator contains 5CH (01011100B).
Bytes: 1
States:
Cycles:
[Encoding] 1100 0100

A-54

intel.

Operation:

INSTRUCTION SET REFERENCE

SWAP
(A).3:0 — — (A).7:4

XCH A,<byte>

Function: Exchange accumulator with byte variable
Description: Loads the accumulator with the contents of the specified variable, at the same time writing
the original accumulator contents to the specified variable. The source/destination operand
can use register, direct, or register-indirect addressing.
Flags:
CcY AC ov
Example: RO contains the address 20H, the accumulator contains 3FH (00111111B) and on-chip RAM
location 20H contains 75H (01110101B). After executing the instruction
XCH A,@R0
RAM location 20H contains 3FH (00111111B) and the accumulator contains 75H
(01110101B).
Variations
XCH A,dir8
Bytes: 2
States: 6
Cycles:
[Encoding] 1100 0101 | | directaddr
Operation: XCH
(A) - ~ (dir8)
XCH A,@Ri
Bytes:
States:
Cycles:
[Encoding] 1100 011i
Operation: XCH
(A) ~ ~ ((RD)
XCH A,Rn
Bytes:
States:
Cycles:
[Encoding] 1100 lrrr

A-55

8x931AA, 8x931HA USER’'S MANUAL

Operation: XCH
o (A) - « (Rn)

Variations

XCHD A,@Ri

Function: Exchange digit

Description: Exchanges the low nibble of the accumulator (bits 3-0), generally representing a
hexadecimal or BCD digit, with that of the on-chip RAM location indirectly addressed by the
specified register. Does not affect the high nibble (bits 7-4) of either register.

Flags:

CcY AC ov

Example: RO contains the address 20H, the accumulator contains 36H (00110110B), and on-chip
RAM location 20H contains 75H (01110101B). After executing the instruction
XCHD A,@RO
on-chip RAM location 20H contains 76H (01110110B) and 35H (00110101B) in the accumu-
lator.

Bytes:

States:

Cycles:

[Encoding] 1101 011i
Operation: XCHD

(A).3:0 — « ((R0)).3:0

XRL <dest>,<src>

Function:

Description:

Flags:

A-56

Logical Exclusive-OR for byte variables

Performs the bitwise logical Exclusive-OR operation (O) between the specified variables,
storing the results in the destination. The destination operand can be the accumulator, a
register, or a direct address.

The two operands allow six addressing mode combinations. When the destination is the
accumulator, the source addressing can be register, direct, register-indirect, or immediate;
when the destination is a direct address, the source can be the accumulator or immediate
data.

(Note: When this instruction is used to modify an output port, the value used as the original
port data is read from the output data latch, not the input pins.)

CY AC ov

intel.

INSTRUCTION SET REFERENCE

Example: The accumulator contains 0C3H (11000011B) and RO contains OAAH (10101010B). After
executing the instruction
XRL A,RO
the accumulator contains 69H (01101001B).
When the destination is a directly addressed byte, this instruction can complement combina-
tions of bits in any RAM location or hardware register. The pattern of bits to be comple-
mented is then determined by a mask byte, either a constant contained in the instruction or
a variable computed in the accumulator at run time. The instruction
XRL P1,#00110001B
complements bits 5, 4, and 0 of output Port 1.

Variations

XRL dir8,A

Bytes: 2

States: 6

Cycles:

[Encoding] 0110 0010 | | directaddr
Operation: XRL

(dir8) — (dir8) O (A)

XRL dir8,#data

Bytes: 3
States: 12
Cycles: 2
[Encoding] 0110 0011 | ’ direct addr ’ ‘ immed. data

Operation: XRL

(dir8) ~ (dir8) O #data
XRL A #data
Bytes: 2
States: 6
Cycles:

[Encoding] 0110 0100 ‘ | immed. data

Operation: XRL

(A) « (A) O #data
XRL A,dir8
Bytes: 2

A-57

8x931AA, 8x931HA USER’'S MANUAL

States:
Cycles:

Operation:

[Encoding] 0110 0101

‘ | direct addr

XRL
(A) — (A) O (dir8)

XRL A,@Ri
Bytes:

States:
Cycles:

Operation:

[Encoding] 0110

011i

XRL
(A) — (A) D ((Ri)

XRL A,Rn

Bytes:
States:
Cycles:

Operation:

A-58

[Encoding] 0110

lrrr

XRL
(A) « (A O (Rn)

intel.

Pin Descriptions

APPENDIX B
PIN DESCRIPTIONS

This appendix provides reference information regarding the externa signals of the 8x931. The
8x931isavailableindual in-line (64-pin S-DIP, 8x931HA only), quad flatpack (64-pin QFP), and
plastic leaded chip carrier (68-pin PLCC) packages. See Figures B-1 through B-5. Tables B-4
through B-6 list the signals by functional category. Table B-7 describeseach of thesignals. It lists
the signal type (input, output, power, or ground) and the alternative functions of multi-function
pins.

O=HANMS< O
e
2000000
QO0ONNONNO ~—
NUNXXXXXY [ON@)
XY zz
ST NS N O~
Odnaaa NN % BT
EED_CLG_&&D_ o %LU s 2
= === 255
55205038 983 ulz 582
ACCCCCC>> U D>xro
DOMNOOSTONAONOLWS MN A
@ © © W WWOWWOWWOWO
AD7/P0.7 /KSI7] 10 60 A Dpy
AD6 / P0.6 / KSI6] 11 59 [Dy
AD5 / P0.5/ KSI5] 12 58 [Dps
AD4/P0.4/KSl4] 13 57 A Dys
AD3/P0.3/KSI3] 14 56 | Vee
AD2/P0.2/KSI2] 15 55 [Dpg
AD1/P0.1/KSI1] 16 8x931Hx 54 2 Dyo
ADO/P0.0/KSI0O] 17 53 3 ECAP
Vssp 18 52 B Vssp
Vee H 19 51 = Veep
P3.0/ OVRI# & 20 ; 50 A Vss
P3.1/ SOF# [21 View ofé:omr;’?egnt aj 49 [Dp3
P3.2/ INTO#] 22 mounted on oar 48 A Dy3
P3.3/INT1# 23 47 A Vssp
P3.4/T0/KSO16 . 24 46 A Dpy
P3.5/T1/KSO17 25 45 [Dy
P3.6 / WR# / KSO18 . 26 44 A LEDO
MNOODOTAANMIEIODONODO HNM
ANANNNMNOHOOMOHOMOHOOHOONOMNS T <
guuguguugougogouogoy
283883885281 8haa
CnnnnnnnouuII>yonw
Qxxxzxxxx#A;;< -
Saxqamswag o
ACUFFFERe
Xok E\
~E o a5
g & ao

Note:
Reserved pins must be left unconnected.

A5340-02

Figure B-1. 8x931HA 68-pin PLCC Package

B-1

8x931AA, 8x931HA USER’'S MANUAL Inte|®

Figure B-2 illustrates a diagram of the 8x931HA SDIP package. Table B-2 and Table B-5 contain indexes of
the pin arrangement. Table B-7 contains the signal descriptions for all pins.

Vec]l @ A 4 64 [Vggp
P3.0/OVRI#] 2 63 =3 ADO/P0.0/KSIO
P3.1/SOF# = 3 62 =1 AD1/P0.1/KSI1
P3.2/INTO# . 4 61 31 AD2/P0.2/KSI2
P3.3/INT1# 5 60 =1 AD3/P0.3/KSI3
P3.4/T0/KSO16 =] 6 59 =1 AD4/P0.4/KSI4
P35/T1/KSO17 . 7 8x931HXx 58 1 AD5/P0.5/KSI5
P3.6/ WR#/KS018 = 8 57 =1 AD6/P0.6/KSI6
P3.7/RD#/KSO19 £ 9 56 =1 AD7/P0.7/KSI7
P1.0/T2/KSO0 10 55 [A8/P2.0/KSO8
P11/T2EX/KSO1] 11 54 3 A9/ P2.1/KSO9
P1.2/KSO2 12 53 I3 A10/P2.2/KSO10
P1.3/KS0O3 13 52 [A11/P2.3/KSO11
P14/KSO4 14 51 3 A12/P2.4/KSO12
P15/KS05 15 View of 50 3 A13/P2.5/KS013
PL6/RXD/KSO6 E4 16 component 49 |31 Al4/P26/KSO14
PL7/TXD/KsSO7 £ 17 ted 8 [8 A15/P2.7/KS015
Leps o 18 asmounted 7 54
Lep2 o190 OnPCboard 4605 v
XTALL = 20 45 3 EA#
XTAL2 £ 21 443 ALE
AVee . 22 43 3 PSEN#
RST 23 42 3 UPWEN#
PLLSEL] 24 41 3 Vggp
LED1 = 25 40 [Dp,
LEDO = 26 39 3 Dy
Dy £ 27 38 [Dps
Dp, . 28 37 |23 Dys
Dyz =9 29 36 (3 Dpg
Dpy 30 35 3 Dyo
Vss 31 34 |31 ECAP
Veep H 32 33 3 Vggp
A5249-02

Figure B-2. 8x931HA 64-pin SDIP Package

B-2

Inte|® PIN DESCRIPTIONS

Figure B-3 illustrates a diagram of the 8x931HA QFP package. Table B-3 and Table B-6 contain indexes of
the pin arrangement. Table B-7 contains the signal descriptions for all pins.

O=HNM< L
S20330000
Q00N HNONHNOD
XNUNXYYXYYXYYX
—¥ YT 2
N>~ mtnon~
SoOdaanaNN %
o N M a M M M WY *
N Y z4
"\\OHvamwo#LuLngw
Dodddddd N 0L JNQ 0
<< C<IIL>SWIaAS>
anonoonooonoonnnn
TONATODDONOUOTMHNAOD
COOOVWOLWOLLWOLWLLWLWLWS
AD6 / P0.6/KSl6 1 48 B Dpy
AD5/P0.5/KSI5 H 2 47 B Dwa
AD4 /P0.4/KSI4 EH3 46 B Dps
AD3/P0.3/KSI3 4 45 A Dys
AD2/P0.2/KSI2] 5 44 3 Dpg
AD1/P0.1/KSI1 46 43 @ Dyo
ADO/P0.0/KSI0O 7 8x931Hx 42 [ECAP
Vssp 8 41 B Vssp
VecH9 40 B Veep
P3.0/OVRI# H 10 39 A Vss
P3.1/SOF# 11 : 38 A Dp3
P3.2 / INTO# . 12 View of component as 37 A Dys
P3.3/INTL# O 13 mounted on PC board 36 A Dpy
P3.4/T0/KSO16 4 14 35 A D2
P3.5/T1/KSO17 15 34 B LEDO
P3.6 / WR#/ KSO18 . 16 33 A LED1
NOOOTANMIOLON~NODO AN
HA A NNNNNNNNNNOMM
o000 0 0000 oooooo
2838858385383 3386d
CnnnnonhouwWII>pn
Qxxxxzxxx44g;< -
Saxamswgg &
Stdsagazr
xXok E\
~a = i
g e
A5342-02

Figure B-3. 8x931HA 64-pin QFP Package

B-3

8x931AA, 8x931HA USER’'S MANUAL Inte|®

Figure B-4 illustrates a diagram of the 8x931AA QFP package. Table B-3 and Table B-6 contain indexes of
the pin arrangement. Table B-7 contains the signal descriptions for all pins.

O = NMS L
S0 93530000
NO00NOOHOHNON
XNUNYYY¥Y¥YY
~X ¥l
NS~ msnon~
SodaaaaNN
[S\« M« M a s s W *
oo JJ<<< qa ZW o
M~~odanmsw nOoHWWLO ¢
Dodddddd N 0L JIN WM. N
CIACCCLCCCC>> W >
anonooooonononononon
TONTAODDONOWUSTOHNAOOD
O OVOVOULULULOLWOWOLWLLWLLLWS
AD6 / P0.6 / KSI6] 1 48 | Reserved (NC)
AD5/P0.5/KSI5H2 47 B Reserved (NC)
AD4/P0.4/KSl4 3 46 3 Reserved (NC)
AD3/P0.3/KSI3] 4 45 B Reserved (NC)
AD2/P0.2/KSI2 5 44 2 Dpg
AD1/P0.1/KSIL]6 43 A Dyo
ADO/P0.0/KSI0O 7 8x931Ax 42 B ECAP
Vssp 48 41 A Vssp
Vec H9 40 B Veep
P3.0 10 39 A Vss
P3.1/SOF# 11 ; 38 A Reserved (NC)
P3.2/INTO#] 12 View ofdcomréon%nt aj 37 [A Reserved (NC)
P3.3/INT1# £ 13 mounted on PC boar 36 A Reserved (NC)
P3.4/T0/KSO16 & 14 35 [Reserved (NC)
P3.5/T1/KSO17 15 34 [LEDO
P3.6 / WR# / KSO18 . 16 33 B LED1
MNOOOTANMNMITODONODDO HN
HEAANNNNNNANNNNOMNOM®M
guuuguguugoogogogooyg
DO AdNMIWLON~NONONAN OF= -
90000000000 ddonl
CNnNNNNHOOUWWII>Srn
Qxxxxxxxz44;;< -
SSxa@3800 &
g':gdri!—iririxx
IIO_D—B'D'D'G'E':
S g
g & e
Notes:
Reserved pins must be left unconnected..
A5347-02

Figure B-4. 8x931AA 64-pin QFP Package

B-4

N

tel.

PIN DESCRIPTIONS

Figure B-5 illustrates a diagram of the 8x931AA PLCC package. Table B-1 and Table B-4 contain indexes of
the pin arrangement. Table B-7 contains the signal descriptions for all pins.

O = NMS L
e o o
AOO0000O0
CO0NHOHNNO ~
NNXYXXXXX 00
PAVAlufugafuiy zZ
ST ANM SN O~
OdaaN NN 2%
ppiiscid Sa.cs
\\oammwmm%#mlﬂw 5o &
VA A AAAAd N OTINN NV D
LICCCCCLI>SUIALLU>ER
ODOMNOLSTMNAONOL) ST MN A
@ © © WO WWOWWOOO
AD7/P0.7 /KSI7 & 10 60 [3 Reserved (NC)
AD6/P0.6 /KSI6] 11 59 3 Reserved (NC)
AD5/P0.5/KSI5H 12 58 |3 Reserved (NC)
AD4/P0.4/KSl4H 13 57 |3 Reserved (NC)
AD3/P0.3/KSI3] 14 56 | Vee
AD2/P0.2/KSI2H 15 55 3 Dpo
AD1/P0.1/KSI1] 16 8x931AX 54 2 Dyo
ADO/P0.0/KSIO] 17 53 | ECAP
Vssp 18 52 [Vssp
Vee H 19 51 [Veep
P3.0 20 : 50 | Vss
P3.1/SOF#] 21 View of;omr})jon%nt ag 49 [Reserved (NC)
P3.2/ INTO# O 22 mounted on PC boar 48 |7 Reserved (NC)
P3.3/INT1#] 23 47 A Vssp
P3.4/T0/KSO16 & 24 46 [Reserved (NC)
P3.5/T1/KS0O17 &4 25 45 [Reserved (NC)
P3.6 / WR# / KSO18 I 26 44 3 LEDO
NOODOTANMINLONODO AHANM
NANNOOOHOOHOOHOOHOOHOONOHOOS I I
ggguuoguuooguooouog
OO dNMNMITLONONAN OF Jd -
0000000000 JJdonWwAn
CnnanOnnouWII>xynw
Qxxzzxzxz##;;(=
P EERTRY: 5
EtﬁH\—IHHXé
Eofeooamk
~Ed e 5
g & BE

Note:

Reserved pins must be left unconnected.

A5348-02

Figure B-5. 8x931AA 68-pin PLCC Package

B-5

8x931AA, 8x931HA USER’'S MANUAL

Table B-1. 68-pin PLCC Pin Assignment

intel.

T Specific to the 8x931AA

1 Specific to the 8x931HA

B-6

Pin Name Pin Name Pin Name
1 Ves 24 | P3.4/TO/KSO16 47 | Vgep
2 A15/P2.7/KSO15 25 | P3.5/T1/KSO17 48 | Reserved!/ D't
3 Al4/P2.6/KSO14 26 | P3.6/WR#/KSO18 49 | Reserved!/ Dy5ft
4 A13/P2.5/KS013 27 | P3.7/RD#/KS019 50 | Vg
5 A12/P2.4/KSO12 28 | P1.0/T2/KSO0 51 | Ve
6 A11/P2.3/KSO11 29 | PL1/T2EX/KSO1 52 | Vgep
7 A10/P2.2/KS010 30 | P1.2/KSO2 53 | ECAP
8 A9/P2.1/KSO9 31 | P1.3/KSO3 54 | Dyo
9 A8/P2.0/KSO8 32 | P1.4/KSO4 55 | Dpg
10 | AD7/P0.7/KSI7 33 | P1.5/KSO5 56 | Ve
11 | AD6/P0.6/KSI6 34 | P1.6/KSO6/RXD 57 | Reserved!/ D,stt
12 | AD5/P0.5/KSI5 35 | PL.7/KSO7/TXD 58 | Reserved!/ Dyg't
13 | AD4/P0.4/KSI4 36 LED3 59 Reserved?/ Dt
14 | AD3/P0.3/KSI3 37 |LED2 60 | Reserved!/ Dy, tt
15 | AD2/P0.2/KSI2 38 | XTALL 61 | Reserved (NC)
16 | AD1/P0.1/KSI1 39 | XTAL2 62 | Reserved (NC)
17 | ADO/P0.0/KSIO 40 | AVge 63 | Vsep
18 | Vgep 41 | RST 64 | FSSEL'/ UPWEN#'t
19 | Ve 42 | PLLSEL 65 | PSEN#
20 | P3.0/ OVRI#'t 43 | LED1 66 | ALE
21 | P3.1/SOF# 44 | LEDO 67 | EA#
22 | P3.2/INTO# 45 | Reserved!/ D't 68 | Veep
23 | P3.3/INT1# 46 Reserved!/ Dp, Tt

intel.

Table B-2. 64-pin SDIP Pin Assignment

PIN DESCRIPTIONS

Pin Name Pin Name Pin Name
1 Vee 23 RST 45 EA#
2 P3.0/0VRI# 24 PLLSEL 46 Veep
3 P3.1/SOF# 25 LED1 a7 Vss
4 P3.2/INTO# 26 LEDO 48 Al15/P2.7/KSO15
5 P3.3/INT1# 27 DM2 49 A14/P2.6/KSO14
6 P3.4/TO/KSO16 28 DP2 50 Al13/P2.5/KSO13
7 P3.5/T1/KS0O17 29 DM3 51 A12/P2.4/KSO12
8 P3.6/WR#/KSO18 30 DP3 52 A11/P2.3/KSO11
9 P3.7/RD#/KSO19 31 Vsg 53 Al10/P2.2/KSO10
10 P1.0/T2/KSO0 32 Veep 54 A9/P2.1/KS0O9
11 P1.1/T2EX/KSO1 33 Vssp 55 A8/P2.0/KS0O8
12 P1.2/KSO2 34 ECAP 56 AD7/P0.7/KSI7
13 P1.3/KSO3 35 Dwmo 57 ADG6/P0.6/KSI6
14 P1.4/KSO4 36 Dpo 58 AD5/P0.5/KSI5
15 P1.5/KSO5 37 Dus 59 AD4/P0.4/KSl4
16 P1.6/RXD/KSO6 38 Dps 60 AD3/P0.3/KSI3
17 P1.7/TXD/IKSO7 39 Dma 61 AD2/P0.2/KSI2
18 LED3 40 Dpy 62 AD1/P0.1/KSI1
19 LED2 41 Vssp 63 ADO0/P0.0/KSIO
20 XTAL1 42 UPWEN# 64 Vssp
21 XTAL2 43 PSEN#
22 AVCC 44 ALE

B-7

8x931AA, 8x931HA USER’'S MANUAL

Table B-3. 64-pin QFP Pin Assignment

intel.

Pin Name Pin Name Pin Name
1 AD6/P0.6/KSI6 23 P1.5/KSO5 45 Reserved (NC)T/Dys't
2 AD5/P0.5/KSI5 24 P1.6/RXD/KSO6 46 Reserved (NC)/Dpstt
3 AD4/P0.4/KSl4 25 P1.7/TXD/KSO7 47 Reserved (NC)1/Dy, Tt
4 AD3/P0.3/KSI3 26 LED3 48 Reserved (NC)'/Dp,ft
5 AD2/P0.2/KSI2 27 LED2 49 Vgsp
6 AD1/P0.1/KSI1 28 XTAL1 50 FSSELT/UPWEN#TT
7 ADO/P0.0/KSI0 29 XTAL2 51 PSEN#
8 Vssp 30 AVce 52 ALE
9 Vee 31 RST 53 EA#
10 P3.0/0VRI#tT 32 PLLSEL 54 Veep
11 P3.1/SOF# 33 LED1 55 Vsg
12 P3.2/INTO# 34 LEDO 56 A15/P2.7/KSO15
13 P3.3/INT1# 35 Reserved (NC)1/Dy;, 't 57 A14/P2.6/KSO14
14 P3.4/T0/KSO16 36 Reserved (NC)1/Dp, T 58 A13/P2.5/KSO13
15 P3.5/T1/KSO17 37 Reserved (NC)T/Dy3ft 59 A12/P2.4/KSO12
16 P3.6/WR#/KSO18 38 Reserved (NC)1/Dpsff 60 Al11/P2.3/KSO11
17 P3.7/RD#/KS0O19 39 Vss 61 A10/P2.2/KSO10
18 P1.0/T2/KSO0 40 Veep 62 A9/P2.1/KSO9
19 P1.1/T2EX/KSO1 41 Vssp 63 A8/P2.0/KSO8
20 P1.2/KSO2 42 ECAP 64 AD7/P0.7/KSI7
21 P1.3/KSO3 43 Do
22 P1.4/KSO4 44 Dpg

T Specific to the 8x931AA
Tt Specific to the 8x931HA

B-8

intel.

Table B-4. 68-pin PLCC Signal Assignments Arranged by Functional Category

PIN DESCRIPTIONS

Address & Data Input/Output UsB

Name Pin Name Pin Name Pin
A15/P2.7/KSO15 2 P1.0/T2/KSO0 28 PLLSEL 42
A14/P2.6/KSO14 3 P1.1/T2EX/KSO1 29 Dwvo 54
A13/P2.5/KS0O13 4 P1.2/KSO2 30 Dpo 55
A12/P2.4/KSO12 5 P1.3/KSO3 31 Reserved!/ D5t 57
Al11/P2.3/KSO11 6 P1.4/KSO4 32 Reserved’/ Dpgtt 58
A10/P2.2/KSO10 7 P1.5/KSO5 33 Reserved!/ Dy, ff 45
A9/P2.1/KSO9 8 P1.6/KSO6 34 Reserved!/ Dy, T 46
A8/P2.0/KSO8 9 P1.7/KSO7 35 Reserved!/ D5t 48
AD7/P0.7/KSI7 10 P3.0/ OVRI#'T 20 Reserved’/ Dpgft 49
ADG6/P0.6/KSI6 11 P3.1/SOF# 21 ECAP 53
AD5/P0.5/KSI5 12 P3.2/INTO# 22 Reserved!/ Dy, T 59
ADA4/P0.4/KSl4 13 P3.3/INT1# 23 Reserved!/ Dp, 1t 60
AD3/P0.3/KSI3 14 P3.4/TO/KSO16 24 FSSELYUPWEN#tT 64
AD2/P0.2/KSI2 15 P3.5/T1/KSO17 25 OVRI#ft 20
AD1/P0.1/KSI1 16 P3.6/WR#/KSO18 26
ADO/P0.0/KSIO 17 P3.7/RD#/KS0O19 27

Processor Control Power & Ground Bus Control & Status

Name Pin Name Pin Name Pin
P3.2/INTO# 22 Veep 51, 68 P3.6/WR#/KSO18 26
P3.3/INT1# 23 Vee 19,56 P3.7/RD#/KS019 27
RST 41 AV 40 PSEN# 65
XTAL1 38 Vss 1,50 ALE 66
XTAL2 39 Vesp 18,47, | | EA# 67

52,63

T Specific to the 8x931AA

1 Specific to the 8x931HA

B-9

8x931AA, 8x931HA USER’'S MANUAL

In

Table B-5. 64-pin SDIP Signal Assignments Arranged by Functional Category

tel.

Address & Data Input/Output UsB

Name Pin Name Pin Name Pin
A15/P2.7/KS0O15 48 P1.0/T2/KSO0 10 PLLSEL 24
A14/P2.6/KSO14 49 P1.1/T2EX/KSO1 11 Dwmo 35
A13/P2.5/KSO13 50 P1.2/KSO2 12 Dpg 36
Al12/P2.4/KSO12 51 P1.3/KSO3 13 Dus 37
A11/P2.3/KS011 52 P1.4/KSO4 14 Dpg 38
A10/P2.2/KSO10 53 P1.5/KSO5 15 Dm2 27
A9/P2.1/KSO9 54 P1.6/RXD/KSO6 16 Dpy 28
A8/P2.0/KSO8 55 P1.7/TXD/IKSO7 17 [DIVEY 29
AD7/P0.7/KSI7 56 P3.0/0VRI# 2 Dp3 30
ADG6/P0.6/KSI6 57 P3.1/SOF# 3 ECAP 34
AD5/P0.5/KSI5 58 P3.2/INTO# 4 UPWEN# 42
ADA4/P0.4/KSl4 59 P3.3/ INT1# 5 OVRI# 2
AD3/P0.3/KSI3 60 P3.4/TO/KSO16 6 Dwma 39
AD2/P0.2/KSI2 61 P3.5/T1/KSO17 7 Dps 40
AD1/P0.1/KSI1 62 P3.6/WR#/KSO18 8
ADO/P0.0/KSIO 63 P3.7/RD#/KS0O19 9

Processor Control Power & Ground Bus Control & Status

Name Pin Name Pin Name Pin
P3.2/ INTO# 4 Vee 1 P3.6/WR#/KS0O18 8
P3.3/ INT1# 5 Veer 32,46 P3.7/RD#/KS019 9
RST 23 AV 22 PSEN# 43
XTAL1 20 Vss 31,47 ALE 44
XTAL2 21 Vesp 336,211, EA# 45

B-10

intel.

PIN DESCRIPTIONS

Table B-6. 64-pin QFP Signal Assignments Arranged by Functional Category

Address & Data Input/Output UsB

Name Pin Name Pin Name Pin
ADG6/P0.6/KSI16 1 P3.0/OVRI#tt 10 PLLSEL 32
AD5/P0.5/KSI5 2 P3.1/SOF# 11 ECAP 42
ADA4/P0.4/KSl4 3 P3.2/INTO# 12 Dwmo 43
AD3/P0.3/KSI3 4 P3.3/INT1# 13 Dpo 44
AD2/P0.2/KSI2 5 P3.4/TO/KSO16 14 FSSELT/UPWEN#T 50
AD1/P0.1/KSI1 6 P3.5/T1/KSO17 15 OVRI#tt 10
ADO/P0.0/KSIO 7 P3.6/WR#/KSO18 16 Dp, it 36
A15/P2.7/KS0O15 56 P3.7/RD#/KSO19 17 Do tt 35
Al4/P2.6/KSO14 57 P1.0/T2/KSO0 18 Dpg'f 38
A13/P2.5/KSO13 58 P1.1/T2EX/KSO1 19 Dpsft 37
Al2/P2.4/KSO12 59 P1.2/KSO2 20 Dp,ft 48
A11/P2.3/KS0O11 60 P1.3/KSO3 21 Dyaft 47
A10/P2.2/KSO10 61 P1.4/KSO4 22 Dps't 46
A9/P2.1/KSO9 62 P1.5/KSO5 23 Dys'T 45
A8/P2.0/KSO8 63 P1.6/RXD/KSO6 24
AD7/P0.7/KSI7 64 P1.7/TXD/KSO7 25

Processor Control Power & Ground Bus Control & Status

Name Pin Name Pin Name Pin
XTAL1 28 Vee 9 PSEN# 51
XTAL2 29 AVec 30 ALE 52
RST 31 Vgs 39,55 EA# 53
P3.2/INTO# 12 Veep 40,54 WR# 16
P3.3/INT1# 13 Vssp 8, RD# 17

41,49

T Specific to the 8x931AA

T Specific to the 8x931HA

B-11

8x931AA, 8x931HA USER’'S MANUAL

Table B-7. Signal Description (Sheet 1 of 3)

intel.

Signal
Name

Type

Description

Alternate
Function

A15:8

Address Lines. Upper byte of external memory address.

