
UDI NIC Driver Specification
Version 1.01

Uniform Driver Interface

http://www.project-UDI.org/specs.html

UDI NIC Driver Specification

UDI NIC Driver Specification - Version 1.01 - 2/2/01 i

The UDI NIC Driver Specification defines the required interfaces and semantics for UDI
environments that support Network Interface Card (NIC) drivers. This is an optional extension to
the UDI Core Specification, which is defined in a separate book. See the Document Organization
chapter in the UDI Core Specification for a description of the other books in the UDI
Specifications, as well as references to additional tutorial materials. The intended audience for this
book includes driver writers, environment implementors, and metalanguage implementors.

Status of This Document
This document has been reviewed by Project UDI Members and other interested parties and has
been endorsed as a Final Specification. It is a stable document and may be used as reference
material or cited as a normative reference from another document. This version of the
specification is intended to be ready for use in product design and implementation. Every attempt
has been made to ensure a consistent and implementable specification. Implementations should
ensure compliance with this version.

Abstract

 Preface

 ii UDI NIC Driver Specification - Version 1.01 - 2/2/01

Copyright Notice
Copyright © 1999- 2001 Adaptec, Inc; Compaq Computer Corporation; Hewlett-Packard
Company; International Business Machines Corporation; Interphase Corporation; Lockheed
Martin Corporation; The Santa Cruz Operation, Inc; Sun Microsystems (“copyright holders”). All
Rights Reserved.

This document and other documents on the Project UDI web site (www.project-UDI.org) are
provided by the copyright holders under the following license. By obtaining, using and/or copying this
document, or the Project UDI document from which this statement is linked, you agree that you have
read, understood, and will comply with the following terms and conditions:

Permission to use, copy, and distribute the contents of this document, or the Project UDI document from
which this statement is linked, in any medium for any purpose and without fee or royalty is hereby
granted, provided that you include all of the following on ALL copies of the document, or portions
thereof, that you use:

1. A link or URI to the original Project UDI document.

2. The pre-existing copyright notice of the original author, or, if it doesn’t exist, a Project
UDI copyright notice of the form shown above.

3. If it exists, the STATUS of the Project UDI document.

When space permits, inclusion of the full text of this NOTICE should be provided. In addition, credit
shall be attributed to the copyright holders for any software, documents, or other items or products that
you create pursuant to the implementation of the contents of this document, or any portion thereof.

No right to create modifications or derivatives is granted pursuant to this license.

THIS DOCUMENT IS PROVIDED "AS IS," AND COPYRIGHT HOLDERS MAKE NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE DOCUMENT
ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH
CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS,
TRADEMARKS OR OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR THE
PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOF.

The names and trademarks of copyright holders may NOT be used in advertising or publicity pertaining
to this document or its contents without specific, written prior permission. Title to copyright in this
document will at all times remain with copyright holders.

http://www.project-UDI.org

UDI NIC Driver Specification - Version 1.01 - 2/2/01 iii

Preface

Acknowledgements
The authors would like to thank everyone who reviewed working drafts of the specification and
submitted suggestions and corrections.

The authors would especially like to thank their significant others for putting up with the many hours of
overtime put into the development of this specification over long periods.

Thanks to the following folks who contributed significant amounts of time, ideas, or authoring in
support of the development of this specification or in working on the prototype implementations which
helped us validate the specification:

Richard Arndt (IBM)
Bob Barned (Lockheed Martin)
Mark Bradley (Adaptec)
Darren Busing (Adaptec)
Steve Bytnar (STG)
Thomas Clark (Sun)
Deven Corzine
Jack Craig (SCO)
Betty Dall (HP)
Tim Damron (IBM)
Burkhard Daniel (STG)
Don Dugger (Intel)
Mark Evenson (HP)
Barry Feild (SCO)
Scott Feldman (Intel)
Mike Firman (STG)
Kurt Gollhardt (SCO)
Bob Goudreau (Data General)
James Hall (SCO/Sun)
Jim Heidbrink (Lockheed Martin)
Chris Herzog (STG)
Chris Ilnicki (HP)
Bret Indrelee (SBS Technologies)
David Kahn (Sun)
Matt Kaufmann (SCO)
Andrew Knutsen (SCO)
Ahuva Kroizer (Intel)

Man Fai Lau (SCO)
John Lee (Sun)
Robert Lipe (SCO)
Mike Lyons (IBM)
Alex Malone (DEC)
Lynne McCue (IBM)
Bill Nicholls
Guru Pangal (Starcom)
Mark Parenti (DEC)
James Partridge (IBM)
Scott Popp (SCO)
Hiremane Radhakrishna (Intel)
John Ronciak (Intel)
Kevin Quick (Interphase)
Larry Robinson (Adaptec)
Andrew Schweig (STG)
Sam Shteingart (HP)
Ajmer Singh (SCO)
James Smart (Compaq)
Pete Smoot (HP)
David Stoft (HP)
Rob Tarte (Pacific Codeworks)
Wolfgang Thaler (Sun)
Ramaswamy Tummala (Starcom)
Linda Wang (Sun)
Kevin Van Maren (Unisys)
Mike Wenzel (HP)

Countless people have helped in one way or another and any omissions or errors on our part in the list
above are just that: omissions or errors on our part.

Thanks to Kevin Quick and the folks at Interphase for hosting the Interoperability events which have
provided a great venue for validating both prototype and production UDI products.

Finally, thanks to David Roberts (Certek Software Designs) for designing the Project UDI logo.

 Preface

 iv UDI NIC Driver Specification - Version 1.01 - 2/2/01

UDI NIC Driver Specification - Version 1.01 - 2/2/01 v

Table of Contents

Abstract ... i
Copyright Notice ..ii
Acknowledgements..iii
Table of Contents.. v
List of Reference Pages ..vii
Alphabetical List of Symbols... ix

1 NIC Driver Introduction ..1-1
1.1 Introduction .. 1-1
1.2 Scope .. 1-1
1.3 Normative References .. 1-1
1.4 Conformance .. 1-2
1.5 Terminology ... 1-2

2 NIC Driver Requirements and Bindings ..2-1
2.1 General Requirements .. 2-1

2.1.1 Versioning ... 2-1
2.1.2 Header Files .. 2-1

2.2 NIC Metalanguage Model .. 2-2
2.3 Bindings to the UDI Core Specification .. 2-2

2.3.1 Instance Attributes Bindings ... 2-2
2.3.1.1 Enumeration Attributes .. 2-2
2.3.1.2 Enumeration Attribute Ranking ... 2-4
2.3.1.3 Filter Attributes .. 2-4
2.3.1.4 Custom Attributes ... 2-4
2.3.1.5 Parent-Visible Attributes .. 2-5

2.3.2 Trace Event Bindings .. 2-5
2.3.3 Static Driver Property Bindings .. 2-5
2.3.4 Device Management Bindings .. 2-6

2.4 NIC Metalanguage State Diagram ... 2-7
2.4.1 NIC Metalanguage States ... 2-8

3 Network Interface Metalanguage..3-1
3.1 Overview .. 3-1

 Table of Contents

 vi UDI NIC Driver Specification - Version 1.01 - 2/2/01

3.2 Network Interface Metalanguage Environment ... 3-2
3.2.1 Network Service Access ... 3-3
3.2.2 Network Interface Multiplexing ... 3-3
3.2.3 Network Addressing ... 3-4

3.2.3.1 Address Specifications ... 3-4
3.2.3.2 Address Implementations ... 3-4

3.2.4 Network Services .. 3-5
3.2.4.1 Control Operations ... 3-5
3.2.4.2 Transfer Operations .. 3-5

3.2.4.2.1 Transmit Flow Control .. 3-6
3.2.4.2.2 Receive Flow Control .. 3-6

3.2.4.3 Transfer Channels ... 3-6
3.2.5 Configuration Parameters ... 3-7
3.2.6 Hardware Checksum Offloads .. 3-7

3.3 Network Interface Management ... 3-9
3.3.1 Initialization and Registration Operations .. 3-9
3.3.2 Channel Ops Vector Registration ... 3-9
3.3.3 Network Control Block Registration .. 3-17
3.3.4 Network Interface Metalanguage Binding .. 3-18

3.3.4.1 Network Bind Operation .. 3-18
3.3.4.2 Network Unbind Operation .. 3-20

3.3.5 Interface Control ... 3-32
3.3.6 Control and Status Operations .. 3-36

3.4 Data Transfer Operations .. 3-53

Index...X-1

UDI NIC Driver Specification - Version 1.01 - 2/2/01 vii

List of Reference Pages

Chapter 3 Network Interface Metalanguage
udi_nd_ctrl_ops_t - - - - - - - - - - - - - - ND control entry point ops vector..............................3-10
udi_nd_tx_ops_t - - - - - - - - - - - - - - - ND transmit entry point ops vector............................3-12
udi_nd_rx_ops_t - - - - - - - - - - - - - - - ND receive entry point ops vector..............................3-13
udi_nsr_ctrl_ops_t - - - - - - - - - - - - - - NSR control entry point ops vector............................3-14
udi_nsr_tx_ops_t - - - - - - - - - - - - - - - NSR transmit entry point ops vector..........................3-15
udi_nsr_rx_ops_t - - - - - - - - - - - - - - - NSR receive entry point ops vector............................3-16
udi_nic_cb_t - - - - - - - - - - - - - - - - - - Standard network control block.................................3-22
udi_nic_bind_cb_t - - - - - - - - - - - - - - Network bind control block..3-23
udi_nd_bind_req - - - - - - - - - - - - - - - Network driver bind request......................................3-28
udi_nsr_bind_ack - - - - - - - - - - - - - - Network bind acknowledgment..................................3-29
udi_nd_unbind_req - - - - - - - - - - - - - Network unbind request...3-30
udi_nsr_unbind_ack - - - - - - - - - - - - Network unbind acknowledgment..............................3-31
udi_nd_enable_req - - - - - - - - - - - - - Network link enable request.......................................3-33
udi_nsr_enable_ack - - - - - - - - - - - - - Network link enable acknowledgment........................3-34
udi_nd_disable_req - - - - - - - - - - - - - Network link disable request operation.....................3-35
udi_nic_ctrl_cb_t - - - - - - - - - - - - - - - Network control operation control block...................3-37
udi_nd_ctrl_req - - - - - - - - - - - - - - - - Network control operation request............................3-43
udi_nsr_ctrl_ack - - - - - - - - - - - - - - - Network control acknowledgment..............................3-44
udi_nic_status_cb_t - - - - - - - - - - - - - Status indication control block..................................3-45
udi_nsr_status_ind - - - - - - - - - - - - - Network status indication...3-47
udi_nic_info_cb_t - - - - - - - - - - - - - - Network information control block............................3-48
udi_nd_info_req - - - - - - - - - - - - - - - - Network information request.....................................3-51
udi_nsr_info_ack - - - - - - - - - - - - - - - Network information response...................................3-52
udi_nic_tx_cb_t - - - - - - - - - - - - - - - - Network transmit control block..................................3-54
udi_nsr_tx_rdy - - - - - - - - - - - - - - - - - Network driver ready to transmit packet...................3-56
udi_nd_tx_req - - - - - - - - - - - - - - - - - Network send packet..3-57
udi_nd_exp_tx_req - - - - - - - - - - - - - Expedited data transmit request................................3-58
udi_nic_rx_cb_t - - - - - - - - - - - - - - - - Network receive control block...................................3-59
udi_nsr_rx_ind - - - - - - - - - - - - - - - - - Network receive packet indication.............................3-63
udi_nsr_exp_rx_ind - - - - - - - - - - - - - Network receive packet indication.............................3-64
udi_nd_rx_rdy - - - - - - - - - - - - - - - - - Network receive packet response...............................3-65

 List of Reference Pages

 viii UDI NIC Driver Specification - Version 1.01 - 2/2/01

UDI NIC Driver Specification - Version 1.01 - 2/2/01 ix

Alphabetical List of Symbols

udi_nd_bind_req3-28
UDI_ND_CTRL_OPS_NUM ..3-10
udi_nd_ctrl_ops_t3-10
udi_nd_ctrl_req3-43
udi_nd_disable_req3-35
udi_nd_enable_req3-33
udi_nd_exp_tx_req3-58
udi_nd_info_req3-51
UDI_ND_RX_OPS_NUM ..3-13
udi_nd_rx_ops_t3-13
udi_nd_rx_rdy3-65
UDI_ND_TX_OPS_NUM ...3-12
udi_nd_tx_ops_t3-12
udi_nd_tx_req3-57
udi_nd_unbind_req3-30
UDI_NIC_ADD_MULTI ... 3-37
UDI_NIC_ALLMULTI_OFF ...3-3 7
UDI_NIC_ALLMULTI_ON ...3- 37
UDI_NIC_ATM3-23
UDI_NIC_BAD_RXPKT ..3 -37
UDI_NIC_BIND_CB_NUM ..3-2 3
udi_nic_bind_cb_t3-23
UDI_NIC_CAP_BCAST_LOOPBK ...3-23
UDI_NIC_CAP_MCAST_LOOPBK ..3-23
UDI_NIC_CAP_TX_IP_CKSUM ...3-23
UDI_NIC_CAP_TX_TCP_CKSUM ..3-23
UDI_NIC_CAP_TX_UDP_CKSUM ...3-23
UDI_NIC_CAP_USE_RX_CKSUM ...3-23
UDI_NIC_CAP_USE_TX_CKSUM ...3-23
udi_nic_cb_t3-22
UDI_NIC_CTRL_CB_NUM ...3-37
udi_nic_ctrl_cb_t3-37
UDI_NIC_DEL_MULTI3-37
UDI_NIC_ETHER ..3-23
UDI_NIC_FASTETHER ... 3-23
UDI_NIC_FC ...3-23
UDI_NIC_FDDI ..3-23
UDI_NIC_GET_CURR_MAC ..3-37
UDI_NIC_GET_FACT_MAC ...3-37
UDI_NIC_GIGETHER ...3-23
UDI_NIC_HW_RESET ..3-37
UDI_NIC_INFO_CB_NUM ..3-48

 Alphabetical List of Symbols

 x UDI NIC Driver Specification - Version 1.01 - 2/2/01

udi_nic_info_cb_t3-48
UDI_NIC_LINK_DOWN ..3 -45
UDI_NIC_LINK_RESET .. 3-45
UDI_NIC_LINK_UP3-45
UDI_NIC_MAC_ADDRESS_SIZE ..3-23
UDI_NIC_MISCMEDIA3-23
UDI_NIC_PROMISC_OFF ..3-37
UDI_NIC_PROMISC_ON ..3-37
UDI_NIC_RX_BADCKSUM ..3-59
UDI_NIC_RX_BROADCAST ..3-59
UDI_NIC_RX_CB_NUM ..3-59
udi_nic_rx_cb_t3-59
UDI_NIC_RX_DRIBBLE ...3 -59
UDI_NIC_RX_EXACT .. .3-59
UDI_NIC_RX_FRAME_ERR ...3-59
UDI_NIC_RX_GOOD_IP_CKSUM ..3-59
UDI_NIC_RX_GOOD_TCP_CKSUM ..3-59
UDI_NIC_RX_GOOD_UDP_CKSUM ...3-59
UDI_NIC_RX_HASH3-59
UDI_NIC_RX_MAC_ERR ...3-59
UDI_NIC_RX_OTHER_ERR ...3-59
UDI_NIC_RX_OVERRUN ...3-59
UDI_NIC_RX_UNDERRUN ...3-59
UDI_NIC_RX_UNKNOWN ..3-59
UDI_NIC_SET_CURR_MAC ...3-37
UDI_NIC_STATUS_CB_NUM ..3-45
udi_nic_status_cb_t3-45
UDI_NIC_STD_CB_NUM ..3-22
UDI_NIC_TOKEN3-23
UDI_NIC_TX_CB_NUM ..3-54
udi_nic_tx_cb_t3-54
UDI_NIC_VGANYLAN .. 3-23
udi_nsr_bind_ack3-29
udi_nsr_ctrl_ack3-44
UDI_NSR_CTRL_OPS_NUM ...3-14
udi_nsr_ctrl_ops_t3-14
udi_nsr_enable_ack3-34
udi_nsr_exp_rx_ind3-64
udi_nsr_info_ack3-52
udi_nsr_rx_ind3-63
UDI_NSR_RX_OPS_NUM ..3-16
udi_nsr_rx_ops_t3-16
udi_nsr_status_ind3-47
UDI_NSR_TX_OPS_NUM ..3-15
udi_nsr_tx_ops_t3-15
udi_nsr_tx_rdy3-56
udi_nsr_unbind_ack3-31

UDI NIC Driver Specification - Version 1.01 - 2/2/01 1-1

NIC Driver Introduction 1

1.1 Introduction

This specification details the channel operations, parameters and sequences for the UDI Network
Interface Metalanguage1 which is used to support Network Interface Adapter Cards (NIC’s).

Each subsection defines the channel operation calls, control structure type declarations, the rationale for
the operation’s existence, constraints and guidelines for the use of each operation, and error conditions
that can occur.

1.2 Scope

The networking device driver framework in UDI defines a set of channel operations and rules which
allow for writing a NIC driver that works with existing and future networking protocol stacks regardless
of the OS and protocol stack characteristics. This specification describes both the UDI NIC Driver (ND)
and the UDI Network Service Requester (NSR) which communicate via the Network Interface
Metalanguage. The ND is completely portable within the UDI environment and is intended to
accompany the distribution of the NIC hardware. The NSR is typically provided by the UDI
environment implementation or via additional UDI modules. The Network Interface Metalanguage
completely defines the interface between the two components.

The UDI Network Interface Metalanguage was developed to represent a universal set of connectionless
network-related functions that provide all of the needed functionality in an OS, protocol, and transport
independent manner.

