
UDI SCSI Driver Specification
Version 1.01

Uniform Driver Interface

http://www.project-UDI.org/specs.html





UDI SCSI Driver Specification

UDI SCSI Driver Specification - Version 1.01 - 2/2/01 i

The UDI SCSI Driver Specification defines the required interfaces and semantics for UDI 
environments that support SCSI Drivers. This is an optional extension to the UDI Core 
Specification, which is defined in a separate book. See the Document Organization chapter in the 
UDI Core Specification for a description of the other books in the UDI Specification, as well as 
references to additional tutorial materials. The intended audience for this book includes driver 
writers, environment implementors, and metalanguage implementors.

Status of This Document
This document has been reviewed by Project UDI Members and other interested parties and has 
been endorsed as a Final Specification. It is a stable document and may be used as reference 
material or cited as a normative reference from another document. This version of the 
specification is intended to be ready for use in product design and implementation. Every attempt 
has been made to ensure a consistent and implementable specification. Implementations should 
ensure compliance with this version.

Abstract



 Preface

 ii UDI SCSI Driver Specification - Version 1.01 - 2/2/01
 

Copyright Notice
Copyright © 1999-2001 Adaptec, Inc; Compaq Computer Corporation; Hewlett-Packard 
Company; International Business Machines Corporation; Interphase Corporation; Lockheed 
Martin Corporation; The Santa Cruz Operation, Inc; Sun Microsystems (“copyright holders”). All 
Rights Reserved.

This document and other documents on the Project UDI web site (www.project-UDI.org ) are 
provided by the copyright holders under the following license. By obtaining, using and/or copying this 
document, or the Project UDI document from which this statement is linked, you agree that you have 
read, understood, and will comply with the following terms and conditions:

Permission to use, copy, and distribute the contents of this document, or the Project UDI document from 
which this statement is linked, in any medium for any purpose and without fee or royalty is hereby 
granted, provided that you include all of the following on ALL copies of the document, or portions 
thereof, that you use:

1. A link or URI to the original Project UDI document.

2. The pre-existing copyright notice of the original author, or, if it doesn’t exist, a Project 
UDI copyright notice of the form shown above.

3. If it exists, the STATUS of the Project UDI document.

When space permits, inclusion of the full text of this NOTICE should be provided. In addition, credit 
shall be attributed to the copyright holders for any software, documents, or other items or products that 
you create pursuant to the implementation of the contents of this document, or any portion thereof.

No right to create modifications or derivatives is granted pursuant to this license.

THIS DOCUMENT IS PROVIDED "AS IS," AND COPYRIGHT HOLDERS MAKE NO 
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT 
LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR 
PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE DOCUMENT 
ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH 
CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, 
TRADEMARKS OR OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR 
CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR THE 
PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOF.

The names and trademarks of copyright holders may NOT be used in advertising or publicity pertaining 
to this document or its contents without specific, written prior permission. Title to copyright in this 
document will at all times remain with copyright holders.

http://www.project-UDI.org


UDI SCSI Driver Specification - Version 1.01 - 2/2/01  iii
 

Preface  

Acknowledgements
The authors would like to thank everyone who reviewed working drafts of the specification and 
submitted suggestions and corrections.

The authors would especially like to thank their significant others for putting up with the many hours of 
overtime put into the development of this specification over long periods.

Thanks to the following folks who contributed significant amounts of time, ideas, or authoring in 
support of the development of this specification or in working on the prototype implementations which 
helped us validate the specification:

Richard Arndt (IBM)
Bob Barned (Lockheed Martin)
Mark Bradley (Adaptec)
Darren Busing (Adaptec)
Steve Bytnar (STG)
Thomas Clark (Sun)
Deven Corzine
Jack Craig (SCO)
Betty Dall (HP)
Tim Damron (IBM)
Burkhard Daniel (STG)
Don Dugger (Intel)
Mark Evenson (HP)
Barry Feild (SCO)
Scott Feldman (Intel)
Mike Firman (STG)
Kurt Gollhardt (SCO)
Bob Goudreau (Data General)
James Hall (SCO/Sun)
Jim Heidbrink (Lockheed Martin)
Chris Herzog (STG)
Chris Ilnicki (HP)
Bret Indrelee (SBS Technologies)
David Kahn (Sun)
Matt Kaufmann (SCO)
Andrew Knutsen (SCO)
Ahuva Kroizer (Intel)

Man Fai Lau (SCO)
John Lee (Sun)
Robert Lipe (SCO)
Mike Lyons (IBM)
Alex Malone (DEC)
Lynne McCue (IBM)
Bill Nicholls
Guru Pangal (Starcom)
Mark Parenti (DEC)
James Partridge (IBM)
Scott Popp (SCO)
Hiremane Radhakrishna (Intel)
John Ronciak (Intel)
Kevin Quick (Interphase)
Larry Robinson (Adaptec)
Andrew Schweig (STG)
Sam Shteingart (HP)
Ajmer Singh (SCO)
James Smart (Compaq)
Pete Smoot (HP)
David Stoft (HP)
Rob Tarte (Pacific Codeworks)
Wolfgang Thaler (Sun)
Ramaswamy Tummala (Starcom)
Linda Wang (Sun)
Kevin Van Maren (Unisys)
Mike Wenzel (HP)

Countless people have helped in one way or another and any omissions or errors on our part in the list 
above are just that: omissions or errors on our part.

Thanks to Kevin Quick and the folks at Interphase for hosting the Interoperability events which have 
provided a great venue for validating both prototype and production UDI products.

Finally, thanks to David Roberts (Certek Software Designs) for designing the Project UDI logo.



 Preface

 iv UDI SCSI Driver Specification - Version 1.01 - 2/2/01
 



UDI SCSI Driver Specification - Version 1.01 - 2/2/01 v

Table of Contents

Abstract ....................................................................................................... i
Copyright Notice ........................................................................................ii
Acknowledgements....................................................................................iii
Table of Contents........................................................................................ v
List of Reference Pages by Chapter ..........................................................vii
Alphabetical List of Symbols..................................................................... ix

1 SCSI Driver Introduction ....................................................................1-1
1.1 Introduction .................................................................................................... 1-1
1.2 Scope .............................................................................................................. 1-1
1.3 Normative References .................................................................................... 1-1
1.4 Conformance .................................................................................................. 1-1
1.5 Terminology ................................................................................................... 1-2

2 SCSI Driver Requirements & Bindings..............................................2-1
2.1 General Requirements .................................................................................... 2-1

2.1.1 Versioning ............................................................................................... 2-1
2.1.2 Header Files ............................................................................................ 2-1

2.2 SCSI Metalanguage Model ............................................................................ 2-2
2.3 SCSI I/O Addressing ...................................................................................... 2-2

2.3.1 Bus Number ............................................................................................ 2-2
2.3.2 Target ID ................................................................................................. 2-3
2.3.3 LUN - Logical Unit Number .................................................................. 2-3

2.4 Peripheral Driver & HBA Driver Responsibilities ........................................ 2-4
2.4.1 Retries ..................................................................................................... 2-4
2.4.2 Timeouts ................................................................................................. 2-4
2.4.3 Aborts ...................................................................................................... 2-4
2.4.4 Transfer Negotiation ............................................................................... 2-4
2.4.5 Task/Queue Management ....................................................................... 2-5
2.4.6 SCSI Bus/Link Errors ............................................................................. 2-5

2.5 Bindings to the UDI Core Specification ........................................................ 2-6
2.5.1 Static Driver Properties Bindings ........................................................... 2-6
2.5.2 Instance Attributes Bindings ................................................................... 2-6

2.5.2.1 Enumeration Attributes .................................................................. 2-6



 Table of Contents

 vi UDI SCSI Driver Specification - Version 1.01 - 2/2/01
 

2.5.2.2 Generic Enumeration Attributes ..................................................... 2-9
2.5.2.2.1 identifier attribute ................................................................ 2-9
2.5.2.2.2 address_locator attribute .................................................... 2-10
2.5.2.2.3 physical_locator attribute .................................................. 2-10
2.5.2.2.4 physical_label attribute ...................................................... 2-10

2.5.2.3 Enumeration Attribute Ranking ................................................... 2-10
2.5.2.4 Filter Attributes ............................................................................ 2-11
2.5.2.5 Custom Parameters for HD Drivers ............................................. 2-11

2.5.2.5.1 Custom Parameters for HDs (per-HD instance) ................ 2-11
2.5.2.5.2 Custom Parameters for HDs (per-PD instance) ................. 2-14
2.5.2.5.3 Dynamically Changeable HD Custom Parameters ............ 2-14

2.5.2.6 Custom Parameters for PD Drivers .............................................. 2-15
2.5.2.6.1 Dynamically Changeable PD Custom Parameters ............ 2-16

2.5.3 Trace Event Bindings ............................................................................ 2-16
2.6 Metalanguage State Diagram ....................................................................... 2-17

2.6.1 SCSI Metalanguage States .................................................................... 2-18

3 SCSI Metalanguage Interfaces............................................................ 3-1
3.1 Introduction .................................................................................................... 3-1
3.2 Overview of Interfaces and Data Structures .................................................. 3-1
3.3 Control Blocks ............................................................................................... 3-1
3.4 Status Codes ................................................................................................... 3-2
3.5 Channel Ops Vectors ..................................................................................... 3-3
3.6 Binding Operations ........................................................................................ 3-6
3.7 Unbinding Operations .................................................................................. 3-12
3.8 I/O Operations .............................................................................................. 3-15
3.9 Control Operations ....................................................................................... 3-25
3.10 Event Operations .......................................................................................... 3-30
3.11 Utility Functions .......................................................................................... 3-34

Index.......................................................................................................X-1



UDI SCSI Driver Specification - Version 1.01 - 2/2/01 vii

List of Reference Pages by Chapter

Chapter 3  SCSI Metalanguage Interfaces
udi_scsi_pd_ops_t - - - - - - - - - - - - - - SCSI Peripheral Driver entry point ops vector............3-4
udi_scsi_hd_ops_t - - - - - - - - - - - - - - SCSI HBA Driver entry point ops vector.....................3-5
udi_scsi_bind_cb_t  - - - - - - - - - - - - - Control block for SCSI bind operations.......................3-7
udi_scsi_bind_req  - - - - - - - - - - - - - - Request a SCSI binding (PD-to-HD)...........................3-9
udi_scsi_bind_ack - - - - - - - - - - - - - - Acknowledge a SCSI bind request (HD-to-PD).........3-11
udi_scsi_unbind_req - - - - - - - - - - - - Request a SCSI unbind (PD-to-HD)..........................3-13
udi_scsi_unbind_ack - - - - - - - - - - - - Acknowledge a SCSI unbind (HD-to-PD)..................3-14
udi_scsi_io_cb_t  - - - - - - - - - - - - - - - Control block for SCSI I/O operations......................3-16
udi_scsi_io_req  - - - - - - - - - - - - - - - - Request a SCSI I/O operation (PD-to-HD)................3-19
udi_scsi_io_ack - - - - - - - - - - - - - - - - Acknowledge normal completion of SCSI I/O request......

3-20
udi_scsi_io_nak - - - - - - - - - - - - - - - - Indicate abnormal completion of SCSI I/O request...3-21
udi_scsi_status_t - - - - - - - - - - - - - - - Status structure in SCSI I/O Acknowledgement.........3-23
udi_scsi_ctl_cb_t - - - - - - - - - - - - - - - Control block for SCSI control operations................3-26
udi_scsi_ctl_req - - - - - - - - - - - - - - - - Request a SCSI control operation (PD-to-HD).........3-28
udi_scsi_ctl_ack  - - - - - - - - - - - - - - - Ack completion of SCSI control request (HD-to-PD)3-29
udi_scsi_event_cb_t  - - - - - - - - - - - - Control block for SCSI event operations...................3-31
udi_scsi_event_ind  - - - - - - - - - - - - - SCSI event notification (HD-to-PD)..........................3-32
udi_scsi_event_ind_unused - - - - - - - Proxy for udi_scsi_event_ind.....................................3-32
udi_scsi_event_res  - - - - - - - - - - - - - Acknowledge a SCSI event (PD-to-HD)....................3-33
udi_scsi_inquiry_to_string - - - - - - - - Encode SCSI INQUIRY data as a string....................3-35



 List of Reference Pages by Chapter

 viii UDI SCSI Driver Specification - Version 1.01 - 2/2/01
 



UDI SCSI Driver Specification - Version 1.01 - 2/2/01 ix

Alphabetical List of Symbols

UDI_SCSI_ACA_TASK ............................................................................................................3 -16
udi_scsi_bind_ack ............................................................................................................. ......3-11
UDI_SCSI_BIND_CB_NUM ........................................................................................................3- 7
udi_scsi_bind_cb_t ............................................................................................................ .......3-7
UDI_SCSI_BIND_EXCLUSIVE ...................................................................................................3-9
udi_scsi_bind_req ............................................................................................................. ........3-9
UDI_SCSI_CTL_ABORT_TASK_SET .....................................................................................3-26
udi_scsi_ctl_ack .............................................................................................................. ........3-29
UDI_SCSI_CTL_BUS_RESET .................................................................................................3-26
UDI_SCSI_CTL_CB_NUM ........................................................................................................3-2 6
udi_scsi_ctl_cb_t ............................................................................................................. ........3-26
UDI_SCSI_CTL_CLEAR_ACA .................................................................................................3-26
UDI_SCSI_CTL_CLEAR_TASK_SET ......................................................................................3-26
UDI_SCSI_CTL_LUN_RESET ..................................................................................................3-26
udi_scsi_ctl_req .............................................................................................................. ........3-28
UDI_SCSI_CTL_SET_QUEUE_DEPTH ...................................................................................3-26
UDI_SCSI_CTL_STAT_FAILED 3-2
UDI_SCSI_CTL_TGT_RESET ..................................................................................................3-26
UDI_SCSI_DATA_IN .............................................................................................................. ..3-16
UDI_SCSI_DATA_OUT ............................................................................................................3 -16
UDI_SCSI_EVENT_AEN ............................................................................................................ 3-7
UDI_SCSI_EVENT_BUS_RESET ..............................................................................................3-7
UDI_SCSI_EVENT_CB_NUM ...................................................................................................3-31
udi_scsi_event_cb_t ........................................................................................................... ....3-31
udi_scsi_event_ind ............................................................................................................ .....3-32
udi_scsi_event_ind_unused ...................................................................................................3- 32
udi_scsi_event_res ............................................................................................................ .....3-33
UDI_SCSI_EVENT_TGT_RESET ...............................................................................................3-7
UDI_SCSI_EVENT_UNSOLICITED_RESELECT ......................................................................3-7
UDI_SCSI_HD_OPS_NUM .........................................................................................................3-5
udi_scsi_hd_ops_t ............................................................................................................. .......3-5
UDI_SCSI_HEAD_OF_Q_TASK ..............................................................................................3-16
udi_scsi_inquiry_to_string .................................................................................................... .3-35
udi_scsi_io_ack ............................................................................................................... ........3-20
UDI_SCSI_IO_CB_NUM ...........................................................................................................3-16
udi_scsi_io_cb_t .............................................................................................................. ........3-16
udi_scsi_io_nak ............................................................................................................... ........3-21
udi_scsi_io_req ............................................................................................................... ........3-19
UDI_SCSI_NO_DISCONNECT .................................................................................................3-16
UDI_SCSI_ORDERED_TASK ..................................................................................................3-16
UDI_SCSI_PD_OPS_NUM .........................................................................................................3-4
udi_scsi_pd_ops_t ............................................................................................................. .......3-4



 Alphabetical List of Symbols

 x UDI SCSI Driver Specification - Version 1.01 - 2/2/01
 

UDI_SCSI_SIMPLE_TASK .......................................................................................................3-1 6
UDI_SCSI_STAT_ABORTED_HD_BUS_RESET 3-2
UDI_SCSI_STAT_ABORTED_REQ_BUS_RESET 3-2
UDI_SCSI_STAT_ABORTED_REQ_TGT_RESET 3-2
UDI_SCSI_STAT_ABORTED_RMT_BUS_RESET 3-2
UDI_SCSI_STAT_ACA_PENDING 3-2
UDI_SCSI_STAT_DEVICE_PARITY_ERROR 3-2
UDI_SCSI_STAT_DEVICE_PHASE_ERROR 3-2
UDI_SCSI_STAT_HD_ABORTED 3-2
UDI_SCSI_STAT_LINK_FAILURE 3-2
UDI_SCSI_STAT_NONZERO_STATUS_BYTE 3-2
UDI_SCSI_STAT_NOT_PRESENT 3-2
UDI_SCSI_STAT_SELECTION_TIMEOUT 3-2
UDI_SCSI_STAT_UNEXPECTED_BUS_FREE 3-2
udi_scsi_status_t ............................................................................................................. .......3-23
UDI_SCSI_TEMP_BIND_EXCLUSIVE .......................................................................................3-9
udi_scsi_unbind_ack ........................................................................................................... ...3-14
udi_scsi_unbind_req ........................................................................................................... ...3-13
UDI_SCSI_UNTAGGED_TASK ................................................................................................3-16
UDI_SCSI_VERSION ..................................................................................................................2-1



UDI SCSI Driver Specification - Version 1.01 - 2/2/01 1-1

SCSI Driver Introduction 1

1.1  Introduction

A UDI SCSI Driver is a conformant UDI driver which uses the SCSI Metalanguage, either in the SCSI 
Peripheral Driver (PD) role or the SCSI HBA Driver (HD) role. This document, the UDI SCSI Driver 
Specification, defines interfaces for communicating between SCSI PDs and HDs.