P2.7:0/KS08:15

AD7:0

/10

Address/Data Lines. Lower byte of external memory address
multiplexed with data

P0.7:0/KSI0:7

ALE

Address Latch Enable. ALE signals the start of an external
bus cycle and indicates that valid address information is
available on lines A15:8 and AD7:0. An external latch can use
ALE to demultiplex the address from the address/data bus.

AV c

PWR

Analog V.. A separate V. input for the phase-locked loop
circuitry.

Duos Dro

110

USB Port 0. Root port. Upstream port to the host PC. Dpg and

Dy o are the differential data plus and data minus signals of USB

port 0. These lines do not have internal pullup resistors. Provide

an external 1.5 KQ pullup resistor at Dpq so the device indicates

to the host that it is a full-speed device.

NOTE: Dpq low AND D,,q low signals an SEO (USB reset),
causing the 8x931 to stay in reset.

Dw2: Dp2
Dua: De3
Dua: Dpg
Dws: Dps

110

USB External Downstream Ports 2, 3, 4, 5. These pins are
the differential data plus and data minus lines for the four USB
external downstream ports. These lines do not have internal
pulldown resistors. Provide an external 15 KQ pulldown resistor
at each of these pins. If a port is not used, it is still required to
pull these 2 pins low externally (similar to a disconnect) so that
the inputs are not floated.

EA#

External Access. Directs program memory accesses to on-
chip or off-chip code memory. For EA# strapped to ground, all
program memory accesses are off-chip. For EA# strapped to
Ve, program accesses on-chip ROM if the address is within the
range of the on-chip ROM; otherwise the access is off-chip. The
value of EA# is latched at reset. For devices without on-chip
ROM, EA# must be strapped to ground.

ECAP

External Capacitor. Connect a 1 yF or larger capacitor
between this pin and Vgg to ensure proper operation of the
differential line drivers.

FSSEL

Full Speed Select. Applies to the 8x931AA only. If this pin is
high, full speed USB data rate is selected (12Mbps). If pin is
low, low speed USB data rate is selected (1.5 Mbps). Refer to
Table E-3 on page E-9.

INT1:0#

External Interrupts 0 and 1. These inputs set the IE1:0
interrupt flags in the TCON register. Bits IT1:0 in TCON select
the triggering method: edge-triggered (high-to-low) or level
triggered (active low). INT1:0 also serves as external run
control for timer1:0 when selected by GATE1:0# in TCON.

P3.3:2

KSI7:0

Keyboard Scan Input. Schmitt-trigger inputs with firmware-
enabled internal pullup resistors used for the input side of the
keyboard scan matrix.

AD7:0/P0.7:0

B-12

PIN DESCRIPTIONS

Table B-7. Signal Description (Sheet 2 of 3)

Signal . Alternate
Name Type Description Function
KS019 (@] Keyboard Scan Output. Quasi-bidirectional ports with weak P3.7/RD#
KSO18 internal pullup resistors used for the output side of the keyboard | P3.6/WR#
KSO17:16 scan matrix. P3.5:4/T1:0
KS015:8 A15:8/P2.7:0
KSO7:0 P1.7:0
LED3:0 o LED Drivers. Designed to drive LEDs connected directly to —
Vcc. The current each driver is capable of sinking is given as
Vo2 in the datasheet.
OVRI# | Overcurrent Sense. Sense input to indicate an overcurrent P3.0
condition for a bus-powered USB device on an external down-
stream port. Active low with an internal pullup.
P0.7:0 /0 | Port 0. Eight-bit, open-drain, bidirectional /O port. Port 0 pins | AD7:0/KSI7:0
have Schmitt trigger inputs.
P1.7:0 /0 | Port 1. Eight-bit quasi-bidirectional /0 port with internal KSO7:0
pullups.
pP2.7:0 /0 | Port 2. Eight-bit quasi-bidirectional /O port with internal A15:8/KS0O15:8
pullups.
P3.0 1/0 | Port 3. Eight-bit quasi-bidirectional /O port with internal OVRI#
P3.1 pullups. SOF#
P3.2 INTO#
P3.3 INT1#
P3.4 TO/KSO16
P3.5 T1/KSO17
P3.6 WR#/KSO18
P3.7 RD#/KSO19
PLLSEL | Phase-locked Loop Select. For normal operation using the —
8x931HA, connect PLLSEL to logic high. PLLSEL = 0 is used
for factory test (see Table 2-3 on page 2-9). For 8x931AA
operation, see Table E-3 on page E-9.
PSEN# (@] Program Store Enable. Read signal output. Asserted forread | —
accesses to external program memory.
RD# (@] Read. Read signal output. Asserted for read accesses to P3.7/KS0O19
external data memory.
RXD 1/0 | Receive Serial Data. RXD sends and receives data in serial P1.6
1/0 mode 0 and receives data in serial I/O modes 1, 2, and 3.
RST | Reset. Reset input to the chip. Holding this pin high for 64 —

oscillator periods while the oscillator is running resets the
device. The port pins are driven to their reset conditions when a
voltage greater than V|, is applied, whether or not the
oscillator is running. This pin has an internal pulldown resistor
which allows the device to be reset by connecting a capacitor
between this pin and V.

Asserting RST when the chip is in idle mode or powerdown
mode returns the chip to normal operation.

B-13

8x931AA, 8x931HA USER’'S MANUAL

Table B-7. Signal Description (Sheet 3 of 3)

intel.

Signal
Name

Type

Description

Alternate
Function

SOF#

Start of Frame. Start of frame pulse. Active low. Asserted for 8
states when frame timer is locked to USB frame timing and
SOF token or artificial SOF is detected.

P3.1

T1:.0

Timer 1:0 External Clock Input. When timer 1:0 operates as a
counter, a falling edge on the T1:0 pin increments the count.

P3.5:4/KS0O17:16

T2

110

Timer 2 Clock Input/Output. For the timer 2 capture mode,
this signal is the external clock input. For the clock-out mode, it
is the timer 2 clock output.

P1.0

T2EX

Timer 2 External Input. In timer 2 capture mode, a falling edge
initiates a capture of the timer 2 registers. In auto-reload mode,
a falling edge causes the timer 2 registers to be reloaded. In the
up-down counter mode, this signal determines the count
direction: 1 = up, 0 = down.

P1.1

TXD

Transmit Serial Data. TXD outputs the shift clock in serial I/0
mode 0 and transmits serial data in serial I/O modes 1, 2, and
3.

P17

UPWEN#

USB Power Enable. A low signal on this pin applies power to
the external downstream ports.

PWR

Supply Voltage. Connect this pin to the +5V supply voltage.

PWR

Supply Voltage for I/O buffers. Connect this pin to the +5V
supply voltage.

GND

Circuit Ground. Connect this pin to ground.

GND

Circuit Ground for 1/O buffers. Connect this pin to ground.

Write. Write signal output to external memory.

P3.6/KS0O19

Oscillator Amplifier Input. When implementing the on-chip
oscillator, connect the external crystal or ceramic resonator
across XTAL1 and XTAL2. If an external clock source is used,
connect it to this pin.

XTAL2

Oscillator Amplifier Output. When implementing the on-chip
oscillator, connect the external crystal or ceramic resonator
across XTALL and XTAL2. If an external oscillator is used,
leave XTAL2 unconnected.

B-14

intel.

Registers

APPENDIX C
REGISTERS

This appendix contains reference information regarding the 8x931 special function registers
(SFRs). The SFR memory map in Table C-1 gives the address of each SFR and its contents fol-
lowing chip reset. An “X” indicates the bit value following chip reset is indeterminate.

Blank locations in Table C-1 are not implemented, i.e., no register exists. If an instruction at-
tempts to write to an unimplemented SFR location, the instruction executes, but nothing is actu-
ally written. If an unimplemented SFR location is read, it returns an unspecified value.

SFRs shown with double borders are endpoint-indexed. Endpoint-indexed SFRs are implemented
as banks of registers similar to registers RO-R7. There is a set or bank of registers for each end-
point pair. Endpoint-indexed SFRs are accessed by means of the SFR address and an index value
The EPINDEX register specifies hub/function and the endpoint number (which serves as the in-
dex value). See “Endpoint-indexed SFRs” on page 6-5 and “Hub Endpoint Indexing Using EPIN-
DEX” on page 7-11.

SFRs shown with bold borders are port-indexed. Port-indexed SFRs are implemented as banks of
registers similar to registers RO-R7. There is a set or bank of port-indexed SFRs for each USB
downstream port. Port-indexed SFRs are accessed by means of the SFR address and an index val
ue. The HPINDEX register contains the port number which serves as the index value. See “Hub
Port Indexing Using HPINDEX” on page 7-23.

NOTE

The &931HA uses a different SFR map than th@3B AA. See Table E-4 on
page E-10 for theX®31AA SFR map.

Tables C-2 through C-6 list the SFRs by functional category. Register definition tables which de-
scribe the SFRs and define the bits can be found arranged alphabetically in “SFR Descriptions”
on page C-6.

I C-1

8x931AA, 8x931HA USER’'S MANUAL

F8

FO

E8

EO

D8

DO

C8

Co

B8

BO

A8

AO

98

90

88

80

+

Table C-1. 8x931HA SFR Map

0/8 1/9 2/A 3/B 4/C 5/D 6/E 7IF
KBCON
0xx00000
B EPINDEX TXSTAT TXDATTTT TXCON ' TXFLG TXCNTL N
00000000 1xxxxx00 0xx00000 XXXXXXXX Oxxx 0100 00xx1000 XXXX XXXX
HIFLG
XXXXXX00
ACC EPCON RXSTAT RXDAT RXCON RXFLG RXCNTL
00000000 00d1 odod™ || 00000000 XXXXXXXX 0xx0 0100 || 00xx1000 XXXX XXXX T
PCON1
XXXX X000
PSW SOFL SOFH HPINDEX HPSC HPSTAT
00000000 00000000 00001000 XXXxx000 xxx00000 100d 0000"
T2CON T2MOD RCAP2L RCAP2H TL2 TH2 HPCON
00000000 XXXX XX00 00000000 00000000 00000000 00000000 xxxxx000
FIFLG
xx00 0000
IPLO SADEN
x0000000 00000000
P3 IEN1 IPL1 IPH1 IPHO
11111111 0000 0000 | 0000 0000 | 0000 0000 x0000000
IENO SADDR HSTAT
00000000 00000000 0000 0000
P2 HIE FIE
11111111 XXXXXX00 xx00 0000
SCON SBUF HPPWR
0000 0000 [XXXXXXXX xx00001x
P1 HADDR
11111111 00000000
TCON TMOD TLO TL1 THO TH1 FADDR
00000000 00000000 00000000 00000000 00000000 00000000 00000000
PO SP DPL DPH PCON
11111111 00000111 00000000 00000000 001d 0000
0/8 1/9 2/A 3/B 4/C 5/D 6/E 7IF

_ MCS 51 microcontroller SFRs
- Endpoint-indexed SFRs

For EPCON, TXCON, TXDAT, TXCNTL, and RXCNTL the reset value depends on the endpoint pair
selected. Refer to the register definition tables in Appendix C or Chapter 5, “USB Function.”

I I Port-indexed SFRs

FF

F7

EF

E7

DF

D7

CF

Cc7

BF

B7

AF

A7

9F

97

8F

87

™ For hub endpoint 1 (EPINDEX = 1000 0001), the only endpoint SFR implemented is TXDAT. A separate

NOTE:

C-2

descriptions for more details.

TXDAT register definition table is provided for this endpoint (see Figure 6-8 on page 6-16).
“d” in the SFR reset value denotes configuration/operation dependence. Refer to specific SFR

N

C1

tel.

SFRS BY FUNCTIONAL CATEGORY

Table C-2. Core SFRs

REGISTERS

Mnemonic Name Address
ACC Accumulator EOH
B B Register FOH
DPTR Data Pointer (2 bytes) —
DPL Low Byte of DPTR 82H
DPH High Byte of DPTR 83H
KBCON Keyboard Control F8H
PCON Power Control 87H
PCON1 USB Power Control. DFH
PSW Program Status Word DOH
SP Stack Pointer 81H
Table C-3. Interrupt System SFRs
Mnemonic Description Address
FIE USB Function Interrupt Enable Register. A2H
FIFLG USB Function Interrupt Flag Register. COH
HIE Hub Interrupt Enable Register. AlH
HIFLG Hub Interrupt Flag Register. E8H
IENO Interrupt Enable Register 0. A8H
IEN1 Interrupt Enable Registerl. B1H
IPLO Interrupt Priority Low Register 0. B8H
IPHO Interrupt Priority High Register 0. B7H
IPL1 Interrupt Priority Low Register 1. B2H
IPH1 Interrupt Priority High Register 1. B3H
KBCON Keyboard Control Register. F8H
SOFH Start of Frame High Register. D3H
SOFL Start of Frame Low Register. D2H

C-3

8x931AA, 8x931HA USER’'S MANUAL

Table C-4. I/O Port SFRs

Mnemonic Name Address
PO Port 0 80H
P1 Port 1 90H
P2 Port 2 AOH
P3 Port 3 BOH

Table C-5. Serial I1/0 SFRs

Mnemonic Name Address
SCON Serial Control 98H
SBUF Serial Data Buffer 99H
SADEN Slave Address Mask B9H
SADDR Slave Address A9H
Table C-6. USB Function SFRs
Mnemonic Name Address
EPCON Endpoint Control Register. E1H
EPINDEX Endpoint Index Register. F1H
FADDR Function Address Register. 8FH
RXCNTL Receive FIFO Byte-Count Low Register. E6H
RXCON Receive FIFO Control Register. E4H
RXDAT Receive FIFO Data Register. E3H
RXFLG Receive FIFO Flag Register. ES5H
RXSTAT Endpoint Receive Status Register. E2H
TXCNTL Transmit Count Low Register. F6H
TXCON Transmit FIFO Control Register. F4H
TXDAT Transmit FIFO Data Register. F3H
TXFLG Transmit Flag Register. F5H
TXSTAT Endpoint Transmit Status Register. F2H

c-4

Intel ® REGISTERS

Table C-7. USB Hub SFRs

Mnemonic Name Address
HADDR Hub Address Register. 97H
HPCON Hub Port Control. CFH
HPINDEX Hub Port Index Register. D4H
HPPWR Hub Port Power Control. 9AH
HPSC Hub Port Status Change. D5H
HPSTAT Hub Port Status. D7H
HSTAT Hub Status and Configuration. AEH

Table C-8. Timer/Counter SFRs

Mnemonic Name Address
TLO Timer/Counter O Low Byte 8AH
THO Timer/Counter 0 High Byte 8CH
TL1 Timer/Counter 1 Low Byte 8BH
TH1 Timer/Counter 1 High Byte 8DH
TL2 Timer/Counter 2 Low Byte CCH
TH2 Timer/Counter 2 High Byte CDH
TCON Timer/Counter 0 and 1 Control 88H
TMOD Timer/Counter 0 and 1 Mode Control 89H
T2CON Timer/Counter 2 Control C8H
T2MOD Timer/Counter 2 Mode Control C9H
RCAP2L Timer 2 Reload/Capture Low Byte CAH
RCAP2H Timer 2 Reload/Capture High Byte CBH

C-5

8x931AA, 8x931HA USER’'S MANUAL Inte|®

C.2 SFR DESCRIPTIONS

This section contains descriptions of all 8x931 SFRs. They are presented in alphabetical order.

NOTE
SFR bits are firmware read/write unless otherwise noted in the bit definition.
SFRs may be accessed only as bytes; they may not be accessed as words.

ACC Address: EOH
Reset State: 0000 0000B

Accumulator. ACC provides SFR access to the accumulator. Instructions in the MCS® 51 architecture
use the accumulator as both source and destination for calculations and moves.

7 0

Accumulator Contents

Bit Bit '
Number Mnemonic Function
7:0 ACC.7:0 Accumulator.
B Address: FOH

Reset State: 0000 0000B

B Register. The B register is used during multiply and divide operations. For other instructions, it can
be treated as another scratch pad register.

7 0

B Register Contents

Bit Bit

. Function
Number Mnemonic

7:0 B.7:0 B Register.

C-6

Intel ® REGISTERS

Address: 83H

DPH
Reset State: 0000 0000B

Data Pointer High. DPH is the upper byte of the 16-bit data pointer, DPTR. Instructions in the MCS®
51 architecture use DPTR for data moves, code moves, and for a jump instruction (JMP @A+DPTR).
See also DPL.

7 0

DPH Contents |

Bit Bit

Number Mnemonic Function

7:0 DPH.7:0 Data Pointer High:
Bits 8-15 of the data pointer.

Address: 82H
Reset State: 0000 0000B

Data Pointer Low. DPL is the low byte of the 16-bit data pointer, DPTR. Instructions in the MCS® 51
architecture use the 16-bit data pointer for data moves, code moves, and for a jump instruction (JMP
@A+DPTR). See also DPH.

7 0
DPL Contents

DPL

Bit Bit

. Function
Number Mnemonic

7:0 DPL.7:0 Data Pointer Low:
Bits 0-7 of the data pointer.

C-7

8x931AA, 8x931HA USER’'S MANUAL Inte|®

EPCON Address: E1H
(Endpoint-indexed) Reset State: Endpoint 0 0011 0101B
Function Endpoints 1, 2 0001 ooo0B

Endpoint Control Register. This SFR configures the operation of the endpoint specified by EPINDEX.
7 0

RXSTL TXSTL CTLEP RXSPM ‘ | RXIE RXEPEN TXOE TXEPEN

Bit Bit

Number | Mnemonic Function

7 RXSTL Stall Receive Endpoint:

Set this bit to stall the receive endpoint. Clear this bit only when the host has
intervened through commands sent down endpoint 0. When this bit is set
and RXSETUP is clear, the receive endpoint will respond with a STALL
handshake to a valid OUT token. When this bit is set and RXSETUP is set,
the receive endpoint will NAK. This bit does not affect the reception of
SETUP tokens by a control endpoint.

6 TXSTL Stall Transmit Endpoint:

Set this bit to stall the transmit endpoint. This bit should be cleared only
when the host has intervened through commands sent down endpoint 0.
When this bit is set and RXSETUP is clear, the receive endpoint will
respond with a STALL handshake to a valid IN token. When this bit is set
and RXSETUP is set, the receive endpoint will NAK.

5 CTLEP Control Endpoint:*
Set this bit to configure the endpoint as a control endpoint. Only control
endpoints are capable of receiving SETUP tokens.

4 RXSPM Receive Single Packet Mode:T

Set this bit to configure the receive endpoint for single data packet
operation. When enabled, only a single data packet is allowed to reside in
the receive FIFO.

NOTE: For control endpoints (CTLEP=1), this bit should be set for single
packet mode operation as the recommended firmware model.
However, it is possible to have a control endpoint configured in
dual packet mode as long as the firmware handles the endpoint
correctly.

3 RXIE Receive Input Enable:

Set this bit to enable data from the USB to be written into the receive FIFO.
If cleared, the endpoint will not write the received data into the receive FIFO
and at the end of reception, but will return a NAK handshake on a valid OUT
token if the RXSTL bit is not set.This bit does not affect a valid SETUP
token. A valid SETUP token and packet override this bit if it is cleared, and
place the receive data in the FIFO.

T For hub endpoint 0 (EPINDEX = 1000 0000), bits 5 and 4 are hard-wired to ‘1’ since hub endpoint O is
always a control endpoint.

C-8

+

Function Endpoints 1, 2 0001 0000B

Endpoint Control Register. This SFR configures the operation of the endpoint specified by EPINDEX.

|nte|® REGISTERS
EPCON (Continued) Address: E1H
(Endpoint-indexed) Reset State: Endpoint 0 0011 0101B

7 0
RXSTL TXSTL CTLEP RXSPM | | RXIE RXEPEN TXOE TXEPEN
Bit Bit Function

Number | Mnemonic

2 RXEPEN Receive Endpoint Enable:
Set this bit to enable the receive endpoint. When disabled, the endpoint
does not respond to a valid OUT or SETUP token. This bit is hardware read-
only and has the highest priority among RXIE and RXSTL. Note that
endpoint 0 is enabled for reception upon reset.

1 TXOE Transmit Output Enable:
This bit is used to enable the data in TXDAT to be transmitted. If cleared, the
endpoint returns a NAK handshake to a valid IN token if the TXSTL bit is not
set.

0 TXEPEN Transmit Endpoint Enable:

This bit is used to enable the transmit endpoint. When disabled, the
endpoint does not respond to a valid IN token. This bit is hardware read
only. Note that endpoint 0 is enabled for transmission upon reset.

For hub endpoint 0 (EPINDEX = 1000 0000), bits 5 and 4 are hard-wired to ‘1’ since hub endpoint 0 is
always a control endpoint.

C-9

8x931AA, 8x931HA USER’'S MANUAL Inte|®

EPINDEX Address: F1H
Reset State: 1xxx xx00B

Endpoint Index Register. This register identifies the endpoint pair. Its contents select the transmit and
receive FIFO pair and serve as an index to endpoint-specific SFRs.

7 0

HORF — — — H — — EPINXL | EPINXO

Bit Bit

Number | Mnemonic Function

7 HORF Hub/Function Bit:

1 = Hub. Selects USB hub FIFOs and SFRs.
0 = Function. Selects USB function FIFOs and SFRs.

6:2 — Reserved:
Write zeros to these bits.
1:0 EPINX1:0 Endpoint Index:
EPINDEX' EPINDEX'
Oxxx xx00 Function Endpoint 0 1xxx xx00 Hub Endpoint 0
0xxx xx01 Function Endpoint 1 1xxx xx01 Hub Endpoint 1

Oxxx xx10 Function Endpoint 2

T The EPINDEX register identifies the endpoint pair and selects the associated transmit and receive FIFO
pair. The value in this register plus SFR addresses select the associated bank of endpoint-indexed SFRs
(TXDAT, TXCON, TXFLG, TXCNTL, RXDAT, RXCON, RXFLG, RXCNTL, EPCON, TXSTAT, and
RXSTAT).

intel.

REGISTERS

FADDR

Address: 8FH
Reset State:0000 0000B

Function Address Register. This SFR holds the address for the USB function. During bus enumeration
it is written with a unique value assigned by the host.

7 0
— A6:0
Bit Bit Function
Number | Mnemonic
7 — Reserved:
Write a zero to this bit.
6:0 A6:0 7-bit Programmable Function Address:
This register is programmed through the commands received via endpoint 0
on configuration, which should be the only time the firmware should change
the value of this register. This register is read-only by hardware.

C-11

8x931AA, 8x931HA USER’'S MANUAL

intel.

FIE

Address:
Reset State:

A2H

xx00 0000B

Function Interrupt Enable Register. Enables and disables the receive and transmit done interrupts for
the three function endpoints.

7 0
— — FRXIE2 FTXIE2 ‘ ‘ FRXIE1 FTXIEL FRXIEO FTXIEO
NuEr;ILer Mnel?nltonic Function
7:6 Reserved:
o Write zeros to these bits.
5 FRXIE2 Function Receive Interrupt Enable 2:
Enables the receive done interrupt for endpoint 2 (FRXD2).
4 FTXIE2 Function Transmit Interrupt Enable 2:
Enables the transmit done interrupt for endpoint 2 (FTXD2).
3 FRXIE1 Function Receive Interrupt Enable 1:
Enables the receive done interrupt for endpoint 1 (FRXD1).
2 FTXIEL Function Transmit Interrupt Enable 1:
Enables the transmit done interrupt for endpoint 1 (FTXD1).
1 FRXIEO Function Receive Interrupt Enable 0:
Enables the receive done interrupt for endpoint 0 (FRXDO).
0 FTXIEO Function Transmit Interrupt Enable 0O:
Enables the transmit done interrupt for endpoint 0 (FTXDO).
NOTE: For all bits, a ‘1’ means the interrupt is enabled and will cause an interrupt to be signaled to

the microcontroller. A ‘0’ means the associated interrupt source is disabled and cannot
cause an interrupt, even though the interrupt bit's value is still reflected in the FIFLG register.

Intel ® REGISTERS

EIELG Address: COH

Reset State: xx00 0000B

Function Interrupt Flag Register. Contains the USB function’s transmit and receive done interrupt
flags for non-isochronous endpoints.

7 0
— — FRXD2 FTXD2 ‘ ‘ FRXD1 FTXD1 FRXDO FTXDO
Bit Bit B Function

Number Mnemonic
7:6 — Reserved:
Write zeros to these bits.

5 FRXD2 Function Receive Done Flag, Endpoint 2

4 FTXD2 Function Transmit Done Flag, Endpoint 2

3 FRXD1 Function Receive Done Flag, Endpoint 1

2 FTXD1 Function Transmit Done Flag, Endpoint 1

1 FRXDO Function Receive Done Flag, Endpoint 0

0 FTXDO Function Transmit Done Flag, Endpoint 0

NOTES:

1. For all bits in the Interrupt Flag Register, a ‘1’ indicates that an interrupt is actively pending; a ‘0’

indicates that the interrupt is not active. The interrupt status is shown regardless of the state of the
corresponding interrupt enable bit in the FIE.

Bits are set-only by hardware and clearable in firmware. Firmware can also set the bits for test
purposes, allowing the interrupt to be generated in firmware. This SFR is bit-addressable.

A set bit indicates either:

Valid data waiting to be serviced in the RX FIFO for the indicated endpoint and that the data was
received without error and has been acknowledged; or

Data was received with a Receive Data Error requiring firmware intervention to be cleared.

C-13

8x931AA, 8x931HA USER’'S MANUAL Inte|®

HADDR Address: 97H
Reset State: 0000 0000B

Hub Address Register. This SFR holds the address for the hub device. During bus enumeration it is
written with a unique value assigned by the host.

7 0
‘ _ | Hub Address

Bit .

Number Function

7 Reserved.
Write a zero to this bit.

6:0 Hub address register:
Updated using a SET_ADDRESS USB host request. This address is used by the HIU to
perform token decoding.

HIE Address: AlH

Reset State: XXxX xx00B

Hub Interrupt Enable Register. Enables and disables the receive and transmit done interrupts for hub
endpoint 0.

7 0
_ _ — H — — HRXEO HTXEO

Nulrgnlt)er Mne?nltonic Function
7:2 — Reserved:
Write zeros to these bits.
1 HRXEO HRXEO:
Enable the hub endpoint O receive done interrupt (HRXDO).Jr
0 HTXEO HTXEO:
Enable the hub endpoint O transmit done interrupt (HTXDO).Jr

T For both bits, a ‘1’ means the interrupt is enabled, and will cause an interrupt to be signaled to the
microcontroller. A ‘0’ means the associated interrupt source is disabled and cannot cause an
interrupt, even though its value is still reflected in the HIFLG register.

Intel ® REGISTERS

HIFLG Address: E8H
Reset State: XXxX xx00B

Hub Interrupt Flag Register. Contains the hub’s transmit and receive done interrupt flags for hub
endpoint 0.

7 0
_ _ — H — — HRXDO HTXDO

Bit Bit

Number Mnemonic Function
7:2 — Reserved:
Write zeros to these bits.
1 HRXDO Hub Receive Done, Endpoint 0.:

Hardware sets this bit to indicate that there is either: (1) valid data
waiting to be serviced in the receive data buffer for hub endpoint 0 and
that the data was received without error and has been acknowledged; or
(2) that data was received with a FIFO error requiring firmware
intervention to be cleared.

0 HTXDO Hub Transmit Done, Endpoint 0:

Hardware sets this bit to indicate that one of two conditions exists in the
transmit data buffer for hub endpoint 0: (1) the transmit data has been
transmitted and the host has sent acknowledgment which was
successfully received; or (2) a FIFO-related error occurred during
transmission of the data packet, which requires servicing by firmware to
be cleared.

NOTES:

1. Note that because the HIFLG appears in the first SFR column, it is a bit-addressable SFR. All bits
are set in hardware and cleared by firmware. Firmware can also set these bits for test purposes,
allowing the interrupt to be generated by firmware.

2. For both HRXDO and HTXDO, a ‘1’ indicates that an interrupt is actively pending; a ‘0’ indicates

that the interrupt is not active. The interrupt status is shown regardless of the state of the

corresponding interrupt enable bit in the HIE.

C-15

8x931AA, 8x931HA USER’'S MANUAL Inte|®

HPCON Address: CFH
(Indexed by HPINDEX) Reset State:xxxx x000B

Hub Port Control Register. Firmware writes to this register to disable, enable, reset, suspend, and
resume a port.

