
UDI Physical I/O Specification
Version 1.01

Uniform Driver Interface

http://www.project-UDI.org/specs.html

UDI Physical I/O Specification

UDI Physical I/O Specification - Version 1.01 - 2/2/01 i

The UDI Physical I/O Specification defines the required interfaces and semantics for UDI
environments that support Programmed I/O (PIO), Direct Memory Access (DMA), and Interrupts.
This is an optional extension to the UDI Core Specification, which is defined in a separate book.
The intended audience for this book includes driver writers, environment implementors, and
metalanguage implementors.

UDI drivers that require physical I/O services must be written to conform to this specification, and
can assume that all services described herein are available. Environments that don’t need such
drivers may choose not to support the physical I/O extensions, but any environment that supports
UDI physical I/O drivers must conform to this specification, as well as to the UDI Core
Specification.

Environments that support UDI drivers for devices that use any physical I/O bus types covered by
other UDI specifications must support and conform to those Bus Binding specifications.

See the Document Organization chapter in the UDI Core Specification for a description of other
books in the UDI Specification collection, as well as references to additional tutorial materials.

Status of This Document
This document has been reviewed by Project UDI Members and other interested parties and has
been endorsed as a Final Specification. It is a stable document and may be used as reference
material or cited as a normative reference from another document. This version of the
specification is intended to be ready for use in product design and implementation. Every attempt
has been made to ensure a consistent and implementable specification. Implementations should
ensure compliance with this version.

Abstract

 Preface

 ii UDI Physical I/O Specification - Version 1.01 - 2/2/01

Copyright Notice
Copyright © 1999-2001 Adaptec, Inc; Compaq Computer Corporation; Hewlett-Packard
Company; International Business Machines Corporation; Interphase Corporation; Lockheed
Martin Corporation; The Santa Cruz Operation, Inc; Sun Microsystems (“copyright holders”). All
Rights Reserved.

This document and other documents on the Project UDI web site (www.project-UDI.org) are
provided by the copyright holders under the following license. By obtaining, using and/or copying this
document, or the Project UDI document from which this statement is linked, you agree that you have
read, understood, and will comply with the following terms and conditions:

Permission to use, copy, and distribute the contents of this document, or the Project UDI document from
which this statement is linked, in any medium for any purpose and without fee or royalty is hereby
granted, provided that you include all of the following on ALL copies of the document, or portions
thereof, that you use:

1. A link or URI to the original Project UDI document.

2. The pre-existing copyright notice of the original author, or, if it doesn’t exist, a Project
UDI copyright notice of the form shown above.

3. If it exists, the STATUS of the Project UDI document.

When space permits, inclusion of the full text of this NOTICE should be provided. In addition, credit
shall be attributed to the copyright holders for any software, documents, or other items or products that
you create pursuant to the implementation of the contents of this document, or any portion thereof.

No right to create modifications or derivatives is granted pursuant to this license.

THIS DOCUMENT IS PROVIDED "AS IS," AND COPYRIGHT HOLDERS MAKE NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE DOCUMENT
ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH
CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS,
TRADEMARKS OR OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR THE
PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOF.

The names and trademarks of copyright holders may NOT be used in advertising or publicity pertaining
to this document or its contents without specific, written prior permission. Title to copyright in this
document will at all times remain with copyright holders.

http://www.project-UDI.org

UDI Physical I/O Specification - Version 1.01 - 2/2/01 iii

Preface

Acknowledgements
The authors would like to thank everyone who reviewed working drafts of the specification and
submitted suggestions and corrections.

The authors would especially like to thank their significant others for putting up with the many hours of
overtime put into the development of this specification over long periods.

Thanks to the following folks who contributed significant amounts of time, ideas, or authoring in
support of the development of this specification or in working on the prototype implementations which
helped us validate the specification:

Richard Arndt (IBM)
Bob Barned (Lockheed Martin)
Mark Bradley (Adaptec)
Darren Busing (Adaptec)
Steve Bytnar (STG)
Thomas Clark (Sun)
Deven Corzine
Jack Craig (SCO)
Betty Dall (HP)
Tim Damron (IBM)
Burkhard Daniel (STG)
Don Dugger (Intel)
Mark Evenson (HP)
Barry Feild (SCO)
Scott Feldman (Intel)
Mike Firman (STG)
Kurt Gollhardt (SCO)
Bob Goudreau (Data General)
James Hall (SCO/Sun)
Jim Heidbrink (Lockheed Martin)
Chris Herzog (STG)
Chris Ilnicki (HP)
Bret Indrelee (SBS Technologies)
David Kahn (Sun)
Matt Kaufmann (SCO)
Andrew Knutsen (SCO)
Ahuva Kroizer (Intel)

Man Fai Lau (SCO)
John Lee (Sun)
Robert Lipe (SCO)
Mike Lyons (IBM)
Alex Malone (DEC)
Lynne McCue (IBM)
Bill Nicholls
Guru Pangal (Starcom)
Mark Parenti (DEC)
James Partridge (IBM)
Scott Popp (SCO)
Hiremane Radhakrishna (Intel)
John Ronciak (Intel)
Kevin Quick (Interphase)
Larry Robinson (Adaptec)
Andrew Schweig (STG)
Sam Shteingart (HP)
Ajmer Singh (SCO)
James Smart (Compaq)
Pete Smoot (HP)
David Stoft (HP)
Rob Tarte (Pacific Codeworks)
Wolfgang Thaler (Sun)
Ramaswamy Tummala (Starcom)
Linda Wang (Sun)
Kevin Van Maren (Unisys)
Mike Wenzel (HP)

Countless people have helped in one way or another and any omissions or errors on our part in the list
above are just that: omissions or errors on our part.

Thanks to Kevin Quick and the folks at Interphase for hosting the Interoperability events which have
provided a great venue for validating both prototype and production UDI products.

Finally, thanks to David Roberts (Certek Software Designs) for designing the Project UDI logo.

 Preface

 iv UDI Physical I/O Specification - Version 1.01 - 2/2/01

UDI Physical I/O Specification - Version 1.01 - 2/2/01 v

Table of Contents

Abstract ... i
Copyright Notice ..ii
Acknowledgements..iii
Table of Contents.. v
List of Reference Pages by Chapter ..vii
Alphabetical List of Symbols... ix

Section 1: Physical I/O Services

1 Introduction to Physical I/O ..1-1
1.1 Overview .. 1-1
1.2 General Requirements .. 1-1

1.2.1 Versioning ... 1-1
1.2.2 Header Files .. 1-2
1.2.3 Endianness Requirements ... 1-2

1.3 Normative References .. 1-2
1.4 Extensions to Static Driver Properties ... 1-2
1.5 Bus Bindings .. 1-3

2 DMA Constraints Management ..2-1
2.1 Overview .. 2-1

2.1.1 Constraints Attributes ... 2-1
2.2 Constraints Attributes Service Calls and Structures 2-2

3 Direct Memory Access (DMA)...3-1
3.1 Overview .. 3-1
3.2 DMA Block Vector Segment ... 3-1
3.3 DMA Service Calls and Structures .. 3-5
3.4 DMA Constraints Handle Transferability .. 3-40

4 Programmed I/O (PIO) ..4-1
4.1 Overview .. 4-1

 Table of Contents

 vi UDI Physical I/O Specification - Version 1.01 - 2/2/01

4.2 PIO Handle Allocation and Initialization ... 4-3
4.3 PIO Access Service Calls and Structures ... 4-13
4.4 PIO Handle Transferability .. 4-32

Section 2: Bus Bridge Metalanguage

5 Bus Bridge Metalanguage.. 5-1
5.1 Overview .. 5-1

5.1.1 Versioning ... 5-1
5.2 Binding/Unbinding Operations .. 5-3
5.3 Interrupt Registration Operations ... 5-12
5.4 Interrupt Event Operations ... 5-24
5.5 Static Properties Bindings .. 5-34
5.6 Instance Attribute Bindings ... 5-34
5.7 Bus Bridge Trace Events .. 5-34
5.8 Bus Bridge Metalanguage States ... 5-34
5.9 Bus Bridge Status Codes .. 5-35

Section 3: Bus Bindings

6 Introduction to Bus Bindings ... 6-1
6.1 Normative References .. 6-1
6.2 Header Files ... 6-1
6.3 PIO Bindings .. 6-1

6.3.1 udi_pio_map ... 6-1
6.4 Interrupt Bindings .. 6-1

6.4.1 Interrupt Index Values .. 6-1
6.4.2 Event Info ... 6-2

6.5 Instance Attribute Bindings ... 6-2
6.5.1 Enumeration Attributes ... 6-2
6.5.2 Filter Attributes ... 6-2
6.5.3 Generic Attributes ... 6-2
6.5.4 Parent-Visible Attributes .. 6-2

Section 4: Appendices

A Glossary.. A-1

Index...X-1

UDI Physical I/O Specification - Version 1.01 - 2/2/01 vii

List of Reference Pages by Chapter

Chapter 2 DMA Constraints Management
udi_dma_constraints_attr_spec_t - - Specify attribute/value pair..2-3
udi_dma_constraints_attr_set - - - - - Set constraints attributes..2-4
udi_dma_constraints_attr_reset - - - Reset a constraints attribute to default........................2-7
udi_dma_constraints_free - - - - - - - - Free a constraints object..2-8

Chapter 3 Direct Memory Access (DMA)
udi_dma_handle_t - - - - - - - - - - - - - - DMA handle type...3-6
udi_dma_limits - - - - - - - - - - - - - - - - Platform-specific allocation and access limits............3-7
udi_busaddr64_t - - - - - - - - - - - - - - - 64-bit bus address data type..3-9
udi_scgth_t - - - - - - - - - - - - - - - - - - - I/O Bus scatter/gather structure................................3-10
udi_dma_constraints_t - - - - - - - - - - UDI DMA constraints handle....................................3-14
udi_dma_constraints_attr_t - - - - - - - DMA constraints attributes..3-15
udi_dma_prepare - - - - - - - - - - - - - - - Prepare for DMA mapping..3-25
udi_dma_buf_map - - - - - - - - - - - - - - Map a buffer for DMA...3-26
udi_dma_buf_unmap - - - - - - - - - - - - Release a buffer’s DMA mapping..............................3-29
udi_dma_mem_alloc - - - - - - - - - - - - Allocate shared control structure memory.................3-30
udi_dma_sync - - - - - - - - - - - - - - - - - Sync host & device views of DMA-able memory.......3-34
udi_dma_scgth_sync - - - - - - - - - - - - Sync host & device views of scatter/gather list..........3-36
udi_dma_mem_barrier - - - - - - - - - - - Ordering barrier for accesses to DMA-able memory3-37
udi_dma_free - - - - - - - - - - - - - - - - - - Free DMA resources..3-38
udi_dma_mem_to_buf - - - - - - - - - - - Convert DMA-mapped control memory into a buffer3-39
udi_layout_t (DMA) - - - - - - - - - - - - - Data layout specifier for DMA...................................3-41

Chapter 4 Programmed I/O (PIO)
udi_pio_handle_t - - - - - - - - - - - - - - - PIO handle type...4-4
udi_pio_map - - - - - - - - - - - - - - - - - - Map device memory/registers for access.....................4-5
udi_pio_unmap - - - - - - - - - - - - - - - - Unmap a PIO handle and free associated resources...4-9
udi_pio_atomic_sizes - - - - - - - - - - - Retrieve supported PIO operation atomicity.............4-10
udi_pio_abort_sequence - - - - - - - - - Register a PIO abort sequence..................................4-11
udi_pio_trans_t - - - - - - - - - - - - - - - - PIO transaction descriptor..4-15
UDI_PIO_REP_ARGS - - - - - - - - - - - - Parameters for repeated PIO transactions................4-26
udi_pio_trans - - - - - - - - - - - - - - - - - - Generate PIO transactions..4-28
udi_pio_probe - - - - - - - - - - - - - - - - - Probe a PIO device that might not be present...........4-30
udi_layout_t (PIO) - - - - - - - - - - - - - - Data layout specifier for PIO.....................................4-33

Chapter 5 Bus Bridge Metalanguage
udi_bus_device_ops_t - - - - - - - - - - - Device driver entry point ops vector............................5-4

 List of Reference Pages by Chapter

 viii UDI Physical I/O Specification - Version 1.01 - 2/2/01

udi_bus_bridge_ops_t - - - - - - - - - - - Bridge driver entry point ops vector............................5-5
udi_bus_bind_cb_t - - - - - - - - - - - - - Control block for bus bridge binding operations.........5-6
udi_bus_bind_req - - - - - - - - - - - - - - Request a binding to a bridge driver............................5-7
udi_bus_bind_ack - - - - - - - - - - - - - - Acknowledge a bus bridge binding..............................5-8
udi_bus_unbind_req - - - - - - - - - - - - Request a bridge driver unbinding (child to bridge).5-10
udi_bus_unbind_ack - - - - - - - - - - - - Acknowledge a bus bridge unbinding........................5-11
udi_intr_attach_cb_t - - - - - - - - - - - - Control block for interrupt registration operations...5-13
udi_intr_attach_req - - - - - - - - - - - - - Request an interrupt attachment................................5-15
udi_intr_attach_ack - - - - - - - - - - - - - Acknowledge an interrupt attachment.......................5-19
udi_intr_attach_ack_unused - - - - - - Proxy for udi_intr_attach_ack...................................5-19
udi_intr_detach_cb_t - - - - - - - - - - - - Control block for interrupt detachment operations...5-21
udi_intr_detach_req - - - - - - - - - - - - - Request an interrupt detachment...............................5-22
udi_intr_detach_ack - - - - - - - - - - - - Acknowledge an interrupt detachment.......................5-23
udi_intr_detach_ack_unused - - - - - - Proxy for udi_intr_detach_ack..................................5-23
udi_intr_handler_ops_t - - - - - - - - - - Interrupt handler ops vector......................................5-25
udi_intr_dispatcher_ops_t - - - - - - - - Interrupt dispatcher ops vector..................................5-26
udi_intr_event_cb_t - - - - - - - - - - - - - Control block for interrupt event ops.........................5-27
udi_intr_event_ind - - - - - - - - - - - - - - Interrupt event indication...5-29
udi_intr_event_rdy - - - - - - - - - - - - - - Acknowledge an interrupt event.................................5-32

UDI Physical I/O Specification - Version 1.01 - 2/2/01 ix

Alphabetical List of Symbols

udi_bus_bind_ack ... 5-8
UDI_BUS_BIND_CB_NUM .. 5-6
udi_bus_bind_cb_t .. 5-6
udi_bus_bind_req .. 5-7
UDI_BUS_BRIDGE_OPS_NUM ... 5-5
udi_bus_bridge_ops_t ... 5-5
UDI_BUS_DEVICE_OPS_NUM ... 5-4
udi_bus_device_ops_t ... 5-4
UDI_BUS_INTR_ATTACH_CB_NUM ... 5-13
UDI_BUS_INTR_DETACH_CB_NUM .. 5-21
UDI_BUS_INTR_DISPATCH_OPS_NUM ... 5-26
UDI_BUS_INTR_EVENT_CB_NUM ... 5-27
UDI_BUS_INTR_HANDLER_OPS_NUM .. 5-25
udi_bus_unbind_ack ... 5-11
udi_bus_unbind_req .. 5-10
udi_busaddr64_t .. 3-9
UDI_DL_DMA_CONSTRAINTS_T ... 3-41
UDI_DL_PIO_HANDLE_T ... 4-33
UDI_DMA_ADDR_FIXED_BITS ... 3-15
UDI_DMA_ADDR_FIXED_TYPE .. 3-15
UDI_DMA_ADDR_FIXED_VALUE_HI .. 3-15
UDI_DMA_ADDR_FIXED_VALUE_LO ... 3-15
UDI_DMA_ADDRESSABLE_BITS ... 3-15
UDI_DMA_ALIGNMENT_BITS .. 3-15
UDI_DMA_ANY_ENDIAN .. 5-8
UDI_DMA_BIG_ENDIAN ... 3-15
udi_dma_buf_map ... 3-26
udi_dma_buf_unmap ... 3-29
udi_dma_constraints_attr_reset ... 2-7
udi_dma_constraints_attr_set .. 2-4
udi_dma_constraints_attr_spec_t .. 2-3
udi_dma_constraints_attr_t ... 3-15
UDI_DMA_CONSTRAINTS_COPY .. 2-4
udi_dma_constraints_free .. 2-8
udi_dma_constraints_t .. 3-14
UDI_DMA_DATA_ADDRESSABLE_BITS .. 3-15
UDI_DMA_ELEMENT_ALIGNMENT_BITS .. 3-15
UDI_DMA_ELEMENT_GRANULARITY_BITS .. 3-15
UDI_DMA_ELEMENT_LENGTH_BITS ... 3-15
UDI_DMA_FIXED_ELEMENT .. 3-15
UDI_DMA_FIXED_LIST ... 3-16
UDI_DMA_FIXED_VALUE ... 3-16

 Alphabetical List of Symbols

 x UDI Physical I/O Specification - Version 1.01 - 2/2/01

udi_dma_free ... 3-38
udi_dma_handle_t ... 3-6
UDI_DMA_IN .. 3-25
udi_dma_limits .. 3-7
UDI_DMA_LITTLE_ENDIAN .. 3-15
udi_dma_mem_alloc .. 3-30
udi_dma_mem_barrier ... 3-37
udi_dma_mem_to_buf ... 3-39
UDI_DMA_MIN_ALLOC_LIMIT .. 3-7
UDI_DMA_NEVERSWAP .. 3-30
UDI_DMA_NO_PARTIAL .. 3-15
UDI_DMA_OUT .. 3-25
udi_dma_prepare ... 3-25
UDI_DMA_REWIND .. 3-26
UDI_DMA_SCGTH_ADDRESSABLE_BITS ... 3-15
UDI_DMA_SCGTH_ALIGNMENT_BITS ... 3-15
UDI_DMA_SCGTH_ENDIANNESS .. 3-15
UDI_DMA_SCGTH_FORMAT .. 3-15
UDI_DMA_SCGTH_MAX_EL_PER_SEG ... 3-15
UDI_DMA_SCGTH_MAX_ELEMENTS ... 3-15
UDI_DMA_SCGTH_MAX_SEGMENTS .. 3-15
UDI_DMA_SCGTH_PREFIX_BYTES ... 3-15
udi_dma_scgth_sync ... 3-36
UDI_DMA_SEQUENTIAL .. 3-15
UDI_DMA_SLOP_BARRIER_BITS .. 3-15
UDI_DMA_SLOP_IN_BITS .. 3-15
UDI_DMA_SLOP_OUT_BITS .. 3-15
UDI_DMA_SLOP_OUT_EXTRA .. 3-15
udi_dma_sync ... 3-34
udi_intr_attach_ack ... 5-19
udi_intr_attach_ack_unused .. 5-19
udi_intr_attach_cb_t .. 5-13
udi_intr_attach_req .. 5-15
udi_intr_detach_ack .. 5-23
udi_intr_detach_ack_unused ... 5-23
udi_intr_detach_cb_t ... 5-21
udi_intr_detach_req ... 5-22
udi_intr_dispatcher_ops_t ... 5-26
udi_intr_event_cb_t ... 5-27
udi_intr_event_ind ... 5-29
udi_intr_event_rdy ... 5-32
udi_intr_handler_ops_t .. 5-25
UDI_INTR_MASKING_NOT_REQUIRED ... 5-29
UDI_INTR_NO_EVENT ... 5-27
UDI_INTR_OVERRUN_OCCURRED .. 5-29
UDI_INTR_PREPROCESSED .. 5-29
UDI_INTR_UNCLAIMED ... 5-27
udi_layout_t (DMA) .. 3-41
udi_layout_t (PIO) .. 4-33
UDI_NULL_DMA_CONSTRAINTS ... 3-14
UDI_NULL_DMA_HANDLE ... 3-6

UDI Physical I/O Specification - Version 1.01 - 2/2/01 xi

Alphabetical List of Symbols

UDI_NULL_PIO_HANDLE ... 4-4
UDI_PHYSIO_VERSION .. 1-1
UDI_PIO_16BYTE ... 4-15
UDI_PIO_1BYTE ... 4-15
UDI_PIO_2BYTE ... 4-15
UDI_PIO_32BYTE ... 4-15
UDI_PIO_4BYTE ... 4-15
UDI_PIO_8BYTE ... 4-15
udi_pio_abort_sequence ... 4-11
UDI_PIO_ADD .. 4-16
UDI_PIO_ADD_IMM .. 4-16
UDI_PIO_AND .. 4-15
UDI_PIO_AND_IMM .. 4-15
udi_pio_atomic_sizes .. 4-10
UDI_PIO_BARRIER .. 4-16
UDI_PIO_BIG_ENDIAN ... 4-5
UDI_PIO_BRANCH ... 4-16
UDI_PIO_BUF ... 4-15
UDI_PIO_CSKIP ... 4-15
UDI_PIO_DEBUG ... 4-16
UDI_PIO_DELAY .. 4-16
UDI_PIO_DIRECT ... 4-15
UDI_PIO_END .. 4-16
UDI_PIO_END_IMM .. 4-16
udi_pio_handle_t ... 4-4
UDI_PIO_IN .. 4-15
UDI_PIO_IN_IND .. 4-15
UDI_PIO_LABEL .. 4-16
UDI_PIO_LITTLE_ENDIAN ... 4-5
UDI_PIO_LOAD .. 4-15
UDI_PIO_LOAD_IMM .. 4-15
UDI_PIO_LOADCACHING_OK .. 4-5
udi_pio_map .. 4-5
UDI_PIO_MEM .. 4-15
UDI_PIO_MERGING_OK ... 4-5
UDI_PIO_NEVERSWAP .. 4-5
UDI_PIO_OR .. 4-16
UDI_PIO_OR_IMM .. 4-16
UDI_PIO_OUT .. 4-15
UDI_PIO_OUT_IND ... 4-15
udi_pio_probe .. 4-30
UDI_PIO_R0 ... 4-15
UDI_PIO_R1 ... 4-15
UDI_PIO_R2 ... 4-15
UDI_PIO_R3 ... 4-15
UDI_PIO_R4 ... 4-15
UDI_PIO_R5 ... 4-15
UDI_PIO_R6 ... 4-15
UDI_PIO_R7 ... 4-15
UDI_PIO_REP_ARGS ... 4-26
UDI_PIO_REP_IN_IND .. 4-16

 Alphabetical List of Symbols

 xii UDI Physical I/O Specification - Version 1.01 - 2/2/01

UDI_PIO_REP_OUT_IND .. 4-16
UDI_PIO_SCRATCH ... 4-15
UDI_PIO_SHIFT_LEFT .. 4-15
UDI_PIO_SHIFT_RIGHT .. 4-15
UDI_PIO_STORE .. 4-15
UDI_PIO_STORECACHING_OK ... 4-5
UDI_PIO_STRICTORDER ... 4-5
UDI_PIO_SUB .. 4-16
UDI_PIO_SYNC .. 4-16
UDI_PIO_SYNC_OUT ... 4-16
UDI_PIO_TRACE_DEV_NONE .. 4-16
UDI_PIO_TRACE_DEV1 ... 4-16
UDI_PIO_TRACE_DEV2 ... 4-16
UDI_PIO_TRACE_DEV3 ... 4-16
UDI_PIO_TRACE_OPS_NONE .. 4-16
UDI_PIO_TRACE_OPS1 ... 4-16
UDI_PIO_TRACE_OPS2 ... 4-16
UDI_PIO_TRACE_OPS3 ... 4-16
UDI_PIO_TRACE_REGS_NONE ... 4-16
UDI_PIO_TRACE_REGS1 ... 4-16
UDI_PIO_TRACE_REGS2 ... 4-16
UDI_PIO_TRACE_REGS3 ... 4-16
udi_pio_trans ... 4-28
udi_pio_trans_t .. 4-15
UDI_PIO_UNALIGNED .. 4-5
udi_pio_unmap .. 4-9
UDI_PIO_UNORDERED_OK ... 4-5
UDI_PIO_XOR .. 4-16
UDI_SCGTH_32 .. 3-10
UDI_SCGTH_64 .. 3-10
UDI_SCGTH_DMA_MAPPED .. 3-10
UDI_SCGTH_DRIVER_MAPPED ... 3-10
UDI_SCGTH_EXT ... 3-10
udi_scgth_t .. 3-10

UDI Physical I/O Specification

UDI Physical I/O Specification - Version 1.01

Section 1: Physical I/O Services

UDI Physical I/O Specification - Version 1.01 - 2/2/01 1-1
Section 1: Physical I/O Services

Introduction to Physical I/O 1

1.1 Overview

The UDI Physical I/O Specification specifies the services and metalanguage interfaces required to
support a UDI physical I/O driver. A physical I/O driver is one that controls a directly-attached device
(aka a physical device), which can be programmed without indirect access through another device.
Physical devices typically interface to the host system via an I/O bridge (aka I/O bus) and have registers
that are accessed by the host CPU via Programmed I/O (PIO). Physical devices may also generate
interrupts to the I/O bridge and/or support direct access to system memory via the I/O bridge (aka
DMA).

Section 1 introduces the general requirements, static driver property extensions, and additional UDI
services required in order to support physical I/O. Section 2 defines the Bus Bridge Metalanguage,
which is used by a physical I/O driver to communicate with its parent bus bridge driver. Section 3
defines the requirements for Bus Binding specifications.

1.2 General Requirements

Certain basic rules apply to all UDI Physical I/O drivers. In order to be UDI-compliant, a driver must
follow all of these rules. UDI Physical I/O drivers must also follow the rules specified in the UDI Core
Specification. Rules specific to Physical I/O drivers are listed here.

1.2.1 Versioning

All functions and structures defined in the UDI Physical I/O Specification, except for those defined in
Chapter 5, “Bus Bridge Metalanguage”, are part of the “udi_physio ” interface, currently at version
“0x101 ”. A driver that conforms to and uses the UDI Physical I/O Specification, Version 1.01, must
include the following declaration in its udiprops.txt file (see Chapter 30, “Static Driver
Properties”, of the UDI Core Specification):

requires udi_physio 0x101

In each UDI physical I/O driver source file, before including any UDI header files, the driver must
define the preprocessor symbol, UDI_PHYSIO_VERSION, to indicate the version of the UDI Physical
I/O Specification to which it conforms, which must be the same as the interface version defined above:

#define UDI_PHYSIO_VERSION 0x101

As defined in Section 30.4.6, “Requires Declaration,” on page 30-6 of the UDI Core Specification, the
two least-significant hexadecimal digits of the interface version represent the minor number; the rest of
the hex digits represent the major number. Versions that have the same “major version number” as an
earlier version shall be backward compatible with that earlier version (i.e. a strict superset).1

1. As an exception to this version compatibility, version 1.0 (0x100) is not forward compatible with any other versions bearing
the major number of 1; version 1.0 of the specification cannot be wholly implemented as a functional product.

Normative References Physical I/O Intro

1-2 UDI Physical I/O Specification - Version 1.01 - 2/2/01
Section 1: Physical I/O Services

1.2.2 Header Files

Each device driver source file must include the file “udi_physio.h ” after it includes “udi.h ”, as
follows:

#include <udi.h>

#include <udi_physio.h>

These header files contain environment-specific definitions of standard UDI structures and types, as well
as all function prototypes and other definitions needed to use the core and physical I/O UDI interfaces
and services. Additional include files may be needed for other non-core services and metalanguages as
defined in other UDI Specifications.

To maintain portability across UDI supportive platforms, device driver writers shall not assume any
knowledge of the contents of these header files with respect to implementation-dependent aspects of the
UDI interfaces (such as the definition of handles or abstract types). Similarly, drivers shall not access
any functions or objects external to the driver except those defined in the UDI Specifications to which
they conform.

1.2.3 Endianness Requirements

In general, UDI allows communicating drivers to run with different driver endianness (see Section 3.2.2,
“Common Terms”, in the UDI Core Specification), with the environment automatically handling
endianness conversions across channels, except for the contents of UDI buffers (whose endianness is
unknown to the environment). However, since the only mechanism for interrupt preprocessing (see
udi_intr_attach_req on page 4-13) to pass significant amounts of data to a device driver’s
interrupt handler is via UDI buffers, and since this mechanism processes that data in the bus bridge
driver’s endianness, the bus bridge driver (which is the parent of the device driver) must be running with
the same driver endianness as the device driver.

Therefore, any physical I/O driver shall be run with the same driver endianness as its parent.

1.3 Normative References

The UDI Physical I/O Specification references the UDI specifications listed below. These specifications
contain provisions that, through reference in this document, constitute provisions of the UDI Physical
I/O Specification.

1. UDI Core Specification, Version 1.01.

The UDI Physical I/O Specification also references the IEEE 1212.1 standard for Direct Memory Access
Devices, but these references are informational and do not constitute provisions of the UDI Physical I/O
Specification.

1.4 Extensions to Static Driver Properties

The UDI Physical I/O Specification defines the following extensions to the Static Driver Properties file,
udiprops.txt (see Chapter 30, “Static Driver Properties” in the UDI Core Specification). These
extensions are enabled by the presence of the following declaration anywhere in the file:

UDI Physical I/O Specification - Version 1.01 - 2/2/01 1-3
Section 1: Physical I/O Services

Physical I/O Intro Bus Bindings

requires udi_physio 0x101

Any driver that uses functions or structures from the UDI Physical I/O Specification must include the
above declaration in its Static Driver Properties.

The “region” declaration is extended to support the following additional region attributes:

A “nonsharable_interrupt” declaration is added:

nonsharable_interrupt <msgnum> [<intr_idx>]

At most one “nonsharable_interrupt” declaration must be included for each interrupt source of each
supported device. If present, this indicates that the specified interrupt source does not support sharing, so
must not be configured on the same interrupt line as another interrupt source. The <msgnum> must
match <msgnum> in a “device” declaration, and indicates that this declaration applies to that device.
The <intr_idx> , if present, selects one of several interrupt sources for the device, starting from zero;
if not present, all interrupt sources for the device are affected. This declaration may indicate that the
interrupt source is electrically non-sharable, or it may indicate a logically non-sharable interrupt source
(one for which there is no way for the driver to determine if the interrupt has actually been asserted).