1.2  Scope

The UDI SCSI Driver Specification defines the complete set of interfaces available for communication 
between SCSI Peripheral Drivers (PDs) and SCSI HBA Drivers (HDs). These interfaces cover drivers 
which control SCSI-1, SCSI-2, and SCSI-3 compliant devices, and can be used in any configuration 
where the SCSI protocol is used or desired − including encapsulated SCSI across serial links such as 
Fibre Channel.

The UDI SCSI Driver Specification also defines the responsibilities and requirements on PDs and HDs, 
and specifies SCSI-specific bindings to the UDI Core Specification.

1.3  Normative References

The UDI SCSI Driver Specification references the following non-UDI standards, listed below. These 
standards contain provisions that, through reference in this document, constitute provisions of the UDI 
SCSI Driver Specification.

1. ANSI X3.131-1986 (SCSI-1).

2. ANSI X3.131-1994 (SCSI-2).

3. ANSI X3.270-1996 (SCSI-3 Architectural Model).

4. SCSI-3 Architectural Model - 2 (SAM-2), Revision 11, 16 July 1999

The UDI SCSI Driver Specification also references and depends upon the UDI Core Specification.

1.4  Conformance

A conforming UDI SCSI PD implementation attaches to the child end of a SCSI metalanguage channel, 
and uses only the interfaces specified in this document for communication across that channel to its 
parent HD. Similarly, a SCSI HD attaches to the parent end of a SCSI Metalanguage channel, and uses 
only the interfaces specified in this document for communication across that channel to its child PD. 



Terminology SCSI Intro

1-2 UDI SCSI Driver Specification - Version 1.01 - 2/2/01

Furthermore, conforming SCSI PDs and HDs follow all of the rules and requirements specified in this 
document, as well as any other relevant UDI specifications, including the use of header files and 
versioning, and the responsibilities shared or owned by the PD versus the HD.

1.5  Terminology

This section defines common terminology and acronyms with specific usage or meaning in the UDI 
SCSI Driver Specification.

adapter See definition in the “Terminology” chapter of the UDI Core Specification.

Bus Number A value that uniquely identifies a SCSI bus/link interface on an HBA with respect 
to the set of bus/links controlled by a given instance of the HBA Driver (HD). This 
value is zero for single-port SCSI HBAs (i.e., SCSI HBAs with a single SCSI bus 
attachment) and is also zero for multi-port HBAs whose buses are independently 
controlled (i.e., HBAs in which each attached bus is controlled by a separate 
instance of the HD). Otherwise, where a single HD instance controls N SCSI buses, 
the HD will export bus number values in the range 0..N-1. This is the first level of 
SCSI I/O addressing for the SCSI Metalanguage. Refer to Section 2.3, "SCSI I/O 
Addressing" for further details.

HBA Host Bus Adapter. Refers to the hardware or software entity that the HBA Driver 
(see HD) controls. For parallel SCSI HDs this typically refers to the hardware 
adapter between the host and the parallel SCSI bus. When the adjective single-port 
or multi-port preceeds it, this term typically refers to the physical card. Otherwise, 
and more commonly in UDI, this term refers to the specific hardware or software 
function(s) that are controlled by a single instance of the HD.

HD SCSI HBA Driver. UDI driver that receives and processes SCSI Metalangauge 
requests from a SCSI Peripheral Driver; i.e., the driver which provides the parent 
role on the SCSI Metalanguage channel.

LUN Logical Unit Number. An externally addressable entity within a target (see target) 
that implements the functions of a device module (e.g., part of a node on a SCSI 
bus). The LUN is the third level of SCSI I/O addressing for the SCSI 
Metalanguage. The LUN addresses one of many peripheral devices (like a SCSI 
disk) on the target interface which connects to the SCSI interconnect. Refer to 
Section 2.3, “SCSI I/O Addressing” for further details.

PD SCSI Peripheral Driver. UDI driver that controls a specific type of peripheral device 
or class of devices attached to a SCSI interconnect; i.e., the driver which provides 
the child role on a SCSI Metalanguage channel.

SAM SCSI-3 Architectural Model.

SCSI Small Computer System Interface. SCSI refers to the ANSI standards SCSI-1 
(X3.131-1986), SCSI-2 (X3.131-1994), and the set of working drafts which 
comprise the in-progress SCSI-3 standard. SCSI defines a protocol for 
interconnecting computers and peripheral devices. A primary objective of SCSI has 
been to provide host computers with device independence within a set of defined 
device models. Thus, SCSI defines a set of device models for various classes of 
devices, each with their own device model specific command set.



UDI SCSI Driver Specification - Version 1.01 - 2/2/01 1-3

SCSI Intro Terminology

SCSI Interconnect A SCSI interconnect is either the SCSI parallel bus defined in SCSI-1 or SCSI-2, or 
one of the supported I/O interconnects defined for SCSI-3 (parallel bus, Fibre 
Channel, SSA, 1394, etc.).

tag The fourth level of SCSI I/O addressing for the SCSI Metalanguage, The “tag” 
designates a specific I/O request. The use of tags is typical in “tagged command 
queueing” on SCSI-2 and “tagged tasks” on SCSI-3. Refer to Section 2.3, “SCSI 
I/O Addressing” for further details.

Target ID (Target) The second level of SCSI I/O addressing for the SCSI Metalanguage. The Target ID 
corresponds to the hardware entity (“target”) that directly connects to the SCSI 
interconnect. The target typically is an access interface behind which multiple SCSI 
devices are presented via the third level of addressing - the LUN. Although 
traditionally set to the physical address of the target on the SCSI interconnect, in 
UDI the Target ID value is a logical handle exported by the HD (when it 
enumerates its devices) and is potentially different from the value used by other 
HDs on the same interconnect. Refer to Section 2.3, “SCSI I/O Addressing” for 
further details.



Terminology SCSI Intro

1-4 UDI SCSI Driver Specification - Version 1.01 - 2/2/01



UDI SCSI Driver Specification - Version 1.01 - 2/2/01 2-1

SCSI Driver Requirements & Bindings 2

2.1  General Requirements

2.1.1 Versioning

All functions and structures defined in the UDI SCSI Driver Specification are part of the “udi_scsi ” 
interface, currently at version “0x101 ”. A driver that conforms to and uses the UDI SCSI Driver 
Specification, Version 1.01, must include the following declaration in its udiprops.txt  file (see 
Chapter 30, “Static Driver Properties”, of the UDI Core Specification):

requires udi_scsi 0x101

In each UDI SCSI driver source file, before including any UDI header files, the driver must define the 
preprocessor symbol, UDI_SCSI_VERSION, to indicate the version of the UDI SCSI Driver 
Specification to which it conforms, which must be the same as the interface version defined above:

#define UDI_SCSI_VERSION 0x101

A portable implementation of the SCSI Metalanguage Library must include a corresponding "provides" 
declaration in its udiprops.txt  file, must define UDI_SCSI_VERSION, and must conform to the 
requirements specified in the Metalanguage-to-Environment (MEI) interface defined in Chapters 27 and 
28 of the UDI Core Specification.

As defined in Section 30.4.6, “Requires Declaration,” on page 30-6 of the UDI Core Specification, the 
two least-significant hexadecimal digits of the interface version represent the minor number; the rest of 
the hex digits represent the major number. Versions that have the same “major version number” as an 
earlier version shall be backward compatible with that earlier version (i.e. a strict superset).

2.1.2 Header Files

Each UDI SCSI driver source file must include the file “udi_scsi.h ” after it includes “udi.h ”, as 
follows:

#include <udi.h>
#include <udi_scsi.h>

The “udi_scsi.h ” header file contains function prototypes and other definitions needed to use the 
UDI SCSI interfaces.1

1. As an exception to this version compatibility, version 1.0 (0x100) is not forward compatible with any other versions bearing 
the major number of 1; version 1.0 of the specification cannot be wholly implemented as a functional product.



SCSI Metalanguage Model SCSI Reqmts/Bindings

2-2 UDI SCSI Driver Specification - Version 1.01 - 2/2/01

2.2  SCSI Metalanguage Model

The SCSI Metalanguage is designed to allow for exactly one HD instance attached to a given HBA, but 
multiple instances of a PD may be attached to a given LUN. A PD is either a multi-lun PD (see the 
definition of the “scsi_multi_lun ” attribute in Section 2.5.2.1, “Enumeration Attributes” below), or 
a single-lun PD which controls a single LUN. PDs are generally single-lun in nature, but special PDs 
can be configured which control multiple LUNs. 

While there is a 1-to-1 correspondence between an HD and an HBA (as defined in Section 1.5, 
“Terminology”), there isn’t necessarily a 1-to-1 correspondence between HDs and SCSI buses or 
interconnects. For example, a non-independent multi-port HBA (an HBA with multiple SCSI buses that 
can’t be controlled independently) will have a single instance of an HD which controls multiple SCSI 
buses/links. This is the reason for the “scsi_bus ” enumeration attribute.

For purposes of exclusive access (see the exclusive bind flags in the udi_scsi_bind_cb_t  below) 
and SCSI event notification, unless stated otherwise in the SCSI interfaces, a multi-lun PD is treated as 
if there is a single-lun PD attached to each possible LUN. Thus, a multi-lun PD which is exclusively 
bound prohibits all other PD bindings to the HD, effectively giving the multi-lun PD exclusive access to 
the HD. A multi-lun PD which is non-exclusively bound prevents any other PD from binding exclusively 
(although another PD could in this case still do a “temporary exclusive bind”). If a SCSI event occurs 
which affects the PDs on a given LUN, any multi-lun PDs which have the event enabled will be notified 
along with the single-lun PDs attached to the LUN.

2.3  SCSI I/O Addressing

The SCSI Metalanguage recognizes 4 levels of SCSI I/O addressing: Bus Number, Target ID, LUN, and 
Tag. The Tag is not strictly an addressing component (it is a request identifier within a LUN from a 
given initiator) and is therefore not described in detail in this section. Tag use and assignment is 
typically HD and/or SCSI interconnect dependent. However, the PD is allowed to specify Tag types 
(Head of Queue, Ordered, etc) for each SCSI I/O issued to the HD.

The SCSI Metalanguage is designed to set up bindings between the PDs and HDs such that I/O request 
packets passed between the PD and HD need not specify Bus Number, Target ID, or LUN values (with 
the single exception of the multi-lun PD). The addressing values are a property of the enumerated PD 
instance and are inherent in the channel used for communication between the PD and the HD. For the 
multi-lun PD, the Bus Number, Target ID, and LUN values are encoded into the SCSI I/O control block.

2.3.1 Bus Number

The Bus Number represents a SCSI bus/link interface on an HBA. Typical HBA’s are single ported 
(containing a single SCSI interface) or if multi-ported, enumerate their hardware such that separate and 
independent hardware instances are created for each SCSI interface. In these cases, the Bus Number is 
zero. For the multi-ported HBA’s that contain interdependent SCSI interfaces (e.g. only one HD instance 
is enumerated for multiple SCSI interfaces), the Bus Number represents which of the SCSI interfaces on 
the HBA the I/O should be issued on. The Bus Number values are relative to the HBA’s HD. Multiple 
HDs whose hardware is connected to the same SCSI interconnect, may export different Bus Numbers for 
the same SCSI interconnect.



UDI SCSI Driver Specification - Version 1.01 - 2/2/01 2-3

SCSI Reqmts/Bindings SCSI I/O Addressing

The Bus Number addressing component is specified by the HD as an enumeration attribute when it 
enumerates the PD instances. On a per-request basis, the Bus Number is specified only in SCSI I/O 
requests made by a multi-lun PD; I/O requests from all other PDs have the Bus Number inherent in the 
channel that the I/O request is issued on.

2.3.2 Target ID

The Target ID represents a hardware entity attached to the SCSI interconnect. The value is assigned by 
the HD and, depending on the HD implementation, may or may not be persistent across driver restarts. 
As the Target ID value is HD dependent, multiple HD’s attached to the same SCSI interconnect may 
export different Target ID values for the same hardware entity.

Although the Target ID value has historically been set to the physical value of the hardware entity on the 
interconnect, the SCSI Metalanguage recognizes that there are inherent problems in doing so, especially 
with new SCSI-3 interconnects where physical addresses are temporal, much larger, sparsely populated, 
and may be changed while I/O is in flight. Historical mappings also suffer from additional issues 
regarding delays and interconnect utilization when I/O is sent to Target IDs that are non-existent.

The SCSI Metalanguage expects an HD to support a maximum number (N) of Target IDs, whose values 
range from 0 to N-1. During enumeration, an HD may enumerate devices that it detects are present at 
some subset of the Target IDs. All N Target IDs can be addressed by the multi-lun PD (even if not 
enumerated), with the value of N being given to the multi-lun PD during the binding sequence via an 
enumeration attribute (see the scsi_max_targets attribute).

The Target ID addressing component is specified by the HD as an enumeration attribute on all non-
multi-lun PD instances that it enumerates. On a per-request basis, the Target ID component is specified 
only in SCSI I/O requests made by a multi-lun PD. I/O requests from all other PDs have the Target ID 
inherent in the channel that the I/O request is issued on.

2.3.3 LUN - Logical Unit Number

As per the SCSI Architecture Model - 2 (SAM-2) specification: the LUN represents a target-resident 
entity which implements a device model and executes SCSI commands sent by an application client. The 
LUN value is an encoded 64 bit (8 byte) identifier for a SCSI logical unit. A detailed definition of a 
logical unit number may be found in the SAM-2 specification.

Logical Unit values are typically obtained from the Target ID (e.g. the physical device) via the use of the 
SCSI-3 REPORT LUNS SCSI command issued to LUN zero. However, some SCSI device hardware and 
interconnects do not fully support the SCSI-3 concept of an 8-byte LUN value or do not support the use 
of the SCSI-3 REPORT LUNS command. In such cases, it is expected that the HD will support 256 
logical units or less, and report it’s maximum LUN value during the binding process. All LUN values 
between 0 and the maximum can be addressed by the multi-lun PD (even if not enumerated). When 
specifying or interpreting the 8-byte LUN value for these non-SCSI-3 cases, the LUN value shall 
conform to the Single Level LUN Structure as per SAM-2 (i.e, byte 0 is zero, byte 1 contains the LUN 
value, and the remaining 6 bytes are zero).

The LUN addressing component is specified by the HD as an enumeration attribute on all non-multi-lun 
PD instances that it enumerates. On a per-request basis, the LUN component is specified only in SCSI 
I/O requests made by a multi-lun PD. I/O requests from all other PDs have the LUN value inherent in 
the channel that the I/O request is issued on.



Peripheral Driver & HBA Driver Responsibilities

2-4 UDI SCSI Driver Specification - Version 1.01 - 2/2/01

2.4  Peripheral Driver & HBA Driver Responsibilities

The SCSI Metalanguage divides operation and decision-making between PDs and HDs. In general, PDs 
make decisions specific to a particular SCSI device, and HDs make decisions that apply to an entire 
SCSI bus. This section provides some clarifications on each driver’s responsibilities.

2.4.1 Retries

Both the PD and the HD may retry I/Os. However, any request that can affect device state must not be 
retried by the HD. The HD guarantees that it is immediately ready to accept a retry attempt from the PD, 
but, as with other operations, it may not be committed to the hardware instantly.

2.4.2 Timeouts

Both the PD and the HD may time I/Os or other requests. However, as defined in the 
udi_scsi_io_cb_t  definition on page 3-16, the HD must time I/O requests received via a 
udi_scsi_io_req  if the PD specifies a nonzero timeout value in the request. If the request doesn’t 
complete within the specified timeout  period the HD must abort the request and complete it with 
status UDI_STAT_TIMEOUT.