7 O
— _ _ _ H — HPCON2 | HPCON1 | HPCONO

Bit Bit Function
Number | Mnemonic
7:3 — Reserved:
Write zeros to these bits.
2:0 HPCON.2:0 | Encoded Hub Port Control Commands:

All bits should be set and cleared by firmware after receiving the USB
requests ClearPortFeature and SetPortFeature from the host. The bits are
encoded as follows (all other bit combinations are ignored by the hardware):

000 — Disable port

001 — Enable port

010 — Reset and enable port

011 — Suspend port

100 — Resume port
See Table 7-6 on page 7-16 for a complete description of the encoded hub
port control commands.

L]
|nte|® REGISTERS
HPINDEX Address D4H
Reset State XXxx x000B

Hub Port Index Register. This register contains the binary value of the port whose HPSC, HPSTAT,
and HPCON registers are to be accessed.

7 0
— — — — || = HPIDX2 | HPIDX1 | HPIDXO
Nu?nlt)er Mnel?nltonic Function
73 — Reserved:
Write zeros to these bits.
2:0 HPIDX.2:0 | Port Index Select:

Used to select the port to be indexed by the following registers: HPSC,
HPSTAT, and HPCON. This register is hardware read-only. The ports are
addressed using the following HPIDX2:0 bit combinations:

Port 1 = “001” (internal port)
Port 2 =“010”

Port 3 =“011"
Port 4 =“100"
Port 5 =“101"

NOTE: Port0="000" (the root port) and all other combinations not shown above are not valid port indexes
and are ignored.

C-17

8x931AA, 8x931HA USER’'S MANUAL Inte|®

HPPWR Address: 9AH
Reset State: xx00 001x

Hub Port Power Control Register. This register is used to control power to the hub’s downstream ports.
7 0
— — HPPWR5 | HPPWR4 ‘ | HPPWR3 | HPPWR2 | HPPWR1 —

Bit Bit

Number | Mnemonic Function
7:6 — Reserved:

Write zeros to these bits.
5:2 HPPWRS5:2 | Port Power Control for USB Ports 5-2:

Bit 5 is power control for port 5, bit 4 for port 4, bit 3 for port 3, and bit 2 for
port 2. These bits are set and cleared by firmware via a USB host request
SetPortFeature with the PORT_POWER feature selector. These bits will
also be cleared by hardware upon detection of an over-current condition.
This is done to prevent oscillation of the UPWEN# pin during an over-
current condition with bus-powered devices.

A value of ‘1’ enables power to the downstream port and puts the portin a

disconnected state. A value of ‘0’ turns the downstream port power off.

NOTE: The UPWEN# pin is setto ‘1’ only if all port power enable bits are
‘0,’ due to the use of a ganged (shared) power enable scheme.

1 HPPWR1 Port Power Control for USB Port 1 (read-only):
Port 1 is an internal port and is always powered on. This bit is hard-wired to
Q.

0 — Reserved:

Write a zero to this bit.

Intel ® REGISTERS

HPSC Address: D5H
(Indexed by HPINDEX) Reset State: xxx0 0000B

Hub Port Status Change Register. This register indicates a change in status for a port, including over-
current, reset, suspend, low-speed device, enable and connect status.
7 0

_ — — RSTSC H _ PSSC PESC PCSC

Bit Bit

Number | Mnemonic Function

7:5 — Reserved:
Write zeros to these bits.

4 RSTSC Reset Status Change (read-, clear-only):

This bit is cleared in firmware via the USB host request ClearPortFeature
with a C_PORT_RESET feature selector. ‘1’ indicates reset of port
complete; ‘0’ indicates no change.

Port x (x=2,3,4,5): This bit is set by hardware approximately 10 msec after
receipt of a port reset and enable command (SetPortFeature with
PORT_RESET feature selector).

Port 1: This bit is set by hardware at the EOF2 point near the end of a frame
after completion of the hardware-timed reset due to firmware execution of a
port reset and enable command (SetPortFeature with PORT_RESET
feature selector).

3 — Reserved:
Write a zero to this bit.

2 PSSC Port Suspend Status Change (read-, clear-only):

This bit is cleared by firmware upon a USB host request ClearPortFeature
with C_PORT_SUSPEND feature selector. ‘1’ = resume process complete;
‘0’ = no change. The resume process is initiated by firmware upon reception
of a SetPortFeature request with a PORT_SUSPEND feature selector.

Port x (x=2,3,4,5): This bit is set by hardware upon completion of the
firmware-initiated resume process.

Port 1: This bit is set by hardware 20 msec after the next EOF2 point after
completion of the resume process.

NOTE: Bits are returned as part of the second word (2 bytes) in response to a Get Port Status request
from the USB host. The upper 11 MSbs are reserved and always ‘0’ per USB 1.0: 0000 0000
000.4.3.2.1.0 (MSB at left).

C-19

8x931AA, 8x931HA USER’'S MANUAL Inte|®

HPSC (Continued) Address: D5H
(Indexed by HPINDEX) Reset State: xxx0 0000B

Hub Port Status Change Register. This register indicates a change in status for a port, including over-
current, reset, suspend, low-speed device, enable and connect status.

7 0
— — — RSTSC || — PSSC PESC PCSC
Bit Bit :
Number | Mnemonic Function
1 PESC Port Enable/Disable Status Change (read, clear-only):

This bit’s status does not change due to USB requests. This bit is cleared by
firmware via the USB host request ClearPortFeature with a
C_PORT_ENABLE feature selector. ‘1’ indicates port enabled/ disabled
status change; ‘0’ indicates no change.

Port x (x=2,3,4,5): This bit is set by hardware due to hardware events only
(this bit indicates the port was disabled due to babble, physical disconnects,
or overcurrent).

Port 1: This bit is set by hardware at the EOF2 point near the end of frame
due to hardware events only (e.g., the port was disabled due to babble).

0 PCsSC Port Connect Status Change (read-, clear-only):

This bit is cleared by firmware via a USB host request ClearPortFeature with
C_PORT_CONNECTION feature selector. ‘1’ indicates connect status
change; ‘0’ indicates no change.

Port x (x=2,3,4,5): This bit is set by hardware at the EOF2 point near the
end of a frame due to hardware connects and disconnects.

Port 1: This bit is set by hardware at the next EOF2 after completion of a hub
reset (since the internal port is always connected).

NOTE: Bits are returned as part of the second word (2 bytes) in response to a Get Port Status request
from the USB host. The upper 11 MSbs are reserved and always ‘0’ per USB 1.0: 0000 0000
000.4.3.2.1.0 (MSB at left).

C-20

Intel ® REGISTERS

HPSTAT Address: D7H
(Indexed by HPINDEX) Reset State: 100d 0000B

Hub Port Status Register. This register indicates the current status for a port, including power, reset,
suspend, low-speed device, enable, connect, D,, and D,, status.

7 0
DPSTAT DMSTAT LSSTAT PPSTAT ‘ | PRSTAT | PSSTAT | PESTAT | PCSTAT

Bit Bit

Number | Mnemonic Function

7 DPSTAT D, Status (read-only):

Value of D, for port x at end of last frame. Firmware must return this bit in
response to a GetBusState request from the host.

Port x (x=2,3,4,5): Set and cleared by hardware at the EOF2 point near the
end of a frame (used for diagnostics).

Port 1: Hard-wired to '1’, since there is no D, signal for the embedded port

6 DMSTAT D,, Status (read-only):

Value of D,, for port x at end of last frame. Firmware must return this bit in
response to a GetBusState request from the host.

Port x (x=2,3,4,5): Set and cleared by hardware at the EOF2 point near the
end of a frame (used for diagnostics).

Port 1: Hard-wired to '0’", since there is no D,, signal for the embedded port.

5 PPSTAT Port Power Status (read-only):

Port x (x=2,3,4,5): Set and cleared by hardware based on the present power
status of the port, as controlled either by firmware using the HPPWR
register, or by an overcurrent condition in hardware. ‘1’ = port x is powered
on. ‘0’ = port x is powered off. The port x power status is only sampled at the
EOF2 point near end-of-frame.

Port 1: Hard-wired to '1’, since the internal function is always powered-on.

4 LSSTAT Low-speed Device Attach Status (read-only):

Port x (x=2,3,4,5): Set and cleared by hardware upon detection of the
presence or absence of a low-speed device at the EOF2 point near end-of-
frame. ‘1’ = low-speed device is attached to port x. ‘0’ = full-speed device is
attached to port x.

Port 1: Hard-wired to 0’ (full-speed), since port 1 is permanently attached to
the embedded USB function.

NOTES:

Firmware returns the bits of this register in the first word of the 8x931HA response to the host's
GetPortStatus request. See “GetPortStatus Request Firmware” on page 8-25.

Overcurrent indication is not represented on a per-port basis because the 8x931HA supports ganged power
control and overcurrent indication.

c-21

8x931AA, 8x931HA USER’'S MANUAL Inte|®

HPSTAT (Continued) Address: D7H
(Indexed by HPINDEX) Reset State: 100d 0000B

Hub Port Status Register. This register indicates the current status for a port, including power, reset,
suspend, low-speed device, enable, connect, D, and D,, status.

7 0
DPSTAT DMSTAT LSSTAT PPSTAT | | PRSTAT PSSTAT PESTAT | PCSTAT

Bit Bit

) Function
Number | Mnemonic

3 PRSTAT Port Reset Status (read-only):

Port x ((x=2,3,4,5): Set and cleared by hardware as a result of initiating a
port x reset by writing to HPCON. ‘1’ = reset signaling is currently asserted
for port x. ‘0’ = reset signaling is not asserted. Sampled only at the EOF2
point near end of frame.

Port 1: Same as port x.

2 PSSTAT Port Suspend Status (read-only):

Port x (x=2,3,4,5): Set and cleared by hardware as controlled by firmware
via HPCON. ‘1" = port x is currently suspended. ‘0’ = not suspended.
Sampled only at the EOF2 point near end of frame.

Port 1: Same as port x.

1 PESTAT Port Enable/Disable Status (read-only):

Port x (x=2,3,4,5): Set and cleared by hardware as controlled by firmware
via HPCON. ‘1’ = port x is currently enabled. ‘0’ = port is disabled. Sampled
only at the EOF2 point near end of frame.

Port 1: Same as port x.

0 PCSTAT Port Connect Status (read-only):
Port x connect status from previous frame time.

Port x (x=2,3,4,5): Set and cleared by hardware after sampling the connect
state at EOF2 near the end of the present frame. ‘1’ = device is present on
port x. ‘0’ = device is not present. This bit will be set if either a physical
connection is detected, or during a hub reset when a downstream device is
already connected. This bit will be cleared if a disconnect is detected.

Port 1: Hard-wired to ‘1’, since the internal function is permanently
connected.

NOTES:

Firmware returns the bits of this register in the first word of the 8x931HA response to the host's
GetPortStatus request. See “GetPortStatus Request Firmware” on page 8-25.

Overcurrent indication is not represented on a per-port basis because the 8x931HA supports ganged power
control and overcurrent indication.

C-22

intel.

REGISTERS

t

HSTAT

Address: AEH
Reset State: 0000 0000B

Hub Status and Configuration Register. This SFR contains bits for remote wake-up request, status
and status change indicators for over-current and hub endpoint 1 stall and enable.

7

OVRIEN

HRWUPE

EP1STL | EP1EN H ovISC — ovi —

Bit
Number

Bit
Mnemonic

Function

7

OVRIEN

Overcurrent Detect Enable Bit:

This bit is used to gate off the overcurrent input detect which is
multiplexed with P3.0. When set, a low on P3.0/OVRI# pin will trigger
over current detection logic. When this bit is '0’ the over current detection
logic is disabled.

HRWUPE

Hub Remote Wake-up Enable Bit:

Set if the device is currently enabled to request remote wake-up. This bit

is modified through the SetFeature and ClearFeature requests using the

DEVICE_REMOTE_WAKEUP feature selector. When ‘0,” the hub blocks

resume signaling for connect/disconnect and resume events detected on

downstream ports.

NOTE: Do not set this bit until after the hub is enumerated and the host
issues a SET_FEATURE command with a DEVICE_
REMOTE_WAKEUP feature selector.

EP1STL

Hub Endpoint 1 Stall Field:

Set to ‘1’ via the USB SetFeature request with endpoint stall feature
selector. When ‘1, will force a stall response when endpoint 1 is
addressed. Reset with USB ClearFeature request with endpoint stall
feature selector.

EP1EN

Hub Endpoint 1 Enable:

Set to ‘1’ upon receipt of a USB SetConfiguration request value of

0001H. Endpoint 1 cannot respond unless this bit is set. Bit is reset upon

receipt of configuration value other than 0001H or a system or USB

reset.

NOTE: This bit must be set in order for the UPWEN# pin to enable
power to the downstream ports. Downstream power cannot be
applied until this is done.

oVviIsC

Hub Over-current Indicator Status Change (read/clear-only): T

Set to ‘1’ if change is detected in the over-current status, even if the
condition goes away before it is detected by firmware. Cleared via a
USB ClearFeature request with C_HUB_OVER_CURRENT feature
selector. Cleared to ‘0’ if no change.

Reserved:
The value read from this bit is indeterminate. Write a zero to this bit.

Bits 1 and 3 are returned in response to a Get Hub Status request from the USB host. This response is
a four-byte field with zero padding (MSB at left): 0000 0000 0000 00[3] 0 0000 0000 0000 00[1] O.

C-23

8x931AA, 8x931HA USER’'S MANUAL Inte|®

+

Address: AEH

HSTAT (Continued
() Reset State: 0000 0000B

Hub Status and Configuration Register. This SFR contains bits for remote wake-up request, status
and status change indicators for over-current and hub endpoint 1 stall and enable.

7 0

OVRIEN | HRWUPE | EPI1STL EP1EN H OVISC — ovi —

Bit Bit

. Function
Number Mnemonic

1 ovI Latest Over-current Indicator (read-only): T

Hardware sets and clears this bit via the OVRI# input pin.'1’ indicates an
over-current condition. ‘0’ indicates normal power operation.

0 — Reserved:
The value read from this bit is indeterminate. Write a zero to this bit.

Bits 1 and 3 are returned in response to a Get Hub Status request from the USB host. This response is
a four-byte field with zero padding (MSB at left): 0000 0000 0000 00[3] 0 0000 0000 0000 00[1] O.

C-24

intel.

REGISTERS
IENO Address: A8H
Reset State: 0000 0000B

Interrupt Enable Register 0. IENO contains two types of interrupt enable bits. The global enable bit
(EA) enables/disables all of the interrupts (including those in IEN1). The remaining bits enable/disable
the other individual interrupts.

7 0
EA — ET2 Es || Em EX1 ETO EX0
Bit Bit . Function
Number Mnemonic

7 EA Global Interrupt Enable:
Setting this bit enables all interrupts that are individually enabled by the
other bits of this register, as well as the interrupts enabled by the bits in
the IEN1 SFR.
Clearing this bit disables all interrupts, except the TRAP interrupt, which
are always enabled.

6 — Reserved:
Write a zero to this bit.

5 ET2 Timer 2 Overflow Interrupt Enable:
Setting this bit enables the timer 2 overflow interrupt.

4 ES Serial I/0O Port Interrupt Enable:
Setting this bit enables the serial I/O port interrupt.

3 ET1 Timer 1 Overflow Interrupt Enable:
Setting this bit enables the timer 1 overflow interrupt.

2 EX1 External Interrupt 1 Enable:
Setting this bit enables external interrupt 1.

1 ETO Timer O Overflow Interrupt Enable:
Setting this bit enables the timer 0 overflow interrupt.

0 EXO External Interrupt O Enable:
Setting this bit enables external interrupt 0.

NOTE: Note that because the IENO appears in the first SFR column, it is a bit-addressable SFR.

C-25

8x931AA, 8x931HA USER’'S MANUAL Inte|®

IEN1

7

Address: B1H
Reset State: 0000 0000B

Interrupt Enable Register 1. Contains the enable bits for the USB interrupts.

EX2

— _ H — ESR EF ESOF

Bit
Number

Mnemonic

Bit

Function

7

EX2

External Interrupt 2 Enable (Keyboard Scan):

Setting this bit enables the external interrupt used for the keyboard scan.

NOTE: Setting this bit causes the 8x931 to trigger a hardware interrupt
when a keyboard scan interrupt occurs, but only if the KSEN bit
in the KBCON register is also set.

6:3

Reserved:
Write zeros to these bits.

ESR

Enable Suspend/Resume:
USB global suspend/resume interrupt enable bit.

EF

Enable Function:

Transmit/Receive Done interrupt enable bit for non-isochronous USB
function endpoints.

ESOF

Enable USB Hub/Start of Frame:

Any start-of-frame interrupt enable for isochronous endpoints, or USB
hub interrupt enable.

C-26

intel.

Interrupt Priority High Control Register 0. IPHO, together with IPLO, assigns each interrupt in IENO a
priority level from 0 (lowest) to 3 (highest):

REGISTERS
IPHO Address: B7H
Reset State: x000 0000B

IPHOXx IPLOx Priority Level
0 0 0 (lowest priority)
0 1 1
1 0 2
1 1 3 (highest priority)
7 0
— — IPHO.5 | IPHO.4 || IPHO.3 | IPHO.2 | IPHO.1 | IPHOO
Bit Bit . Function
Number Mnemonic
7:6 — Reserved:
Write zeros to these bits.
5 IPHO.5 Timer 2 Overflow Interrupt Priority Bit High.
4 IPHO.4 Serial /0 Port Interrupt Priority Bit High.
3 IPHO.3 Timer 1 Overflow Interrupt Priority Bit High.
2 IPHO.2 External Interrupt 1 Priority Bit High.
1 IPHO.1 Timer 0 Overflow Interrupt Priority Bit High.
0 IPHO.0 External Interrupt O Priority Bit High.

c-27

8x931AA, 8x931HA USER’'S MANUAL Inte|®

IPLO Address: B8H
Reset State: x000 0000B

Interrupt Priority Low Control Register 0. IPLO, together with IPHO, assigns each interrupt in IENO a
priority level from 0 (lowest) to 3 (highest):

IPHOXx IPLOx Priority Level

0 0 0 (lowest priority)

0 1 1

1 0 2

1 1 3 (highest priority)

7 0

— — IPLO.5 IPLO.4 || IPLO3 IPLO.2 IPLO.1 IPL0.0
Bit Bit Function

Number Mnemonic

7:6 — Reserved:
Write zeros to these bits.

5 IPLO.5 Timer 2 Overflow Interrupt Priority Bit Low.
4 IPLO.4 Serial I/0 Port Interrupt Priority Bit Low.

3 IPLO.3 Timer 1 Overflow Interrupt Priority Bit Low.
2 IPLO.2 External Interrupt 1 Priority Bit Low.

1 IPLO.1 Timer 0 Overflow Interrupt Priority Bit Low.
0 IPLO.O External Interrupt O Priority Bit Low.

C-28

intel.

Interrupt Priority High Control Register 1. IPH1, together with IPL1, assigns each interrupt in IEN1 a
priority level from 0 (lowest) to 3 (highest):

REGISTERS
IPH1 Address: B3H
Reset State: 0000 0000B

IPH1.x IPL1.x Priority Level
0 0 0 (lowest priority)
0 1 1
1 0 2
1 1 3 (highest priority)
7 0
IPH1.7 — — — || = IPH12 | IPH11 | IPHLO
Bit Bit . Function
Number Mnemonic
7 IPH1.7 Keyboard Scan Interrupt Priority Bit High.
6:3 — Reserved:
Write zeros to these bits.
2 IPH1.2 Global Suspend/Resume Interrupt Priority Bit High.
IPH1.1 USB Function Interrupt Priority Bit High.
0 IPH1.0 USB Hub/SOF Interrupt Priority Bit High.

C-29

8x931AA, 8x931HA USER’'S MANUAL Inte|®

IPL1 Address: B2H
Reset State: 0000 0000B

Interrupt Priority Low Control Register 1. IPL1, together with IPH1, assigns each interrupt in IEN1 a
priority level from 0 (lowest) to 3 (highest):

IPH1.x IPL1.x Priority Level

0 0 0 (lowest priority)
0 1 1
1 0 2
1 1 3 (highest priority)
7 0
IPL1.7 — — — || = IPL1.2 IPL1.1 IPL1.0
Bit Bit ’ Function
Number Mnemonic
7 IPL1.7 Keyboard Scan Interrupt Priority Bit Low.
6:3 — Reserved:
Write zeros to these bits.
2 IPL1.2 Global Suspend/Resume Interrupt Priority Bit Low.
IPL1.1 USB Function Interrupt Priority Bit Low.
0 IPL1.0 USB Hub/SOF Interrupt Priority Bit Low.

C-30

Intel ® REGISTERS

KBCON Address: F8H
Reset State: 0xx0 0000B

Keyboard Control Register. This register controls the keyboard scan input and output activity, enables
and configures the keyboard scan interrupt, and drives the keyboard LEDs.

7 0
IE2 — KSEN IT2 H LED3 LED2 LED1 LEDO

Bit Bit

) Function
Number | Mnemonic

7 IE2 Interrupt 2 Flag:

Set when external interrupt 2 is detected if the KSEN bit is set. Firmware
must clear this bit when the interrupt is serviced.

6 — Reserved:
Write a zero to this bit.
5 KSEN Keyboard Scan Enable:

Setting this bit enables the pullup resistors on the KSI input lines, enables

the keyboard scan interrupt (INT2#), and enables the LED drivers.

NOTE: The EX2 bitin the IENO SFR must also be set to enable the KSI
external interrupt.

4 IT2 Interrupt 2 Type Control Bit:

If set, a negative edge detect on any of the KSI pins causes IE2 to be set.
When clear, IE2 acts as a level 0 triggered interrupt.

3.0 LED3:0 LED Driver Control:

Clearing one of these bits turns on the associated LED. Setting a bit turns off

the associated LED.

NOTE: The KSEN (Keyboard Scan Enable) bit must be set in order to
activate the LED drivers. After reset, the LED driver control bits are
cleared. This means that when KSEN is set, the LEDs will turn on.
Firmware must set the LED driver control bits to turn off the LEDs.

C-31

8x931AA, 8x931HA USER’'S MANUAL

intel.

PO

Address:
Reset State:

80H
1111 1111B

Port 0. PO is the SFR that contains data to be driven out from the port 0 pins. Read-modify-write
instructions that read port O read this register. The other instructions that read port O read the port 0
pins. When port 0 is used for an external bus cycle, the CPU always writes FFH to PO, and the former
contents of PO are lost.

7 0
PO Contents
Bit Bit :
Number Mnemonic Function
7:0 P0.7:0 Port 0 Register:
Write data to be driven onto the port O pins to these bits.

P1 Address: 90H

Reset State: 1111 1111B

Port 1. P1 is the SFR that contains data to be driven out from the port 1 pins. Read-modify-write
instructions that read port 1 read this register. Other instructions that read port 1 read the port 1 pins.

7 0
P1 Contents
Bit Bit .
Number Mnemonic Function
7:0 P1.7:0 Port 1 Register:
Write data to be driven onto the port 1 pins to these bits.

C-32

intel.

REGISTERS
P2 Address: AOH
Reset State: 1111 1111B

Port 2. P2 is the SFR that contains data to be driven out from the port 2 pins. Read-modify-write
instructions that read port 2 read this register. Other instructions that read port 2 read the port 2 pins.

7 0
P2 Contents
Bit Bit Function
Number Mnemonic
7:0 P2.7:0 Port 2 Register:
Write data to be driven onto the port 2 pins to these bits.

p3 Address: BOH

Reset State: 1111 1111B

Port 3. P3 is the SFR that contains data to be driven out from the port 3 pins. Read-modify-write
instructions that read port 3 read this register. Other instructions that read port 3 read the port 3 pins.

7 0
P3 Contents
Bit Bit Function
Number Mnemonic
7:0 P3.7:0 Port 3 Register:
Write data to be driven onto the port 3 pins to these bits.

C-33

8x931AA, 8x931HA USER’'S MANUAL Inte|®

PCON

Address: 87H
Reset State: 001d 0000B

Power Control Register. Contains the power off flag (POF) and bits for enabling the idle and
powerdown modes and two general-purpose flags.

7 0
SMOD1 | SMODO LC POF || GF1 GFO PD IDL
Bit Bit Function
Number Mnemonic

7 SMOD1 Double Baud Rate Bit:
When set, doubles the baud rate when timer 1 is used and mode 1, 2, or
3 is selected in the SCON register. See “Baud Rates” on page 11-10.

6 SMODO SCON.7 Select:
When set, read/write accesses to SCON.7 are to the FE bit.
When clear, read/write accesses to SCON.7 are to the SMO bit.See the
SCON register (Figure 11-2 on page 11-4).

5 LC Low-clock Mode Enable:
Setting this bit forces the internal clock (F) distributed to the CPU and
peripherals (but not the USB module) to 3 MHz. This bit is automatically
set after a reset. Clearing this bit through firmware returns F to the
normal clock frequency.

4 POF Power Off Flag:
Set by hardware on the rising edge of Vcc. set or cleared by software.
This flag allows detection of a reset caused by a power failure. Vcc must
remain above 3 volts to retain this bit.

3 GF1 General Purpose Flag:
Set or cleared by firmware. One use is to indicate whether an interrupt
occurred during normal operation or during idle mode.

2 GFO General Purpose Flag:
Set or cleared by firmware. One use is to indicate whether an interrupt
occurred during normal operation or during idle mode.

1 PD Powerdown Mode Bit:
When set, activates powerdown mode. This bit should only be set if the
GSUS bit is also set. Cleared by hardware when an interrupt or reset
occurs.

0 IDL Idle Mode Bit:
When set, activates idle mode.
Cleared by hardware when an interrupt or reset occurs.
If IDL and PD are both set, PD takes precedence.

C-34

Intel ® REGISTERS

PCON1 Address: DFH
Reset State: XXxX X000B

USB Power Control Register. Facilitates the control and status relating to global suspend and
resume, USB reset separation, and remote wake-up of the 8x931.

7 0
— — — URDIS | | URST RWU GRSM GSUS
Bit Bit .
Number Mnemonic Function
75 — Reserved:
Write zeros to these bits.
4 URDIS USB Reset Disable:

When cleared by firmware, a chip reset occurs upon receiving of a USB
reset signal. This resets the MCS® 51 microcontroller core, USB blocks
and all peripherals.

When set by firmware, the core and peripherals will not reset when a
USB reset signal is detected. Upon detecting a USB reset signal, the
8x931 resets all the USB blocks (FIFOs, FIU, SIE, and transceiver), sets
the URST bit and generates a USB reset interrupt (refer to the
description of URST).

3 URST USB Reset Flag:

This flag will be set by hardware when a USB reset occurs, regardless of
whether the ESR bit in the IENL1 register is enabled or disabled. The
URST also serves as the interrupt bit, ORed with GRSM and GSUS bits
to generate an interrupt. Should be cleared by firmware when serving
the USB reset interrupt.

2 RWU Remote Wake-up Bit:

1 = wake-up. This bit is used by the USB function to initiate a remote

wake-up. Set by firmware to drive resume signaling on the USB lines to

the host or upstream hub. Cleared by hardware when resume signaling

is done.

NOTE: Do not set this bit unless the USB function is suspended
(GSUS =1 and GRSM = 0). See Figure 14-2 on page 14-4.

T Firmware should prioritize GRSM over GSUS if both bits are set simultaneously.

C-35

8x931AA, 8x931HA USER’'S MANUAL Inte|®

PCONL1 (Continued) Address: DFH
Reset State: xxxx x000B

USB Power Control Register. Facilitates the control and status relating to global suspend and
resume, USB reset separation, and remote wake-up of the 8x931.

7 0
— — — URDIS H URST RWU GRSM GSUS

1 GRSM Global Resume Bit:

1 = resume. Set by hardware when a global resume is detected on the
USB lines. This bit is ORed with GSUS to generate the interruptT
Cleared by firmware when servicing the global suspend/resume
interrupt. (This bit can also be set/cleared by firmware for testability.)
This bit is not set if remote wakeup is used (see RWU). See Figure 14-2
on page 14-4.

0 GSUS Global Suspend Bit:

1 = suspend. This bit is set by hardware when global suspend is
detected on the USB lines. This bit is ORed with the GRSM bit to
generate the interrupt.T During the global suspend ISR, firmware should

set the PD bit to enter the suspend mode. Cleared by hardware when a
resume occurs. See Figure 14-2 on page 14-4.

T Firmware should prioritize GRSM over GSUS if both bits are set simultaneously.

C-36

Intel ® REGISTERS

PSW Address: DOH
Reset State: 0000 0000B
! 0
cy AC FO RS1 || Rso ov uD P
NuEr;ILer Mne?nltonic Function
7 CcY Carry Flag:

The carry flag is set by an addition instruction (ADD, ADDC) if there is a
carry out of the MSB. It is set by a subtraction (SUB, SUBB) or compare
(CMP) if a borrow is needed for the MSB. The carry flag is also affected
by logical bit, bit move, multiply, decimal adjust, and some rotate and
shift instructions.