A “pio_serialization_limit” declaration is added:

pio_serialization_limit <max_idx>

The “pio_serialization_limit” declaration specifies the maximum serialization_domain index
value that may be passed to udi_pio_map by the associated driver. A serialization domain is used to
insure that all PIO handles defined for that domain will be serialized (i.e. execution of one PIO trans list
must complete before execution of the next PIO trans list can be started). The driver developer must
decide the number of serialization domains required for the implementation of the driver and declare
that count in this declaration. Registering a PIO handle with a serialization domain index greater than
the value specified in this declaration is a driver error (i.e. the value specified by the driver for the
serialization_domain argument for the udi_pio_map operation must be in the range of
0..<max_idx >). If this declaration is not specified in the static properties file, the serialization limit
defaults to zero (a single serialization domain) and all PIO handles (if any) must be registered with a
serialization_domain index of 0. The maximum value for this declaration is 255.

1.5 Bus Bindings

The UDI Physical I/O Specification must be used in conjunction with one or more Bus Binding
definitions for the type(s) of physical I/O bus on which a driver’s device is supported. A UDI Bus
Binding definition provide the usage details that are specific to a particular bus type.

Table 1-1 Physical I/O Region Attributes

<region_attribute> <value> Meaning

type interrupt An interrupt region. See
udi_intr_attach_req on page 5-15.

pio_probe no Regions of this type never use
udi_pio_probe . This is the default value for
this attribute.

pio_probe yes Regions of this type may use udi_pio_probe .
(See udi_pio_probe on page 4-30.)

Bus Bindings Physical I/O Intro

1-4 UDI Physical I/O Specification - Version 1.01 - 2/2/01
Section 1: Physical I/O Services

Chapter 6, “Introduction to Bus Bindings”, defines the general requirements on UDI Bus Binding
definitions. The actual Bus Binding definitions are found in other specifications, such as the UDI PCI
Bus Binding Specification.

UDI Physical I/O Specification - Version 1.01 - 2/2/01 2-1
Section 3: Physical I/O Services

DMA Constraints Management 2

2.1 Overview

The service calls in this chapter are used to manage constraints objects that are used to reflect drivers’
constraints on buffer data and transfer properties. Constraints are used to indicate the data access
capabilities and restrictions of the hardware and associated drivers as well as the various capabilities of
software modules and drivers in the I/O handling path.

Constraints are first constructed in the environment by starting with a completely unconstrained set of
constraints attributes, and are subjected to any restrictions imposed by the native bridge or any
intervening bus bridges and then passed to the driver as its initial constraints object. Constraints may
subsequently be set to more restrictive values by that driver or any other module in the data path,
including the environment, the bus and any bus bridges, and any children of the driver.

To provide this capability, UDI defines a set of services used to set the values of various constraints. The
environment implementation of constraints may include the ability to update the constraints at any time
due to hardware events (e.g. hot swap), reconfiguration events (hardware or software), or changes in
software parameters.

2.1.1 Constraints Attributes

Constraints may be imposed from several sources and are specified in terms of constraints attributes.

At the lowest level, constraints attributes indicate the host data access capabilities of the device. Any
restrictions of the DMA engine on the device should be indicated by restricting one or more constraints
attributes accordingly. For example, a device with only a 16-bit DMA address generation capability
would indicate this by modifying the initial address-size constraints settings.

The constraints may then be combined in various combinations with other constraints or specific
constraints attributes may be set by a driver to accurately represent the situations where the
corresponding constraints apply. Drivers with different DMA constraints for different types of operations
will typically have a different constraints handle for each operation type. Multiplexing drivers would
typically combine constraints as dictated by the multiplexing possibilities to ensure that the constraints
used are sufficient for all possible DMA uses.

The UDI environment need not adhere to constraints at resource allocation time. Instead, constraints
may be ignored by the environment (if desired) up to such time as the constraint is applicable. A DMA
constraint does not need to be explicitly adhered to until such time as a DMA mapping operation is
performed. If the constraint is not honored at the time of initial resource allocation, the resource may
need to be re-allocated at the time the constraint must be honored.

Constraints Attributes Service Calls and Structures

2-2 UDI Physical I/O Specification - Version 1.01 - 2/2/01
Section 3: Physical I/O Services

2.2 Constraints Attributes Service Calls and Structures

The functions in this section provide constraints attribute management services. These services include
the ability to set or reset attributes on an existing constraints object, to combine constraints objects by
merging attributes, and to make copies of existing constraints objects.

UDI Physical I/O Specification - Version 1.01 - 2/2/01 2-3
Section 3: Physical I/O Services

Constraints udi_dma_constraints_attr_spec_t

NAME udi_dma_constraints_attr_spec_t Specify attribute/value pair

SYNOPSIS #include <udi.h>

typedef struct {
udi_dma_constraints_attr_t attr_type ;
udi_ubit32_t attr_value ;

} udi_dma_constraints_attr_spec_t ;

MEMBERS attr_type is the attribute being specified.

attr_value is the value for the attribute.

DESCRIPTION The udi_dma_constraints_attr_spec_t structure is used to
associate an attribute with its corresponding value. An array of these
structures is used as an argument for the
udi_dma_constraints_attr_set operation to specify a list of
attributes and their values to be set.

REFERENCES udi_dma_constraints_attr_t,
udi_dma_constraints_attr_set

2-4 UDI Physical I/O Specification - Version 1.01 - 2/2/01
Section 3: Physical I/O Services

udi_dma_constraints_attr_set Constraints

NAME udi_dma_constraints_attr_set Set constraints attributes

SYNOPSIS #include <udi.h>

void udi_dma_constraints_attr_set (
udi_dma_constraints_attr_set_call_t * callback ,
udi_cb_t * gcb ,
udi_dma_constraints_t src_constraints ,
const udi_dma_constraints_attr_spec_t * attr_list ,
udi_ubit16_t list_length ,
udi_ubit8_t flags);

typedef void udi_dma_constraints_attr_set_call_t (
udi_cb_t * gcb ,
udi_dma_constraints_t new_constraints ,
udi_status_t status);

/* Constraints Flags */

#define UDI_DMA_CONSTRAINTS_COPY (1U <<0)

ARGUMENTS callback, gcb are standard arguments described in the “Asynchronous
Service Calls” section of “Standard Calling Sequences” in the
UDI Core Specification

src_constraints is a constraints handle for the constraints object to be
modified.

attr_list is the list of attributes and values to set.

list_length is the number of valid entries in the attr_list array.

flags is a bitmask of optional flags, which may include zero or more of
the following:

UDI_DMA_CONSTRAINTS_COPY Make a copy of
src_constraints before applying the new attributes.

new_constraints is a new constraints handle for the modified
constraints object. This replaces the src_constraints
handle.

status is a UDI status code indicating the success or failure of the
constraints modification operation.

DESCRIPTION udi_dma_constraints_attr_set sets or changes one or more
attribute values in the constraints object referenced by the
src_constraints handle. The attr_list argument indicates this
driver’s requirements for the specified constraints attributes.

If UDI_DMA_CONSTRAINTS_COPY is set in flags , then
src_constraints must be non-null, and a new constraints object will be
allocated with its values copied from src_constraints ; the new attribute
values from attr_list will be applied to the new copy, which will then be

UDI Physical I/O Specification - Version 1.01 - 2/2/01 2-5
Section 3: Physical I/O Services

Constraints udi_dma_constraints_attr_set

passed back to the driver via new_constraints ; the original source
constraints object will retain its original values, but must not again be
referenced by the driver until the callback.

If UDI_DMA_CONSTRAINTS_COPY is not set, the original source object (if
any) will be consumed, and a handle to the newly modified object will be
passed back to the driver via new_constraints in the callback. In this
case, the driver must subsequently use the new_constraints value in
place of src_constraints . If src_constraints was null, a new
constraints object will be allocated.

Most attributes have a defined range of least restrictive to most restrictive
values, as specified with the description of the attribute. In these cases,
udi_dma_constraints_attr_set sets the new value for an attribute to
be the more restrictive of the specified attr_list entry’s attr_value
and the attribute’s current value.

For example, if the current value of UDI_DMA_ELEMENT_LENGTH_BITS
were 64 and the attr_list entry’s attr_value were 32, the new value
would be 32; but if attr_list entry’s attr_value were 128, the
attribute value would remain set to 64, since 64 is more restrictive than 128
for UDI_DMA_ELEMENT_LENGTH_BITS.

A few attributes have no defined sense of less or more restrictive. These are
marked as “N/A” (not applicable). For these attributes, the new value is
simply set to the value specified in the attr_list entry.

Once all attributes in the attr_list have been processed, the callback
routine is invoked to notify the driver that the constraints object has been
modified and the success or failure of that modification.

The udi_dma_constraints_attr_set operation may fail with
status set to UDI_STAT_NOT_SUPPORTED if the requested attributes
cannot be supported on a given system. The UDI_STAT_NOT_SUPPORTED
error case is not intended to catch invalid attribute values. If attribute values
are used that are outside the valid ranges documented for the attribute, the
results are implementation-dependent.

If status indicates failure, the constraints object passed back in
new_constraints shall have the same constraints attribute values as the
original, and no additional constraints objects shall be allocated (even if
UDI_DMA_CONSTRAINTS_COPY was set in the call).

WARNINGS Control block usage must follow the rules described in the “Asynchronous
Service Calls” section of “Standard Calling Sequences” in the UDI Core
Specification.

Use of the attr_list parameter must conform to the rules described in
Section 5.2.1.1, “Using Memory Pointers with Asynchronous Service Calls,”
on page 5-2.

STATUS VALUES UDI_OK successful modification of the constraints attributes

2-6 UDI Physical I/O Specification - Version 1.01 - 2/2/01
Section 3: Physical I/O Services

udi_dma_constraints_attr_set Constraints

UDI_STAT_NOT_SUPPORTED environment and/or platform cannot support
the requested combination of attributes.

REFERENCES udi_dma_constraints_attr_spec_t,
udi_dma_constraints_attr_reset

UDI Physical I/O Specification - Version 1.01 - 2/2/01 2-7
Section 3: Physical I/O Services

Constraints udi_dma_constraints_attr_reset

NAME udi_dma_constraints_attr_reset Reset a constraints attribute to
default

SYNOPSIS #include <udi.h>

void udi_dma_constraints_attr_reset (
udi_dma_constraints_t constraints ,
udi_dma_constraints_attr_t attr_type);

ARGUMENTS constraints is a constraints handle for the constraints object to be
modified.

attr_type is the attribute to reset.

DESCRIPTION udi_dma_constraints_attr_reset is used to reset a constraints
attribute back to its default value (which is also usually the least restrictive).
This is usually needed when a particular module provides special handling
relative to the constraints attribute such that any restrictions imposed by parent
or child drivers are not transferred through this driver.

REFERENCES udi_dma_constraints_attr_set,
udi_dma_constraints_attr_t

2-8 UDI Physical I/O Specification - Version 1.01 - 2/2/01
Section 3: Physical I/O Services

udi_dma_constraints_free Constraints

NAME udi_dma_constraints_free Free a constraints object

SYNOPSIS #include <udi.h>

void udi_dma_constraints_free (
udi_dma_constraints_t constraints);

ARGUMENTS constraints is a handle for the constraints object being deallocated.

DESCRIPTION udi_dma_constraints_free releases all resources associated with the
constraints object.

If constraints is equal to UDI_NULL_CONSTRAINTS, explicitly or
implicitly (zeroed by initial value or by using udi_memset), this function
acts as a no-op. Otherwise, constraints must have been allocated by
udi_dma_constraints_combine or passed to the driver via a channel
operation.

UDI Physical I/O Specification - Version 1.01 - 2/2/01 3-1
Section 1: Physical I/O Services

Direct Memory Access (DMA) 3

3.1 Overview

Direct Memory Access (DMA) refers to data transfers initiated by a device to access system memory.
This is contrasted with Programmed I/O (PIO), which involves transfers initiated by a CPU under driver
software control to access registers or memory on a device.

UDI DMA services can be used to set up a UDI buffer or a piece of system memory for a DMA data
transfer, to build scatter/gather lists, and to synchronize DMA caches. UDI DMA service calls use an
opaque DMA handle to refer to DMA resources managed by the environment. DMA handles are
allocated by udi_dma_prepare or udi_dma_mem_alloc and use the udi_dma_handle_t
opaque handle type.

In order for a buffer or system memory to be usable for DMA, it must first be mapped for DMA access
and a scatter/gather list describing the relevant address ranges must be built. This is accomplished using
udi_dma_buf_map for UDI buffers or udi_dma_mem_alloc for shared control structures in
system memory. These functions provide the driver with an IEEE 1212.1 compatible DMA scatter/gather
list (see “DMA Block Vector Segment” below). The scatter/gather list contains a set of bus address-length
pairs, referencing the DMA target, which the driver may use as-is, translate in place, or copy to the
scatter/gather entries of its device’s DMA engine, as is appropriate for its device.

If a buffer is too big to handle in one DMA transfer (for example, due to constraints on the number of
scatter/gather elements that the DMA engine can support), udi_dma_buf_map will set up a partial
transfer. The driver will then perform multiple transfers in order to complete the original buffer request,
calling udi_dma_buf_map repeatedly to refill the scatter/gather list after each partial transfer.

3.2 DMA Block Vector Segment

As mentioned in the UDI Core Specification, Chapter 13, “Buffer Management”, buffers are logically
contiguous but possibly virtually and physically scattered. Such discontiguities are not visible to drivers,
however, except in the way they are mapped for DMA so they can be accessed by a driver’s device. The
data structures in this section are used to represent the individual address-length pairs for each
contiguous (from the card’s viewpoint) block of data. These structures are intended to be as simple and
convenient as possible for communicating between UDI and the driver. However, when mapping buffers
for DMA, it would be even more advantageous if the I/O card could traverse these structures directly. To
this end, UDI uses IEEE-1212.1 compatible scatter/gather structures.

I/O Block Vector Segments are IEEE-1212.1 compatible data structures that allow the I/O Unit to
perform reads (writes) to (from) more than one physical segment (e.g., page) in a single request. The
IEEE-1212.1 DMA Framework defines standard structures for representing physically-scattered but
logically-contiguous data. There are two formats defined, one for buses with 32-bit addresses and one
for 64-bit addresses, as shown in Figure 3-1.

DMA Block Vector Segment DMA

3-2 UDI Physical I/O Specification - Version 1.01 - 2/2/01
Section 1: Physical I/O Services

As described in IEEE-1212.1, each address-length pair in a block vector segment points to and delimits
a block of data bytes that is contiguous from the perspective of the I/O card. If the Ext bit is 0 for a pair,
the address references payload data. If the Ext bit is 1, the address references an extension of the Block
Vector structure itself (i.e., another array of address-length pairs) and the length indicates the physical
size of this extension segment in bytes (which facilitates pre-fetch). Each block vector segment can
contain at most one extension address; trees of vector segments are not allowed but chains of segments
(end-to-start) are allowed. Any address-length pairs that may follow an extension address are ignored.

UDI limits its use of the flexibility allowed by IEEE-1212.1 in that for any Block Vector segment
created by the environment, only the last address-length pair in a segment will ever be an indirect
pointer to another Block Vector segment. All other address-length pairs will only reference data. This
allows drivers for devices that are only partially IEEE-1212.1 compatible to manipulate address-length
pairs without searching for indirect Block Vector references.

Environments must construct block vector segments according to the following rules (adapted from
IEEE-1212.1) and the driver-specified DMA constraints (see udi_dma_constraints_attr_t on page
3-15).

1. Environments should use as few segments as possible, for space and time efficiency.

Figure 3-1 IEEE-1212.1 Block Vector Structure

N+1 Block_length

N+2 Block_length

N+1 Block_bus_address

N+2 Block_bus_address

N+1 Block_bus_address

N+1 Block_length

N+2 Block_bus_address

N+2 Block_length

N+M Block_bus_address

N+M Block_length

N+M Block_bus_address
N+M Block_length

32-Bit Supportive 64-Bit Supportive

0
4
8

16

Byte

Block Vector Segments
are located in allocated
System Memory and pointed to
by other vector segments.

Ext

Ext

Ext

N+1 ReservedExt

N+2 ReservedExt

N+M ReservedExt

Structures are shown address-invariant and folded four bytes wide, left to right, top to bottom,
top-left is lowest-order byte address. All subfields are endian-sensitive.
Addresses are bus addresses and lengths are in the I/O card’s endian.

UDI Physical I/O Specification - Version 1.01 - 2/2/01 3-3
Section 1: Physical I/O Services

DMA DMA Block Vector Segment

2. When extension segments are used, the UDI_SCGTH_EXT flag bit shows whether an
element references payload data (0) or the next Block Vector extension segment (1). If an
extension segment is referenced, the block_length field gives the size of the next
segment (making it easier for the I/O Unit to handle the segment in one block-copy
operation, if desired); this size includes the indirect element, if any. The length of the last
segment may extend beyond the end of the last element. The driver (or device) can always
realize it has reached the last element in a segment by either encountering an indirect
element, or by reaching the required total data length or total number of direct elements
(see scgth_num_elements in udi_scgth_t on page 3-10).

3. When a data segment is referenced by block_busaddr (i.e., UDI_SCGTH_EXT is 0),
the byte referenced by this I/O address will be aligned as specified by the associated DMA
constraints; the block_length field, which may also be odd and will be ≥ zero, gives
the number of contiguous bytes of data to be sent, or space available to receive data.

4. The first indirect element in a vector segment causes the I/O Unit to follow to the next
segment, ignoring any following address-length pairs in the current Block Vector segment.
Therefore, for speed and simplicity, Block Vector Segments are single-threaded rather than
stacked to build trees, arrays, or circular lists of extension segments. Only the last address-
length pair in a segment will ever contain an indirect element; the last address-length pair
in a Block Vector segment will only contain an indirect element, or be unused at the end of
the data transfer.

Figure 3-2 Example of Vector Use and Extension

Now is the time for all good men to come to the aid...

Block 0 Length
(Ext flag clear)

Block 2 Length
(Ext flag clear)

Segment A

Memory Blocks with "Contiguous" Information

Segment B

Extension Length
(Ext flag set)

Total payload data length is passed separately;
might be less than the sum of the Block Length fields.

0 Block 0 Length

0 Block 1 Length

1 Extension Length

0 Block 2 Length

0

0

Block 0 Block 1 Block 2

Block 1 Length
(Ext flag clear)

DMA Block Vector Segment DMA

3-4 UDI Physical I/O Specification - Version 1.01 - 2/2/01
Section 1: Physical I/O Services

5. The total amount of data contained by the logically contiguous buffer represented by these
structures is carried by some other vehicle (normally a metalanguage control block) and a
transfer must be terminated when this number of bytes have been handled, regardless of
whether additional bytes of buffer space are indicated by the address-length pairs. This is
true for both inbound and outbound data transfers. All elements in a vector are usable.

6. Null address values are not defined since I/O bus addresses are used and all values are
valid addresses. Zero-length data segments are allowed for flexibility in use by higher
software layers (however, they are not encouraged because of the slight performance
impact). These shall be ignored. Block_length must not be zero if the
UDI_SCGTH_EXT flag is set.

7. All address-length pairs of a given block vector must have the same structure, 32- versus
64-bit supportive (therefore, one scgth_format value applies to the entire scatter/gather
list). Also, for card/host compatibility, block vector segments will be aligned according to
the address size of their format; i.e., 32-bit supportive block vector segments shall be at
least 4-byte aligned, and 64-bit supportive segments shall be at least 8-byte aligned.

8. All fields of block vector segments are endian-sensitive, including the UDI_SCGTH_EXT
flag.

9. The reserved field for the 64-bit format shall be set to zero when initialized and must be
ignored when read.

UDI Physical I/O Specification - Version 1.01 - 2/2/01 3-5
Section 1: Physical I/O Services

DMA DMA Service Calls and Structures

3.3 DMA Service Calls and Structures

3-6 UDI Physical I/O Specification - Version 1.01 - 2/2/01
Section 1: Physical I/O Services

udi_dma_handle_t DMA

NAME udi_dma_handle_t DMA handle type

SYNOPSIS #include <udi.h>
#include <udi_physio.h>

typedef <HANDLE> udi_dma_handle_t ;

/* Null handle value for udi_dma_handle_t */

#define UDI_NULL_DMA_HANDLE <N ULL_HANDLE>

DESCRIPTION The DMA handle type, udi_dma_handle_t , holds an opaque handle that
refers to DMA resources managed by the environment.

DMA handles are not transferable between regions.

UDI Physical I/O Specification - Version 1.01 - 2/2/01 3-7
Section 1: Physical I/O Services

DMA udi_dma_limits

NAME udi_dma_limits Platform-specific allocation and
access limits

SYNOPSIS #include <udi.h>
#include <udi_physio.h>

typedef struct {
udi_size_t max_legal_contig_alloc ;
udi_size_t max_safe_contig_alloc ;
udi_size_t cache_line_size ;

} udi_dma_limits_t ;

void udi_dma_limits (
udi_dma_limits_t * dma_limits);

/* Guaranteed Minimum Allocation Size */

#define UDI_DMA_MIN_ALLOC_LIMIT 4000

MEMBERS max_legal_contig_alloc is the maximum legal size of a single DMA-
able memory element (one element in a udi_scgth_t
scatter/gather list) that can be requested from
udi_dma_mem_alloc or udi_dma_buf_map . Any request
for a larger size will produce indeterminate results, which could
include termination of the driver or region, or even a complete
system abort.

max_safe_contig_alloc is the maximum size of a single DMA-able
memory element that should be requested from
udi_dma_mem_alloc or udi_dma_buf_map without being
prepared to cancel an unsuccessful allocation.

cache_line_size is the size, in bytes, of the largest cache line that affects
DMA-able memory.

DESCRIPTION udi_dma_limits_t reflects the DMA memory allocation limits available
on a particular system, for a particular region. These limits may vary from
region to region, but will remain constant for the life of a region.

The udi_dma_limits_t structure is passed back to a driver by a call to
udi_dma_limits .

Since UDI can be implemented on a wide variety of systems from small
embedded systems to large server systems, the ability to provide contiguous
DMA-able memory through udi_dma_mem_alloc and
udi_dma_buf_map can vary widely. udi_dma_limits allows drivers to
adjust their allocation algorithms to best fit their environment.

There are two types of allocation limits: legal limits and safe limits. Legal
limits represent the absolute upper bound on a single allocation. Drivers must
not make requests that would exceed the legal limits.

3-8 UDI Physical I/O Specification - Version 1.01 - 2/2/01
Section 1: Physical I/O Services

udi_dma_limits DMA

Safe limits represent the maximum amount that a driver may safely request
without arranging to deal with unsuccessful allocations. For any size greater
than the safe limit (but not exceeding the legal limit), drivers must cancel the
request (using udi_cancel) after a reasonable amount of time has expired.
To do this, they must set a timer using udi_timer_start or
udi_timer_start_repeating . Drivers may also cancel allocations
below the safe limit, but they are not expected to do so.

The max_legal_contig_alloc and max_safe_contig_alloc
limits affect the size of a DMA-able memory element (one element in a
udi_scgth_t scatter/gather list), which must be contiguous in bus address
space. In most cases, DMA constraints allow the environment sufficient
flexibility to use smaller pieces; in such cases, these limits wouldn’t matter.
However, the following DMA and transfer constraints attributes could force
the environment to use larger element sizes:

UDI_DMA_ELEMENT_GRANULARITY_BITS

UDI_DMA_SCGTH_MAX_ELEMENTS

UDI_DMA_NO_PARTIAL

UDI_XFER_GRANULARITY

All of the above allocation limits are guaranteed to be greater than or equal to
UDI_DMA_MIN_ALLOC_LIMIT (4000 bytes). This means drivers don’t
need to check these limits for requests that don’t exceed 4000 bytes.

The cache_line_size value may be used to set appropriate DMA
constraints for devices that need data or “slop” aligned on cache line
boundaries.

REFERENCES udi_limits_t, udi_dma_mem_alloc, udi_dma_buf_map,
udi_cancel

UDI Physical I/O Specification - Version 1.01 - 2/2/01 3-9
Section 1: Physical I/O Services

DMA udi_busaddr64_t

NAME udi_busaddr64_t 64-bit bus address data type

SYNOPSIS #include <udi.h>
#include <udi_physio.h>

typedef <OPAQUE> udi_busaddr64_t ;

DESCRIPTION The udi_busaddr64_t type used for bus addresses in the
UDI_SCGTH_64 format is a self-contained opaque type that is guaranteed to
be 64 bits in size and hold a bus address in the appropriate endianness. Drivers
may copy udi_busaddr64_t values using assignment statements, or pass
them by value or by reference to function calls, but may not use arithmetic
operations or otherwise make assumptions about the internal structure of this
data type. When swapping endianness of a udi_busaddr64_t value,
drivers must use an 8-byte (64-bit) transaction size with a utility function to
ensure proper endianness conversion (see Section 22.2.3, “Endian-Swapping
Utilities,” on page 22-11 of the UDI Core Specification).

WARNINGS The udi_busaddr64_t type is not transferable between regions.

3-10 UDI Physical I/O Specification - Version 1.01 - 2/2/01
Section 1: Physical I/O Services

udi_scgth_t DMA

NAME udi_scgth_t I/O Bus scatter/gather structure

SYNOPSIS #include <udi.h>
#include <udi_physio.h>

typedef struct {
udi_ubit32_t block_busaddr ;
udi_ubit32_t block_length ;

} udi_scgth_element_32_t;

typedef struct {
udi_busaddr64_t block_busaddr ;
udi_ubit32_t block_length ;
udi_ubit32_t el_reserved ;

} udi_scgth_element_64_t;

/* Extension Flag */

#define UDI_SCGTH_EXT 0x8 0000000

typedef struct {
udi_ubit16_t scgth_num_elements ;
udi_ubit8_t scgth_format ;
udi_boolean_t scgth_must_swap ;
union {
 udi_scgth_element_32_t * el32p ;
 udi_scgth_element_64_t * el64p ;
} scgth_elements ;
union {
 udi_scgth_element_32_t el32 ;
 udi_scgth_element_64_t el64 ;
} scgth_first_segment ;

} udi_scgth_t ;

/* Values for scgth_format */

#define UDI_SCGTH_32 (1U <<0)

#define UDI_SCGTH_64 (1U <<1)

#define UDI_SCGTH_DMA_MAPPED (1U<<6)

#define UDI_SCGTH_DRIVER_MAPPED (1U <<7)

MEMBERS block_busaddr is the I/O card-relative bus address of a contiguous block
of data bytes (if UDI_SCGTH_EXT bit is cleared), or an
extension array of udi_scgth_element_t elements (if
UDI_SCGTH_EXT is set). These blocks are contiguous from the
I/O card’s perspective. See the DESCRIPTION below for
comments on device endianness.

block_length is the length of the related block. If this is an extension
element (the UDI_SCGTH_EXT bit is set) then this is the size in
bytes of the next scatter/gather block, including the indirect
element in that block, if present. If this is not an extension

UDI Physical I/O Specification - Version 1.01 - 2/2/01 3-11
Section 1: Physical I/O Services

DMA udi_scgth_t

element then this is the size in bytes of the DMA data associated
with this block_busaddr . In the UDI_SCGTH_32 format, the
UDI_SCGTH_EXT bit is part of this field.

el_reserved includes the UDI_SCGTH_EXT bit in the UDI_SCGTH_64
format. Other bits are unused.

UDI_SCGTH_EXT is a mask value, to be applied to the block_length
field of a udi_scgth_element_32_t or the el_reserved
field of a udi_scgth_element_64_t . If this bit is set, then
the scatter/gather element is an indirect reference to a possibly
physically-discontiguous continuation of the scatter/gather list.

scgth_num_elements gives the number of direct
udi_scgth_element_t elements included in the entire
scatter/gather list (indirect elements are not included, but
elements from all segments are included). This may be used to
estimate I/O driver control resources.

scgth_format indicates the format of the scatter/gather elements. Exactly
one of the following flags will be set in scgth_format ,
corresponding to the 32-bit and 64-bit scatter/gather formats,
respectively:
 UDI_SCGTH_32
 UDI_SCGTH_64

In addition, the UDI_SCGTH_DMA_MAPPED flag will be set
if the scatter/gather list is “DMA-mapped”, meaning that the list
elements themselves are made readable from the adapter via
DMA and are in an endianness appropriate for access by the
device (as indicated by the UDI_DMA_SCGTH_ENDIANNESS
constraints attribute). The driver must ensure that its DMA
device does not write to the scatter/gather list memory.

The UDI_SCGTH_DRIVER_MAPPED flag will be set if the
scatter/gather list is (also) “driver-mapped”, meaning that the list
elements are readable from the driver via the el32p or el64p
pointer. Otherwise, these pointers are unused and their value is
unspecified. The list elements will be in the driver’s endianness if
and only if driver-mapped and not DMA-mapped.

The scgth_format value used for a scatter/gather list is
determined by the value of the UDI_DMA_SCGTH_FORMAT
constraints attribute used to create the scatter/gather list.

scgth_must_swap is a flag indicating that the driver must swap endianness
when accessing driver-mapped list elements via el32p or
el64p . This flag will always be FALSE if the scatter/gather list
is not DMA-mapped. If not driver-mapped, the value of the flag
is unspecified and must not be used. When the scatter/gather list
is both DMA-mapped and driver-mapped, the driver must check

3-12 UDI Physical I/O Specification - Version 1.01 - 2/2/01
Section 1: Physical I/O Services

udi_scgth_t DMA

this flag; it must not assume it knows whether or not to swap,
based on its specified UDI_DMA_SCGTH_ENDIANNESS, since
interposed bus bridges may change the endianness.