The timeout value specified by the PD in the udi_scsi_io_req  should be much longer than the 
longest time that the specified request is expected to physically take in the device. To reduce variability, 
the HD must time the request only from the time it starts the request on the SCSI interconnect (not from 
the time it first receives the request from the PD); the HD must guarantee forward progress of internally 
queued requests.  If a condition exists that prohibits forward progress, the HD must abort the request, 
returning it to the PD with the appropriate error indication. Even with the HD guaranteeing forward 
progress, there can still be significant variability in the delivery time across the interconnect to the 
device, so when specifying a timeout on a udi_scsi_io_req  operation the PD must include the 
hd_timeout_increase  value as defined in the udi_scsi_bind_ack  definition on p. 3-11.

2.4.3 Aborts

The PD aborts individual SCSI I/O requests by using udi_channel_op_abort , passing the control 
block pointer for the original request. If the original request is still in the HD, the HD will receive a 
udi_channel_event_ind  of type UDI_CHANNEL_OP_ABORTED, with the pointer to the original 
request. The HD is to then abort and then ack (or nak as appropriate) the original request to the PD. If 
the original request is no longer pending in the HD, the udi_channel_op_abort  request will be 
discarded.

Control requests, which affect multiple SCSI I/O requests (Target Reset, etc), shall result in the desired 
function performed by the HD, followed by the the HD generating an ack (or nak as appropriate) of all 
affected I/O requests back to the PD. The HD will not respond with the corresponding ack for the 
control request until the function is performed and all affected requests have been returned to the PD.

2.4.4 Transfer Negotiation

The HD is responsible for maintaining the current state of transfer parameter negotiation (e.g., 
synchronous and wide parameters on parallel SCSI). It will renegotiate with the device whenever it 
believes that the negotiation has been lost, such as after a Unit Attention indicating SCSI bus reset. The 



UDI SCSI Driver Specification - Version 1.01 - 2/2/01 2-5

SCSI Reqmts/Bindings Peripheral Driver & HBA 

HD will always negotiate for the maximum transfer rate the device and HBA are capable of, unless 
limited by the per-PD instance attribute “@scsi_max_xfer_rate ” having been set on any of the PDs 
associated with the device, or by the “%scsi_max_xfer_rate” parameter.

2.4.5 Task/Queue Management

The HD generates and maintains the tag values associated with tagged SCSI commands. Since multiple 
PDs can be bound to the same LUN, the HD must keep track of these tags on a per-LUN basis (or higher 
level of granularity such as per-target or per-bus), not merely on a per-PD basis.

The HD is responsible for ensuring that the task ordering rules of SCSI are followed; this includes 
ensuring that tagged and untagged requests are not pending for the same device simultaneously.

The PD specifies its device's queue depth to the HD in the scsi bind request, and it is then the 
responsibility of the HD to guarantee that the queue depth to the device (i.e., the minimum of the queue 
depths specified by the PDs attached to a given LUN, with the exception of the multi-lun PDs which are 
excluded from this minimum calculation as noted below) is not exceeded.  In this model the PD can send 
as many requests as it likes to the HD and the HD must manage per-LUN request queues to make sure 
that the number of requests outstanding on the device is not exceeded.  

The PD can dynamically adjust its queue depth via the scsi_ctl request, in which case the queue depth 
change takes effect with respect to subsequent requests received from the PD.

It is the responsibility of the PD to handle QUEUE FULL conditions by reducing its queue depth as 
necessary to reduce the likelihood of QUEUE FULLs.  This can occur for example in the presence of 
PDs on other initiators attached to the same LUN.

Note – multi-lun PDs are excluded from the minimum calculation of queue depth for a given LUN since 
a multi-LUN PD is effectively a generic SCSI pass-through driver which can address any target 
and LUN. Therefore, the HD must ignore the queue depth specified by multi-lun PDs (so as to 
not affect the queue depth requirements of more specific PDs).

2.4.6 SCSI Bus/Link Errors

The HD is responsible for detecting bus hangs or link errors, and responding appropriately to alleviate 
or recover from the condition where possible. Any affected I/O requests or control operations not 
recoverable at the link level will be returned to the requesting PD, with appropriate status, whether 
started at the device or not.



Bindings to the UDI Core Specification SCSI 

2-6 UDI SCSI Driver Specification - Version 1.01 - 2/2/01

2.5  Bindings to the UDI Core Specification

2.5.1 Static Driver Properties Bindings

Some of the bindings for the static driver properties are defined in Section 2.1.1, “Versioning”. This 
includes the definition of the relevant interface name(s) (i.e., the <interface_name> parameter on the 
“requires” and “provides” and other property declarations), and the definition of the interface version 
number for this version of this Specification.

The driver category to be used with the “category” declaration (see Section 30.5.3, “Category 
Declaration,” on page 30-11 of the UDI Core Specification) by a portable implementation of the SCSI 
Metalanguage Library shall be “SCSI Host Bus Adapters”.

The <attr_name> parameter values defined for use with the “custom” declaration (see Section 30.6.10, 
“Custom Declaration,” on page 30-20 of the UDI Core Specification) are specified in Section 2.5.2.5, 
“Custom Parameters for HD Drivers” below.

2.5.2 Instance Attributes Bindings

In each of the attribute tables below, the ATTRIBUTE NAME  is a null-terminated string (see “Instance 
Attribute Names” on page 15-1 of the UDI Core Specification); the TYPE column specifies an attribute 
data type as defined in “udi_instance_attr_type_t” on page 15-7 of the UDI Core Specification; and the 
SIZE column specifies the valid sizes, in bytes, for each attribute.

2.5.2.1 Enumeration Attributes

The enumeration attributes specified in Table 2-1 are defined for the enumeration of SCSI devices, 
including the multi-lun pseudo-device and the HBA’s initiator devices. Prior to enumerating any other 
devices, the SCSI HD must first enumerate exactly one multi-lun pseudo device using an attr_list  
containing only the scsi_multi_lun , scsi_max_buses , scsi_max_tgts , and 
scsi_max_luns  attributes. Note that only one multi-lun enumeration is needed per HD instance, even 
if the HD instance controls multiple SCSI buses.

The HBA’s initiator devices, one for each applicable scsi_bus  value, must be enumerated as part of an 
enumeration START/NEXT cycle, with scsi_target  equal to the corresponding initiator id, and 
scsi_lun  equal to zero. If the %scsi_initiator_id  attribute (or its nonzero bus number flavors) 
exists and is programmable by the driver in its hardware, its value must be used in enumerating the 
corresponding initiator device node. If the device isn’t programmable the HD must compare the device’s 
initiator id value (whether hard-coded or mechanically switchable) to the value of the 
%scsi_initiator_id  attribute (or its default value if the attribute doesn’t exist) and if not equal the 
HD must fail its parent binding with status UDI_STAT_ATTR_MISMATCH as described in Section 
2.5.2.5. If and only if enumerating an initiator device node, the scsi_target_mode_supported  
attribute must also be present, and in this version of the Specification its value must be FALSE.



UDI SCSI Driver Specification - Version 1.01 - 2/2/01 2-7

SCSI Reqmts/Bindings Bindings to the UDI Core 

 

As the enumeration values describe the end device explicitly, including it’s addressing components, if a 
hot plug event takes place, which is detected by the driver and results in the change of any enumeration 
parameters, the previous device is to be denumerated (potentially causing it to be unbound) and the 
newly detected device enumerated.

SCSI-3 architecturally allows for Target IDs and LUNs up to 64 bits in size. The LUN value follows the 
format as described in SAM-2. The Target ID value is a logical value, 32 bits in size, constructed by the 
HD. It is the HD’s responsibility to map this to larger Target address spaces, where applicable. Refer to 
Section 2.3, “SCSI I/O Addressing” for additional details.

The “scsi_bus “ attribute specifies the peripheral device’s SCSI bus number, which is needed to 
distinguish among buses attached to non-independently-controlled multi-port SCSI HBAs (i.e., HBAs 
that have multiple SCSI buses which, due to hardware inter-dependencies, must be controlled by a single 
SCSI HD instance). The range of this value is from 0 to 255.

Table 2-1 SCSI Enumeration Attributes

ATTRIBUTE NAME TYPE SIZE DESCRIPTION

scsi_bus UDI_ATTR_UBIT32 4 SCSI bus number for this adapter, from 0

scsi_target UDI_ATTR_UBIT32 4 SCSI Target ID

scsi_lun UDI_ATTR_ARRAY8 1..8 8 bytes of SCSI LUN

scsi_dev_pqual UDI_ATTR_UBIT32 4 SCSI Peripheral Qualifier (from INQUIRY)

scsi_dev_type UDI_ATTR_UBIT32 4 SCSI Peripheral Device Type (from INQUIRY)

scsi_vendor_id UDI_ATTR_STRING 1..9 SCSI Device Vendor ID (from INQUIRY)

scsi_product_id UDI_ATTR_STRING 1..17 SCSI Device Product ID (from INQUIRY)

scsi_product_rev UDI_ATTR_STRING 1..5 SCSI Device Product Revision (from INQUIRY)

scsi_inquiry UDI_ATTR_ARRAY8 1..36 First 36 bytes of the SCSI INQUIRY data

scsi_tgt_wwid UDI_ATTR_ARRAY8 2..32 Target World-Wide ID

scsi_lun_wwid UDI_ATTR_ARRAY8 8..16 LUN World-Wide ID

identifier UDI_ATTR_STRING 1..45 Hex-encoding of LUN WWID or INQUIRY data

address_locator UDI_ATTR_STRING 27 Hex-encoded concatenation of bus, target, LUN

scsi_target_mode
_supported

UDI_ATTR_BOOLEAN 1 The initiator device can operate in target mode

scsi_multi_lun UDI_ATTR_BOOLEAN 1 Multi-LUN pseudo-device

scsi_max_buses UDI_ATTR_UBIT32 4 Max number of buses enumerated by an instance 
of the HD

scsi_max_tgts UDI_ATTR_UBIT32 4 Max number of targets per bus

scsi_max_luns UDI_ATTR_UBIT32 4 Max number of LUNs per target



Bindings to the UDI Core Specification SCSI 

2-8 UDI SCSI Driver Specification - Version 1.01 - 2/2/01

The “scsi_dev_pqual ” attribute is equivalent to the Peripheral Qualifier field in the high-order 3 bits 
of the first byte (byte 0) of the INQUIRY data. Note that it is a 4 byte integer attribute even though only 
the high order 3 bits are needed for the data. The high-order 3 bits of the first byte of the INQUIRY data 
are masked and the result, unshifted, is set using the UDI_ATTR32_SET or UDI_ATTR32_INIT  
utilities.

The “scsi_dev_type ” attribute is equivalent to the Peripheral Device Type field in the low-order 5 
bits of the first byte (byte 0) of the INQUIRY data. Note that it is a 4 byte integer attribute even though 
only the low order 5 bits are needed for the data.

The “scsi_vendor_id ” attribute provides an up to 9-byte vendor ID string (including a null 
terminator). The contents of this attribute are the 8 bytes of vendor ID in the SCSI INQUIRY data with 
trailing blanks and null characters removed and a null terminator appended. If the device does not 
provide a vendor ID string, this attribute shall be set to a null string.

The “scsi_product_id ” attribute provides an up to 17-byte product ID string (including a null 
terminator). The contents of this attribute are the 16 bytes of product ID in the SCSI INQUIRY data with 
trailing blanks and null characters removed and a null terminator appended. If the device does not 
provide a product ID string, this attribute shall be set to a null string.

The “scsi_product_rev ” attribute provides an up to 5-byte product revision string (including a null 
terminator). The contents of this attribute are the 4 bytes of product revision in the SCSI INQUIRY data 
with trailing blanks and null characters removed and a null terminator appended. If the device does not 
provide a product revision string, this attribute shall be set to a null string.

Note – The utility function, udi_strncpy_rtrim  on page 20-6 of the UDI Core Specification, can be 
used to convert the corresponding character arrays in the SCSI INQUIRY data to the null-
terminated strings required in the “scsi_vendor_id”, “scsi_product_id”, and “scsi_product_rev” 
attributes.

The “scsi_inquiry ” attribute provides the first 36 bytes of SCSI INQUIRY data associated with the 
peripheral device, or as many bytes as received from the device if less than 36 bytes were received.

The “scsi_tgt_wwid ” attribute provides an up to 32-byte world-wide ID string associated with the 
target device the logical unit is connected to. In many SCSI-3 interconnects, the target has a unique 
interconnect-specific world-wide identifier. For Fibre Channel, this attribute shall be set to the 16-byte 
N*_Port <PortName,NodeName> pair (in that order). For SIP (SCSI-3 Interlocked Protocol), this shall 
be the 32-byte SCAM (SCSI Configured Auto-Matically) identification string, as defined in Annex B of 
the SCSI-3 Parallel Interface specification (SPI). For SBP (the IEEE 1394 Serial Bus Protocol), this 
shall be the 2-byte Node ID, as defined by IEEE 1394-1995. If the interconnect does not support one of 
these world-wide identifiers, or if the identifier cannot be obtained, then this attribute must not be 
enumerated.

The “scsi_lun_wwid ” attribute provides the world-wide ID string associated with the logical unit. 
Although there are several potential device identifiers, only two types of world-wide ID values shall be 
valid for use with this attribute. The first is the 8-byte FC-PH IEEE Registered value obtained via the 
Vital Product Data Device Identification page (page 0x83) of the SCSI INQUIRY command. The second 
is the 16-byte FC-PH IEEE Registered Extended value obtained via the Vital Product Data Device 
Identification page (page 0x83) of the SCSI INQUIRY command. If the device does not support either 
of these identifiers or the Vital Products Data page, or if the identifier cannot otherwise be obtained, the 
attribute must not be enumerated.



UDI SCSI Driver Specification - Version 1.01 - 2/2/01 2-9

SCSI Reqmts/Bindings Bindings to the UDI Core 

The "scsi_target_mode_supported " attribute indicates whether or not an initiator device node 
supports responding as a target device. It is only applicable to initiator device node enumerations, and in 
this version of the Specification must always be set to FALSE.

The “scsi_multi_lun ” attribute is used to enumerate a multi-lun pseudo-device for use in 
instantiating multi-lun PD instances. Multi-lun PD instances pass the Bus Number, Target ID and LUN 
on each I/O request, in the CDB memory area. As a result, multi-lun PDs must include 16 additional 
bytes in cdb_mem_size  when initializing their SCSI I/O control block properties. See the cdb_ptr  
definition in the udi_scsi_io_cb_t  for additional details.

The “scsi_max_buses ”, “ scsi_max_tgts ”, and “scsi_max_luns ” attributes must be used 
when doing the multi-lun enumeration, and are only applicable in that case. The scsi_max_buses  
attribute specifies the maximum number of buses that the HD can enumerate. This attribute must have a 
non-zero value and must have the value one if the HBA’s attached buses are independently controlled 
buses that are each controlled by separate instances of the HD. The scsi_max_tgts  attribute specifies 
the maximum number of targets that the HD can enumerate per bus. This can be an interconnect-specific 
limit or an HBA or driver-specific limit, and must be non-zero. The scsi_max_luns  attribute 
specifies the maximum number of LUNs per target addressable by the HD and its associated hardware, 
if in the range 1..256; otherwise scsi_max_luns  must be set to zero indicating that the HD and its 
associated hardware support full SCSI-3 LUN addressing per the SAM-2 Eight Byte LUN structure 
definition.

The remaining SCSI enumeration attributes are generic enumeration attributes, described below.

2.5.2.2 Generic Enumeration Attributes

2.5.2.2.1  identifier attribute

For SCSI peripheral devices, the “identifier ” attribute encodes the device’s LUN WWID value, if 
present, or its INQUIRY data, as a null-terminated string.

If the device has a “scsi_lun_wwid ” value, then “identifier ” encodes this value as a string of 
upper-case hexidecimal digits, two for each byte of the 8-byte value, with the first byte of data 
corresponding to the first two characters in the string, and so on.

If the device does not have a “scsi_lun_wwid ” value, then “identifier ” encodes up to 36 bytes 
of the SCSI INQUIRY data, with the first 8 bytes encoded as upper-case hexidecimal digits (two for 
each byte, starting with the first byte), followed by the next 28 bytes forced to be printable ASCII 
characters by replacing any byte outside the range 33..126 with the value 46 (ASCII for the period 
character, ‘.’). If there are fewer than 36 INQUIRY bytes, the “identifier ” string is truncated 
accordingly.