6 AC Auxiliary Carry Flag:

The aucxiliary carry flag is affected only by instructions that address 8-bit
operands. The AC flag is set if an arithmetic instruction with an 8-bit

operand produces a carry out of bit 3 (from addition) or a borrow into bit
3 (from subtraction). Otherwise, it is cleared. This flag is useful for BCD

arithmetic.
5 FO Flag 0:

This general-purpose flag is available to the user.
4:3 RS1:0 Register Bank Select Bits 1 and 0:

These bits select the memory locations that comprise the active bank of
the register file (registers RO—R7).

RS1 RSO Bank Address

0 0 0 00H-07H

0 1 1 08H-0FH

1 0 2 10H-17H

1 1 3 18H-1FH
2 ov Overflow Flag:

This bit is set if an addition or subtraction of signed variables results in
an overflow error (i.e., if the magnitude of the sum or difference is too
great for the seven LSBs in 2's-complement representation). The
overflow flag is also set if a multiplication product overflows one byte or if
a division by zero is attempted.

1 ub User-definable Flag:
This general-purpose flag is available to the user.
0 P Parity Bit:

This bit indicates the parity of the accumulator. It is set if an odd number
of bits in the accumulator are set. Otherwise, it is cleared. Not all
instructions update the parity bit. The parity bit is set or cleared by
instructions that change the contents of the accumulator (ACC).

C-37

8x931AA, 8x931HA USER’'S MANUAL Inte|®

RCAP2H, RCAP2L Address: RCAP2H CBH
RCAP2L CAH
Reset State: 0000 0000B

Timer 2 Reload/Capture Registers. This register pair stores 16-bit values to be loaded into or captured
from the timer register (TH2/TL2) in timer 2.

7 0
High/Low Byte of Timer 2 Reload/Capture Value
Bit Bit :
Number Mnemonic Function
7:0 RCAP2H.7:0 | High byte of the timer 2 reload/recapture register
RCAP2L.7:0 | Low byte of the timer 2 reload/recapture register
Address: E6H

RXCNTLT

(Endpoint-indexed) Reset State: XXXX XXXXB

Receive FIFO Byte-count Low Register. Ring buffer used to store the byte count for the data packets
received in the receive FIFO specified by EPINDEX.

7 0
— — = BC4 | | BC3 BC2 BC1 BCO
Bit Bit Function
Number Mnemonic
75 — Reserved. Write zeros to these bits.
4:0 BC4:0 Receive Byte Count.
Five-bit, ring buffer. Stores receive byte count.

T Not implemented for hub endpoint 1.

C-38

Intel ® REGISTERS

RXCON Address: E4H
(Endpoint-indexed) Reset State: 0xx0 0100B

Receive FIFO Control Register. Controls the receive FIFO specified by EPINDEX.

7 0
RXCLR _ _ RXFFRC || RXISO ARM ADVWM | REVWP

Bit Bit

) Function
Number | Mnemonic

7 RXCLR Clear the Receive FIFO:

Set this bit to flush the entire receive FIFO. All flags in RXFLG revert to their
reset states (RXEMP is set; all other flags clear). The ARM, RXISO, and
RXWS bits in this register and the RXSEQ bit in the RXSTAT register are
not affected by this operation. Hardware clears this bit when the flush
operation is completed.

6:5 — Reserved:
Values read from this bit are indeterminate. Write zero to this bit.
4 RXFFRC FIFO Read Complete:

Set this bit to release the receive FIFO when a data set read is complete.
Setting this bit “clears” the RXFIF “bit” (in the RXFLG register)

corresponding to the data set that was just read. Hardware clears this bit
after the RXFIF bit is cleared. All data from this data set must have been

read.
NOTE: FIFO Read Complete only works if STOVW and EDOVW are
cleared.
3 RXISO Isochronous Data Type:

Set this bit to indicate that the receive FIFO is programmed to receive
isochronous data and to set up the USB Interface to handle an isochronous
data transfer. This bit is not reset when the RXCLR bit is set; it must be
cleared by firmware.

2 ARM Auto Receive Management:

When set, the write pointer and write marker are adjusted automatically
based on the following conditions:

RXISO RX Status Write Pointer Write Marker
X ACK Unchanged Advanced
0 NAK Reversed Unchanged
1 NAK Unchanged Advanced

When this bit is set, setting REVWP or ADVWM has no effect. Hardware
neither clears nor sets this bit. This is a sticky bit that is not reset when
RXCLR is set.

NOTE: This bit should always be set, except for testing.

T ARM mode is recommended. ADVWM and REVWP, which control the write marker and write pointer
when ARM = 0, are used for test purposes.

C-39

8x931AA, 8x931HA USER’'S MANUAL Inte|®

RXCON (Continued) Address: E4H
(Endpoint-indexed) Reset State: 0xx0 0100B

Receive FIFO Control Register. Controls the receive FIFO specified by EPINDEX.
7 0
RXCLR — — RXFFRC ‘ | RXISO ARM ADVWM REVWP

Bit Bit

Number | Mnemonic Function

1 ADVWM Advance Write Marker: T

(For non-ARM mode only) Set this bit to advance the write marker to the
origin of the next data set. Advancing the write marker is used for back-to-
back receptions. Hardware clears this bit after the write marker is advanced.
Setting this bit is effective only when the REVWP, ARM, and RXCLR bits
are clear.

0 REVWP Reverse Write Pointer: T

(For non-ARM mode only) Set this bit to return the write pointer to the origin
of the last data set received, as identified by the write marker. The FIU can
then receive the last data packet again and write to the receive FIFO starting
from the same origin when the host re-sends the same data packet.
Hardware clears this bit after the write pointer is reversed. Setting this bit is
effective only when the ADVWM, ARM, and RXCLR bits are all clear.
REVWP is used when a data packet is bad. When the function interface

receives the data packet again, the write starts at the origin of the previous
(bad) data set.

T ARM mode is recommended. ADVWM and REVWP, which control the write marker and write pointer
when ARM = 0, are used for test purposes.

RXDAT Address: E3H
(Endpoint-indexed) Reset: xxxx xxxxB

Receive FIFO Data Register. Receive FIFO data specified by EPINDEX is stored and read from this
register.

7 0
RXDAT.7:0
Bit Bit Function
Number Mnemonic
7:0 RXDAT.7:0 | To write data to the receive FIFO, the FIU writes to this register. To read

data from the receive FIFO, the 8x931 reads from this register. The write
pointer and read pointer are incremented automatically after a write and
read, respectively.

C-40

Intel ® REGISTERS

RXFLG Address: E5H
(Endpoint-indexed) Reset State: 00xx 1000B

Receive FIFO Flag Register. These flags indicate the status of data packets in the receive FIFO
specified by EPINDEX.

7 0
RXFIF1 RXFIFO — — ‘ | RXEMP RXFULL RXURF RXOVF

Bit Bit

. Function
Number | Mnemonic unctio

7:6 RXFIF1:0 | Receive FIFO Index Flags: (read-only)

These read-only flags indicate which data packets are present in the receive
FIFO (see Table 6-6 on page 6-27). The RXFIF bits are updated after each

write to RXCNT to reflect the addition of a data packet. Likewise, the RXFIF
bits are cleared in sequence after each setting of the RXFFRC bit. The next-
state table for RXFIF bits is shown below for operation in dual packet mode.

RXFIF1:0 Operation Flag Next RXFIF1:0 Next Flag
00 Adv WM X 01 Unchanged
01 Adv WM X 01 Unchanged
10 Adv WM X 11 Unchanged
00 SetRXFFRC X 00 Unchanged
01 SetRXFFRC X 00 Unchanged
11 SetRXFFRC X 10/01 Unchanged
10 SetRXFFRC X 00 Unchanged
XX Rev WP X Unchanged Unchanged

When the receive FIFO is programmed to operate in single packet mode
(RXSPM set in EPCON), valid RXFIF states are 00 and 01 only.

In 1ISO mode, RXOVF, RXURF, and RXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. RXFIF is “incremented” by the USB and
“decremented” by firmware.Therefore, setting RXFFRC “decrements”
RXFIF immediately. However, a successful USB transaction within a frame
“increments” RXFIF only at SOF. For traceability, you must check the RXFIF
flags before and after reads from the receive FIFO and the setting of
RXFFRC in RXCON.
NOTE: To simplify firmware development, it is recommended that you
utilize control endpoints in single-packet mode only.

5:4 — Reserved:
Values read from these bits are indeterminate. Write zeros to these bits.
3 RXEMP Receive FIFO Empty Flag (read-only):

Hardware sets this flag when the write pointer is at the same location as the
read pointer and the write pointer equals the write marker and neither
pointer has rolled over. Hardware clears the bit when the empty condition no
longer exists. This is not a sticky bit and always tracks the current status of
the receive FIFO, regardless of ISO or non-ISO mode.

T When set, all transmissions are NAKed.

C-41

8x931AA, 8x931HA USER’'S MANUAL Inte|®

RXFLG (Continued) Address: E5H
(Endpoint-indexed) Reset State: 00xx 1000B

Receive FIFO Flag Register. These flags indicate the status of data packets in the receive FIFO
specified by EPINDEX.

7 0
RXFIF1 RXFIFO — — | | RXEMP RXFULL RXURF RXOVF
Bit Bit :
Number | Mnemonic Function
2 RXFULL Receive FIFO Full Flag (read-only):

Hardware sets this flag when the write pointer has rolled over and equals
the read pointer. Hardware clears the bit when the full condition no longer
exists. This is not a sticky bit and always tracks the current status of the
receive FIFO, regardless of ISO or non-ISO mode.

1 RXURF Receive FIFO Underrun Flagt:

Hardware sets this bit when an additional byte is read from an empty receive
FIFO or RXCNT. Hardware does not clear this bit, so you must clear it in
firmware. When the receive FIFO underruns, the read pointer will not
advance — it remains locked in the empty position.

In ISO mode, RXOVF, RXURF, and RXFIF are handled using the following

rule: Firmware events cause status change immediately, while USB events

cause status change only at SOF. Since underrun can only be caused by

firmware, RXURF is updated immediately. You must check the RXURF flag

after reads from the receive FIFO before setting the RXFFRC bit in RXCON.

NOTE: When this bit is set, the FIFO is in an unknown state. It is
recommended that you reset the FIFO in the error management
routine using the RXCLR bit in the RXCON register.

0 RXOVF Receive FIFO Overrun Flagt:

This bit is set when the FIU writes an additional byte to a full receive FIFO or
writes a byte count to RXCNT with FIF1:0 = 11. This is a sticky bit that must
be cleared through firmware, although it can be cleared by hardware if a
SETUP packet is received after an RXOVF error had already occurred.t

When this bit is set, the FIFO is in an unknown state, thus it is
recommended that you reset the FIFO in the error management routine
using the RXCLR bit in the RXCON register. When the receive FIFO
overruns, the write pointer will not advance — it remains locked in the full
position.

In 1ISO mode, RXOVF, RXURF, and RXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. Since overrun can only be caused by the
USB, RXOVF is updated only at the next SOF regardless of where the
overrun occurred during the current frame.t

T When set, all transmissions are NAKed.

C-42

Intel ® REGISTERS

RXSTAT Address: E2H
(Endpoint-indexed) Reset State: 0000 0000B

Endpoint Receive Status Register. Contains the current endpoint status of the receive FIFO specified
by EPINDEX. (Endpoint-indexed SFR)

7 0
RXSEQ | RXSETUP | STOVW EDOVW ‘ | RXSOVW | RXVOID RXERR RXACK

Bit Bit

. Function
Number | Mnemonic unctio

7 RXSEQ Receiver Endpoint Sequence Bit (read, conditional write): T

This bit will be toggled on completion of an ACK handshake in response to
an OUT token. This bit will be set (or cleared) by hardware after reception of
a SETUP token.

This bit can be written by firmware if the RXSOVW bit is set when written

along with the new RXSEQ value.

NOTE: Always verify this bit after writing to ensure that there is no conflict
with hardware, which could occur if a new SETUP token is
received.

6 RXSETUP | Received Setup Token:

This bit is set by hardware when a valid SETUP token has been received.
When set, this bit causes received IN or OUT tokens to be NAKed until the
bit is cleared to allow proper data management for the transmit and receive
FIFOs from the previous transaction.

IN or OUT tokens are NAKed even if the endpoint is stalled (RXSTL or
TXSTL) to allow a control transaction to clear a stalled endpoint.

Clear this bit upon detection of a SETUP token after the firmware is ready to
complete the status stage of a control transaction.

5 STOVW Start Overwrite Flag (read-only):

Set by hardware upon receipt of a SETUP token for any control endpoint to
indicate that the receive FIFO is being overwritten with new SETUP data.
When set, the FIFO state (FIF and read pointer) resets and is locked for this
endpoint until EDOVW is set. This prevents a prior, ongoing firmware read
from corrupting the read pointer as the receive FIFO is being cleared and
new data is being written into it. This bit is cleared by hardware at the end of
handshake phase transmission of the setup stage.

This bit is used only for control endpoints.

T Under normal operation, this bit should not be modified by the user.
™ For additional information on the operation of these bits see Appendix D, “Data Flow Model”.

T The SIE will handle all sequence bit tracking. This bit should be used only when initializing a new
configuration or interface.

C-43

8x931AA, 8x931HA USER’'S MANUAL Inte|®

RXSTAT (Continued) Address: E2H
(Endpoint-indexed) Reset State: 0000 0000B

Endpoint Receive Status Register. Contains the current endpoint status of the receive FIFO specified
by EPINDEX. (Endpoint-indexed SFR)

7 0

RXSEQ RXSETUP | STOVW EDOVW | | RXSOVW | RXVOID RXERR RXACK

Bit Bit

) Function
Number | Mnemonic

4 EDOVW End Overwrite Flag: This flag is set by hardware during the handshake
phase of a SETUP stage. It is set after every SETUP packet is received and
must be cleared prior to reading the contents of the FIFO. When set, the
FIFO state (FIF and read pointer) remains locked for this endpoint until this
bit is cleared. This prevents a prior, ongoing firmware read from corrupting
the read pointer after the new data has been written into the receive FIFO.

This bit is only used for control endpoints.
NOTE: Make sure the EDOVW bit is cleared prior to reading the contents
of the FIFO.

3 RXSOVW | Receive Data Sequence Overwrite Bit: T

Write a ‘1’ to this bit to allow the value of the RXSEQ bit to be overwritten.
Writing a ‘0’ to this bit has no effect on RXSEQ. This bit always returns ‘0’
when read.

2 RXVOID Receive Void Condition (read—only):TJr

This bit is set when no valid data is received in response to a SETUP or
OUT token due to one of the following conditions:

1. The receive FIFO is still locked
2. The EPCON register's RXSTL bit is set

This bit is set and cleared by hardware. For non-isochronous transactions,
this bit is updated by hardware at the end of the transaction in response to a
valid OUT token. For isochronous transactions, it is not updated until the
next SOF.

T Under normal operation, this bit should not be modified by the user.
™ For additional information on the operation of these bits see Appendix D, “Data Flow Model".

T The SIE will handle all sequence bit tracking. This bit should be used only when initializing a new
configuration or interface.

C-44

Intel ® REGISTERS

RXSTAT (Continued) Address: E2H
(Endpoint-indexed) Reset State: 0000 0000B

Endpoint Receive Status Register. Contains the current endpoint status of the receive FIFO specified
by EPINDEX. (Endpoint-indexed SFR)

7 0
RXSEQ RXSETUP | STOVW EDOVW | | RXSOVW | RXVOID RXERR RXACK

Bit Bit

) Function
Number | Mnemonic

1 RXERR Receive Error (read-only):JrT

Set when an error condition has occurred with the reception. Complete or
partial data has been written into the receive FIFO. No handshake is
returned. The error can be one of the following conditions:

1. Data failed CRC check.

2. Bit stuffing error.

3. Areceive FIFO goes into overrun or underrun condition while receiving.
This bit is updated by hardware at the end of a valid SETUP or OUT token
transaction (non-isochronous) or at the next SOF on each valid OUT token
transaction (isochronous).

The corresponding FRXDx bit of FIFLG or FIFLG1 (8x930Ax with 6EPP) is

set when active. This bit is updated with the RXACK bit at the end of data
reception and is mutually exclusive with RXACK.

0 RXACK Receive Acknowledged (read-only):JrJr

This bit is set when data is received completely into a receive FIFO and an
ACK handshake is sent. This read-only bit is updated by hardware at the
end of a valid SETUP or OUT token transaction (non-isochronous) or at the
next SOF on each valid OUT token transaction (isochronous).

The corresponding FRXDx bit of FIFLG or FIFLG1 (8x930Ax with 6EPP) is
set when active. This bit is updated with the RXERR bit at the end of data
reception and is mutually exclusive with RXERR.

T Under normal operation, this bit should not be modified by the user.
™ For additional information on the operation of these bits see Appendix D, “Data Flow Model".

T The SIE will handle all sequence bit tracking. This bit should be used only when initializing a new
configuration or interface.

C-45

8x931AA, 8x931HA USER’'S MANUAL Inte|®

SADDR Address: A9H
Reset State: 0000 0000B

Slave Individual Address Register. SADDR contains the device’s individual address for multiprocessor
communication.

7 0

Slave Individual Address

Bit Bit '
Number Mnemonic Function
7:0 SADDR.7:0
SADEN Address: B9H

Reset State: 0000 0000B

Mask Byte Register. This register masks bits in the SADDR register to form the device’s given
address for multiprocessor communication.

7 0
Mask for SADDR

Bit Bit Function
Number Mnemonic
7:0 SADEN.7:0
SBUE Address: 99H

Reset State: XXXX XXXXB

Serial Data Buffer. Writing to SBUF loads the transmit buffer of the serial I/O port. Reading SBUF
reads the receive buffer of the serial I/O port.

7 0
Data Sent/Received by Serial I/0 Port

Bit Bit

. Function
Number Mnemonic unctio

7:0 SBUF.7:0

C-46

Intel ® REGISTERS

SCON Address: 98H
Reset State: 0000 0000B

Serial Port Control Register. SCON contains serial I/O control and status bits, including the mode
select bits and the interrupt flag bits.

7 0
FE/SMO SM1 SM2 REN H TBS RB8 TI RI

Bit Bit

. Function
Number Mnemonic

7 FE Framing Error Bit:

To select this function, set the SMODO bit in the PCON register. Set by
hardware to indicate an invalid stop bit. Cleared by firmware, not by valid
frames.

SMO Serial Port Mode Bit 0:

To select this function, clear the SMODO bit in the PCON register.
Firmware writes to bits SMO and SM1 to select the serial port operating
mode. Refer to the SM1 bit for the mode selections.

6 SM1 Serial Port Mode Bit 1:

Firmware writes to bits SM1 and SMO (above) to select the serial port
operating mode.

SMO SM1 Mode Description Baud Rate’

0 0 0 Shift register Fosc/12
0 1 1 8-bit UART Variable
1 0 2 9-bit UART Fosc/64 T or Fogo/321T
1 1 3 9-bit UART Variable

TFOSC = Oscillator frequency.

TTSelect by programming the SMODL1 bit in the PCON register (see
section “Baud Rates” on page 11-10).

5 SM2 Serial Port Mode Bit 2:

Firmware writes to bit SM2 to enable and disable the multiprocessor
communication and automatic address recognition features. This allows
the serial port to differentiate between data and command frames and to
recognize slave and broadcast addresses.

4 REN Receiver Enable Bit:
To enable reception, set this bit. To disable reception, clear this bit.
3 TB8 Transmit Bit 8:

In modes 2 and 3, firmware writes the ninth data bit to be transmitted to
TB8. Not used in modes 0 and 1.

C-47

8x931AA, 8x931HA USER’'S MANUAL Inte|®

SCON (Continued) Address: 98H
Reset State: 0000 0000B

Serial Port Control Register. SCON contains serial I/O control and status bits, including the mode
select bits and the interrupt flag bits.

7 0
FE/SMO SM1 SM2 REN H TB8 RBS TI RI

Bit Bit

Number Mnemonic Function

2 RB8 Receiver Bit 8:
Mode 0: Not used.

Mode 1 (SM2 clear): Set or cleared by hardware to reflect the stop bit
received.

Modes 2 and 3 (SM2 set): Set or cleared by hardware to reflect the ninth
data bit received.

1 TI Transmit Interrupt Flag Bit:
Set by the transmitter after the last data bit is transmitted. Cleared by
firmware.

0 RI Receive Interrupt Flag Bit:

Set by the receiver after the last data bit of a frame has been received.
Cleared by firmware.

C-48

Intel ® REGISTERS

SOFH Address: D3H
Reset State: 0000 1000B

Start-of-frame High Register. Contains isochronous data transfer enable and interrupt bits and the
upper three bits of the 11-bit time stamp received from the host.

7 0
SOFACK | ASOF SOFIE | FTLOCK HSOFODIS TS10 TS9 Ts8

Bit Bit

. Function
Number | Mnemonic

7 SOFACK SOF Token Received without Error (read-only):

When set, this bit indicates that the 11-bit time stamp stored in SOFL and
SOFH is valid. This bit is updated every time an SOF token is received from
the USB bus, and it is cleared when an artificial SOF is generated by the
frame timer. This bit is set and cleared by hardware.

6 ASOF Any Start of Frame:

This bit is set by hardware to indicate that a new frame has started. The
interrupt can result either from reception of an actual SOF packet or from an
artificially-generated SOF from the frame timer. This interrupt is asserted in
hardware even if the frame timer is not locked to the USB bus frame timing.
When set, this bit is an indication that either an actual SOF packet was
received or an artificial SOF was generated by the frame timer. This bit must
be cleared by firmware or inverted and driven to the SOF# pin. The effect of
setting this bit by firmware is the same as hardware: the external pin will be
driven with an inverted ASOF value for eight T, ,s.

This bit also serves as the SOF interrupt flag. This interrupt is only asserted
in hardware if the SOF interrupt is enabled (SOFIE set) and the interrupt
channel is enabled.

5 SOFIE SOF Interrupt Enable:

When this bit is set, setting the ASOF bit causes an interrupt request to be
generated if the interrupt channel is enabled. Hardware reads but does not
write this bit.

4 FTLOCK Frame Timer Locked (read-only):

When set, this bit indicates that the frame timer is presently locked to the
USB bus’ frame time. When cleared, this bit indicates that the frame timer is
attempting to synchronize to the frame time.

3 SOFODIS | SOF# Pin Output Disable:

When set, the SOF# pin will be disabled and will respond like a port pin. The
SOF# pin will be driven to ‘1’ when SOFODIS is set. When this bit is clear,
setting the ASOF bit causes the SOF# pin to be toggled with a low pulse for
eight T S.

2.0 TS10:8 Time stamp received from host:

TS10:8 are the upper three bits of the 11-bit frame number issued with an
SOF token. This time stamp is valid only if the SOFACK bit is set. If an
artificial SOF is generated, the time stamp remains at its previous value and
it is up to firmware to update it. These bits are set and cleared by hardware.

C-49

8x931AA, 8x931HA USER’'S MANUAL Inte|®

SOFL Address: D2H
Reset State:0000 0000B

Start-of-Frame Low Register. Contains the lower eight bits of the 11-bit time stamp received from the
host.

7 0
TS7:0

Bit Bit

Number | Mnemonic Function

7:0 TS7:0 Time stamp received from host:

This time stamp is valid only if the SOFACK bit in the SOFH register is set.
TS7:0 are the lower eight bits of the 11-bit frame number issued with a SOF
token. If an artificial SOF is generated, the time stamp remains at its
previous value and it is up to firmware to update it. These bits are set and
cleared by hardware.

Sp Address: 81H
Reset State: 0000 0111B

Stack Pointer. The Stack Pointer register is 8-bits wide. It is incremented before data is stored during
PUSH and CALL executions. While the stack may reside anywhere in on-chip RAM, the stack pointer
is initialized to 07h after reset. This causes the stack to begin at location 08h.

7 0
SP Contents

Bit Bit

. Function
Number Mnemonic

7:0 SP.7:0 Stack Pointer:
Bits 0—7 of the stack pointer.

C-50

Intel ® REGISTERS

T2CON Address: C8H
Reset State: 0000 0000B

Timer 2 Control Register. Contains the receive clock, transmit clock, and capture/reload bits used to
configure timer 2. Also contains the run control bit, counter/timer select bit, overflow flag, external flag,
and external enable for timer 2.

7 0
TF2 EXF2 RCLK TCLK || EXEN2 TR2 CIT2# | CPIRL2#

Bit Bit

Number Mnemonic Function

7 TF2 Timer 2 Overflow Flag:

Set by timer 2 overflow. Must be cleared by firmware. TF2 is not set if
RCLK=1o0r TCLK = 1.

6 EXF2 Timer 2 External Flag:

If EXEN2 = 1, capture or reload caused by a negative transition on T2EX
sets EFX2. EXF2 does not cause an interrupt in up/down counter mode
(DCEN = 1).

5 RCLK Receive Clock Bit:

Selects timer 2 overflow pulses (RCLK = 1) or timer 1 overflow pulses
(RCLK = 0) as the baud rate generator for serial port modes 1 and 3.

4 TCLK Transmit Clock Bit:

Selects timer 2 overflow pulses (TCLK = 1) or timer 1 overflow pulses
(TCLK = 0) as the baud rate generator for serial port modes 1 and 3.

3 EXEN2 Timer 2 External Enable Bit:

Setting EXEN2 causes a capture or reload to occur as a result of a
negative transition on T2EX unless timer 2 is being used as the baud
rate generator for the serial port. Clearing EXEN2 causes timer 2 to
ignore events at T2EX.

2 TR2 Timer 2 Run Control Bit:
Setting this bit starts the timer.
1 CIT2# Timer 2 Counter/Timer Select:

C/T2# = 0 selects timer operation: timer 2 counts the divided-down
system clock. C/T2# = 1 selects counter operation: timer 2 counts
negative transitions on external pin T2.

0 CP/RL2# Capture/Reload Bit:

When set, captures occur on negative transitions at T2EX if EXEN2 = 1.
When cleared, auto-reloads occur on timer 2 overflows or negative
transitions at T2EX if EXEN2 = 1. The CP/RL2# bit is ignored and timer 2
forced to auto-reload on timer 2 overflow, if RCLK =1 or TCLK = 1.

C-51

8x931AA, 8x931HA USER’'S MANUAL Inte|®

T2MOD Address: C9H
Reset State: XXxx Xxx00B

Timer 2 Mode Control Register. Contains the timer 2 down count enable and clock-out enable bits for
timer 2.

7 0
— — — — H — — T20E DCEN

Bit Bit

. Function
Number Mnemonic

7:2 — Reserved:
Values read from these bits are indeterminate. Write zeros to these bits.
1 T20E Timer 2 Output Enable Bit:

In the timer 2 clock-out mode, connects the programmable clock output
to external pin T2.

0 DCEN Down Count Enable Bit:
Configures timer 2 as an up/down counter.

C-52

intel.

REGISTERS

TCON

Address: 88H
Reset State: 0000 0000B

Timer/Counter Control Register. Contains the overflow and external interrupt flags and the run control
and interrupt transition select bits for timer 0 and timer 1.

7

TF1

TR1

TFO TRO H IEL IT1 IEO ITO

Bit
Number

Bit
Mnemonic

Function

7

TF1

Timer 1 Overflow Flag:

Set by hardware when the timer 1 register overflows. Cleared by
hardware when the processor vectors to the interrupt routine.

TR1

Timer 1 Run Control Bit:
Set/cleared by firmware to turn timer 1 on/off.

TFO

Timer O Overflow Flag:

Set by hardware when the timer O register overflows. Cleared by
hardware when the processor vectors to the interrupt routine.

TRO

Timer 0 Run Control Bit:
Set/cleared by firmware to turn timer 0 on/off.

IE1

Interrupt 1 Flag:

Set by hardware when an external interrupt is detected on the INT1# pin.
Edge- or level- triggered (see IT1). Cleared when interrupt is processed
if edge-triggered.

IT1

Interrupt 1 Type Control Bit:

Set this bit to select edge-triggered (high-to-low) for external interrupt 1.
Clear this bit to select level-triggered (active low).

IEO

Interrupt O Flag:

Set by hardware when an external interrupt is detected on the INTO# pin.
Edge- or level- triggered (see IT0). Cleared when interrupt is processed
if edge-triggered.

ITO

Interrupt O Type Control Bit:

Set this bit to select edge-triggered (high-to-low) for external interrupt 0.
Clear this bit to select level-triggered (active low).