1.3 Normative References

The UDI Network Interface Metalanguage is designed to support a wide variety of network topologies.
Although there is no single standard or reference for this implementation, the designer is expected to be
familiar with the appropriate network protocol standards and technology specifications that apply to the
implementation being developed. This includes International Standards Organization (ISO), American
National Standards Inc. (ANSI), and Internet Engineering Task Force (IETF) publications for general
networking standards as well as technology-specific standards from specific groups such as the ATM
Forum, the ANSI X3T11 Fibre Channel committee, the various 802.x standards committees for Ethernet
and FDDI, and other organizations and specifications as appropriate.

The UDI NIC Driver Specification also references and depends upon the UDI Core Specification.

1. While the term “Network Interface Metalanguage” is the proper name for this metalanguage, the term “NIC Metalanguage”
is also used for brevity and is an equivalent reference.

Conformance NIC Driver Intro

1-2 UDI NIC Driver Specification - Version 1.01 - 2/2/01

1.4 Conformance

A conformant UDI NIC driver (ND) must fully implement the parent interface defined in this
specification and must also be fully compliant with the UDI Core Specification interfaces. Other
optional UDI interfaces may be supported if they are also conformant to the UDI Core Specification
(0x101). No non-conformant interfaces may be used in a conformant UDI NIC driver.

A conformant UDI Network Service Requestor (NSR) implementing the interface to one or more
network protocol stacks must fully implement the child interface defined in this specification and must
also be fully compliant with the UDI Core Specification interfaces. Other optional UDI interfaces may
be supported if they are also conformant to the UDI Core Specification (0x101). No non-conformant
interfaces may be used in a conformant UDI NSR Module.

A conformant UDI Network Mapper must fully implement the child interface defined in this
specification; other interfaces and implementation details are not constrained by Mapper conformance
requirements.

1.5 Terminology

Throughout this document, the following conventions will be used:

• Operations of type “_req” are used to request an activity.

• Operations of type “_ack” are used to acknowledge the request (but not necessarily the
success or failure in implementing that request).

• Operations of type “_ind” are used for indications of an event, typically asynchronous in
nature.

• Operations of type “_rdy” are used to indicate that the corresponding driver is ready for an
event from the other end of the channel.

The following terms will be used throughout the UDI NIC Driver Specification with the following
intended meanings:

ND Refers to the UDI Network Interface Adapter Card (NIC) driver supplied by the
adapter manufacturer (typically) and which is used to manage and operate that
adapter.

NSR Refers to the UDI Network Service Requestor which is the child of the ND and
implements the interface between the ND and the various network protocol stacks
in the current operating environment.

NIC Network Interface Card. This is the network adapter that is being controlled by the
ND.

MAC Media Access Controller. This customarily refers to the chip that is used to access
the physical network media. Most of the functionality of a NIC card is represented
by the MAC, which implements framing, physical signaling, and other operations
to provide programmatic access to the network.

MAC Address A Media Access Address which is typically the “hardware” or line-level address of
a network node. This is customarily the address that the NIC uses to send packets
on the network; protocol-specific virtual addresses (e.g. the IP address) are mapped
to MAC addresses on transmit and recieve operations.

UDI NIC Driver Specification - Version 1.01 - 2/2/01 1-3

NIC Driver Intro Terminology

Unicast The operational mode of the NIC whereby it receives packets which contain its
MAC address as the packet destination address.

Multicast The operational mode of the NIC whereby it recieves packets which contain either
its own MAC address or a MAC address which matches one or more multicast
addresses. It is intended that only one adapter shall receive and respond to unicast
packets whereas multiple adapters shall receive and respond to multicast packets.

Broadcast The operational mode of the NIC whereby all packets that can be received on the
network connection are passed to the NSR, regardless of the destination address of
those packets. Also known as “promiscuous mode”.

Packet The fundamental block of data and associated network headers that is sent or
received by the NIC. Each packet is expected to have a network header which
minimally includes the destination MAC address followed by zero or more bytes of
payload data. Note that some network technologies may further subdivide a packet
into smaller transmission units (e.g. ATM cells) but this segmentation and
reassembly activity should be invisible to the interface between the ND and the
NSR.

QoS Quality of Service. A term which describes various means of identifying and
distinguishing between network traffic that is exchanged between two network
nodes. This term is generic and its use is usually specific to the network media and
protocol types and may include concepts such as: priority, bandwidth, error rate or
recovery, and packet acknowledgements.

Terminology NIC Driver Intro

1-4 UDI NIC Driver Specification - Version 1.01 - 2/2/01

UDI NIC Driver Specification - Version 1.01 - 2/2/01 2-1

NIC Driver Requirements and Bindings 2

2.1 General Requirements

2.1.1 Versioning

All functions and structures defined in the UDI NIC Driver Specification are part of the “udi_nic ”
interface, currently at version “0x101 ”. A driver which conforms to and uses the UDI Network
Interface Metalanguage, Version 1.01, must include the following declaration in its udiprops.txt file
(see Chapter 30, “Static Driver Properties”, of the UDI Core Specification):

requires udi_nic 0x101

In each UDI NIC driver source file, before including any UDI header files, the driver must define the
preprocessor symbol, UDI_NIC_VERSION, to indicate the version of the UDI Network Interface
Metalanguage to which it conforms, which must be the same as the interface version defined above.

#define UDI_NIC_VERSION 0x101

A portable implementation of the Network Interface Metalanguage must include a corresponding
"provides" declaration in its udiprops.txt file, must define UDI_NIC_VERSION, and must conform
to the requirements specified in the Metalanguage-to-Environment (MEI) interface defined in Chapter
27, “Introduction to MEI” , of the UDI Core Specification and Chapter 28, “Metalanguage-to-
Environment Interface”, of the UDI Core Specification.

As defined in Section 30.4.6, “Requires Declaration,” on page 30-6 of the UDI Core Specification, the
two least-significant digits of the interface version represent the minor number; the remaining hex digits
represent the major number. Versions that have the same “major version number” as an earlier version
shall be backward compatible with that earlier version (i.e., a strict superset).1

2.1.2 Header Files

Each UDI NIC driver source file must include the file “udi_nic.h ” after it includes “udi.h ”, as
follows:

#include <udi.h>
#include <udi_nic.h>

The “udi_nic.h ” header file contains function prototypes and other definitions needed to use the UDI
NIC interfaces.

1. As an exception to this version compatibility, version 1.0 (0x100) is not forward compatible with any other versions bearing
the major number of 1; version 1.0 of the specification cannot be wholly implemented as a functional product.

NIC Metalanguage Model NIC Requirements

2-2 UDI NIC Driver Specification - Version 1.01 - 2/2/01

2.2 NIC Metalanguage Model

The Network Interface Metalanguage is designed to support the interface between a Network Interface
Card Driver (ND) and the associated network protocol stacks in the operating system. Under the UDI
model, the NIC driver is primarily concerned with the management of the hardware itself, the state of
the link, and with sending and receiving network packets. Management of the network address space,
topology discovery, and packet composition/decomposition operations are not the responsibility of the
NIC driver and are left to the network protocol stacks.

The NIC driver will bind to a single network protocol module (NSR); there is expected to be a one-to-
one relationship between NIC driver instances and network protocol module instances with a single
Network Interface Metalanguage binding between each pair. Any packet multiplexing/demultiplexing
operations on the basis of protocol type, destination address, or other filter are the responsibility of the
network protocol module and are not handled in the ND. All packets received by the NIC (subject to
local address and multicast address filtering) are passed to the network protocol module for handling.

The NIC driver implements inbound and outbound flow control between itself and the protocol stack by
controlling the acknowledgement and corresponding control block recycling across the NIC
Metalanguage data channels. Each control block represents either a packet (received or to be
transmitted) or a capability to receive or transmit a packet; when no capability is present the
corresponding operation is “blocked”, thereby imposing flow control characteristics on the
corresponding modules.

Because the NIC Metalanguage model is based on an asynchronous as-needed operational basis none of
the operations defined by this metalanguage are abortable with udi_channel_op_abort or
recoverable (as described in Section 4.10.1, “Overview of Region-Kill,” on page 4-6 of the UDI Core
Specification).

2.3 Bindings to the UDI Core Specification

2.3.1 Instance Attributes Bindings

In each of the attribute tables below, the ATTRIBUTE NAME is a null-terminated string (see Section
15.2, “Instance Attribute Names,” on page 15-1 of the UDI Core Specification); the TYPE column
specifies an attribute data type as defined in udi_instance_attr_type_t on page 15-7 of the UDI Core
Specification; and the SIZE column specifies the valid size range, in bytes, for each attribute.

2.3.1.1 Enumeration Attributes

The UDI Network Adapter Driver enumerates network access points provided by that adapter. The
following table specifies the enumeration attributes that can be specified for each network access point
enumerated:

Table 2-1 NIC Enumeration Attributes

ATTRIBUTE NAME TYPE SIZE Description

if_num UDI_ATTR_UBIT32 4 Instance number for the media interface port
relative to the other interface ports on this device.

UDI NIC Driver Specification - Version 1.01 - 2/2/01 2-3

NIC Requirements Bindings to the UDI Core

The following table defines the media string prefixes for the different media types to be specified in the
locator attribute:

if_media UDI_ATTR_STRING 1..8 Media type string as defined in Table 2-2 on
page 2-3. The size range specified includes the
null-terminator

identifier UDI_ATTR_STRING 1..41 String representation of the Factory MAC address
of the NIC media interface port (see mac_addr
in udi_nic_bind_cb_t on page 3-23), as an
uppercase UDI_ATTR_ARRAY8 encoding per
Table 30-1 on page 30-16 of the UDI Core
Specification. The size range specified includes
the null-terminator.

address_locator UDI_ATTR_STRING 1..11 String representation of if_num , as an ASCII-
encoded decimal string.
The size range specified includes the null-
terminator.

physical_locator UDI_ATTR_STRING 1..11 String representation of if_num , as an ASCII-
encoded decimal string.
The size range specified includes the null-
terminator

physical_label UDI_ATTR_STRING 1..64 Driver-defined string uniquely identifying this
device (optional).

Table 2-2 Media Type Strings

Media Type Media String

UDI_NIC_ETHER “eth”

UDI_NIC_TOKEN “tr”

UDI_NIC_FASTETHER “fe”

UDI_NIC_GIGETHER “ge”

UDI_NIC_VGANYLAN “vg”

UDI_NIC_FDDI “fddi”

UDI_NIC_ATM “atm”

UDI_NIC_FC “fc”

UDI_NIC_MISCMEDIA “net”

Table 2-1 NIC Enumeration Attributes

ATTRIBUTE NAME TYPE SIZE Description

Bindings to the UDI Core Specification NIC

2-4 UDI NIC Driver Specification - Version 1.01 - 2/2/01

2.3.1.2 Enumeration Attribute Ranking

To support the ranking of enumerated devices against available drivers for the
udi_mei_enumerate_rank_func_t , each rankable enumeration attribute is assigned a numeric
ranking value; the ultimate rank returned by the ranking function is the sum of the individual attribute
ranking values for all attributes which are matched in the enumeration.

The rankable enumeration attributes and their ranking values are shown in the following table:

2.3.1.3 Filter Attributes

The if_media enumeration attribute may be used as a filter attribute. There is no range specification
allowed for this filter; an exact value match must be made if this attribute is used for filtering.

2.3.1.4 Custom Attributes

The following well-known attributes must be included, if applicable, as “custom” declarations in the
NIC driver’s udiprops.txt static driver properties file for appropriate configuration of the target
driver:

Table 2-3 NIC Enumeration Attribute Ranking Values

Enumeration
Attribute

Ranking
Value

if_num 8

if_media 16

identifier 32

physical_label 64

Table 2-4 NIC Custom Attributes

ATTRIBUTE
NAME TYPE SIZE Description

%speed_mbps UDI_ATTR_UBIT32 4 May be used to direct the adapter to use a specific link
speed in MBps. This value may be used to represent
high-speed network connections; for low speeds the
%speed_bps attribute should be used. For example,
for Fast Ethernet this would be set to 10 or 100 for
10Mbit or 100Mbit connections, respectively. If this
attribute is not set or is set to zero, the speed shall be
(auto) negotiated when the link is enabled.

%speed_bps UDI_ATTR_UBIT32 4 This value is used in the same manner that the
%speed_mbps attribute is used, although this value
specifies a lower range of speeds. Drivers shall ignore
%speed_bps if %speed_mbps is set and non-zero.

UDI NIC Driver Specification - Version 1.01 - 2/2/01 2-5

NIC Requirements Bindings to the UDI Core

2.3.1.5 Parent-Visible Attributes

There are no defined parent-visible attributes for the Network Interface Metalanguage.

2.3.2 Trace Event Bindings

The following definitions describe usage of the trace events for the Network Interface Metalanguage and
NIC Drivers. These trace events are defined in the “Trace Event Types” section of “Tracing and
Logging” of the UDI Core Specification.

• UDI_TREVENT_IO_SCHEDULED

• Trace indicating a new network transmit request is being handled.

• UDI_TREVENT_META_SPECIFIC_1

• Trace indicating a network transmit request encountered an error.

• UDI_TREVENT_IO_COMPLETED

• Trace indicating a network packet was received and is being handled.

• UDI_TREVENT_META_SPECIFIC_2

• Trace indicating an incoming network packet has an error.

2.3.3 Static Driver Property Bindings

Some of the bindings for the static driver properties are defined in Section 2.1.1, “Versioning”. This
includes the definition of the relevant interface name(s) (i.e., the <interface_name> parameter on
the “requires” and “provides” and other property declarations), and the definition of the interface version
number for this version of this specification.

The driver category to be used with the “category” declaration (see Section 30.5.3, “Category
Declaration,” on page 30-11 of the UDI Core Specification) by a portable implementation of the
Network Interface Metalanguage Library shall be “Network Interface Cards”.

%duplex UDI_ATTR_STRING 1..64 Must be set to “Full ”, “ Half ”, or “Auto-
negotiate ” (if appropriate). The size range
specified includes the null-terminator. If this attribute
is not set, the duplex mode shall be auto-negotiated,
or–if the device does not support auto-negotiation–set
to the most typical setting for the media type.

%connector UDI_ATTR_STRING 1..64 May be used to override auto-detection of the port’s
cable or connector type. The list of valid values is
driver-defined but might include some of the
following: “BNC”, “AUI”, “TP”, “DB-9”, “Copper
GBIC”, etc. The size range indicated includes the null-
terminator for the string.

Table 2-4 NIC Custom Attributes

ATTRIBUTE
NAME TYPE SIZE Description

Bindings to the UDI Core Specification NIC

2-6 UDI NIC Driver Specification - Version 1.01 - 2/2/01

2.3.4 Device Management Bindings

As described in Section 24.6.2, “Suspend,” on page 24-28 of the UDI Core Specification, a driver may
be suspended to allow for physical or logical device modifications or replacement. Both the ND and the
NSR may queue some amount of traffic but are expected to discard data transfer operations until
subsequently resumed.

UDI NIC Driver Specification - Version 1.01 - 2/2/01 2-7

NIC Requirements NIC Metalanguage State Diagram

2.4 NIC Metalanguage State Diagram

See “Driver Instantiation” on page 24-2 of the UDI Core Specification for the general configuration
sequence of UDI drivers. See “Management Metalanguage States” on page 24-37 of the UDI Core
Specification for details on the Management Metalanguage states. The following state diagram shows
the Network Interface Metalanguage state diagram (from the perspective of the ND) which is the set of
states specific to the Network Interface Metalanguage.

Figure 2-1 NIC Metalanguage State Diagram

Table 2-5 NIC Metalanguage Events

Event Operation

A udi_channel_event_ind (UDI_CHANNEL_BOUND) on NSR’s parent channel

B udi_nd_bind_req

C udi_nsr_bind_ack

D udi_nd_enable_req + udi_nsr_enable_ack with success

E udi_nd_disable_req

F udi_nsr_status_ind UDI_NIC_LINK_UP

G udi_nsr_tx_rdy, udi_nd_tx_req, udi_nd_exp_tx_req,
udi_nsr_rx_ind, udi_nsr_exp_rx_ind, udi_nd_rx_rdy

H udi_nd_unbind_req

I udi_nsr_unbind_ack

J udi_nsr_status_ind UDI_NIC_LINK_DOWN or UDI_NIC_LINK_RESET

K udi_nsr_tx_rdy, udi_nd_tx_req, udi_nd_exp_tx_req

M udi_nsr_bind_ack with failure status

BOUNDUNBOUND BINDING UNBINDING

(enter)

A
B C H

I

D E
H

ENABLED

ACTIVE

G

E HF J

K

M

NIC Metalanguage State Diagram NIC Requirements

2-8 UDI NIC Driver Specification - Version 1.01 - 2/2/01

2.4.1 NIC Metalanguage States

UNBOUND A network bind channel in the unbound state has been established between the two
regions but has not yet been initialized in those regions for general use. The NSR
(child) side of the network bind channel should initiate the network bind operation
when in this state.

BINDING This indicates that the NSR (child) side of the network bind channel has initiated a
bind operation and is waiting for the ND (parent) side of the network channel to
complete its initialization and acknowledge that bind request.

BOUND This indicates that the network channels are fully bound between the two regions
and that they are ready for other Network Interface Metalanguage operations. In the
UNBOUND or BINDING states only the Network Interface Metalanguage bind
operations should be used; once the BOUND state is reached the other
metalanguage operations may be used.

ENABLED This indicates that the ND has enabled the interface for I/O activity on the network.
This does not necessarily indicate that the link is up.

ACTIVE This indicates that the ND has enabled the interface and that the link is up. This is
the only state where it is expected that network packet transmit and receive
operations will be successful.

UNBINDING This indicates that the Network channels are being shutdown. The NSR can cause
this state to be entered by issuing a udi_nd_unbind_req . When the unbind
operation is acknowledged then both the ND and the NSR will progress to the
UNBOUND state.