See Section 22.2, “Endianness Management,” on page 22-2 of
the UDI Core Specification for details on how to construct C
structure definitions for proper endianness handling, and the
endian swapping utilities that are available.

el32p, el64p are members of the scgth_elements union. One of these,
depending on the value of scgth_format , will be set to be a
pointer to the scatter/gather list in the driver’s address space if
UDI_SCGTH_DRIVER_MAPPED is set in scgth_format .

scgth_first_segment is only used for DMA-mapped scatter/gather
lists. Depending on the value of scgth_format , el32 or
el64 contains the I/O-card relative address of the beginning of
the scatter/gather list and the length in bytes of the first segment
in this list. scgth_first_segment is similar to an IEEE-
1212.1 indirect element, except that the UDI_SCGTH_EXT bit is
never set.

DESCRIPTION The udi_scgth_t structure provides a way to access the block vector array
segment(s) that describe the memory addresses of a DMA-mapped data buffer
or shared control structure memory. Scatter/gather lists are built by the
environment as a result of calls to udi_dma_buf_map or
udi_dma_mem_alloc .

Scatter/gather lists are presented in either 32-bit or 64-bit format, as requested
by the driver through its DMA constraints. The format used is reported back
to the driver through scgth_format . (See UDI_DMA_SCGTH_FORMAT
on page page 3-18 in udi_dma_constraints_attr_t on page 3-15.)

Depending on the value of the UDI_DMA_SCGTH_FORMAT constraints
attribute, the scatter/gather elements may be DMA-mapped, driver-mapped, or
both. The driver chooses the appropriate visibility depending on how closely
its device’s scatter/gather format resembles the UDI scatter/gather list format
(which is based on IEEE-1212.1). If they are identical, the driver should
choose UDI_SCGTH_DMA_MAPPED and let its device access the
scatter/gather list directly. If the formats are similar, but not identical, the
driver may choose to use both UDI_SCGTH_DMA_MAPPED and
UDI_SCGTH_DRIVER_MAPPED and modify the scatter/gather elements in
place (being careful to observe scgth_must_swap if set) before having the
device access the list. Otherwise, the driver should use just
UDI_SCGTH_DRIVER_MAPPED and use separately allocated DMA-able
memory or PIO to build a scatter/gather list in the appropriate format, based
on the values it reads from the scgth_elements array.

If DMA-mapped, the memory for the scatter/gather segments themselves will
conform to the DMA constraints related to scatter-gatter memory, and the
associated udi_scgth_t structure will contain an indirect reference to the
first element of the scatter/gather list in scgth_first_segment . The

UDI Physical I/O Specification - Version 1.01 - 2/2/01 3-13
Section 1: Physical I/O Services

DMA udi_scgth_t

members of the el32 or el64 element within this union are in the driver’s
endianness. The block_busaddr member contains the I/O card-relative
address of the beginning of the scatter/gather list, and the block_length
member contains the length of the first segment of this list, including an
indirect element, if any exists.

If not DMA-mapped, the scgth_first_segment field of udi_scgth_t
is not valid, and the scatter/gather list will not contain extension elements
(UDI_SCGTH_EXT); the entire list is provided in a single block vector
segment.

The environment’s use of the IEEE-1212.1 structures is such that all the
udi_scgth_element_t elements in a block vector segment are used
before chaining to the next segment. Therefore, the driver can use the length
of the block vector segment to determine where the next indirect
udi_scgth_element_t pair is, if any. Therefore, it is not necessary for
the driver to check for UDI_SCGTH_EXT for other elements in the segment.
Note, though, that the last segment may contain fewer elements than covered
by the length of the segment; the total number of direct elements
(scgth_num_elements) or the total size of the mapped memory must be
used to determine that the end of the list has been reached.

WARNINGS The udi_scgth_t type is not transferable between regions.

3-14 UDI Physical I/O Specification - Version 1.01 - 2/2/01
Section 1: Physical I/O Services

udi_dma_constraints_t DMA

NAME udi_dma_constraints_t UDI DMA constraints handle

SYNOPSIS #include <udi.h>
#include <udi_physio.h>

typedef <HANDLE> udi_dma_constraints_t ;

/* NULL dma constraints constant */

#define UDI_NULL_DMA_CONSTRAINTS <NULL_HANDLE>

DESCRIPTION When buffer data is passed to a driver, it may be required to satisfy a set of
DMA constraints, such as maximum transfer size or device offset alignment.
In order for drivers to express their DMA constraints UDI defines a DMA
constraints object, which is accessed via an opaque dma constraints handle:

DMA Constraints handles are used by the environment to ensure that when a
buffer or DMA memory is allocated by the parent, the environment can
optimize the allocation appropriately to meet all the constraints along the path,
potentially avoiding copies later. The environment may also add its own
hidden constraints based on knowledge of how the buffer or DMA memory
will be used in the rest of the operating system.

Constraints handles are transferable between regions.

WARNINGS Drivers must not compare handle values for equality, but the
UDI_HANDLE_IS_NULL macro can be used to determine if a handle variable
currently holds a null value.

REFERENCES UDI_HANDLE_IS_NULL

UDI Physical I/O Specification - Version 1.01 - 2/2/01 3-15
Section 1: Physical I/O Services

DMA udi_dma_constraints_attr_t

NAME udi_dma_constraints_attr_t DMA constraints attributes

SYNOPSIS #include <udi.h>
#include <udi_physio.h>

typedef udi_ubit8_t udi_dma_constraints_attr_t ;

/* DMA Convenience Attribute Codes */

#define UDI_DMA_ADDRESSABLE_BITS 100

#define UDI_DMA_ALIGNMENT_BITS 101

/* DMA Constraints on the Entire Transfer */

#define UDI_DMA_DATA_ADDRESSABLE_BITS 110

#define UDI_DMA_NO_PARTIAL 111

/* DMA Constraints on the Scatter/Gather List */

#define UDI_DMA_SCGTH_MAX_ELEMENTS 120

#define UDI_DMA_SCGTH_FORMAT 121

#define UDI_DMA_SCGTH_ENDIANNESS 122

#define UDI_DMA_SCGTH_ADDRESSABLE_BITS 123

#define UDI_DMA_SCGTH_MAX_SEGMENTS 124

/* DMA Constraints on Scatter/Gather Segments */

#define UDI_DMA_SCGTH_ALIGNMENT_BITS 130

#define UDI_DMA_SCGTH_MAX_EL_PER_SEG 131

#define UDI_DMA_SCGTH_PREFIX_BYTES 132

/* DMA Constraints on Scatter/Gather Elements */

#define UDI_DMA_ELEMENT_ALIGNMENT_BITS 140

#define UDI_DMA_ELEMENT_LENGTH_BITS 141

#define UDI_DMA_ELEMENT_GRANULARITY_BITS 142

/* DMA Constraints for Special Addressing */

#define UDI_DMA_ADDR_FIXED_BITS 150

#define UDI_DMA_ADDR_FIXED_TYPE 151

#define UDI_DMA_ADDR_FIXED_VALUE_LO 152

#define UDI_DMA_ADDR_FIXED_VALUE_HI 153

/* DMA Constraints on DMA Access Behavior */

#define UDI_DMA_SEQUENTIAL 160

#define UDI_DMA_SLOP_IN_BITS 161

#define UDI_DMA_SLOP_OUT_BITS 162

#define UDI_DMA_SLOP_OUT_EXTRA 163

#define UDI_DMA_SLOP_BARRIER_BITS 164

/* Values for UDI_DMA_SCGTH_ENDIANNESS */

#define UDI_DMA_LITTLE_ENDIAN (1U <<6)

#define UDI_DMA_BIG_ENDIAN (1U <<5)

/* Values for UDI_DMA_ADDR_FIXED_TYPE */

#define UDI_DMA_FIXED_ELEMENT 1

3-16 UDI Physical I/O Specification - Version 1.01 - 2/2/01
Section 1: Physical I/O Services

udi_dma_constraints_attr_t DMA

#define UDI_DMA_FIXED_LIST 2

#define UDI_DMA_FIXED_VALUE 3

DESCRIPTION This type is used to select a particular attribute of a constraints object.
Constrants objects, referenced by constraints handles (see
udi_dma_constraints_t on page 3-14), are used to constrain data and
transfer properties to most optimally meet the requirements of all drivers
handling the data.

A constraints attribute is a mnemonic constant (UDI_DMA_XXX in the tables
below) which is used to set an associated value in a constraints handle.
Definitions of use and the meaning of each attribute follow the tables.

There are two general types of constraints: restrictions and capabilities.
Restriction constraints indicate that the operation is restricted to a specific
value or set of values, and if propagated, restriction constraints typically
become more constrictive with each module. For these types of constraints,
there is a default value along with a minimum and maximum value (specified
in the tables below or elsewhere) and the effects of the combine operation are
to make the constraint the more or less restrictive value of the attributes being
combined. The tables also specify any special interpretation for a constraint
vaue of zero or N/A if zero is not a special case.

The capability constraints are used to indicate the various capabilities of a
module and are not as simply described as the restriction constraints.
Capability constraints are not usually linear values and don’t have a standard
meaning when used with combine operations. For these types of constraints,
the most and least restrictive values are specified as “N/A” indicating that they
do not apply and the description of the constraint must be consulted to
determine the effects of the combine operation.

Constraints objects, referenced by constraints handles
(udi_dma_constraints_t), are used to constrain transfer properties as
well as memory placement of udi_buf_t data, memory allocated by
udi_dma_mem_alloc , and scatter/gather lists, in order to make them
addressable via DMA from a particular device.

Any driver that will be using DMA, or drives a bus bridge that has an effect
on DMA transfers, must apply its DMA constraints attributes to a constraints
object by calling udi_dma_constraints_attr_set . The driver must
then pass the constraints handle to udi_dma_prepare or
udi_dma_mem_alloc to allow the environment to allocate and/or copy the
memory and mapping registers used for DMA so that they meet the specified
constraints. If different DMA transactions have different alignment restrictions
(e.g., transmit DMA can be byte-aligned, but receive DMA must be 4-byte
aligned), the driver would need to create a separate handle for each case.

A list of supported DMA constraints attribute codes is given below, along with
the range of valid values for each attribute, which of these values are
considered least and most restrictive, and the default value for the attribute.
This is presented in the form of a table for each attribute category; each table
is followed by detailed descriptions of each attribute.

UDI Physical I/O Specification - Version 1.01 - 2/2/01 3-17
Section 1: Physical I/O Services

DMA udi_dma_constraints_attr_t

In addition to the individual attributes specified for DMA operations there are
a set of convenience attributes, which are used to specify a grouping of
individual attributes. For most DMA situations, there are sets of related
attributes which can all be set to identical values because the DMA engine
does not distinguish between the conditions represented by the individual
attributes. UDI provides convenience attributes that refer to a group of
individual attributes and when used, causes all the individual attributes which
are part of the group to be set at once without requiring explicit specification
of each individual attribute.

UDI_DMA_ADDRESSABLE_BITS is used to simultaneously set
UDI_DMA_DATA_ADDRESSABLE_BITS and
UDI_DMA_SCGTH_ADDRESSABLE_BITS. This specifies the
number of bits of bus address that the DMA engine can generate
for access to either data or scatter/gather elements.

UDI_DMA_ALIGNMENT_BITS is used to simultaneously set
UDI_DMA_ELEMENT_ALIGNMENT_BITS and
UDI_DMA_SCGTH_ALIGNMENT_BITS. This specifies the #
of LSB bits that must be zero in the starting bus addresses of data
elements and scatter/gather segments; i.e. the starting bus
addresses of data elements and scatter/gather segments must be
multiples of 2^UDI_DMA_ALIGNMENT_BITS.

UDI_DMA_DATA_ADDRESSABLE_BITS is the # of bits of bus address
that the DMA engine can generate for access to data elements.

Table 3-1 DMA Convenience Attributes

Convenience Attribute Related Individual Attributes

UDI_DMA_ADDRESSABLE_BITS UDI_DMA_DATA_ADDRESSABLE_BITS
UDI_DMA_SCGTH_ADDRESSABLE_BITS

UDI_DMA_ALIGNMENT_BITS UDI_DMA_ELEMENT_ALIGNMENT_BITS
UDI_DMA_SCGTH_ALIGNMENT_BITS

Table 3-2 DMA Constraints on the Entire Transfer

Valid Range

Least
Restrictive
Value

Most
Restrictive
Value

Default
Value

Special Case
Behavior for 0

UDI_DMA_DATA_ADDRESSABLE_BITS

16..255 255 16 255 N/A

UDI_DMA_NO_PARTIAL

0..1 0 1 0 N/A

3-18 UDI Physical I/O Specification - Version 1.01 - 2/2/01
Section 1: Physical I/O Services

udi_dma_constraints_attr_t DMA

UDI_DMA_NO_PARTIAL is a flag indicating (if non-zero) that the device
and/or driver cannot handle partial DMA mappings from
udi_dma_buf_map . Either the entire request must be mapped
in one call, or it must be failed.

UDI_DMA_SCGTH_MAX_ELEMENTS is the maximum # of elements
that can be handled in one scatter/gather list. For DMA engines
without scatter/gather support, this should be set to 1.

UDI_DMA_SCGTH_FORMAT determines the format of the scatter/gather
list. It must be set to one of the legal values for the
scgth_format member of udi_scgth_t, described on
page 3-11. Both UDI_SCGTH_32 and UDI_SCGTH_64 may be
set if the device supports both; each returned scatter/gather list’s
scgth_format member will indicate which mapping was used
for that scatter/gather list (only one is used for the entire list and
a 64-bit mapping is preferred).

The default value for this attribute is
UDI_SCGTH_DMA_MAPPED + UDI_SCGTH_32.

The following attributes are relevant only to DMA-mapped
scatter/gather lists and need not be set if
UDI_DMA_SCGTH_FORMAT does not include
UDI_SCGTH_DMA_MAPPED:

UDI_DMA_SCGTH_ENDIANNESS
UDI_DMA_SCGTH_ADDRESSABLE_BITS
UDI_DMA_SCGTH_ALIGNMENT_BITS
UDI_DMA_SCGTH_MAX_SEGMENTS
UDI_DMA_SCGTH_MAX_EL_PER_SEG
UDI_DMA_SCGTH_PREFIX_BYTES

Table 3-3 DMA Constraints on the Whole Scatter/Gather List

Valid Range

Least
Restrictive
Value

Most
Restrictive
Value

Default
Value

Special Case
Behavior for 0

UDI_DMA_SCGTH_MAX_ELEMENTS

0..65535 0 1 0 no restriction

UDI_DMA_SCGTH_FORMAT

see below N/A N/A see below N/A

UDI_DMA_SCGTH_ENDIANNESS

see below N/A N/A see below N/A

UDI_DMA_SCGTH_ADDRESSABLE_BITS

16..255 255 16 255 N/A

UDI_DMA_SCGTH_MAX_SEGMENTS

0..255 0 1 0 no restriction

UDI Physical I/O Specification - Version 1.01 - 2/2/01 3-19
Section 1: Physical I/O Services

DMA udi_dma_constraints_attr_t

UDI_DMA_SCGTH_ENDIANNESS determines the desired device
endianness of DMA-mapped scatter/gather elements. This
attribute may be set to one of the following values:

UDI_DMA_LITTLE_ENDIAN
UDI_DMA_BIG_ENDIAN

The default value for this attribute is unspecified. If
UDI_DMA_SCGTH_FORMAT includes
UDI_SCGTH_DMA_MAPPED, this attribute must be explicitly
set before the constraints object can be used with
udi_dma_prepare or udi_dma_mem_alloc .

Ignored if UDI_DMA_SCGTH_FORMAT does not include
UDI_SCGTH_DMA_MAPPED.

UDI_DMA_SCGTH_ADDRESSABLE_BITS is the # of bits of bus address
that the DMA engine can generate for accesses to scatter/gather
list elements.

Ignored if UDI_DMA_SCGTH_FORMAT does not include
UDI_SCGTH_DMA_MAPPED.

UDI_DMA_SCGTH_MAX_SEGMENTS is the maximum # of
scatter/gather segments that the DMA engine can handle. (One
segment references another through indirect scatter/gather
elements.)

Ignored if UDI_DMA_SCGTH_FORMAT does not include
UDI_SCGTH_DMA_MAPPED.

UDI_DMA_SCGTH_ALIGNMENT_BITS is the # of LSB bits that must be
zero in the starting bus address of each scatter/gather segment);
i.e. the starting bus address of each segment must be a multiple
of 2^UDI_DMA_SCGTH_ALIGNMENT_BITS.

Ignored if UDI_DMA_SCGTH_FORMAT does not include
UDI_SCGTH_DMA_MAPPED.

Table 3-4 DMA Constraints on Scatter/Gather Segments

Valid Range

Least
Restrictive
Value

Most
Restrictive
Value

Default
Value

Special Case
Behavior for 0

UDI_DMA_SCGTH_ALIGNMENT_BITS

0..255 0 255 0 N/A

UDI_DMA_SCGTH_MAX_EL_PER_SEG

0..65535 0 1 0 no restriction

UDI_DMA_SCGTH_PREFIX_BYTES

0..65535 0 65535 0 N/A

3-20 UDI Physical I/O Specification - Version 1.01 - 2/2/01
Section 1: Physical I/O Services

udi_dma_constraints_attr_t DMA

UDI_DMA_SCGTH_MAX_EL_PER_SEG is the maximum # of
scatter/gather elements that can be handled in one segment, not
including chain pointers to the next segment if any.

Ignored if UDI_DMA_SCGTH_FORMAT does not include
UDI_SCGTH_DMA_MAPPED.

UDI_DMA_SCGTH_PREFIX_BYTES is the # bytes of extra uninitialized
DMA-mapped memory that will be allocated preceding the
actual scatter/gather element array in each scatter/gather
segment. This is typically used to provide additional shared
control structures for communicating with the device, or as space
for conversion to alternate (larger) scatter/gather formats.

Alignment constraints on the starting address of scatter/gather
segments will be applied to the beginning of this prefix area
rather than the beginning of the element array.

From the DMA device, the prefix bytes will be accessible at bus
addresses immediately preceding the bus address of the start of
the segment.

Driver access to the memory, if needed, is via the same
mechanism used for access to the scatter/gather elements,
through the scgth_elements pointers. In this case, the
scatter/gather list must also be driver-mapped.

Ignored if UDI_DMA_SCGTH_FORMAT does not include
UDI_SCGTH_DMA_MAPPED.

UDI_DMA_ELEMENT_ALIGNMENT_BITS is the # of LSB bits that
must be zero in the starting bus address of each individual
scatter/gather element; i.e. the starting bus address must be a
multiple of 2^UDI_DMA_ELEMENT_ALIGNMENT_BITS.

Table 3-5 DMA Constraints on Individual Scatter/Gather Elements

Valid Range

Least
Restrictive
Value

Most
Restrictive
Value

Default
Value

Special Case
Behavior for 0

UDI_DMA_ELEMENT_ALIGNMENT_BITS

0..255 0 255 0 no restriction

UDI_DMA_ELEMENT_LENGTH_BITS

0..32 0 1 0 no restriction

UDI_DMA_ELEMENT_GRANULARITY_BITS

0..32 0 1 0 no restriction

UDI Physical I/O Specification - Version 1.01 - 2/2/01 3-21
Section 1: Physical I/O Services

DMA udi_dma_constraints_attr_t

UDI_DMA_ELEMENT_LENGTH_BITS is the # bits supported for the
length (in bytes) of a single scatter/gather element
(block_length in udi_scgth_t). No matter what this
parameter is set to, no more than
UDI_DMA_ADDRESSABLE_BITS will be used.

UDI_DMA_ELEMENT_GRANULARITY_BITS is the granularity of each
individual scatter/gather element. The length in bytes of each
element, except the last one in the whole transfer, must be a
multiple of 2^UDI_DMA_ELEMENT_GRANULARITY_BITS.

UDI_DMA_ADDR_FIXED_BITS if non-zero, indicates that some number
of MSB bits are "fixed"; that is, they must have the same value
for all addresses in a range. Depending on the value of
UDI_DMA_ADDR_FIXED_TYPE the specified bits may be
"fixed" across an entire scatter/gather list or just within each
element. In most cases, it doesn't matter what the "fixed" value
is, as long as it is unchanging across the required range.

The value of UDI_DMA_ADDR_FIXED_BITS indicates the
number of "variable" bits less significant than the least
significant "fixed" bit. (This can also be thought of as the bit
number of the first fixed bit, counting from the LSB, starting
with 0.) All bits more significant than the first "fixed" bit, up to
the most significant bit according to
UDI_DMA_ADDRESSABLE_BITS, are also "fixed".

This somewhat counter-intuitive encoding is unfortunately
necessary to prevent the value from being invalidated by changes
to UDI_DMA_ADDRESSABLE_BITS.

The following attributes are relevant only when
UDI_DMA_ADDR_FIXED_BITS is non-zero and need not be
set otherwise:

Table 3-6 DMA Constraints for Special Addressing Restrictions

Valid Range

Least
Restrictive
Value

Most
Restrictive
Value

Default
Value

Special Case
Behavior for 0

UDI_DMA_ADDR_FIXED_BITS

0..255 0 1 0 no fixed bits

UDI_DMA_ADDR_FIXED_TYPE

see below see below see below see below N/A

UDI_DMA_ADDR_FIXED_VALUE_LO

0..232-1 N/A N/A 0 see below

UDI_DMA_ADDR_FIXED_VALUE_HI

0..232-1 N/A N/A 0 see below

3-22 UDI Physical I/O Specification - Version 1.01 - 2/2/01
Section 1: Physical I/O Services

udi_dma_constraints_attr_t DMA

 UDI_DMA_ADDR_FIXED_TYPE
 UDI_DMA_ADDR_FIXED_VALUE_LO
 UDI_DMA_ADDR_FIXED_VALUE_HI

UDI_DMA_ADDR_FIXED_TYPE specifies the type of "fixed" address
restriction, if any. It takes one of the following values:

UDI_DMA_FIXED_ELEMENT:
Each scatter/gather element may have different "fixed" values.
This would typically be for a case where the DMA engine's
current address register has upper bits that don't cascade, such as
ISA motherboard DMAC "page" registers.

UDI_DMA_FIXED_LIST:
The whole scatter/gather list must have the same "fixed" value.
Seems an unusual case, but it's here for completeness.

UDI_DMA_FIXED_VALUE:
The "fixed" bits must be equal to the value given by the pair of
UDI_DMA_ADDR_FIXED_VALUE_LO and
UDI_DMA_ADDR_FIXED_VALUE_HI for the whole
scatter/gather list. This would only be used by special bridge
drivers for some case like multiple OS instances sharing the same
bus, in which the bridge driver "knows better" than the OS since
it knows it was configured to allow only a sub-portion of the bus
address space to be used by this instance.

UDI_DMA_FIXED_ELEMENT is least restrictive and the
default. UDI_DMA_FIXED_VALUE is the most restrictive.

Ignored if UDI_DMA_ADDR_FIXED_BITS is zero.

UDI_DMA_ADDR_FIXED_VALUE_LO is the least significant 32 bits of
the required "fixed" bits value in the
UDI_DMA_FIXED_VALUE case; the LSB of
UDI_DMA_ADDR_FIXED_VALUE_LO corresponds to the first
"fixed" bit, not to the LSB of the address as a whole.

Ignored if UDI_DMA_ADDR_FIXED_BITS is zero or
UDI_DMA_ADDR_FIXED_TYPE is not
UDI_DMA_FIXED_VALUE.

UDI_DMA_ADDR_FIXED_VALUE_HI is the most significant 32 bits of
the required "fixed" bits value in the
UDI_DMA_FIXED_VALUE case. This should rarely ever need
to be set.

Ignored if UDI_DMA_ADDR_FIXED_BITS is zero or
UDI_DMA_ADDR_FIXED_TYPE is not
UDI_DMA_FIXED_VALUE or
UDI_DMA_ADDRESSABLE_BITS minus
UDI_DMA_FIXED_BITS is not greater than 32.

UDI Physical I/O Specification - Version 1.01 - 2/2/01 3-23
Section 1: Physical I/O Services

DMA udi_dma_constraints_attr_t

UDI_DMA_SEQUENTIAL is a flag indicating (if non-zero) that the DMA
engine accesses memory sequentially for a data transfer, in the
order listed in the scatter/gather list and in sequential address
order within each element. Some environment implementations
can optimize DMA transfers if they get this guarantee from the
driver.

UDI_DMA_SLOP_IN_BITS is the worst-case # bits of "input slop"
alignment. This indicates that DMA cycles may cause accesses to
additional physical memory locations besides those explicitly
listed in scatter/gather elements. Specifically, the starting
(inclusive) and ending (exclusive) byte addresses of each
scatter/gather element may be rounded out to boundaries that are
multiples of 2^UDI_DMA_SLOP_IN_BITS for "inbound" bus
transactions (i.e. from device to memory).

UDI_DMA_SLOP_OUT_BITS is the worst-case # bits of "output slop"
alignment. This indicates that DMA cycles may cause accesses to
additional physical memory locations besides those explicitly
listed in scatter/gather elements. Specifically, the starting
(inclusive) and ending (exclusive) byte addresses of each
scatter/gather element may be rounded out to boundaries that are
multiples of 2^UDI_DMA_SLOP_OUT_BITS for "outbound"
bus transactions (i.e. from memory to device).

UDI_DMA_SLOP_OUT_EXTRA is the worst-case # bytes of "extra slop".
This represents additional bytes of prefetch beyond the end of
each scatter/gather element after rounding up based on
UDI_DMA_SLOP_OUT_BITS. This applies during outbound
bus transactions only.

Table 3-7 DMA Constraints on DMA Access Behavior

Valid Range

Least
Restrictive
Value

Most
Restrictive
Value

Default
Value

Special Case
Behavior for 0

UDI_DMA_SEQUENTIAL

0..1 0 1 0 N/A

UDI_DMA_SLOP_IN_BITS

0..8 0 8 0 N/A

UDI_DMA_SLOP_OUT_BITS

0..8 0 8 0 N/A

UDI_DMA_SLOP_OUT_EXTRA

0..65535 0 65535 0 N/A

UDI_DMA_SLOP_BARRIER_BITS

0..255 1 0 1 no slop barrier

3-24 UDI Physical I/O Specification - Version 1.01 - 2/2/01
Section 1: Physical I/O Services

udi_dma_constraints_attr_t DMA

UDI_DMA_SLOP_BARRIER_BITS is the # bits of "slop barrier". This
represents a boundary across which
UDI_DMA_SLOP_OUT_EXTRA prefetching will not occur; i.e.
prefetching will not cross address boundaries that are multiples
of 2^UDI_DMA_SLOP_BARRIER_BITS. This is useful to
alleviate the worst-case assumptions of
UDI_DMA_SLOP_OUT_EXTRA.

Ignored if UDI_DMA_SLOP_OUT_EXTRA is zero.

REFERENCES udi_dma_constraints_attr_t, udi_dma_constraints_t,
udi_buf_t, udi_dma_mem_alloc, udi_dma_prepare,
udi_dma_constraints_attr_set

UDI Physical I/O Specification - Version 1.01 - 2/2/01 3-25
Section 1: Physical I/O Services

DMA udi_dma_prepare

NAME udi_dma_prepare Prepare for DMA mapping

SYNOPSIS #include <udi.h>
#include <udi_physio.h>

void udi_dma_prepare (
udi_dma_prepare_call_t * callback ,
udi_cb_t * gcb ,
udi_dma_constraints_t constraints ,
udi_ubit8_t flags);

typedef void udi_dma_prepare_call_t (
udi_cb_t * gcb ,
udi_dma_handle_t new_dma_handle);

/* Values for flags */

#define UDI_DMA_OUT (1U <<2)

#define UDI_DMA_IN (1U <<3)

ARGUMENTS callback, gcb are standard arguments described in the “Asynchronous
Service Calls” section of “Standard Calling Sequences” in the
UDI Core Specification.

constraints is a constraints handle for this device.

flags is a bitmask of flags indicating the direction(s) of transfers for
which the handle will most likely be used:
 UDI_DMA_OUT data transfer from memory to device
 UDI_DMA_IN data transfer from device to memory

new_dma_handle is an opaque handle to the newly allocated DMA object.

DESCRIPTION udi_dma_prepare allocates a DMA handle that can be used to map UDI
buffers for DMA transfer. In some cases DMA resources such as mapping
registers will be pre-allocated at this time. The new DMA handle is passed to
the driver with the callback.

It is intended that drivers avoid using udi_dma_prepare in the main I/O
path. Where possible, it should be used at bind time, with many calls to
udi_dma_buf_map being made for one call to udi_dma_prepare .