C-53

8x931AA, 8x931HA USER’'S MANUAL Inte|®

TMOD Address: 89H
Reset State: 0000 0000B

Timer/Counter Mode Control Register. Contains mode select, run control select, and counter/timer
select bits for controlling timer 0 and timer 1.

7 0
GATE1 C/T1# M11 MO1 ‘ ‘ GATEO C/TO# M10 MO0

Bit Bit

. Function
Number Mnemonic

7 GATE1 Timer 1 Gate:

When GATE1 = 0, run control bit TR1 gates the input signal to the timer
register. When GATE1 = 1 and TR1 = 1, external signal INT1 gates the
timer input.

6 CIT1# Timer 1 Counter/Timer Select:

C/T1# = 0 selects timer operation: timer 1 counts the divided-down
system clock. C/T1# = 1 selects counter operation: timer 1 counts
negative transitions on external pin T1.

54 M11, MO1 Timer 1 Mode Select:

M11 MO01
0 0 Mode 0: 8-bit timer/counter (TH1) with 5-bit prescalar (TL1)
0 1 Mode 1: 16-bit timer/counter
1 0 Mode 2: 8-bit auto-reload timer/counter (TL1). Reloaded
from TH1 at overflow.
1 1 Mode 3: Timer 1 halted. Retains count.

3 GATEO Timer 0 Gate:

When GATEO = 0, run control bit TRO gates the input signal to the timer
register. When GATEO = 1 and TRO = 1, external signal INTO gates the
timer input.

2 CITO# Timer 0 Counter/Timer Select:

C/TO# = 0 selects timer operation: timer O counts the divided-down
system clock. C/TO# = 1 selects counter operation: timer O counts
negative transitions on external pin TO.

1,0 M10, MOO Timer 0 Mode Select:

M10 MOO
0 0 Mode 0: 8-bit timer/counter (TO) with 5-bit prescalar (TLO)
0 1 Mode 1: 16-bit timer/counter
1 0 Mode 2: 8-bit auto-reload timer/counter (TLO). Reloaded
from THO at overflow.
1 1 Mode 3: TLO is an 8-bit timer/counter. THO is an 8-bit
timer using timer 1's TR1 and TF1 bits.

C-54

intel.

THO, TLO Timer Registers. These registers operate in cascade to form the 16-bit timer register in timer
0 or separately as 8-bit timer/counters.

REGISTERS
THO, TLO Address: THO8CH
TLOBAH
Reset State: 0000 0000B

7 0
High/Low Byte of Timer 0 Register
Bit Bit :
Number Mnemonic Function
7:0 THO.7:0 High byte of the timer O timer register.
TLO.7:0 Low byte of the timer 0 timer register.
TH1, TL1 Address: TH18DH
TL1 8BH
Reset State: 0000 0000B

TH1, TL1 Timer Registers. These registers operate in cascade to form the 16-bit timer register in timer
1 or separately as 8-bit timer/counters.

7 0
High/Low Byte of Timer 1 Register
Bit Bit Function
Number Mnemonic
7:0 TH1.7:0 High byte of the timer 1 timer register.
TL1.7:0 Low byte of the timer 1 timer register.

C-55

8x931AA, 8x931HA USER’'S MANUAL Inte|®

TH2, TL2 Address: TH2 CDH
TL2 CCH
Reset State: 0000 0000B

TH2, TL2 Timer Registers. These registers operate in cascade to form the 16-bit timer register in timer
2.

7 0
High/Low Byte of Timer 2 Register

Bit Bit .
Number Mnemonic Function
7:0 TH2.7:0 High byte of the timer 2 timer register.
TL2.7:0 Low byte of the timer 2 timer register.
TXCNTLY Address: F6H
(Endpoint-indexed) Reset States: XXXX XXXXB

Transmit FIFO Byte-count Register. Ring buffer used to store the byte count for the data packets in the
transmit FIFO specified by EPINDEX.

7 0
— _ _ BC4 || BC3 BC2 BC1 BCO

Bit Bit

. Function
Number Mnemonic

75 — Reserved.
Write zeros to these bits.

4:0 BC4:0 Transmit Byte Count. (write, conditional read”)
Five-bit, ring buffer. Stores transmit byte count for endpoints 0 and 2.

T Byte count registers are not implemented for hub endpoint 1.

™ Read these bits only if TXFIF1:0 = O; otherwise underrun errors may occur.

C-56

Intel ® REGISTERS

TXCON Address: F4H
(Endpoint-indexed) Reset State: Oxxx 0100B

USB Transmit FIFO Control Register. Controls the transmit FIFO specified by EPINDEX.
7 0
TXCLR — — — || Txso ATM ADVRM | REVRP

Bit Bit

. Function
Number | Mnemonic

7 TXCLR Transmit Clear:

Setting this bit flushes the transmit FIFO, resets all the read/write pointers
and markers, sets the EMPTY bit in TXFLG, and clears all other bits in
TXFLG. After the flush, hardware clears this bit. Setting this bit does not
affect the ATM, TXISO, and FFSZ bits, or the TXSEQ bit in the TXSTAT
register.

6:4 — Reserved:
Values read from this bit are indeterminate. Write zeros to these bits.

3 TXISO Transmit Isochronous Data:

Firmware sets this bit to indicate that the transmit FIFO contains
isochronous data. The FIU uses this bit to set up the handshake protocol at
the end of a transmission. This bit is not reset when TXCLR is set and must
be cleared by firmware.

2 ATM Automatic Transmit Management:

Setting this bit (the default value) causes the read pointer and read marker
to be adjusted automatically as indicated:

TXISO TX Status Read Pointer Read Marker

X ACK Unchanged Advanced (1)
0 NAK Reversed (2) Unchanged
1 NAK Unchanged Advanced (1)
(1) to origin of next data set (2) to origin of the data set last read

This bit should always be set, except for test purposes. Setting this bit
disables ADVRM and REVRP. This is a sticky bit that is not reset when
TXCLR is set, but can be set and cleared by firmware. Hardware neither
clears nor sets this bit.

T ATM mode is recommended. ADVRM and REVRP, which control the read marker and read pointer when
ATM = 0, are used for test purposes.

C-57

8x931AA, 8x931HA USER’'S MANUAL Inte|®

TXCON (Continued) Address: F4H
(Endpoint-indexed) Reset State: Oxxx 0100B

USB Transmit FIFO Control Register. Controls the transmit FIFO specified by EPINDEX.
7 0
TXCLR — — || Tiso ATM ADVRM | REVRP

Bit Bit

Number | Mnemonic Function

1 ADVRM Advance Read Marker Control (non-ATM mode only)*:

Setting this bit prepares for the next packet transmission by advancing the
read marker to the origin of the next data packet (the position of the read
pointer). Hardware clears this bit after the read marker is advanced. This bit
is effective only when the REVRP, ATM, and TXCLR bits are all clear.

0 REVRP Reverse Read Pointer Control (non-ATM mode only)':

In the case of a bad transmission, the same data stack may need to be
available for retransmit. Setting this bit reverses the read pointer to point to
the origin of the last data set (the position of the read marker) so that the FIU
can reread the last set for retransmission. Hardware clears this bit after the
read pointer is reversed. This bit is effective only when the ADVRM, ATM,
and TXCLR bits are all clear.

T ATM mode is recommended. ADVRM and REVRP, which control the read marker and read pointer when
ATM = 0, are used for test purposes.

TXDAT Address: F3H
(Endpoint-indexed)’ Reset State: XXXX XXXXB

USB Transmit FIFO Data Register. Data to be transmitted by the FIFO specified by EPINDEX is first
written to this register.

7 0

Transmit Data Byte

Bit Bit

. Function
Number | Mnemonic unctio

7:0 TXDAT.7:0 | Transmit Data Byte (write-only):

To write data to the transmit FIFO, write to this register. The write pointer is
incremented automatically after a write.

T For hub endpoint 1, TXDAT is used in a different manner. See Figure 7-7 on page 7-12.

C-58

Intel ® REGISTERS

TXDAT (For hub endpoint 1 only) EPINDEX=81HT Address: F3H
Reset State: XXXX XXXXB

7 0
— — TXDAT5 | TXDAT4 ‘ | TXDAT3 | TXDAT2 TXDAT1 | TXDATO

Bit Bit

Number | Mnemonic Function
7:6 — Reserved:
Values read from this bit(s) are indeterminate.
5:0 TXDAT5:0 | Hub Endpoint 1 Status Change (read-only™):

Hardware communicates status changes to the host by setting the
appropriate bit:

TXDATO hub status change

TXDAT1 port 1 status change

TXDAT2 port 2 status change

TXDAT3 port 3 status change

TXDAT4 port 4 status change

TXDATS port 5 status change

A ‘1" indicates a status change and ‘0’ indicates no status change. When
endpoint 1 is addressed via an IN token, the entire byte is sent if at least one
bitis a ‘1'. If all bits are zero, a NAK handshake is returned.

T TXDAT SFRs are also used for function (and hub endpoint 0) data transmission (EPINDEX=0xH or
80H). In that case, the bits are defined differently as shown in Figure 6-8 on page 6-16.

T Bits 5:1 can be set indirectly by firmware by writing to a port’s HPSC SFR. Setting any bit in port x's
HPSC results in the hardware setting bit xin TXDAT. TXDAT bits can be cleared indirectly in firmware by
clearing all bits in that port's HPSC.

C-59

8x931AA, 8x931HA USER’'S MANUAL Inte|®

TXFLG Address: F5H
(Endpoint-indexed) Reset State: 00xx 1000B

Transmit FIFO Flag Register. These flags indicate the status of data packets in the transmit FIFO
specified by EPINDEX.

7 0
TXFIF1 TXFIFO — — ‘ | TXEMP TXFULL TXURF TXOVF

Bit Bit

Number | Mnemonic Function

7:6 TXFIF1:0 FIFO Index Flags (read-only):

These flags indicate which data sets are present in the transmit FIFO. The
FIF bits are set in sequence after each write to TXCNT to reflect the addition
of a data set. Likewise, TXFIF1 and TXFIFO are cleared in sequence after
each advance of the read marker to indicate that the set is effectively
discarded. The bit is cleared whether the read marker is advanced by
firmware (setting ADVRM) or automatically by hardware (ATM = 1). The
next-state table for the TXFIF bits is shown below:

TXFIF1:0 Operation Flag Next TXFIF1:0 Next Flag

00 Wr TXCNT X 01 Unchanged
01 Wr TXCNT X 11 Unchanged
10 Wr TXCNT X 11 Unchanged
11 Wr TXCNT X 11 TXOVF =1
00 Adv RM X 00 Unchanged
01 Adv RM X 00 Unchanged
11 Adv RM X 10/01 Unchanged
10 Adv RM X 00 Unchanged
XX Rev RP X Unchanged Unchanged

In 1ISO mode, TXOVF, TXURF, and TXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. TXFIF is “incremented” by firmware and
“decremented” by the USB.Therefore, writes to TXCNT “increment” TXFIF
immediately. However, a successful USB transaction any time within a
frame “decrements” TXFIF only at SOF. You must check the TXFIF flags
before and after writes to the transmit FIFO and TXCNT for traceability. See
the TXFLUSH bit in TXSTST.
NOTE: To simplify firmware development, configure control endpoints in
single-packet mode.

5:4 — Reserved:
Values read from these bits are indeterminate. Write zeros to these bits.
3 TXEMP Transmit FIFO Empty Flag (read-only):

Hardware sets this bit when the write pointer has not rolled over and is at the
same location as the read pointer. Hardware clears this bit when the
pointers are at different locations.

Regardless of ISO or non-ISO mode, this bit always tracks the current
transmit FIFO status.

T When set, all transmissions are NAKed.

C-60

Intel ® REGISTERS

TXFLG (Continued) Address: F5H
(Endpoint-indexed) Reset State: 00xx 1000B

Transmit FIFO Flag Register. These flags indicate the status of data packets in the transmit FIFO
specified by EPINDEX.

7 0
TXFIF1 TXFIFO — — | | TXEMP TXFULL TXURF TXOVF
Bit Bit :
Number | Mnemonic Function
2 TXFULL Transmit FIFO Full Flag (read-only):

Hardware sets this bit when the write pointer has rolled over and equals the
read marker. Hardware clears this bit when the full condition no longer
exists.

Regardless of ISO or non-1ISO mode, this bit always tracks the current
transmit FIFO status. Check this bit to avoid causing a TXOVF condition.

1 TXURF Transmit FIFO Underrun FIagT:

Hardware sets this flag when an additional byte is read from an empty
transmit FIFO or TXCNT [This is caused when the value written to TXCNT is
greater than the number of bytes written to TXDAT.]. This is a sticky bit that
must be cleared through firmware. When this flag is set, the FIFO is in an
unknown state, thus it is recommended that you reset the FIFO in your error
management routine using the TXCLR bit in TXCON.

When the transmit FIFO underruns, the read pointer will not advance — it
remains locked in the empty position.

If the TXCNT doesn’t agree with the data, hardware sets TXURF. This
indicates that the transmitted data was corrupted by a bit-stuffing or CRC
error.

In 1ISO mode, TXOVF, TXURF, and TXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. Since underrun can only be caused by
USB, TXURF is updated at the next SOF regardless of where the underrun
occurs in the frame.

0 TXOVF Transmit FIFO Overrun FIagT:

This bit is set when an additional byte is written to a full FIFO or full TXCNT
with TXFIF1:0 = 11. This is a sticky bit that must be cleared through
firmware. When this bit is set, the FIFO is in an unknown state, thus it is
recommended that you reset the FIFO in your error management routine
using the TXCLR bitin TXCON.

When the receive FIFO overruns, the write pointer will not advance — it
remains locked in the full position. Check this bit after loading the FIFO prior
to writing the byte count register.

In 1ISO mode, TXOVF, TXURF, and TXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. Since overrun can only be caused by
firmware, TXOVF is updated immediately. Check the TXOVF flag after
writing to the transmit FIFO before writing to TXCNT.

T When set, all transmissions are NAKed.

C-61

8x931AA, 8x931HA USER’'S MANUAL Inte|®

TXSTAT Address: F2H
(Endpoint-indexed) Reset State: 0xx0 0000B

Endpoint Transmit Status Register. Contains the current endpoint status of the transmit FIFO specified
by EPINDEX.

7 0
TXSEQ — — TXFLUSH ‘ | TXSOVW | TXVOID TXERR TXACK
Bit Bit Function
Number | Mnemonic
7 TXSEQ Transmitter's Current Sequence Bit (read, conditional write): T

This bit will be transmitted in the next PID and toggled on a valid ACK
handshake. This bit is toggled by hardware on a valid SETUP token. This bit
can be written by firmware if the TXSOVW bit is set when written together
with the new TXSEQ value.

6:5 — Reserved:
Write zeros to these bits.
4 TXFLUSH | Transmit FIFO Packet Flushed (read-only):

When set, this bit indicates that hardware flushed a stale ISO data packet
from the transmit FIFO due to a TXFIF1:0 = 11 at SOF. To guard against a
missed IN token in ISO mode, if, with TXFIF1:0 = 11, no IN token is received
for the current endpoint, hardware automatically flushes the oldest packet
and decrements the TXFIF1:0 value.

3 TXSOVW | Transmit Data Sequence Overwrite Bit: T

Write a ‘1’ to this bit to allow the value of the TXSEQ bit to be overwritten.
Writing a ‘0’ to this bit has no effect on TXSEQ. This bit always returns ‘0’
when read.

2 TXVOID Transmit Void (read-only): Tt

A void condition has occurred in response to a valid IN token. Transmit void
is closely associated with the NAK/STALL handshake returned by the
function after a valid IN token, due to the conditions that cause the transmit
FIFO to be unenabled or not ready to transmit.

Use this bit to check any NAK/STALL handshake returned by the function.

This bit does not affect the FTXDx, TXERR or TXACK bits. This bit is
updated by hardware at the end of a non-isochronous transaction in
response to a valid IN token. For isochronous transactions, this bit is not
updated until the next SOF.

T Under normal operation, this bit should not be modified by the user.

™ The SIE will handle all sequence bit tracking. This bit should only be used when initializing a new
configuration or interface.

Tt For additional information on the operation of these bits see Appendix D, “Data Flow Model".

C-62

Intel ® REGISTERS

TXSTAT (Continued) Address: F2H
(Endpoint-indexed) Reset State: 0xx0 0000B

Endpoint Transmit Status Register. Contains the current endpoint status of the transmit FIFO specified
by EPINDEX.

7 0
TXSEQ = = TXFLUSH | | TXSOVW | TXVOID TXERR TXACK

Bit Bit

. Function
Number | Mnemonic

1 TXERR Transmit Error (read-only):JrJr

An error condition has occurred with the transmission. Complete or partial
data has been transmitted. The error can be one of the following:

1. Data transmitted successfully but no handshake received
2. Transmit FIFO goes into underrun condition while transmitting

The corresponding transmit done bit, FTXDx in FIFLG or FIFLG1 (8x930Ax
with 6EPP), is set when active. For non-isochronous transactions, this bit is
updated by hardware along with the TXACK bit at the end of the data
transmission (this bit is mutually exclusive with TXACK). For isochronous
transactions, this bit is not updated until the next SOF.

0 TXACK Transmit Acknowledge (read-only):TJr

Data transmission completed and acknowledged successfully. The
corresponding transmit done bit, FTXDx in FIFLG or FIFLG1 (8x930Ax with
6EPP), is set when active. For non-isochronous transactions, this bit is
updated by hardware along with the TXERR bit at the end of data
transmission (this bit is mutually exclusive with TXERR). For isochronous
transactions, this bit is not updated until the next SOF.

T Under normal operation, this bit should not be modified by the user.

™ The SIE will handle all sequence bit tracking. This bit should only be used when initializing a new
configuration or interface.

T For additional information on the operation of these bits see Appendix D, “Data Flow Model”.

C-63

intel.
D

Data Flow M odd

APPENDIX D
DATA FLOW MODEL

Thisappendix describes the dataflow model for the 8x931 USB transactions. Thisdataflow mod-
el, presented in truth table form, is intended to bridge the hardware and firmware layers of the
8x931. It describes the behavior of the 8x931 in response to a particular USB event, given a
known state/configuration.

The types of data transfer supported by the 8x931 are:

¢ Non-isochronoustransfer (interrupt, bulk)

* |sochronous transfer

¢ Control transfer

Table D-1. Non-isochronous Transmit Data Flow

New TX TX TX
T()l(FO')F Event | TXFIF | D01 2 | T 1 OVF | URF | inter- Re;foase Comments
' (1:0) (1) 1) rupt
00 Received IN | 00 no no 1 no no None NAK No data was
token, butno chg | chg chg | chg loaded, so
data or NAK.
TXOE =0.
Received IN | 00 no no 1 no no None NAK Control
token, chg | chg chg | chg endpoint only.
RXSETUP Endpoint will
=1. NAK when
RXSETUP =
1 even if
TXSTL=1.
Data loaded | 01 no no no no no None N/A Firmware
into FIFO chg | chg chg chg | chg should always
from CPU, check TXFIF
CNT written. bits before
loading and
TXOVF after
loading.
Data loaded | 00 no no no 1 no None NAKs Only overrun
into FIFO, chg | chg chg chg future FIFO error can
FIFO error transactions | occur here.
occurs. Firmware
should always
check TXOVF
before write
CNT.
NOTES:

1. These are sticky bits, which must be cleared by firmware. Also, this table assumes TXEPEN and ATM are
enabled.
2. Future transactions are NAKed even if the transmit endpoint is stalled when RXSETUP = 1.

D-1

8x931AA, 8x931HA USER’'S MANUAL

Table D-1. Non-isochronous Transmit Data Flow (Continued)

intel.

New X X X

TXFIF TX TX TX usB
Event TXFIF) OVF | URF Inter- Comments
(1:0) (1:0) ERR | ACK | Void (1) 1) rupt Response
01/10 | Received IN | 00 0 1 0 no no Set Send data | ACK
token, data chg |chg transmit received, so
transmitted, interrupt no errors.
host ACKs. Read marker
advanced.
Received IN | 01/10 |1 0 0 no no Set Send data SIE times-out.
token, data chg | chg transmit Read pointer
transmitted, interrupt reversed.
no ACK
(time-out).
Received IN | 01/10 | no no 1 no no None NAK, NAKs | Received
token, but chg | chg chg |chg future Setup token
RXSETUP transactions | (or transmit
=1 (or except disabled), so
TXOE = 0). SETUP. IN tokens are
NAKed. (2)
Received IN | 01/10 |1 0 0 no 1 Set Send data Only
token, data chg transmit | with bit- underrun FIFO
transmitted, interrupt | stuff error. error can
FIFO error NAKs occur here.
occurs. future Read pointer
transactions | reversed.

Received IN | 01/10 |1 0 1 no 1 (no | None NAK Treated like a

token with (no | (no chg | chg) “void”

existing chg) | chg) condition.

FIFO error

and TXERR

set.

Received IN | 00 0 1 0 no no Set Send data Data is

token chg |chg transmit retransmitted.

without interrupt TXACK is set

existing and TXERR is

FIFO error cleared. The

but TXERR TXERR was

set, data set by

retransmitte previous

d, host transaction

ACKs. when host
time-out.

NOTES:

1. These are sticky bits, which must be cleared by firmware. Also, this table assumes TXEPEN and ATM are

enabled.
2. Future transactions are NAKed even if the transmit endpoint is stalled when RXSETUP = 1.

D-2

N

tel.

DATA FLOW MODEL

Table D-1. Non-isochronous Transmit Data Flow (Continued)
New TX X X
T()l(Fol)F Event | TXFIF [D¢ | X | T | OVF | URF | inter- Re;’foise Comments
’ (1:0)) 1) rupt
Data loaded | 11 no no no no no None N/A Firmware
into FIFO chg | chg chg chg | chg should always
from CPU, check TXFIF
CNT written. bits before
loading and
TXOVF after
loading.
Data loaded | 01/10 | no no no 1 no None NAKs future | Only overrun
into FIFO, chg | chg chg chg transactions | FIFO error can
FIFO error occur here.
occurs. CNT Firmware
not written should always
yet. check TXOVF
before write
CNT
NOTE: no
TXERR, but
TXOVF set.
11 Received IN | 10/01 |0 1 0 no no Set Send data ACK
token, data chg |chg transmit received, so
transmitted, interrupt no errors.
host ACKs. Read marker
advanced.
Received IN | 11 1 0 0 no no Set Send data | SIE times-out.
token, data chg |chg transmit Read pointer
transmitted, interrupt reversed.
no ACK
(time-out).
Received IN | 11 0 0 1 no no None NAK, NAKs | Received
token, but chg |chg future Setup token
RXSETUP transactions | (or transmit
=1 (or disabled), so
TXOE = 0). IN tokens are
NAKed. (2)
Received IN | 11 1 0 0 no 1 Set Send data Only FIFO
token, data chg transmit | with bit- underrun
transmitted, interrupt | stuff error, error can
FIFO error NAK future | occur here.
occurs. transactions | Read pointer
reversed.
NOTES:
1. These are sticky bits, which must be cleared by firmware. Also, this table assumes TXEPEN and ATM are
enabled.

2. Future transactions are NAKed even if the transmit endpoint is stalled when RXSETUP = 1.

D-3

8x931AA, 8x931HA USER’'S MANUAL

Table D-1. Non-isochronous Transmit Data Flow (Continued)

intel.

New X ™ X
T()l(Fol)F Event | TXFIF ETF?R ATCXK vTo>|< ' | OVF | URF | Inter- Re;’foase Comments
’ (1:0)) 1) rupt

Received IN | 11 1 0 1 no 1 None NAK Treated like a

token with (no | (no chg | (no “void”

existing chg) | chg) chg) condition.

FIFO error

and TXERR

set.

Received IN | 10/01 | 0O 1 0 no no Set Send data Data is

token chg |chg transmit retransmitted.

without interrupt TXACK is set

existing and TXERR is

FIFO error cleared. The

but TXERR TXERR was

set, data set by

retransmitte previous

d, host transaction

ACKs. when host
time-out.

Data loaded | 11 no no no 1 no None N/A Writing into

into FIFO chg | chg chg chg CNT when

from CPU, TXFIF =11

CNT written. sets TXOVF
bit. Firmware
should always
check TXFIF
bits before
loading.

NOTES:

1. These are sticky bits, which must be cleared by firmware. Also, this table assumes TXEPEN and ATM are
enabled.

2. Future transactions are NAKed even if the transmit endpoint is stalled when RXSETUP = 1.

D-4

Inte|® DATA FLOW MODEL

Table D-2. Isochronous Transmit Data Flow in Dual-packet Mode

New (at next SOF)
TX TX TX TX
TX_FIF Event FIF OVF | URF Inter- uSB Comments
(1:0) (1:0) X X T)_(@2 | w2 rupt Response
('2) ERR | ACK | Void ’ ’
00 Received IN 00 no no 1 no no None Timeout No data was
token, but no chg chg chg | chg loaded, so
data or TXOE=0. timeout (i.e.,
no response).
This event
should never
happen.

Data loaded into | 01 no no no no no None N/A Firmware

FIFO from CPU, chg chg chg chg |chg should always

CNT written. check TXFIF
bits before
loading and
TXOVF after
loading.

Data loaded into | 00 no no no 1 no None N/A Only overrun

FIFO, FIFO chg chg chg chg FIFO error can

error. occur here.
Firmware
should always
check TXOVF
before write
CNT.

01/10 | Received IN 00 0 1 0 no no None Send data No ACK (time-
token, data chg | chg out) for ISO.
transmitted with Read marker
or without advanced.
transmission
error.

Received IN 00 1 0 0 no 1 None Send CRC | Only underrun
token, data chg with bit- FIFO error can
transmitted, stuff error occur here.
FIFO error Read marker
occurs. advanced.

NOTES:

1. These are sticky bits, which must be cleared by firmware.

2. TXFIF, TXOVF and TXURF are handled with the following golden rule: Firmware events cause status change
immediately while USB events only cause status change at SOF.
TXOVF: Since overrun can only be caused by firmware, TXOVF is updated immediately.
TXUREF: Since underrun can only be caused by USB, TXURF is updated at SOF.
TXFIF: TXFIF is “incremented” by firmware and “decremented” by USB. Therefore, writes to TXCNT will
“increment” TXFIF immediately. However, a successful USB transaction anytime in a frame will only “decrement
TXFIF at SOF.
TXERR, TXACK, and TXVOID can only be caused by USB; thus they are updated at the end of every valid
transaction.

3. NOTE: This table assumes TXEPEN and ATM are enabled.

”

D-5

8x931AA, 8x931HA USER’'S MANUAL Inte|®

Table D-2. Isochronous Transmit Data Flow in Dual-packet Mode (Continued)

New (at next SOF)
TX TX TX TX
TXFIF USB
(1:0) Event Elg T R T CiVZF L:’LRZF Intert- Response Comments
(('2)) ERR | ACK | void | 32 | (1.2 | rup
Received IN 01/10 |1 0 1 no 1 None Timeout Treated like a
token with (no (no chg | (no “void” condition.
existing FIFO chg) | chg) chg)
error.
Received IN 01/10 | O 0 1 no no None Timeout Endpoint not
token, but TXOE chg | chg enabled for
=0. transmit, but
no NAK for
ISO.
Data loaded into | 11 no no no no no None N/A Firmware
FIFO from CPU, chg chg chg chg | chg should always
CNT written. check TXFIF
bits before
loading and
TXOVF after
loading.
Data loaded into | 01/10 | no no no 1 no None N/A Only overrun
FIFO, FIFO error chg chg chg chg FIFO error can
occurs. occur here.
Firmware
should always
check TXOVF
before write
CNT.
Note: no
TXERR, but
TXOVF set.
11 Received IN 10/01 | 0 1 0 no no None Send data No ACK (time-
token, data chg | chg out) for ISO.
transmitted with Read marker
or without advanced.
transmission
error.
NOTES:

1. These are sticky bits, which must be cleared by firmware.

2. TXFIF, TXOVF and TXURF are handled with the following golden rule: Firmware events cause status change
immediately while USB events only cause status change at SOF.
TXOVF: Since overrun can only be caused by firmware, TXOVF is updated immediately.
TXUREF: Since underrun can only be caused by USB, TXURF is updated at SOF.
TXFIF: TXFIF is “incremented” by firmware and “decremented” by USB. Therefore, writes to TXCNT will
“increment” TXFIF immediately. However, a successful USB transaction anytime in a frame will only “decrement”
TXFIF at SOF.
TXERR, TXACK, and TXVOID can only be caused by USB; thus they are updated at the end of every valid
transaction.

3. NOTE: This table assumes TXEPEN and ATM are enabled.

D-6

intel.