Note – The utility function, udi_scsi_inquiry_to_string  on page 3-35, can be used to convert SCSI 
INQUIRY to an “identifier ” string.



Bindings to the UDI Core Specification SCSI 

2-10 UDI SCSI Driver Specification - Version 1.01 - 2/2/01

2.5.2.2.2  address_locator attribute

For SCSI peripheral devices, the “address_locator ” attribute encodes a concatentation of the bus, 
target, and lun attributes using the following syntax:

address_locator = BBTTTTTTTTLLLLLLLLLLLLLLLL

where BB is a two-digit upper-case hexidecimal-encoded ASCII representation of scsi_bus , 
TTTTTTTT is a four-digit upper-case hexidecimal-encoded ASCII representing scsi_target  (first 
two digits encode the most significant byte, and so on), and LLLLLLLLLLLLLLLL is an 8-digit upper-
case hexidecimal-encoded ASCII representation of scsi_lun  (first two digits encode the first byte, and 
so on), respectively.

2.5.2.2.3  physical_locator attribute

No “physical_locator ” attribute is defined for the SCSI metalanguage.

2.5.2.2.4  physical_label attribute

No “physical_label ” attribute is defined generically for the SCSI metalanguage. Platforms that 
have access to such information may set physical_label  attributes.

2.5.2.3 Enumeration Attribute Ranking

To support the ranking of enumerated devices against available drivers for the 
udi_mei_enumerate_rank_func_t , the following combinations of enumeration attribute matches 
yield the corresponding ranking values. Attribute combinations not specified return a relative rank of 0 
(the lowest possible rank). The combinations are unchanged by matches of non-rankable attributes.

Table 2-2 SCSI Enumeration Attribute Ranking

Rank Value

Rankable 
Attributes 1

1. Y indicates the valid match of the attribute. Only the attributes listed are rankable; all other enumeration attributes have no effect on the ranking 
value.

1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7 18

1
9

identifier Y

scsi_lun_wwid Y Y

scsi_tgt_wwid Y Y

scsi_inquiry Y

scsi_product_rev Y Y Y Y

scsi_product_id Y Y Y Y Y Y Y Y

scsi_vendor_id Y Y Y Y Y Y Y Y Y Y Y Y

scsi_dev_type Y Y Y Y Y Y Y Y

scsi_dev_pqual Y Y Y Y Y Y Y Y



UDI SCSI Driver Specification - Version 1.01 - 2/2/01 2-11

SCSI Reqmts/Bindings Bindings to the UDI Core 

The matching of some attributes may imply the matching of others. For example, a match of vendor id 
and product id typically implies a specific type of device (i.e., a specific value of scsi_dev_type), so a 
driver may very well decide to specify just those two attributes in a "device" line in its udiprops.txt  
file without specifying scsi_dev_type.  But since this may not always be the case, a higher rank is 
assigned if all three match.

2.5.2.4 Filter Attributes

Of the above listed enumeration attributes, the following shall be supported as filter attributes for 
enumeration filtering:

scsi_bus
scsi_target
scsi_lun

Excepting scsi_lun , the attr_stride  in the filter element structure (see udi_filter_element_t  
on page 24-16 of the UDI Core Specification) is interpreted linearly; that is, the stride value is simply 
added to the numeric value of these attributes. For scsi_lun , the attr_stride  in the filter element 
structure will only apply to SCSI LUN values that conform to the Single Level LUN Structure as per 
SAM-2. In which case, the stride will be interpreted linearly on the encapsulated LUN value.

2.5.2.5 Custom Parameters for HD Drivers

For appropriate configuration and operation of the HD, the following well-known attributes must be 
included, if applicable to the SCSI interconnect or to any of the HBAs controllable by the HD, as 
"custom" declarations with device scope in the HD’s udiprops.txt  static driver properties file (see 
Section 30.6.10, “Custom Declaration,” on page 30-20 of the UDI Core Specification). HDs controlling 
parallel SCSI buses must provide custom declarations for each of the attributes specified in this section, 
regardless of whether or not the attribute is programmable by the HD, as long as the attribute is 
applicable to the HBA (even if only as a hard-coded or mechanically switchable value). It is expected 
that each of the attributes in this section should be applicable in that sense to all parallel SCSI HBAs, 
with the exception of auto-termination whose requirements are defined below.

There are two categories of custom attributes used by HDs: per HD instance attributes, defined in the 
next section (2.5.2.5.1) below, and per-PD attributes that are visible to the HD (also known as parent-
visible attributes), defined in Section 2.5.2.5.2 below. A third sub-section (2.5.2.5.3) specifies the subset 
of the HD’s custom attributes that are dynamically changeable, and defines the requirements on the HD 
for re-reading these attributes.

For each custom attribute defined below, the default value specified must be used if the attribute doesn’t 
exist. Boolean attributes are enabled with a value of TRUE (1), and disabled with a value of FALSE (0).

2.5.2.5.1  Custom Parameters for HDs (per-HD instance)

The attributes in this sub-section are set by the environment on each instance of the HD. The following 
such attributes are defined:



Bindings to the UDI Core Specification SCSI 

2-12 UDI SCSI Driver Specification - Version 1.01 - 2/2/01

 

Table 2-3  SCSI Custom Parameter Attributes for HDs (Per-HD instance)

ATTRIBUTE NAME TYPE SIZE DESCRIPTION

%scsi_initiator_id UDI_ATTR_UBIT32 4 HBA’s own Target ID. Defaults to 7.

%scsi_max_xfer_rate UDI_ATTR_UBIT32 4 Maximum transfer rate (in Mega-xfers/sec) 
on the SCSI bus. Defaults to the maximum 
rate that the HBA is capable of. The smaller 
of this parameter and @scsi_max_xfer_rate 
(when it exists for a given device) must be 
used when negotiating the transfer rate with 
a device.

%scsi_bus_width UDI_ATTR_UBIT32 4 Parallel SCSI Bus Width. Valid values are 8, 
16, and 32. Defaults to the width that the 
HBA is capable of. If this attribute value (or 
its default) is 8, any @scsi_wdtr_allowed 
attribute must be treated as if it’s disabled.

%scsi_disconnect_allowed UDI_ATTR_BOOLEAN 1 Enable/disable allowing devices to 
disconnect from the SCSI bus. Defaults to 
enabled. If this parameter is disabled it 
overrides the @scsi_disconnect_allowed 
parameter; otherwise 
@scsi_disconnect_allowed, when it exists, 
takes precedence with respect to a given 
device.

%scsi_parity_checking UDI_ATTR_BOOLEAN 1 Enable/disable parity checking on the SCSI 
bus. Defaults to enabled (true).

%scsi_auto_termination UDI_ATTR_BOOLEAN 1 Enable/disable auto-termination on the 
HBA. If neither of the next two attributes 
exist this attribute defaults to enabled (true); 
otherwise the values of the next two 
attributes are used to determine the auto-
termination settings. If this parameter exists 
it takes precedence over the next two 
attributes which must be ignored.

%scsi_auto_term_internal UDI_ATTR_UBIT32 4 Enable/disable auto-termination on the 
HBA’s internal connector. The value 0 
disables, 1 enables, 2 enables only for the 
low-order 8 data lines, and 3 enables only 
for the upper 8 data lines. This attribute 
applies only if the %scsi_auto_termination 
attribute doesn’t exist. Defaults to 1.

%scsi_auto_term_external UDI_ATTR_UBIT32 4 Enable/disable auto-termination on the 
HBA’s external connector. Same value 
definitions as %scsi_auto_term_internal. 
Only applicable if %scsi_auto_termination 
attribute doesn’t exist. Defaults to 1.



UDI SCSI Driver Specification - Version 1.01 - 2/2/01 2-13

SCSI Reqmts/Bindings Bindings to the UDI Core 

Each of the attributes in Table 2-3 applies to bus number 0 on the HBA. If the HBA has multiple buses, 
the above attribute names must be suffixed with an underscore followed by an ASCII-encoded decimal 
string representing the bus number, for bus numbers greater than zero.

Unless otherwise indicated below, the following rules apply with respect to the programmability of these 
attributes.

If the above attribute values are programmable on the device, the driver must obtain them and, if they 
exist, use the values of these parameters to set in the HBA device when it’s initialized. 

If an attribute is not programmable then the device’s value for the attribute (whether hard-coded or 
mechanically switchable) must be compared to the value of the attribute (or its default value if the 
attribute doesn’t exist) and if not equal the HD must fail its parent binding with status 
UDI_STAT_ATTR_MISMATCH on the corresponding udi_channel_event_complete  and make 
a call to udi_log_write  detailing the mismatched attribute names and values. These attribute 
comparisons must be done after receiving the UDI_CHANNEL_BOUND indication on the parent bind 
channel and, if the HBA device needs to be accessed (e.g., to read the device’s attribute setting), would 
need to be done after a successful metalanguage-specific binding has been completed with the parent.

The %scsi_bus_width  provides the width of the physical SCSI bus/connector attached to the 
corresponding SCSI port on the HBA. When it exists, the HD’s initiator device must neither accept nor 
request negotiations for data transfer of a greater width than is specified by the %scsi_bus_width  
attribute.

A common case where %scsi_bus_width  is needed is when a narrow port is connected to a wide-
capable SCSI controller and there’s no programmatically readable indicator on the HBA for this.  
Without such an attribute (indicating in this case that the %scsi_bus_width  is 8 rather than the 16 
that the SCSI protocol chip is capable of) the HD could inappropriately negotiate for wide transfers.

Auto-termination on a parallel SCSI HBA can be implemented in various ways, but typically auto-
termination operates by sensing a pin on the internal and external connectors to see if a powered device 
(or a physical terminator) is connected. If both connectors have devices connected then the HBA will 
disable its on-board termination circuits; otherwise the on-board termination is enabled. The auto-
termination mechanism can be affected by programmatic controls or by mechanical controls (e.g., 
jumpers) on the card.

The auto-termination attributes are only applicable to HBAs that either support on-board auto-
termination or provide a mechanism to programmatically determine if physical termination has been 
applied. In the latter case (an HBA that doesn’t provide on-board auto-termination but does allow the 
HD to programmatically determine if physical termination has been applied to the connectors), an 
attribute mismatch must be indicated if %scsi_auto_termination  is TRUE (or defaults to 
enabled) and physical termination has not been applied, or if %scsi_auto_termination  is FALSE 
and physical termination has been applied. If auto-termination is not applicable to the HBA, the HD 
must not include any corresponding custom declarations in its udiprops.txt  file. With such HBAs, 
if physical termination has not been appropriately applied, there will be no indication of anything being 
wrong at configuration time; any resulting improper operation of the SCSI bus will only be noticed later.

The %scsi_auto_term_internal  and %scsi_auto_term_external  attributes are used to 
provide more fine-grained control of the on-board termination for special types of configurations. These 
attributes only need to be requested for HBAs which have the corresponding fine-grained controls (or 
some useful subset thereof), and then only if the %scsi_auto_termination  attribute doesn’t exist. 
In that case, if only one of the two attributes exists, the non-existent one defaults to enabled.



Bindings to the UDI Core Specification SCSI 

2-14 UDI SCSI Driver Specification - Version 1.01 - 2/2/01

2.5.2.5.2  Custom Parameters for HDs (per-PD instance)

The second category of custom attributes for HDs are Parent-Visible instance attributes. As defined in 
Chapter 15, “Instance Attribute Management”, of the UDI Core Specification, these are attributes that 
the system sets on a PD instance, but are only visible to the HD. The following such attributes are 
defined:  

These attributes must be requested by the HD during child binding. For each of these, on parallel SCSI, 
the attribute is expected to be programmable on the bus and should therefore not require any attribute 
mismatch errors as described for the attributes in Table 2-3. If attribute mismatch errors are needed for 
these attributes for any reason they must be indicated via a UDI_STAT_ATTR_MISMATCH status on 
the scsi_bind_ack , along with a call to udi_log_write  detailing the mismatched attribute 
names and values.

If the “@scsi_max_xfer_rate ” attribute exists for a given child, the HD must not attempt to 
negotiate with respect to that child’s device for a transfer rate, in Mega-transfers per second, that is 
greater than the value of “@scsi_max_xfer_rate ”.

2.5.2.5.3  Dynamically Changeable HD Custom Parameters 

Most of the HD’s custom attributes can change dynamically during the operation of the HD. The 
following, called dynamically changeable attributes, can change at any time:

• %scsi_max_xfer_rate

• %scsi_disconnect_allowed

• %scsi_parity_checking

• @scsi_max_xfer_rate

• @scsi_disconnect_allowed

HDs must be prepared to receive a udi_usage_ind  at any time indicating that one or more of these 
attributes have changed and then re-read them and change the corresponding operating parameters in the 
device.

Table 2-4  SCSI Custom Parameter Attributes for HDs (Parent-Visible, per-PD attributes)

ATTRIBUTE NAME TYPE SIZE DESCRIPTION

@scsi_max_xfer_rate UDI_ATTR_UBIT32 4 Maximum transfer rate (in Mega-
transfers/sec) when communicating with 
this PD’s device. Defaults to the maximum 
rate the device is capable of.

@scsi_wdtr_allowed UDI_ATTR_BOOLEAN 1 Enable/disable initiating Wide negotiation 
with the SCSI device associated with this 
PD. Defaults to disabled if the value of 
%scsi_bus_width (or its default) is 8; 
otherwise it defaults to enabled.

@scsi_disconnect_allowed UDI_ATTR_BOOLEAN 1 Enable/disable allowing the SCSI device 
associated with this PD to disconnect from 
the SCSI bus. Defaults to enabled. See the 
%scsi_disconnect_allowed definition for 
precedence rules.



UDI SCSI Driver Specification - Version 1.01 - 2/2/01 2-15

SCSI Reqmts/Bindings Bindings to the UDI Core 

Additionally, the following attributes may change across a hot-plug event. HDs must re-read the 
dynamically changeable attributes as well as the following, called hot-plug changeable attributes, 
during the handling of a udi_devmgmt_req  of type UDI_DMGMT_RESUME:

• %scsi_initiator_id

• %scsi_bus_width

• %scsi_auto_termination

• %scsi_auto_term_internal

• %scsi_auto_term_external

• %scsi_wdtr_allowed

When re-reading, the specified attribute dependency rules still apply. So, for example, the 
%scsi_auto_term_internal  and %scsi_auto_term_external  attributes only need to be 
read if the %scsi_auto_termination  attribute doesn’t exist.

2.5.2.6 Custom Parameters for PD Drivers

The following well-known attributes must be included, if applicable to the PD or its device, as "custom" 
declarations in the PD’s udiprops.txt  static driver properties file for appropriate configuration and 
operation of the PD.  

The “%scsi_pd_no_bus_reset ” attribute must be requested by the PD before attempting to 
perform a BUS RESET operation. If the attribute exists and is set to TRUE, the PD must not send any 
BUS RESET control requests to its HD parents.

The “%scsi_pd_max_temp_bind_excl ” attribute must be requested by the PD before attempting a 
temporary exclusive binding to an HD parent. If the attribute doesn’t exist, the environment is placing no 
restriction on the length of time that a temporary exclusive binding can be held. If the attribute exists 
and is zero, such bindings are disallowed and it is illegal for the PD to request such bindings. Otherwise, 
the PD must not hold such a binding for longer than the specified number of milliseconds.

Table 2-5  SCSI Custom Parameter Attributes for PDs

ATTRIBUTE NAME TYPE SIZE DESCRIPTION

%scsi_pd_no_bus_reset UDI_ATTR_BOOLEAN 1 If this attribute exists and is enabled, 
the PD is disallowed from performing 
BUS RESET SCSI control requests. 
Defaults to disabled.

%scsi_pd_max_temp_bind_excl UDI_ATTR_UBIT32 4 Maximum time, in milliseconds, that a 
PD can hold a temporary exclusive 
binding. If this parameter value is zero 
such bindings are disallowed, and it is 
illegal for the PD to request such 
bindings. If not specified, the behavior 
should default to infinite (ie. no time 
limit).

%scsi_pd_wce UDI_ATTR_BOOLEAN 1 Enable/disable the write-back cache on 
the SCSI device associated with this 
PD. Default is to use the device’s 
power-on default.



Bindings to the UDI Core Specification SCSI 

2-16 UDI SCSI Driver Specification - Version 1.01 - 2/2/01

Warning – To avoid potential system problems the PD must minimize the length of time 
it holds a temporary exclusive binding and be judicious in its use even when no time 
limit is imposed (i.e., when the %scsi_pd_max_temp_bind_excl  attribute doesn’t 
exist).