UDI NIC Driver Specification - Version 1.01 - 2/2/01 2-9

NIC Requirements NIC Metalanguage State Diagram

Table 2-6 NIC Metalanguage: Valid Operations by State

Operation

U
N

B
O

U
N

D

B
IN

D
IN

G

B
O

U
N

D

E
N

A
B

LE
D

A
C

T
IV

E

U
N

B
IN

D
IN

G

udi_nd_bind_req YES no no no no no

udi_nsr_bind_ack no YES no no no no

udi_nd_unbind_req no no YES YES YES no

udi_nsr_unbind_ack no no no no no YES

udi_nd_enable_req no no YES no no no

udi_nsr_enable_ack no no no YES no no

udi_nd_disable_req no no no YES YES no

udi_nsr_status_ind no no no YES YES no

udi_nd_ctrl_req no no YES YES YES no

udi_nsr_ctrl_ack no no YES YES YES no

udi_nd_info_req no no YES YES YES no

udi_nsr_info_ack no no YES YES YES no

udi_nsr_tx_rdy no no no YES YES no

udi_nd_tx_req no no YES YES YES no

udi_nd_exp_tx_req no no no YES YES no

udi_nsr_rx_ind no no YES no YES no

udi_nsr_exp_rx_ind no no no no YES no

udi_nd_rx_rdy no no no YES YES no

NIC Metalanguage State Diagram NIC Requirements

2-10 UDI NIC Driver Specification - Version 1.01 - 2/2/01

UDI NIC Driver Specification - Version 1.01 - 2/2/01 3-1

Network Interface Metalanguage 3

This specification details the channel operations, parameters and sequences for the UDI Network
Interface Metalanguage which is used to support Network Interface (NIC) Adapters.

Each subsection defines the channel operation calls, control structure type declarations, the rationale for
the operation’s existence, constraints and guidelines for the use of each operation, and error conditions
that can occur.

3.1 Overview

The networking device driver framework in UDI defines a set of channel operations and rules which
allow for writing a NIC driver that works with existing and future networking protocol stacks regardless
of the OS and protocol stack characteristics. This specification describes both the UDI NIC Driver (ND)
and the UDI Network Service Requester (NSR) which communicate via the Network Interface
Metalanguage. The ND is completely portable within the UDI environment and is intended to
accompany the distribution of the NIC hardware. The NSR is typically provided by the UDI
environment implementation or via additional UDI modules. The Network Interface Metalanguage
completely defines the interface between the two components.

The UDI Network Interface Metalanguage was developed to represent a universal set of connectionless
network-related functions that provide all of the needed functionality in an OS, protocol, and transport
independent manner.

Network Interface Metalanguage Environment

3-2 UDI NIC Driver Specification - Version 1.01 - 2/2/01

3.2 Network Interface Metalanguage Environment

The UDI Network Interface Metalanguage environment may be implemented in one of two possible
configurations as shown in Figure 3-1: either UDI protocol support or a mapper to native OS protocol
stacks. The implementation chosen and the associated details are determined by the provider of the UDI
environment and do not affect the UDI NIC Driver implementation.

Figure 3-1 UDI Networking Environment

In the first configuration scenario, the protocol stack is implemented directly within the UDI
environment. It is attached directly to the UDI ND in the customary UDI parent-child relationship. It
implements the transport protocol mechanism using native UDI services (e.g. buffer services, timer
services, etc.) and scheduling. The Protocol Stack operates as the Network Service requester (NSR) in
this configuration, communicating with the ND via the Network Interface Metalanguage.

The second configuration scenario is used when the transport protocol mechanism is implemented in a
manner native to that particular OS (e.g. Streams/DLPI, BSD ifnet/2, NDIS, ODI, CDLI, NDI, etc.). In
this scenario the protocol stack is independent of UDI and does not run under the UDI paradigm and an
additional component, the UDI Network Mapper is provided to act as the NSR agent on behalf of the
native protocol stack. The UDI environment implementation must support the Network Interface
Metalanguage by implementing one or the other of these support scenarios.

Please note that there are a number of “flow” diagrams presented throughout this chapter. They are
intended to provide examples of how an existing Streams/DLPI protocol stack interface would be
mapped to the corresponding Network Interface Metalanguage operations. The UDI Network Interface

Protocol

Stack

Protocol

Stack

Network Mapper

NIC Driver (ND)

Network Interface

UDI

Network Interface

Adapter (NIC)

Bus Bridge

Child

Parent

Parent

Child

UDI

Native

Network Service Requester
(NSR)

Metalanguage

UDI NIC Driver Specification - Version 1.01 - 2/2/01 3-3

Network Interface Metalanguage Network Interface

Metalanguage can be implemented as an addition to or as a replacement for any existing network
adapter interface, so the examples shown here should not be interpreted as the only possible
implementation of this metalanguage.

3.2.1 Network Service Access

The UDI Network Adapter Metalanguage, as with many network driver architectures, defines that
architecture in terms of a client-server arrangement. In terms of this arrangement, the ND provides
various “services” to the protocol stack.

There may be multiple protocol stacks or other modules utilizing an ND driver at any single time,
depending on the system configuration; these are all channeled through the NSR to provide a single
access point between the ND and the NSR for all network traffic. Correspondingly, there may be
multiple ND’s providing network access services to the protocol stack or stacks within the environment.

The services provided by a ND and their parameters are described by the UDI Network Interface
Metalanguage. The way in which these services are used by the protocol stack is not described by the
Metalanguage and is a prerogative of that protocol stack and accompanying environment.

One example of network access is an Ethernet datalink path between an Ethernet Adapter’s ND and the
TCP/IP protocol stack via the NSR. TCP/IP packets are presented to the ND through Network Interface
Metalanguage channel; the NSR will prepare the packet format for transmission and build the packet
headers and the ND will perform the appropriate actions to post the buffer to the Adapter’s MAC chip to
transmit it on the network. Incoming packets are verified, and the packet is passed to the NSR over the
Network Interface Metalanguage channel. The NSR then interprets the frame header and removes it and
the subsequent data buffer is passed to the TCP/IP protocol stack agent corresponding to the Ethertype
in the Ethernet header.

3.2.2 Network Interface Multiplexing

As defined, the Network Interface Metalanguage provides an interface to the NIC driver that is nearly
independent of the network protocol type. The NIC Driver’s primary responsibility is sending and
receiving network packets via the associated hardware.

The NSR provides the network header creation and manipulation operations as well as multiplexing
between the NIC and the various protocol stacks. The ND therefore can be implemented very simply
since it only manages one hardware device and passes packets to one NSR.

In this paradigm, it is expected that an OS implementing multiple upper-layer protocols (e.g. IP, IPX,
ARP, Appletalk, etc.) over a single network interface will attach these protocols to the NSR for header
manipulation and incoming packet filtering and distribution. The NIC Driver will have only the single
connection to the NSR for all of these simultaneous protocols. Accordingly, the only incoming packet
filtering performed by the NIC Driver is to only pass up packets intended for the local host (unless
broadcast/promiscuous mode is set, in which case ALL packets should be passed to the NSR).

Only one NSR may connect to a NIC Driver at any time. If a NIC Driver instance is bound via the
Network Interface Metalanguage to a specific NSR child, no other Network Interface Metalanguage bind
operations will be issued to that NIC Driver instance until the existing NSR child is unbound.

Network Interface Metalanguage Environment

3-4 UDI NIC Driver Specification - Version 1.01 - 2/2/01

In addition, any Generic Metalanguage channels bound to a NIC Driver will be used in a manner defined
by that NIC Driver and the associated client. However, it is customary for the NIC to refrain from
passing any received packets to the Generic Metalanguage unless specifically requested via a Generic
I/O Metalanguage control operation.

3.2.3 Network Addressing

The Network Service requester (NSR) is responsible for determining the network (MAC) destination
address for transmit packets and for building the datalink header (e.g. Ethernet V2, 802.2, SNAP) in the
packet before delivering the packet to the ND for transmission. On receives, the ND will validate any
addressing information (if necessary) and then pass the entire packet to the NSR. The NSR will parse
and remove the datalink header(s) from the packet and then pass it to the appropriate protocol stack
entity, thereby providing the receive demultiplexing functionality.

When the Network Interface Metalanguage binding between the NSR and the ND is performed, the ND
will indicate the media type to provide basic framing information to the NSR. The NSR will use this
information to generate the proper device or technology headers for transmit operations and to
correspondingly interpret the receive headers.

3.2.3.1 Address Specifications

During normal operations, it isn’t necessary for the NSR and ND to exchange address information; the
initial indication of the media type allows both the NSR and ND to parse the packet buffers to obtain or
set MAC addresses as needed. In the event that it is necessary for the NSR and ND to exchange MAC
addresses directly, they will use explicit fields in the associated operation control blocks to do so. Some
examples of situations requiring the exchange of addresses are: ND reporting of current/factory MAC
address to the stack, and NSR specification of multicast addresses to be accepted.

In order to allow the Network Interface Metalanguage to support a wide variety of media types, the size
of the MAC addresses is not restricted to the traditional 6 bytes. Instead, the size of the MAC address
will be explicitly stated when exchanging these addresses, subject to the maximum size of
UDI_NIC_MAC_ADDRESS_SIZE1. Within the context of the ND, it may be reasonable to assume a
MAC address length relating to the hardware in question and the ND may be written using this
assumption, but in exchanges with the NSR, the size of the MAC address must be explicitly specified.

The current value of UDI_NIC_MAC_ADDRESS_SIZE is 20 bytes, which allows complete
specification of E.164 addresses.

3.2.3.2 Address Implementations

This metalanguage specification uses the term “MAC” (Media Access Control) address to refer to the
addresses which the ND and NSR will both evaluate. While this term is used extensively in conventional
LAN implementations (e.g. Ethernet or FDDI), it usage is somewhat more vague in non-LAN or
extended functionality protocols such as ATM or Fibre Channel. The contents of Table 3-1 on page 5
identifies media types and the recommended MAC address for those media. Media types not specifically
identified in the table should interpret the MAC address to correspond to the static node identifying
address that ARP would typically use to map an IP address. A NIC driver is not required to use the

1. The UDI_NIC_MAC_ADDRESS_SIZE specification is defined as part of the UDI NIC Driver Specification and may not be
tailored by the individual UDI environment implementations. The value of this definition may only change as part of the
evolution of this specification.

UDI NIC Driver Specification - Version 1.01 - 2/2/01 3-5

Network Interface Metalanguage Network Interface

address values in the table below but it should be prepared to detect and process the contents of any
address resolution protocol packets (e.g. ARP), in both directions, if it does not use the conventional
addressing format.

3.2.4 Network Services

The network services defined by the UDI Network Interface Metalanguage specification which are
provided by the ND may be divided into two areas: control operations and transfer operations. Each type
of operation is handled by one or more UDI channels between the ND and the NSR. The UDI channels
are specific to the type of operation associated with that channel (e.g. it is an error to send control
operations over a transfer channel).

3.2.4.1 Control Operations

The control operations specified by the UDI Network Interface Metalanguage are used to specify the
binding and to handle protocol-level control operations such as hardware MAC address registration,
statistics, multicast addressing, etc.

3.2.4.2 Transfer Operations

The transfer operations handle simple datagram packet transmission and reception operations.

When the ND is provided with a packet buffer to transmit, it will also be given a buffer containing the
data to transmit including any protocol and frame level headers. If the device does not require any
special handling of the header information, the packet is simply queued to the device. If header
translation or manipulation is required, the ND is free to perform these operations before queueing the
packet for transmission. When the packet transmission has completed, the ND will indicate this
completion to the NSR.

When the ND receives a packet from the line, it (or the NIC hardware on its behalf) will examine the
link-level headers and trailers to determine both the source and destination addresses. The destination
address will be verified as the link-level MAC address of the ND’s interface or as an appropriate
multicast or broadcast address (either perfect or hashed). Packets failing this verification will be
discarded. The ND will then pass the packet to the NSR via a Network Interface Metalanguage receive

Table 3-1 Media Types and MAC Address Lengths

Media Type Description MAC Address

UDI_NIC_ETHER 10 Mbit Ethernet 6-byte MAC address

UDI_NIC_TOKEN Token-ring Media 6-byte MAC address

UDI_NIC_FASTETHER 100 Mbit Ethernet 6-byte MAC address

UDI_NIC_GIGETHER 1 Gbit Ethernet 6-byte MAC address

UDI_NIC_VGANYLAN 100 MBit 100VG-AnyLAN 6-byte MAC address

UDI_NIC_FDDI 100 Mbit FDDI 6-byte canonical MAC address

UDI_NIC_ATM 25 Mbit, 155 Mbit, or 622 Mbit ATM Up-to 20-byte E.164 node address

UDI_NIC_FC 1 Gbit (or greater) Fibre Channel 8-byte WWN

UDI_NIC_MISCMEDIA Unknown or unspecified media type 6-byte MAC address

Network Interface Metalanguage Environment

3-6 UDI NIC Driver Specification - Version 1.01 - 2/2/01

channel. The ND may chain multiple packets together for receive indications in a similar manner to the
transmit packet chaining described above; the NSR may divide up the chain however it desires to
acknowledge these receives in any sequence or sub-chain it desires.

The NSR is responsible for evaluating the link level header information to determine which local
protocol stack agent the message should be directed to; if no local stack agent matches the link level
addressing information, the NSR will discard the packet.

3.2.4.2.1 Transmit Flow Control

Transmit flow control is implemented by selective supply of transmit control blocks to the NSR by the
ND. When the network connection is enabled, the ND will allocate a number of transmit control blocks
and then provide these to the NSR. The NSR can then use these for transmit requests. The NSR may not
internally allocate any additional transmit control blocks; it must wait for the ND to return transmit
control blocks after transmission completes if it exhausts its supplied pool of control blocks.

The transmit control block also implements a completion urgency hint which is used to indicate to the
ND the relative urgency of completing the transmit quickly. If not marked to indicate an urgency desire,
the ND is free to complete the transmit at any point in the future that it desires. If urgency is indicated,
it typically means that the packet buffer has been loaned to the networking subsystem by another OS
module (e.g. NFS) and that the buffer should be released as soon as possible. This indicator allows the
ND to optimize transmit completion interrupts as desired. Note that even if no urgency is indicated, the
ND should insure that it quickly indicates a transmit completion if the NSR has passed all transmit
control blocks to the ND, otherwise the flow control mechanism will prevent any further transmit
requests.

To reduce overhead and allow batch optimizations in the ND, the NSR may pass a chain of multiple
packets as part of a single Network Interface Metalanguage transmit request. Each packet should be
transmitted in turn and when the transmission completes, the transmit buffer is deallocated and the
transmission is acknowledged to the NSR. The ND may acknowledge on a packet-by-packet basis or on
the basis of all (or part) of the original chain of packets. The driver is free to divide the chain into as
many pieces as desired, as is the NSR or the UDI environment.

3.2.4.2.2 Receive Flow Control

Receive flow control is implemented in essentially the same manner as transmit flow control but in the
reverse direction. The NSR will provide the ND with a supply of receive control blocks and associated
buffers into which the received data is to be placed. Once a packet has been received into the buffer, the
ND will pass the receive control block back to the NSR. The ND will never internally allocate receive
control blocks and will instead wait for the NSR to supply them. As a result, the ND is not expected to
retain any packets received while there are no available receive control blocks (although it may
optionally queue them internally at its prerogative).

3.2.4.3 Transfer Channels

In order to allow separate handling of receive and transmit operations, the UDI Network Interface
Metalanguage defines two separate transfer channels for the connection between the NSR and the ND:
the transmit channel and the receive channel. Both channels may be handled by a single driver region or
if desired they may each be handled by a separate region within the driver instance.

UDI NIC Driver Specification - Version 1.01 - 2/2/01 3-7

Network Interface Metalanguage Network Interface

In addition, each channel provides channel operations for both normal and expedited data. This allows
the NSR and ND to differentiate expedited, out-of-band, or other non-standard Quality of Servic (QoS)
data from the normal in-band data being transferred. Protocols which support this model of data transfer
(e.g. 100VG-AnyLAN) can use different channel operation routines to handle the different traffic types
separately. For protocols which do not support this differentiation, the normal and expedited channel
operations may point to the same routine for either the ND or the NSR.

3.2.5 Configuration Parameters

Different network technologies have associated parameters and modes of operation which are unique to
that network technology (e.g. auto-negotiation for speed). Additionally, many network adapters have
varying degrees of support for network-specific functionality in the hardware itself. To attempt to
capture all of these variations in this metalanguage as part of the description of the communication
between the NSR and the ND would be impossible and arbitrarily restrict current and future innovation.
Additionally, this level of functionality is really only used for adapter hardware configuration and the
results of this configuration are not interesting to nor do they affect the NSR and the general
communications between the NSR and the ND.

Therefore, these types of adapter-specific configurations are not defined as part of this metalanguage but
instead should be implemented as custom attribute declarations as part of the driver’s static configuration
properties (see the “Custom Declaration” section of “Static Driver Properties” in the UDI Core
Specification). In this way, the configuration parameters can be defined on a per-driver basis with
defaults and values provided by the manufacturer of the adapter as appropriate to that adapter. Example
configuration parameters of this type are:

• Full or Half Duplex Configuration

• Link Speed setting (including auto-negotiation)

• Port Type selection (e.g. BNC, AUI, TP)

To change the any of these configuration parameters, the system administrator should update the values
for these parameters in the system’s persistent storage database to the newly desired values. The ND
should re-scan the persistent storage database for any configuration parameter changes each time a link
enable request is received, thereby allowing the system administrator to verify that the parameters have
taken effect by (re)enabling the interface.