Table D-2. Isochronous Transmit Data Flow in Dual-packet Mode (Continued)

DATA FLOW MODEL

New (at next SOF)
TX TX TX TX
TXFIF UsB
(1:0) Event Elg T R T CiVZF L:’LRZF Intert- Response Comments
(('2)) ERR | ACK | void | 32 | (1.2 | rup
Received IN 10/01 | 1 0 0 no 1 None Send data Only a FIFO
token, data chg with underrun error
transmitted, bitstuffing can occur
FIFO error error here. Read
occurs. marker
advanced.
Received IN 11 1 0 1 no 1 None Timeout Treated like a
token with (no (no chg | (no “void” condition.
existing FIFO chg) | chg) chg)
error.
Received IN 11 0 0 1 no no None Timeout Endpoint not
token, but TXOE chg | chg enabled for
=0. transmit, but
no NAK for
I1SO.
Receive SOF 10/01 | no no no no no None None Host neverread
indication. chg chg chg chg | chg | (SOF last frame’s
interrupt ISO. packet.
set) Read marker
ASOF and pointer
set. advanced,
oldest packet
is flushed from
FIFO.
Data loaded into | 11 no no no 1 no None N/A CNT written
FIFO from CPU, chg chg chg chg when
CNT written. TXFIF=11 will
set TXOVF bhit.
Firmware
should always
check TXFIF
bits before
loading.
NOTES:

1. These are sticky bits, which must be cleared by firmware.
2. TXFIF, TXOVF and TXURF are handled with the following golden rule: Firmware events cause status change
immediately while USB events only cause status change at SOF.
TXOVF: Since overrun can only be caused by firmware, TXOVF is updated immediately.

TXUREF: Since underrun can only be caused by USB, TXURF is updated at SOF.

TXFIF: TXFIF is “incremented” by firmware and “decremented” by USB. Therefore, writes to TXCNT will
“increment” TXFIF immediately. However, a successful USB transaction anytime in a frame will only “decrement”
TXFIF at SOF.
TXERR, TXACK, and TXVOID can only be caused by USB; thus they are updated at the end of every valid
transaction.
3. NOTE: This table assumes TXEPEN and ATM are enabled.

D-7

8x931AA, 8x931HA USER’'S MANUAL Inte|®

Table D-3. Non-isochronous Receive Data Flow in Single-packet Mode (RXSPM = 1)

New RX | RX RX
FIF RX RX RX RX USB
(2:0) Event (;'L:;I(l):) ERR | ACK | Void | Setup O(\ll)': U(?)F I?J?)rt Response Comments
00 Received 00 no no 1 no no no None NAK FIFO not ready.
OUT token, chg | chg chg chg | chg
but RXIE=0
Received 00 no no no no no no None None FIFO not
OUT token, chg | chg chg | chg chg |chg loaded. Write
but timed-out pointer
waiting for reversed.
data.
Received 01 0 1 0 0 no no Set ACK Received, no
OUT token, chg |chg | receive errors, advance
no errors. interrupt write marker.
Received 00 1 0 0 0 no no Set Time-out | Write pointer
OUT token, chg |chg |[receive reversed.
data CRC or interrupt (Possible to
bit-stuff error. have RXERR
cleared by
hardware
before seen by
firmware.)
Received 00 1 0 0 0 1 no Set Time-out, | Only RXOVF
OUT token, chg | receive | NAK FIFO error can
FIFO error interrupt | future occur, requires
occurs. transactio | firmware
ns intervention.
Received 00 1 0 1 0 1 no None NAK Considered to
OUT token (no | (no (no | chg be a “void”
with FIFO chg) | chg) chg) condition. Will
error already NAK until
existing. firmware clears
condition.
Received 00 no no 1 no no no None ACK Last ACK
OUT token, chg | chg chg chg |chg corrupted, so
but data send again but
sequence ignore the data.
mismatch.
Received 01 0 1 0 1 0 0 Set ACK RXIE or RXSTL
SETUP receive has no effect.(2)
token, no interrupt RXSETUP will
errors. be set (control
endpoints only).
NOTE:
1. These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are
enabled.

2. STOVW is set after a valid SETUP token is received and cleared during handshake phase. EDOVW is set during
handshake phase.

D-8

intel.

DATA FLOW MODEL

Table D-3. Non-isochronous Receive Data Flow in Single-packet Mode (RXSPM = 1) (Continued)

New

RX

RX

RX

FIF RX RX RX RX usB
(1:0) Event (;'L:;I(I):) ERR | ACK | Void | Setup (%\1/)F U(T)F I?J(;rt Response Comments
Received 00 1 0 0 0 0 0 Set Time-out FIFO is reset
SETUP receive automatically
token, but interrupt and FIFO data
timed-out is invalid. (2)
waiting for
data.
Received 00 1 0 0 1 0 0 Set Time-out | Write pointer
SETUP receive reversed. (2)
token, data interrupt
CRC or bit-
stuff error.
Received 00 1 0 0 1 1 0 Set Time-out, | (2)
SETUP receive | NAK
token, FIFO interrupt | future
error occurs. transactio
ns
Received 01 0 1 0 1 0 0 Set ACK Causes FIFO
SETUP receive to reset
token with interrupt automatically,
FIFO error forcing new
already SETUP to be
existing. received.RXIE
or RXSTL has
no effect. (2)
RXSETUP will
be set (control
endpoints only).
CPU reads 00 no no no no no 1 None NAK FIFO was
FIFO, chg | chg chg | chg chg future empty when
causes FIFO transactio | read. Should
error. ns, except | always check
SETUP RXFIF bits
before reading.
01 Received 01 no no 1 no no no None NAK FIFO not ready,
OUT token. chg | chg chg chg |chg so data is
ignored (CRC or
FIFO error not
possible).
NOTE:

1. These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are
enabled.
2. STOVW is set after a valid SETUP token is received and cleared during handshake phase. EDOVW is set during

handshake phase.

D-9

8x931AA, 8x931HA USER’'S MANUAL Inte|®

Table D-3. Non-isochronous Receive Data Flow in Single-packet Mode (RXSPM = 1) (Continued)

New RX RX RX
('1:,'5) Event FIF EF;XR AFE:XK vng(y S;ﬁ o | OVF [URF | inter- Regpsanse Comments
’ (2:0) (1) (1) rupt
Received 01 0 1 0 1 0 0 Set ACK Causes FIFO
SETUP receive to reset
token, no interrupt automatically,
errors. forcing new
SETUP to be
received. RXIE
or RXSTL has
no effect. (2)
RXSETUP will
be set (control
endpoints only).
Received 01 1 0 0 0 0 0 Set Time-out FIFO is reset
SETUP receive automatically
token, but interrupt and FIFO data
timed-out is invalid. (2)
waiting for
data.
Received 00 1 0 0 1 0 0 Set Time-out Write pointer
SETUP receive reversed. RXIE
token, data interrupt or RXSTL has
CRC or bit- no effect. (2)
stuff error. RXSETUP will
be set (control
endpoints only).
Received 00 1 0 0 1 1 0 Set Time-out, | (2) (control
SETUP receive | NAK endpoints only).
token, FIFO interrupt | future
error occurs. transactio
ns
Received 01 0 1 0 1 0 0 Set ACK Causes FIFO
SETUP receive to reset
token with interrupt automatically,
FIFO error forcing new
already SETUP to be
existing. received. RXIE
or RXSTL has
no effect. (2)
RXSETUP will
be set (control
endpoints only).
CPU reads 00 no no no no no no None None
FIFO, sets chg | chg chg | chg chg | chg
RXFFRC.
NOTE:
1. These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are
enabled.

2. STOVW is set after a valid SETUP token is received and cleared during handshake phase. EDOVW is set during
handshake phase.

Inte|® DATA FLOW MODEL

Table D-3. Non-isochronous Receive Data Flow in Single-packet Mode (RXSPM = 1) (Continued)

New RX RX RX
('1:,'5) Event FIF | 200 | 220 g | o o | OVF [URF | inter- Regpsanse Comments
' (2:0) (1) (1) rupt
CPU reads 01 no no no no no 1 None Time-out, | Firmware
FIFO, chg | chg chg | chg chg NAK should check
causes FIFO future RXUREF bit
error. transactio | before writing
RXFFRC not ns RXFFRC.
set yet.
CPU reads 00 no no no no no 1 None Time-out, | Firmware
FIFO, chg | chg chg | chg chg NAK should check
causes FIFO future RXUREF bit
error. Set transactio | before writing
RXFFRC. ns RXFFRC.
NOTE:
1. These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are
enabled.

2. STOVW is set after a valid SETUP token is received and cleared during handshake phase. EDOVW is set during
handshake phase.

Table D-4. Non-isochronous Receive Data Flow in Dual-packet Mode (RXSPM = 0)

New RX | RX RX
(E!g) Event FIF ERRXR ARCXK VRc?i(d SZ?L(I OVF | URF | Inter- Regsoise Comments
: (1:0) Pl @ | @ | rupt p
00 Received 00 no no 1 no no no None NAK FIFO not ready.
OUT token, chg |chg chg chg | chg
but RXIE = 0.
Received 00 no no 1 no no no None None FIFO not loaded.
OUT token, chg | chg chg chg | chg Write pointer
but timed-out reversed.
waiting for
data.
Received 01 0 1 0 0 no no Set ACK Received, no
OUT token, chg |chg |receive errors, advance
no errors. interrupt write marker.
NOTES:

1. These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are enabled.

2. STOVW is set after a valid SETUP token is received and cleared during handshake phase. EDOVW is set during
handshake phase.

3. NOTE: Dual-packet mode is NOT recommended for control endpoints.

D-11

8x931AA, 8x931HA USER’'S MANUAL Inte|®

Table D-4. Non-isochronous Receive Data Flow in Dual-packet Mode (RXSPM = 0) (Continued)

New RX RX RX
(E!(F)) Event FIF | 2001 X2 | o, SeRtﬁp OVF | URF | Inter- Regsoise Comments
’ (1:0) Q)) rupt
Received 00 1 0 0 0 no no Set Time-out Write pointer
OUT token, chg |chg |receive reversed.
data CRC or interrupt (Possible to have
bit-stuff error. RXERR cleared
by hardware
before seen by
firmware.)
Received 00 1 0 0 0 1 no Set Time-out, Only RXOVF
OUT token, chg | receive | NAK FIFO error can
FIFO error interrupt | future occur, requires
occurs. transaction | firmware
S intervention.
Received 00 1 0 1 0 1 no None NAK Considered to be
OUT token (no | (no (no | chg a “void”
with FIFO chg) | chg) chg) condition. Will
error already NAK until
existing. firmware clears
condition.
Received 00 no no no no no no None ACK Last ACK
OUT token, chg |chg |[chg |chg chg | chg corrupted, so
but data send again but
sequence ignore the data.
mismatch.
Received 01 0 1 0 1 0 0 Set ACK Causes FIFO to
SETUP receive reset
token, no interrupt automatically,
errors (dual forcing new
packet mode SETUP to be
not received. RXIE
recommende or RXSTL has no
dl). effect. (2)
RXSETUP will be
set (control
endpoints only).
Received 00 1 0 0 0 0 0 Set Time-out FIFO is reset
SETUP receive automatically and
token, but interrupt FIFO data is
timed-out invalid. (2)
waiting for
data.

NOTES:

1. These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are enabled.

2. STOVW is set after a valid SETUP token is received and cleared during handshake phase. EDOVW is set during
handshake phase.

3. NOTE: Dual-packet mode is NOT recommended for control endpoints.

intel.

DATA FLOW MODEL

Table D-4. Non-isochronous Receive Data Flow in Dual-packet Mode (RXSPM = 0) (Continued)

New

RX

RX

RX

FIF RX RX RX RX USB
(1:0) Event (']:_:Ig) ERR | ACK | Void | Setup O(\l/)F U(T)F IPJE; Response Comments
Received 00 1 0 0 1 0 0 Set Time-out Write pointer
SETUP receive reversed, RXIE
token, data interrupt or RXSTL has no
CRC or bit- effect. (2)
stuff error RXSETUP will be
(dual packet set (control
mode not endpoints only).
recommende
d).
Received 00 1 0 0 1 1 0 Set Time-out, RXIE or RXSTL
SETUP receive | NAK has no effect. (2)
token, FIFO interrupt | future RXSETUP will be
error occurs. transaction | set (control
S endpoints only).
Received 01 0 1 0 1 0 0 Set ACK Causes FIFO to
SETUP receive reset
token with interrupt automatically,
FIFO error forcing new
already SETUP to be
existing. received. RXIE
or RXSTL has no
effect. (2)
RXSETUP will be
set (control
endpoints only).
CPU reads 00 no no no no no 1 None NAK FIFO was empty
FIFO, chg |chg |[chg |chg chg future when read.
causes FIFO transaction | Should always
error. S check RXFIF bits
before reading.
01/10 | Received 01/10 | no no 1 no no no None NAK FIFO not ready.
OUT token, chg |chg chg chg | chg
but RXIE = 0.
Received 01/10 | no no 1 no no no None None FIFO not loaded.
OUT token, chg | chg chg chg | chg Write pointer
but timed-out reversed.
waiting for
data.
Received 11 0 1 0 0 no no Set ACK Received, no
OUT token, chg |[chg |receive errors, advance
no errors. interrupt write marker.
NOTES:

1. These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are enabled.
2. STOVW is set after a valid SETUP token is received and cleared during handshake phase. EDOVW is set during

handshake phase.

3. NOTE: Dual-packet mode is NOT recommended for control endpoints.

D-13

8x931AA, 8x931HA USER’'S MANUAL

intel.

Table D-4. Non-isochronous Receive Data Flow in Dual-packet Mode (RXSPM = 0) (Continued)

New RX RX RX
(E!(F)) Event FIF | 2001 X2 | o, SeRtﬁp OVF | URF | Inter- Regsoise Comments
’ (1:0) Q)) rupt
Received 01/10 | 1 0 0 0 no no Set Time-out Write pointer
OUT token, chg |chg |receive reversed.
data CRC or interrupt (Possible to have
bit-stuff error. RXERR cleared
by hardware
before seen by
firmware.)
Received 01/10 |1 0 0 0 1 no Set Time-out, Only RXOVF
OUT token, chg | receive | NAK FIFO error can
FIFO error interrupt | future occur, requires
occurs. transaction | firmware
S intervention.
Received 01/10 | 1 0 1 0 1 no None NAK Considered to be
OUT token (no | (no (no | chg a “void”
with FIFO chg) | chg) chg) condition. Will
error already NAK until
existing. firmware clears
condition.
Received 01/10 | no no no no no no None ACK Last ACK
OUT token, chg |chg |[chg |chg chg | chg corrupted, so
but data send again but
sequence ignore the data.
mismatch.
Received 01/10 | O 1 0 1 0 0 Set ACK Causes FIFO to
SETUP receive reset
token, no interrupt automatically,
errors (dual- forcing new
packet mode SETUP to be
not received. RXIE
recommende or RXSTL has no
d). effect. (2)
RXSETUP will be
set (control
endpoints only).
Received 01/10 | 1 0 0 0 0 0 Set Time-out FIFO is reset
SETUP receive automatically,
token, but interrupt forcing new
timed-out SETUP to be
waiting for received. (2)
data.
NOTES:
1. These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are enabled.

2. STOVW is set after a valid SETUP token is received and cleared during handshake phase. EDOVW is set during

3.

handshake phase.

NOTE: Dual-packet mode is NOT recommended for control endpoints.

intel.

DATA FLOW MODEL

Table D-4. Non-isochronous Receive Data Flow in Dual-packet Mode (RXSPM = 0) (Continued)

New RX RX RX
(E!(F)) Event FIF | 2001 X2 | o, SeRtﬁp OVF | URF | Inter- Regsoise Comments
’ (1:0) Q)) rupt
Received 00 1 0 0 1 0 0 Set Time-out Write pointer
SETUP receive reversed. RXIE
token, data interrupt or RXSTL has no
CRC or bit- effect. (2)
stuff error
(dual-packet
mode not
recommende
d).
Received 00 1 0 0 1 1 0 Set Time-out, RXIE or RXSTL
SETUP receive | NAK has no effect, (2)
token, FIFO interrupt | future RXSETUP will be
error occurs. transaction | set (control
S endpoints only).
Received 01/10 | O 1 0 1 0 0 Set ACK Causes FIFO to
SETUP receive reset
token with interrupt automatically,
FIFO error forcing new
already SETUP to be
existing. received. (2)
RXSETUP will be
set (control
endpoints only).
CPU reads 00 no no no no no no None None
FIFO, sets chg |chg |[chg |chg chg | chg
RXFFRC.
CPU reads 01/10 | no no no no no 1 None Time-out, Firmware should
FIFO, chg |chg |chg |chg chg NAK check RXURF bit
causes FIFO future before writing
error. transaction | RXFFRC.
RXFFRC not S
set yet.
CPU reads 00 no no no no no 1 None Time-out, Firmware should
FIFO, chg |chg |[chg |chg chg NAK check RXURF bit
causes FIFO future before writing
error. Set transaction | RXFFRC.
RXFFRC. s
11 Received 11 no no 1 no no no None NAK FIFO not ready,
OUT token. chg |chg chg chg | chg so data is
ignored (CRC or
FIFO error not
possible).
NOTES:

1. These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are enabled.
2. STOVW is set after a valid SETUP token is received and cleared during handshake phase. EDOVW is set during

handshake phase.

3. NOTE: Dual-packet mode is NOT recommended for control endpoints.

D-15

8x931AA, 8x931HA USER’'S MANUAL Inte|®

Table D-4. Non-isochronous Receive Data Flow in Dual-packet Mode (RXSPM = 0) (Continued)

New RX RX RX
(E!(F)) Event FIF ERRXR ARCXK Vng(y SeRtﬁp OVF | URF | Inter- Regsoise Comments
’ (1:0) Q)) rupt

Received 01 0 1 0 1 0 0 Set ACK Causes FIFO to

SETUP receive reset

token, no interrupt automatically,

errors (dual- forcing new

packet mode SETUP to be

not received. (2)

recommende RXSETUP will be

dl). set. (control
endpoints only).

Received 11 1 0 0 0 0 0 Set Time-out FIFO is reset

SETUP receive automatically and

token, but interrupt FIFO data is

timed-out invalid. (2)

waiting for

data.

Received 00 1 0 0 1 0 0 Set Time-out Write pointer

SETUP receive reversed. RXIE

token, data interrupt or RXSTL has no

CRC or bit- effect. (2)

stuff error

(dual-packet

mode not

recommende

d).

Received 00 1 0 0 1 1 0 Set Time-out, RXIE or RXSTL

SETUP receive | NAK has no effect. (2)

token, FIFO interrupt | future RXSETUP will be

error (dual- transaction | set (control

packet mode S endpoints only).

not

recommende

d).

Received 01 0 1 0 1 0 0 Set ACK Causes FIFO to

SETUP receive reset

token with interrupt automatically,

FIFO error forcing new

already SETUP to be

existing. received. (2)
RXSETUP will be
set (control
endpoints only).

CPU reads 10/01 | no no no no no no None None

FIFO, sets chg |chg |chg |chg chg |chg

RXFFRC.

NOTES:

1. These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are enabled.

2. STOVW is set after a valid SETUP token is received and cleared during handshake phase. EDOVW is set during
handshake phase.

3. NOTE: Dual-packet mode is NOT recommended for control endpoints.

intel.

DATA FLOW MODEL

Table D-4. Non-isochronous Receive Data Flow in Dual-packet Mode (RXSPM = 0) (Continued)

New RX RX RX
(E!(F)) Event FIF | 2001 X2 | o, SeRtﬁp OVF | URF | Inter- Regsoise Comments
’ (1:0) Q)) rupt
CPU reads 11 no no no no no 1 None NAKs Firmware should
FIFO, chg |chg |[chg |chg chg future check RXURF bit
causes FIFO transaction | before writing
error. S FFRC.
RXFFRC not
written yet.
CPU reads 10/01 | no no no no no 1 None NAKs Firmware should
FIFO, chg |chg |[chg |chg chg future check RXURF bit
causes FIFO transaction | before writing
error. Set S FFRC.
RXFFRC.
NOTES:

1. These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are enabled.
2. STOVW is set after a valid SETUP token is received and cleared during handshake phase. EDOVW is set during

handshake phase.

3. NOTE: Dual-packet mode is NOT recommended for control endpoints.

D-17

8x931AA, 8x931HA USER’'S MANUAL Inte|®

Table D-5. Isochronous Receive Data Flow in Dual-packet Mode (RXSPM = 0)

New (at next SOF) RX RX RX
FIF Event RXFIF OVF | URF Inter- USB Comments
(1:0) (1:0) RX RX RX a2 | @2 rupt Response
) ERR | ACK | Void ’ ’
00 Received OUT | 00 no no 1 no no None None/ FIFO not ready,
token, but RXIE chg chg chg chg Time-out or timed-out
=0. waiting for data
packet, but no
NAK sent.

Received OUT | 00 no no no no no None None/ FIFO not loaded.

token, but chg chg chg chg chg Time-out

timed-out

waiting for data.

Received OUT |01 0 1 0 no no None None/ Received, no

token, no errors. chg chg Time-out errors, advance
write marker.

Received OUT |01 1 0 0 no no None None/ Bad data still

token, data chg chg Time-out loaded into

CRC or bit-stuff FIFO.

error.

Received OUT |01 1 0 0 1 no None None/ Only RXOVF

token, FIFO chg Time-out FIFO error can

error occurs. occur, requires
firmware
intervention.

Received OUT | 00 1 0 1 1 no None None/ Treated like a

token with (no (no (no chg Time-out “void” condition.

FIFO error chg) | chg) chg)

already existing.

CPU reads 00 no no no no 1 None None/ FIFO was

FIFO, causes chg chg chg chg Time-out empty when

FIFO error. read. Should
always check
RXFIF bits
before reading.

NOTES:
1. These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are enabled.
2. RXFIF, RXOVF and RXURF are handled with the following golden rule: Firmware events cause status change
immediately while USB events only cause status change at SOF.
RXUREF: Since underrun can only be caused by firmware, RXURF is updated immediately.
RXOVF: Since overrun can only be caused by USB, RXOVF is updated at SOF.
RXFIF: RXFIF is “incremented” by USB and “decremented” by firmware. Therefore, setting RXFFRC will
“decrement” RXFIF immediately. However, a successful USB transaction anytime in a frame will only “increment”
RXFIF at SOF.
RXERR, RXACK, and RXVOID can only be caused by USB, thus they are updated at the end of transaction.

intel.

DATA FLOW MODEL

Table D-5. Isochronous Receive Data Flow in Dual-packet Mode (RXSPM = 0) (Continued)

New

(at next SOF)

RX RX RX
F!F Event RX_FIF OVF | URF Inter- usB Comments
(1:0) (12:0) RX RX RX a2 | 12 rupt Response
2) ERR | ACK | Void ’ ’
Receive SOF no up- up- up- up- no None None/ Flags are
indication. chg/up | dated | dated | dated | dated | chg (SOF Time-out updated at
dated interrupt) SOF. Firmware
must check for
RXFIF =00
condition to
detect no ISO
packet received
this frame.
01/10 | Received OUT |01/10 | no no 1 no no None None/ FIFO not ready.
token, but RXIE chg chg chg chg Time-out
=0.
Received OUT | 01/10 | no no no no no None None/ FIFO not loaded.
token, but chg chg chg chg chg Time-out
timed-out
waiting for data.
Received OUT 11 0 1 0 no no None None/ Received, no
token, no errors. chg chg Time-out errors, advance
write marker.
Received OUT |11 1 0 0 no no None None/ Possible to
token, data chg chg Time-out have RXERR
CRC or bit-stuff cleared by
error. hardware
before seen by
firmware.
Reverse write
pointer.
Received OUT |11 1 0 0 1 no None None/ Only OVF FIFO
token, FIFO chg Time-out error can occur,
error occurs. requires
firmware
intervention.
Received OUT | 01/10 | no no 1 no no None None/ Treated like a
token with chg chg chg chg Time-out “void” condition.
FIFO error
already existing.
NOTES:

1. These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are enabled.
2. RXFIF, RXOVF and RXURF are handled with the following golden rule: Firmware events cause status change

immediately while USB events only cause status change at SOF.

RXURF: Since underrun can only be caused by firmware, RXURF is updated immediately.
RXOVF: Since overrun can only be caused by USB, RXOVF is updated at SOF.
RXFIF: RXFIF is “incremented” by USB and “decremented” by firmware. Therefore, setting RXFFRC will

“decrement” RXFIF immediately. However, a successful USB transaction anytime in a frame will only “increment”
RXFIF at SOF.
RXERR, RXACK, and RXVOID can only be caused by USB, thus they are updated at the end of transaction.

D-19

8x931AA, 8x931HA USER’'S MANUAL

intel.

Table D-5. Isochronous Receive Data Flow in Dual-packet Mode (RXSPM = 0) (Continued)

New (at next SOF) RX RX RX
FIF RXFIF USB
. Event . OVF | URF Inter- Comments
(1:0) (12:0) RX RX RX a2 | 12 rupt Response
2) ERR | ACK | Void ’ ’
CPU reads 00 no no no no no None None/
FIFO, sets chg chg chg chg chg Time-out
RXFFRC.
CPU reads 00 no no no no 1 None None/ Firmware
FIFO, causes chg chg chg chg Time-out should check
FIFO error. RXURF bit
before writing
RXFFRC.
11 Received OUT |11 no no 1 no no None None/ FIFO not ready,
token. chg chg chg chg Time-out but data must be
taken. This
situation should
never happen.
Received SOF | no up- up- up- up- no None None/ Error condition
indication. chg/ dated | dated | dated | dated | chg (SOF Time-out (not handled by
up- interrupt) hardware).
dated Firmware
should not allow
this condition.
CPU reads 10 or no no no no no None None/
FIFO, sets 01 chg chg chg chg chg Time-out
RXFFRC.
CPU reads 11 no no no no 1 None None/ Firmware
FIFO, causes chg chg chg chg Time-out should check
FIFO error. RXURF bit
RXFFRC not before writing
set yet. RXFFRC.
CPU reads 10 or no no no no 1 None None/ Firmware
FIFO, causes 01 chg chg chg chg Time-out should check
FIFO error. Set RXURF bit
RXFFRC. before writing
RXFFRC.
NOTES:

1. These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are enabled.
2. RXFIF, RXOVF and RXURF are handled with the following golden rule: Firmware events cause status change

immediately while USB events only cause status change at SOF.

RXURF: Since underrun can only be caused by firmware, RXURF is updated immediately.
RXOVF: Since overrun can only be caused by USB, RXOVF is updated at SOF.
RXFIF: RXFIF is “incremented” by USB and “decremented” by firmware. Therefore, setting RXFFRC will

“decrement” RXFIF immediately. However, a successful USB transaction anytime in a frame will only “increment”
RXFIF at SOF.
RXERR, RXACK, and RXVOID can only be caused by USB, thus they are updated at the end of transaction.

D-20

intel.

8x931AA Design
Considerations

APPENDIX E
8x931AA DESIGN CONSIDERATIONS

This appendix describes the differences between the hubless 8x931AA and the 8x931HA. The
8x931HA is described in the rest of this document.

E.1 DIFFERENCES BETWEEN THE 8x931AA AND THE 8x931HA
The 8x931AA differs from the 8x931HA in many ways, including:

¢ The 8x931AA does not support hub operations and has no hub interface, hub repeater, or
hub FIFOs. These features, included in the 8x931HA only, are discussed in “Universal
Serial Bus Module” on page 2-11 and “Hub Operation” on page 8-17.

* The 8x931AA has no hub interrupt. The 8x931HA hub interrupt is discussed in “USB Hub
Interrupt” on page 5-15.

* Because there is no on-chip hub, Chapter 7, “USB Hub” does not apply to th&81AA.

* The 8x931AA has no Hub Address Register (HADDR), so its enumeration processis
simpler than the 8x931HA enumeration process given in “Enumeration” on page 8-2. The
8x931AA enumeration process is given in “8x931AA Enumeration Process” on page E-2

¢ The hub programming models described in “Hub Operation” on page 8-17 do not apply to
the 8Q31AA.

* Sincethe 8x931AA periphera controller does not support a hub interface, there are no
downstream portsto signal aresume condition. A resume condition can still be signalled by
any of the other conditions described in “Global Resume Mode” on page 14-9.

¢ The8x931HA SFR map given in Appendix C, “Registers” does not apply to th®@B1AA.
The &931AA SFRs are given in “8x931AA SFR Map” on page E-10.

* The8x931AA pin and signa descriptions differ from those described in Appendix B, “Pin
Descriptions”. See “8x931AA Pin Descriptions” on page E-3 and “8x931AA Signal
Descriptions” on page E-6.