REFERENCES udi_dma_buf_map, udi_dma_free, udi_dma_constraints_t

3-26 UDI Physical I/O Specification - Version 1.01 - 2/2/01
Section 1: Physical I/O Services

udi_dma_buf_map DMA

NAME udi_dma_buf_map Map a buffer for DMA

SYNOPSIS #include <udi.h>
#include <udi_physio.h>

void udi_dma_buf_map (
udi_dma_buf_map_call_t * callback ,
udi_cb_t * gcb ,
udi_dma_handle_t dma_handle ,
udi_buf_t * buf ,
udi_size_t offset ,
udi_size_t len ,
udi_ubit8_t flags);

typedef void udi_dma_buf_map_call_t (
udi_cb_t * gcb ,
udi_scgth_t * scgth ,
udi_boolean_t complete ,
udi_status_t status);

/* Values for flags */

#define UDI_DMA_OUT (1U <<2)

#define UDI_DMA_IN (1U <<3)

#define UDI_DMA_REWIND (1U <<4)

ARGUMENTS callback, gcb are standard arguments described in the “Asynchronous
Service Calls” section of “Standard Calling Sequences” in the
UDI Core Specification.

dma_handle is the UDI DMA handle.

buf is a pointer to the UDI buffer containing the data request.

offset is the offset, in bytes, from the first valid data byte in buf at
which to begin the DMA mapping. This must be less than or
equal to buf->buf_size .

len is the number of bytes to map for DMA. If flags includes
UDI_DMA_IN and there are fewer than len bytes of valid data
in the buffer, starting at offset , then the buffer will be
extended but the initial values of the new data bytes are
unspecified. If flags does not include UDI_DMA_IN, offset
plus len must be less than or equal to the valid data length of
the buffer.

flags is a bitmask of one or more flags indicating the direction(s) and
range of transfers for which the mapping applies:
 UDI_DMA_OUT data transfer from memory to device
 UDI_DMA_IN data transfer from device to memory
 UDI_DMA_REWIND rewind to the beginning of the buffer

scgth is a pointer to a DMA scatter/gather structure.

UDI Physical I/O Specification - Version 1.01 - 2/2/01 3-27
Section 1: Physical I/O Services

DMA udi_dma_buf_map

complete is a boolean flag indicating whether the buffer was completely or
partially mapped for DMA.

status is a UDI status code indicating the success or failure of the
service call. If not UDI_OK, the scgth and complete values
are unspecified and must be ignored.

DESCRIPTION udi_dma_buf_map allocates any additional DMA resources required to
prepare the specified buffer for a DMA transfer and passes back a pointer to a
DMA scatter/gather structure. The udi_scgth_t contains a set of bus
address/length pairs, referencing the DMA target, which the driver may use as
is, translate in place, or copy to the scatter/gather entries of its device’s DMA
engine, as is appropriate for its device. This scatter/gather list covers the len
mapped bytes of the buffer, starting at offset .

The memory referenced by the scgth is guaranteed to meet the DMA
constraints indicated by the constraints argument passed to
udi_dma_prepare when dma_handle was allocated; these constraints
take precedence over those associated with the buffer. Any data modified
through the DMA mapping will be visible through the buffer handle once it is
unmapped with udi_dma_buf_unmap .

While DMA-mapped, the buffer data must not be accessed via the buffer
handle. The driver may change the buffer’s buf_size value, however, but it
will be ignored and ultimately overwritten by the value specified for the
udi_dma_buf_unmap call.

The first time udi_dma_buf_map is called for a particular buffer using this
DMA handle, the data is mapped starting at the beginning of the buffer. If the
full size cannot be mapped in one piece, the complete flag is set to FALSE,
indicating a partial transfer. Once this piece is complete, the driver can call
udi_dma_buf_map again with the same arguments. The environment will
“remember” where it left off (typically using information in the DMA handle)
and will map the next section of the buffer.

To restart at the beginning of the buffer after a partial transfer, set the
UDI_DMA_REWIND flag. The first call to udi_dma_buf_map for a
particular buffer always starts at the beginning of the buffer, whether or not
the UDI_DMA_REWIND flag is set.

At least one of UDI_DMA_IN or UDI_DMA_OUT must be specified in the
flags argument, optionally combined with UDI_DMA_REWIND.

udi_dma_buf_map performs an implicit udi_dma_sync for the entire
mapped range with the same UDI_DMA_IN and/or UDI_DMA_OUT flags as
passed to udi_dma_buf_map .

STATUS VALUES UDI_OK is returned to indicate that the mapping completed successfully.

UDI_STAT_RESOURCE_UNAVAIL is returned to indicate a partial mapping.
This value is only returned if UDI_DMA_NO_PARTIAL was not
set in the constraints that were used to allocate the DMA handle
and the environment is unable to map the entire request at one

3-28 UDI Physical I/O Specification - Version 1.01 - 2/2/01
Section 1: Physical I/O Services

udi_dma_buf_map DMA

time. This status code indicates that the mapping has failed, the
scgth pointer is NULL, and dma_handle is still unused,
although new_buf may still be different than the original buf
pointer.

REFERENCES udi_dma_buf_unmap, udi_dma_prepare, udi_scgth_t

UDI Physical I/O Specification - Version 1.01 - 2/2/01 3-29
Section 1: Physical I/O Services

DMA udi_dma_buf_unmap

NAME udi_dma_buf_unmap Release a buffer’s DMA mapping

SYNOPSIS #include <udi.h>
#include <udi_physio.h>

udi_buf_t * udi_dma_buf_unmap (
udi_dma_handle_t dma_handle ,
udi_size_t new_buf_size);

ARGUMENTS dma_handle is a DMA handle previously mapped via
udi_dma_buf_map .

new_buf_size is the number of bytes of data to preserve from the mapped
buffer. This becomes the new value of buf->buf_size for the
buffer.

DESCRIPTION udi_dma_buf_unmap frees any resources associated with a DMA handle
by a previous udi_dma_buf_map request. It should be used when a DMA
transfer completes and its DMA handle is not going to be reused with the
associated buffer.

If the flags passed to udi_dma_buf_map for this handle included
UDI_DMA_IN, udi_dma_buf_unmap performs an implicit inbound
udi_dma_sync for the entire mapped range and ensures that any data
modified by the device is now visible to the driver.

If dma_handle is equal to UDI_NULL_DMA_HANDLE, explicitly or
implicitly (zeroed by initial value or by using udi_memset), this function
acts as a no-op. Otherwise, dma_handle must have been allocated by
udi_dma_prepare .

Even if the buffer’s buf_size value was changed while the buffer was
mapped, the entire buffer will be unmapped. Any buffer data beyond
new_buf_size at the time of the udi_dma_buf_unmap will be discarded
(though the memory might not be).

WARNINGS The driver must make sure that its device is no longer accessing the buffer or
control structure memory before it calls udi_dma_buf_unmap .

RETURN VALUES The udi_dma_buf_unmap function returns a buffer pointer that the driver
must now use in place of the original buf. This is logically the same buffer
that was passed to udi_dma_buf_map , but the environment may have
reallocated it in the process of handling the DMA operation.

REFERENCES udi_dma_buf_map, udi_dma_prepare

3-30 UDI Physical I/O Specification - Version 1.01 - 2/2/01
Section 1: Physical I/O Services

udi_dma_mem_alloc DMA

NAME udi_dma_mem_alloc Allocate shared control structure
memory

SYNOPSIS #include <udi.h>
#include <udi_physio.h>

void udi_dma_mem_alloc (
udi_dma_mem_alloc_call_t * callback ,
udi_cb_t * gcb ,
udi_dma_constraints_t constraints ,
udi_ubit8_t flags ,
udi_ubit16_t nelements ,
udi_size_t element_size ,
udi_size_t max_gap);

typedef void udi_dma_mem_alloc_call_t (
udi_cb_t * gcb ,
udi_dma_handle_t new_dma_handle ,
void * mem_ptr ,
udi_size_t actual_gap ,
udi_boolean_t single_element ,
udi_scgth_t * scgth ,
udi_boolean_t must_swap);

/* Values for flags */

#define UDI_DMA_OUT (1U <<2)

#define UDI_DMA_IN (1U <<3)

#define UDI_DMA_BIG_ENDIAN (1U <<5)

#define UDI_DMA_LITTLE_ENDIAN (1U <<6)

#define UDI_DMA_NEVERSWAP (1U <<7)

ARGUMENTS callback, gcb are standard arguments described in the “Asynchronous
Service Calls” section of “Standard Calling Sequences” in the
UDI Core Specification.

constraints is a UDI constraints handle that defines the memory
constraints of the DMA engine that will be accessing the
allocated memory.

flags is a bitmask of flags, that control the operation of this function.

These flags must include one or both of the following direction
flags, which indicate the direction(s) of DMA transfers that may
be used:

UDI_DMA_IN - transfers from device to memory.

UDI_DMA_OUT - transfers from memory to device.

The flags must also include exactly one of:

UDI_DMA_BIG_ENDIAN - access data in big endian format.

UDI Physical I/O Specification - Version 1.01 - 2/2/01 3-31
Section 1: Physical I/O Services

DMA udi_dma_mem_alloc

UDI_DMA_LITTLE_ENDIAN - access data in little endian
format.

UDI_DMA_NEVERSWAP - access data with no byte
swapping (appropriate for character data).

Finally, flags may optionally include UDI_MEM_NOZERO.

nelements indicates the number of memory elements that are to be
allocated.

element_size indicates the size of each element to be allocated.

max_gap indicates the maximum number of bytes that may separate each
element from the last byte of the preceeding element to the first
byte of the next element. A driver will typically set this to
indicate how far apart the elements may be for the device to
properly address them; a max_gap of zero indicates that the
elements must be adjacent in memory.

new_dma_handle is an opaque handle to the newly allocated DMA object.

mem_ptr is a driver-mapped pointer to the allocated DMA-able memory.

actual_gap indicates the actual number of bytes that separate each control
structure in memory. This value will be equal to or less than the
requested max_gap value unless the environment could not
satisfy the requested parameters, in which case
single_element will be TRUE and the actual_gap
argument must be ignored. This argument must also be ignored if
nelements is 1.

single_element is a flag indicating whether all elements were allocated or
whether only a single element was allocated. This will return true
when the allocation specified by the arguments, including the
specified constraints, cannot be satisfied; in this case only one
element is allocated and returned. This argument must be ignored
if nelements is 1.

scgth is a pointer to a DMA scatter/gather structure for the newly
allocated memory.

must_swap is a flag indicating that the driver must swap endianness when it
accesses the DMA-able memory via mem_ptr . This will be
computed by the environment as a function of the driver’s
endianness, the device endianness specified in flags , and any
interceding bus bridges. Because bridges may introduce
additional endianness changes, drivers must always check this
flag rather than assuming swapping or not swapping.

See Section 22.2, “Endianness Management,” on page 22-2 of
the UDI Core Specification for details on how to construct C
structure definitions for proper endianness handling, and the
endian swapping utilities that are available.

3-32 UDI Physical I/O Specification - Version 1.01 - 2/2/01
Section 1: Physical I/O Services

udi_dma_mem_alloc DMA

DESCRIPTION Allocates control structure memory that is to be shared between a UDI device
driver and its corresponding DMA device. This memory will conform to the
requirements expressed in constraints . The device accesses the memory
via DMA. The driver accesses the memory using the mem_ptr pointer, and
must handle endian conversions if so indicated by the must_swap flag.

If the driver will be using the memory for multiple separate control structures,
the nelement and element_size arguments should be used to describe
the individual control structures. The system will adjust the allocation to
ensure that each control structure: (1) starts on an appropriate alignment
boundary, (2) does not share cache lines with other control structures, and (3)
is physically contiguous. This adjustment is indicated by the actual_gap
value returned on the callback which indicates the number of additional bytes
allocated between each control structure to satisfy the individual alignment
requirements. This gap will not exceed the device’s capabilities as indicated
by the max_gap argument; if the required gap size would exceed this value,
then only a single element is allocated as indicated by the
single_element argument.

Each gap represents actual allocated memory bytes; these bytes appear in both
the virtual and the DMA-mapped address ranges and the driver should make
appropriate considerations for accessing each element. There is no gap
following the last element allocated.

The newly allocated memory will be zeroed unless UDI_MEM_NOZERO is
set, in which case the initial values are unspecified.

The newly allocated memory will be aligned on the most restrictive alignment
of the platform’s natural alignments for long and pointer data types, allowing
the allocated memory to be directly accessed as C structures.

At the time of the callback, the memory is mapped for DMA access by the
device. The DMA mapped memory remains allocated and mapped until
new_dma_handle is freed by a call to udi_dma_free or
udi_dma_mem_to_buf , at which point the memory will be automatically
unmapped and deallocated. udi_dma_mem_to_buf allows a range of data
from the control structure memory to be placed into a UDI buffer.

Note – Unlike udi_dma_buf_map , udi_dma_mem_alloc will always
produce a complete mapping.

This call is typically used for allocating memory that is contiguous from the
device’s perspective, but some devices may support discontiguous control
memory. Whether or not contiguous device addresses are used is under control
of the UDI_DMA_SCGTH_MAX_ELEMENTS property of the constraints
handle, but the memory will always be virtually contiguous when accessed
through the mem_ptr pointer. See udi_dma_constraints_attr_t
(DMA) for details on DMA constraints.

UDI Physical I/O Specification - Version 1.01 - 2/2/01 3-33
Section 1: Physical I/O Services

DMA udi_dma_mem_alloc

Note –In order to use the byte-by-byte structure layout technique for mixed
endianness access to shared control structure memory, and the utility
macros defined in Section 22.2, “Endianness Management,” on page
22-2 of the UDI Core Specification, the driver must declare two
versions of the relevant structure(s), type-casting appropriately, and
using the version that matches the device’s endianness if must_swap
is FALSE, or the “anti-endian” version if must_swap is TRUE.

REFERENCES udi_dma_limits, udi_dma_constraints_attr_t,
udi_dma_prepare, udi_dma_buf_map, udi_dma_free,
udi_dma_sync, udi_dma_mem_barrier, udi_scgth_t,
udi_dma_mem_to_buf

3-34 UDI Physical I/O Specification - Version 1.01 - 2/2/01
Section 1: Physical I/O Services

udi_dma_sync DMA

NAME udi_dma_sync Sync host & device views of DMA-
able memory

SYNOPSIS #include <udi.h>
#include <udi_physio.h>

void udi_dma_sync (
udi_dma_sync_call_t * callback ,
udi_cb_t * gcb ,
udi_dma_handle_t dma_handle ,
udi_size_t offset ,
udi_size_t length ,
udi_ubit8_t flags);

typedef void udi_dma_sync_call_t (
udi_cb_t * gcb);

/* Values for flags */

#define UDI_DMA_OUT (1U <<2)

#define UDI_DMA_IN (1U <<3)

ARGUMENTS callback, gcb are standard arguments described in the “Asynchronous
Service Calls” section of “Standard Calling Sequences” in the
UDI Core Specification.

dma_handle is a DMA handle previously mapped via udi_dma_buf_map
or udi_dma_mem_alloc .

offset is a logical offset into the mapped buffer data. That is, it is
relative to the offset value provided to udi_dma_buf_map .

length is the length, in bytes, of the area to synchronize. When length is
zero, it applies to the entire data object referenced by
dma_handle , and offset must be zero.

flags indicates which view of the buffer to synchronize. The flags
argument may be set to one or more of the following values:

UDI_DMA_OUT - sync before starting an outbound DMA to
the device

UDI_DMA_IN - sync after completing an inbound DMA from
the device

DESCRIPTION udi_dma_sync is used to synchronize the host and device views of a data
object that has been loaded for DMA. This may involve flushes of CPU or I/O
caches, or assuring that hardware write buffers have drained.

The required direction flags depend on the direction(s) of I/O transactions
since the last synchronization points. If the buffer has been modified by the
CPU, and is going to be read by the device’s DMA engine, then
udi_dma_sync must be called with UDI_DMA_OUT set. This ensures that
the device's DMA engine sees the changes previously made to the buffer
memory by the driver. If the device’s DMA engine has written to the buffer,

UDI Physical I/O Specification - Version 1.01 - 2/2/01 3-35
Section 1: Physical I/O Services

DMA udi_dma_sync

and it is going to be read by the driver, udi_dma_sync must be called with
UDI_DMA_IN set. This makes sure the CPU’s view of the memory includes
any changes previously made by the device’s DMA engine.

Note that the UDI_DMA_OUT and/or UDI_DMA_IN flags must have been
set in the call to udi_dma_prepare or udi_dma_mem_alloc if the same
flag is to be set in udi_dma_sync .

REFERENCES udi_dma_buf_map, udi_dma_buf_unmap,
udi_dma_mem_alloc, udi_dma_mem_barrier,
udi_dma_scgth_sync

3-36 UDI Physical I/O Specification - Version 1.01 - 2/2/01
Section 1: Physical I/O Services

udi_dma_scgth_sync DMA

NAME udi_dma_scgth_sync Sync host & device views of
scatter/gather list

SYNOPSIS #include <udi.h>
#include <udi_physio.h>

void udi_dma_scgth_sync (
udi_dma_scgth_sync_call_t * callback ,
udi_cb_t * gcb ,
udi_dma_handle_t dma_handle);

typedef void udi_dma_scgth_sync_call_t (
udi_cb_t * gcb);

ARGUMENTS callback, gcb are standard arguments described in the “Asynchronous
Service Calls” section of “Standard Calling Sequences” in the
UDI Core Specification.

dma_handle is a DMA handle previously mapped via udi_dma_buf_map
or udi_dma_mem_alloc .

DESCRIPTION udi_dma_scgth_sync is used to synchronize the host and device views of
the scatter/gather list memory for a data object that has been loaded for DMA,
since udi_dma_sync only affects the actual data memory. This may involve
flushes of CPU or I/O caches, or assuring that hardware write buffers have
drained.

The entire set of scatter/gather elements, in all segments, as well as any prefix
bytes (UDI_DMA_SCGTH_PREFIX_BYTES in
udi_dma_constraints_attr_t on page 3-15) included in the
synchronization. It is assumed that the DMA device did not write to this
memory unless UDI_DMA_SCGTH_PREFIX_BYTES was greater than zero,
but the driver may have read and/or written.

This function is only needed when the scatter/gather list is both DMA-mapped
and driver-mapped (see udi_scgth_t on page 3-10), since this is the only
case in which the driver will write to the scatter/gather segment memory and
the device will read from it, and must not be used in other cases. In this case,
udi_dma_scgth_sync must be called before the device reads from the
scatter/gather list.

REFERENCES udi_dma_buf_map, udi_dma_mem_alloc, udi_dma_sync

UDI Physical I/O Specification - Version 1.01 - 2/2/01 3-37
Section 1: Physical I/O Services

DMA udi_dma_mem_barrier

NAME udi_dma_mem_barrier Ordering barrier for accesses to
DMA-able memory

SYNOPSIS #include <udi.h>
#include <udi_physio.h>

void udi_dma_mem_barrier (
udi_dma_handle_t dma_handle);

ARGUMENTS dma_handle is a DMA handle previously allocated by
udi_dma_mem_alloc .

DESCRIPTION udi_dma_mem_barrier is used to impose ordering constraints between
driver accesses to shared control structure memory allocated by
udi_dma_mem_alloc .

This ensures that no loads or stores to the memory associated with
dma_handle that are executed after the call to udi_dma_mem_barrier
will be visible to the device until all prior loads or stores are visible.

REFERENCES udi_dma_mem_alloc, udi_dma_sync

3-38 UDI Physical I/O Specification - Version 1.01 - 2/2/01
Section 1: Physical I/O Services

udi_dma_free DMA

NAME udi_dma_free Free DMA resources

SYNOPSIS #include <udi.h>
#include <udi_physio.h>

void udi_dma_free (
udi_dma_handle_t dma_handle);

ARGUMENTS dma_handle is a DMA handle allocated by udi_dma_prepare or
udi_dma_mem_alloc .

DESCRIPTION udi_dma_free frees a DMA handle and any associated resources allocated
by udi_dma_prepare or udi_dma_mem_alloc .

If the dma_handle is associated with shared control structure memory
allocated by udi_dma_mem_alloc , the allocated memory will be freed, as
will the scatter/gather list.

If the dma_handle was mapped to a buffer with udi_dma_buf_map , it
must be unmapped (using udi_dma_buf_unmap) before udi_dma_free
is called.

If dma_handle is equal to UDI_NULL_DMA_HANDLE, explicitly or
implicitly (zeroed by initial value or by using udi_memset), this function
acts as a no-op. Otherwise, dma_handle must have been allocated by
udi_dma_prepare or udi_dma_mem_alloc .

Note –udi_dma_free does not do a udi_dma_sync operation.

WARNINGS The driver must make sure that its device is no longer accessing the buffer or
control structure memory before it calls udi_dma_free .

REFERENCES udi_dma_prepare, udi_dma_buf_map, udi_dma_buf_unmap,
udi_dma_mem_alloc

UDI Physical I/O Specification - Version 1.01 - 2/2/01 3-39
Section 1: Physical I/O Services

DMA udi_dma_mem_to_buf

NAME udi_dma_mem_to_buf Convert DMA-mapped control
memory into a buffer

SYNOPSIS #include <udi.h>
#include <udi_physio.h>

void udi_dma_mem_to_buf (
udi_dma_mem_to_buf_call_t * callback ,
udi_cb_t * gcb ,
udi_dma_handle_t dma_handle ,
udi_size_t src_off ,
udi_size_t src_len ,
udi_buf_t * dst_buf);

typedef void udi_dma_mem_to_buf_call_t (
udi_cb_t * gcb ,
udi_buf_t * new_dst_buf);

ARGUMENTS callback, gcb are standard arguments described in the “Asynchronous
Service Calls” section of “Standard Calling Sequences” in the
UDI Core Specification.

dma_handle is a DMA handle previously allocated by
udi_dma_mem_alloc .

src_off is the beginning offset from the first byte of the shared control
structure memory to include in the destination buffer.

src_len is the number of bytes to include from the destination buffer.

dst_buf is the same argument as used in udi_buf_copy .

new_dst_buf is a pointer to a UDI buffer containing the indicated data.

DESCRIPTION udi_dma_mem_to_buf frees a DMA handle and any associated resources
allocated by udi_dma_mem_alloc , except the data from the indicated
range of the memory block are used as the initial contents of a newly-
allocated buffer.

The constraints that were used to allocate dma_handle shall also be used to
allocate new_dst_buf .

udi_dma_mem_to_buf is typically used for inbound data from devices that
store both shared control structures and data in the same piece of memory.

REFERENCES udi_dma_mem_alloc, udi_buf_write

DMA Constraints Handle Transferability DMA

3-40 UDI Physical I/O Specification - Version 1.01 - 2/2/01
Section 1: Physical I/O Services

3.4 DMA Constraints Handle Transferability

Since DMA Constraints handles are transferable between regions, they need to be represented in layout
specifiers for use by metalanguages and by drivers that specify inline layouts. This section defines an
extension to the data layout specifier defined in the UDI Core Specification.

UDI Physical I/O Specification - Version 1.01 - 2/2/01 3-41
Section 1: Physical I/O Services

DMA udi_layout_t (DMA)

NAME udi_layout_t (DMA) Data layout specifier for DMA

SYNOPSIS #include <udi.h>
#include <udi_physio.h>

typedef udi_ubit8_t udi_layout_t ;

/* DMA Constraints Handle Layout Element Type Code */

#define UDI_DL_DMA_CONSTRAINTS_T 201

DESCRIPTION This page lists additional layout specifier codes that can be used with the
udi_layout_t type, defined in the UDI Core Specification, to specify
DMA-related data layouts.

A data layout specifier consists of an array of one or more udi_layout_t
layout elements. Each element contains a type code indicating one of the UDI
data types that can be passed into a channel operation, either as a field in the
control block or as an additional parameter. Each successive element of the
array represents successive offsets within the described structure, with
padding automatically inserted for alignment purposes as if the specified data
types had appeared in a C struct declaration.

A UDI_DL_DMA_CONSTRAINTS_T layout element represents a DMA
Constraints handle, of type udi_dma_constraints_t , which may be
UDI_NULL_DMA_CONSTRAINTS.

REFERENCES udi_layout_t , udi_dma_constraints_t

udi_layout_t (DMA) DMA

3-42 UDI Physical I/O Specification - Version 1.01 - 2/2/01
Section 1: Physical I/O Services

UDI Physical I/O Specification - Version 1.01 - 2/2/01 4-1
Section 1: Physical I/O Services

Programmed I/O (PIO) 4

4.1 Overview

Programmed I/O (PIO) refers to data transfers initiated by a CPU under driver software control to access
registers or memory on a device. This is contrasted with Direct Memory Access (DMA), which involves
transfers initiated by a device to access system memory. On some hardware platforms PIO is handled via
normal memory loads and stores (“memory-mapped I/O”); on others it requires special I/O instructions.
UDI hides this difference from drivers.

In UDI, Programmed I/O (PIO) operations are performed through environment service calls coded as
function calls rather than by direct memory references or I/O instructions in the drivers. This abstraction
is necessary for driver portability across different machine architectures for (at least) the following
reasons:

1. Different machines support different endian architectures and some provide hardware-
assisted endianness swapping.

2. Some machine architectures may restrict direct access.

3. Some bus bridges are non-transparent and require software intervention (via a bus bridge
driver) for each PIO access.

To reduce the overhead associated with using function calls, UDI allows multiple PIO transactions to be
performed with a single function call.

PIO access properties are encapsulated with a PIO handle (udi_pio_handle_t). A PIO handle is an
opaque data type containing the addressing, data translation and access constraint information required
to access a device or memory address in a particular address space. For example, for PCI devices the
address space could be memory space, I/O space or configuration space. Information specifying
endianness, required atomicity, and data ordering constraints is also contained in the PIO handle.

Also associated with each PIO handle is a transaction list, that specifies the PIO operations to be
invoked when that handle is passed to udi_pio_trans .

For each transaction that accesses the device, a PIO offset is specified, which indicates the offset into the
space referenced by a PIO handle at which an I/O operation is to occur. The space covered by a
particular PIO handle is contiguous with respect to the addresses seen by the device.

Synchronization among different PIO transaction lists is defined by the serialization_domain
argument to the PIO mapping call. The execution of a PIO transaction list is serialized with respect to
the execution of all other PIO transaction lists mapped to the same device instance and serialization
domain; i.e., for a given device and serialization domain, at most one thread of execution will be active
executing a corresponding transaction list and each such transaction list will execute to completion
before another transaction list for this serialization domain begins execution.

Overview PIO

4-2 UDI Physical I/O Specification - Version 1.01 - 2/2/01
Section 1: Physical I/O Services

Note, however, that PIO trans lists do not have any serialization guarantees with respect to region
execution. A sequence of PIO transactions, encapsulated in a PIO transaction list, is passed to the
environment via udi_pio_trans and may be performed outside the context of the caller’s region. As
a result, the PIO sequence may be executed in parallel to code executing in the region.

There are no ordering guarantees with respect to the processing of transactions lists for separate
udi_pio_trans calls except that calls made from the same region for the same serialization domain
will be processed in FIFO order. Additionally, the callbacks for these udi_pio_trans calls are also
called in FIFO order for that serialization domain, although the callback processing is not necessarily
consecutive with the processing of the transaction list.

Synchronization and ordering requirements for PIO operations, with respect to system operations such
as cache or I/O buffer flushes, are device and driver specific. Drivers control when such synchronization
and ordering operations are performed through the use of UDI_PIO_SYNC and UDI_PIO_BARRIER
transactions. Additional data ordering and synchronization requirements may be associated with a PIO
handle via the pio_attributes parameter to udi_pio_map .

UDI Physical I/O Specification - Version 1.01 - 2/2/01 4-3
Section 1: Physical I/O Services

PIO PIO Handle Allocation and Initialization

4.2 PIO Handle Allocation and Initialization

The following functions are used to allocate and initialize handles to PIO-accessible memory. The
udi_pio_map function allocates a handle for a range of device memory/registers. The
udi_pio_unmap function deallocates the PIO handle and any associated resources when the driver no
longer needs them. The udi_pio_atomic_sizes function returns a bitmask of transaction sizes that
can be handled atomically.

Additionally, the driver must register a special PIO handle with the environment via the
udi_pio_abort_sequence function, which the environment can use when “killing” a faulting
region to stop the corresponding device from initiating further actions.

4-4 UDI Physical I/O Specification - Version 1.01 - 2/2/01
Section 1: Physical I/O Services

udi_pio_handle_t PIO

NAME udi_pio_handle_t PIO handle type

SYNOPSIS #include <udi.h>
#include <udi_physio.h>

typedef <HANDLE> udi_pio_handle_t ;

/* Null handle value for udi_pio_handle_t */

#define UDI_NULL_PIO_HANDLE <N ULL_HANDLE>

DESCRIPTION The PIO handle type, udi_pio_handle_t , holds an opaque handle that
refers to an environment object which contains addressing, data translation
and access information, as well as a PIO transaction list.

PIO handles are transferable between regions.

Drivers will often have multiple PIO handles for different address spaces on
the same device (e.g. one handle for configuration space, another for I/O
registers, etc.). Drivers might also have multiple PIO handles for the same
address space if different translation requirements or constraints exist within
that address space, or if different types of operations are to be used at different
times.

REFERENCES udi_pio_trans_t

UDI Physical I/O Specification - Version 1.01 - 2/2/01 4-5
Section 1: Physical I/O Services

PIO udi_pio_map

NAME udi_pio_map Map device memory/registers for
access

SYNOPSIS #include <udi.h>
#include <udi_physio.h>

void udi_pio_map (
udi_pio_map_call_t * callback ,
udi_cb_t * gcb ,
udi_ubit32_t regset_idx ,
udi_ubit32_t base_offset ,
udi_ubit32_t length ,
udi_pio_trans_t * trans_list ,
udi_ubit16_t list_length ,
udi_ubit16_t pio_attributes ,
udi_ubit32_t pace ,
udi_index_t serialization_domain);

typedef void udi_pio_map_call_t (
udi_cb_t * gcb ,
udi_pio_handle_t new_pio_handle);

/* Values for pio_attributes */

#define UDI_PIO_STRICTORDER (1U <<0)

#define UDI_PIO_UNORDERED_OK (1U <<1)

#define UDI_PIO_MERGING_OK (1U <<2)

#define UDI_PIO_LOADCACHING_OK (1U <<3)

#define UDI_PIO_STORECACHING_OK (1U <<4)

#define UDI_PIO_BIG_ENDIAN (1U <<5)

#define UDI_PIO_LITTLE_ENDIAN (1U <<6)

#define UDI_PIO_NEVERSWAP (1U <<7)

#define UDI_PIO_UNALIGNED (1U <<8)

ARGUMENTS callback, gcb are standard arguments described in the “Asynchronous
Service Calls” section of “Standard Calling Sequences” in the
UDI Core Specification.

regset_idx is the index to the specified register set within a given address
space. The definition of regset_idx is bus and device
dependent, and must be determined by the driver via the bus_type
instance attribute (see Chapter 15, “Instance Attribute
Management” in the UDI Core Specification) in conjunction
with the corresponding UDI bus bindings (see “Section 3: Bus
Bindings”). For example, if bus_type is “pci ” then the settings
would be based on the definitions in the UDI PCI Bus Binding
Specification.