The “%scsi_pd_wce ” attribute must be requested by the PD before sending any I/O requests to the 
device. If the attribute exists the write cache must be enabled or disabled on the device, as indicated by 
the value of the attribute, prior to doing any I/O to the device.

2.5.2.6.1  Dynamically Changeable PD Custom Parameters 

Most of the PD’s custom attributes can change dynamically during the operation of the PD. The 
following, called dynamically changeable attributes, can change at any time:

• %scsi_pd_no_bus_reset

• %scsi_pd_wce

PDs must be prepared to receive a udi_usage_ind  at any time indicating that one or more of these 
attributes have changed and then re-read them and change the corresponding operating parameters in the 
device. Additionally, the PD must re-read the dynamically changeable attributes during the handling of 
a UDI_DMGMT_RESUME device management request.

2.5.3 Trace Event Bindings

The following defines the rules and conventions in the SCSI Metalanguage for the use of the 
metalanguage-selectable trace events (see the “Metalanguage-Selectable Trace Events” #defines in 
udi_trevent_t  on page 17-3 of the UDI Core Specification).

• UDI_TREVENT_IO_SCHEDULED

• The HD should trace at least the size of the buffer (data_buf->buf_size ) 
and the contents of the first byte of the CDB for udi_scsi_io_req  operations, 
or the ctrl_func  field for udi_scsi_ctl_req  operations, as well as the 
corresponding control block pointer in either case.

• UDI_TREVENT_IO_COMPLETED

• The HD should trace at least the contents of the first byte of the CDB and the 
udi_scsi_status_t  structure (if non-zero) for udi_scsi_io_req  
operations, or the ctrl_func  field for udi_scsi_ctl_req  operations, as 
well as the corresponding control block pointer in either case. If an I/O request 
returns sense data, the trace should also include the sense key, additional sense 
code (ASC), and additional sense code qualifier (ASCQ) bytes. If an I/O request 
has an underrun, the number of bytes transferred should also be traced.

• UDI_TREVENT_META_SPECIFIC_1

• The HD should trace the point at which a bus hang is detected, and should include 
at least the state of the SCSI bus lines if available. Both the PD and the HD 
should trace the sending or receiving of enabled SCSI events (from the events 
listed in the udi_scsi_bind_req ), and should include at least the event code.



UDI SCSI Driver Specification - Version 1.01 - 2/2/01 2-17

SCSI Reqmts/Bindings Metalanguage State Diagram

• UDI_TREVENT_META_SPECIFIC_2,
UDI_TREVENT_META_SPECIFIC_3,
UDI_TREVENT_META_SPECIFIC_4,
UDI_TREVENT_META_SPECIFIC_5

• Reserved for future use.

Note – All returned status values other than UDI_OK that indicate exceptional conditions must be 
logged and, when enabled, may also be traced, even if such events are expected.

2.6  Metalanguage State Diagram

See “Driver Instantiation” on page 24-2 of the UDI Core Specification for the general configuration 
sequence of UDI drivers. See “Management Metalanguage States” on page 24-37 of the UDI Core 
Specification for details on the Management Metalanguage states.

The following state diagram shows the SCSI metalanguage state diagram, which illustrates the set of 
states specific to use of the SCSI metalanguage. This same state diagram applies to both the PD and HD.

Figure 2-1  SCSI Metalanguage State Diagram

Table 2-6 SCSI Metalanguage Events

Event Operation

A udi_scsi_bind_req

B udi_scsi_bind_ack

C udi_scsi_io_req, udi_scsi_io_ack, udi_scsi_io_nak, 
udi_scsi_ctl_req, udi_scsi_ctl_ack, 
udi_scsi_event_ind, udi_scsi_event_res

D udi_scsi_unbind_req

E udi_scsi_unbind_ack

F After binding UDI_SCSI_TEMP_BIND_EXCLUSIVE, the PD has remained 
bound longer than allowed by %scsi_pd_max_temp_bind_excl .

C

UNBOUND BINDING ACTIVE

UNBINDING

A B

C

D

E

F
BINDLOST

D



Metalanguage State Diagram SCSI Reqmts/Bindings

2-18 UDI SCSI Driver Specification - Version 1.01 - 2/2/01

2.6.1 SCSI Metalanguage States

UNBOUND A SCSI channel in the unbound state has been established between the two regions 
but has not yet been initialized in those regions for general use. The PD side of the 
SCSI channel should initiate the SCSI bind operation when in this state.

BINDING This state occurs when the PD side of the SCSI channel has initiated a bind 
operation and is waiting for the HD side of the SCSI channel to complete its 
initialization and acknowledge that bind request.

ACTIVE This state occurs when the SCSI channel is fully bound between the two regions. 
The channel may be used for SCSI I/O and control operations or event indications.

BINDLOST This state occurs when the PD has bound with the HD with the 
UDI_SCSI_TEMP_BIND_EXCLUSIVE indicator set, and has not initiated an 
unbind request within the time frame allowable by the 
%scsi_pd_max_temp_bind_excl  attribute. When this state is encountered, 
the HD will reject all PD I/O and control requests with a 
UDI_STAT_INVALID_STATE status code, and will not post SCSI events to the 
PD.

UNBINDING This indicates that the SCSI channel is being shut down. The PD can cause this 
state to be entered by issuing a udi_scsi_unbind_req . When the unbind 
operation is acknowledged, both the PD and the HD return to the UNBOUND state.



UDI SCSI Driver Specification - Version 1.01 - 2/2/01 3-1
 

SCSI Metalanguage Interfaces 3

3.1  Introduction

This chapter specifies the channel operations and service calls of the SCSI Metalanguage. The SCSI 
Metalanguage defines the operations through which a SCSI peripheral driver (PD) communicates with a 
SCSI HBA driver (HD) and vice-versa. Subsections define the various channel operations’ arguments, 
control block structures, constraints and guidelines for the use of each operation, along with any error 
conditions that can occur.

The SCSI Metalanguage operations are grouped into two roles: one for operations called by a PD to 
send an operation to the HD, and one for operations that are sent from the HD to the PD. Each role has 
a single channel ops vector. The PD-to-HD operations are called by a peripheral driver to request a 
service from the HBA driver, acknowledge an event from the HBA driver, or bind to the HBA driver. 
The HD-to-PD operations are called by an HBA driver to return completion information to the 
peripheral driver, to notify the peripheral driver of an asynchronous event, or to acknowledge a binding.

The only SCSI Metalanguage operation that is abortable with udi_channel_op_abort  is 
udi_scsi_io_req . The only recoverable operations are udi_scsi_io_req  and 
udi_scsi_ctl_req  (see section 4.10 of the UDI Core Specification for a description of recoverable 
operations).

3.2  Overview of Interfaces and Data Structures

Channel operations in UDI are driver-callable functions that are used to communicate between driver 
modules. As alluded to above, there are two sets of channel operations in the SCSI Metalanguage which 
are distinguishable by the direction of communication: PD-to-HD operations are callable only by the 
PD, and HD-to-PD operations are callable only by the HD. Associated with each channel operation is a 
corresponding driver entry point in the target driver. Thus PD-to-HD operations are callable by PDs 
while HDs contain a corresponding driver entry point; and the reverse is true for HD-to-PD operations. 
Each driver registers its SCSI entry points by initializing a udi_ops_init_t  in its udi_init_info  
to point to the driver’s ops vector.

3.3  Control Blocks

The SCSI Metalanguage contains four types of control blocks for inter-driver communication: a bind 
control block for SCSI bind and unbind operations, an io control block for normal I/O requests on the 
SCSI interconnect, a ctl control block for control functions, and an event control block for asynchronous 
event notification and acknowledgment. These correspond to the four control block groups in the SCSI 
Metalanguage, one for each type of control block.



Status Codes SCSI Meta Interfaces

3-2 UDI SCSI Driver Specification - Version 1.01 - 2/2/01
 

Control blocks contain space for an associated driver scratch area whose size requirement is specified in 
a corresponding udi_cb_init_t  structure as part of udi_init_info . Access to the driver scratch 
area associated with a SCSI control block is provided via the scratch  pointer in the gcb  field at the 
front of the control block. This scratch area may be used for driver internal queuing, per-request state, or 
any other driver-specific purpose.

3.4  Status Codes

The following SCSI-specific status code values are defined in the SCSI Metalanguage. The semantic 
definitions of these statuses are given in the reference page where the status is used with a given 
operation or structure. The code values are consolidated here to simplify keeping the codes unique and 
to reduce clutter in the rest of the document. The value MS is replaced with 
UDI_STAT_META_SPECIFIC in each #define  below.

/* SCSI I/O NAK status codes  */

#define UDI_SCSI_STAT_NONZERO_STATUS_BYTE (1 |MS)

#define UDI_SCSI_STAT_ACA_PENDING (2 |MS)

#define UDI_SCSI_STAT_NOT_PRESENT (3 |MS)

#define UDI_SCSI_STAT_DEVICE_PHASE_ERROR (4 |MS)

#define UDI_SCSI_STAT_UNEXPECTED_BUS_FREE (5 |MS)

#define UDI_SCSI_STAT_DEVICE_PARITY_ERROR (6 |MS)

#define UDI_SCSI_STAT_ABORTED_HD_BUS_RESET (7 |MS)

#define UDI_SCSI_STAT_ABORTED_RMT_BUS_RESET (8 |MS)

#define UDI_SCSI_STAT_ABORTED_REQ_BUS_RESET (9 |MS)

#define UDI_SCSI_STAT_ABORTED_REQ_TGT_RESET (1 0|MS)

#define UDI_SCSI_STAT_LINK_FAILURE (1 1|MS)

#define UDI_SCSI_STAT_SELECTION_TIMEOUT (1 2|MS)

#define UDI_SCSI_STAT_HD_ABORTED (1 3|MS)

/* SCSI Ctl Ack status codes  */

#define UDI_SCSI_CTL_STAT_FAILED (1 00|MS)



UDI SCSI Driver Specification - Version 1.01 - 2/2/01 3-3
 

SCSI Meta Interfaces Channel Ops Vectors

3.5  Channel Ops Vectors

This section defines the channel ops vector types for use with the SCSI Metalanguage. There are two 
ops vector types in the SCSI Metalanguage: one that a PD uses on its end of a SCSI channel 
(udi_scsi_pd_ops_t ) and one that an HD uses on its end of a SCSI channel 
(udi_scsi_hd_ops_t ).



3-4 UDI SCSI Driver Specification - Version 1.01 - 2/2/01
 

udi_scsi_pd_ops_t SCSI Meta Interfaces

NAME udi_scsi_pd_ops_t SCSI Peripheral Driver entry point 
ops vector

SYNOPSIS #include <udi.h>
#include <udi_scsi.h>

typedef const struct {
udi_channel_event_ind_op_t * channel_event_ind_op ;
udi_scsi_bind_ack_op_t * bind_ack_op ;
udi_scsi_unbind_ack_op_t * unbind_ack_op ;
udi_scsi_io_ack_op_t * io_ack_op ;
udi_scsi_io_nak_op_t * io_nak_op ;
udi_scsi_ctl_ack_op_t * ctl_ack_op ;
udi_scsi_event_ind_op_t * event_ind_op ;

} udi_scsi_pd_ops_t ;

/* Ops Vector Number */

#define UDI_SCSI_PD_OPS_NUM 1

DESCRIPTION A SCSI Peripheral Driver uses the udi_scsi_pd_ops_t  structure in a 
udi_ops_init_t  as part of its udi_init_info  in order to register its 
SCSI Metalanguage entry points.

EXAMPLE The driver’s udi_init_info  might include the following:

#define MY_SCSI_OPS  1 /* Ops for my SCSI HBA parent */

#define MY_OTHER_OPS 2 /* Some other ops */

#define MY_SCSI_META 1 /* Meta index for the SCSI Metalanguage */

static const udi_scsi_pd_ops_t ddd_scsi_pd_ops = {
ddd_scsi_channel_event_ind,
ddd_scsi_bind_ack,
ddd_scsi_unbind_ack,
ddd_scsi_io_ack,
ddd_scsi_io_nak,
ddd_scsi_ctl_ack,
ddd_scsi_event_ind

};
...
static const udi_ops_init_t ddd_ops_init_list[] = {

{ MY_SCSI_OPS,
MY_SCSI_META,
UDI_SCSI_PD_OPS_NUM,
0, /* chan_context_size */
(udi_ops_vector_t *)&ddd_scsi_pd_ops },

{ 0 }
};

   

   

 

   

  

     

  

   

 

   

                

      

    

                 



UDI SCSI Driver Specification - Version 1.01 - 2/2/01 3-5
 

SCSI Meta Interfaces udi_scsi_hd_ops_t

NAME udi_scsi_hd_ops_t SCSI HBA Driver entry point ops 
vector

SYNOPSIS #include <udi.h>
#include <udi_scsi.h>

typedef const struct {
udi_channel_event_ind_op_t * channel_event_ind_op ;
udi_scsi_bind_req_op_t * bind_req_op ;
udi_scsi_unbind_req_op_t * unbind_req_op ;
udi_scsi_io_req_op_t * io_req_op ;
udi_scsi_ctl_req_op_t * ctl_req_op ;
udi_scsi_event_res_op_t * event_res_op ;

} udi_scsi_hd_ops_t ;

/* Ops Vector Number */

#define UDI_SCSI_HD_OPS_NUM 2

DESCRIPTION A SCSI HBA Driver uses the udi_scsi_hd_ops_t  structure in a 
udi_ops_init_t  as part of its udi_init_info  in order to register its 
SCSI Metalanguage entry points.

EXAMPLE The driver’s udi_init_info  might include the following:

#define MY_BRIDGE_OPS 1 /* Ops for my parent bridge */

#define MY_SCSI_OPS 2 /* Ops for my SCSI PD children */

#define MY_SCSI_META 1 /* Meta index for the SCSI Metalanguage */

#define MY_BUS_META 2 /* Meta index for Bus Bridge Metalanguage */

static const udi_scsi_hd_ops_t ddd_scsi_hd_ops = {
ddd_scsi_channel_event_ind,
ddd_scsi_bind_req,
ddd_scsi_unbind_req,
ddd_scsi_io_req,
ddd_scsi_ctl_req,
ddd_scsi_event_res

};
...
static const udi_ops_init_t ddd_ops_init_list[] = {

{ MY_SCSI_OPS,
MY_SCSI_META,
UDI_SCSI_HD_OPS_NUM,
0, /* chan_context_size */
(udi_ops_vector_t *)&ddd_scsi_hd_ops },

{ MY_BRIDGE_OPS,
MY_BUS_META,
UDI_BUS_BRIDGE_OPS_NUM,
0, /* chan_context_size */
(udi_ops_vector_t *)&ddd_bus_bridge_ops },

...
};



Binding Operations SCSI Meta Interfaces

3-6 UDI SCSI Driver Specification - Version 1.01 - 2/2/01
 

3.6  Binding Operations

Once the HD is bound to its parent, it can receive bindings for its PD children. As defined in “Driver 
Instantiation” on page 24-2 of the UDI Core Specification, this involves interaction with the 
Management Agent (MA) on the Management Channel and with the child PD directly on the newly 
created SCSI bind channel. The metalanguage-specific bind request and ack steps in that description in 
the Core Specification correspond to the udi_scsi_bind_req  and udi_scsi_bind_ack  
operations. The udi_scsi_bind_req , sent by the PD to the HD, is the first operation passed on the 
SCSI bind channel. Once the HD has received and processed the udi_scsi_bind_req  the HD must 
then call udi_scsi_bind_ack .

At this point the SCSI channel is “open for business” and any of the other SCSI operations may be 
performed on it. Note that the PD must not do a udi_scsi_bind_req  to the HD after this point 
without an intervening udi_scsi_unbind_req .

When it binds with the HD, the PD may request exclusive access to its device via the 
UDI_SCSI_BIND_EXCLUSIVE flag. If the HD finds that there is another PD already bound to the 
device then it will fail the bind with UDI_STAT_CANNOT_BIND_EXCLUSIVE status. A PD may also 
request “temporary exclusive access” via the UDI_SCSI_TEMP_BIND_EXCLUSIVE flag even while 
other PDs are bound to the device, as long as none of them are bound exclusively. While the HD has a 
PD bound exclusively (via either of the two exclusive bind flags), it will reject all other binds to that 
PD’s device with UDI_STAT_BOUND_EXCLUSIVELY.