3.2.6 Hardware Checksum Offloads

Many hardware adapters provide the capability of calculating and/or verifying network packet
checksums via offload capabilities of the hardware. This can significantly improve performance for
networking operations and unlike the configuration parameters discussed above this capability does
affect the operation of the NSR and its children. However, hardware checksum offloads are implemented
in different manners and some adapters have different offloading capabilities than others.

To support hardware checksum offloading, the ND should utilize buffer tags2 and the buffer tag assist
functions: udi_buf_tag_compute and udi_buf_tag_apply .

2. See the the “Buffer Tags” section of “Buffer Management” in the UDI Core Specification for more information on buffer
tags.

Network Interface Metalanguage Environment

3-8 UDI NIC Driver Specification - Version 1.01 - 2/2/01

For a transmit operation, the NSR (or its children) will set various checksum set-request tags (e.g.
UDI_BUFTAG_SET_iBE16_CHECKSUM, UDI_BUFTAG_SET_TCP_CHECKSUM, and
UDI_BUFTAG_SET_UDP_CHECKSUM) for the data buffer to indicate what region of the buffer
requires a checksum. If the hardware supports checksum offloading, it should use these tags to program
the hardware accordingly. If the hardware does not support checksum offloading, the ND should use the
udi_buf_tag_apply utility function to manually calculate and set the checksum(s) in the outgoing
packet.

For received packets, if the hardware has performed checksum calculation on the incoming packet, that
checksum value should be set via one or more UDI_BUFTAG_BE16_CHECKSUM tags on the received
buffer to allow the NSR (or its children) to easily obtain the calculated buffer checksum. The NSR will
use the udi_buf_tag_compute utility function to determine the checksum for received packets; the
udi_buf_tag_compute utility will make use of any existing UDI_BUFTAG_BE16_CHECKSUM tags
to avoid performing manual calculations, however, those tags are not required which effectively supports
the case where the adapter hardware does not provide incoming packet checksum calculation.

If the hardware also (or instead) performs received packet checksum validation (i.e. it calculates the
incoming packet’s checksum as described above and verifies it against the checksum value(s) written by
the transmitting host) it should indicate the success or failure of the validation via one or more of the
status bits in the receive indication.3

Packets which have had this checksum validation performed may or may not additionally have the
UDI_BUFTAG_BE16_CHECKSUM tag set but the ND should set this tag whenever the corresponding
value is known if the NSR has indicated that it can utilize this value.

3.The use of buffer tags to indicate the good or bad checksum status is deprecated. The
tags are still defined but all ND and NSR implementations should use the status bits in
the receive control block instead. The tags will be removed in a future version of the
UDI Specification. The specific tags that are deprecated are:
UDI_BUFTAG_TCP_CKSUM_GOOD, UDI_BUFTAG_TCP_CKSUM_BAD,
UDI_BUFTAG_UDP_CKSUM_GOOD, UDI_BUFTAG_UDP_CKSUM_BAD,
UDI_BUFTAG_IP_CKSUM_GOOD, UDI_BUFTAG_IP_CKSUM_BAD.

UDI NIC Driver Specification - Version 1.01 - 2/2/01 3-9

Network Interface Metalanguage Network Interface

3.3 Network Interface Management

This section describes the various control structures and operations that are used to configure the NIC
Driver (ND) and the Network Service requester (NSR) and to establish a binding between these two
entities. The Network Interface Management description can be further subdivided into the following
groups:

• UDI Initialization and Registration

• Network Control Block Management

• NIC Metalanguage Binding

• Network Adapter Control

This section assumes that the reader is familiar with the UDI Management Metalanguage and the UDI
configuration process.

3.3.1 Initialization and Registration Operations

The initialization and registration definitions are used to prepare the driver and environment for support
of the Network Interface Metalanguage and the corresponding Network Adapter Driver (ND). These
definitions are static for the entire Network Driver or NSR and relate to the configuration established for
the driver by its udiprops.txt file (see Chapter 30, “Static Driver Properties”, of the UDI Core
Specification).

3.3.2 Channel Ops Vector Registration

The channel operations vector registration is used to register the driver entry points for the parent driver
(ND) and/or the child driver (NSR network interface mapper or protocol module). The ND performs
registration by referencing udi_ops_init_t structures (via the udi_init_info declaration) for
the following operations vectors:

• udi_nd_ctrl_ops_t

• udi_nd_tx_ops_t

• udi_nd_rx_ops_t

The NSR performs registration by declaring udi_ops_init_t structures for the following operations
vectors:

• udi_nsr_ctrl_ops_t

• udi_nsr_tx_ops_t

• udi_nsr_rx_ops_t

The primary functions used for Network Interface Metalanguage channel creation and manipulation are
specified by the udi_nxx_ctrl_ops_t . The primary channel created between the ND and the NSR
will use these operations to establish the Network Interface Metalanguage data transfer channels
between the ND and the NSR.

3-10 UDI NIC Driver Specification - Version 1.01 - 2/2/01

udi_nd_ctrl_ops_t Network Interface Metalanguage

NAME udi_nd_ctrl_ops_t ND control entry point ops vector

SYNOPSIS #include <udi.h>
#include <udi_nic.h>

typedef const struct {
udi_channel_event_ind_op_t * channel_event_ind_op ;
udi_nd_bind_req_op_t * nd_bind_req_op ;
udi_nd_unbind_req_op_t * nd_unbind_req_op ;
udi_nd_enable_req_op_t * nd_enable_req_op ;
udi_nd_disable_req_op_t * nd_disable_req_op ;
udi_nd_ctrl_req_op_t * nd_ctrl_req_op ;
udi_nd_info_req_op_t * nd_info_req_op ;

} udi_nd_ctrl_ops_t ;

/* ND Control Ops Vector Number */

#define UDI_ND_CTRL_OPS_NUM 1

DESCRIPTION A Network Driver uses the udi_nd_ctr l_ops_t structure in a
udi_ops_init_t as part of its udi_init_info in order to register its
entry points for the Network Interface Metalanguage control channel
operations.

REFERENCES udi_nd_tx_ops_t , udi_nd_rx_ops_t

UDI NIC Driver Specification - Version 1.01 - 2/2/01 3-11

Network Interface Metalanguage udi_nd_ctrl_ops_t

EXAMPLE A typical Network Driver may include the following declarations:

/* Forward Declarations */
static udi_channel_event_ind_op_t

my_channel_event_handler;
static udi_nd_bind_req_op_t my_bind_handler;
static udi_nd_unbind_req_op_t my_unbind_handler;
static udi_nd_enable_req_op_t my_enable_handler;
static udi_nd_disable_req_op_t my_disable_handler;
static udi_nd_ctrl_req_op_t my_control_req_handler;
static udi_nd_info_req_op_t my_info_provider;

static const udi_nd_ctrl_ops_t my_ctrl_ops = {
my_channel_event_handler,
my_bind_handler,
my_unbind_handler,
my_enable_handler,
my_disable_handler,
my_control_req_handler,
my_info_provider

};

#define MY_ND_CTRL_OPS 4
#define MY_NET_META 1 /* meta_idx */

static const udi_ops_init_t my_net_ops_init[] = {
{

MY_ND_CTRL_OPS,
MY_NET_META,
UDI_ND_CTRL_OPS_NUM,
sizeof(my_net_child_data_t),
(udi_ops_vector_t *)&my_ctrl_ops,

},
...

};

Which would then be used with the following udiprops.txt entries:

requires udi_nic 0x101
child_bind_ops 1 0 4 # Net Meta bind for primary rgn

3-12 UDI NIC Driver Specification - Version 1.01 - 2/2/01

udi_nd_tx_ops_t Network Interface Metalanguage

NAME udi_nd_tx_ops_t ND transmit entry point ops vector

SYNOPSIS #include <udi.h>
#include <udi_nic.h>

typedef const struct {
udi_channel_event_ind_op_t * channel_event_ind_op ;
udi_nd_tx_req_op_t * nd_tx_req_op ;
udi_nd_exp_tx_req_op_t * nd_exp_tx_req_op ;

} udi_nd_tx_ops_t ;

/* ND TX Ops Vector Number */

#define UDI_ND_TX_OPS_NUM 2

DESCRIPTION A Network Driver uses the udi_nd_tx_ops_t structure in a
udi_ops_init_t as part of its udi_init_info in order to register its
entry points for the Network Interface Metalanguage transmit channel
operations.

REFERENCES udi_nd_ctrl_ops_t , udi_nd_rx_ops_t

UDI NIC Driver Specification - Version 1.01 - 2/2/01 3-13

Network Interface Metalanguage udi_nd_rx_ops_t

NAME udi_nd_rx_ops_t ND receive entry point ops vector

SYNOPSIS #include <udi.h>
#include <udi_nic.h>

typedef const struct {
udi_channel_event_ind_op_t * channel_event_ind_op ;
udi_nd_rx_rdy_op_t * nd_rx_rdy_op ;

} udi_nd_rx_ops_t ;

/* ND Receive Ops Vector Number */

#define UDI_ND_RX_OPS_NUM 3

DESCRIPTION A Network Driver uses the udi_nd_rx_ops_t structure in a
udi_ops_init_t as part of its udi_init_info in order to register its
entry points for the Network Interface Metalanguage receive channel
operations.

REFERENCES udi_nd_ctrl_ops_t , udi_nd_tx_ops_t

3-14 UDI NIC Driver Specification - Version 1.01 - 2/2/01

udi_nsr_ctrl_ops_t Network Interface Metalanguage

NAME udi_nsr_ctrl_ops_t NSR control entry point ops vector

SYNOPSIS #include <udi.h>
#include <udi_nic.h>

typedef const struct {
udi_channel_event_ind_op_t * channel_event_ind_op ;
udi_nsr_bind_ack_op_t * nsr_bind_ack_op ;
udi_nsr_unbind_ack_op_t * nsr_unbind_ack_op ;
udi_nsr_enable_ack_op_t * nsr_enable_ack_op ;
udi_nsr_ctrl_ack_op_t * nsr_ctrl_ack_op ;
udi_nsr_info_ack_op_t * nsr_info_ack_op ;
udi_nsr_status_ind_op_t * nsr_status_ind_op ;

} udi_nsr_ctrl_ops_t ;

/* NSR Control Ops Vector Number */

#define UDI_NSR_CTRL_OPS_NUM 4

DESCRIPTION A Network Service Requestor (NSR) uses the udi_nsr_ctrl_ops_t
structure in a udi_ops_init_t as part of its udi_init_info in order to
register its entry points for the Network Interface Metalanguage control
channel operations.

REFERENCES udi_nd_ctrl_ops_t , udi_nsr_tx_ops_t , udi_nsr_rx_ops_t

UDI NIC Driver Specification - Version 1.01 - 2/2/01 3-15

Network Interface Metalanguage udi_nsr_tx_ops_t

NAME udi_nsr_tx_ops_t NSR transmit entry point ops vector

SYNOPSIS #include <udi.h>
#include <udi_nic.h>

typedef const struct {
udi_channel_event_ind_op_t * channel_event_ind_op ;
udi_nsr_tx_rdy_op_t * nsr_tx_rdy_op ;

} udi_nsr_tx_ops_t ;

/* NSR Transmit Ops Vector Number */

#define UDI_NSR_TX_OPS_NUM 5

DESCRIPTION A Network Service Requestor (NSR) uses the udi_nsr_tx_ops_t
structure in a udi_ops_init_t as part of its udi_init_info in order to
register its entry points for the Network Interface Metalanguage transmit
channel operations.

REFERENCES udi_nsr_ctl_ops_t , udi_nsr_rx_ops_t

3-16 UDI NIC Driver Specification - Version 1.01 - 2/2/01

udi_nsr_rx_ops_t Network Interface Metalanguage

NAME udi_nsr_rx_ops_t NSR receive entry point ops vector

SYNOPSIS #include <udi.h>
#include <udi_nic.h>

typedef const struct {
udi_channel_event_ind_op_t * channel_event_ind_op ;
udi_nsr_rx_ind_op_t * nsr_rx_ind_op ;
udi_nsr_exp_rx_ind_op_t * nsr_exp_rx_ind_op ;

} udi_nsr_rx_ops_t ;

/* NSR Receive Ops Vector Number */

#define UDI_NSR_RX_OPS_NUM 6

DESCRIPTION A Network Service Requestor (NSR) uses the udi_nsr_rx_ops_t
structure in a udi_ops_init_t as part of its udi_init_info in order to
register its entry points for the Network Interface Metalanguage receive
channel operations.

REFERENCES udi_nsr_ctrl_ops_t , udi_nsr_tx_ops_t

UDI NIC Driver Specification - Version 1.01 - 2/2/01 3-17

Network Interface MetalanguageNetwork Control Block

3.3.3 Network Control Block Registration

The Network Interface Metalanguage uses a number of different types of control blocks for it’s various
metalanguage operations. These control blocks contain supplementary information for the operation
being performed, scratch space for utilization by the owner of the control block, and environment
management information for controlling each operation and marshalling arguments when necessary (the
environment management portion of the control block is not visible to the ND).

The typical usage of these control blocks by an ND driver or NSR is as follows (from the ND
perspective):

1. Register the control block index for each type of control block by filling in
udi_cb_init_t structures referenced by the udi_init_info structure.

2. Register the ops index for each type of channel by filling in udi_ops_init_t structures
referenced by the udi_init_info structure.

3. All subsequent channel operations will receive a control block appropriate to that operation
type on the corresponding channel. The control block and its associated scratch space will
be sized as specified by the registration in the previous steps. The ND should perform the
requested operation and then return the control block in the corresponding
acknowledgement channel operation.

4. When allocating a control block internally for use, the control block index argument
passed to udi_cb_alloc specifies the appropriate type of control block; the resulting
allocated control block will be large enough to be used for any of the control blocks within
that index group.

Network Interface Metalanguage Binding Network

3-18 UDI NIC Driver Specification - Version 1.01 - 2/2/01

3.3.4 Network Interface Metalanguage Binding

3.3.4.1 Network Bind Operation

Once the ND has been initialized and it has registered the UDI Network Interface Metalanguage channel
operations, it may receive bind requests from the NSR. As the first stage of this binding, the UDI
Management Agent (MA) will bind the child (NSR) to the parent (ND) using the techniques described
in the UDI Management Metalanguage chapter. A typical binding can be summarized by the following
procedure:

1. The MA creates the initial bind channel between the ND and the NSR. This channel is the
network control channel and uses the UDI Network Interface Metalanguage ctrl_ops
role.

2. The MA sends a udi_usage_ind to the new ND and NSR regions separately to allow
them to initialize.

3. The MA sends udi_channel_event_ind operations of type BIND_CHANNEL as
needed to initialize any secondary regions and internal bind channels for the ND and NSR.

4. The MA sends a udi_channel_event_ind operation of type BIND_CHANNEL to the
NSR region.

5. The NSR prepares its end of the channel for use. The UDI Network Interface
Metalanguage control channel is now established between the ND and the NSR.

At this point, the UDI Network Interface Metalanguage control channel is established between the ND
and the NSR; the NSR may now initiate Network Bind operations to the ND.

The Network Bind operation (udi_nd_bind_req) exchanges basic information about the media type
and supported packet information between the NSR and the ND, as well as identifying the transfer
channel indices to be used for communication.

1. The NSR spawns the transmit channel, specifying that the spawned channel should use the
transmit channel ops vector. This may be done in the primary region or in another region
created specifically to handle transmit operations.

2. The NSR spawns the receive channel in a manner similar to the transmit channel.

3. The NSR issues a udi_nd_bind_req operation over the newly established bind channel
to the ND. Part of the udi_nd_bind_req operation information specifies the indices of
the spawned transfer channels.

The ND and the NSR have now agreed to communicate and have a common control channel which
allows them to communicate directly without requiring assistance from the UDI MA. However, as noted
in Section 3.2.4.3, “Transfer Channels”, the ND and NSR cannot yet perform data transfer operations;
the data handling channels have not been established and will be created by subsequent operations.

1. The ND verifies the request, prepares itself for handling that NSR binding.

2. The ND should then call udi_channel_spawn with the spawn index indicated in the
Network Bind control block to establish the transmit data channel to the NSR.
Simultaneously or on completion of that spawn it should also call udi_channel_spawn
to establish the receive data channel to the NSR.

UDI NIC Driver Specification - Version 1.01 - 2/2/01 3-19

Network Interface Metalanguage Network Interface

3. The ND then responds to the NSR with a udi_nsr_bind_ack operation over the
network control channel. This acknowledgment should not be generated by the ND until
the channel spawn operations have completed to ensure that the NSR does not issue
operations to these channels before they are fully created.

4. The NSR then completes its internal preparations and then responds to the UDI MA over
the management channel with a udi_channel_event_complete to indicate
completion of the bind operation.

The expedited data ops vectors allow expedited data to be handled separately from normal data and
thereby allows a higher priority to be assigned to managing expedited data. If no expedited data is
expected, or if the network type or protocol stack cannot support expedited data, the expedited data ops
vectors should point to the normal data handling routines.

The data channels are established by spawning the network control channel as indicated by the contents
of the network bind control block exchanged in Step 3 above.

Network Interface Metalanguage Binding Network

3-20 UDI NIC Driver Specification - Version 1.01 - 2/2/01

At this point, the communications pathways between the ND and the NSR have been fully established.
The NSR may now enable the interface, which causes the ND to enable the hardware and to create a
pool of transmit control blocks to post to the NSR for sending or receiving network packets. The normal
flow of calls associated with the Network Bind operation which supports expedited data operations is
illustrated in Figure 3-2.

Figure 3-2 Connectionless Network Bind Operation

3.3.4.2 Network Unbind Operation

The Network Unbind process is used to detach and release the resources established by the Network
Bind operation. During the Network Unbind operation the driver is instructed to stop forwarding any
frames and shutdown the channels. The driver acknowledges the Network Unbind operation through a
udi_nsr_unbind_ack operation. Once the network unbind has been performed, the control channel
and both data channels should be released by calling udi_channel_close. Either end may initiate
the closure, but both sides must release the data channels after the Network Unbind acknowledgement.