4-6 UDI Physical I/O Specification - Version 1.01 - 2/2/01
Section 1: Physical I/O Services

udi_pio_map PIO

base_offset is the offset into the selected register address space at which
this mapping is to start. This offset must be a multiple of all
transaction sizes used to access device addresses through this
handle, unless UDI_PIO_UNALIGNED is set in
pio_attributes .

length is the length to be mapped in bytes.

trans_list is a list of one or more PIO transactions to apply to this device
when using udi_pio_trans with this PIO handle. The
memory pointed to by trans_list must be in a module-global
(and thus read-only) variable.

list_length is the number of elements in the trans_list list.

pio_attributes are attribute flags that specify the data translation and
ordering requirements of accesses to the device memory.

Data Translation Flags

Attribute flags specifying the data translation requirements of the
device are mutually exclusive. At most one must be used in a
given handle allocation. The default is UDI_PIO_NEVERSWAP
if no data translation flags are specified.

The following data translation flags are defined:

UDI_PIO_BIG_ENDIAN - access data in big endian format.

UDI_PIO_LITTLE_ENDIAN - access data in little endian
format.

UDI_PIO_NEVERSWAP - access data with no byte swapping
(appropriate for character data). Device transactions greater
than one byte in size are illegal if this flag is set.

Data Ordering Flags

Attribute flags specifying the data ordering requirements for the
device may be used in combination. With the exception of
UDI_PIO_STRICTORDER these values are advisory, not
mandatory. For example, data can be ordered without being
merged or cached, even though a driver permits unordered,
merged and cached operation. Strict ordering may be required for
certain I/O operations but can be very costly on high
performance computers. For unordered execution, merging or
caching, the UDI_PIO_SYNC operation (see udi_pio_trans)
can provide more specific and efficient synchronization.

The default is UDI_PIO_STRICTORDER if no ordering flags
are specified. If pace is non-zero, pio_attributes must
not include any data ordering flags other than
UDI_PIO_STRICTORDER.

UDI Physical I/O Specification - Version 1.01 - 2/2/01 4-7
Section 1: Physical I/O Services

PIO udi_pio_map

The following data ordering flags are defined:

UDI_PIO_STRICTORDER - the CPU must issue the
references in order, as the programmer specified. Strict
ordering is the default if no other data ordering flags are set.
UDI_PIO_STRICTORDER must not be combined with any
other data ordering flags.

UDI_PIO_UNORDERED_OK - the CPU may reorder both
load and store references to the mapped area.

 UDI_PIO_MERGING_OK - merging and batching: the CPU
may merge individual stores to consecutive locations (for
example, turn two consecutive byte stores into one halfword
store), and it may batch individual loads (for example, turn
two consecutive byte loads into one halfword load). If
UDI_PIO_MERGING_OK is set,
UDI_PIO_UNORDERED_OK is treated as if it were set,
even if it isn’t actually set.

 UDI_PIO_LOADCACHING_OK - load caching: the CPU may
cache the data it fetches and reuse it until another store
occurs. The default is to fetch new data on every load. If
UDI_PIO_LOADCACHING_OK is set,
UDI_PIO_MERGING_OK is treated as if it were set, even if
it isn’t actually set.

 UDI_PIO_STORECACHING_OK - store caching: the CPU
may keep the data in the cache and push it to the device
(perhaps with other data) at a later time. The default is to
push data immediately to the device. If
UDI_PIO_STORECACHING_OK is set,
UDI_PIO_LOADCACHING_OK is treated as if it were set,
even if it isn’t actually set.

Data Alignment Flags

UDI_PIO_UNALIGNED - unaligned accesses allowed: if this
flag is set, there are no restrictions on base_offset and
on PIO offsets for individual transactions; otherwise, both of
these must be multiples of all transaction sizes used in
trans_list . If this flag is set, none of the transactions
using this handle are guaranteed to be atomic.

pace is the PIO pacing time, in microseconds, for this handle. The
environment will guarantee that any device access that occurs
using this PIO handle will be followed by at least pace
microseconds before another access occurs to the same device
register set (via any handle). If non-zero, the
UDI_PIO_STRICTORDER attribute must be specified.

4-8 UDI Physical I/O Specification - Version 1.01 - 2/2/01
Section 1: Physical I/O Services

udi_pio_map PIO

PIO transactions may be posted/cached for future completion, so
the apparent execution time of PIO operation calls may vary
from the driver’s perspective, but there will be at least pace
microseconds between them from the hardware’s perspective1.

serialization_domain is a numeric value indicating the serialization
domain for this PIO handle. Transaction lists for a given device
with the same serialization domain are serialized with respect to
each other, and will further be executed in FIFO order with
respect to udi_pio_trans calls from a given region. See the
ordering definitions on page 4-1 for additional details.

new_pio_handle is an opaque data type containing the addressing, endian
translation, and access constraint information required to access
the associated device memory.

DESCRIPTION udi_pio_map initializes a handle through which a driver instance may
access its device using PIO access routines. The regset_idx ,
base_offset , and length arguments select the range of device memory
to be made accessible; the pio_attributes argument specifies the ways
in which it may be accessed.

Note that the driver is allowed to map the same piece of device memory
multiple times for different access requirements. For example, if the driver
wants to do both strongly-ordered and weakly ordered accesses to a given
register set it can map the register set once with UDI_PIO_STRICTORDER
(strongly ordered accesses) and once with UDI_PIO_UNORDERED_OK
(weakly ordered accesses). The driver would then use the “strong” PIO handle
when it wants to do a strongly ordered access, and the “weak” handle
otherwise. Similarly, multiple handles to a given register set could be used for
zero pacing vs. various nonzero pacing values, and for other variations in
attributes, offset, length, or trans list.

REFERENCES udi_pio_handle_t, udi_pio_unmap, udi_pio_trans

1.The PIO pacing delay may be implemented in hardware or software by the environment, but
represents a potential inline delay in region execution. The driver writer is strongly advised to
use only the delays required for their device, as excessive use can have adverse effects on the
driver and the rest of the system.

UDI Physical I/O Specification - Version 1.01 - 2/2/01 4-9
Section 1: Physical I/O Services

PIO udi_pio_unmap

NAME udi_pio_unmap Unmap a PIO handle and free
associated resources

SYNOPSIS #include <udi.h>
#include <udi_physio.h>

void udi_pio_unmap (
udi_pio_handle_t pio_handle);

ARGUMENTS pio_handle is the PIO handle to be freed.

DESCRIPTION This service call unmaps a PIO access handle, freeing any associated
resources. Upon return pio_handle is no longer valid.

If pio_handle is equal to UDI_NULL_PIO_HANDLE, either explicitly or
implicitly (zeroed by initial value or by using udi_memset), this function
acts as a no-op. Otherwise, pio_handle must have been allocated by
udi_pio_map .

REFERENCES udi_pio_handle_t, udi_pio_map

4-10 UDI Physical I/O Specification - Version 1.01 - 2/2/01
Section 1: Physical I/O Services

udi_pio_atomic_sizes PIO

NAME udi_pio_atomic_sizes Retrieve supported PIO operation
atomicity

SYNOPSIS #include <udi.h>
#include <udi_physio.h>

udi_ubit32_t udi_pio_atomic_sizes (
udi_pio_handle_t pio_handle);

ARGUMENTS pio_handle is a PIO handle previously acquired via udi_pio_map .

DESCRIPTION This routine retrieves an encoding of the PIO atomic transaction sizes (see
atomic transaction in the Glossary) for which atomicity is supported when
doing PIO accesses through pio_handle . The set of supported atomic sizes
is platform and bus specific, and may also be dependent on device address
space, and register set.

The driver will typically use this routine to verify up front that the atomic
sizes it requires are supported, and then fail its initialization if they’re not
supported. If such a check is not done and the platform does not support the
device’s atomicity requirements then the results of corresponding PIO
accesses will be indeterminate.

Atomicity is not guaranteed, regardless of transaction size, for any handle
mapped with the UDI_PIO_UNALIGNED flag, or when using
udi_pio_probe .

RETURN VALUES A bit encoding of the PIO operation sizes for which atomicity is supported is
returned. Each bit position corresponds to a power of two byte PIO operation
size. If a bit is set PIO operations of the corresponding size are supported
atomically through the bus hierarchy to the device. For example, a
configuration supporting atomic PIO operations of 1, 2, and 4 bytes would
return a binary 0111.

REFERENCES udi_pio_map

UDI Physical I/O Specification - Version 1.01 - 2/2/01 4-11
Section 1: Physical I/O Services

PIO udi_pio_abort_sequence

NAME udi_pio_abort_sequence Register a PIO abort sequence

SYNOPSIS #include <udi.h>
#include <udi_physio.h>

void udi_pio_abort_sequence (
udi_pio_handle_t pio_handle ,
udi_size_t scratch_requirement);

ARGUMENTS pio_handle is a special PIO handle, previously acquired from
udi_pio_map , whose associated trans list is designed to stop
the associated device from initiating (mastering) transactions on
its bus in case the driver fails.

scratch_requirement is the number of bytes of scratch space needed
during processing of the associated trans list.

DESCRIPTION When a driver does something illegal, causes a system fault, or otherwise
misbehaves, the UDI environment can “kill” the corresponding driver region.
However, since the faulting driver region can no longer be trusted to execute
correctly, the environment needs some way to stop the corresponding device
from proceeding without having to re-execute the faulting region.
udi_pio_abort_sequence provides the environment a PIO handle (with
an associated trans_list) which it can use for this purpose.

The driver calls udi_pio_abort_sequence to register pio_handle
with the environment. pio_handle must be mapped with a trans list that
can be used to stop the corresponding device from initiating (mastering)
transactions on the bus, including the generation of DMA transactions and
interrupts. The PIO sequence specified by the associated trans list does not
need to flush data or preserve device state, and should do the simplest
sequence possible to stop the device, such as resetting it or otherwise stopping
its ability to do bus mastering.

If needed, the registered trans list will be executed as if by udi_pio_trans .
The UDI_PIO_SCRATCH addressing mode may be used to access up to
scratch_requirement bytes of scratch space. UDI_PIO_BUF and
UDI_PIO_MEM must not be used.

The abort trans list will be executed immediately in its own serialization
domain without regard to the state of other PIO operations in other
serialization domains; the abort operations will preempt any PIO trans lists
currently executing or scheduled for executing and those PIO trans lists will
be deallocated by the environment rather than being continued or executed.
Additionally, no regions of this driver instance will be entered after initiation
of the abort trans list and all channels to parents of that driver instance will be
closed to release associated resources.

To facilitate handling faults in as wide a portion of the driver as possible, the
driver should call udi_pio_abort_sequence as early as possible in its
per-instance initialization sequence. If the device changes state in such a way

4-12 UDI Physical I/O Specification - Version 1.01 - 2/2/01
Section 1: Physical I/O Services

udi_pio_abort_sequence PIO

that a different procedure is needed to shut it down, the driver may call
udi_pio_abort_sequence again to replace the previously-registered
sequence, but this should only be done if absolutely necessary.

The PIO handle passed to this service call is “given away” (as if with
udi_pio_unmap). The driver must no longer access this handle.

A driver is not required to register a PIO abort sequence with this call if the
operational characteristics of the device are such that it will not generate any
activity (DMA, interrupts, etc) even if the driver is abruptly removed.

REFERENCES udi_pio_map, udi_pio_unmap, udi_pio_trans_t

UDI Physical I/O Specification - Version 1.01 - 2/2/01 4-13
Section 1: Physical I/O Services

PIO PIO Access Service Calls and Structures

4.3 PIO Access Service Calls and Structures

PIO devices are accessed by passing a list of PIO transactions to udi_pio_trans . Each of the
transactions are processed in turn. When all the transactions in the list are completed, the driver’s
callback routine is called.

There are three types of PIO transactions that affect PIO devices: input, output, and synchronization.
Input transactions read data from a device; output transactions send data to a device; synchronization
transactions are used to control ordering of input/output transactions on weakly-ordered architectures.

The following rules and restrictions apply to all PIO transactions:

1. The tran_size parameter of each transaction descriptor must be from 0 to 5 (which
may be represented as UDI_PIO_1BYTE , UDI_PIO_2BYTE, ...). Since it encodes size as
a power of two, this represents transaction sizes from 1 to 32 bytes (256 bits). For
transaction descriptors to which transaction size does not apply (e.g. UDI_PIO_BRANCH),
tran_size must be zero.

2. Endian translation is performed, when needed, on each 2^tran_size byte quantity. To
transfer a character or byte array to or from device memory the driver must use a
tran_size of UDI_PIO_1BYTE with an appropriate repeat count rather than using
UDI_PIO_NEVERSWAP with a single basic transaction.

3. If the pio_attributes parameter to udi_pio_map did not include
UDI_PIO_UNALIGNED, then the base_offset in udi_pio_map , the base address
alignment of the register set itself, and any PIO offsets accessed by PIO transactions must
all be transaction-size aligned (i.e. multiples of 2^tran_size).

4. If copied to driver memory, the datum must be transaction-size aligned relative to a
udi_mem_alloc ’d piece of memory, a control block’s scratch area, or a variable whose
data type is 2^tran_size bytes in size, even if UDI_PIO_UNALIGNED was set in
pio_attributes .

5. PIO pacing, when indicated, occurs between each 2^tran_size byte transfer that
accesses the PIO device (once per repetition). The only PIO transaction types that access
the PIO device are UDI_PIO_IN , UDI_PIO_OUT, UDI_PIO_IN_IND ,
UDI_PIO_OUT_IND, UDI_PIO_REP_IN_IND , and UDI_PIO_REP_OUT_IND.

6. If a PIO device access uses a transaction size that is one of the atomic transaction sizes
indicated by udi_pio_atomic_sizes , all 2^tran_size bytes are guaranteed to be
transferred together “atomically” (as defined in “atomic transaction” in the Glossary),
unless UDI_PIO_UNALIGNED was set in pio_attributes .

Since odd sizes (eg. 3 bytes) are not allowed, access to, for example, a 24-bit register must either be
encapsulated within a larger access and the unused bits appropriately tossed (as described below), or it
must be split up into smaller accesses (eg. 1- and 2-byte accesses) as appropriate for the IO card or
shared control structure.

For example, a 24-bit register at PIO offsets 1 through 3 in little endian device memory can be read in
an endian-neutral manner by doing a 32-bit read at PIO offset 0 and shifting the result right by 8 bits.

A 24-bit register at offsets 0 through 2 could be read by doing the 32-bit read and then extracting the
low-order 3 bytes using a mask of 0xFFFFFF.

PIO Access Service Calls and Structures PIO

4-14 UDI Physical I/O Specification - Version 1.01 - 2/2/01
Section 1: Physical I/O Services

A 24-bit register at offsets 2 through 4 could be read by doing a 16-bit read at PIO offset 2, and adding
this to the result of an 8-bit read at offset 4 shifted left by 16 bits.

UDI Physical I/O Specification - Version 1.01 - 2/2/01 4-15
Section 1: Physical I/O Services

PIO udi_pio_trans_t

NAME udi_pio_trans_t PIO transaction descriptor

SYNOPSIS #include <udi.h>
#include <udi_physio.h>

typedef const struct {
udi_ubit8_t pio_op ;
udi_ubit8_t tran_size ;
udi_ubit16_t operand ;

} udi_pio_trans_t ;

/* Values for tran_size */

#define UDI_PIO_1BYTE 0

#define UDI_PIO_2BYTE 1

#define UDI_PIO_4BYTE 2

#define UDI_PIO_8BYTE 3

#define UDI_PIO_16BYTE 4

#define UDI_PIO_32BYTE 5

/* Values for register numbers in pio_op */

#define UDI_PIO_R0 0

#define UDI_PIO_R1 1

#define UDI_PIO_R2 2

#define UDI_PIO_R3 3

#define UDI_PIO_R4 4

#define UDI_PIO_R5 5

#define UDI_PIO_R6 6

#define UDI_PIO_R7 7

/* Values for addressing modes in pio_op */

#define UDI_PIO_DIRECT 0x00

#define UDI_PIO_SCRATCH 0x08

#define UDI_PIO_BUF 0x10

#define UDI_PIO_MEM 0x18

/* Values for Class A opcodes in pio_op */

#define UDI_PIO_IN 0x00

#define UDI_PIO_OUT 0x20

#define UDI_PIO_LOAD 0x40

#define UDI_PIO_STORE 0x60

/* Values for Class B opcodes in pio_op */

#define UDI_PIO_LOAD_IMM 0x80

#define UDI_PIO_CSKIP 0x88

#define UDI_PIO_IN_IND 0x90

#define UDI_PIO_OUT_IND 0x98

#define UDI_PIO_SHIFT_LEFT 0xA0

#define UDI_PIO_SHIFT_RIGHT 0xA8

#define UDI_PIO_AND 0xB0

#define UDI_PIO_AND_IMM 0xB8

4-16 UDI Physical I/O Specification - Version 1.01 - 2/2/01
Section 1: Physical I/O Services

udi_pio_trans_t PIO

#define UDI_PIO_OR 0xC0

#define UDI_PIO_OR_IMM 0xC8

#define UDI_PIO_XOR 0xD0

#define UDI_PIO_ADD 0xD8

#define UDI_PIO_ADD_IMM 0xE0

#define UDI_PIO_SUB 0xE8

/* Values for Class C opcodes in pio_op */

#define UDI_PIO_BRANCH 0xF0

#define UDI_PIO_LABEL 0xF1

#define UDI_PIO_REP_IN_IND 0xF2

#define UDI_PIO_REP_OUT_IND 0xF3

#define UDI_PIO_DELAY 0xF4

#define UDI_PIO_BARRIER 0xF5

#define UDI_PIO_SYNC 0xF6

#define UDI_PIO_SYNC_OUT 0xF7

#define UDI_PIO_DEBUG 0xF8

#define UDI_PIO_END 0xFE

#define UDI_PIO_END_IMM 0xFF

/* Values for UDI_PIO_DEBUG operand */

#define UDI_PIO_TRACE_OPS_NONE 0

#define UDI_PIO_TRACE_OPS1 1

#define UDI_PIO_TRACE_OPS2 2

#define UDI_PIO_TRACE_OPS3 3

#define UDI_PIO_TRACE_REGS_NONE (0U <<2)

#define UDI_PIO_TRACE_REGS1 (1U <<2)

#define UDI_PIO_TRACE_REGS2 (2U <<2)

#define UDI_PIO_TRACE_REGS3 (3U <<2)

#define UDI_PIO_TRACE_DEV_NONE (0U <<4)

#define UDI_PIO_TRACE_DEV1 (1U <<4)

#define UDI_PIO_TRACE_DEV2 (2U <<4)

#define UDI_PIO_TRACE_DEV3 (3U <<4)

MEMBERS pio_op is the type of operation to use for this transaction. pio_op
encodes the type of transaction and the selection of source and
destination operands.

tran_size is the power-of-2 size of a basic PIO transaction. The actual size
is 2tran_size bytes. The tran_size value must be from 0 to 5,
corresponding to a transaction size of 1 to 32 bytes (256 bits).
The mnemonic constants UDI_PIO_1BYTE through
UDI_PIO_32BYTE are available for use in setting
tran_size .

UDI Physical I/O Specification - Version 1.01 - 2/2/01 4-17
Section 1: Physical I/O Services

PIO udi_pio_trans_t

operand is an operand value or address for the transaction. Its
interpretation depends on the type of operation given by
pio_op .

DESCRIPTION A PIO transaction descriptor (udi_pio_trans_t) describes in most cases a
single PIO register/memory access transaction or an operation using a set of
temporary registers. Multiple such transaction descriptors may be combined
into a single list, called a trans list, to perform more complex sequences with
a single call to udi_pio_trans . Advanced operations in the trans list allow
for bit manipulations, repeat counts, serialization, and conditional branching.
All PIO transactions are subject to the rules and procedural information listed
on page 4-13.

Each element in the trans list array represents a basic transaction, and operates
on a single transaction-sized piece of data. When transferring data to or from
a device (for example, with UDI_PIO_IN or UDI_PIO_OUT), the entire
transaction-size bytes will be transferred as a single atomic bus transaction if
possible. See udi_pio_atomic_sizes on page 4-10 for a description of how
to determine the atomic sizes supported on a particular platform.

While simple transactions can be handled with simple operations, UDI
supports a rich set of PIO operation types, so that even fairly sophisticated
manipulation of device data can be performed with a single call to
udi_pio_trans . To allow these operations to be efficiently expressed,
udi_pio_trans uses an abstract register load/store model.

During execution of udi_pio_trans , the UDI environment maintains a set
of 8 temporary “registers”, numbered 0 through 7, each of which can hold one
data item up to 32 bytes (256 bits) in size. Most PIO operations use one or
more of these registers. If the size of a value loaded into a register (determined
by tran_size) is less than 32 bytes, the “upper” (most-significant) bytes
are treated as zero if the register value is subsequently used with a larger
transaction size. If a register value is used in an operation with a smaller
transaction size than when the register was last loaded, the upper bytes will be
ignored. Arithmetic operations do not generate underflows or overflows, they
simply wrap around; in other words, all arithmetic is modulo
2^((2^ tran_size)*8) .

In addition to using the temporary registers, some PIO operations allow access
to permanent memory associated with one of the arguments to
udi_pio_trans . These operations can access control block scratch space,
udi_buf_t buffer contents, or driver memory. Values in permanent memory
are stored in the driver’s endianness, even for transaction sizes larger than
native word sizes. These values will be either purely little endian or purely big
endian. (See the definitions of big endian and little endian in Section 3.2.2,
“Common Terms,” on page 3-2 of the UDI Core Specification.)

PIO operations are divided into 3 classes, based on the type of operands used:
Class A, Class B, and Class C operations.

4-18 UDI Physical I/O Specification - Version 1.01 - 2/2/01
Section 1: Physical I/O Services

udi_pio_trans_t PIO

Class A Operations: Class A operations can use register values or permanent
memory values. The pio_op value for a class A operation
selects a register number (0-7) as well as an addressing mode
from the following table.

To set pio_op for a Class A operation, the register number and
exactly one of the addressing mode mnemonics must be added to
the opcode mnemonic:

pio_op = operation_code + addressing_mode + register

The mnemonic constants UDI_PIO_R0 through UDI_PIO_R7
are available for use in selecting registers for all opcodes and
operands that use register numbers.

Class A pio_op values are encoded with the following bit
patterns: 000aarrr - 011aarrr , where aa selects the
addressing mode according to Table 4-1 and rrr selects a
register number.

Class B Operations: Class B operations can use register values but not
permanent memory values. The pio_op value for a class B
operation selects a register number (0-7), which is used as if the
UDI_PIO_DIRECT addressing mode were specified.

To set pio_op for a Class B operation, the register number must
be added to the opcode mnemonic:

pio_op = operation_code + register

Class B pio_op values are encoded with the following bit
patterns: 10000rrr - 11101rrr , where rrr selects a
register number to be used with that addressing mode.

Class C Operations: Class C operations use neither register values nor
permanent memory values. The pio_op value for a class C
operation consists only of the opcode:

pio_op = operation_code

Class C pio_op values are encoded with the following bit
patterns: 11110000 - 11111111 .

Table 4-1 PIO Addressing Modes

Mnemonic Value Description

UDI_PIO_DIRECT 0x00 Register contents are used directly

UDI_PIO_SCRATCH 0x08 Register holds 32-bit offset into scratch space

UDI_PIO_BUF 0x10 Register holds 32-bit offset into buffer data

UDI_PIO_MEM 0x18 Register holds 32-bit offset into memory block

UDI Physical I/O Specification - Version 1.01 - 2/2/01 4-19
Section 1: Physical I/O Services

PIO udi_pio_trans_t

The following tables list the opcodes for each class and their encoded values,
along with the corresponding operation definitions, including an indication of
how the operand value is used in each case. In these tables, addr means the
contents of the location referred to by the selected addressing mode and
register, reg(operand) means a direct register value where the low-order 3
bits of operand are used to select the register number (unless otherwise
specified, the remaining bits must be zero), PIO(operand) means a
location on the PIO device where operand indicates the desired PIO offset,
and reg means the selected register contents.

Table 4-2 Class A PIO Operation Codes

Operation Code Value Operation

UDI_PIO_IN 0x00 addr <- PIO(operand)

UDI_PIO_OUT 0x20 PIO(operand) <- addr

UDI_PIO_LOAD 0x40 reg(operand) <- addr

UDI_PIO_STORE 0x60 addr <- reg(operand)

Table 4-3 Class B PIO Operation Codes

Operation Code Value Operation

UDI_PIO_LOAD_IMM 0x80 reg <- operand (multi-part)

UDI_PIO_CSKIP 0x88 Conditional skip. The value in reg is compared
with zero. The operand value selects a
condiction code from Table 4-5 to determine the
type of comparison. If the condition is TRUE,
the following trans list element will be skipped.

UDI_PIO_IN_IND 0x90 reg <- PIO(reg(operand))

UDI_PIO_OUT_IND 0x98 PIO(reg(operand)) <- reg

UDI_PIO_SHIFT_LEFT 0xA0 reg <- reg << operand

UDI_PIO_SHIFT_RIGHT 0xA8 reg <- reg >> operand

UDI_PIO_AND 0xB0 reg <- reg & reg(operand)

UDI_PIO_AND_IMM 0xB8 reg <- reg & operand (zero-extended)

UDI_PIO_OR 0xC0 reg <- reg | reg(operand)

UDI_PIO_OR_IMM 0xC8 reg <- reg | operand (zero-extended)

UDI_PIO_XOR 0xD0 reg <- reg ^ reg(operand)

UDI_PIO_ADD 0xD8 reg <- reg + reg(operand)

UDI_PIO_ADD_IMM 0xE0 reg <- reg + operand (sign-extended)

UDI_PIO_SUB 0xE8 reg <- reg - reg(operand)

4-20 UDI Physical I/O Specification - Version 1.01 - 2/2/01
Section 1: Physical I/O Services

udi_pio_trans_t PIO

Detailed description of Addressing Modes:

UDI_PIO_DIRECT — In this mode, the contents of the selected
register, reg , are used for the addr value itself. In this case,
addr is unaffected by any stride values from
UDI_PIO_REP_IN_IND or UDI_PIO_REP_OUT_IND
operations.

UDI_PIO_SCRATCH — In this mode, the contents of the
selected register, reg , are used as an offset into the scratch
space of the control block passed to udi_pio_trans . The
scratch space data bytes starting at this offset and extending
for the selected transaction size are used as the addr value.

Table 4-4 Class C PIO Operation Codes

Operation Code Value Operation

UDI_PIO_BRANCH 0xF0 Unconditional branch to the UDI_PIO_LABEL
with the same operand value. tran_size is
unused and must be set to zero.

UDI_PIO_LABEL 0xF1 Destination of a UDI_PIO_BRANCH.
tran_size is unused and must be set to zero.

UDI_PIO_REP_IN_IND 0xF2 Repeated indirect PIO input transactions.
operand is encoded according to the
UDI_PIO_REP_ARGS macro described below.

UDI_PIO_REP_OUT_IND 0xF3 Repeated indirect PIO output transactions.
operand is encoded according to the
UDI_PIO_REP_ARGS macro described below.

UDI_PIO_DELAY 0xF4 Delay for at least operand microseconds
during a PIO wait loop.

UDI_PIO_BARRIER 0xF5 Place an ordering barrier between PIO
transactions. tran_size is unused and must be
set to zero. See below for details on the behavior
of this operation and its use of operand .

UDI_PIO_SYNC 0xF6 Synchronize with respect to outstanding PIO
transactions. See below for details on the
behavior of this operation and its use of
tran_size and operand .

UDI_PIO_SYNC_OUT 0xF7 Synchronize with respect to outstanding PIO
output transactions. See below for details on the
behavior of this operation and its use of
tran_size and operand .

UDI_PIO_DEBUG 0xF8 Enable/disable debug tracing of PIO transactions.

UDI_PIO_END 0xFE Terminate processing.
result_code <- reg(operand)
tran_size must be <= UDI_PIO_2BYTE.

UDI_PIO_END_IMM 0xFF Terminate processing.
result_code <- operand
tran_size must be UDI_PIO_2BYTE.

UDI Physical I/O Specification - Version 1.01 - 2/2/01 4-21
Section 1: Physical I/O Services

PIO udi_pio_trans_t

Only the low-order 32 bits of the register value are used; any
higher order bits are ignored; smaller values previously
loaded into the register are zero-extended to 32 bits. The
offset must be a multiple of the transaction size.

UDI_PIO_BUF — In this mode, the contents of the selected
register, reg , are used as an offset into the valid data area of
the udi_buf_t buffer passed to udi_pio_trans . The
buffer data bytes starting at this offset and extending for the
selected transaction size are used as the addr value. Only
the low-order 32 bits of the register value are used; any
higher order bits are ignored; smaller values previously
loaded into the register are zero-extended to 32 bits. The
offset must be a multiple of the transaction size. All offsets
accessed with UDI_PIO_BUF must be less than the buffer’s
buf_size value at the time udi_pio_trans was called.