* The 8x931AA allows operating frequency selection using the FSSEL pin. See “Operating
Frequencies” on page E-9.

I E-1

8x931AA, 8x931HA USER’'S MANUAL Inte|®

E.2 8x931AA ENUMERATION PROCESS

The 8x931AA enumeration process is simpler than the 8x931HA bus enumeration process given
in “Enumeration” on page 8-2. Tha®1AA enumeration process has four steps:

1.

E-2

Get device descriptor. The host requests and reads the device descriptor to determine
maximum packet size.

Set address. The host sends tk83&’s function address in a data packet using function
endpoint 0. Device firmware interprets the data and instructs the CPU to write the function
address to FADDR.

Get device descriptor. The host requests and reads the device descriptor to determine such
information as device class, USB specification compliance level, maximum packet size
for endpoint 0, vendor id, product id, etc.

Get configuration descriptor. The host requests and reads the device configuration
descriptor to determine such information as the number of interfaces and endpoints;
endpoint transfer type, packet size, and direction; power source; maximum power; etc. For
detailed information on configuration descriptors, see the “Device Framework” chapter in
Universal Serial Bus Specification. When the host requests the configuration descriptor,

all related interface and endpoint descriptors are returned.

Set configuration. The host assigns a configuration value to the device to establish the
current configuration. Devices can have multiple configurations.

intel.

8X931AA DESIGN CONSIDERATIONS

E.3 8x931AA PIN DESCRIPTIONS

Notes:

O-=HANMS< LW
S0 9500000
200NN DD D
VNN Y X NYXY
~X X - ——
N>==~amsnon~
SoOdaaaa NN
[N S W W W a W a W H*
:&&\\\\\\ S E%n_
020333338833 40n 3
LI C<CIILC>SUIAUL>
anonoonoononoonnon
TONTAODDONOWUSTOHNAOD
COOVOVOULULOLLWOLWLWLWLLLLWLS
AD6/P0.6/KSI6 1 48 B Reserved (NC)
AD5/P0.5/KSI5 2 47 A Reserved (NC)
AD4/P0.4/KSl4H3 46 B Reserved (NC)
AD3/P0.3/KSI3EH 4 45 [Reserved (NC)
AD2/P0.2/KSI2H5 44 [Dpg
AD1/P0.1/KSI1]6 43 @A Dyo
ADO/P0.0/KSI0O] 7 8x931Ax 42 A ECAP
Vssp 48 41 A Vssp
VecH9 40 B Veep
P3.0d 10 39 A Vss
P3.1/SOF# 11 : 38 [Reserved (NC)
P3.2/INTO# 12 View ofdcomréonint ag 37 A Reserved (NC)
P3.3/INT1# & 13 mounted on PC boar 36 |3 Reserved (NC)

P3.4/T0/KSO16
P3.5/T1/KS017 5§
P3.6 / WR# / KSO18 5

14
15
16

35
34
33

[Reserved (NC)
3 LEDO
O LED1

RST 4 31

P3.7 / RD#/ KSO19 . 17
P1.0/T2/KSO0 . 18
P1.1/T2EX/KSO1 O 19
P1.2/KS02 O 20
P1.3/KS03 . 21
P1.4/KSO4 o 22
P1.5/KS05 . 23
P1.6/RXD / KSO6 O 24
P1.7/TXD /KSO7 . 25
LED3 O 26

LED2 O 27

XTALL O 28

XTAL2 f 29

AVce 30

PLLSEL O 32

Reserved pins must be left unconnected..

A5347-02

Figure E-1. 8x931AA 64-pin QFP Package

E-3

8x931AA, 8x931HA USER’'S MANUAL

E-4

O-=HANMS< O
e
2000000
(SRR RRVRURGRY)] ~
NUNX XX XYXYY [ON@]
N A —— ZzZ
=M< n© = =
Sadaa NN N BT
NNoQoQoOoooQ H* > >
L0 —<=<< o ZW o055
~~odam<sw n OXWWON o o
VA AdAdAddd N OILJNY VWD D
ACCCCCC>> U L>xro
DOMNOOTONAON O S MN A
@ © © W WWOWWWOW
AD7/P0.7 /KSI7] 10 60 |3 Reserved (NC)
AD6 / P0.6 / KSI6] 11 59 [Reserved (NC)
AD5 / P0.5/ KSI5] 12 58 [Reserved (NC)
AD4/P0.4/KSl4] 13 57 [Reserved (NC)
AD3/P0.3/KSI3] 14 56 3 Vee
AD2/P0.2 /KSI2] 15 55 [Dpg
AD1/P0.1/KSI1] 16 8x931Ax 54 [Dyo
ADO/P0.0/KSI0O] 17 53 3 ECAP
Vssp] 18 52 B Vssp
Vec EH 19 51 A Veep
P3.0 0 20 ; 50 B Vss
P3.1/SOF# 4 21 View of component as 49 | Reserved (NC)
P3.2/ INTO# O 22 mounted on PC board 48 |7 Reserved (NC)
P3.3/INT1# 23 47 A Vssp
P3.4/T0/KSO16 O] 24 46 [Reserved (NC)
P3.5/T1/KSO17 25 45 [Reserved (NC)
P3.6 / WR# | KSO18 . 26 44 [LEDO
MNOODOTAANMIETONONODO HANM
ANANNOONOMOMOOHOMOOMONHOOST T S
oo oooy
2883888852833 8r0 A
CnnnnnnnouuII>yonw
Qxxxzxxxx44;§< =3
SEraeIaag =
ACUFsgezse
Xokr ek
~ - o~
~oo -
g & BE
Note:
Reserved pins must be left unconnected.
A5348-02
Figure E-2. 8x931AA 68-pin PLCC

Inte|® 8X931AA DESIGN CONSIDERATIONS

Table E-1. 8x931AA Signals Arranged by Functional Category

Address and Data Input/Output USB
AD7:0 1/0 P0.7:0 /10 Duo 110
A15:8 lle} P1.7:0 110 Dpo 110
P2.7:0 IO ECAP [
Keyboard Scan I/0 P3.7:0 /o
KS019:0 o) TO [PLLSEL [
KSI17:0 | T1 | SOF# O
FSSEL O
LED Drivers Processor Control
LED3:0 o EA# ' Power & Ground
INTO# [AV¢e PWR
Bus Control INT1# | Vee PWR
ALE o) RST [Veer PWR
PSEN# (0] XTAL1 | Vs GND
RD# (0] XTAL2 O Vsep GND
WR# o

E-5

8x931AA, 8x931HA USER’'S MANUAL

E.4 8x931AA SIGNAL DESCRIPTIONS

Table E-2. 8x931AA Signal Descriptions

intel.

Signal
Name

Type

Description

Alternate
Function

A15:8

Address Lines. Upper byte of external memory address.

P2.7:0/KS0O15:7

AD7:0

110

Address/Data Lines. Lower byte of external memory address
multiplexed with data

P0.7:0/KSI7:0

ALE

Address Latch Enable. ALE signals the start of an external
bus cycle and indicates that valid address information is
available on lines A15:8 and AD7:0. An external latch can use
ALE to demultiplex the address from the address/data bus.

AV

PWR

Analog V.. A separate V. input for the phase-locked loop
circuitry.

DMO' DPO

110

USB Port 0. Dpg and D, are the data plus and data minus
lines of USB port 0, the upstream differential port. These lines
do not have internal pullup resistors. For low-speed devices,
provide an external 1.5 KQ pullup resistor at D,,q. For full-speed
devices, provide an external 1.5 KQ pullup resistor at Dy.

NOTE: For the 8x931AA, either D or D,,q must be pulled high.
Otherwise a continuous SEO (USB reset) will be applied to
these inputs causing the 8X931AA to stay in reset.

EA#

External Access. Directs program memory accesses to on-
chip or off-chip code memory. For EA# strapped to ground, all
program memory accesses are off-chip. For EA# strapped to
Ve, program accesses on-chip ROM if the address is within the
range of the on-chip ROM; otherwise the access is off-chip. The
value of EA# is latched at reset. For devices without on-chip
ROM, EA# must be strapped to ground.

ECAP

External Capacitor. Connect a 1 uF or larger capacitor
between this pin and Vg to ensure proper operation of the
differential line drivers.

FSSEL

Full-speed Select. See Table E-3 on page E-9.

INT1:0#

External Interrupts 0 and 1. These inputs set the IE1:0
interrupt flags in the TCON register. Bits IT1:0 in TCON select
the triggering method: edge-triggered (high-to-low) or level
triggered (active low). INT1:0 also serves as external run
control for timer1:0 when selected by GATE1:0# in TCON.

P3.3:2

KSI7:0

Keyboard Scan Input. Schmitt-trigger inputs with firmware-
enabled internal pullup resistors used for the input side of the
keyboard scan matrix.

AD7:0/P0.7:0

KSO19
KSO18
KSO17:16
KS015:8
KSO7:0

Keyboard Scan Output. Quasi-bidirectional ports with weak
internal pullup resistors used for the output side of the keyboard
scan matrix.

P3.7/RD#
P3.6/WR#
P3.5:4/T1:0
A15:8/P2.7:0
P1.7:0

E-6

8X931AA DESIGN CONSIDERATIONS

Table E-2. 8x931AA Signal Descriptions (Continued)

Signal . Alternate
Name Type Description Function
LED3:0 (@] LED Drivers. Designed to drive LEDs connected directly to
Vcc. The current each driver is capable of sinking is given as —
VoLz-
PO0.7:0 1/0 | Port 0. Eight-bit, open-drain, bidirectional I/O port. Port 0 pins | AD7:0/KSI7:0
have Schmitt trigger inputs.
P1.7:0 1/0 | Port 1. Eight-bit quasi-bidirectional I/O port with internal KSO7:0
pullups.
P2.7:0 1/0 | Port 2. Eight-bit quasi-bidirectional I/O port with internal A15:8/KS015:8
pullups.
P3.0 1/0 | Port 3. Eight-bit quasi-bidirectional /0 port with internal
P3.1 pullups. SOF#
P3.2 INTO#
P3.3 INT1#
P3.4 TO/KSO16
P3.5 T1/KSO17
P3.6 WR#/KSO18
P3.7 RD#/KSO19
PLLSEL | Phase-locked Loop Select. See Table E-3 on page E-9. —
PSEN# (@] Program Store Enable. Read signal output. Asserted for read .
accesses to external program memory.
RD# o Read. Read signal output. Asserted for read accesses to P3.7/KSO19
external data memory.
RST | Reset. Reset input to the chip. Holding this pin high for 64
oscillator periods while the oscillator is running resets the
device. The port pins are driven to their reset conditions when a
voltage greater than V|4, is applied, whether or not the
oscillator is running. This pin has an internal pulldown resistor —
which allows the device to be reset by connecting a capacitor
between this pin and V.
Asserting RST when the chip is in idle mode or powerdown
mode returns the chip to normal operation.
RXD /0 | Receive Serial Data. RXD sends and receives data in serial P1.6
1/0 mode 0 and receives data in serial I/O modes 1,2, and 3.
SOF# (0] Start of Frame. Start of frame pulse. Active low. Asserted for 8 | P3.1
states (see Table 2-3 on page 2-9) when frame timer is locked
to USB frame timing and SOF token or artificial SOF is
detected.
T1:.0 | Timer 1:0 External Clock Input. When timer 1:0 operates as a | P3.5:4/KSO17:16
counter, a falling edge on the T1:0 pin increments the count.
T2 /0 | Timer 2 Clock Input/Output. For the timer 2 capture mode, P1.0

this signal is the external clock input. For the clock-out mode, it
is the timer 2 clock output.

E-7

8x931AA, 8x931HA USER’'S MANUAL

Table E-2. 8x931AA Signal Descriptions (Continued)

intel.

oscillator, connect the external crystal or ceramic resonator
across XTAL1 and XTAL2. If an external oscillator is used,
leave XTAL2 unconnected.

Signal . Alternate
Name Type Description Function
T2EX | Timer 2 External Input. In timer 2 capture mode, a falling edge | P1.1
initiates a capture of the timer 2 registers. In auto-reload mode,
a falling edge causes the timer 2 registers to be reloaded. In the
up-down counter mode, this signal determines the count
direction: 1=up, O=down.
TXD (0] Transmit Serial Data. TXD outputs the shift clock in serial I/O | P1.7
mode 0 and transmits serial data in serial I/O modes 1, 2, and
3.
Vee PWR | Supply Voltage. Connect this pin to the +5V supply voltage. —
Veep PWR | Supply Voltage for I/0 buffers. Connect this pin to the +5V .
supply voltage.
Vgg GND | Circuit Ground. Connect this pin to ground. —
Vgep GND | Circuit Ground for I/0 buffers. Connect this pin to ground. —
WR# (0] Write. Write signal output to external memory. P3.6/KSO19
XTAL1 | Oscillator Amplifier Input. When implementing the on-chip
oscillator, connect the external crystal or ceramic resonator .
across XTAL1 and XTAL2. If an external clock source is used,
connect it to this pin.
XTAL2 (0] Oscillator Amplifier Output. When implementing the on-chip

E-8

intel.

E.5 OPERATING FREQUENCIES

8X931AA DESIGN CONSIDERATIONS

8x931AA operating frequencies and USB rates are shown in Table E-3.

Table E-3. 8x931AA Operating Frequencies

Core
PLLSEL | FSSEL | LC Bit XTALL USB Rate Frequency
: - Frequency (FSILS) Comment
Pin Pin (1) (MH2) 2) Feik
(Mhz)
0 0 0 LS 3 PLL Off
0 0 1 LS 3 PLL Off
1 0 0 12 LS 6 PLL Off
1 0 1 12 LS 3 PLL Off
1 1 0 12 FS 6 PLL On
1 1 1 12 FS 3 PLL On
NOTES:

1. Reset and power up routines set the LC bit in PCON to put the 8X931AA in low-clock mode (core

frequency = 3 MHz) for lower I prior to device enumeration. Following completion of device

enumeration, firmware should clear the LC bit to exit the low-clock mode. The user may switch the

core frequency back and forth at any time, as needed.
2. USB rates: Low speed = 1.5 Mbps; Full speed = 12 Mbps. The USB sample rate is 4X the USB rate.

E-9

8x931AA, 8x931HA USER’'S MANUAL Inte|®

E.6 8x931AA SFR MAP

The 8x931AA SFR map (Table E-4 on page E-10) isidentical to the 8x931HA SFR map, except
the 8x931AA has no hub-related SFRs.

Table E-4. 8x931AA SFR Map

0/8 1/9 2/A 3/B 4/C 5/D 6/E 7IF
F8 | KBCON FF
0xx00000
FO B EPINDEX TXSTAT TXDAT TXCON TXFLG TXCNTL F7
T T T
00000000 1xxxxx00 0xx00000 XXXXXXXX 0xxx0100 00xx1000 XXXXXXXX
E8 EF
EO | ACC EPCON RXSTAT RXDAT RXCON RXFLG RXCNTL E7
00000000 00d10dodt |[00000000 XXXXXXXX 0xx00100 00xx1000 XXXXXXXX T
D8 PCON1 DF
XXXXx000
DO | PSW SOFL SOFH D7
00000000 00000000 00001000
C8 | T2CON T2MOD RCAP2L RCAP2H TL2 TH2 CF
00000000 XXXX XX00 00000000 00000000 00000000 00000000
CO | FIFLG C7
xx000000
B8 | IPLO SADEN BF
x0000000 00000000
BO | P3 IEN1 IPL1 IPH1 IPHO B7
11111111 00000000 00000000 00000000 00000000
A8 | IENO SADDR AF
00000000 00000000
AO | P2 FIE A7
11111111 xx000000
98 [SCON SBUF 9F
00000000 XXXXXXXX
9 | P1 97
11111111
88 | TCON TMOD TLO TL1 THO TH1 FADDR 8F
00000000 00000000 00000000 00000000 00000000 00000000 00000000
80 | PO SP DPL DPH PCON 87
11111111 00000111 00000000 00000000 001d0000
0/8 1/9 2/A 3/B 4/C 5/D 6/E 7IF

MCS® 51 microcontroller SFRs
: Endpoint-indexed SFRs

T For EPCON, TXCON, TXDAT, TXCNTL, and RXCNTL the reset value depends on the endpoint pair
selected. Refer to the register definition tables in Appendix C or Chapter 6, “USB Function”.
NOTE: “d”inthe SFR reset value denotes configuration/operation dependence. Refer to the specific SFR
description for more details.

E-10

intel.

Glossary

intel.

GLOSSARY

This glossary defines acronyms, abbreviations, and terms that have special meaning in this man-
ual. (“Guide to this Manual” on page 1-1 discusses notational conventions and general terminol-

ogy.)
#data
#datal6

ACK

accumulator

addr11

addr16

ALU

assert

big endien form
bit
bit (operand)

bit stuffing

bulk transfer

busenumeration

byte

An 8-bit constant that is immediately addressed in an instruction.
A 16-bit constant that is immediately addressed in an instruction.

Acknowledgment. Handshake packet indicating a positive
acknowledgment.

Instructions in the MC® 51 architecture use the accumul ator as
both source and destination for calculations and moves..

An 11-bit destination address. The destination can be anywhere in
the same 2 Kbyte block of memory as the first byte of the next
instruction.

A 16-bit destination address. The destination can be anywhere
within the same 64 Kbyte region as the first byte of the next
instruction.

Arithmetic-logic unit. The part of the CPU that processes
arithmetic and logical operations.

The term assert refers to the act of making a signa active
(enabled). The polarity (high/low) is defined by the signal name.
Active-low signals are designated by a pound symbol (#) suffix;
active-high signals have no suffix. To assert RD#isto driveit low;
to assert ALE isto driveit high.

Method of storing data that places the most significant byte at
lower storage addresses.

A binary digit.
An addressabl e bit in the 8x931 architecture.

Insertion of a ‘0’ bit into a data stream to cause an electrical
transition on the data wires allowing a PLL to remain locked.

Non-periodic, large, “bursty” communication typically used for a
transfer that can use any available bandwidth and can also be
delayed until bandwidth is available.

Detecting and identifying USB devices.
Any 8-bit unit of data.

Glossary-1

8x931AA, 8x931HA USER’'S MANUAL Inte|®

clear

code memory

control transfer

dir8

DPTR

deassert

device address

doping

edge-triggered

encryption array

endpoint

EPP

external address

Glossary-2

The term clear refersto the value of abit or the act of giving it a
value. If abitisclear, its value is “0”;clearing a bit gives it a “0”
value.

Seeprogram memory.

One of four USB transfer types. Control transfers support
configuration/command /status type communications between
client and function.

An 8-bit direct address. This can be a memory address or an SFR
address.

The 16-bit data pointer.

The termdeassert refers to the act of making a signal inactive
(disabled). The polarity (high/low) is defined by the signal name.
Active-low signals are designated by a pound symbol (#) suffix;
active-high signals have no suffix. Heassert RD# is to drive it
high; todeassert ALE is to drive it low.

The address of a device on the Universal Serial Bus. The device
address is the default address when the USB device is first powered
or reset. Hubs and functions are assigned a unique device address
by USB firmware.

The process of introducing a periodic table Group Il or Group V
element into a Group IV element (e.g., silicon). A Group IlI
impurity (e.g., indium or gallium) results inpatype material. A
Group V impurity (e.g., arsenic or antimony) results iméype
material.

The mode in which a device or component recognizes a falling
edge (high-to-low transition), a rising edge (low-to-high
transition), or a rising or falling edge of an input signal as the
assertion of that signal. See aleeel-triggered.

An array of key bytes used to encrypt user code as it is read from
code memory; protects against unauthorized access to user’s code.

A uniquely identifiable portion of a USB device that is the source
or sink of information in a commun-ication flow between the host
and the device.

Endpoint pair. Seendpoint.

A 16-bit address presented on the device pins. The address decoded
by an external device depends on how many of these address bits
the external system uses. See afsernal address.

FCLK

FET
FIFO

FIU

I:OSC

frame

function

handshake packet

HIU

host

hub

idle mode

input leakage
integer

internal address

interrupt handler

interrupt latency

interrupt responsetime

GLOSSARY

Microcontroller interna clock frequency distributed to the CPU
and on-chip peripherals.

Field-effect transistor.

First-in, first-out data buffer. Each USB endpoint pair has a
transmit FIFO and areceive FIFO.

Function Interface Unit. Its function isto manage the data
transaction that goes between the 8x931 and the USB host based on
the transfer type and the FIFOs condition.

Frequency at pin XTAL1. The frequency of the on-chip oscillator
or externa source.

The time from the start of one SOF token to the start of the
subsequent SOF token (1 msec); consists of a series of transactions.

A USB devicethat provides a capability to the host. For example,
an ISDN connection, adigital microphone, or speakers.

A packet that acknowledges or rejects a specific condition. For
examples, see ACK and NACK.

Hub Interface Unit.

The host computer system where the USB host controller is
installed. Thisincludesthe host hardware platform (CPU, bus, etc.)
and the operating system in use.

A Universal Serial bus device that provides additional connections
to the Universal Serial Bus.

The power conservation mode that freezes the core clocks but
leaves the peripheral clocks running.

Current leakage from an input pin to power or ground.

Any member of the set consisting of the positive and negative
whole numbers and zero.

The 16-bit address that the device generates. See also external
address.

The module responsible for handling interrupts that are to be
serviced by user-written interrupt service routines.

The delay between an interrupt request and the time when the first
instruction in the interrupt service routine begins execution.

Thetime delay between an interrupt request and the resulting break
in the current instruction stream.

Glossary-3

8x931AA, 8x931HA USER’'S MANUAL

interrupt serviceroutine

interrupt transfer

SO
isochronous data

isochronous transfer

level-triggered

low-clock mode

machine cycle

maskableinterrupt

M SB
multiplexed bus

n-channel FET

n-type material

nonmaskable interrupt

npn transistor

NRZI

p-channel FET

p-type material

PC

Glossary-4

intel.

(ISR) The firmware routine that services an interrupt.

One of four USB transfer types. Interrupt transfer characteristics
are small data, non periodic, low frequency, bounded latency,
deviceinitiated communication typically used to notify the host of
device service needs.

Isochronous
A stream of datawhose timing isimplied by its delivery rate.

One of four USB transfer types, isochronous transfers provide
periodic, continuous communication between host and device.

The mode in which a device or component recognizes a high level
(logic one) or alow level (logic zero) of an input signal as the
assertion of that signal. See also edge-triggered.

The default mode upon reset, low-clock mode ensures that the |
drawn by the 8x931 is less than one unit load (F, « = 3MHz).

One machine cycle equals six state times.

Aninterrupt that can be disabled (masked) by itsindividual mask
bit in an interrupt enable register.

Mosgt-significant bit of a byte or most-significant byte of aword.

A bus on which the data is time-multiplexed with (some of) the
address bits.

A fied-effect transistor with an n-type conducting path (channel).

Semiconductor material with introduced impurities (doping)
causing it to have an excess of negatively charged carriers.

Aninterrupt that cannot be disabled (masked).

A transistor consisting of one part p-type material and two parts n-
type material.

Non Return to Zero Invert. A method of encoding seria datain
which ones and zeroes are represented by opposite and aternating
high and low voltages where there is no return to zero (reference)
voltage between encoded bits. Eliminates the need for clock pulses.

A field-effect transistor with a p-type conducting path.

Semiconductor materia with introduced impurities (doping)
causing it to have an excess of positively charged carriers.

Program counter.

intgl.
phase-locked loop

PID

PLL

program memory
power down mode

rel

reserved bits

resume

RT

root hub

root port
SEO

SIE

SFR

sink current
SOF

GLOSSARY

A circuit that acts as a phase detector to keep an oscillator in phase
with an incoming frequency.

Packet ID. A field in aUSB packet that identifies the type of packet
and henceits format.
See phase-locked loop.

A part of memory whereinstructions can be stored for fetching and
execution.

The power conservation mode that freezes both the core clocks and
the peripheral clocks.

A signed (two’'s complement) 8-hit, relative destination address.
The destination is-128 to +127 bytes relative to thefirst byte of the
next instruction.

Register bits that are not used in this device but may be used in
future implementations. Avoid any firmware dependence on these
bits. In the 8x931, the value read from areserved bit is
indeterminate; do not write a “1” to a reserved bit.

Once a device is in the suspend state, its operation can be resumed
by receiving non-idle signaling on the bus. See salispend.

Real-time

A USB hub directly attached to the host controller. This hub is
attached to the host; tier 0.

The upstream port on a hub.

Single-ended zero. This is a reference to the USB reset signal
which is defined as bothdg and Qg below their threshold
voltage.

Serial Bus Interface Engine. Handles the communications protocol
of the USB.

The termset refers to the value of a bit or the act of giving it a
value. If a bit isset, its value is “1";setting a bit gives it a “1”
value.

A special function register that resides in its associated on-chip
peripheral or in thex®31 core.

Current flowinginto a device to ground. Always a positive value.

Start of Frame. The SOF is the first transaction in each frame. SOF
allows endpoints to identify the start of frame and synchronize
internal endpoint clocks to the host.

Glossary-5

8x931AA, 8x931HA USER’'S MANUAL Inte|®

sour ce current

SP
statetime (or state)

suspend

token packet

usB

Glossary-6

Current flowing out of adevice from V.. Always a negative
value.

Stack pointer.

The basic time unit of the device; With XTAL1 = 12 MHz and two
Tosc Periods per state, one state = 166.7 ns.

A low current mode used when the USB busisidle. The 8x931
enters suspend when there is a constant idle state on the bus lines
for more than 3.0 msec. When adeviceisin suspend state, it draws
less than 500 pA from the bus. See aksome.

A type of packet that identifies what transaction is to be performed
on the bus.

Universal Serial Bus. An industry-standard extension to the PC
architecture with a focus on Computer Telephony Integration
(CTI), consumer, and productivity applications.

intel.

| ndex

A
A15:8, 9-1
A16, 9-1

ACflag, 4-2,C-39
ACALL instruction, A-8, A-9
ACC, C-3,C-6
AD7.0, 9-1
ADD instruction, A-4
ADDC ingtruction, A-4
addrll, A-2
addr16, A-2
Address spaces
See also Memory space, SFRs, Register file,
External file, Compatibility
AJIMP instruction, A-8
ALE
caution, 13-7
idlemode, 14-6
ANL instruction
for bits, A-7
ANL/ instruction
for bits, A-7
Application notes, 1-6
Arithmetic instructions, 4-5
table of, A-4, A-5

B
B register, C-6
asSFR, C-3
Baud rate, See Serial 1/0 port, Timer 1, Timer 2
bits1, A-2
Boolean Instructions, 4-12
Broadcast address, See Serial 1/0O port
Bulletin board service (BBS), 1-7, 1-8
Bus cycles
See External bus cycles

C
Capacitors
bypass, 13-2
CEX3, 9-1
CINE instruction, A-8
Clock
externa, 13-3
idle and powerdown modes, 14-7
idle mode, 14-6
on-chip crystal, 2-7

INDEX

PLLSEL, 2-9
PLLSEL2:0, 13-1
powerdown mode, 14-8
sources, 13-2
USB rates (table), 2-9
CLRinstruction, A-5, A-7
Core, 2-6
SFRs, C-3
CPL ingtruction, A-5, A-7
CPU, 2-6
Crystal
on-chip oscillator, 13-2
CY flag, 4-2,C-39

D
DA instruction, A-5
Data Transfer, 4-8
ingtructions, table of, 4-8, A-7
Datasheets
on WWW, 1-7
DEC instruction, A-4
Descriptors
bDescLength, 7-8
bDescriptorType, 7-8
bHubContrCurrent, 7-8
bNbrPorts, 7-8
bPwrOn2PwrGood, 7-8
DeviceRemovable, 7-8
PortPwrCtriIMask, 7-8
wHubCharacteristics, 7-8
dir8, A-2
DIV ingruction, A-5
DJINZ instruction, A-8
Documents
ordering, 1-7
related, 1-6
DPH, DPL, C-7
as SFRs, C-3

E
Encryption, 16-1
Encryption array, 16-1
key bytes, 16-5
EPCON, 6-7,C-8
EPINDEX, 6-6, C-10
External bus
inactive, 15-2

Index-1

8x931AA, 8x931HA USER’'S MANUAL

pin status, 15-4
External bus cycles, 15-2-15-4

nonpage mode, 15-3
External code memory

idle mode, 14-6

powerdown mode, 14-8
External Interrupts, 5-6ee Interrupts
External interrupt 2 enable, 5-25, C-28
External memory

design examples, 15-6-15-8
External RAM, 4-10

example, 15-8

exiting idle mode, 14-7

F
FO flag, 4-2, C-39

FADDR, 6-14, C-11

FaxBack service, 1-7

FIE, 5-4, 5-9, 6-3, C-3, C-12

FIFLG, 5-4, 5-11, 6-3, C-3, C-13, C-14
Frame timer, 5-11

G

Given addressSee Serial 1/0 port
Global suspend interrupt, 5-17

H
HADDR, 7-7, 7-8, 8-2
Help desk, 1-7

HIE, 5-4, 5-15, C-3, C-15
HIFLG, 5-4,5-16, C-3, C-16
HPCON, 7-15, C-17
HPINDEX, 7-24, C-18
HPPWR, 7-28, C-19
HPSC, 7-21, C-21
HPSTAT, 7-18, C-23
HSTAT, 7-9, C-25

Hub. See USB, hub

I

I/O ports, 9-1-9-8
external memory access, 9-7
latches, 9-2
loading, 9-7
pullups, 9-6
quasi-bidirectional, 9-6

Index-2

intel.