DL_BIND_REQ

DL_BIND_ACK

xxx_wput()

Stream

NSR Mapper ND

putnext()

udi_channel_spawn(tx_channel_index)

xxx_nd_bind_req()

udi_nsr_bind_ack()

yyy_nsr_bind_ack()

LOCAL

DL_OK_ACK

clone open

DL_ATTACH_REQ

Management Agent

locate device tree node associated with
 device and PPA specified in clone open
 and DL_ATTACH_REQ
create a new region for that device node
 from the ND module associated with that
 device node
initiate UDI_CHANNEL_BOUND event indication to the NSR
 to establish the initial channel between the
 NSR and the ND.

udi_nd_bind_req()

udi_channel_spawn(tx_channel_index)

tx_channel channel callbacktx_channel channel callback

udi_channel_spawn(rx_channel_index)

udi_channel_spawn(rx_channel_index)

rx_channel channel callbackrx_channel channel callback

UDI NIC Driver Specification - Version 1.01 - 2/2/01 3-21

Network Interface Metalanguage Network Interface

Note – One or both of the ND and NSR may receive UDI_CHANNEL_CLOSED indications depending
on the sequence of events; these are assumed to be indications of the proper unbinding operation
and are typically ignored.

The Network Unbind process is used to gracefully terminate network connectivity. If the normal data
channels or the control channel is closed by either end, a Network Unbind condition is assumed and the
channels are shutdown by both the NSR and the ND.

The normal flow of this operation is illustrated in Figure 3-3.

Figure 3-3 Unbind Operation

DL_UNBIND_REQ

DL_UNBIND_ACK

yyy_wput()

Stream Mapper Driver

putnext()

udi_nd_unbind_req()

xxx_nd_unbind_req()

udi_nsr_unbind_ack()

yyy_nsr_unbind_ack()

LOCAL

udi_channel_close(ctrl_chan)udi_channel_close(ctrl_chan)

udi_channel_close(tx_chan)udi_channel_close(tx_chan)

udi_channel_close(rx_chan)udi_channel_close(rx_chan)

3-22 UDI NIC Driver Specification - Version 1.01 - 2/2/01

udi_nic_cb_t Network Interface Metalanguage

NAME udi_nic_cb_t Standard network control block

SYNOPSIS #include <udi.h>
#include <udi_nic.h>

typedef struct {
udi_cb_t gcb ;

} udi_nic_cb_t ;

/* Network Standard Control Block Group Number */

#define UDI_NIC_STD_CB_NUM 1

MEMBERS gcb is the generic control block header which includes a pointer to
the scratch space associated with this block and the channel
context for the associated channel. The driver may use the
scratch space while it owns the control block, but the values are
not guaranteed to persist across channel operations.

DESCRIPTION The udi_nic_cb_t structure is used for channel operations between a child
(NSR) and its parent (ND) where there is no additional metalanguage
information needed in the control block. A number of the Network Interface
Metalanguage control operations are defined to use this standard control
block.

This control block must be declared by specifying the control block index
value UDI_NIC_STD_CB_NUM in a udi_cb_init_t in the driver’s
udi_init_info .

The NSR or ND obtains the udi_nic_cb_t structure to use with Network
Interface Metalanguage control operations by calling udi_cb_alloc with a
cb_idx that has been defined for the UDI_NIC_STD_CB_NUM control
block.

REFERENCES udi_init_info, udi_cb_init_t, udi_cb_alloc

UDI NIC Driver Specification - Version 1.01 - 2/2/01 3-23

Network Interface Metalanguage udi_nic_bind_cb_t

NAME udi_nic_bind_cb_t Network bind control block

SYNOPSIS #include <udi.h>
#include <udi_nic.h>

typedef struct {
udi_cb_t gcb ;
udi_ubit8_t media_type ;
udi_ubit32_t min_pdu_size ;
udi_ubit32_t max_pdu_size ;
udi_ubit32_t rx_hw_threshold ;
udi_ubit32_t capabilities ;
udi_ubit8_t max_perfect_multicast ;
udi_ubit8_t max_total_multicast ;
udi_ubit8_t mac_addr_len ;
udi_ubit8_t mac_addr [UDI_NIC_MAC_ADDRESS_SIZE];

} udi_nic_bind_cb_t ;

/* Network Bind Control Block Group Number */

#define UDI_NIC_BIND_CB_NUM 2

/* Maximum MAC Address Size Definition */

#define UDI_NIC_MAC_ADDRESS_SIZE 20

/* media_type values */

#define UDI_NIC_ETHER 0

#define UDI_NIC_TOKEN 1

#define UDI_NIC_FASTETHER 2

#define UDI_NIC_GIGETHER 3

#define UDI_NIC_VGANYLAN 4

#define UDI_NIC_FDDI 5

#define UDI_NIC_ATM 6

#define UDI_NIC_FC 7

#define UDI_NIC_MISCMEDIA 0xff

/* capabilities indications */

#define UDI_NIC_CAP_TX_IP_CKSUM (1U <<0)

#define UDI_NIC_CAP_TX_TCP_CKSUM (1U <<1)

#define UDI_NIC_CAP_TX_UDP_CKSUM (1U <<2)

#define UDI_NIC_CAP_MCAST_LOOPBK (1U <<3)

#define UDI_NIC_CAP_BCAST_LOOPBK (1U <<4)

/* capabilities requests */

#define UDI_NIC_CAP_USE_TX_CKSUM (1U <<30)

#define UDI_NIC_CAP_USE_RX_CKSUM (1U <<31)

MEMBERS gcb is the generic control block header which includes a pointer to
the scratch space associated with this block and the channel
context for the associated channel. The driver may use the
scratch space while it owns the control block, but the values are
not guaranteed to persist across channel operations.

3-24 UDI NIC Driver Specification - Version 1.01 - 2/2/01

udi_nic_bind_cb_t Network Interface Metalanguage

media_type is the network media type supported by the ND and associated
Adapter hardware. This information is used by the NSR to parse
and create frame headers for packets. Valid values for
media_type are specified in Table 3-1 on page 5.

The media_type specified in this control block is expected to
be the same as the media_type enumeration attribute value;
where the values differ the value from this control block will be
used. The same is true for the mac_addr specification.

If there is not an exact match for your media type appearing in
the table, select the media type with the framing style closest to
the device’s network type. The media_type value suggests
default values for the remaining net_bind_ack_cb_t
configuration values and also hints to the NSR about handling
packets for this network interface.

min_pdu_size is the minimum size of a data packet including the headers
that the NSR or other modules will supply. The ND must return
this information in the ack operation. If specified as 0, the default
is used based on the specified media_type (as specified in
Table 3-1).

max_pdu_size is the maximum size of a data packet including the headers
that the NSR or other modules will supply. The ND must return
this information in the ack operation. If specified as 0, the default
is used based on the specified media_type .

rx_hw_threshold is the number of receive requests that may be posted to
the hardware adapter at any one time. This value is used as a hint
to the NSR to indicate the number of receive control blocks and
buffers that should be provided to the ND for receive operations.
The ND should be prepared to operate with more or less than this
value but this should represent the optimal requirements of the
ND and its hardware adapter.

capabilities specifies the capabilities of the Network Driver and its
associated hardware. This information will be used by the NSR
and protocol stacks to determine how to most effectively utilize
the hardware in the current environment.

UDI_NIC_CAP_TX_IP_CKSUM indicates that the hardware is
capable of automatically detecting outbound IP packets and
generating and inserting IP checksum values for those
packets.

UDI_NIC_CAP_TX_TCP_CKSUM indicates that the hardware is
capable of automatically detecting outbound TCP packets
and generating and inserting TCP checksum values for those
packets.

If this capability is expressed by the ND then the NSR and
corresponding IP module must ensure that: either the entire

UDI NIC Driver Specification - Version 1.01 - 2/2/01 3-25

Network Interface Metalanguage udi_nic_bind_cb_t

TCP packet is sent to this ND as a single IP fragment or else
the NSR or IP module must calculate and insert the TCP
checksum itself when the packet is fragmented. This is
required because the NSR or IP module may choose to send
different fragments of the request to different ND modules,
therefore calculation of the TCP checksum in the ND is not
possible (and many hardware adapters lack the capability of
calculating a checksum across multiple fragments of a TCP
packet).

The ND can assist in ensuring that the TCP packet is
received in its entirety by indicating a large
max_pdu_size and performing actual MTU fragmentation
itself.

UDI_NIC_CAP_TX_UDP_CKSUM indicates that the hardware is
capable of automatically detecting outbound UDI packets
and generating and inserting UDP checksum values for those
packets.

UDI_NIC_CAP_MCAST_LOOPBK indicates that the hardware
will receive it’s own transmitted multicast packets if the
multicast address matches the hardware’s multicast receive
addressing. The NSR should use this information to
determine how multicast loopback should be handled in the
environment implementation.

UDI_NIC_CAP_BCAST_LOOPBK indicates that the hardware
will receive it’s own transmitted broadcast packets. The NSR
should use this information to determine how broadcast
loopback should be handled in the environment
implementation.

In addition, the NSR may request various functionality from the
Network Driver. Any capabilities requests of this type are simply
requests and not requirements; the ND is not required to supply
the requested functionality.

UDI_NIC_CAP_USE_RX_CKSUM indicates that the NSR will
utilize any receive checksum buffer tags that are attached to
the buffer by the ND. This flag is primarily used to optimize
performance: for an NSR which will not utilize a receive
checksum buffer tag, clearing this flag will reduce overhead
in the ND associated with generating this tag.

UDI_NIC_CAP_USE_TX_CKSUM indicates that the NSR will be
passing packets to the ND that require checksum insertion. If
the NSR or upper level protocols will always generate all
checksums for transmitted packets then there will be no
checksum tags on transmit buffers and the ND does not need
to check for those tags. By exchanging this information at

3-26 UDI NIC Driver Specification - Version 1.01 - 2/2/01

udi_nic_bind_cb_t Network Interface Metalanguage

bind time, resource allocation and device initialization can
be appropriately adjusted to account for checksum
generation requirements

max_perfect_multicast is the maximum number of perfect multicast
address matches that the Network Driver and associated
hardware support. A perfect multicast address match is one
which matches one and only one address (i.e. not a hashed
match). This informs the NSR that there may be performance
degradation if the ND is asked to match more multicast addresses
than this perfect match limit.

If the NSR assigns more than one unicast address to the ND, then
all unicast addresses beyond the first are also counted against the
max_perfect_multicast limit to again avoid overloading
the NIC hardware capabilities. In this case,
#_perfect_multicast + #_unicast - 1 must be no
greater than max_perfect_multicast .

max_total_multicast is the maximum number of multicast addresses
that can be matched by the Network Driver and associated
hardware. This is used to allow the NSR to determine how to
handle situations where more multicast addresses are desired
beyond hardware capabilities. The NSR must not, in any
situation, issue a NIC control request that would set the total
number of multicast addresses to be matched above this number.

mac_addr_len is the number of bytes to be used by the NSR for MAC
addresses for this ND and overrides any default size for this
media type. If specified as 0, the default MAC Address size is
used based on the specified media_type .

mac_addr is the current (factory) MAC address of the adapter being
managed by the ND. The current MAC address of the adapter
will be written to the first mac_addr_len bytes (or the number
of bytes appropriate to that media_type if mac_addr_len is
zero). The MAC address must be specified as an array of 8-bit
binary values; each byte must be in host bit ordering format and
not wire format; the bytes in the array must be in wire-format
order.

DESCRIPTION The udi_nic_bind_cb_t structure is used for the udi_nsr_bind_req
and udi_nsr_bind_ack response operation between the parent (ND) and
the child (NSR). This structure is “empty” on the udi_nsr_bind_req and
the ND fills in the appropriate values to establish the parameters for the
associated NIC Adapter for subsequent network data handling.

This control block must be declared by specifying the control block index
value UDI_NIC_BIND_CB_NUM in a udi_cb_init_t in the driver’s
udi_init_info .

The min_pdu_size and max_pdu_size arguments must not include
space for any additional headers or trailers added by the ND.

UDI NIC Driver Specification - Version 1.01 - 2/2/01 3-27

Network Interface Metalanguage udi_nic_bind_cb_t

REFERENCES udi_nsr_bind_ack, udi_init_info, udi_cb_init_t,
udi_cb_alloc

3-28 UDI NIC Driver Specification - Version 1.01 - 2/2/01

udi_nd_bind_req Network Interface Metalanguage

NAME udi_nd_bind_req Network driver bind request

SYNOPSIS #include <udi.h>
#include <udi_nic.h>

void udi_nd_bind_req (
udi_nic_bind_cb_t * cb ,
udi_index_t tx_chan_index ,
udi_index_t rx_chan_index);

ARGUMENTS cb is a pointer to a Network Interface Metalanguage bind control
block. The fields of this control block are to be initialized by the
ND and returned in the udi_nd_bind_ack request to specify
the operational parameters for the ND.

tx_chan_index is the index of the data transmit channel which is to be
created between the ND and the NSR by synchronizing via
udi_channel_spawn operations.

rx_chan_index is the index of the data receive channel which is to be
created between the ND and the NSR by synchronizing via
udi_channel_spawn operations.

TARGET CHANNEL The udi_nd_bind_req is issued to the ND over the Network Interface
Metalanguage control channel which is the same as the primary channel
created by the UDI Management Agent to initially bind the NSR and ND
regions.

DESCRIPTION udi_nd_bind_req is used to associate, or “bind” a channel between the
NSR and the ND. The udi_nic_bind_req provides information for
creating the data transfer channel(s) and any other configuration information
for supporting this network adapter.

The udi_nd_bind_req must be the first operation sent to the ND by the
NSR over a newly created bind channel. The NSR must then await the
udi_nsr_bind_ack operation before issuing other operations.

The udi_nd_bind_req cannot be aborted.

This operation causes the ND and NSR to enter the BINDING state (see
Section 2.4.1, “NIC Metalanguage States,” on page 2-8).

REFERENCES udi_nsr_bind_ack, udi_nic_bind_cb_t

UDI NIC Driver Specification - Version 1.01 - 2/2/01 3-29

Network Interface Metalanguage udi_nsr_bind_ack

NAME udi_nsr_bind_ack Network bind acknowledgment

SYNOPSIS #include <udi.h>
#include <udi_nic.h>

void udi_nsr_bind_ack (
udi_nic_bind_cb_t * cb ,
udi_status_t status);

ARGUMENTS cb is a pointer to the Network Driver bind acknowledgement control
block.

status indicates the success or failure of the network bind request

TARGET CHANNEL The udi_nsr_bind_ack is issued to the NSR via the Network Interface
Metalanguage bind channel over which the udi_nd_bind_req operation
was received.

DESCRIPTION Handshakes udi_nd_bind_req operation to the NSR. The ND uses it to
inform the NSR about the driver operational parameters and signify its
readiness for network data transfer operations.

It is expected that the data transfer channels will have been fully spawned and
configured before completion of the udi_nsr_bind_ack operation. The
NSR will always issue the udi_channel_spawn for its end of the data
transfer channels before issuing the udi_nd_bind_req operation.

The ND must use the same udi_nic_bind_cb_t obtained via the
udi_nd_bind_req operation to generate the udi_nsr_bind_ack
acknowledgement.

This operation causes the ND and NSR to enter the BOUND state (see Section
2.4.1, “NIC Metalanguage States,” on page 2-8).

STATUS VALUES UDI_OK indicates that the network bind operation succeeded.

UDI_STAT_INVALID_STATE indicates that the ND is already bound to
another NSR and cannot satisfy this bind request.

UDI_STAT_HW_PROBLEM indicates that the driver has detected a fatal
hardware problem with the enumerated device and cannot
complete the bind operation successfully.

REFERENCES udi_nd_bind_req, udi_nic_bind_cb_t

3-30 UDI NIC Driver Specification - Version 1.01 - 2/2/01

udi_nd_unbind_req Network Interface Metalanguage

NAME udi_nd_unbind_req Network unbind request

SYNOPSIS #include <udi.h>
#include <udi_nic.h>

void udi_nd_unbind_req (
udi_nic_cb_t * cb);

ARGUMENTS cb is a pointer to a Network Interface Metalanguage standard
control block.

TARGET CHANNEL The udi_nd_unbind_req is issued to the ND over the Network Interface
Metalanguage control channel.

DESCRIPTION The udi_nd_unbind_req is used when the NSR wishes to close down an
active binding between itself and the ND. All data transfer ceases, any queued
data is discarded, and the data channel(s) are closed. The control channel may
be used to issue a subsequent udi_nic_bind_req to the ND if desired or
it may also be closed.

The udi_nd_unbind_req cannot be aborted.

This operation causes the ND and NSR to enter the UNBINDING state (see
Section 2.4.1, “NIC Metalanguage States,” on page 2-8).

REFERENCES udi_nsr_unbind_ack, udi_nic_cb_t

UDI NIC Driver Specification - Version 1.01 - 2/2/01 3-31

Network Interface Metalanguage udi_nsr_unbind_ack

NAME udi_nsr_unbind_ack Network unbind acknowledgment

SYNOPSIS #include <udi.h>
#include <udi_nic.h>

void udi_nsr_unbind_ack (
udi_nic_cb_t * cb ,
udi_status_t status);

ARGUMENTS cb is a pointer to a Network Interface Metalanguage standard
control block.

TARGET CHANNEL The udi_nsr_unbind_ack is issued to the NSR over the Network
Interface Metalanguage control channel. If the control block used for this
operation is the one received in the corresponding udi_nd_unbind_req
then the channel parameter will already be set to the correct value; this is
the recommended mode of operation.