UDI_PIO_MEM — In this mode, the contents of the selected
register, reg , are used as an offset into the auxiliary memory
block pointed to by the mem_ptr argument passed to
udi_pio_trans . The memory block data bytes starting at
this offset and extending for the selected transaction size are
used as the addr value. Only the low-order 32 bits of the
register value are used; any higher order bits are ignored;
smaller values previously loaded into the register are zero-
extended to 32 bits. The offset must be a multiple of the
transaction size.

When PIO device registers/memory are used as the source (UDI_PIO_IN,
UDI_PIO_IN_IND, or UDI_PIO_REP_IN_IND) or destination
(UDI_PIO_OUT, UDI_PIO_OUT_IND, or UDI_PIO_REP_OUT_IND) of an
operation, the specified PIO offset is interpreted relative to the register set and
base offset specified through arguments to udi_pio_map and passed to
udi_pio_trans via the pio_handle argument. UDI_PIO_IN and
UDI_PIO_OUT only support PIO offsets up to 65535. UDI_PIO_IN_IND,
UDI_PIO_OUT_IND, UDI_PIO_REP_IN_IND and
UDI_PIO_REP_OUT_IND use a register value to provide the PIO offset,
allowing for indirections and larger offsets; the 32 low-order bits of the
register value are used for the PIO offset; any higher order bits are ignored;
smaller values previously loaded into the register are zero extended to 32 bits.

UDI_PIO_LOAD_IMM:

The immediate load operation takes a value directly from the
operand portion of a transaction descriptor and loads it into the
selected temporary register. The transaction size for this
operation must be at least 2 bytes.

If UDI_PIO_LOAD_IMM is used with a transaction size greater
than 2 bytes, multiple trans list elements are used to hold all the
bytes of the immediate value. Starting from the least significant 2
bytes, pairs of bytes are loaded from each successive operand

4-22 UDI Physical I/O Specification - Version 1.01 - 2/2/01
Section 1: Physical I/O Services

udi_pio_trans_t PIO

value starting from the UDI_PIO_LOAD_IMM trans list entry,
where each pair is listed as most-significant-byte followed by
least-significant-byte. The subsequent trans list elements which
contain the additional byte values must repeat the pio_op and
tran_size values from the initial UDI_PIO_LOAD_IMM
operation. Normal trans list execution resumes after the last such
element.

Shift operations:

UDI_PIO_SHIFT_LEFT and UDI_PIO_SHIFT_RIGHT use the
operand value as a shift count for shifting the entire
transaction-size byte register value. The shift count must be from
1 to 32. Any bits shifted out of the low order transaction-size
bytes will be discarded. All bits shifted in to the low order
transaction-size bytes will be zero. Any previous more significant
bytes shall effectively be zeroed.

Repeat operations:

A UDI_PIO_REP_IN_IND or UDI_PIO_REP_OUT_IND
operation can be used to repeat a basic PIO transaction up to
232-1 times. The basic PIO transaction is like a
UDI_PIO_IN_IND or UDI_PIO_OUT_IND, in that it performs a
PIO transaction between a PIO offset indicated in one register
and a permanent memory location addressed via another register.
A third register holds the repeat count, which must be from zero
to 232-1.

The operand value for a repeat operation holds a number of
parameters, intialized via the UDI_PIO_REP_ARGS macro. See
UDI_PIO_REP_ARGS on page 4-26 for more details on repeat
operations.

Branching operations:

UDI_PIO_BRANCH is an unconditional branch operation. The
operand value is used to find the next trans list element to
execute instead of continuing in order. The operand value is
matched against UDI_PIO_LABEL trans list elements; execution
continues after the UDI_PIO_LABEL with the same operand
value as the UDI_PIO_BRANCH. It is illegal to have two
UDI_PIO_LABEL elements with the same operand value in
one trans list. It is illegal to have a UDI_PIO_BRANCH that
does not have a corresponding UDI_PIO_LABEL.

It is illegal to specify a UDI_PIO_LABEL or
UDI_PIO_BRANCH transaction with an operand value of zero.

If a UDI_PIO_LABEL operation is executed sequentially, it acts
as a no-op.

UDI Physical I/O Specification - Version 1.01 - 2/2/01 4-23
Section 1: Physical I/O Services

PIO udi_pio_trans_t

Conditional operation:

UDI_PIO_CSKIP is a conditional skip operation. It compares a
register value with zero and skips the following operation if the
comparison meets the required conditions. The operand
specifies the condition code, according to the following table:

Busy-wait operation:

A UDI_PIO_DELAY pauses execution of the trans list for a
specified time. Transaction lists that loop waiting for device
events (such as ready bits being set in status registers) must
include a UDI_PIO_DELAY in the loop to avoid consuming
excessive CPU resources. The operand value provides the
desired delay time in microseconds. This is a hint to the
environment, and must not be used to perform precise timings.
The environment will pause the execution of the PIO trans list
for at least the requested amount of time.

Synchronization operations:

The synchronization operations (UDI_PIO_BARRIER,
UDI_PIO_SYNC and UDI_PIO_SYNC_OUT) do not actually
transfer any new data. Instead, they make sure that any PIO
transactions that have already been generated are made visible to
the device before any subsequent PIO transactions to/from the
same device register set become visible (thus acting as a
“barrier”). These operations only affect accesses to the device or
memory referenced by the PIO handle, not buffer or driver
memory.

The operand value for UDI_PIO_BARRIER must be either 0
or UDI_PIO_OUT. If UDI_PIO_OUT, the barrier is only
guaranteed to act with respect to device output transactions; this
may be faster than a full barrier.

The UDI_PIO_SYNC and UDI_PIO_SYNC_OUT operations
provide even stronger synchronization: they also wait for the
affected transactions to reach the device. UDI_PIO_SYNC
affects all PIO transactions; UDI_PIO_SYNC_OUT is only
required to affect output transactions. operand and
tran_size must be set to a PIO offset range of the device that
causes no side effects if input from. On some platforms, PIO

Table 4-5 PIO Condition Codes

Mnemonic Value Condition Description

UDI_PIO_Z 0 reg == 0

UDI_PIO_NZ 1 reg != 0

UDI_PIO_NEG 2 reg < 0 [signed]

UDI_PIO_NNEG 3 reg >= 0 [signed]

4-24 UDI Physical I/O Specification - Version 1.01 - 2/2/01
Section 1: Physical I/O Services

udi_pio_trans_t PIO

transactions can only be synchronized by performing an
additional PIO input transaction. In such cases, the environment
will read 2tran_size bytes from offset operand of the device
(and discard the result).

Synchronization operations are not needed if
UDI_PIO_STRICTORDER was specified in the PIO attributes
for the PIO handle. With UDI_PIO_STRICTORDER, each basic
transaction that accesses the PIO device is followed by an
implicit UDI_PIO_SYNC.

Upon completion of a udi_pio_trans sequence, via
execution of a UDI_PIO_END operation, an implicit
UDI_PIO_BARRIER with operand of zero is performed.

Environment implementations may choose to impose stronger
ordering and synchronization than required by the
synchronization operations used, up to and including strict
ordering.

Debugging Operation:

The UDI_PIO_DEBUG operation controls PIO debug tracing.
This opcode will be seldom, if ever, used in production drivers
and is to be used mostly while a driver is under development. As
with the other debugging facilities in UDI like
udi_debug_printf and udi_debug_break , an
environment may choose to completely or partially ignore this
opcode. Each UDI environment must document how the
debugging output is made available to the developer.

Upon entry to a trans list, all debugging is disabled.
UDI_PIO_DEBUG opcodes are interpreted like all other
opcodes; they are synchronous with the execution of the trans
list. Each UDI_PIO_DEBUG opcode will reset the debug level
regardless of the current debug level; they are not cumulative.

The trans_size must be zero since no PIO-visible data is
transferred by this opcode. The operand provides a bitmask to
control the level of debugging. If no flags are specified,
debugging is disabled.

For each field, tracing information is generated only if the
current debug level in the trans list is greater than or equal to the
debugging level of the environment. The output at various levels
is explictly specified; it's an agreement between the trans list
author and the user of the environment controlling the trace level.

Termination Operations:

UDI Physical I/O Specification - Version 1.01 - 2/2/01 4-25
Section 1: Physical I/O Services

PIO udi_pio_trans_t

Upon reaching a UDI_PIO_END_IMM, processing of the trans
list is terminated and the result code (an arbitrary 16-bit code
that is defined by the driver) in the udi_pio_trans_call_t
callback is set to the low byte of the operand value.

Upon reaching a UDI_PIO_END, processing of the trans list
terminates as in the UDI_PIO_END_IMM case, except that the
operand specifies the register number whose contents are to be
returned as the result code.

The last element of a PIO trans list must be either a UDI_PIO_END
operation, a UDI_PIO_END_IMM operation, or a UDI_PIO_BRANCH.

REFERENCES udi_pio_map, udi_pio_trans, UDI_PIO_REP_ARGS,
udi_buf_t, udi_mem_alloc

4-26 UDI Physical I/O Specification - Version 1.01 - 2/2/01
Section 1: Physical I/O Services

UDI_PIO_REP_ARGS PIO

NAME UDI_PIO_REP_ARGS Parameters for repeated PIO
transactions

SYNOPSIS #include <udi.h>
#include <udi_physio.h>

#define \
UDI_PIO_REP_ARGS (\

mode, mem_reg, mem_stride , \
pio_reg , pio_stride , cnt_reg) \

((mode)|(mem_reg)|((mem_stride)<<5)| \
((pio_reg)<<7)|((pio_stride)<<10)| \
((cnt_reg)<<13))

ARGUMENTS mode is the addressing mode used to access the memory operand,
according to Table 4-1, “PIO Addressing Modes,” on page 4-18.

mem_reg is the number of the register used to access the memory operand,
according to Table 4-1.

mem_stride is the stride value used to increment the memory offset between
repeats.

pio_reg is the number of the register used to hold the initial PIO offset.
The 32 low-order bits of the register value are used for the PIO
offset; any higher order bits are ignored; smaller values
previously loaded into the register are zero extended to 32 bits.

pio_stride is the stride value used to increment the PIO offset between
repeats.

cnt_reg is the number of the register used to hold the repeat count. The
32 low-order bits of the register value are used for the count; any
higher order bits are ignored; smaller values previously loaded
into the register are zero extended to 32 bits.

DESCRIPTION The UDI_PIO_REP_ARGS macro is used to construct the operand value
for UDI_PIO_REP_IN_IND and UDI_PIO_REP_OUT_IND repeating PIO
operations (see udi_pio_trans_t on page 4-15).

A repeat operation repeats a basic PIO transaction the number of times
indicated by the repeat count from the cnt_reg register. The memory
location and PIO offset for the first repetition are determined by mode,
mem_reg, and pio_reg . For subsequent repetitions, the memory offset (if
mode is not UDI_PIO_DIRECT) and PIO offset are incremented according
to the corresponding stride values. The values in the original registers
(mem_reg, pio_reg , and cnt_reg) are not affected by stride increments
or by repeat count decrements.

UDI Physical I/O Specification - Version 1.01 - 2/2/01 4-27
Section 1: Physical I/O Services

PIO UDI_PIO_REP_ARGS

The stride values mem_stride and pio_stride indicate a (possibly zero)
multiple of the target operation’s transaction size, according to the following
table.

Some examples of how to use stride values are shown in the following table.

Table 4-6 Stride Values for PIO Repeat Operations

Stride Code Stride Size in Bytes
Multiple of

Transaction Size

0 0 0

1 2^ tran_size 1

2 2^(tran_size +1) 2

3 2^(tran_size +2) 4

Table 4-7 Example Uses of PIO Stride Parameters

Function mem_stride pio_stride

Copy array to/from a contiguous range of
device memory

1 1

Copy array to/from single device register 1 0

Fill range of device memory w/single value 0 1

Fill lower 2 bytes of a series of 4-byte
aligned device registers (tran_size = 2)
with a single value

0 2

Fill lower 2 bytes of a series of 4-byte
aligned device registers (tran_size = 2)
from an array of 2-byte values

1 2

4-28 UDI Physical I/O Specification - Version 1.01 - 2/2/01
Section 1: Physical I/O Services

udi_pio_trans PIO

NAME udi_pio_trans Generate PIO transactions

SYNOPSIS #include <udi.h>
#include <udi_physio.h>

void udi_pio_trans (
udi_pio_trans_call_t * callback ,
udi_cb_t * gcb ,
udi_pio_handle_t pio_handle ,
udi_index_t start_label ,
udi_buf_t * buf ,
void * mem_ptr);

typedef void udi_pio_trans_call_t (
udi_cb_t * gcb ,
udi_buf_t * new_buf ,
udi_status_t status ,
udi_ubit16_t result);

ARGUMENTS callback, gcb are standard arguments described in the “Asynchronous
Service Calls” section of “Standard Calling Sequences” in the
UDI Core Specification.

pio_handle is the PIO handle associated with the desired device register
set and transaction list, previously acquired from
udi_pio_map .

start_label specifies which UDI_PIO_LABEL value the trans list
execution should begin at. A start_label value of zero
indicates that the trans list execution should start from the
beginning, otherwise values from 1-7 indicate a request to start
the trans list at the corresponding UDI_PIO_LABEL position.
Any other values for this argument are illegal.

buf is a pointer to a data buffer that can be accessed by the PIO
transactions using UDI_PIO_BUF. If buf is set to NULL,
UDI_PIO_BUF transactions are illegal for this call.

mem_ptr is a pointer to an auxiliary memory block that can be accessed by
PIO transactions that specify UDI_PIO_MEM. If mem_ptr is
set to NULL, such transactions are illegal for this call.

new_buf is a possibly new UDI buffer that the driver must use in place of
the original buf after the callback is called, since the
environment may need to re-allocate the buffer to accomodate
new data added to the buffer as a result of this service call.

status is a UDI status code. If the PIO transactions all completed
without error, it will be set to UDI_OK; otherwise it will be set
to UDI_STAT_HW_PROBLEM. If not UDI_OK, the status code
may already contain a correlate value.

UDI Physical I/O Specification - Version 1.01 - 2/2/01 4-29
Section 1: Physical I/O Services

PIO udi_pio_trans

result is a result code set by a UDI_PIO_END or a
UDI_PIO_END_IMM transaction.

DESCRIPTION udi_pio_trans performs a series of one or more PIO transactions to the
area of a device indicated by the PIO handle, pio_handle . The list of
(possibly repeated) transactions to perform is given by the trans_list
which was associated with the PIO handle at the time of udi_pio_map . See
udi_pio_trans_t on page 4-15 for a detailed description of PIO transactions.

Synchronization of udi_pio_trans calls and the execution of the
corresponding transaction lists is provided by the environment independently
from the region synchronization. For proper driver design refer to the PIO
synchronization and ordering definitions on page 4-1.

If the PIO attributes associated with pio_handle indicate that the
endianness of the device’s data structures are different from the driver’s
endianness, udi_pio_trans will automatically perform necessary byte-
swapping. The driver must not do the byte-swapping itself, as
udi_pio_trans may be able to take advantage of special hardware support
for byte-swapped PIO transactions.

Pacing delays and other attributes encoded in pio_handle , such as ordering
and atomicity requirements, will be applied to each individual I/O operation.

Once the last transaction has been executed, including any pacing delay, the
callback routine will be called. An implicit UDI_PIO_BARRIER will be
executed at the end of the transaction list, but if UDI_PIO_SYNC or
UDI_PIO_SYNC_OUT are required they must be explicitly included.

WARNINGS Use of the mem_ptr parameter must conform to the rules described in
“Using Memory Pointers with Asynchronous Service Calls” on page 5-2 of
the UDI Core Specification.

STATUS VALUES A UDI status code indicating the success or failure of the PIO transactions. If
a hardware error, such as a bus timeout or parity error, is detected in
conjunction with a PIO transaction, execution of the PIO transaction list is
terminated and status is set to UDI_STAT_HW_PROBLEM. Transactions
following the one that caused the error may or may not be executed.
Environments are not required to detect errors during udi_pio_trans ; in
such environments, the effect of a PIO hardware error is indeterminate and
may include driver or system termination. If a driver expects that the PIO
might reasonably fail (e.g. because the device is not present) it must use
udi_pio_probe instead of udi_pio_trans .

REFERENCES udi_pio_map, udi_pio_trans_t, udi_pio_probe

4-30 UDI Physical I/O Specification - Version 1.01 - 2/2/01
Section 1: Physical I/O Services

udi_pio_probe PIO

NAME udi_pio_probe Probe a PIO device that might not
be present

SYNOPSIS #include <udi.h>
#include <udi_physio.h>

void udi_pio_probe (
udi_pio_probe_call_t * callback ,
udi_cb_t * gcb ,
udi_pio_handle_t pio_handle ,
void * mem_ptr ,
udi_ubit32_t pio_offset ,
udi_ubit8_t tran_size ,
udi_ubit8_t direction);

typedef void udi_pio_probe_call_t (
udi_cb_t * gcb ,
udi_status_t status);

/* Values for direction */

#define UDI_PIO_IN 0x00

#define UDI_PIO_OUT 0x20

ARGUMENTS callback, gcb are standard arguments described in the “Asynchronous
Service Calls” section of “Standard Calling Sequences” in the
UDI Core Specification.

pio_handle is a PIO handle previously allocated via udi_pio_map .

mem_ptr is a pointer to a memory location which is the source or
destination of the PIO transaction.

pio_offset is the offset into the mapped device at which to perform the
transaction. There are no alignment requirements on
pio_offset .

tran_size is the power-of-2 size of the PIO transaction. The actual size is
2tran_size bytes. The tran_size value must be from 0 to 5,
corresponding to a transaction size of 1 to 32 bytes (256 bits).
The mnemonic constants UDI_PIO_1BYTE through
UDI_PIO_32BYTE are available for use in setting
tran_size .

direction is exactly one of UDI_PIO_IN or UDI_PIO_OUT, to indicate
the direction of transfer.

status indicates the success or failure of the PIO probe attempt.

DESCRIPTION This service call attempts to perform a PIO access to a device that may or may
not be present. It will do this in such a way that there will be no adverse side
effects (such as driver or system aborts) if there is in fact no device present. If
a different device is present at the same or overlapping location then it might

UDI Physical I/O Specification - Version 1.01 - 2/2/01 4-31
Section 1: Physical I/O Services

PIO udi_pio_probe

be accessed instead of the intended device, causing an indeterminate effect on
the state of that device; environments are not required to prevent this from
happening.

The trans list associated with pio_handle is ignored; instead, a single basic
PIO transaction of 2tran_size bytes is performed, in the direction indicated by
direction .

If a driver’s device might not have been reliably enumerated and might not be
actually present, udi_pio_probe must be used to determine if the device is
present before using it for normal operation. Otherwise, udi_pio_probe
should not be used. It is likely to be slower than udi_pio_trans , possibly
affecting overall system performance as well. In some environments, use of
udi_pio_probe may force the driver to be run only during certain stages of
system initialization; such an environment may require system re-initialization
in order to use a driver that uses udi_pio_probe .

In order for a driver to use udi_pio_probe , its region’s “pio_probe ”
region attribute must be set to “yes ”. Some environments may refuse to use
drivers with “pio_probe ” set to “yes ”. See Section 1.4, “Extensions to
Static Driver Properties,” on page 1-2 for details.

Transactions using udi_pio_probe are not guaranteed to be atomic.

If a driver determines that its device is not present during binding, it must log
an error using udi_log_write and respond to the Management Agent with
a status of UDI_STAT_NOT_RESPONDING via
udi_channel_event_complete .

WARNINGS Use of the mem_ptr parameter must conform to the rules described in
“Using Memory Pointers with Asynchronous Service Calls” on page 5-2 of
the UDI Core Specification.

STATUS VALUES UDI_OK

UDI_STAT_HW_PROBLEM – the device failed to respond to the PIO access.
Some environments may return “garbage” data in such cases,
rather than indicating an error with UDI_STAT_HW_PROBLEM.

REFERENCES udi_pio_trans

PIO Handle Transferability PIO

4-32 UDI Physical I/O Specification - Version 1.01 - 2/2/01
Section 1: Physical I/O Services

4.4 PIO Handle Transferability

Since PIO handles are transferable between regions, they need to be represented in layout specifiers for
use by metalanguages and by drivers that specify inline layouts. This section defines an extension to the
data layout specifier defined in the UDI Core Specification.

UDI Physical I/O Specification - Version 1.01 - 2/2/01 4-33
Section 1: Physical I/O Services

PIO udi_layout_t (PIO)

NAME udi_layout_t (PIO) Data layout specifier for PIO

SYNOPSIS #include <udi.h>
#include <udi_physio.h>

typedef udi_ubit8_t udi_layout_t ;

/* PIO Handle Layout Element Type Code */

#define UDI_DL_PIO_HANDLE_T 200

DESCRIPTION This page lists additional layout specifier codes that can be used with the
udi_layout_t type, defined in the UDI Core Specification, to specify PIO-
related data layouts.

A data layout specifier consists of an array of one or more udi_layout_t
layout elements. Each element contains a type code indicating one of the UDI
data types that can be passed into a channel operation, either as a field in the
control block or as an additional parameter. Each successive element of the
array represents successive offsets within the described structure, with
padding automatically inserted for alignment purposes as if the specified data
types had appeared in a C struct declaration.

A UDI_DL_PIO_HANDLE_T layout element represents a PIO handle, of type
udi_pio_handle_t , which may be UDI_NULL_PIO_HANDLE.

REFERENCES udi_layout_t

udi_layout_t (PIO) PIO

4-34 UDI Physical I/O Specification - Version 1.01 - 2/2/01
Section 1: Physical I/O Services

UDI Physical I/O Specification

UDI Physical I/O Specification - Version 1.01

Section 2: Bus Bridge Metalanguage

UDI Physical I/O Specification - Version 1.01 - 2/2/01 5-1
Section 2: Bus Bridge Metalanguage

Bus Bridge Metalanguage 5

5.1 Overview

This chapter details the channel operations and their parameters for the Bus Bridge Metalanguage,
which allow a driver for a direct-attached hardware device to communicate with the driver for its parent
bus bridge. The device may be a leaf device or another bridge. For purposes of discussion we always
refer to the child (furthest from the processor) as the device and the parent as the bridge, and we’ll refer
to the device driver and the bridge driver.

Each subsection defines the channel operation calls, control block type declarations, the rationale for the
operation’s existence, constraints and guidelines for the use of each operation, and error conditions that
can occur. (The common errors described earlier are not repeated.)

The Bus Bridge Metalanguage operations are grouped into four roles. For each role there’s a
corresponding channel ops vector, which is registered via an associated udi_ops_init_t structure. The
Bus Bridge Metalanguage bridge role supports binding/unbinding and interrupt registration operations
invoked on a parent bridge object by a child device driver. The Bus Bridge Metalanguage device role
supports binding/unbinding and interrupt registration operations invoked on a child device object by a
parent bridge driver. The Bus Bridge Metalanguage interrupt dispatcher role supports interrupt
acknowledgment operations invoked on a parent bridge object by a child device driver. The Bus Bridge
Metalanguage interrupt handler role supports interrupt event operations invoked on a child device object
by a parent bridge driver.

In the Bus Bridge Metalanguage, since each control block type is designed to be used across a group of
related operations, a separate control block group is defined per individual type of control block. See
udi_cb_init_t on page 10-11 of the UDI Core Specification for additional information.

Only the udi_intr_event_rdy Bus Bridge Metalanguage operation is abortable with
udi_channel_op_abort . None of the Bridge Metalanguage operations are recoverable.

5.1.1 Versioning

All functions and structures defined in this chapter are part of the “udi_bridge ” interface, currently at
version “0x101 ”. A driver that conforms to and uses the Bus Bridge Metalanguage of the UDI Physical
I/O Specification, Version 1.01, must include the following declaration in its udiprops.txt file (see
Chapter 30, “Static Driver Properties”, of the UDI Core Specification):

requires udi_bridge 0x101

Compile-time versioning and header files for the Bus Bridge Metalanguage are covered by the general
requirements for the UDI Physical I/O Specification defined in Section 1.2, “General Requirements”.

Overview Bus Bridge Meta

5-2 UDI Physical I/O Specification - Version 1.01 - 2/2/01
Section 2: Bus Bridge Metalanguage

A portable implementation of the Bus Bridge Metalanguage must include a corresponding "provides"
declaration in its udiprops.txt file, must conform to the same compile-time versioning and header
requirements as for drivers, and must conform to the requirements specified in the Metalanguage-to-
Environment (MEI) interface defined in Chapter 27, “Introduction to MEI” , of the UDI Core
Specification and Chapter 28, “Metalanguage-to-Environment Interface”, of the UDI Core
Specification.

UDI Physical I/O Specification - Version 1.01 - 2/2/01 5-3
Section 2: Bus Bridge Metalanguage

Bus Bridge Meta Binding/Unbinding Operations

5.2 Binding/Unbinding Operations

These operations are used during the binding and unbinding of a device driver to a bridge driver.

5-4 UDI Physical I/O Specification - Version 1.01 - 2/2/01
Section 2: Bus Bridge Metalanguage

udi_bus_device_ops_t Bus Bridge Meta

NAME udi_bus_device_ops_t Device driver entry point ops vector

SYNOPSIS #include <udi.h>
#include <udi_physio.h>

typedef const struct {
udi_channel_event_ind_op_t * channel_event_ind_op ;
udi_bus_bind_ack_op_t * bus_bind_ack_op ;
udi_bus_unbind_ack_op_t * bus_unbind_ack_op ;
udi_intr_attach_ack_op_t * intr_attach_ack_op ;
udi_intr_detach_ack_op_t * intr_detach_ack_op ;

} udi_bus_device_ops_t ;

/* Bus Device Ops Vector Number */

#define UDI_BUS_DEVICE_OPS_NUM 1

DESCRIPTION A driver using the Physical I/O services will specify the
udi_bus_device_ops_t as part of its udi_init_info in order to
register its entry points for managing bus bindings and handling interrupts (as
opposed to dispatching interrupts).

REFERENCES udi_init_info , udi_ops_init_t , udi_bus_bridge_ops_t

EXAMPLE The driver’s initialization structure definitions might include the following:

#define MY_DEVICE_OPS 10 /* Ops for my child role */

#define MY_BRIDGE_OPS 11 /* Ops for my bridge role */

#define MY_BUS_META 1 /* Meta index for Bus Bridge Metalanguage */

static
udi_bus_device_ops_t ddd_bus_device_ops = {

ddd_bus_device_channel_event_ind,
ddd_bus_bind_ack,
ddd_bus_unbind_ack,
ddd_intr_attach_ack,
ddd_intr_detach_ack

};
...
static udi_ops_init_t ddd_ops_init_list[] = {

{ MY_DEVICE_OPS,
MY_BUS_META,
UDI_BUS_DEVICE_OPS_NUM,
0, /* chan_context_size */
(udi_ops_vector_t *)&ddd_bus_device_ops },

{ 0 }
};

UDI Physical I/O Specification - Version 1.01 - 2/2/01 5-5
Section 2: Bus Bridge Metalanguage

Bus Bridge Meta udi_bus_bridge_ops_t

NAME udi_bus_bridge_ops_t Bridge driver entry point ops vector

SYNOPSIS #include <udi.h>
#include <udi_physio.h>

typedef const struct {
udi_channel_event_ind_op_t * channel_event_ind_op ;
udi_bus_bind_req_op_t * bus_bind_req_op ;
udi_bus_unbind_req_op_t * bus_unbind_req_op ;
udi_intr_attach_req_op_t * intr_attach_req_op ;
udi_intr_detach_req_op_t * intr_detach_req_op ;

} udi_bus_bridge_ops_t ;

/* Bus Bridge Ops Vector Number */

#define UDI_BUS_BRIDGE_OPS_NUM 2

DESCRIPTION A driver using the Physical I/O services and which acts as an “interrupt
dispatcher” (as opposed to an “interrupt handler”) will specify the
udi_bus_bridg e_ops_t structure as part of its udi_init_info to
register its entry points for managing bus bindings and interrupts
attachments/detachments.

REFERENCES udi_init_info , udi_ops_init_t , udi_bus_device_ops_t

EXAMPLE The driver’s initialization structure definitions might include the following:

#define MY_DEVICE_OPS 10 /* Ops for my device role */

#define MY_BRIDGE_OPS 11 /* Ops for my bridge role */

#define MY_BUS_META 1 /* Meta index for Bus Bridge Metalanguage */

static
udi_bus_bridge_ops_t ddd_bus_bridge_ops = {

ddd_bus_bridge_channel_event_ind,
ddd_bus_bind_req,
ddd_bus_unbind_req,
ddd_intr_attach_req,
ddd_intr_detach_req

};
...
static udi_ops_init_t ddd_ops_init_list[] = {

{ MY_DEVICE_OPS,
MY_BUS_META,
UDI_BUS_DEVICE_OPS_NUM,
0, /* chan_context_size */
(udi_ops_vector_t *)&ddd_bus_device_ops },

{ MY_BRIDGE_OPS,
MY_BUS_META,
UDI_BUS_BRIDGE_OPS_NUM,
0, /* chan_context_size */
(udi_ops_vector_t *)&ddd_bus_bridge_ops },

...
};

5-6 UDI Physical I/O Specification - Version 1.01 - 2/2/01
Section 2: Bus Bridge Metalanguage

udi_bus_bind_cb_t Bus Bridge Meta

NAME udi_bus_bind_cb_t Control block for bus bridge binding
operations

SYNOPSIS #include <udi.h>
#include <udi_physio.h>

typedef struct {
udi_cb_t gcb ;

} udi_bus_bind_cb_t ;

/* Bus Bind Control Block Group Number */

#define UDI_BUS_BIND_CB_NUM 1

MEMBERS gcb is a generic control block header, which includes a pointer to the
scratch space associated with this control block. The driver may
use the scratch space while it owns the control block, but the
values are not guaranteed to persist across channel operations.

DESCRIPTION The bus bind control block is used between the bus device driver and the bus
bridge driver to complete binding and unbinding over the bind channel.