UDI SCSI Driver Specification - Version 1.01 - 2/2/01 3-7
 

SCSI Meta Interfaces udi_scsi_bind_cb_t

NAME udi_scsi_bind_cb_t Control block for SCSI bind 
operations

SYNOPSIS #include <udi.h>
#include <udi_scsi.h>

typedef struct {
udi_cb_t gcb ;
udi_ubit16_t events ;

} udi_scsi_bind_cb_t ;

/* SCSI Events */

#define UDI_SCSI_EVENT_AEN (1U <<0)

#define UDI_SCSI_EVENT_TGT_RESET (1U <<1)

#define UDI_SCSI_EVENT_BUS_RESET (1U <<2)

#define UDI_SCSI_EVENT_UNSOLICITED_RESELECT (1U <<3)

/* Control Block Group Number */

#define UDI_SCSI_BIND_CB_NUM 1

MEMBERS gcb is a generic control block header, which includes a pointer to the 
scratch space associated with this control block. The driver may 
use the scratch space while it owns the control block, but the 
values are not guaranteed to persist across channel operations.

events is a set of SCSI event types. On the udi_scsi_bind_req  the 
PD sets the events for which it wants to be notified. On the 
corresponding ack the HD masks off any requested events that it 
doesn’t support, and passes back that (potentially smaller) set of 
events to the PD. An HD for a parallel SCSI bus must support 
UDI_SCSI_EVENT_TGT_RESET and 
UDI_SCSI_EVENT_BUS_RESET. The events  field is 
ignored on SCSI unbind operations.

Note that if a SCSI event occurs which affects the PDs on a 
given LUN, any multi-lun PDs which have the event enabled will 
be notified along with the single-lun PDs attached to the LUN.

The following events are defined:

UDI_SCSI_EVENT_AEN - Asynchronous Event Notification. 
The HD will send notification to the PD when its device 
sends a SCSI AEN, which is typically used to send 
notification of out-of-band events − i.e., device events that 
occur outside the context of a SCSI command from this HD 
initiator. If the PD finds that the HD doesn’t support 
receiving AENs (by noting that the HD has cleared this 
flag), then the PD must poll for events that it cares about. 
The PD must also poll if it determines that its device does 
not support SCSI AEN.



3-8 UDI SCSI Driver Specification - Version 1.01 - 2/2/01
 

udi_scsi_bind_cb_t SCSI Meta Interfaces

UDI_SCSI_EVENT_TGT_RESET - A reset on the SCSI target 
ID has occured (via a BDR or Target Reset). The HD will 
only deliver this event for a locally requested Target Reset 
(as opposed to a reset due to another initiator), and in that 
case it will only deliver the event to other PDs attached to 
the LUN than the one that requested the reset (which 
includes any multi-lun PDs).

UDI_SCSI_EVENT_BUS_RESET - A SCSI bus reset occurred.

UDI_SCSI_EVENT_UNSOLICITED_RESELECT  - The PD’s 
LUN generated an unsolicited re-selection.

DESCRIPTION The SCSI bind control block is used in udi_scsi_bind_req /ack  and 
udi_scsi_unbind_req /ack  operations.

In order to use this type of control block it must be associated with a control 
block index by including UDI_SCSI_BIND_CB_NUM in a udi_cb_init_t  
in the driver’s udi_init_info .

REFERENCES udi_scsi_bind_req, udi_scsi_bind_ack, 
udi_scsi_unbind_req, udi_scsi_unbind_ack, 
udi_cb_alloc



UDI SCSI Driver Specification - Version 1.01 - 2/2/01 3-9
 

SCSI Meta Interfaces udi_scsi_bind_req

NAME udi_scsi_bind_req Request a SCSI binding (PD-to-HD)

SYNOPSIS #include <udi.h>
#include <udi_scsi.h>

void udi_scsi_bind_req  (
udi_scsi_bind_cb_t * cb,
udi_ubit16_t bind_flags ,
udi_ubit16_t queue_depth ,
udi_ubit16_t max_sense_len ,
udi_ubit16_t aen_buf_size );

/* Bind Flags */

#define UDI_SCSI_BIND_EXCLUSIVE (1U <<0)

#define UDI_SCSI_TEMP_BIND_EXCLUSIVE (1U <<1)

ARGUMENTS cb is a pointer to a SCSI bind control block.

bind_flags contains flags restricting or qualifying this binding. The 
following flags are defined. At most one of 
UDI_SCSI_BIND_EXCLUSIVE and 
UDI_SCSI_TEMP_BIND_EXCLUSIVE must be set.

UDI_SCSI_BIND_EXCLUSIVE  - Indicates that the PD wants 
to get an exclusive bind to the SCSI device (target/LUN) 
associated with this bind channel. The HD will respond with 
a status of UDI_SCSI_CANNOT_BIND_EXCLUSIVE if 
another PD is currently bound to the target/LUN.

UDI_SCSI_TEMP_BIND_EXCLUSIVE  - Indicates that the 
PD wants “temporary exclusive access” to the device. If no 
PD is currently exclusively bound to the device the HD will 
grant this bind as follows: the HD will quiesce any other 
PDs bound to the device (transparently to those PDs), and 
will then ack back to this PD with UDI_OK status. Any 
requests which come in from other PDs while this PD has 
exclusive access will be queued until this PD unbinds.

 Drivers which bind with this flag must not remain bound any 
longer than the number of milliseconds specified by the 
%scsi_pd_max_temp_bind_excl  attribute; failure to 
do so is considered illegal driver behavior which can result 
in the PD instance being killed.

queue_depth  is the number of SCSI commands that the HD is allowed to 
have pending to the device simultaneously. This is used to avoid 
excessive queue-full statuses. The PD may change this value 
later using the UDI_SCSI_CTL_SET_QUEUE_DEPTH control 
request. Note that the HD must manage queue depth on a per-
LUN basis, guaranteeing that the queue depth to the device (i.e., 
the minimum of the queue depths specified by PDs attached to a 
given LUN) is not exceeded. See Section 2.4.5, “Task/Queue 
Management” for additional details.



3-10 UDI SCSI Driver Specification - Version 1.01 - 2/2/01
 

udi_scsi_bind_req SCSI Meta Interfaces

max_sense_len  is the maximum sense data size required for the 
corresponding peripheral device. This sense data must be 
requested by the HD on behalf of the PD for all check conditions 
reported by the device. If max_sense_len  is zero, the HD 
does not report the data to the PD.

Warning – While the HD is not required to request pending sense data from 
the device if max_sense_len  is zero, it should do so, since not 
doing so could result in sense data building up on the device, 
particularly for multi-hosted devices.

aen_buf_size  is the valid data size, in bytes, of AEN data buffers to be 
allocated by the HD and sent to the PD with each 
UDI_SCSI_EVENT_AEN event. If aen_buf_size  is zero, no 
AEN buffers will be allocated.

aen_buf_size  is ignored if the UDI_SCSI_EVENT_AEN 
event is either not supported by the HD or not enabled by the PD. 

TARGET CHANNEL The target channel for this operation is the bind channel connecting a SCSI 
PD to its parent HD.

DESCRIPTION A SCSI PD uses this operation to bind to its parent HD.

The PD must prepare for the udi_scsi_bind_req  operation by allocating 
a SCSI bind control block (calling udi_cb_alloc  with a cb_idx  that was 
previously associated with UDI_SCSI_BIND_CB_NUM). Next, the PD fills 
in the control block and sends it to the HD in a udi_scsi_bind_req  
operation.

The udi_scsi_bind_req  operation must either be the first channel 
operation sent on the bind channel or the first operation since a SCSI unbind 
was done on the channel. The PD must not send any further operations on the 
bind channel until it receives the corresponding udi_scsi_bind_ack  from 
the HD.

REFERENCES udi_scsi_bind_cb_t, udi_scsi_bind_ack



UDI SCSI Driver Specification - Version 1.01 - 2/2/01 3-11
 

SCSI Meta Interfaces udi_scsi_bind_ack

NAME udi_scsi_bind_ack Acknowledge a SCSI bind request 
(HD-to-PD)

SYNOPSIS #include <udi.h>
#include <udi_scsi.h>

void udi_scsi_bind_ack  (
udi_scsi_bind_cb_t * cb ,
udi_ubit32_t hd_timeout_increase ,
udi_status_t status  );

ARGUMENTS cb is a pointer to a SCSI bind control block.

hd_timeout_increase   is the time in milliseconds by which the PD must 
increase its request timeouts to account for the HD’s interconnect 
type to the PD. Failure to add this hd_timeout_increase  
value to the PD’s device-specific timeout request may result in 
requests being timed out unnecessarily and in inordinate 
amounts.

status  is the status of this SCSI bind.

TARGET CHANNEL The target channel for this operation is the bind channel connecting a SCSI 
HD to its child PD.

DESCRIPTION The udi_scsi_bind_ack  operation is used by an HD to acknowledge 
binding with a child PD (or failure to do so, as indicated by status ), as 
requested by a udi_scsi_bind_req  operation.

STATUS VALUES UDI_OK indicates that the SCSI bind succeeded.

UDI_STAT_BOUND_EXCLUSIVELY is returned by the HD to the PD to 
reject a bind because the device is bound exclusively by another 
PD and cannot therefore be bound by this PD.

UDI_STAT_CANNOT_BIND_EXCLUSIVE is returned by the HD to the PD 
to reject a UDI_SCSI_BIND_EXCLUSIVE bind when one or 
more PDs are already bound to this device and cannot therefore 
be bound exclusively.

UDI_STAT_CANNOT_BIND indicates that the HD cannot bind to this PD 
for some reason other than exclusivity.

UDI_STAT_ATTR_MISMATCH indicates that the HD cannot adhere to one 
or more of the per-PD (parent-visible) attribute settings.

WARNINGS The control block must be the same control block as passed to the HD in the 
corresponding udi_scsi_bind_req  operation.

REFERENCES udi_scsi_bind_cb_t, udi_scsi_bind_req



Unbinding Operations SCSI Meta Interfaces

3-12 UDI SCSI Driver Specification - Version 1.01 - 2/2/01
 

3.7  Unbinding Operations



UDI SCSI Driver Specification - Version 1.01 - 2/2/01 3-13
 

SCSI Meta Interfaces udi_scsi_unbind_req

NAME udi_scsi_unbind_req Request a SCSI unbind (PD-to-HD)

SYNOPSIS #include <udi.h>
#include <udi_scsi.h>

void udi_scsi_unbind_req  (
udi_scsi_bind_cb_t * cb );

ARGUMENTS cb is a pointer to a SCSI bind control block.

TARGET CHANNEL The target channel for this operation is the bind channel connecting a SCSI 
PD to its parent HD.

DESCRIPTION A SCSI PD uses this operation to unbind from its parent HD.

The PD must prepare for the udi_scsi_unbind_req  operation by 
allocating a SCSI bind control block (calling udi_cb_alloc  with a 
cb_idx  that was previously associated with UDI_SCSI_BIND_CB_NUM). 
Next, the PD fills in the control block and sends it to the HD in a 
udi_scsi_unbind_req  operation.

The PD may follow a SCSI unbind with another SCSI bind; the SCSI unbind 
in and of itself is not necessarily indicative of the PD instance going away.

REFERENCES udi_scsi_bind_cb_t, udi_scsi_unbind_ack



3-14 UDI SCSI Driver Specification - Version 1.01 - 2/2/01
 

udi_scsi_unbind_ack SCSI Meta Interfaces

NAME udi_scsi_unbind_ack Acknowledge a SCSI unbind (HD-to-
PD)

SYNOPSIS #include <udi.h>
#include <udi_scsi.h>

void udi_scsi_unbind_ack  (
udi_scsi_bind_cb_t * cb  );

ARGUMENTS cb is a pointer to a SCSI bind control block.

TARGET CHANNEL The target channel for this operation is the bind channel connecting a SCSI 
HD to its child PD.

DESCRIPTION The udi_scsi_unbind_ack  operation is used by a SCSI HD to 
acknowledge unbinding from a child PD, as requested by a 
udi_scsi_unbind_req  operation. 

There is no status parameter associated with this operation; the HD is 
expected to always be able to handle the unbind request and respond 
appropriately. If, for example, the HD were to receive an unbind from a PD 
without having first received a bind (or two unbinds in a row from the PD), 
the HD may log this condition but must always respond with this 
acknowledgment.

WARNINGS The control block must be the same control block as passed to the HD in the 
corresponding udi_scsi_unbind_req  operation.

REFERENCES udi_scsi_bind_cb_t, udi_scsi_unbind_req



UDI SCSI Driver Specification - Version 1.01 - 2/2/01 3-15
 

SCSI Meta Interfaces I/O Operations

3.8  I/O Operations



3-16 UDI SCSI Driver Specification - Version 1.01 - 2/2/01
 

udi_scsi_io_cb_t SCSI Meta Interfaces

NAME udi_scsi_io_cb_t Control block for SCSI I/O 
operations

SYNOPSIS #include <udi.h>
#include <udi_scsi.h>

typedef struct {
udi_cb_t gcb ;
udi_buf_t * data_buf ;
udi_ubit32_t timeout ;
udi_ubit16_t flags ;
udi_ubit8_t attribute ;
udi_ubit8_t cdb_len ;
udi_ubit8_t * cdb_ptr ;

} udi_scsi_io_cb_t ;

/* I/O Request Flags */

#define UDI_SCSI_DATA_IN (1U <<0)

#define UDI_SCSI_DATA_OUT (1U <<1)

#define UDI_SCSI_NO_DISCONNECT (1U <<2)

/* SCSI Task Attributes */

#define UDI_SCSI_SIMPLE_TASK 1

#define UDI_SCSI_ORDERED_TASK 2

#define UDI_SCSI_HEAD_OF_Q_TASK 3

#define UDI_SCSI_ACA_TASK 4

#define UDI_SCSI_UNTAGGED_TASK 5

/* Control Block Group Number */

#define UDI_SCSI_IO_CB_NUM 2

MEMBERS gcb is a standard member at the front of SCSI control blocks, as 
defined in udi_scsi_bind_cb_t  on page 3-7.

data_buf  is a pointer to a buffer used to carry the data portion of a transfer. 
See udi_scsi_io_req  and udi_scsi_io_ack  for details 
on buffer usage.

timeout is an I/O timeout in milliseconds. A timeout  value of zero 
specifies an infinite period, meaning that the HD will not time 
the request.  If the timeout  value is non-zero, the HD must 
ensure that the request is timed for the specified number of 
milliseconds.  As described in Section 2.4.2 on page 2-4, to 
reduce variability, the request must be timed starting from when 
it is started on the SCSI interconnect, or as close to that point as 
possible.

If the request doesn’t complete within the specified timeout  
period the HD must abort the request and complete it with status 
UDI_STAT_TIMEOUT.



UDI SCSI Driver Specification - Version 1.01 - 2/2/01 3-17
 

SCSI Meta Interfaces udi_scsi_io_cb_t

flags is a set of flags associated with this I/O request. The flag bit 
values are defined below. At most one of UDI_SCSI_DATA_IN  
or UDI_SCSI_DATA_OUT must be specified, and exactly one 
of these two flags must be specified if data_buf->buf_size  
is non-zero. UDI_SCSI_NO_DISCONNECT may be optionally 
combined (ORed) with either of the IN/OUT flags.

UDI_SCSI_DATA_IN  - Data-in from device to host.
UDI_SCSI_DATA_OUT - Data-out from host to device.

UDI_SCSI_NO_DISCONNECT - Disconnects on a parallel 
SCSI bus are disallowed during this I/O. On serial links this flag 
is ignored.

attribute  is a SCSI-3 task attribute which specifies ordering and other 
constraints of requests (tasks) sent to the device. Exactly one of 
the following values may be associated with the I/O request by 
assigning it into the attribute field:

UDI_SCSI_SIMPLE_TASK

UDI_SCSI_ORDERED_TASK

UDI_SCSI_HEAD_OF_Q_TASK

UDI_SCSI_ACA_TASK

UDI_SCSI_UNTAGGED_TASK

All of the above attributes except UDI_SCSI_ACA_TASK are 
supported in the SCSI-2 architecture. If UDI_SCSI_ACA_TASK 
is passed to a SCSI-2 HD, it is the HD’s responsibility to emulate 
SCSI-3 ACA behavior by freezing the queues in the HD that 
correspond to a given LUN and only allowing ACA_TASK’d 
requests through until a CLEAR_ACA control request is received 
from the PD.

cdb_len is the number of valid CDB bytes for this request. (This does not 
include any extra bytes used for multi-LUN addressing.)

cdb_ptr is a pointer to cdb_len  bytes of SCSI CDB. If this is a multi-
LUN binding the CDB bytes are followed by an 8-bit bus 
number, 3 pad bytes, a 32-bit Target ID, and a 64-bit LUN. The 
32-bit Target ID shall be encoded as a little-endian quantity. The 
64-bit LUN value shall be treated as an array of 8 bytes, 
formatted as per the SCSI Architecture Model - 2 (SAM-2) 
specification. Refer to Section 2.3 for further information on 
Target ID and LUN values.