DESCRIPTION Handshakes the network unbind request operation initiated by the NSR. As a
result of this operation the routing information will be removed from the NSR
and the control and data handling channels will be closed by both the ND and
the NSR. No more data transfer will occur for this adapter instance unless
another udi_nd_bind_req is issued by the NSR to create and bind a new
set of data channels.

The udi_nsr_unbind_ack must use the same control block received with
the udi_nd_unbind_req .

This operation causes the ND and NSR to enter the UNBOUND state (see
Section 2.4.1, “NIC Metalanguage States,” on page 2-8).

STATUS VALUES UDI_OK indicates that the network unbind request operation succeeded.

UDI_STAT_INVALID_STATE indicates that the ND has not completed a
metalanguage bind with the NSR as setup by the
udi_nd_bind_req and udi_nsr_bind_ack operations.

REFERENCES udi_nd_unbind_req, udi_nic_cb_t

Interface Control Network Interface Metalanguage

3-32 UDI NIC Driver Specification - Version 1.01 - 2/2/01

3.3.5 Interface Control

The interface control operations are used by the NSR to instruct the ND to enable or disable the network
interface for link activity. Once the NSR and the ND have successfully been bound together, the
udi_nd_enable_req operation is performed to activate the interface, usually as the result of a
control operation by the system or user (e.g. ifconfig ... up).

The udi_nd_enable_req is successfully acknowledged by the ND using the
udi_nsr_enable_ack operation as soon as the link activation operation is initiated. The
acknowledgement is not expected to wait for the link to actually become enabled and the returned status
in the udi_nsr_enable_ack is only used to indicated the success or failure of the ND in initiating
the enable operation.

When the interface actually reports active, it will use the udi_nsr_status_ind operation to indicate
that the link state has changed to the active state. Note that the interface may be enabled, but not
necessarily have an active link status. Whenever the interface is in the enabled state,
udi_nsr_status_ind operations must be used to indicate the link status if the link status changes.

The udi_nd_disable_req is used to disable an interface. The link status change may or may not be
indicated by the udi_nsr_status_ind indication, but this request must perform the appropriate
activity to force the interface into the disabled state. There is no acknowledgement to the NSR for the
disable operation; the link must be disabled if currently active and there are no reasonable failure
conditions.

When an interface is in the disabled state, link status changes must not be indicated by the
udi_nsr_status_ind operation; if generated in this state, these indications will be ignored.

UDI NIC Driver Specification - Version 1.01 - 2/2/01 3-33

Network Interface Metalanguage udi_nd_enable_req

NAME udi_nd_enable_req Network link enable request

SYNOPSIS #include <udi.h>
#include <udi_nic.h>

void udi_nd_enable_req (
udi_nic_cb_t * cb);

ARGUMENTS cb is a pointer to a Network Interface Metalanguage standard
control block.

TARGET CHANNEL This request is issued to the ND over the Network Interface Metalanguage
control channel. If the control block used for this operation has been received
from a previous acknowledgement operation from the ND on this channel then
the channel parameter in the control block already specifies the correct
value; this is the recommended mode of operation.

DESCRIPTION The udi_nd_enable_req is used when the NSR wishes to begin data
transfer over the network connection provided by the ND and it’s associated
adapter. The NSR uses this operation to enable the link. The link will not
necessarily become immediately available, although the ND will acknowledge
this request as soon as it has successfully initiated the link enable operation.
The actual link up state will be indicated by the ND via the
udi_nsr_status_ind operation.

The ND is expected to update the configuration of the driver and adapter
hardware from its device instance attributes (if any) each time the
udi_nd_enable_req is issued. This insures that any device-specific
configuration changes made by the MA or system administrator will take
effect at that time.

This request cannot be aborted.

REFERENCES udi_nsr_enable_ack, udi_nd_disable_req,
udi_nsr_status_ind, udi_nic_cb_t

3-34 UDI NIC Driver Specification - Version 1.01 - 2/2/01

udi_nsr_enable_ack Network Interface Metalanguage

NAME udi_nsr_enable_ack Network link enable
acknowledgment

SYNOPSIS #include <udi.h>
#include <udi_nic.h>

void udi_nsr_enable_ack (
udi_nic_cb_t * cb ,
udi_status_t status);

ARGUMENTS cb is a pointer to a Network Interface Metalanguage standard
control block.

status indicates the success or failure of the enable operation

TARGET CHANNEL This request is issued to the NSR over the Network Interface Metalanguage
control channel. If the control block used for this operation is the one received
in the corresponding udi_nd_enable_req then the channel parameter
will already be set to the correct value; this is the recommended mode of
operation.

DESCRIPTION Handshakes network link enable request operation to the NSR. If successful,
the NSR will subsequently expect to receive a udi_nsr_status_ind
which indicates the actual link-up state for this network adapter connection.

Once the link-up state has been reached, the ND is expected to “post” transmit
control blocks to the NSR for use in transmit requests by pre-allocating one or
more of these control blocks and passing them to the NSR over the transmit
channel using the udi_nsr_tx_rdy operation. The number of these
transmit control blocks that are provided to the NSR represents the flow
control level of the connection between the NSR and the ND; the NSR will
never internally allocate transmit control blocks to be passed to the ND and
will instead wait for the ND to supply these control blocks with the
udi_nsr_tx_rdy operation.

This operation causes the ND and NSR to enter the ENABLED state (see
Section 2.4.1, “NIC Metalanguage States,” on page 2-8).

STATUS VALUES UDI_OK indicates that the network enable request operation succeeded.

UDI_STAT_HW_PROBLEM indicates that the ND will not be able to enable the
link due to a hardware problem.

UDI_STAT_INVALID_STATE indicates that the ND was not in the proper
state and could not enable the hardware. This error code usually
indictes a problem between the NSR and the ND.

WARNINGS This operation must use the same control block as originally received from the
udi_nd_enable_req operation.

REFERENCES udi_nsr_unbind_req

UDI NIC Driver Specification - Version 1.01 - 2/2/01 3-35

Network Interface Metalanguage udi_nd_disable_req

NAME udi_nd_disable_req Network link disable request
operation

SYNOPSIS #include <udi.h>
#include <udi_nic.h>

void udi_nd_disable_req (
udi_nic_cb_t * cb);

ARGUMENTS cb is a pointer to a Network Interface Metalanguage standard
control block.

TARGET CHANNEL This request is issued to the ND over the Network Interface Metalanguage
control channel.

DESCRIPTION The udi_nd_disable_req is used when the NSR wishes to shutdown an
active link interface and terminate any data transfer activity for that link. This
does not cause an unbind operation, and all control and data transfer channels
between the NSR and the ND are preserved, but the hardware link interface
state is set to remove the adapter from the network. This request must be
honored and implemented by the ND; there is no failure case and
correspondingly there is no acknowledgement to the NSR of this operation
and the ND is responsible for deallocating this control block after processing
the disable request.

The NSR may be notified of the link down state as a result of the ND issuing
a udi_nsr_status_ind , but this is not required and the ND is not
expected to communicate any link state changes to the NSR when the
interface state is down.

When this operation is received by the ND, the ND should remove any
requests queued to (but not yet acted upon by) the hardware and discard all
currently held requests via appropriate actions. Operations which cannot be
de-queued from the hardware are allowed to complete and should be handled
on completion.

This request cannot be aborted.

This operation causes the ND and NSR to enter the BOUND state (see Section
2.4.1, “NIC Metalanguage States,” on page 2-8).

REFERENCES udi_nd_enable_req, udi_nic_cb_t

Control and Status Operations Network Interface

3-36 UDI NIC Driver Specification - Version 1.01 - 2/2/01

3.3.6 Control and Status Operations

The purpose of the control operation is to perform a specific network-related function on the driver (ND)
or the controlled hardware. The most common functions that have been identified are:

• setting a multicast address
• setting adapter physical address
• setting a filtering mode (i.e. promiscuous mode)
• resetting the driver/card

All of the above functions have been implemented using a single pair of channel operations:
udi_nd_ctrl_req and udi_nsr_ctrl_ack . A command field in the udi_nic_ctrl_cb_t
control block informs the ND of the type of control function the caller wishes to execute. The normal
flow for the control operation is illustrated in Figure 3-4.

Figure 3-4 Control Operation (configure multicast address)

The information request/response operations are used by the NSR to obtain configuration and statistics
information.

The status operation is an unsolicited event indication issued by the ND to the NSR to inform the NSR
of a change in status. Some of the status events indicated by the udi_nsr_status_ind indications
are similar to those that can be queried via the udi_nd_ctrl_req operation.

DL_ENABMULTI_REQ

DL_OK_ACK

yyy_wput()

Stream Mapper Driver

putnext()

udi_nd_ctrl_req()

xxx_nd_ctrl_req()

udi_nsr_ctrl_ack()

yyy_nsr_ctrl_ack()

LOCAL

UDI NIC Driver Specification - Version 1.01 - 2/2/01 3-37

Network Interface Metalanguage udi_nic_ctrl_cb_t

NAME udi_nic_ctrl_cb_t Network control operation control
block

SYNOPSIS #include <udi.h>
#include <udi_nic.h>

typedef struct {
udi_cb_t gcb ;
udi_ubit8_t command;
udi_ubit32_t indicator ;
udi_buf_t *data_buf ;

} udi_nic_ctrl_cb_t ;

/* Network Control Op Control Block Group Num */

#define UDI_NIC_CTRL_CB_NUM 3

/* Network Control Operation Commands */

#define UDI_NIC_ADD_MULTI 1

#define UDI_NIC_DEL_MULTI 2

#define UDI_NIC_ALLMULTI_ON 3

#define UDI_NIC_ALLMULTI_OFF 4

#define UDI_NIC_GET_CURR_MAC 5

#define UDI_NIC_SET_CURR_MAC 6

#define UDI_NIC_GET_FACT_MAC 7

#define UDI_NIC_PROMISC_ON 8

#define UDI_NIC_PROMISC_OFF 9

#define UDI_NIC_HW_RESET 10

#define UDI_NIC_BAD_RXPKT 11

MEMBERS gcb is the generic control block header which includes a pointer to
the scratch space associated with this block and the channel
context for the associated channel. The driver may use the
scratch space while it owns the control block, but the values are
not guaranteed to persist across channel operations.

command is the control command the driver must execute. The following
control commands have been identified:

UDI_NIC_ADD_MULTI -- Configures the multicast addresses
specified in the supplied buffer. The data_buf contains the
array of MAC addresses to be added to the existing filter (the
number of addresses being specified is indicated by the
indicator field). The remaining portion of the
data_buf contains the new filter table including the newly
added addresses.

Devices which can modify their address filtering simply by
knowing the addresses which are to be added or removed can
use the initial indicator number of addresses to modify
their filter. Other devices require access to the full table of
addresses to be filtered to recompute the filter and may use

3-38 UDI NIC Driver Specification - Version 1.01 - 2/2/01

udi_nic_ctrl_cb_t Network Interface Metalanguage

the latter portion of the data_buf .

Although it is possible for the network stack or user-level
applications to register multiple times for a specific multicast
address, the NSR is responsible for handling this
redundancy; the ND is only notified of multicast address
modifications when the actual received packet filter must be
modified. The NSR must also validate the multicast
addresses to ensure that only valid multicast addresses are
passed to the ND.

The contents of the data buffer are guaranteed to be
preserved across a channel for the request but not for the
response.

UDI_NIC_DEL_MULTI -- Removes the multicast addresses
specified in the supplied buffer. In a manner similar to the
UDI_NIC_ADD_MULTI operation, the initial indicator
number of addresses in the data_buf lists the addresses to
be removed, and the latter portion of the data_buf lists the
new filter set after removing the specified addresses.

The contents of the data buffer are guaranteed to be
preserved across a channel for the request but not for the
response.

UDI_NIC_ALLMULTI_ON -- Enables the network adapter to
receive all multicast addressed packets. The indicator
field is unused and the data_buf field must be NULL.
This operation additionally indicates that any specific
multicast addresses registered (via UDI_NIC_ADD_MULTI)
must be removed.

UDI_NIC_ALLMULTI_OFF -- Disables the reception of all
multicast addresses. The indicator and data_buf
arguments are used in the same manner as in the
UDI_NIC_ADD_MULTI operation to specify the new list of
specific multicast addresses (if any) that are to be passed to
the NSR.

The adapter hardware is to be returned to the standard
reception mode with no multicast addresses being received
unless UDI_PROMISC_ON is in effect or unless specifically
registered via this operation.

The contents of the data buffer are guaranteed to be
preserved across a channel for the request but not for the
response.

UDI NIC Driver Specification - Version 1.01 - 2/2/01 3-39

Network Interface Metalanguage udi_nic_ctrl_cb_t

UDI_NIC_GET_CURR_MAC -- Reads the network adapter card’s
current physical MAC address or addresses. The array of
MAC addresses is placed into the data_buf and the
number of MAC addresses is placed into the indicator
field in the same manner as described for the
UDI_NIC_SET_CURR_MAC command. The buf_size in
the data_buf divided by the indicator value should
yield the same MAC address size as specified in the bind
operation.

The contents of the data buffer are guaranteed to be
preserved across a channel for the response but not for the
request.

UDI_NIC_SET_CURR_MAC -- Configures the network adapter
card’s current physical MAC address or addresses. A typical
card will have only a single unicast MAC address, but some
configurations and hardware support the registration of
multiple unicast MAC addresses for a network interface. The
NSR may instruct the ND to register for multiple unicast
MAC addresses by specifying an array of addresses in in the
associated buffer. All unicast addresses beyond the first
address will be accrued against the ND’s
max_perfect_multicast address count limit as
specified in the bind operation; the total number of multicast
and unicast addresses (excluding the first) registered by the
NSR must not exceed the max_perfect_multicast
value. The array of MAC addresses to be set is contained in
the data_buf and the number of MAC addresses is in the
indicator field. The buf_size in the data_buf
divided by the indicator value should yield the same
MAC address size as specified in the bind operation.

The contents of the data buffer are guaranteed to be
preserved across a channel for the request but not for the
response.

UDI_NIC_GET_FACT_MAC -- Reads the network adapter card’s
factory installed physical MAC address. The factory MAC
address is specified as the single element array in the
data_buf in the same manner as for the
UDI_NIC_GET_CURR_MAC command. This is the initial
MAC address used to operate the NIC until changed via
UDI_NIC_SET_CURR_MAC.

The contents of the data buffer are guaranteed to be
preserved across a channel for the response but not for the
request.

3-40 UDI NIC Driver Specification - Version 1.01 - 2/2/01

udi_nic_ctrl_cb_t Network Interface Metalanguage

UDI_NIC_PROMISC_ON -- Enables the promiscuous mode on
the network adapter card. The indicator field is unused
and the data_buf field must be NULL. When promiscuous
mode is enabled, the hardware should be configured such
that no destination address matching is performed and all
packets should be received and sent to the NSR. Error
packets will still be discarded by the ND unless
UDI_NIC_BAD_RXPKT is used to specify otherwise.

UDI_NIC_PROMISC_OFF -- Disables the promiscuous mode on
the network adapter card. The indicator field is unused
and the data_buf field must be NULL. The NSR must now
be passed only unicast addresses specific to this adapter or
any multicast addresses enabled by any previous
UDI_NIC_ADD_MULTI or UDI_NIC_ALLMULTI_ON
operations.

UDI_NIC_HW_RESET -- Resets the network adapter card. The
indicator field is unused and the data_buf field must
be NULL. This operation should cause the hardware to be
physically reset if possible. Any operations pending on the
hardware should be cancelled and cleaned up; any operations
pending in the driver that have not yet been delivered to the
hardware (or which have already been completed by the
hardware) should be processed as normal following the reset.
All other activity should be suspended during the reset
operation and the driver should restore the hardware to the
same operational state that it had before the reset was issued
with the following exceptions: promiscuous mode is
disabled, no multicast addresses are registered, the current
MAC address must be reprogrammed (i.e. the factory MAC
address does not override the current setting), and link status
should be established if the driver’s state is ENABLED or
ACTIVE when this request is received.

UDI_NIC_BAD_RXPKT -- Specifies ND handling of received
packets which have an error indication. If the indicator
is zero, the ND must simply discard the bad packet and await
the next received packet.

If non-zero, the indicator specifies how many bytes of
the bad packet should be passed to the NSR (with the
appropriate rx_status indication). This is intended as a hint
to allow the ND to terminate or discard reception of bad
packets if needed; the bad packet is not required or
guaranteed by the ND to match the length field in the
indicator . A receive indication with a bad packet status
must be passed to the NSR even if no bytes from the
received packet can be passed.

The data_buf field is unused and must be NULL.

UDI NIC Driver Specification - Version 1.01 - 2/2/01 3-41

Network Interface Metalanguage udi_nic_ctrl_cb_t

indicator is a field which supplies additional information for the control
operation as specified on a per-command basis.

data_buf is the data buffer associated with the control request, e.g., the
buffer containing the multicast list addresses.

DESCRIPTION The network control structure is used to configure, retrieve information or
request a specific configuration action from the driver and/or the network
adapter card. This structure is used with network control operations issued to
the control channel.

The UDI_NIC_PROMISC_ON and UDI_NIC_ALLMULTI_ON shall be
individually applied and the enabling or disabling of one shall not affect the
setting of the other. The UDI_NIC_PROMISC settings do not affect the
current multicast address table but the UDI_NIC_ALLMULTI_ON will delete
the current list of explicit multicast addresses (which may be re-established in
whole or in part by the UDI_NIC_ALLMULTI_OFF).

This control block must be declared by specifying the control block index
value UDI_NIC_CTRL_CB_NUM in a udi_cb_init_t in the driver’s
udi_init_info .