This control block must be declared by specifying the control block index
value UDI_BUS_BIND_CB_NUM in a udi_cb_init_t in the driver’s
udi_init_info .

The bus device driver obtains the udi_bus_bind_cb_t structure to use
with the udi_bus_bind_req or udi_bus_unbind_req operation by
calling udi_cb_alloc with a cb_idx that has been defined for the
UDI_BUS_BIND_CB_NUM control block.

REFERENCES udi_bus_bind_cb_t, udi_cb_alloc, udi_bus_bind_req,
udi_bus_bind_ack, udi_bus_unbind_req,
udi_bus_unbind_ack

UDI Physical I/O Specification - Version 1.01 - 2/2/01 5-7
Section 2: Bus Bridge Metalanguage

Bus Bridge Meta udi_bus_bind_req

NAME udi_bus_bind_req Request a binding to a bridge driver

SYNOPSIS #include <udi.h>
#include <udi_physio.h>

void udi_bus_bind_req (
udi_bus_bind_cb_t * cb);

ARGUMENTS cb is a pointer to a bus bind control block.

TARGET CHANNEL The target channel for this operation is the bind channel connecting a device
driver with its parent bus bridge driver.

DESCRIPTION A device driver uses this operation to bind to its parent bus bridge driver.

The device driver must prepare for the udi_bus_bind_req operation by
allocating a bus bind control block (calling udi_cb_alloc with a cb_idx
corresponding to the UDI_BUS_BIND_CB_NUM control block type).

Next, the device driver sends the bus bind control block to the bridge driver
with a udi_bus_bind_req operation.

REFERENCES udi_bus_bind_cb_t, udi_bus_bind_ack,
udi_bus_unbind_req

5-8 UDI Physical I/O Specification - Version 1.01 - 2/2/01
Section 2: Bus Bridge Metalanguage

udi_bus_bind_ack Bus Bridge Meta

NAME udi_bus_bind_ack Acknowledge a bus bridge binding

SYNOPSIS #include <udi.h>
#include <udi_physio.h>

void udi_bus_bind_ack (
udi_bus_bind_cb_t * cb ,
udi_dma_constraints_t dma_constraints ,
udi_ubit8_t preferred_endianness ,
udi_status_t status);

/* Values for preferred_endianness */

#define UDI_DMA_BIG_ENDIAN (1U <<5)

#define UDI_DMA_LITTLE_ENDIAN (1U <<6)

#define UDI_DMA_ANY_ENDIAN (1U <<0)

ARGUMENTS cb is a pointer to a bus bind control block.

dma_constraints specifies the DMA constraints requirements of the bus
bridge. The child driver must apply its own specific constraints
attributes to this constraints object (using
udi_dma_constraints_attr_set) before using it for its
own DMA mappings.

preferred_endianness indicates the device endianness which works
most effectively with the bridges in this path. It may be set to one
of the following values:

UDI_DMA_LITTLE_ENDIAN
UDI_DMA_BIG_ENDIAN
UDI_DMA_ANY_ENDIAN

status indicates whether or not the binding was successful.

TARGET CHANNEL The target channel for this operation is the bind channel connecting a bus
bridge driver with one of its child device drivers.

DESCRIPTION The udi_bus_bind_ack operation is used by a bridge driver to
acknowledge binding with a child device driver (or failure to do so, as
indicated by status), as requested by a udi_bus_bind_req operation.
When a bind is acknowledged with this operation, the bridge driver must be
prepared for DMA, PIO, or interrupt registration operations to be performed
to the associated device and for the device to begin generating interrupts.

Some devices are bi-endian; that is, they can be placed in either a little-endian
mode or a big-endian mode. preferred_endianness provides a hint to
drivers for such devices, as to which endianness is likely to be most efficient.
If this is set to UDI_DMA_ANY_ENDIAN, at least one interposed bridge is
bi-endian, so either endianness can be supported without significant additional
cost (i.e. without software byte swapping).

Drivers for fixed-endianness devices can ignore preferred_endianness .

STATUS VALUES UDI_STAT_CANNOT_BIND

UDI Physical I/O Specification - Version 1.01 - 2/2/01 5-9
Section 2: Bus Bridge Metalanguage

Bus Bridge Meta udi_bus_bind_ack

WARNINGS The control block must be the same control block as passed to the driver in the
corresponding udi_bus_bind_req operation.

REFERENCES udi_bus_bind_cb_t, udi_bus_bind_req,
udi_channel_close

5-10 UDI Physical I/O Specification - Version 1.01 - 2/2/01
Section 2: Bus Bridge Metalanguage

udi_bus_unbind_req Bus Bridge Meta

NAME udi_bus_unbind_req Request a bridge driver unbinding
(child to bridge)

SYNOPSIS #include <udi.h>
#include <udi_physio.h>

void udi_bus_unbind_req (
udi_bus_bind_cb_t * cb);

ARGUMENTS cb is a pointer to a bus bind control block.

TARGET CHANNEL The target channel for this operation is the bind channel connecting a device
driver with its parent bus bridge driver.

DESCRIPTION A device driver uses this operation to unbind from its parent bus bridge driver.

The device driver must prepare for the udi_bus_unbind_req operation
by allocating a bus bind control block (calling udi_cb_alloc with a
cb_idx that indicates a udi_bus_bind_cb_t).

Next, the device driver sends the bus unbind control block to the bridge driver
with a udi_bus_unbind_req operation.

REFERENCES udi_bus_bind_cb_t, udi_bus_unbind_ack

UDI Physical I/O Specification - Version 1.01 - 2/2/01 5-11
Section 2: Bus Bridge Metalanguage

Bus Bridge Meta udi_bus_unbind_ack

NAME udi_bus_unbind_ack Acknowledge a bus bridge unbinding

SYNOPSIS #include <udi.h>
#include <udi_physio.h>

void udi_bus_unbind_ack (
udi_bus_bind_cb_t * cb);

ARGUMENTS cb is a pointer to a bus bind control block.

TARGET CHANNEL The target channel for this operation is the bind channel connecting a device
driver with its parent bus bridge driver.

DESCRIPTION The udi_bus_unbind_ack operation is used by a bridge driver to
acknowledge an unbinding with a child device driver as requested by a
udi_bus_unbind_req operation.

There is no status parameter associated with this operation; the bridge driver
is expected to always be able to handle the unbind request and respond
appropriately. If, for example, the bridge driver were to receive an unbind
from a child without having first received a bind (or two unbinds in a row
from the child), the bridge driver may log this condition but must always
respond with this acknowledgment.

WARNINGS The control block must be the same control block as passed to the driver in the
corresponding udi_bus_unbind_req operation.

REFERENCES udi_bus_bind_cb_t, udi_bus_unbind_req,
udi_channel_close

Interrupt Registration Operations Bus Bridge Meta

5-12 UDI Physical I/O Specification - Version 1.01 - 2/2/01
Section 2: Bus Bridge Metalanguage

5.3 Interrupt Registration Operations

These operations are used to register and de-register interrupt handlers for interrupt sources routed
through the bus bridge.

UDI Physical I/O Specification - Version 1.01 - 2/2/01 5-13
Section 2: Bus Bridge Metalanguage

Bus Bridge Meta udi_intr_attach_cb_t

NAME udi_intr_attach_cb_t Control block for interrupt
registration operations

SYNOPSIS #include <udi.h>
#include <udi_physio.h>

typedef struct {
udi_cb_t gcb ;
udi_index_t interrupt_idx ;
udi_ubit8_t min_event_pend ;
udi_pio_handle_t preprocessing_handle ;

} udi_intr_attach_cb_t ;

/* Bridge Attach Control Block Group Number */

#define UDI_BUS_INTR_ATTACH_CB_NUM 2

MEMBERS gcb is a generic control block header, which includes a pointer to the
scratch space associated with this control block. The driver may
use the scratch space while it owns the control block, but the
values are not guaranteed to persist across channel operations.

interrupt_idx is used to select one of possibly several interrupt sources
from the interrupt handler’s device that are managed by a
particular interrupt dispatcher. Zero indicates the first interrupt
source for the device, one indicates the second source, etc. The
dispatcher driver will have previously associated the handler’s
device properties with its channel context during the initial
binding sequence.

The definition of interrupt_idx is bus and device
dependent, and must be determined by the driver via the bus_type
instance attribute (see Chapter 15, “Instance Attribute
Management” in the UDI Core Specification) in conjunction
with the corresponding UDI bus bindings (see “Section 3: Bus
Bindings”). For example, if bus_type is “pci ” then the settings
would be based on the definitions in the UDI PCI Bus Binding
Specification.

min_event_pend is the minimum number of interrupt event control blocks
that must be supplied to the dispatcher by the handler (via
udi_intr_event_rdy operations) before the dispatcher will
invoke the preprocessing_handle trans list at start label 0
to enable interrupts from the device. Once invoked at label 0, all
subsequent PIO preprocessing will be invoked at label 1 until
only a single interrupt event control block remains, at which
point label 2 will be used to invoke PIO preprocessing. If no
interrupt event control blocks remain, label 3 will be used
whenever an interrupt causes the PIO preprocessing to be
invoked. Interrupt processing will not exit the “label 3” state
until at least min_event_pend control blocks are supplied, at
which time label 0 will be invoked and the cycle will repeat. If
the number of control blocks available falls below

5-14 UDI Physical I/O Specification - Version 1.01 - 2/2/01
Section 2: Bus Bridge Metalanguage

udi_intr_attach_cb_t Bus Bridge Meta

min_event_pend , no action will be taken (PIO processing
will continue to be invoked at label 1) until only one control
block remains; if the number of control blocks moves back above
min_event_pend without ever reaching the lower limit of 1
control block, no specific action will be taken and PIO
processing will continue to be invoked at label 1 as normal.

The value for min_event_pend must be at least 2.

max_event_pend is the maximum number of interrupt events the device
and driver can have pending at one time. This is a hint to the
dispatcher, so it can determine how many event control blocks to
allocate for maximum concurrency.

preprocessing_handle is an optional PIO handle to be used to
preprocess interrupts. If not null, the interrupt dispatcher will
execute the associated PIO transaction list before delivering the
interrupt to the interrupt handler. If null, the handler must run in
an interrupt region.

DESCRIPTION The interrupt attach control block is used between the interrupt handler and
the interrupt dispatcher to attach interrupt handler channels (i.e., register an
interrupt handler for a particular interrupt source).

This control block must be declared by specifying the control block index
value UDI_BUS_INTR_ATTACH_CB_NUM in a udi_cb_init_t in the
driver’s udi_init_info .

The bus device driver obtains the udi_intr_attach_cb_t structure to
use with the udi_intr_attach_req by calling udi_cb_alloc with a
cb_idx that has been associated with UDI_BUS_INTR_ATTACH_CB_NUM.

REFERENCES udi_intr_attach_req, udi_intr_attach_ack,
udi_init_info, udi_cb_init_t, udi_cb_alloc

UDI Physical I/O Specification - Version 1.01 - 2/2/01 5-15
Section 2: Bus Bridge Metalanguage

Bus Bridge Meta udi_intr_attach_req

NAME udi_intr_attach_req Request an interrupt attachment

SYNOPSIS #include <udi.h>
#include <udi_physio.h>

void udi_intr_attach_req (
udi_intr_attach_cb_t * intr_attach_cb);

ARGUMENTS intr_attach_cb is a pointer to an interrupt attach control block.

TARGET CHANNEL The target channel for this operation is the bound bus bridge channel
connecting a device driver with its parent bus bridge driver, established during
the initial binding between the child device and its bus bridge.

DESCRIPTION An interrupt handler driver uses this operation to request an interrupt
dispatcher driver to begin accepting interrupts for the handler driver’s device
and delivering them to the handler. If a device has multiple interrupt sources,
the interrupt handler indicates which one to attach by using
interrupt_idx in the control block.

The handler driver must prepare for the udi_intr_attach_req operation
by allocating an interrupt attach control block, filling in the relevant members
of the control block, and spawning its end of a new interrupt event channel.

The new channel will be used to send interrupt event operations from the
interrupt dispatcher to the handler. The handler driver spawns its end by
calling udi_channel_spawn , passing in its end of the bus bridge channel
and setting spawn index equal to the interrupt_idx for this attachment.
Using interrupt_idx for the spawn index ensures that it is unique with
respect to any other spawn operations in progress on the same bus bridge
channel, allowing the environment use this index to match up the two parts of
the spawn operation.

Next, the interrupt handler sends the interrupt control block to the dispatcher
driver with a udi_intr_attach_req operation.

When the interrupt dispatcher driver receives this request, it spawns its end of
the new interrupt event channel, calling udi_channel_spawn , passing in
its end of the bus bridge channel and using interrupt_idx for the spawn
index. The dispatcher then sends a udi_intr_attach_ack operation back
on the original channel to the handler driver, which may now reuse the spawn
index.

The handler driver can issue an udi_intr_attach_req for an
interrupt_idx that is already attached (i.e., uses the same
interrupt_idx as an existing attachment), in which case the
udi_intr_attach_req simply changes the interrupt pre-processing for
that interrupt source and ignores all other parameters. No channels are
spawned and no other actions are taken when interrupt pre-processing is
updated through this re-attachment operation.

5-16 UDI Physical I/O Specification - Version 1.01 - 2/2/01
Section 2: Bus Bridge Metalanguage

udi_intr_attach_req Bus Bridge Meta

If preprocessing_handle is not null (use UDI_HANDLE_IS_NULL to
test it), events on this channel will be preprocessed. Otherwise, the handler
driver must ensure that the handler’s end of the new channel is anchored in an
interrupt region (i.e. a region with the “interrupt” attribute set in the driver’s
static driver properties; see Section 1.4, “Extensions to Static Driver
Properties,” on page 1-2).

Some of the advantages of interrupt preprocessing are that the interrupt
handler does not need to be in an interrupt region and that the
udi_intr_event_ind handler code is not restricted in the operations it
may perform before responding with udi_intr_event_rdy , unlike in the
non-preprocessed case. There are, however, some restrictions on interrupt
preprocessing as discussed in detail in the udi_intr_event_ind
operation description.

When the preprocessing trans list is executed, the dispatcher will invoke the
trans list at one of four start_label entry points (i.e. the trans list should
contain UDI_PIO_LABEL transactions for each of these values, with the
exception of zero which implies the beginning of the transaction list):

0 The dispatcher will invoke the preprocessing trans list with this
start_label value to enable or re-enable interrupts (at the
device level), once the dispatcher has received at least
min_event_pend interrupt control blocks. When started from
this point, the trans list is responsible for enabling interrupts
from the device then proceeding as for start_label 1 below
(if applicable). Drivers that cannot determine whether their
device asserted an interrupt must instead exit with a
UDI_INTR_UNCLAIMED result code and not perform label 1
processing.

1 The dispatcher will invoke the preprocessing trans list at this
label to handle the normal interrupt condition. The trans list
should process the indicated interrupt(s), placing any interrupt
information in the associated buffer, and return an appropriate
exit code to the dispatcher as defined on page 5-27.

2 The dispatcher will invoke the preprocessing trans list at this
label to handle the interrupt overrun condition. This condition
occurs when an unmasked interrupt occurs and the dispatcher has
only one udi_intr_event_cb_t available from the handler;
any subsequent interrupts would not have an event control block
or associated buffer to handle the interrupt. The trans list must
check for an actual interrupt: if the device is not interrupting, the
trans list must return UDI_INTR_UNCLAIMED; if the trans list
handles the interrupt completely and no handler notification is
needed, then UDI_INTR_NO_EVENT must be returned; in either
of these cases the overrun situation is not encountered.
Otherwise, the trans list must process the interrupt and then
disable further interrupts from the device (if possible). Interrupts
will be re-enabled by an entry into the trans list at

UDI Physical I/O Specification - Version 1.01 - 2/2/01 5-17
Section 2: Bus Bridge Metalanguage

Bus Bridge Meta udi_intr_attach_req

start_label value 0 after min_event_pending number
of additional udi_intr_event_cb_t control blocks have
been supplied to the dispatcher by the handler.

3 The dispatcher will invoke the preprocessing trans list at this
label to handle any interrupts received during the overrun
condition. This entry point is used if interrupts are received after
issuing a label 2 preprocessing operation to disable interrupts
(i.e. the label position 2 entry point is unable to disable interrupts
from the device and/or if the device is used in a shared interrupt
situation) or if any interrupts are received before the dispatcher
has enough interrupt event control blocks to use label 1. This
trans list must determine if additional interrupts are being
signalled by the device and, if so, dismiss the interrupt while
discarding any associated data and return a status of
UDI_INTR_NO_EVENT. If the device is not indicating an
interrupt, UDI_INTR_UNCLAIMED must be returned by the
trans list. When the transaction list is entered at this label, the
exit code must be one of UDI_INTR_NO_EVENT or
UDI_INTR_UNCLAIMED. All PIO preprocessing trans lists
entered at label 3 should operate as if there is no associated
control block or buffer, even if the handler has supplied more
interrupt control blocks; interrupt processing will resume
normally once the handler has supplied the min_event_pend
number of control blocks and the PIO trans list has been entered
at label 0.

Any interrupts for the selected interrupt source that are processed by the
dispatcher after receiving a udi_intr_attach_req with a non-null
preprocessing_handle will be preprocessed. This means that the
dispatcher will use udi_pio_trans to execute the specified trans list
(associated with preprocessing_handle). This trans list must include
all operations necessary to de-assert its interrupt (if it was asserted) in all
cases.

When the dispatcher calls udi_pio_trans it will set the buf argument to
the buffer passed in the udi_intr_event_cb_t from the
udi_intr_event_rdy . This buffer must have been pre-allocated by the
handler to contain the data to be returned by the interrupt dispatcher; the
buffer will not be extended as part of the interrupt handling operation. The
trans list can use this buffer to pass data to the handler driver’s upper-level
handler.

If the bus type supports event info, the dispatcher driver must set the
mem_ptr argument to point to a memory block containing the event info for
this interrupt. Otherwise, mem_ptr must be set to NULL.

The preprocessing trans list must only use the first byte of the control block’s
scratch space to pass back the status of the interrupt preprocessing as specified
in the udi_intr_event_cb_t description. No other references can be
made to scratch space since the size and contents are unspecified beyond the
first byte.

5-18 UDI Physical I/O Specification - Version 1.01 - 2/2/01
Section 2: Bus Bridge Metalanguage

udi_intr_attach_req Bus Bridge Meta

The result from the udi_pio_trans call (set with UDI_PIO_END) is
used to determine the disposition of the interrupt, as described in
udi_intr_event_cb_t on page 5-27 and udi_intr_event_ind on page 5-29.

The bridge driver must free the preprocessing_handle after it has
finished with it (as a result of either another udi_intr_attach_req with
a new handle or a udi_intr_detach_req), by using udi_pio_unmap .

WARNINGS The mem_ptr value must follow the rules for memory object usage described
in Section 5.2.1.1, “Using Memory Pointers with Asynchronous Service
Calls,” on page 5-2 of the UDI Core Specification.

REFERENCES udi_intr_attach_cb_t, udi_channel_spawn,
udi_intr_attach_ack, udi_intr_event_ind,
udi_pio_trans, udi_pio_map, udi_pio_unmap

UDI Physical I/O Specification - Version 1.01 - 2/2/01 5-19
Section 2: Bus Bridge Metalanguage

Bus Bridge Meta udi_intr_attach_ack

NAME udi_intr_attach_ack Acknowledge an interrupt
attachment

SYNOPSIS #include <udi.h>
#include <udi_physio.h>

void udi_intr_attach_ack (
udi_intr_attach_cb_t * intr_attach_cb ,
udi_status_t status);

ARGUMENTS intr_attach_cb is a pointer to an interrupt attach control block.

status indicates whether or not the attachment was successful.

TARGET CHANNEL The target channel for this operation is the bound bus bridge channel
connecting a bus bridge driver with one of its child device drivers, established
during the initial binding between the child device and its bus bridge.

PROXIES udi_intr_attach_ack_unused Proxy for udi_intr_attach_ack

udi_intr_attach_ack_op_t udi_intr_attach_ack_unused ;

udi_intr_attach_ack_unused may be used as a device driver’s
udi_intr_attach_ack entry point if the driver never calls
udi_intr_attach_req (and therefore expects to receive no
acknowledgements).

DESCRIPTION The udi_intr_attach_ack operation is used by an interrupt dispatcher
driver to acknowledge attachment of an interrupt handler (or failure to do so,
as indicated by status), as requested by a udi_intr_attach_req
operation.

Before sending the acknowledgment, the interrupt dispatcher driver must
spawn and anchor its end of the new interrupt event channel, setting the spawn
index equal to the interrupt_idx for this attachment.

interrupt_idx in the returned control block must be the same as that
passed to udi_intr_attach_req .

Upon failure indication, the handler driver must be sure to close the half-
spawned channel, by calling udi_channel_close .

STATUS VALUES UDI_OK- The handler was successfully registered for the indicated interrupts
and normal interrupt processing will occur. The
preprocessing_handle argument returned in the control
block must be UDI_NULL_PIO_HANDLE.

UDI_STAT_MISTAKEN_IDENTITY – This device has no interrupt source
corresponding to the interrupt_idx value in the control
block. The preprocessing_handle member of the control
block is unchanged and the corresponding PIO handle ownership
is returned to the interrupt handler.

5-20 UDI Physical I/O Specification - Version 1.01 - 2/2/01
Section 2: Bus Bridge Metalanguage

udi_intr_attach_ack Bus Bridge Meta

WARNINGS The control block must be the same control block as passed to the driver in the
corresponding udi_intr_attach_req operation.

REFERENCES udi_intr_attach_cb_t, udi_intr_attach_req,
udi_intr_detach_req, udi_channel_close

UDI Physical I/O Specification - Version 1.01 - 2/2/01 5-21
Section 2: Bus Bridge Metalanguage

Bus Bridge Meta udi_intr_detach_cb_t

NAME udi_intr_detach_cb_t Control block for interrupt
detachment operations

SYNOPSIS #include <udi.h>
#include <udi_physio.h>

typedef struct {
udi_cb_t gcb ;
udi_index_t interrupt_idx ;

} udi_intr_detach_cb_t ;

/* Bridge Detach Control Block Group Number */

#define UDI_BUS_INTR_DETACH_CB_NUM 3

MEMBERS gcb is a generic control block header, which includes a pointer to the
scratch space associated with this control block. The driver may
use the scratch space while it owns the control block, but the
values are not guaranteed to persist across channel operations.

interrupt_idx is used to select one of possibly several interrupt sources
from the interrupt handler’s device that are managed by a
particular interrupt dispatcher. Zero indicates the first interrupt
source for the device, one indicates the second source, etc. The
dispatcher driver will have previously associated the handler’s
device properties with its channel context during the initial
binding sequence.

DESCRIPTION The interrupt detach control block is used between the interrupt handler and
the interrupt dispatcher to detach interrupt handler channels (i.e., deregister an
interrupt handler for a particular interrupt source).

This control block must be declared by specifying the control block index
value UDI_BUS_INTR_DETACH_CB_NUM in a udi_cb_init_t in the
driver’s udi_init_info .

The bus device driver obtains the udi_intr_detach_cb_t structure to
use with the udi_intr_detach_req by calling udi_cb_alloc with a
cb_idx that has been associated with UDI_BUS_INTR_DETACH_CB_NUM.

REFERENCES udi_intr_detach_req, udi_intr_detach_ack,
udi_init_info, udi_cb_init_t, udi_cb_alloc

5-22 UDI Physical I/O Specification - Version 1.01 - 2/2/01
Section 2: Bus Bridge Metalanguage

udi_intr_detach_req Bus Bridge Meta

NAME udi_intr_detach_req Request an interrupt detachment

SYNOPSIS #include <udi.h>
#include <udi_physio.h>

void udi_intr_detach_req (
udi_intr_detach_cb_t * intr_detach_cb);

ARGUMENTS intr_detach_cb is a pointer to an interrupt detach control block.

TARGET CHANNEL The target channel for this operation is the bound bus bridge channel
connecting a device driver with its parent bus bridge driver, established during
the initial binding between the child device and its bus bridge.

DESCRIPTION When the interrupt handler driver wishes to detach its handler from the
interrupt dispatcher, it invokes the udi_intr_detach_req channel
operation. A prior attachment must have been completed, as indicated to the
interrupt handler driver by receipt of the attach acknowledgment.

interrupt_idx in the control block must be the same as that passed to
udi_intr_attach_req (and returned with
udi_intr_attach_ack).

REFERENCES udi_intr_detach_cb_t, udi_intr_detach_ack

UDI Physical I/O Specification - Version 1.01 - 2/2/01 5-23
Section 2: Bus Bridge Metalanguage

Bus Bridge Meta udi_intr_detach_ack

NAME udi_intr_detach_ack Acknowledge an interrupt
detachment

SYNOPSIS #include <udi.h>
#include <udi_physio.h>

void udi_intr_detach_ack (
udi_intr_detach_cb_t * intr_detach_cb);

ARGUMENTS intr_detach_cb is a pointer to an interrupt detach control block.

TARGET CHANNEL The target channel for this operation is the bound bus bridge channel
connecting a bus bridge driver with one of its child device drivers, established
during the initial binding between the child device and its bus bridge.

PROXIES udi_intr_detach_ack_unused Proxy for udi_intr_detach_ack

udi_intr_detach_ack_op_t udi_intr_detach_ack_unused ;

udi_intr_detach_ack_unused may be used as a device driver’s
udi_intr_detach_ack entry point if the driver never calls
udi_intr_detach_req (and therefore expects to receive no
acknowledgements).

DESCRIPTION After detaching the interrupt handler and closing the local end of the
corresponding interrupt event channel, the interrupt dispatcher driver sends the
control block back to the interrupt handler using the channel operation,
udi_intr_detach_ack.

The dispatcher should discard any udi_intr_event_cb_t control blocks
currently held via udi_cb_free before acknowledging the detach operation.
Additionally, any interrupt event control blocks received while not attached
should be discarded in a similar manner.

The interrupt_idx in the returned control block must be the same as that
passed to udi_intr_detach_req .

Upon receipt of the udi_intr_detach_ack , the interrupt handler must
close its end of the interrupt event channel (if it did not already do so as a
result of a udi_channel_event_ind).

The interrupt handler may free the control block using udi_cb_free or
reuse it for another detachment.

WARNINGS The control block must be the same control block as passed to the driver in the
corresponding udi_intr_detach_req operation.

REFERENCES udi_intr_detach_cb_t, udi_intr_detach_req,
udi_cb_free

Interrupt Event Operations Bus Bridge Meta

5-24 UDI Physical I/O Specification - Version 1.01 - 2/2/01
Section 2: Bus Bridge Metalanguage

5.4 Interrupt Event Operations

These operations are used to deliver and respond to interrupt events between interrupt dispatchers and
interrupt handlers.

Interrupt events may be handled in one of two ways: with interrupt preprocessing, or by using interrupt
regions. See udi_intr_attach_req on page 5-15 for details on interrupt preprocessing. Any region
using udi_intr_event_ind or udi_intr_event_rdy without interrupt preprocessing enabled
must be an interrupt region; i.e. it must have its type region attribute set to interrupt (see Table
1-1, “Physical I/O Region Attributes,” on page 1-3). The primary region of a driver instance cannot be
an interrupt region.

All environment services are available to interrupt handlers, but since interrupt regions can require
critical resources to be held while executing, drivers should minimize the amount of time spent
executing in interrupt regions.

There is, however, a restriction on the order in which service calls and channel operations can be
invoked from an interrupt handler, when interrupt preprocessing is not used. For details, see
udi_intr_event_ind and udi_intr_event_rdy .

UDI Physical I/O Specification - Version 1.01 - 2/2/01 5-25
Section 2: Bus Bridge Metalanguage

Bus Bridge Meta udi_intr_handler_ops_t

NAME udi_intr_handler_ops_t Interrupt handler ops vector

SYNOPSIS #include <udi.h>
#include <udi_physio.h>

typedef const struct {
udi_channel_event_ind_op_t * channel_event_ind_op ;
udi_intr_event_ind_op_t * intr_event_ind_op ;

} udi_intr_handler_ops_t ;

/* Interrupt Handler Ops Vector Number */

#define UDI_BUS_INTR_HANDLER_OPS_NUM 3

DESCRIPTION A driver which wishes to register for handling interrupts (as opposed to
“dispatching” interrupts declares the udi_intr_handler_ops_t
structure to define its entry point for receiving interrupt events.

REFERENCES udi_init_info , udi_ops_init_t , udi_intr_dispatcher_ops_t

EXAMPLE The driver’s initialization structure definitions might include the following:

#define MY_INTR_HANDLER_OPS 2 /* My interrupt handler ops */

#define MY_BUS_META 1 /* Meta index for the Bus Bridge Metalanguage */

static udi_intr_handler_ops_t
ddd_intr_handler_ops = {

ddd_intr_handler_channel_event_ind,
ddd_intr_event_ind

};
...
static udi_ops_init_t ddd_ops_init_list[] = {

{ MY_INTR_HANDLER_OPS,
MY_BUS_META,
UDI_BUS_INTR_HANDLER_OPS_NUM,
0, /* chan_context_size */
(udi_ops_vector_t *)&ddd_intr_handler_ops },

{ 0 }
};

5-26 UDI Physical I/O Specification - Version 1.01 - 2/2/01
Section 2: Bus Bridge Metalanguage

udi_intr_dispatcher_ops_t Bus Bridge Meta

NAME udi_intr_dispatcher_ops_t Interrupt dispatcher ops vector

SYNOPSIS #include <udi.h>
#include <udi_physio.h>

typedef const struct {
udi_channel_event_ind_op_t * channel_event_ind_op ;
udi_intr_event_rdy_op_t * intr_event_rdy_op ;

} udi_intr_dispatcher_ops_t ;

/* Interrupt Dispatcher Ops Vector Number */

#define UDI_BUS_INTR_DISPATCH_OPS_NUM 4

DESCRIPTION A bus driver which delivers interrupt indications uses the
udi_intr_dispatcher_ops_t to declare the interface operations for
receiving interrupt acknowledgements from the interrupt handler.