This pointer is set by the environment when the control block is 
allocated and, like the scratch pointer, points to additional 
memory associated with this control block. The size of this 
memory area, and hence the maximum size of CDBs used by this 
driver, is set via the inline_size  member of the relevant 
udi_cb_init_t , and must be incremented by 16 if this is a 



3-18 UDI SCSI Driver Specification - Version 1.01 - 2/2/01
 

udi_scsi_io_cb_t SCSI Meta Interfaces

multi-LUN binding (i.e., maximum CDB size + 16) to provide 
room for the 32-bit Target ID and 64-bit LUN. The pointer itself 
must not be modified by the driver.

DESCRIPTION The SCSI I/O control block is used between the PD and HD to process a SCSI 
I/O request.

In order to use this type of control block it must be associated with a control 
block index by including UDI_SCSI_IO_CB_NUM in a udi_cb_init_t  in 
the driver’s udi_init_info .

The size of the inline memory area pointed to by cdb_ptr  must be specified 
using the inline_size  member of that udi_cb_init_t  structure (see 
Chapter 10, “Initialization” , of the UDI Core Specification). The memory is 
treated as an array of unstructured bytes. (I.e. cdb_ptr  is a 
UDI_DL_INLINE_UNTYPED field.) Since the HD never allocates this type 
of control block, it must set inline_size  to zero.

REFERENCES udi_scsi_io_req, udi_scsi_io_ack, udi_scsi_io_nak, 
udi_cb_alloc



UDI SCSI Driver Specification - Version 1.01 - 2/2/01 3-19
 

SCSI Meta Interfaces udi_scsi_io_req

NAME udi_scsi_io_req Request a SCSI I/O operation (PD-
to-HD)

SYNOPSIS #include <udi.h>
#include <udi_scsi.h>

void udi_scsi_io_req  (
udi_scsi_io_cb_t * cb  );

ARGUMENTS cb is a pointer to a SCSI IO control block.

TARGET CHANNEL The target channel for this operation is the bind channel connecting a SCSI 
PD to its parent HD.

DESCRIPTION A PD uses this operation to send a SCSI I/O request to its parent HD.

The PD must prepare for the udi_scsi_io_req  operation by allocating a 
SCSI I/O control block (calling udi_cb_alloc  with a cb_idx  that was 
previously associated with UDI_SCSI_IO_CB_NUM) and filling in all of its 
members.

The PD indicates the desired transfer size by setting 
data_buf->buf_size  to the desired number of bytes. If no bytes are to 
be transferred, the PD may set data_buf  to NULL.

If flags  in the control block do not include UDI_SCSI_DATA_OUT, any 
data in data_buf  is not guaranteed to be preserved by this channel 
operation. That is, when the HD receives this operation, the contents (but not 
the size) of the buffer are unspecified unless UDI_SCSI_DATA_OUT is set.

This operation is abortable with udi_channel_op_abort .

This operation is recoverable by the PD upon abrupt termination of an 
instance of the HD. Each SCSI I/O request outstanding in the HD when it is 
abruptly terminated will be completed by the environment with a 
corresponding udi_scsi_io_nak  operation with a status code of 
UDI_STAT_TERMINATED. (See the definition of 
UDI_STAT_TERMINATED in Table 9 of the UDI Core Specification.)

REFERENCES udi_scsi_io_cb_t, udi_scsi_io_ack, udi_scsi_io_nak



3-20 UDI SCSI Driver Specification - Version 1.01 - 2/2/01
 

udi_scsi_io_ack SCSI Meta Interfaces

NAME udi_scsi_io_ack Acknowledge normal completion of 
SCSI I/O request

SYNOPSIS #include <udi.h>
#include <udi_scsi.h>

void udi_scsi_io_ack  (
udi_scsi_io_cb_t * cb );

ARGUMENTS cb is a pointer to a SCSI IO control block.

TARGET CHANNEL The target channel for this operation is the bind channel connecting a SCSI 
HD to its child PD.

DESCRIPTION The udi_scsi_io_ack  operation is used by an HD to acknowledge the 
normal completion of a SCSI I/O request back to a child PD, in response to a 
udi_scsi_io_req  operation. This operation must be used to indicate to 
the PD a completion status of UDI_OK; otherwise, the udi_scsi_io_nak  
operation must be used.

If data_buf  is not NULL, data_buf->buf_size  must be the same as in 
the original request and must equal the number of bytes actually transferred. 
The data_buf  pointer must either be the same as in the original request, or 
a direct “descendant” of the original buffer (i.e. results from a chain of one or 
more service calls such as udi_buf_write  that replace the original buffer 
with a modified version).

If flags  in the control block do not include UDI_SCSI_DATA_IN , any data 
in data_buf  is not guaranteed to be preserved by this channel operation. 
That is, when the PD receives this operation, the contents (but not the size) of 
the buffer are unspecified unless UDI_SCSI_DATA_IN  is set.

WARNINGS The control block must be the same control block as passed to the HD in the 
corresponding udi_scsi_io_req  operation.

REFERENCES udi_scsi_io_cb_t, udi_scsi_io_req, udi_scsi_io_nak



UDI SCSI Driver Specification - Version 1.01 - 2/2/01 3-21
 

SCSI Meta Interfaces udi_scsi_io_nak

NAME udi_scsi_io_nak Indicate abnormal completion of 
SCSI I/O request

SYNOPSIS #include <udi.h>
#include <udi_scsi.h>

void udi_scsi_io_nak  (
udi_scsi_io_cb_t * cb,
udi_scsi_status_t status ,
udi_buf_t * sense_buf );

ARGUMENTS cb is a pointer to a SCSI IO control block.

status is the status of the I/O request.

sense_buf  is a pointer to the sense data buffer containing the details of a 
SCSI command failure if the values in status  are set to 
indicate a CHECK CONDITION; otherwise, sense_buf  must 
be NULL. If non-NULL, sense_buf->buf_size  must equal 
the number of bytes of valid sense data. If there are no sense data 
bytes, sense_buf  may be NULL.

TARGET CHANNEL The target channel for this operation is the bind channel connecting a SCSI 
HD to its child PD.

DESCRIPTION The udi_scsi_io_nak  operation is used by an HD to indicate abnormal 
completion of a SCSI I/O request back to a child PD, in response to a 
udi_scsi_io_req  operation. This operation must be used to indicate a 
status other than UDI_OK to the PD. The udi_scsi_io_ack  operation 
must be used to indicate a UDI_OK status in which the exact amount of data 
requested was transferred.

If data_buf  is not NULL, the HD must set data_buf->buf_size  to the 
number of bytes actually transferred, which must be less than or equal to the 
requested size. The data_buf  pointer must either be the same as in the 
original request, or a direct “descendant” of the original buffer (i.e. results 
from a chain of one or more service calls such as udi_buf_write  that 
replace the original buffer with a modified version).

If flags  in the control block include UDI_SCSI_DATA_OUT, the contents 
of the data buffer must be the same as in the original request. This allows the 
PD to retry failed operations if it so chooses.

Data in data_buf  is always preserved by this channel operation.

After receiving and processing a udi_scsi_io_nak , the PD must free 
sense_buf , if non-NULL, by calling udi_buf_free . The HD can 
reclaim the sense data buffer by copying it before sending it off in the nak; in 
many environment implementations this will be accomplished (via copy-on-
write semantics) without any actual data copy.

WARNINGS The control block must be the same control block as passed to the HD in the 
corresponding udi_scsi_io_req  operation.



3-22 UDI SCSI Driver Specification - Version 1.01 - 2/2/01
 

udi_scsi_io_nak SCSI Meta Interfaces

REFERENCES udi_scsi_io_cb_t, udi_scsi_io_req, udi_scsi_io_ack



UDI SCSI Driver Specification - Version 1.01 - 2/2/01 3-23
 

SCSI Meta Interfaces udi_scsi_status_t

NAME udi_scsi_status_t Status structure in SCSI I/O 
Acknowledgement

SYNOPSIS #include <udi.h>
#include <udi_scsi.h>

typedef struct {
udi_status_t req_status ;
udi_ubit8_t scsi_status ;
udi_ubit8_t sense_status ;

} udi_scsi_status_t ;

MEMBERS req_status  is the main software status associated with this I/O request. 
See below for definitions of status values.

scsi_status  is the status byte received over the SCSI bus as defined in the 
SCSI protocol.

sense_status  is the status byte for the REQUEST SENSE command on 
the SCSI bus. This is valid only when scsi_status  indicates 
a CHECK CONDITION.

DESCRIPTION The SCSI status structure gives the status of the I/O request on I/O 
completion.

 STATUS VALUES The following status codes are defined for req_status :

UDI_SCSI_STAT_ACA_PENDING − A contingent-allegiance condition 
remains pending at the SCSI device.

UDI_SCSI_STAT_SELECTION_TIMEOUT  − SCSI device did not respond 
to selection.

UDI_SCSI_STAT_DEVICE_PHASE_ERROR − Adapter detected an illegal 
SCSI bus phase change on the part of the device.

UDI_SCSI_STAT_UNEXPECTED_BUS_FREE − Either the adapter or the 
device terminated the command prematurely by putting the SCSI bus in a free 
state.

UDI_SCSI_STAT_DEVICE_PARITY_ERROR  − Adapter detected a parity 
error on the part of the device. (Device-detected parity errors are reported 
through sense data.)

UDI_SCSI_STAT_ABORTED_HD_BUS_RESET − The I/O command was 
aborted by a SCSI bus reset generated internally by the HD, probably to 
resolve a SCSI bus hang. This I/O command may or may not have actually 
been started on the device. It is unknown if this particular command caused a 
bus hang.

UDI_SCSI_STAT_ABORTED_RMT_BUS_RESET − The I/O command 
was aborted by a SCSI bus reset generated by a device on the SCSI bus other 
than the adapter that this HD controls. This I/O command may or may not 
have actually been started on the device.



3-24 UDI SCSI Driver Specification - Version 1.01 - 2/2/01
 

udi_scsi_status_t SCSI Meta Interfaces

UDI_SCSI_STAT_ABORTED_REQ_BUS_RESET − The I/O command 
was aborted by a SCSI bus reset requested by the PD. This I/O command may 
or may not have actually been started on the device.

UDI_SCSI_STAT_ABORTED_REQ_TGT_RESET − The I/O command 
was aborted by a SCSI target reset requested by the PD. This I/O command 
may or may not have actually been started on the device.

UDI_SCSI_STAT_HD_ABORTED -- I/O aborted by the HD for reasons 
other than a reset, timeout, or PD-requested abort; e.g., for a sympathetic error 
which clears the device queue.

UDI_SCSI_STAT_LINK_FAILURE  − The link between the adapter and the 
device has failed. It is unknown whether this command was active at the time 
of hardware failure.

UDI_SCSI_STAT_NONZERO_STATUS_BYTE − Device request returned a 
non-zero SCSI status byte and no other status value applies. If another status 
code is applicable the HD must set req_status  to the other applicable 
value. The PD must check scsi_status  regardless of the value of 
req_status .

UDI_STAT_NOT_UNDERSTOOD − Request received from the PD was 
invalid.

UDI_STAT_TIMEOUT  − This command was timed out by the HD and 
aborted.

UDI_STAT_ABORTED  − I/O command was successfully aborted as a result 
of an explicit abort request from the PD (a SCSI control abort request, or a 
call to udi_channel_op_abort ). The command may or may not have 
been actually started at the device.

UDI_STAT_DATA_OVERRUN  − This target device attempted to send more 
data than was requested.

UDI_STAT_DATA_UNDERRUN  − This target device sent less data than was 
requested.

UDI_STAT_HW_PROBLEM  − This command terminated with an 
indeterminate hardware error.

UDI_STAT_TERMINATED  – The HD instance was abruptly terminated and 
this command was automatically completed by the environment. Drivers must 
never generate this status code directly.

Note that UDI_STAT_NOT_UNDERSTOOD, UDI_STAT_TIMEOUT, 
UDI_STAT_ABORTED, UDI_STAT_DATA_OVERRUN, 
UDI_STAT_DATA_UNDERRUN, UDI_STAT_HW_PROBLEM, and 
UDI_STAT_TERMINATED are common status codes whose constant values 
are defined in Chapter 9, “Fundamental Types”, of the UDI Core 
Specification.

REFERENCES udi_scsi_io_cb_t, udi_scsi_io_ack



UDI SCSI Driver Specification - Version 1.01 - 2/2/01 3-25
 

SCSI Meta Interfaces Control Operations

3.9  Control Operations



3-26 UDI SCSI Driver Specification - Version 1.01 - 2/2/01
 

udi_scsi_ctl_cb_t SCSI Meta Interfaces

NAME udi_scsi_ctl_cb_t Control block for SCSI control 
operations

SYNOPSIS #include <udi.h>
#include <udi_scsi.h>

typedef struct {
udi_cb_t gcb ;
udi_ubit8_t ctrl_func ;
udi_ubit16_t queue_depth ;

} udi_scsi_ctl_cb_t ;

/* Values for ctrl_func */

#define UDI_SCSI_CTL_ABORT_TASK_SET 1

#define UDI_SCSI_CTL_CLEAR_TASK_SET 2

#define UDI_SCSI_CTL_LUN_RESET 3

#define UDI_SCSI_CTL_TGT_RESET 4

#define UDI_SCSI_CTL_BUS_RESET 5

#define UDI_SCSI_CTL_CLEAR_ACA 6

#define UDI_SCSI_CTL_SET_QUEUE_DEPTH 7

/* Control Block Group Number */

#define UDI_SCSI_CTL_CB_NUM 3

MEMBERS gcb are standard members at the front of SCSI control blocks, as 
defined in udi_scsi_bind_cb_t  on page 3-7.

ctrl_func  is one of the following SCSI control functions:

UDI_SCSI_CTL_ABORT_TASK_SET  -- Sends the 
appropriate interconnect-specific operation to abort all tasks in 
the Logical Unit’s task set for the requesting initiator. This will 
cause the corresponding completion operations to be sent to the 
PD before responding with the udi_scsi_ctl_ack . On 
interconnects that do not support this operation, ctrl_func  is 
typically a no-op and the status UDI_STAT_NOT_SUPPORTED 
is returned in the udi_scsi_ctl_ack .

UDI_SCSI_CTL_CLEAR_TASK_SET  -- Sends the 
appropriate interconnect-specific operation to abort all tasks in 
the Logical Unit’s task set for all initiators. This will cause the 
the corresponding completion operations to be sent to the PDs 
before responding with the udi_scsi_ctl_ack . On 
interconnects that do not support this operation, ctrl_func  is 
typically a no-op and the status UDI_STAT_NOT_SUPPORTED 
is returned in the udi_scsi_ctl_ack .

UDI_SCSI_CTL_LUN_RESET -- Sends the appropriate 
interconnect-specific operation to perform a logical unit reset as 
defined by SAM-2. This will cause the the corresponding 
completion operations to be sent to the PDs before responding 
with the udi_scsi_ctl_ack . On interconnects that do not 



UDI SCSI Driver Specification - Version 1.01 - 2/2/01 3-27
 

SCSI Meta Interfaces udi_scsi_ctl_cb_t

support this operation, ctrl_func  is typically a no-op and the 
status UDI_STAT_NOT_SUPPORTED is returned in the 
udi_scsi_ctl_ack .

UDI_SCSI_CTL_TGT_RESET -- Sends the appropriate 
interconnect-specific operation to perform a target-level reset to 
the SCSI device. This will abort all I/Os outstanding on the 
LUNs attached to the specified SCSI target and will cause 
corresponding completion operations to be sent to the PD before 
responding with the udi_scsi_ctl_ack .

UDI_SCSI_CTL_BUS_RESET -- Reset the SCSI bus (parallel 
SCSI only) associated with this SCSI device. This will abort all 
I/Os outstanding on the bus and will cause corresponding 
completion operations to be sent to the PD before responding 
with the udi_scsi_ctl_ack . On serial SCSI links this 
ctrl_func  is typically a no-op and the status 
UDI_STAT_NOT_SUPPORTED is returned in the 
udi_scsi_ctl_ack .

UDI_SCSI_CTL_CLEAR_ACA  -- Clear auto-contingent- 
allegiance condition at the SCSI device.