Table 3-2 udi_nic_ctrl_cb_t Argument usage

Command (UDI_NIC_xxx) Indicator Data_buf contents

ADD_MULTI number of new MAC
addresses

MAC addresses
(new/all)

DEL_MULTI number of MAC
addresses being removed

MAC addresses
(removed/remaining)

ALLMULTI_ON - NULL

ALLMULTI_OFF number of new MAC
addresses

MAC addresses
(new/all)

GET_CURR_MAC returns number of MAC
addresses

returns an array of
MAC addresses

SET_CURR_MAC number of MAC
addresses

An array of MAC
addresses

GET_FACT_MAC returns number of MAC
addresses

returns an array of
MAC addresses

PROMISC_ON - NULL

PROMISC_OFF - NULL

HW_RESET - NULL

BAD_RXPKT 0 = ND discards bad RX
packets

non-zero = number of
bytes of bad RX
packets that the ND
passes the NSR

NULL

3-42 UDI NIC Driver Specification - Version 1.01 - 2/2/01

udi_nic_ctrl_cb_t Network Interface Metalanguage

The NSR obtains the udi_nic_ctrl_cb_t structure to use with the
udi_nd_ctrl_req operation by calling udi_cb_alloc with a cb_idx
that has been defined for the UDI_NIC_CTRL_CB_NUM control block.

REFERENCES udi_nd_ctrl_req , udi_init_info , udi_cb_init_t ,
udi_cb_alloc

UDI NIC Driver Specification - Version 1.01 - 2/2/01 3-43

Network Interface Metalanguage udi_nd_ctrl_req

NAME udi_nd_ctrl_req Network control operation request

SYNOPSIS #include <udi.h>
#include <udi_nic.h>

void udi_nd_ctrl_req (
udi_nic_ctrl_cb_t * cb);

ARGUMENTS cb is a pointer to a Network Interface Metalanguage control
operation control block.

TARGET CHANNEL This request is issued to the ND driver over the Network Interface
Metalanguage control channel. If the control block used for this operation has
been received from a previous control acknowledgement operation from the
ND on this channel then the channel parameter will already be set to the
correct value; this is the recommended mode of operation.

DESCRIPTION The udi_nd_ctrl_req operation is used to perform various network
control functions on the ND and/or controlled adapter card.

The network control operations are described in more detail in the description
of the udi_nic_ctrl_cb_t structure.

This request cannot be aborted.

REFERENCES udi_nsr_ctrl_ack, udi_nic_ctrl_cb_t

3-44 UDI NIC Driver Specification - Version 1.01 - 2/2/01

udi_nsr_ctrl_ack Network Interface Metalanguage

NAME udi_nsr_ctrl_ack Network control acknowledgment

SYNOPSIS #include <udi.h>
#include <udi_nic.h>

void udi_nsr_ctrl_ack (
udi_nic_ctrl_cb_t * cb ,
udi_status_t status);

ARGUMENTS cb is a pointer to a Network Interface Metalanguage control
operation control block.

status indicates success or failure of the control request

TARGET CHANNEL This request is issued to the NSR over the Network Interface Metalanguage
control channel. If the control block used for this operation has been received
from a previous control request operation from the NSR on this channel then
the channel parameter will already be set to the correct value; this is the
recommended mode of operation.

DESCRIPTION The udi_nsr_ctrl_ack confirms the udi_nd_ctrl_req operation that
has been issued to the driver and passes back any requested information in the
control block or the associated buffer structure.

STATUS VALUES UDI_OK indicates that the network control request operation succeeded.

UDI_STAT_NOT_UNDERSTOOD indicates that the control operation
parameters were invalid.

UDI_STAT_RESOURCE_UNAVAIL indicates that the ND did not have and
could not obtain the necessary resources to satisfy this request.

UDI_STAT_HW_PROBLEM indicates that the ND could not satisfy this request
due to hardware problems or limitations.

WARNINGS This operation must use the same control block as originally received from the
udi_nd_ctrl_req operation.

REFERENCES udi_nd_ctrl_req, udi_nic_ctrl_cb_t

UDI NIC Driver Specification - Version 1.01 - 2/2/01 3-45

Network Interface Metalanguage udi_nic_status_cb_t

NAME udi_nic_status_cb_t Status indication control block

SYNOPSIS #include <udi.h>
#include <udi_nic.h>

typedef struct {
udi_cb_t gcb ;
udi_ubit8_t event ;

} udi_nic_status_cb_t ;

/* Network Status Control Block Group Number */

#define UDI_NIC_STATUS_CB_NUM 4

/* Network Status Event Codes */

#define UDI_NIC_LINK_DOWN 0

#define UDI_NIC_LINK_UP 1

#define UDI_NIC_LINK_RESET 2

MEMBERS gcb is the generic control block header which includes a pointer to
the scratch space associated with this block and the channel
context for the associated channel. The driver may use the
scratch space while it owns the control block, but the values are
not guaranteed to persist across channel operations.

event is the status event code being indicated by the ND driver to the
NSR. The following status events have been defined:

UDI_NIC_LINK_UP -- Link active transition. This event causes
the ND and NSR to transition to the ACTIVE state (see
Section 2.4.1, “NIC Metalanguage States,” on page 2-8).

UDI_NIC_LINK_DOWN -- Link inactive transition. This event
causes the ND and NSR to transition to the ENABLED state
(see Section 2.4.1, “NIC Metalanguage States,” on page
2-8).

UDI_NIC_LINK_RESET -- Link reset occurred. A link reset has
the same effect as a UDI_NIC_LINK_DOWN event with the
additional indication that any link state was lost and that a
link-level error recovery was initiated. The NSR should be
prepared to re-establish the link and remote node
configuration information when a link reset occurs. This
event also causes the ND and NSR to transition to the
ENABLED state.

DESCRIPTION The network status indication control block structure is used to notify the
NSR of asynchronous events. This structure is used with network status
indications issued across the control channel.

This control block must be declared by specifying the control block index
value UDI_NIC_STATUS_CB_NUM in a udi_cb_init_t in the driver’s
udi_init_info .

3-46 UDI NIC Driver Specification - Version 1.01 - 2/2/01

udi_nic_status_cb_t Network Interface Metalanguage

The ND obtains the udi_nic_status_cb_t structure to use with the
udi_nsr_status_ind operation by calling udi_cb_alloc for the
UDI_NIC_CONTROL_CB_NUM’s declared cb_idx value.

REFERENCES udi_nsr_status_ind, udi_init_info, udi_cb_init_t,
udi_cb_alloc

UDI NIC Driver Specification - Version 1.01 - 2/2/01 3-47

Network Interface Metalanguage udi_nsr_status_ind

NAME udi_nsr_status_ind Network status indication

SYNOPSIS #include <udi.h>
#include <udi_nic.h>

void udi_nsr_status_ind (
udi_nic_status_cb_t * cb);

ARGUMENTS cb is a pointer to a Network Interface Metalanguage status
indication control block.

TARGET CHANNEL This request is issued to the NSR over the Network Interface Metalanguage
control channel.

DESCRIPTION The udi_nsr_status_ind indication is used by the ND to
asynchronously notify the NSR of various status information such as any
change in link status. The NSR should evaluate the status indication, perform
the appropriate action, and then deallocate the status indication control block.

The ND is responsible for allocating the udi_nic_status_cb_t for this
operation since this operation originates in the ND and is not a response to an
NSR request. The ND may not abort this operation once it is issued to the
NSR.

REFERENCES udi_nic_status_cb_t

3-48 UDI NIC Driver Specification - Version 1.01 - 2/2/01

udi_nic_info_cb_t Network Interface Metalanguage

NAME udi_nic_info_cb_t Network information control block

SYNOPSIS #include <udi.h>
#include <udi_nic.h>

typedef struct {
udi_cb_t gcb ;
udi_boolean_t interface_is_active ;
udi_boolean_t link_is_active ;
udi_boolean_t is_full_duplex ;
udi_ubit32_t link_mbps ;
udi_ubit32_t link_bps ;
udi_ubit32_t tx_packets ;
udi_ubit32_t rx_packets ;
udi_ubit32_t tx_errors ;
udi_ubit32_t rx_errors ;
udi_ubit32_t tx_discards ;
udi_ubit32_t rx_discards ;
udi_ubit32_t tx_underrun ;
udi_ubit32_t rx_overrun ;
udi_ubit32_t collisions ;

} udi_nic_info_cb_t ;

/* Network Information Control Block Group Number */

#define UDI_NIC_INFO_CB_NUM 5

MEMBERS gcb is the generic control block header which includes a pointer to
the scratch space associated with this block and the channel
context for the associated channel. The driver may use the
scratch space while it owns the control block, but the values are
not guaranteed to persist across channel operations.

interface_is_active is a boolean indication of whether the interface
has been activated or not (via udi_nd_enable_req).

link_is_active is a boolean indication of whether the link is active or not
(line status).

is_full_duplex is the boolean indication of whether the link is operating
in full-duplex or half-duplex mode. Note that the %duplex
custom attribute may be used to indicate the desired duplex mode
but this field will always report the current duplex mode (see
Table 2-4, “NIC Custom Attributes,” on page 2-4).

link_mbps is the current link data rate in megabits-per-second. Note that the
%speed_mbps custom attribute may be used to indicate the
desired speed but this field will always report the current data
link speed (see Table 2-4, “NIC Custom Attributes,” on page
2-4).

UDI NIC Driver Specification - Version 1.01 - 2/2/01 3-49

Network Interface Metalanguage udi_nic_info_cb_t

link_bps is the current link data rate in bits-per-second. This field is used
in the same manner that the link_mbps field is used but
specifies a lower range of values.

tx_packets is the number of packets transmitted by this interface (inclusive
of discarded packets and those in which the transmit request
completed with errors).

rx_packets is the number of packets received by this interface (inclusive of
discarded packets and those indicating receive errors).

tx_errors is the number of packet transmissions that encountered an error
of some form.

rx_errors is the number of receive packet operations that encountered an
error of some form.

tx_discards is the number of packets which were discarded before
transmission for internal reasons (e.g. timeouts or unavailable
resources).

rx_discards is the number of packets which were discarded after being
received but before being passed to the NSR for internal reasons
(e.g. unavailable resources).

tx_underrun is the number of transmit underrun errors (which is also
included in tx_errors).

rx_overrun is the number of receive overrun errors (which is also included
in rx_errors).

collisions is the number of transmit packet collisions (if applicable).

DESCRIPTION The network information control block structure is used to provide
configuration and statistics information to the NSR.

Fields which represent counters are subject to overflow and will silently
wraparound to continue counting from zero. The statistics values should be
read frequently enough to detect this wraparound condition if it is significant.

The link_bps field is customarily used for slower WAN protocols where
the link data rate may range from 300 bps to 128 Kbps. The link_mbps
field is used for higher-speed LAN protocols. Note that there is an overlap
between these two fields; it is expected that if the link_mpbs field is non-
zero that the link_bps field may be ignored. These values are supplied to
provide diagnostic information and allow predictive scheduling of data
exchange and therefore are not required to be exact nor do they control the
associated hardware settings.

This control block must be declared by specifying the control block index
value UDI_NIC_INFO_CB_NUM in a udi_cb_init_t in the driver’s
udi_init_info .

3-50 UDI NIC Driver Specification - Version 1.01 - 2/2/01

udi_nic_info_cb_t Network Interface Metalanguage

The NSR or ND obtains the udi_nic_bind_req_cb_t structure to use
with the udi_nd_info_req and udi_nsr_info_ack operations by
calling udi_cb_alloc with a cb_idx that has been defined for the
UDI_NIC_INFO_CB_NUM control block.

REFERENCES udi_nd_info_req, udi_nsr_info_ack, udi_init_info,
udi_cb_init_t, udi_cb_alloc

UDI NIC Driver Specification - Version 1.01 - 2/2/01 3-51

Network Interface Metalanguage udi_nd_info_req

NAME udi_nd_info_req Network information request

SYNOPSIS #include <udi.h>
#include <udi_nic.h>

void udi_nd_info_req (
udi_nic_info_cb_t * cb ,
udi_boolean_t reset_statistics);

ARGUMENTS cb is a pointer to a Network Interface Metalanguage information
control block.

reset_statistics is a boolean value which indicates whether the ND is
to reset the statistics counters or not.

TARGET CHANNEL This request is issued to the ND over the Network Interface Metalanguage
control channel. If the control block used for this operation has been received
from a previous acknowledgement operation from the ND on this channel then
the channel parameter will already be set to the correct value; this is the
recommended mode of operation.

DESCRIPTION The udi_nd_info_req is used by the NSR to request information from the
NIC Driver. The NSR supplies a udi_nic_info_cb_t control block which
is filled in with the appropriate information by the ND and then passed back
to the NSR.

The metalanguage-specific fields in the control block are unused for
udi_nd_info_req and are intended to be filled in by the ND for
udi_nsr_info_ack .

If the reset_statistics argument is true, the ND should reset the
statistics after providing their current values in the cb control block being
returned.

This request cannot be aborted.

REFERENCES udi_nic_info_cb_t, udi_nsr_info_ack

3-52 UDI NIC Driver Specification - Version 1.01 - 2/2/01

udi_nsr_info_ack Network Interface Metalanguage

NAME udi_nsr_info_ack Network information response

SYNOPSIS #include <udi.h>
#include <udi_nic.h>

void udi_nsr_info_ack (
udi_nic_info_cb_t * cb);

ARGUMENTS cb is a pointer to a Network Interface Metalanguage information
control block.

TARGET CHANNEL This request is issued to the NSR over the Network Interface Metalanguage
control channel.

DESCRIPTION The udi_nsr_info_ack is the ND response to the udi_nd_info_req
issued by the NSR. The ND passes back the information in the fields of the
associated control block.

WARNINGS This operation must use the same control block as originally received from the
udi_nd_info_req operation.

REFERENCES udi_nic_info_cb_t, udi_nd_info_req

UDI NIC Driver Specification - Version 1.01 - 2/2/01 3-53

Network Interface Metalanguage Data Transfer

3.4 Data Transfer Operations

These operations are used to allow the local protocol stack to communicate with other hosts on the
network by passing requests to or from the ND via the data transfer channels connected to the NSR. The
associated data buffers for these requests are the data “packets” to be sent over the network and are
assumed (by the ND) to have the proper network headers already constructed and provided, although the
ND is free to add device or network-specific headers as needed.

If the semantics of the underlying network technology are based on unacknowledged broadcast
methodologies (e.g. Ethernet) then the ND will acknowledge transmit requests back to the NSR as soon
as the ND has completed the transmit operation itself. If the network technology incorporates packet or
frame level acknowledgement4, this should be managed by the ND and the transmit operations should
not be acknowledged to the NSR until the remote host has acknowledged them back to the ND. The ND
is not expected to implement retransmissions in either case unless desirable by the ND implementation
or the network technology.

The ND is also expected to generate packet or frame level acknowledgements if so required by the
network technology.

Any technology-specific operations not performed by the hardware must be implemented by the ND
internally (e.g. ATM protocol segmentation/reassembly of packets into ATM cells).

The normal sequence of events for data transfer is illustrated in Figure 3-5.

Figure 3-5 Connectionless data transfer operation

4. Packet or frame level acknowledgement is differentiated from protocol-level acknowledgement; the latter is implemented by
higher layers of the protocol stack than that represented by the ND. An example of protocol-level acknowledgement is the
TCP ACK packet.

DL_UNITDATA_REQ

udi_nd_tx_req()

xxx_nd_tx_req()

xxx_intr()

udi_nsr_rx_ind()

yyy_nsr_rx_ind()

DL_UNITDATA_IN D

yyy_wput()

Stream Mapper Driver Driver Mapper

putnext()

Stream

LOCAL REMOTE

udi_nd_rx_rdy()

xxx_nd_rx_rdy()

udi_nsr_tx_rdy()

yyy_nsr_tx_rdy()

3-54 UDI NIC Driver Specification - Version 1.01 - 2/2/01

udi_nic_tx_cb_t Network Interface Metalanguage

NAME udi_nic_tx_cb_t Network transmit control block

SYNOPSIS #include <udi.h>
#include <udi_nic.h>

typedef struct {
udi_cb_t gcb ;
udi_nic_tx_cb_t * chain ;
udi_buf_t *tx_buf ;
udi_boolean_t completion_urgent ;

} udi_nic_tx_cb_t ;

/* Network Transmit Control Block Group Number */

#define UDI_NIC_TX_CB_NUM 6

MEMBERS gcb is the generic control block header which includes a pointer to
the scratch space associated with this block and the channel
context for the associated channel. The driver may use the
scratch space while it owns the control block, but the values are
not guaranteed to persist across channel operations.

chain is a pointer to the next udi_nic_tx_cb_t structure (and
associated packet buffer) for this operation. The ND and NSR
will use this field to “batch” a number of transmit requests or
ready’s into a single metalanguage operation. The ND, NSR, or
environment are free to divide the chain at any point and
implement explicit operations for each resulting portion of the
chain, but performance concerns would indicate that processing
the entire chain as a batch is highly desirable. The end of the
chain is indicated by a NULL pointer.

tx_buf is the buffer describing the packet to be transmitted This field
must be NULL for the udi_nsr_tx_rdy operation and is used
only for the udi_nd_tx_req and udi_nd_exp_tx_req
operations, for which the contents of the buffer are guaranteed to
be preserved across a channel.

completion_urgent is a hint to the ND that the NSR or UDI environment
considers the associated packet buffer to be a critical resource
and that it should be returned (via udi_buf_free) as quickly
as possible after the transmit completes. This field is ignored for
the udi_nsr_tx_rdy operation.

DESCRIPTION The udi_nic_tx_cb_t structure is passed from the ND to the NSR to
indicate a capability for transmitting a packet; the NSR subsequently attaches
a packet buffer to this control block and returns it to the ND for transmission.
The NSR can only pass packets to the ND when it has available control
blocks, thereby implementing flow control between the ND and the NSR by
requiring the ND to supply the NSR with all usable udi_nic_tx_cb_t
structures (i.e. the NSR must not allocate control blocks of this type).