See also Ports 0-3
Idle mode, 2-6, 14-1, 14-6-14-7
entering, 14-6
exiting, 13-5, 14-7
external bus, 15-2
IENO, 5-4, 5-6, 5-24, 11-11, 14-9, C-3, C-27
IEN1, 5-4, 5-25, C-3, C-28
INC instruction, A-4
Instruction set
MCS 51 architecture, A-1-A-58
INT1#, 9-1
INT1:0#, 5-1, 9-1, 10-1, 10-2
pulse width measurements, 10-10
INT2# interrupt, 5-6
Intel Architecture Labs, 1-8
Interrupt request, 5-1
cleared by hardware, 5-6, 5-7
Interrupt service routine
exiting idle mode, 14-7
exiting powerdown mode, 14-8
Interrupts, 5-1-5-32
detection, 5-6
edge-triggered, 5-6
enable/disable, 5-24
exiting idle mode, 14-7
exiting powerdown mode, 14-8
external (INT1:0#), 5-1, 5-6, 14-9
global enable, 5-24
global resume, 5-17
global resume (GRSM), 14-5, 14-7, C-38
global suspend (GSUS), 14-5, 14-7, C-38
handler, 2-11
hub, 5-7
keyboard scan, 5-6, 5-7
level-triggered, 5-6
priority, 5-1, 5-4, 5-6, 5-7, 5-26-5-29, C-3
priority within level, 5-26
requestSee Interrupt request
sampling, 5-6
service routine (ISR), 5-6, 5-7
sources, 5-2
timer/counters, 5-7
vectors, 5-6, 5-7
IPHO, 5-4, 5-27, C-3, C-29
bit definitions, 5-26
IPH1, 5-4,5-29, C-3, C-31
bit definitions, 5-26
IPLO, 5-4, 5-28, C-3, C-30

intel.

bit definitions, 5-26
IPL1, 5-4,5-30, C-3,C-32
bit definitions, 5-26
I sochronous RX dataflow
Dual-packet mode, D-18
Isochronous TX dataflow
Dual-packet mode, D-5
ISR, See Interrupts, service routine

J

JB instruction, A-8
JBC instruction, A-8
JC instruction, A-8
JMP instruction, A-8
JINB instruction, A-8
INC instruction, A-8
JINZ instruction, A-8
JZ instruction, A-8

K
KBCON, 12-1
Key bytes, See Encryption array
Keyboard control signals, 12-2
Keyboard interrupt logic, 12-3
Keyboard scan, 12-2
interrupt, 5-6, 5-7
interrupt enable bit, 5-25, C-28
matrix, 12-2

L
LED drivers, 12-2,12-4
LIMP instruction, A-8
Lock bits
protection types, 16-4
verifying, 16-1
Logicd ingtructions, 4-7
table of, 4-6, A-5
Low clock mode, 14-1, 14-13
entering, 14-13
exiting, 14-13

M
MCS® 51, 1-1
architecture features, 2-5-2-6
Microcontroller core, 2-6
Miller effect, 13-3

INDEX

MOV instruction, A-6
for bits, A-7
MOVC instruction, A-6

Move instructions
table of, A-6
MOVX instruction, A-6

N
Noise reduction, 13-2, 13-3
Non-isochronous RX dataflow
dual-packet mode, D-11
single-packet mode, D-8
Non-isochronous TX dataflow, D-1
Nonvolatile memory
verifying, 16-1-16-6
NOP instruction, A-8

O
On-chip code memory
idle mode, 14-6
setup for verifying, 16-2-16-3
top eight bytes, 16-5
On-chip oscillator
hardware setup, 13-1
On-chip RAM
idle mode, 14-6
reset, 13-6
ONCE mode, 14-1
entering, 14-13
exiting, 14-13
Opcodes
map, A-3
ORL instruction
for bits, A-7
ORL/ instruction
for bits, A-7
Oscillator
at startup, 13-7
ceramic resonator, 13-3
during reset, 13-5
on-chip crystal, 2-7,13-2
ONCE mode, 14-13
powerdown mode, 14-8
verifying nonvolatile memory, 16-2
QV bit, 4-2, C-39
Overflow See OV hit
OVRI # pin, 7-29

Index-3

8x931AA, 8x931HA USER’'S MANUAL

P

Phbit, 4-2, C-39

PO, 9-2,C-4,C-34

P1, 9-2,C-4,C-34

P2, 9-2,C-4,C-34

P3, 9-2,C-4,C-35

Page mode

bus cycles, See External bus cycles, page

mode

PCON, 11-7, 14-3, 14-4, 14-7, C-3, C-36, C-37

idlemode, 14-6
powerdown mode, 14-8, 14-9
reset, 13-5
PCON1, 5-4,14-7,C-3
Phase 1 and phase 2, 2-8
Phone numbers, customer support, 1-7
Pin conditions, 14-6
Pins
unused inputs, 13-2
POP instruction, A-7
Port 0, 9-2
structure, 9-3
Port 1, 9-2
structure, 9-3
Port 2, 9-2
structure, 9-4
Port 3, 9-2
structure, 9-3
Ports
at power on, 13-7
exiting idle mode, 14-7
exiting powerdown mode, 14-8
verifying nonvolatile memory, 16-3
Power supply, 13-2
Powerdown mode, 2-6, 14-1, 14-8-14-9
accidental entry, 14-6
entering, 14-8
exiting, 13-5, 14-8
external bus, 15-2
PSEN#
caution, 13-7
idle mode, 14-6
PSW, 4-2, A-9, C-39
PSwW, PSW1, C-3
effects of instructions on flags, 4-3
Pullups
ports 1, 2, 3, 9-6

Index-4

intel.

Pulse width measurements, 10-10
PUSH instruction, A-7

R
RCAP2H, RCAP2L, 10-3, 11-12, C-40
RD#, 9-1
Read-modify-write instructions, 9-2, 9-5
Register banks
selection bits (RS1:0), 4-2, C-39
Register file
and reset, 13-6
rel, A-2
Reset, 13-5-13-7
cold start, 13-5
entering ONCE mode, 14-13
exiting idle mode, 14-7
exiting powerdown mode, 14-9
externally initiated, 13-5
need for, 13-7
operation, 13-6
power-on reset, 13-1, 13-7
timing sequence, 13-6, 13-7
USB-initiated, 13-5
warm start, 13-5
RET instruction, A-8
RETI instruction, 5-1, A-8
RL instruction, A-5
RLC instruction, A-5
RR instruction, A-5
RRC instruction, A-5
RST, 13-5,13-6
ONCE mode, 14-13
RXCNTL, 6-26, C-40
RXD, 9-1,11-1
mode 0, 11-2
modes 1, 2, 3, 11-7
RXDAT, 6-26, C-42
RXFLG, 6-31, C-43
RXSTAT, 6-11, C-45

S

SADDR, 11-2,11-9, 11-10, C-4, C-48

SADEN, 11-2,11-9, 11-10, C-4, C-48

SBUF, 11-2,11-3, C-4, C-48

SCON, 11-2,11-4,11-7,C-4,C-49
bit definitions, 11-1

Security, 16-1

intel.

Serial 1/0 port, 11-1-11-13
asynchronous modes, 11-7

automatic address recognition, 11-8-11-10

baud rate generator, 10-7
baud rate, mode 0, 11-2, 11-10

baud rate, modes 1, 2, 3, 11-7, 11-11-11-13

broadcast address, 11-9
data frame, modes 1, 2, 3, 11-7
framing bit error detection, 11-7
full-duplex, 11-7
given address, 11-9
half-duplex, 11-2
interrupts, 11-1, 11-8
mode 0, 11-2-11-3
modes 1, 2, 3, 11-7
multiprocessor communication, 11-8
SFRs, 11-1, 11-2,C-4
synchronous mode, 11-2
timer 1 baud rate, 11-11, 11-12
timer 2 baud rate, 11-12-11-13
timing, mode 0, 11-6
SETB instruction, A-7
SetHubDescriptor, 8-20
SFR
memory map, C-1
SFRs
idle mode, 14-6
powerdown mode, 14-8
reset initialization, 13-6
unimplemented, 3-5, C-1
Signal descriptions
multi-function pins, B-1
Signature bytes
values, 16-4
verifying, 16-1, 16-4
SJMP instruction, A-8
SOF interrupt, 5-7
SOF# pin, 5-14
SOFH, 5-12, C-51
SOFL, 5-13, C-52
Solutions OEM, 1-8
SP, C-3,C-52
Special function registefSee SFRs
State time, 2-8
SUBB instruction, A-4
SWAP instruction, A-5

T

INDEX

T1, 91

T1:0, 9-1, 10-2

T2, 9-1, 10-2

T2CON, 10-1, 10-3, 10-10, 10-17, 11-12, C-53

baud rate generator, 11-12

T2EX, 9-1, 10-2, 10-11, 11-12
T2MOD, 10-1, 10-3, 10-10, 10-16, C-54
TCON, 10-1, 10-3, 10-4, 10-6, 10-8, C-5, C-55

interrupts, 5-1

Tech support, 1-7
TH2, TL2

baud rate generator, 11-12, 11-13

THx, TLx (x =0, 1, 2), 10-3, C-5, C-57, C-58
Timer 0, 10-4-10-8

applications, 10-9

auto-reload, 10-5

interrupt, 10-4

mode 0, 10-4

mode 1, 10-4

mode 2, 10-5

mode 3, 10-5

pulse width measurements, 10-10

Timer 1

applications, 10-9

auto-reload, 10-9

baud rate generator, 10-6
interrupt, 10-6

mode 0, 10-6

mode 1, 10-9

mode 2, 10-9

mode 3, 10-9

pulse width measurements, 10-10

Timer 2, 10-10-10-17

auto-reload mode, 10-12
baud rate generator, 10-14
capture mode, 10-11
clock out mode, 10-14
interrupt, 10-11

mode select, 10-15

Timer/counters, 10-1-10-17

external input sampling, 10-2
internal clock, 10-1
interrupts, 10-1

overview, 10-1-10-2
registers, 10-3

SFRs, C-5

Index-5

8x931AA, 8x931HA USER’'S MANUAL

signal descriptions, 10-2

TMOD, 10-1, 10-3, 10-4, 10-6, 10-7, 11-11, C-5,
C-56

TXCNTL, 6-16, C-58
TXCON, 6-19, C-59
TXD, 11-1

mode 0, 11-2

modes 1, 2, 3, 11-7
TXDAT, 6-16, 7-12, C-61
TXFLG, 6-21, C-62
TXSTAT, 6-9, C-64

U
UART, 11-1
UD flag, 4-2, C-39
UPWEN# pin, 7-29
USB
configuration descriptor, 8-3, E-2
device descriptor, 8-3
endpoint selection, 6-5
endpoint-indexed SFRs, 6-5
FIFO byte capacity, 2-12
function
bus unenumeration, 8-2
post-receive operations, 8-11
post-transmit operations, 8-8
pre-transmit operations, 8-7
receive doneinterrupt, 5-9
receive operations, 8-10
receive routine, 8-3
receive SOF routine, 8-16
resume interrupt, 5-17
setup routines, 8-14
suspend and resume, 14-1
transmit done interrupt, 5-10
transmit operations, 8-4
transmit routine, 8-3
function endpoint pairs, 6-1
function FIFOs, 6-1
function interface, 6-1
function routines
overview, 8-1
receive SOF, 8-1
setup, 8-1
globa resume, 14-9
global suspend, 14-7
hub

Index-6

intel.
bus enumeration, 7-7

CLEAR_FEATURE request, 8-17
ClearHubFeature request, 8-20
ClearPortFeature request, 8-22, 8-23
configuration, 7-9—7-10,C-6—-C-26
descriptors, 7-7-7-8
device signals, 7-30
embedded function, 7-24
remote wake-up, 7-25
reset, 7-24
empedded function
suspend and resume, 7-26
endpoint 1, 7-11
endpoints, 7-10-7-13
examining port status, 7-17-7-19, C-6—
C-24
firmware examples, 8-24
firmware response tor USB requests, 8-
17-8-23
firmware responses, 8-17-8-22
full-speed device attach, 7-6
ganged power enable, 7-29
GET_CONFIGURATION request, 8-18
GET_DESCRIPTOR request, 8-18
GET_INTERFACE request, 8-18
GET_STATUS request, 8-18
GetBusState request, 8-20
GetHubDescriptor request, 8-20
GetHubStatus request, 8-20
GetPortStatus request, 8-20, 8-23
GetPortStatus request firmware, 8-25-8-
26
global suspend and resume, 7-25-7-27
interrupt, 5-7
low-speed device attach, 7-7
monitoring port status, 7-20-7-23
operation, 8-17-8-22, 8-23-8-28
overcurrent detection, 7-29
port control, 7-14-7-16
port control commands, 7-16
port indexing, 7-23
port power switching, 7-27—-7-28
port states, 7-4-7-5
port status change communication, 8-
23-8-28
power distribution, 7-27
SET_ADDRESS request, 8-18
SET_CONFIGURATION request, 8-18

Vv

tel.

SET_DESCRIPTOR request, 8-18
SET_FEATURE request, 8-17
SET_INTERFACE request, 8-18
SetHubDescriptor request, 8-20
SetHubFeature request, 8-20
SetPortFeature (PORT_RESET)
firmware, 8-27
SetPortFeature (PORT_SUSPEND)
firmware, 8-26
SetPortFeature request, 8-21
signaling connectivity, 7-6—7-7
status, 7-9-7-10, C-23-C-26
status and configuration, 8-17

status change communication, 7-13

SYNCH_FRAME request, 8-18

idle state, 8-1, 8-3
interrupts

function, 5-7, 5-8-5-11

global suspend/resume, 5-7, 5-17

hub, 5-7, 5-15
start-of-frame, 5-11-5-14

module, 2-2, 2-11

block diagram, 2-7

power control, 14-7
powerdown, 14-8
programming models, 8-1
receive FIFOs, 6-24

write marker, 6-24, 8-10
write pointer, 6-24, 8-10

remote wake-up, 5-17, 14-10
requests

ClearPortFeature, 7-14
SetPortFeature, 7-14

reset separation, 5-17-5-23
transaction dataflow model, 6-1, D-1
transmit FIFOs

read marker, 6-15, 8-5
read pointer, 6-15, 8-5

unenumerated state, 8-1

Vce, 13-2

during reset, 13-5
power-on reset, 13-7
powerdown mode, 14-8

Verifying nonvolatile memory, 16-1
Vss, 13-2

INDEX

W

WAIT#, 9-1

World Wide Web, 1-7
WR#, 9-1

X

XCH instruction, A-7

XCHD instruction, A-7

XTAL1, XTAL2, 13-2
capacitance loading, 13-3

Index-7

	CHAPTER 1 Guide to this Manual
	1.1 Manual Contents
	1.2 Notational Conventions and Terminology
	1.3 Related Documents
	1.3.1 Data Sheet
	1.3.2 Application Notes

	1.4 Application Support Services
	1.4.1 World Wide Web
	1.4.2 FaxBack Service
	1.4.3 Bulletin Board System (BBS)

	CHAPTER 2 Architectural Overview
	2.1 Product Overview
	2.1.1 8x931AA Features
	2.1.2 8x931HA Features
	2.1.3 Keyboard Control Interface
	2.1.4 MCS® 51 Architecture Features

	2.2 Microcontroller Core
	2.2.1 CPU
	2.2.2 Clock and Reset Unit
	2.2.2.1 State Time and Machine Cycles
	2.2.2.2 USB Operating Rate
	2.2.2.3 Low-clock Mode
	2.2.2.4 Reset Unit

	2.2.3 Interrupt Handler

	2.3 8x931 Memory
	2.4 Universal Serial Bus Module
	2.4.1 USB Operation
	2.4.2 Hub Interface
	2.4.3 Hub Repeater
	2.4.4 Serial Bus Interface Engine (SIE)
	2.4.5 Hub Interface Unit (HIU)
	2.4.6 Hub FIFOs

	2.5 On-chip Peripherals
	2.5.1 Timer/Counters
	2.5.2 Serial I/O Port

	2.6 Operating Conditions

	CHAPTER 3 Address Spaces
	3.1 MEMORY ORGANIZATION IN 8x931 DEVICES
	3.1.1 Logical Separation of Program and Data Memor...
	3.1.2 Program Memory
	3.1.3 Data Memory

	3.2 Special Function Registers (SFRs)

	CHAPTER 4 Programming Considerations
	4.1 THE MCS® 51 INSTRUCTION SET
	4.1.1 Program Status Word
	4.1.2 Addressing Modes
	4.1.2.1 DIRECT ADDRESSING
	4.1.2.2 INDIRECT ADDRESSING
	4.1.2.3 REGISTER INSTRUCTIONS
	4.1.2.4 REGISTER-SPECIFIC INSTRUCTIONS
	4.1.2.5 IMMEDIATE CONSTANTS
	4.1.2.6 INDEXED ADDRESSING

	4.1.3 Arithmetic Instructions
	4.1.4 Logical Instructions
	4.1.5 Data Transfers
	4.1.5.1 Internal RAM
	4.1.5.2 External RAM
	4.1.5.3 Lookup Tables

	4.1.6 Boolean Instructions
	4.1.6.1 Relative Offset

	4.1.7 Jump Instructions

	CHAPTER 5 Interrupt System
	5.1 OVERVIEW
	5.2 Interrupt Sources
	5.2.1 External Interrupts
	5.2.2 Timer Interrupts
	5.2.3 Keyboard Scan Interrupt
	5.2.4 Serial Port Interrupt
	5.2.5 USB Function Interrupt
	5.2.6 USB Start-of-frame Interrupt
	5.2.7 USB Hub Interrupt
	5.2.8 USB Global Suspend/Resume Interrupt
	5.2.8.1 Global Suspend
	5.2.8.2 Global Resume
	5.2.8.3 USB Remote Wake-up

	5.2.9 USB Reset Separation
	5.2.9.1 Initialization Required for USB Reset
	5.2.9.2 USB Reset Hardware Operations
	5.2.9.3 USB Reset ISR
	5.2.9.4 Main Routine Considerations

	5.3 Interrupt Enable
	5.4 Interrupt Priorities
	5.5 Interrupt Handling
	5.6 Response Time

	CHAPTER 6 USB Function
	6.1 Function Interface
	6.1.1 Function Endpoint Pairs
	6.1.2 Function FIFOs
	6.1.3 Endpoint-indexed SFRs
	6.1.4 Endpoint Selection

	6.2 USB Function SFRs
	6.3 Transmit FIFOs
	6.3.1 Transmit FIFO Registers
	6.3.2 Transmit FIFO Data Register (TXDAT)
	6.3.3 Transmit FIFO Byte Count Register (TXCNTL)
	6.3.4 Transmit Data Set Management

	6.4 Receive FIFOs
	6.4.1 Receive FIFO Registers
	6.4.1.1 Receive FIFO Data Register (RXDAT)
	6.4.1.2 Receive FIFO Byte Count Registers (RXCNTL)...

	6.4.2 Receive FIFO Data Set Management

	6.5 SIE Details
	6.6 SETUP Token Receive FIFO Handling
	6.7 ISO Data Management
	6.7.1 Transmit FIFO ISO Data Management
	6.7.2 Receive FIFO ISO Data Management

	CHAPTER 7 USB Hub
	7.1 Hub Functional Overview
	7.1.1 Port Connectivity States
	7.1.2 Per-packet Signaling Connectivity
	7.1.2.1 Connectivity to Downstream Ports Attached ...
	7.1.2.2 Connectivity to Downstream Ports attached ...

	7.2 Bus Enumeration
	7.2.1 Hub Descriptors
	7.2.2 The Hub Address Register (HADDR)

	7.3 Hub Status
	7.4 USB Hub Endpoints
	7.4.1 Hub Endpoint Indexing Using EPINDEX
	7.4.2 Hub Endpoint Control
	7.4.3 Hub Endpoint Transmit and Receive Operations...

	7.5 USB Hub Ports
	7.5.1 Controlling a Port Using HPCON
	7.5.2 Examining a Port’s Status Using HPSTAT
	7.5.3 Monitoring Port Status Change Using HPSC
	7.5.4 Hub Port Indexing Using HPINDEX
	7.5.5 Embedded Function
	7.5.5.1 Embedded Function Reset
	7.5.5.2 Embedded Function Remote Wake-up

	7.6 Suspend and Resume
	7.6.1 Hub Global Suspend and Resume
	7.6.2 Remote Connectivity
	7.6.2.1 Resume Connectivity
	7.6.2.2 Connectivity Due to Physical Connect/Disco...
	7.6.2.3 Embedded Function Suspend and Resume

	7.7 Hub Power Distribution
	7.7.1 Port Power Switching
	7.7.2 Overcurrent Detection
	7.7.3 Ganged Power Enable

	7.8 Hub Device Signals

	CHAPTER 8 USB Programming Models
	8.1 Overview of Programming Models
	8.1.1 Enumeration
	8.1.2 Idle State
	8.1.3 Transmit and Receive Routines
	8.1.4 USB Interrupts

	8.2 Transmit Operations
	8.2.1 Overview
	8.2.2 Pre-transmit Operations
	8.2.3 Post-transmit Operations

	8.3 Receive Operations
	8.3.1 Overview
	8.3.2 Post-receive Operations

	8.4 SETUP Token
	8.5 Start-of-frame (SOF) Token
	8.6 Hub Operation
	8.6.1 Hub Status and Configuration
	8.6.2 Port Status Change Communication
	8.6.3 Hub Firmware Examples
	8.6.3.1 GetPortStatus Request Firmware
	8.6.3.2 SetPortFeature (PORT_SUSPEND) Firmware
	8.6.3.3 SetPortFeature (PORT_RESET) Firmware

	CHAPTER 9 Input/Output Ports
	9.1 Input/Output port overview
	9.2 I/O Configurations
	9.3 Port 1 and Port 3
	9.4 Port 0 and Port 2
	9.5 Read-Modify-Write Instructions
	9.6 Quasi-bidirectional Port Operation
	9.7 Port Loading
	9.8 External Memory Access

	CHAPTER 10 Timer/Counters
	10.1 Timer/Counter Overview
	10.2 Timer/Counter Operation
	10.3 Timer 0
	10.3.1 Mode 0 (13-bit Timer)
	10.3.2 Mode 1 (16-bit Timer)
	10.3.3 Mode 2 (8-bit Timer With Auto-reload)
	10.3.4 Mode 3 (Two 8-bit Timers)

	10.4 Timer 1
	10.4.1 Mode 0 (13-bit Timer)
	10.4.2 Mode 1 (16-bit Timer)
	10.4.3 Mode 2 (8-bit Timer with Auto-reload)
	10.4.4 Mode 3 (Halt)

	10.5 Timer 0/1 Applications
	10.5.1 Auto-reload Setup Example
	10.5.2 Pulse Width Measurements

	10.6 Timer 2
	10.6.1 Capture Mode
	10.6.2 Auto-reload Mode
	10.6.2.1 Up Counter Operation

	10.6.3 Up/Down Counter Operation
	10.6.4 Baud Rate Generator Mode
	10.6.5 Clock-out Mode

	CHAPTER 11 Serial I/O Port
	11.1 Overview
	11.2 Modes of Operation
	11.2.1 Synchronous Mode (Mode 0)
	11.2.1.1 Transmission (Mode 0)
	11.2.1.2 Reception (Mode 0)

	11.2.2 Asynchronous Modes (Modes 1, 2, and 3)
	11.2.2.1 Transmission (Modes 1, 2, 3)
	11.2.2.2 Reception (Modes 1, 2, 3)

	11.3 Framing Bit Error Detection (Modes 1, 2, and ...
	11.4 Multiprocessor Communication (Modes 2 and 3)
	11.5 Automatic Address Recognition
	11.5.1 Given Address
	11.5.2 Broadcast Address
	11.5.3 Reset Addresses

	11.6 Baud Rates
	11.6.1 Baud Rate for Mode 0
	11.6.2 Baud Rates for Mode 2
	11.6.3 Baud Rates for Modes 1 and 3
	11.6.3.1 Timer 1 Generated Baud Rates (Modes 1 and...
	11.6.3.2 Selecting Timer 1 as the Baud Rate Genera...
	11.6.3.3 Timer 2 Generated Baud Rates (Modes 1 and...
	11.6.3.4 Selecting Timer 2 as the Baud Rate Genera...

	CHAPTER 12 Keyboard Control
	12.1 Overview
	12.2 Keyboard Scan Implementation
	12.2.1 Keyboard Interrupt Logic

	12.3 LED Drivers

	CHAPTER 13 Minimum Hardware Setup
	13.1 Minimum Hardware Setup
	13.2 Electrical Environment
	13.2.1 Power and Ground Pins
	13.2.2 Unused Pins
	13.2.3 Noise Considerations

	13.3 Clock Sources
	13.3.1 On-chip Oscillator (Crystal)
	13.3.2 On-chip Oscillator (Ceramic Resonator)
	13.3.3 External Clock

	13.4 Reset
	13.4.1 Externally-initiated Resets
	13.4.2 USB-initiated Resets
	13.4.2.1 USB Reset Separation

	13.4.3 Reset Operation
	13.4.4 Power-on Reset

	CHAPTER 14 Special Operating Modes
	14.1 Overview
	14.2 Power Control Registers
	14.2.1 Power Off Flag

	14.3 Idle Mode �
	14.3.1 Entering Idle Mode
	14.3.2 Exiting Idle Mode

	14.4 USB Power Control
	14.4.1 Global Suspend Mode
	14.4.1.1 Powerdown (Suspend) Mode
	14.4.1.2 Entering Powerdown (Suspend) Mode
	14.4.1.3 Exiting Powerdown (Suspend) Mode

	14.4.2 Global Resume Mode
	14.4.3 USB Remote Wake-up

	14.5 Low-Clock Mode
	14.5.1 Entering Low-clock Mode
	14.5.2 Exiting Low-clock Mode

	14.6 ON-Circuit emulation (Once) Mode
	14.6.1 Entering ONCE Mode
	14.6.2 Exiting ONCE Mode

	CHAPTER 15 External Memory Interface
	15.1 Overview
	15.2 External Bus Cycles
	15.2.1 Bus Cycle Definitions

	15.3 Port 0 and Port 2 Status
	15.3.1 Port 0 and Port 2 Pin Status

	15.4 External Memory Design Examples
	15.4.1 Example 1: 11-bit Bus, External RAM
	15.4.2 Example 2: 16-bit Bus, External ROM
	15.4.3 Example 3: 16-bit Bus, External EPROM and R...

	CHAPTER 16 Verifying Nonvolatile Memory
	16.1 83931 Memory
	16.2 Nonvolatile Memory
	16.3 Verifying On-chip Nonvolatile memory
	16.3.1 Verify Modes
	16.3.2 General Setup
	16.3.3 Verify Algorithm
	16.3.4 Verifying On-chip Program Memory
	16.3.5 Verifying the Lock Bits
	16.3.6 Verifying the Signature Bytes

	16.4 Encryption Array
	16.5 Considerations for On-chip Program Code Memor...

	APPENDIX A Instruction Set Reference
	A.1 Notation for instruction Operands
	A.2 Opcode Map
	A.3 Instruction Set Summary
	A.3.1 Instruction Summaries����������

	A.4 Instruction Descriptions

	APPENDIX B Pin Descriptions
	APPENDIX C Registers
	C.1 �SFRs By Functional Category� � �
	C.2 SFR Descriptions

	APPENDIX D Data Flow Model
	APPENDIX E 8x931AA Design Considerations
	E.1 Differences Between the 8x931AA and the 8x931H...
	E.2 8x931AA Enumeration Process
	E.3 8x931AA Pin Descriptions
	E.4 8x931AA Signal Descriptions
	E.5 Operating Frequencies
	E.6 8x931AA SFR Map

	Glossary
	Index