UDI_SCSI_CTL_SET_QUEUE_DEPTH -- Change the 
maximum number of commands the HD is allowed to have 
pending to the device on behalf of this PD simultaneously. This 
takes effect with respect to subsequent requests received from the 
PD. QUEUE FULL conditions are handled by the PD.

queue_depth  is the maximum number of commands the HD is allowed to 
have pending to the device simultaneously. Used only with 
UDI_SCSI_CTL_SET_QUEUE_DEPTH.

DESCRIPTION The control block for SCSI Control operations is used between the PD and 
HD to process a SCSI Control request.

In order to use this type of control block it must be associated with a control 
block index by including UDI_SCSI_CTL_CB_NUM in a udi_cb_init_t  
in the driver’s udi_init_info .

REFERENCES udi_scsi_ctl_req, udi_scsi_ctl_ack, udi_cb_alloc



3-28 UDI SCSI Driver Specification - Version 1.01 - 2/2/01
 

udi_scsi_ctl_req SCSI Meta Interfaces

NAME udi_scsi_ctl_req Request a SCSI control operation 
(PD-to-HD)

SYNOPSIS #include <udi.h>
#include <udi_scsi.h>

void udi_scsi_ctl_req  (
udi_scsi_ctl_cb_t * cb  );

ARGUMENTS cb is a pointer to a SCSI ctl control block.

TARGET CHANNEL The target channel for this operation is the bind channel connecting a SCSI 
PD to its parent HD.

DESCRIPTION A PD uses this operation to send a SCSI Control request to its parent HD.

The PD must prepare for the udi_scsi_ctl_req  operation by allocating a 
scsi_ctl  control block (calling udi_cb_alloc  with a cb_idx  that was 
previously associated with UDI_SCSI_CTL_CB_NUM). Next, the PD fills in 
the control block and sends it to the HD in a udi_scsi_ctl_req  
operation.

This operation is recoverable by the PD upon abrupt termination of an 
instance of the HD. Each SCSI control request outstanding in the HD when it 
is abruptly terminates will be completed by the environment with a 
corresponding udi_scsi_ctl_nak  operation with a status code of 
UDI_STAT_TERMINATED. (See the definition of 
UDI_STAT_TERMINATED in Table 9 of the UDI Core Specification.)

REFERENCES udi_scsi_ctl_cb_t , udi_scsi_ctl_ack



UDI SCSI Driver Specification - Version 1.01 - 2/2/01 3-29
 

SCSI Meta Interfaces udi_scsi_ctl_ack

NAME udi_scsi_ctl_ack Ack completion of SCSI control 
request (HD-to-PD)

SYNOPSIS #include <udi.h>
#include <udi_scsi.h>

void udi_scsi_ctl_ack  (
udi_scsi_ctl_cb_t * cb ,
udi_status_t status );

ARGUMENTS cb is a pointer to a SCSI ctl control block.

status is the status of the SCSI control request, and shall be one of the 
following values:

UDI_OK  -- Normal completion.

UDI_STAT_HW_PROBLEM  -- Adapter hardware error 
prevented completion of control request.

UDI_STAT_NOT_UNDERSTOOD -- Control request block is 
invalid.

UDI_STAT_NOT_SUPPORTED -- Control request block is not 
in error, but the specific request type is not supported by the HD.

UDI_STAT_TERMINATED  – The HD instance was abruptly 
terminated and this command was automatically completed by 
the environment. Drivers must never generate this status code 
directly.

UDI_SCSI_CTL_STAT_FAILED  -- Control request failed for 
some other unspecified reason.

Note that all the status codes except UDI_SCSI_CTL_STAT_FAILED  are 
common status codes whose constant values are defined in Chapter 9, 
“Fundamental Types”, of the UDI Core Specification.

TARGET CHANNEL The target channel for this operation is the bind channel connecting a SCSI 
HD to its child PD.

DESCRIPTION udi_scsi_ctl_ack  is called by an HD to acknowledge completion of a 
SCSI Control request back to a child PD (indicating success or failure), as 
requested by a udi_scsi_ctl_req  operation.

WARNINGS The control block must be the same control block as passed to the HD in the 
corresponding udi_scsi_ctl_req  operation.

REFERENCES udi_scsi_ctl_cb_t, udi_scsi_ctl_req



Event Operations SCSI Meta Interfaces

3-30 UDI SCSI Driver Specification - Version 1.01 - 2/2/01
 

3.10  Event Operations



UDI SCSI Driver Specification - Version 1.01 - 2/2/01 3-31
 

SCSI Meta Interfaces udi_scsi_event_cb_t

NAME udi_scsi_event_cb_t Control block for SCSI event 
operations

SYNOPSIS #include <udi.h>
#include <udi_scsi.h>

typedef struct {
udi_cb_t gcb ;
udi_ubit8_t event ;
udi_buf_t * aen_data_buf ;

} udi_scsi_event_cb_t ;

/* Control Block Group Number */

#define UDI_SCSI_EVENT_CB_NUM 4

MEMBERS gcb is a standard members at the front of SCSI control blocks, as 
defined in udi_scsi_bind_cb_t  on page 3-7.

event is the type of asynchronous event. See the event  field in the 
udi_scsi_bind_cb_t  for valid event types. 

aen_data_buf  is a pointer to a data buffer containing AEN data and is 
only valid if UDI_SCSI_EVENT_AEN is set in event ; 
otherwise it must be set to NULL. In the AEN case, 
aen_data_buf  must contain no more than aen_buf_size  
bytes of valid data, as specified in the udi_scsi_bind_req . 
If aen_buf_size  was zero, aen_data_buf  must be NULL. 
It is legal in the SCSI architecture to send zero bytes of data with 
an AEN, so if the PD’s device supports AEN but always sends 
zero bytes of data (indicating to the PD that it should go check 
its device) then this would be an example where an 
aen_buf_size  of zero would be appropriate.

See udi_scsi_event_ind  and udi_scsi_event_res  
for additional details on the usage of AEN buffers.

DESCRIPTION The SCSI event control block is used between the HD and its PD children to 
notify the PD of an asynchronous event.

In order to use this type of control block it must be associated with a control 
block index by including UDI_SCSI_EVENT_CB_NUM in a 
udi_cb_init_t  in the driver’s udi_init_info .

REFERENCES udi_scsi_event_ind, udi_scsi_event_res, udi_cb_alloc



3-32 UDI SCSI Driver Specification - Version 1.01 - 2/2/01
 

udi_scsi_event_ind SCSI Meta Interfaces

NAME udi_scsi_event_ind SCSI event notification (HD-to-PD)

SYNOPSIS #include <udi.h>
#include <udi_scsi.h>

void udi_scsi_event_ind  (
udi_scsi_event_cb_t * cb  );

ARGUMENTS cb is a pointer to a SCSI event control block.

TARGET CHANNEL The target channel for this operation is the bind channel connecting a SCSI 
HD to its child PD.

PROXIES udi_scsi_event_ind_unused Proxy for udi_scsi_event_ind

udi_scsi_event_ind_op_t
udi_scsi_event_ind_unused ;

udi_scsi_event_ind_unused  may be used as a PD’s 
udi_scsi_event_ind  entry point if the PD never enables any events for 
notification.

DESCRIPTION An HD uses the udi_scsi_event_ind  operation to send an event 
notification to its child PD.

The HD must prepare for the udi_scsi_event_ind  operation by 
allocating a SCSI event control block (calling udi_cb_alloc  with a 
cb_idx  that was previously associated with UDI_SCSI_EVENT_CB_NUM).

If event  is UDI_SCSI_EVENT_AEN and aen_buf_size  in the 
udi_scsi_bind_req  was nonzero, the HD must also obtain an AEN 
buffer containing aen_buf_size  valid bytes. In this case, if the size of the 
AEN data received from the device is greater than aen_buf_size , only the 
first aen_buf_size  byte will be placed in the buffer; the size of the AEN 
data in the buffer, up to this maximum, will be indicated by the buf_size  
field of the buffer.

Next, the HD sends the SCSI event control block to the PD with a 
udi_scsi_event_ind  operation. The HD does not need to wait to receive 
a response before sending another udi_scsi_event_ind ; multiple 
indications may be pending at once.

Whether or not an HD supports a particular type of event notification, and 
whether or not the PD has enabled those events, is negotiated in the SCSI bind 
operations.

Note that some events (e.g., SCSI bus reset) can be triggered by a PD through 
control operations. The event is still sent to the PD that requested the control 
operation, and is sent before the control operation completes.

REFERENCES udi_scsi_event_cb_t, udi_scsi_event_res



UDI SCSI Driver Specification - Version 1.01 - 2/2/01 3-33
 

SCSI Meta Interfaces udi_scsi_event_res

NAME udi_scsi_event_res Acknowledge a SCSI event (PD-to-
HD)

SYNOPSIS #include <udi.h>
#include <udi_scsi.h>

void udi_scsi_event_res  (
udi_scsi_event_cb_t * cb  );

ARGUMENTS cb is a pointer to a SCSI event control block.

TARGET CHANNEL The target channel for this operation is the bind channel connecting a SCSI 
HD to its child PD.

DESCRIPTION The ud i_scsi_event_res  operation is used by a PD to acknowledge an 
event indication from its parent HD, as delivered by a 
udi_scsi_event_ind  operation.

If event  is UDI_SCSI_EVENT_AEN, the aen_data_buf  handle must 
have the same value as was received in the udi_scsi_event_ind , and the 
buffer itself must not have been modified by the PD.

WARNINGS The control block must be the same control block as passed to the PD in the 
corresponding udi_scsi_event_ind  operation.

REFERENCES udi_scsi_event_cb_t, udi_scsi_event_ind



Utility Functions SCSI Meta Interfaces

3-34 UDI SCSI Driver Specification - Version 1.01 - 2/2/01
 

3.11  Utility Functions



UDI SCSI Driver Specification - Version 1.01 - 2/2/01 3-35
 

SCSI Meta Interfaces udi_scsi_inquiry_to_string

NAME udi_scsi_inquiry_to_string Encode SCSI INQUIRY data as a 
string

SYNOPSIS #include <udi.h>
#include <udi_scsi.h>

void udi_scsi_inquiry_to_string  (
const udi_ubit8_t * inquiry_data ,
udi_size_t inquiry_len ,
char * str  );

ARGUMENTS inquiry_data  is a pointer to up to 36 bytes of SCSI INQUIRY data.

inquiry_len  is the length of the inquiry_data  array.

str is a pointer to a character array, at least 45 bytes long, that will 
be filled in with the encoded string.

DESCRIPTION This utility function converts binary SCSI INQUIRY data to a string, encoded 
as required for the “identifier” attribute when the device does not have a LUN 
World-Wide ID. See Section 2.5.2.2.1, “identifier attribute,” on page 2-9 for 
details.





UDI SCSI Driver Specification - Version 1.01 - 2/2/01 X-1

Index
A
aborts 2-4
adapter 1-2
address_locator attribute 2-10

B
Bindings

for Instance Attributes 2-6
for Trace Events 2-16
for Transfer Constraints 2-6

C
control block groups 3-1
Custom parameters for HDs

%scsi_auto_term_external 2-12
%scsi_auto_term_internal 2-12
%scsi_auto_termination 2-12
%scsi_bus_width 2-12
%scsi_disconnect_allowed 2-12
%scsi_initiator_id 2-12
%scsi_max_xfer_rate 2-12
%scsi_parity_checking 2-12
@scsi_max_xfer_rate 2-14

Custom Parameters for PDs 2-15
%scsi_pd_max_temp_bind_excl 2-15
%scsi_pd_no_bus_reset 2-15
%scsi_pd_wce 2-15

D
Dynamically changeable attributes 2-14,

2-15, 2-16

E
Enumeration attributes

scsi_bus 2-7
scsi_dev_pqual 2-8

scsi_dev_type 2-8
scsi_inquiry 2-8
scsi_max_buses 2-9
scsi_max_luns 2-9
scsi_max_tgts 2-9
scsi_multi_lun 2-2, 2-8, 2-9
scsi_product_id 2-8
scsi_rev_num 2-8
scsi_vendor_id 2-8

F
Filter Attributes 2-10, 2-11

H
HD 1-2
Header files

udi.h 2-1
udi_scsi.h 2-1

Hot-plug changeable attributes 2-15

I
identifier attribute 2-9

L
LUN 1-2

M
multi-lun PD 2-2, 2-7, 2-9

P
Parent-visible attributes 2-14

@scsi_max_xfer_rate 2-5, 2-14
PD 1-2
physical_label attribute 2-10
physical_locator attribute 2-10



Index

X-2 UDI SCSI Driver Specification - Version 1.01 - 2/2/01

Q
queue depth 2-5, 3-9
QUEUE FULL 2-5
queue_depth 3-27

R
Retries 2-2, 2-3, 2-4

S
SAM 1-2
SCSI 1-2
SCSI Bus/Link Errors 2-5
SCSI Interconnect 1-3
SCSI-1 1-1
SCSI-2 1-1
SCSI-3 1-1, 2-7
single-lun PD 2-2

T
tag 1-3
target id 1-3
Timeouts 2-4
transfer negotiation 2-4

U
udi_scsi_bind_ack 3-11
udi_scsi_bind_cb_t 3-7
udi_scsi_bind_req 3-9
udi_scsi_ctl_ack 3-29
udi_scsi_ctl_cb_t 3-26
udi_scsi_ctl_req 3-28
udi_scsi_event_cb_t 3-31
udi_scsi_event_ind 3-32
udi_scsi_event_ind_unused 3-32
udi_scsi_event_res 3-33
udi_scsi_hd_ops_t 3-5
udi_scsi_io_ack 3-20
udi_scsi_io_cb_t 3-16
udi_scsi_io_nak 3-21
udi_scsi_io_req 3-19
udi_scsi_pd_ops_t 3-4
udi_scsi_status_t 3-23
udi_scsi_unbind_ack 3-14
udi_scsi_unbind_req 3-13

UDI_SCSI_VERSION 2-1
UDI_TREVENT_IO_COMPLETED 2-16
UDI_TREVENT_IO_SCHEDULED 2-16
UDI_TREVENT_META_SPECIFIC_1

2-16
UDI_TREVENT_META_SPECIFIC_2

2-17
UDI_TREVENT_META_SPECIFIC_3

2-17
UDI_TREVENT_META_SPECIFIC_4

2-17
UDI_TREVENT_META_SPECIFIC_5

2-17


	Copyright Notice
	Acknowledgements
	Abstract
	Table of Contents
	List of Reference Pages by Chapter
	Alphabetical List of Symbols
	SCSI Driver Introduction
	1.1 Introduction
	1.2 Scope
	1.3 Normative References
	1.4 Conformance
	1.5 Terminology

	SCSI Driver Requirements & Bindings
	2.1 General Requirements
	2.2 SCSI Metalanguage Model
	2.3 SCSI I/O Addressing
	2.4 Peripheral Driver & HBA Driver Responsibilities
	2.5 Bindings to the UDI Core Specification
	Table�2�1 SCSI Enumeration Attributes
	Table 2�2 SCSI Enumeration Attribute Ranking
	Table 2�3 SCSI Custom Parameter Attributes for HDs (Per-HD instance)
	Table 2�4 SCSI Custom Parameter Attributes for HDs (Parent-Visible, per-PD attributes)
	Table 2�5 SCSI Custom Parameter Attributes for PDs

	2.6 Metalanguage State Diagram
	Figure 2�1 SCSI Metalanguage State Diagram
	Table 2�6 SCSI Metalanguage Events


	SCSI Metalanguage Interfaces
	3.1 Introduction
	3.2 Overview of Interfaces and Data Structures
	3.3 Control Blocks
	3.4 Status Codes
	3.5 Channel Ops Vectors
	NAME udi_scsi_pd_ops_t
	NAME udi_scsi_hd_ops_t
	3.6 Binding Operations
	NAME udi_scsi_bind_cb_t
	NAME udi_scsi_bind_req
	NAME udi_scsi_bind_ack
	3.7 Unbinding Operations
	NAME udi_scsi_unbind_req
	NAME udi_scsi_unbind_ack
	3.8 I/O Operations
	NAME udi_scsi_io_cb_t
	NAME udi_scsi_io_req
	NAME udi_scsi_io_ack
	NAME udi_scsi_io_nak
	NAME udi_scsi_status_t
	3.9 Control Operations
	NAME udi_scsi_ctl_cb_t
	NAME udi_scsi_ctl_req
	NAME udi_scsi_ctl_ack
	3.10 Event Operations
	NAME udi_scsi_event_cb_t
	NAME udi_scsi_event_ind
	NAME udi_scsi_event_res
	3.11 Utility Functions
	NAME udi_scsi_inquiry_to_string

	Index