REFERENCES udi_init_info , udi_ops_init_t , udi_intr_handler_ops_t

EXAMPLE The driver’s initialization structure definitions might include the following:

#define MY_INTR_DISP_OPS 2 /* My interrupt dispatcher ops */

#define MY_BUS_META 1 /* Meta index for the Bus Bridge Metalanguage */

static udi_intr_dispatcher_ops_t
ddd_intr_dispatcher_ops = {

ddd_intr_channel_event_ind,
ddd_intr_event_rdy

};
...
static udi_ops_init_t ddd_ops_init_list[] = {

{ MY_INTR_DISP_OPS,
MY_BUS_META,
UDI_BUS_INTR_DISPATCH_OPS_NUM,
0, /* chan_context_size */
(udi_ops_vector_t *)&ddd_intr_dispatcher_ops

},
{ 0 }

};

UDI Physical I/O Specification - Version 1.01 - 2/2/01 5-27
Section 2: Bus Bridge Metalanguage

Bus Bridge Meta udi_intr_event_cb_t

NAME udi_intr_event_cb_t Control block for interrupt event ops

SYNOPSIS #include <udi.h>
#include <udi_physio.h>

typedef struct {
udi_cb_t gcb ;
udi_buf_t * event_buf ;
udi_ubit16_t intr_result ;

} udi_intr_event_cb_t ;

/* Flag values for interrupt handling */

#define UDI_INTR_UNCLAIMED (1U<<0)

#define UDI_INTR_NO_EVENT (1U<<1)

/* Bus Interrupt Event Control Block Group Number */

#define UDI_BUS_INTR_EVENT_CB_NUM 4

MEMBERS gcb is a generic control block header, which includes a pointer to the
scratch space associated with this control block. The driver may
use the scratch space while it owns the control block, but the
values are not guaranteed to persist across channel operations.

event_buf This buffer (if any) must be preallocated by the handler before
being passed to the dispatcher and must contain enough valid
bytes to handle the largest PIO trans list requirements; the
dispatcher’s PIO trans operations cannot extend the size of this
buffer.

intr_result is, in the non-preprocessing case, set by the interrupt handler
before invoking udi_intr_event_rdy , to indicate whether or
not its device asserted the interrupt. In the preprocessing case,
intr_result is set by the dispatcher to the result value
from the udi_pio_trans call used to preprocess the interrupt,
and passed to the handler via the udi_intr_event_ind
channel operation.

UDI_INTR_UNCLAIMED is set by the non-preprocessing
handler in the intr_result field for the
udi_intr_event_rdy operation to indicate that the
corresponding device did not generate the interrupt and that
the dispatcher should proceed to process any other shared
interrupts for this interrupt line. In the preprocessing case,
this status is indicated by the preprocessing PIO trans list by
setting this bit in the first byte of the control block’s scratch
space; the dispatcher will not pass the interrupt event
indication to the handler and will check other devices as in
the non-preprocessing case.

UDI_INTR_NO_EVENT is not used for interrupts occurring in
the non-preprocessing case, but may be set in the first byte
of the control block’s scratch space by the PIO trans list in

5-28 UDI Physical I/O Specification - Version 1.01 - 2/2/01
Section 2: Bus Bridge Metalanguage

udi_intr_event_cb_t Bus Bridge Meta

the preprocessing case to indicate that the PIO trans list
handled the interrupt in its entirety and that no interrupt
event should be delivered to the handler.

The UDI_INTR_NO_EVENT value may be set for newly
allocated interrupt event control blocks allocated by the
handler and passed to the dispatcher via the
udi_intr_event_rdy operation.

The intr_result value returned in the
udi_intr_event_rdy call for the preprocessing case is
ignored by the dispatcher.

The dispatcher will zero the first byte of the control block scratch
space before initiating the udi_pio_trans on the
preprocessing PIO trans list in the preprocessing case; the PIO
trans list does not need to modify the byte unless specific bits
must be set. The remaining bytes of scratch space are unspecified
and must not be used by the preprocessing trans list.

Drivers that cannot tell whether or not their device actually
asserted an interrupt, or whose device’s interrupts are for some
other reason non-sharable, must include a
“nonsharable_interrupt” declaration in their static driver
properties file (see Section 1.4, “Extensions to Static Driver
Properties,” on page 1-2), and must not use
UDI_INTR_UNCLAIMED.

DESCRIPTION The interrupt event control block is used between the interrupt handler and the
interrupt dispatcher to deliver and acknowledge interrupt events.

If the interrupt event was pre-processed (as indicated by the initial value of
intr_result passed to udi_intr_event_ind), the event_buf will
contain any data filled in during the first-level handler by using the device
driver’s pre-registered PIO transaction list. (See preprocessing_handle
in udi_intr_attach_cb_t .)

Otherwise, event_buf will contain bus-type specific event information, as
defined in the bus binding specification for the type of bus to which the device
is attached. If the size of the event information is greater than the valid buffer
size, only the information that fits in the pre-validated buffer region will be
returned. If the event information size is less than the valid buffer size, the
remaining bytes will be part of the buffer’s valid data range, but the contents
are unspecified.

If a driver supports a device which might make use of interrupt event info, it
must first determine what type of bus the device is plugged into, by looking at
its driver instance attributes. It may then interpret the event info using the
corresponding bus binding. See Chapter 6, “Introduction to Bus Bindings”,
for information on the format of interrupt event info.

REFERENCES udi_intr_attach_cb_t

UDI Physical I/O Specification - Version 1.01 - 2/2/01 5-29
Section 2: Bus Bridge Metalanguage

Bus Bridge Meta udi_intr_event_ind

NAME udi_intr_event_ind Interrupt event indication

SYNOPSIS #include <udi.h>
#include <udi_physio.h>

void udi_intr_event_ind (
udi_intr_event_cb_t * intr_event_cb ,
udi_ubit8_t flags);

/* Values for flags */

#define UDI_INTR_MASKING_NOT_REQUIRED (1U <<0)

#define UDI_INTR_OVERRUN_OCCURRED (1U<<1)

#define UDI_INTR_PREPROCESSED (1U <<2)

ARGUMENTS intr_event_cb is a pointer to an interrupt event control block.

flags specifies optional flags, described below.

TARGET CHANNEL The target channel for this operation is the interrupt event channel for this
attachment, jointly spawned by the interrupt handler and interrupt dispatcher
during interrupt attachment (see udi_intr_attach_req,
udi_intr_attach_ack) . The interrupt handler driver can use the channel
context pointer for this channel to distinguish this event from events for other
attached interrupts.

DESCRIPTION Upon receipt of an interrupt condition that may have been generated by a
particular interrupt source, an interrupt dispatcher will prepare to deliver the
interrupt to the appropriate handler. If the handler has requested interrupt
preprocessing, it will execute the pre-registered PIO trans list (see
udi_intr_attach_req on page 5-15) before delivering the interrupt to the
handler driver.

The dispatcher must not allocate interrupt event control blocks to deliver the
interrupt to the handler; the handler must have already provided a control
block to be used for this purpose. If no control blocks are currently available,
the dispatcher should execute the preprocessing trans list (if specified) starting
at label 3 (as described by udi_intr_attach_req) and then exit without
attempting to notify the handler of the interrupt.

If the preprocessing transaction list handles the interrupt in its entirety such
that there is no need for the dispatcher to signal the interrupt event to the
handler, the UDI_INTR_NO_EVENT flag should be set in the first byte of the
control block’s scratch space (see page 4-22) and the dispatcher will simply
exit without performing the udi_intr_event_ind operation to the
handler.

Since some interrupt handlers change between non-preprocessing and
preprocessing modes, the presence of the UDI_INTR_PREPROCESSED bit in
flags indicates whether or not this particular interrupt was pre-processed.
The dispatcher must set UDI_INTR_PREPROCESSED in flags if this
interrupt was preprocessed; otherwise this bit will never be set.

The following applies only to the preprocessing case:

5-30 UDI Physical I/O Specification - Version 1.01 - 2/2/01
Section 2: Bus Bridge Metalanguage

udi_intr_event_ind Bus Bridge Meta

The result value from the udi_pio_trans call used to
preprocess the interrupt is used by the dispatcher to set
intr_result in the interrupt event control block. If either the
UDI_INTR_UNCLAIMED or the UDI_INTR_NO_EVENT flags
were set in the first byte of scratch space, no
udi_intr_event_ind operation will be sent to the handler
driver; otherwise, the dispatcher must set event_buf to the
buffer used with the udi_pio_trans call, set intr_result
to the result value, and deliver the event to the dispatcher
using udi_intr_event_ind with the
UDI_INTR_PREPROCESSED flag.

The following applies only to the non-preprocessing case:

The dispatcher driver must fill in the event_buf buffer with
the bus type-specific event info for the interrupt, if any, and
deliver the event to the appropriate interrupt handler using the
channel operation, udi_intr_event_ind .

When the interrupt handler receives and interrupt event indication it must
process that indication and either respond back to the dispatcher using
udi_intr_event_res (after deasserting the device interrupt condition) or
it must act as an intermediary dispatcher for child interrupt handlers. An
intermediary dispatcher must execute any child interrupt handler’s registered
preprocessing PIO trans lists and/or issue udi_intr_event_ind
operations to the child’s interrupt event channel, passing the subsequent
response back to the parent dispatcher.

If the interrupt was not preprocessed, the udi_intr_event_ind operation
must execute in an interrupt region, and the driver must process the interrupt
as described in the previous paragraph before performing any other channel
operations or asynchronous service calls, with the exception of
udi_pio_trans , and must not depend on any additional callbacks or
channel ops entry points, except the udi_pio_trans callback(s), in order
to complete the sequence needed to invoke the required interrupt event
operation.

If the interrupt was preprocessed, there are no restrictions on the service calls
and channel operations that udi_intr_event_ind may invoke before
invoking udi_intr_event_ind or udi_intr_event_rdy , since the
interrupt condition was already dismissed in the first-level handler.

The flags values are interpreted as follows:

UDI_INTR_MASKING_NOT_REQUIRED - this flag indicates that an interrupt
handler that is also an interrupt dispatcher does not need to mask
off the interrupt before passing the event on to the next level
(because a higher level interrupt dispatcher interprets interrupts
as one-shot events—rather than continuous assertion—and will
not pass continuous assertion through).

UDI Physical I/O Specification - Version 1.01 - 2/2/01 5-31
Section 2: Bus Bridge Metalanguage

Bus Bridge Meta udi_intr_event_ind

UDI_INTR_OVERRUN_OCCURRED - this flag indicates that the
preprocessing_handle PIO trans list was executed one or
more times at start label 3 and did not return
UDI_INTR_UNCLAIMED. This is an indication to the handler
that one or more interrupts from the device were dismissed and
their associated data was discarded prior to the current event
being indicated.

UDI_INTR_PREPROCESSED - this flag indicates that the preprocessing PIO
trans list was called for the associated interrupt. If clear, no trans
list was executed and the handler must operate in the non-
preprocessing mode. This will only occur if the device driver
previously attached the interrupt without preprocessing and then
invoked udi_intr_attach_req again with preprocessing
enabled.

REFERENCES udi_intr_event_cb_t, udi_intr_attach_req,
udi_intr_event_rdy

5-32 UDI Physical I/O Specification - Version 1.01 - 2/2/01
Section 2: Bus Bridge Metalanguage

udi_intr_event_rdy Bus Bridge Meta

NAME udi_intr_event_rdy Acknowledge an interrupt event

SYNOPSIS #include <udi.h>
#include <udi_physio.h>

void udi_intr_event_rdy (
udi_intr_event_cb_t * intr_event_cb);

ARGUMENTS intr_event_cb is a pointer to an interrupt event control block.

TARGET CHANNEL The target channel for this operation is the interrupt event channel for this
attachment, jointly spawned by the interrupt handler and interrupt dispatcher
during interrupt attachment (see udi_intr_attach_req,
udi_intr_attach_ack) . The interrupt dispatcher driver can use the
channel context pointer for this channel to distinguish this response from
responses for other attached interrupts.

DESCRIPTION An interrupt handler driver uses udi_intr_event_rdy to send an
interrupt event control block to the dispatcher driver. These event control
blocks allow the dispatcher to notify the handler of interrupt events, so the
handler should endeavor to keep a number of these posted to the dispatcher to
avoid missing interrupts. When the dispatcher indicates an interrupt, the
handler should process the interrupt quickly and return the control block to the
dispatcher to be used for future interrupt indications.

For a leaf interrupt source, this often means accessing some device-specific
register which causes the device to stop asserting the interrupt. Leaf drivers
must call udi_intr_event_rdy before returning from
udi_intr_event_ind . Bridge drivers may complete the interrupt
handling by passing the udi_intr_event_rdy on to their parent bridge,
or may invoke another interrupt handler with udi_intr_event_ind .

For an interrupt handler which is also a dispatcher, udi_intr_event_rdy
should be called immediately if the UDI_INTR_MASKING_NOT_REQUIRED
flag is set, or after masking the interrupt if possible. If the interrupt could not
be masked, then udi_intr_event_rdy should be called upon receipt of a
udi_intr_event_rdy operation from the child handler driver.

In either case, if not using interrupt preprocessing, the handler driver must set
intr_result in the control block to zero if its device asserted the interrupt
(or the interrupt is non-sharable as indicated by the “nonsharable_interrupt”
declaration) or to UDI_INTR_UNCLAIMED if the device was not the source
of the interrupt. When using interrupt preprocessing, intr_result is
ignored for udi_intr_event_ind .

The udi_intr_event_rdy operation must only be used when the handler
is attached for that interrupt source (via udi_intr_attach_req).

The handler determines the number of interrupts indications that may be
handled for this device by controlling the number of interrupt event control
blocks that are used. The handler may allocate more interrupt control blocks at
any time that it is attached to the interrupt dispatcher and provide those
control blocks to the dispatcher for processing via the

UDI Physical I/O Specification - Version 1.01 - 2/2/01 5-33
Section 2: Bus Bridge Metalanguage

Bus Bridge Meta udi_intr_event_rdy

udi_intr_event_rdy operation; the intr_result field of these newly
allocated control blocks should be set to UDI_INTR_NO_EVENT. If the
handler wishes to reduce the number of interrupts being handled, it should
reduce the number of interrupt control blocks available to the dispatcher by
using udi_channel_op_abort and subsequently deallocating the aborted
control blocks; the handler should not simply deallocate control blocks
delivered via the udi_intr_event_ind operation since the interrupt must
be acknowledged back to the dispatcher via the udi_intr_event_rdy
operation.

WARNINGS The control block must be the same control block as passed to the driver in the
corresponding udi_intr_event_ind operation.

REFERENCES udi_intr_event_cb_t, udi_intr_attach_ack,
udi_intr_event_ind, udi_channel_op_abort

Static Properties Bindings Bus Bridge Meta

5-34 UDI Physical I/O Specification - Version 1.01 - 2/2/01
Section 2: Bus Bridge Metalanguage

5.5 Static Properties Bindings

The driver category to be used with the “category” declaration by a portable implementation of the Bus
Bridge Metalanguage Library shall be “Bus Bridges”.

5.6 Instance Attribute Bindings

One enumeration attribute is defined for all uses of the bus bridge metalanguage: bus_type . This
attribute, of type UDI_ATTR_STRING, is set to the name of the I/O bus type to which the child adapter
is connected, as defined by the relevant Bus Binding.

Additional enumeration attributes are specified in each Bus Binding to apply to each bus type.

5.7 Bus Bridge Trace Events

The Bus Bridge Metalanguage defines the use of UDI_TREVENT_META_SPECIFIC_1 for bus bridge
drivers when they are about to call udi_pio_trans to execute a preprocessing transaction list.

The UDI_TREVENT_IO_SCHEDULED and UDI_TREVENT_IO_COMPLETED events are not defined
for use with the Bus Bridge Metalanguage.

5.8 Bus Bridge Metalanguage States

The following events change the state of a device driver with respect to the Bus Bridge Metalanguage:

1. Binding initiated

2. Binding complete

3. Interrupt attachment initiated

4. Interrupt attachment complete

5. Interrupt detachment initiated

6. Interrupt detachment complete

7. Unbinding initiated

8. Unbinding complete

The following events change the state of a bus bridge driver with respect to the Bus Bridge
Metalanguage:

1. Binding to a new child

2. New interrupt attached

3. Interrupt detached

4. Child unbound

UDI Physical I/O Specification - Version 1.01 - 2/2/01 5-35
Section 2: Bus Bridge Metalanguage

Bus Bridge Meta Bus Bridge Status Codes

5.9 Bus Bridge Status Codes

No metalanguage-specific status codes are defined for the Bus Bridge Metalanguage.

Bus Bridge Status Codes Bus Bridge Meta

5-36 UDI Physical I/O Specification - Version 1.01 - 2/2/01
Section 2: Bus Bridge Metalanguage

UDI Physical I/O Specification

UDI Physical I/O Specification - Version 1.01

Section 3: Bus Bindings

UDI Physical I/O Specification - Version 1.01 - 2/2/01 6-1
Section 3: Bus Bindings

Introduction to Bus Bindings 6

Some usage details of UDI Physical I/O services and metalanguages vary depending on the physical I/O
bus used, requiring a Bus Binding definition to provide these details. This chapter defines the general
requirements on Bus Binding definitions, and lists the items that must be specified in a UDI Bus Binding
specification.

Note – There are no aspects of DMA services that can vary from one bus binding to another.

6.1 Normative References

Some bus bindings references non-UDI standards that, through reference in the bus binding
specification, constitute provisions of the UDI bus binding. Each such bus binding shall list all
normative references.

6.2 Header Files

Each bus binding shall define a bus binding header file that the driver must include to obtain bus binding
declarations for a particular bus type. This header must be included by drivers that support devices on
this bus type. It must be included after udi.h and udi_physio.h .

6.3 PIO Bindings

6.3.1 udi_pio_map

The definition of the regset_idx parameter to udi_pio_map is bus and device dependent. Each bus
binding defines legal values for regset_idx and the semantics thereof. Drivers must set
regset_idx to a value appropriate for the bus type of their supported device.

6.4 Interrupt Bindings

6.4.1 Interrupt Index Values

Interrupt index values for udi_intr_attach_req are bus-specific. Each bus binding must define the
range of legal interrupt_idx values and their semantics.

Instance Attribute Bindings Bus Bind Intro

6-2 UDI Physical I/O Specification - Version 1.01 - 2/2/01
Section 3: Bus Bindings

6.4.2 Event Info

Interrupt event info is a bus-specific piece of extra information delivered from the interrupting device
hardware along with the interrupt.

The size and structure of event info associated with an interrupt is bus type dependent. Each bus
bindings defines the size and semantics of event info for their bus type.

6.5 Instance Attribute Bindings

A number of instance attributes are bus-specific in nature and are thus defined in bus bindings. These
attributes shall include a set of enumeration attributes that are required to be set by any bridge driver (or
mapper) when it enumerates the children attached to a bus. (Seeudi_enumerate_ack in the UDI Core
Specification.)

6.5.1 Enumeration Attributes

In all cases, the “bus_type ” attribute is considered an enumeration attribute, and the value used to
identify each bus type must be defined in the corresponding bus binding. Each bus binding shall also
specify additional enumeration attributes. Any enumerator for a particular bus type must support the
specified enumeration attributes for the corresponding bus binding.

6.5.2 Filter Attributes

A subset of enumeration attributes must be specified as filter attributes. Filter attributes may be used
with udi_enumerate_req to specify enumeration filters. Any enumerator for a particular bus type
must support the specified filter attributes for the corresponding bus binding.

6.5.3 Generic Attributes

Each bus binding shall specify the form of string value for each of the generic attributes,
“ identifier ”, “ address_locator ”, “ physical_locator ” and “physical_slot ”, for the
corresponding bus type. The locator attribute is used to distinguish one instance of the same type of
device from another. Locator attribute values must be unique for all children of a particular parent bus
bridge.

6.5.4 Parent-Visible Attributes

Some bus bindings may also specify parent-visible attributes. Any bus bridge driver for a particular bus
type must support the specified parent-visible attributes for the corresponding bus binding.

UDI Physical I/O Specification

UDI Physical I/O Specification - Version 1.01

Section 4: Appendices

UDI Physical I/O Specification - Version 1.01 - 2/2/01 A-1
 Section 4: Appendices

Glossary A

atomic transaction an I/O bus transaction which is indivisible with respect to other transactions. Other
concurrent transactions will either see the state of the referenced memory (or
device register) as it was before the atomic transaction or after it, but not an
intermediate value. Further, the adapter being accessed will see the access as
exactly one transaction. For example, a WRITE4 transaction (4-byte write) is
atomic if no observer of the same address can see a mixture of old and new byte
values, and two WRITE4’s for the same address are atomic with respect to each
other if one overwrites the other without mixing byte values.

bridge see bus bridge.

bridge driver see bus bridge driver.

bridge metalanguage see bus bridge metalanguage.

bus address see card-relative address.

bus bridge hardware which connects one kind of bus to another. For example, the bridge(s)
between the PMI and primary I/O bus(es), or between a primary I/O bus and an
attached (secondary) I/O bus. Bus bridges may be transparent to the software or
may require more active participation of a bus bridge driver.

bus bridge driver device driver software responsible for managing a bus bridge.

bus bridge metalanguage a UDI metalanguage which covers registration and de-registration of
interrupt handlers plus the delivery of bus-related events. It is (currently)
subdivided into four interface sets, one for each of four roles: the bridge, the
device, the interrupt handler and the interrupt dispatcher.

card-relative address a physical memory address from the point of view of an adapter card’s DMA
engine. Such an address is used by the device to access main system memory, but
may go through a translation process (in hardware) before reaching the memory.

DMA Direct Memory Access by an I/O card to system memory without host processor
intervention.

interrupt dispatcher a driver which is responsible for managing interrupt control and routing hardware.

interrupt handler a driver that is responsible for the interrupt-related, device-specific, software
control and management of interrupt-associated hardware.

interrupt router the entity, transparent to the interrupt handler driver, that steers an interrupt along a
specific signal path between the interrupting device and an interrupt slot on a
particular interrupt controller.

Glossary

A-2 UDI Physical I/O Specification - Version 1.01 - 2/2/01
 Section 4: Appendices

interrupt slot the index of an interrupt request source (starting from zero) relative to a particular
interrupt controller. In UDI, the slot number is found in the device’s instance
attributes.

interrupt source a specific interrupt request line (or source ID, for messaged based interrupts)
through which a device signals its asynchronous events. Depending on the interrupt
routing, one or more interrupt sources may share the same interrupt slot. Multiple
interrupt sources sharing the same interrupt slot is known as shared interrupts.

ISA 1) Instruction Set Architecture. Defines the binary machine language syntax and
semantics for a particular type of processor or processor family.

2) Industry Standard Architecture. An I/O bus type originally designed for the IBM
AT and used in many PCs.

PCI Peripheral Control Interconnect. A specific type of I/O bus.

PIO Programmed-I/O; i.e. transfer of data between the external device and processor
memory under direct program control of the CPU. See DMA for contrast.

PMI Processor-Memory Interconnect: the bus or interconnect that links the host CPU
with system memory and primary I/O bus bridges.

scatter-gather (scgth) element . a single address/length pair associated with a scatter/gather structure,
that identifies one piece of data buffer memory which is contiguous with respect to
card-relative addresses.

scatter-gather (scgth) segment an array of one or more scatter/gather elements. Each scatter/gather
structure references one or more scatter/gather segments, as necessary to address
the entire data buffer. The memory containing a scatter/gather segment is itself
contiguous with respect to card-relative addresses.

scatter-gather (scgth) structure a driver-visible UDI structure that reflects the card-relative addresses
of a possibly physically discontiguous but logically contiguous data buffer, which
the driver uses to set up DMA transfers.

shared interrupts see interrupt source.

sync an environment service that synchronizes the hosts view of memory with an I/O
card’s view. This includes cache flushing and purging, flushing buffers in bus
bridges, etc.

UDI Physical I/O Specification - Version 1.01 - 2/2/01 X-1

Index

B
Bus Bridge Metalanguage

roles
binding & interrupt registration 5-1
interrupt acknowledgements 5-1
interrupt events 5-1

D
DMA

address-length pairs 3-1
definition 3-1
handle

allocation 3-25
definition 3-1
transferability 3-6

memory allocation limits 3-7
memory ordering barriers 3-37
scatter-gather list 3-1
synchronization 3-1, 3-34, 3-36

I
Instance attributes

!bus_type 4-5, 5-13
interrupt region 5-24

P
physical device 1-1
PIO

attributes 4-2
data alignment 4-7
data ordering 4-6
data translation 4-6

definition 4-1
handle

allocation 4-3, 4-5
deallocation 4-3, 4-9

definition 4-1
transferability 4-4, 4-32

multiple mappings 4-4, 4-8
pacing 4-7

R
Region attributes

pio_probe 1-3, 4-31
type 1-3

Region kill 4-11

T
Transferability

of DMA handles 3-6
of PIO handles 4-4

U
UDI_PHYSIO_VERSION 1-1

Index

X-2 UDI Physical I/O Specification - Version 1.01 - 2/2/01

	Copyright Notice
	Acknowledgements
	Abstract
	Table of Contents
	List of Reference Pages by Chapter
	Alphabetical List of Symbols
	Section 1: Physical I/O Services
	Introduction to Physical I/O
	1.1 Overview
	1.2 General Requirements
	1.3 Normative References
	1.4 Extensions to Static Driver Properties
	Table 1�1 Physical I/O Region Attributes

	1.5 Bus Bindings

	DMA Constraints Management
	2.1 Overview
	2.2 Constraints Attributes Service Calls and Structures
	NAME udi_dma_constraints_attr_spec_t
	NAME udi_dma_constraints_attr_set
	NAME udi_dma_constraints_attr_reset
	NAME udi_dma_constraints_free

	Direct Memory Access (DMA)
	3.1 Overview
	3.2 DMA Block Vector Segment
	Figure 3�1 IEEE-1212.1 Block Vector Structure
	Figure 3�2 Example of Vector Use and Extension

	3.3 DMA Service Calls and Structures
	NAME udi_dma_handle_t
	NAME udi_dma_limits
	NAME udi_busaddr64_t
	NAME udi_scgth_t
	NAME udi_dma_constraints_t
	NAME udi_dma_constraints_attr_t
	Table 3�1 DMA Convenience Attributes
	Table 3�2 DMA Constraints on the Entire Transfer
	Table 3�3 DMA Constraints on the Whole Scatter/Gather List
	Table 3�4 DMA Constraints on Scatter/Gather Segments
	Table 3�5 DMA Constraints on Individual Scatter/Gather Elements
	Table 3�6 DMA Constraints for Special Addressing Restrictions
	Table 3�7 DMA Constraints on DMA Access Behavior

	NAME udi_dma_prepare
	NAME udi_dma_buf_map
	NAME udi_dma_buf_unmap
	NAME udi_dma_mem_alloc
	NAME udi_dma_sync
	NAME udi_dma_scgth_sync
	NAME udi_dma_mem_barrier
	NAME udi_dma_free
	NAME udi_dma_mem_to_buf
	3.4 DMA Constraints Handle Transferability
	NAME udi_layout_t (DMA)

	Programmed I/O (PIO)
	4.1 Overview
	4.2 PIO Handle Allocation and Initialization
	NAME udi_pio_handle_t
	NAME udi_pio_map
	NAME udi_pio_unmap
	NAME udi_pio_atomic_sizes
	NAME udi_pio_abort_sequence
	4.3 PIO Access Service Calls and Structures
	NAME udi_pio_trans_t
	Table 4�1 PIO Addressing Modes
	Table 4�2 Class A PIO Operation Codes
	Table 4�3 Class B PIO Operation Codes
	Table 4�4 Class C PIO Operation Codes
	Table 4�5 PIO Condition Codes

	NAME UDI_PIO_REP_ARGS
	Table 4�6 Stride Values for PIO Repeat Operations
	Table 4�7 Example Uses of PIO Stride Parameters

	NAME udi_pio_trans
	NAME udi_pio_probe
	4.4 PIO Handle Transferability
	NAME udi_layout_t (PIO)

	Section 2: Bus Bridge Metalanguage
	Bus Bridge Metalanguage
	5.1 Overview
	5.2 Binding/Unbinding Operations
	NAME udi_bus_device_ops_t
	NAME udi_bus_bridge_ops_t
	NAME udi_bus_bind_cb_t
	NAME udi_bus_bind_req
	NAME udi_bus_bind_ack
	NAME udi_bus_unbind_req
	NAME udi_bus_unbind_ack
	5.3 Interrupt Registration Operations
	NAME udi_intr_attach_cb_t
	NAME udi_intr_attach_req
	NAME udi_intr_attach_ack
	NAME udi_intr_detach_cb_t
	NAME udi_intr_detach_req
	NAME udi_intr_detach_ack
	5.4 Interrupt Event Operations
	NAME udi_intr_handler_ops_t
	NAME udi_intr_dispatcher_ops_t
	NAME udi_intr_event_cb_t
	NAME udi_intr_event_ind
	NAME udi_intr_event_rdy
	5.5 Static Properties Bindings
	5.6 Instance Attribute Bindings
	5.7 Bus Bridge Trace Events
	5.8 Bus Bridge Metalanguage States
	5.9 Bus Bridge Status Codes

	Section 3: Bus Bindings
	Introduction to Bus Bindings
	6.1 Normative References
	6.2 Header Files
	6.3 PIO Bindings
	6.4 Interrupt Bindings
	6.5 Instance Attribute Bindings

	Section 4: Appendices
	Glossary
	Index