UDI NIC Driver Specification - Version 1.01 - 2/2/01 3-55

Network Interface Metalanguage udi_nic_tx_cb_t

This control block must be declared by specifying the control block index
value UDI_NIC_TX_CB_NUM in a udi_cb_init_t in the driver’s
udi_init_info .

The ND obtains the udi_nic_tx_cb_t structure by calling
udi_cb_alloc with a cb_idx that has been defined for the
UDI_NIC_TX_CB_NUM control block.

REFERENCES udi_nsr_tx_rdy , udi_nd_tx_req , udi_init_info ,
udi_cb_init_t , udi_cb_alloc

3-56 UDI NIC Driver Specification - Version 1.01 - 2/2/01

udi_nsr_tx_rdy Network Interface Metalanguage

NAME udi_nsr_tx_rdy Network driver ready to transmit
packet

SYNOPSIS #include <udi.h>
#include <udi_nic.h>

void udi_nsr_tx_rdy (
udi_nic_tx_cb_t * cb);

ARGUMENTS cb is a pointer to a Network Interface Metalanguage transmit control
block.

TARGET CHANNEL This request is issued to the NSR over the Network Interface Metalanguage
transmit data channel.

DESCRIPTION The udi_nsr_tx_rdy is used to indicate to the NSR that the ND can
transmit a packet when the NSR has a packet available. When the NSR
receives a packet from the protocol stack that should be transmitted, it looks
for a udi_nic_tx_cb_t to associate with that packet. If no
udi_nic_tx_cb_t is available, it must queue the packet and exert flow
control “back pressure” into the protocol stack. When a udi_nic_tx_cb_t
is available (either immediately or as a result of this command), the NSR may
use that structure to pass the packet buffer to the ND for transmission.

The ND may chain multiple udi_nic_tx_cb_t structures together as a
linked list via the chain field in the structure and pass the entire chain to the
NSR in a single udi_nsr_tx_rdy operation.

Following a udi_nd_disable_req , the NSR should return all transmit
control blocks to the ND driver. This is done via the udi_nd_tx_req
transmit path, but there will be no associated buffer for these operations.

Following a udi_nd_unbind_req or a udi_channel_closed
operation, the ND and NSR are each responsible for deallocating the transmit
control blocks they are holding; no transmit control blocks are passed between
the ND and NSR following these operations.

The ND may increase or decrease the number of transmit opportunities
available to the NSR at any point in time by making correspondingly more or
fewer transmit control blocks available to the NSR. The NSR should not
expect the number of transmit control blocks to stay constant over the lifetime
of the ND instance.

This request cannot be aborted.

REFERENCES udi_nd_tx_req, udi_nic_tx_cb_t

UDI NIC Driver Specification - Version 1.01 - 2/2/01 3-57

Network Interface Metalanguage udi_nd_tx_req

NAME udi_nd_tx_req Network send packet

SYNOPSIS #include <udi.h>
#include <udi_nic.h>

void udi_nd_tx_req (
udi_nic_tx_cb_t * cb);

ARGUMENTS cb is a pointer to a Network Interface Metalanguage transmit control
block.

TARGET CHANNEL This request is issued to the ND over the Network Interface Metalanguage
transmit data channel.

DESCRIPTION The udi_nd_tx_req is called by the NSR to pass one or more packet
buffers to the ND for transmission on the network. The NSR has already build
the datalink frame header for the packet and obtained a udi_nic_tx_cb_t
from the ND to associate with the packet. The NSR issues the
udi_nd_tx_req to the ND; once the packet has been successfully
transmitted the ND will deallocate the packet buffer and pass the
udi_nd_tx_cb_t back to the NSR in the udi_nsr_tx_rdy operation.

The NSR may chain multiple udi_nic_tx_cb_t structures together as a
linked list via the chain field in the structure and pass the entire chain to the
ND in a single udi_nd_tx_req operation; each udi_nic_tx_cb_t has
an associated buffer which represents a separate packet. When passing the
udi_nic_tx_cb_t structures back to the NSR via the udi_nsr_tx_rdy
operation the ND is free to subdivide the chain and pass it back in pieces, or
it may return the entire chain at once.

Each udi_nd_tx_cb_t contains a completion urgency hint field which is
used to indicate to the ND that the corresponding packet transmission should
be completed as quickly as possible to return the packet buffer. If this hint
does not indicate any packet transmission urgency, the ND is not required to
detect transmission completion in any set time period.

The ND is responsible for removing the buffer from the net_tx_cb
structure and deallocating the buffer (udi_buf_free) before posting the
structure back to the NSR via the udi_nsr_tx_rdy operation.

Note that in the special case where the NSR has initiated a
udi_nsr_disable_req operation to this ND, it will return any transmit
control blocks it owns via the udi_nd_tx_req operations; these control
blocks have no attached buffers and are simply being recycled to the ND
device.

REFERENCES udi_nsr_tx_rdy, udi_nd_exp_tx_req

3-58 UDI NIC Driver Specification - Version 1.01 - 2/2/01

udi_nd_exp_tx_req Network Interface Metalanguage

NAME udi_nd_exp_tx_req Expedited data transmit request

SYNOPSIS #include <udi.h>

void udi_nd_exp_tx_req (
udi_nic_tx_cb_t * cb);

ARGUMENTS cb is a pointer to a Network Interface Metalanguage transmit control
block.

TARGET CHANNEL This request is issued to the ND over the Network Interface Metalanguage
transmit data channel.

DESCRIPTION The udi_nd_exp_tx_req is called by the NSR to pass one or more packet
buffers to the ND for expedited transmission on the network. This operation is
functionally equivalent to the udi_nd_tx_req except that the packet(s)
associated with this request are “high-priority” and should be handled
immediately by the ND, before any current or future low-priority traffic is
handled.

REFERENCES udi_nd_tx_req, udi_nsr_tx_rdy, udi_nic_tx_cb_t

UDI NIC Driver Specification - Version 1.01 - 2/2/01 3-59

Network Interface Metalanguage udi_nic_rx_cb_t

NAME udi_nic_rx_cb_t Network receive control block

SYNOPSIS #include <udi.h>
#include <udi_nic.h>

typedef struct {
udi_cb_t gcb ;
udi_nic_rx_cb_t * chain ;
udi_buf_t *rx_buf ;
udi_ubit8_t rx_status ;
udi_ubit8_t addr_match ;
udi_ubit8_t rx_valid ;

} udi_nic_rx_cb_t ;

/* Network Receive Control Block Group Number */

#define UDI_NIC_RX_CB_NUM 7

/* values for rx_status */

#define UDI_NIC_RX_BADCKSUM (1U <<0)

#define UDI_NIC_RX_UNDERRUN (1U <<1)

#define UDI_NIC_RX_OVERRUN (1U <<2)

#define UDI_NIC_RX_DRIBBLE (1U <<3)

#define UDI_NIC_RX_FRAME_ERR (1U <<4)

#define UDI_NIC_RX_MAC_ERR (1U <<5)

#define UDI_NIC_RX_OTHER_ERR (1U <<7)

/* values for addr_match */

#define UDI_NIC_RX_UNKNOWN 0

#define UDI_NIC_RX_EXACT 1

#define UDI_NIC_RX_HASH 2

#define UDI_NIC_RX_BROADCAST 3

/* values for rx_valid */

#define UDI_NIC_RX_GOOD_IP_CKSUM (1U <<0)

#define UDI_NIC_RX_GOOD_TCP_CKSUM (1U <<1)

#define UDI_NIC_RX_GOOD_UDP_CKSUM (1U<<2)

MEMBERS gcb is the generic control block header which includes a pointer to
the scratch space associated with this block and the channel
context for the associated channel. The driver may use the
scratch space while it owns the control block, but the values are
not guaranteed to persist across channel operations.

chain is a pointer to the next udi_nic_rx_cb_t structure (and
associated packet buffer) for this operation. The ND and NSR
will use this field to “batch” a number of identical receive
indications or responses into a single metalanguage operation.
The ND, NSR, or environment are free to divide the chain at any
point and implement explicit operations for each resulting

3-60 UDI NIC Driver Specification - Version 1.01 - 2/2/01

udi_nic_rx_cb_t Network Interface Metalanguage

portion of the chain, but performance concerns would indicate
that processing the entire chain as a batch is highly desirable.
The end of the chain is indicated by a NULL pointer.

rx_buf is the buffer containing the packet that has been received. This
field is used to pass an empty buffer (rx_buf ->buf_size =
0) to the ND in the udi_nd_rx_rdy operation which will be
filled in with an incoming packet and returned (buffer data is
preserved) with the udi_nsr_rx_ind or
udi_nsr_exp_rx_ind indications.

rx_status is a bitmask indicating if there were any problems with the
received packet. This field supports the following bit values:

UDI_NIC_RX_BADCKSUM - Indicates that the adapter hardware
or associated driver performed checksum calculation
and validation and determined that the calculated
checksum value for the packet did not match one or
more of the corresponding checksum values indicated
internally in the packet. If this status is not indicated for
the packet it only indicates that there was no specific
checksum failure detected by the ND or the adapter but
not that the checksums have been validated to be
correct.

UDI_NIC_RX_UNDERRUN - Indicates that the packet is too
short (did not meet minimum PDU size requirements) or
that the reception terminated before the entire packet
was received. Also known as a runt packet.

UDI_NIC_RX_OVERRUN - Indicates that the packet is too large
(exceeds maximum PDU size requirements).

UDI_NIC_RX_DRIBBLE - Indicates that the frame contained a
non-integer multiple of 8 bits (“dribbling” bits). The
disposition of the dribbled bits is indeterminate: the
hardware may or may not provide them to the ND,
therefore the NSR should not examine the data for the
dribble value.

UDI_NIC_RX_FRAME_ERR - Indicates that the packet had a
framing error. These are technology-specific but include
such causes as: incorrect frame header characters,
incorrect frame trailer characters, invalid characters in
the frame header or trailer, or an invalid CRC value for
the frame.

UDI_NIC_RX_MAC_ERR - Indicates that the packet was
damaged by a media access error. These types of errors
are network specific. A typical use of this bit is for a
late collision that has occured after the valid collision
period for a broadcast media technology (e.g. Ethernet).

UDI NIC Driver Specification - Version 1.01 - 2/2/01 3-61

Network Interface Metalanguage udi_nic_rx_cb_t

UDI_NIC_RX_OTHER_ERR - Indicates that some type of error
was detected by the adapter or driver that does not fit
into one of the other error classes. The ND is not
expected to signal errors related to the operation of the
local hardware or the driver; the rx_status field
should be used only for packet or network related errors
encountered during receives.

When the ND indicates a receive packet error via a non-zero
rx_status value, no guarantees are made regarding whether
data will be returned in the associated buffer and any data present
should only be used for diagnostic purposes; under no
circumstances must this data be used as part of the normal
transfer operations.

addr_match is an indicator of the ND’s knowledge of the MAC address
match for the current packet. The ND is not required to know
how the receive packet matched the set of acceptable addresses,
but if a determination can easily be made from hardware registers
or additional packet information, the ND can supply this
information to the NSR in this field to optimize processing of the
packet.

Valid values for this field are:

UDI_NIC_RX_UNKNOWN - The ND does not know how the
received packet matched

UDI_NIC_RX_EXACT - The received packet exactly matched a
valid unicast or multicast address for which the ND and
associated adapter were registered.

UDI_NIC_RX_HASH - The received packet matched based on a
hashing algorithm and the address needs to be further
verified by the NSR at some point.

UDI_NIC_RX_BROADCAST - The received packet used the
media broadcast address.

The addr_match field is a hint to the NSR to optimize
processing of the packet, therefore the ND must never indicate
any type of match that is not known to be valid (e.g. indicate an
EXACT match when it was a BROADCAST). When in doubt, the
ND should always use the UNKNOWN indicator.

rx_valid indicates that one or more aspects of this receive have been
successfully validated:

UDI_NIC_RX_GOOD_IP_CKSUM - indicates that the IP
checksum was validated and found to be correct for the
received packet.

3-62 UDI NIC Driver Specification - Version 1.01 - 2/2/01

udi_nic_rx_cb_t Network Interface Metalanguage

UDI_NIC_RX_GOOD_TCP_CKSUM - indicates that the TCP
checksum was validated and found to be correct for the
received packet.

UDI_NIC_RX_GOOD_UDP_CKSUM - indicates that the UDP
checksum was validated and found to be correct for the
received packet.

If the checksum value is also known, it may be attached to the
buffer via the UDI_BUFTAG_BE16_CHECKSUM tag; if the
NSR has indicated at bind time that the checksum will not be
used (by not setting UDI_NIC_CAP_USE_RX_CKSUM) then the
ND should not bother to set the tag, even if the checksum value
is known.

DESCRIPTION The udi_nic_rx_cb_t structure is used to pass packets from the ND to the
NSR after they have been received. They are provided to the ND via the
udi_nd_rx_rdy operation.

These structures are supplied to the ND by the NSR to be attached to received
packets. If the NSR has not supplied the ND with one of these control blocks
to attach to a received data packet, the ND is flow-blocked and may not
allocate one of these control blocks to handle the incoming data. It may save
or preserve the data but it cannot pass more data to the NSR until the NSR has
supplied available udi_nic_rx_cb_t structures.

This control block must be declared by specifying the control block index
value UDI_NIC_RX_CB_NUM in a udi_cb_init_t in the driver’s
udi_init_info .

The NSR obtains the udi_nic_rx_cb_t structure by calling
udi_cb_alloc with a cb_idx that has been defined for the
UDI_NIC_RX_CB_NUM control block.

If the NSR uses the rx_valid field for checking the validity of the received
packet, it must zero this field before passing the control block to the ND. The
ND must not set these bits unless the checksum has been validated and the
packet is of the appropriate type (e.g. the UDI_NIC_RX_GOOD_TCP_CKSUM
bit must not be set if this is not a TCP packet). The use of this field allows
performance optimizations when handling this packet; neither the ND nor the
NSR is required to utilize this field.

REFERENCES udi_nsr_rx_ind , udi_nsr_exp_rx_ind , udi_nd_rx_rdy ,
udi_init_info , udi_cb_init_t , udi_cb_alloc

UDI NIC Driver Specification - Version 1.01 - 2/2/01 3-63

Network Interface Metalanguage udi_nsr_rx_ind

NAME udi_nsr_rx_ind Network receive packet indication

SYNOPSIS #include <udi.h>
#include <udi_nic.h>

void udi_nsr_rx_ind (
udi_nic_rx_cb_t * cb);

ARGUMENTS cb is a pointer to a Network Interface Metalanguage receive control
block.

TARGET CHANNEL This request is issued to the NSR over the Network Interface Metalanguage
receive data transfer channel.

DESCRIPTION The udi_nsr_rx_ind is used when the ND has received a packet and is
passing it to the NSR for handling by the protocol stack. The cb can be an
individual receive control block or a chain of receive control blocks; each
control block references a separate received packet. The packet buffer will be
parsed and then demultiplexed to the interested protocol stack entities by the
NSR, and the cb will subsequently be returned via the udi_nd_rx_rdy
operation.

WARNINGS The control block must be one that was passed to the ND previously via the
udi_nd_rx_rdy operation.

REFERENCES udi_nd_rx_rdy, udi_nsr_exp_rx_ind

3-64 UDI NIC Driver Specification - Version 1.01 - 2/2/01

udi_nsr_exp_rx_ind Network Interface Metalanguage

NAME udi_nsr_exp_rx_ind Network receive packet indication

SYNOPSIS #include <udi.h>
#include <udi_nic.h>

void udi_nsr_exp_rx_ind (
udi_nic_rx_cb_t * cb);

ARGUMENTS cb is a pointer to a Network Interface Metalanguage receive control
block.

TARGET CHANNEL This request is issued to the NSR over the Network Interface Metalanguage
receive data transfer channel.

DESCRIPTION The udi_nsr_exp_rx_ind is used when the ND has received an expedited
(high-priority) packet and is passing it to the NSR for handling by the protocol
stack. The functionality of this operation is identical to the
udi_nsr_rx_ind operation except that this interface must be used if the
packet was determined to be urgent or high-priority.

WARNINGS The control block must be one that was passed to the ND previously via the
udi_nd_rx_rdy operation.

REFERENCES udi_nd_rx_rdy, udi_nsr_rx_ind

UDI NIC Driver Specification - Version 1.01 - 2/2/01 3-65

Network Interface Metalanguage udi_nd_rx_rdy

NAME udi_nd_rx_rdy Network receive packet response

SYNOPSIS #include <udi.h>
#include <udi_nic.h>

void udi_nd_rx_rdy (
udi_nic_rx_cb_t * cb);

ARGUMENTS cb is a pointer to a Network Interface Metalanguage receive control
block.

TARGET CHANNEL This request is issued to the ND over the Network Interface Metalanguage
receive data transfer channel. If the NSR re-uses a control block previously
returned to it by the ND then the channel parameter in that control block
will already correctly identify the target channel.

DESCRIPTION The udi_nd_rx_rdy is used by the NSR to provide one or more
udi_nic_rx_cb_t structures and associated receive buffers to the ND. The
ND may then use these buffers to receive packets from the network and pass
those packets to the NSR in udi_nsr_rx_ind or udi_nsr_exp_rx_ind
indications. The ND must not allocate udi_nic_rx_cb_t control blocks
internally because these are regulated by the NSR to implement flow control.

The ND must also refrain from allocating receive buffers internally if possible.
In any event, the incoming data must always be passed to the NSR in the same
buffer (or a direct udi_buf_write /udi_buf_copy version thereof) that
was originally passed to the ND by the NSR. If the ND has initially received
the packet into a separate buffer it must issue a udi_buf_copy or
udi_buf_write operation to copy that packet into the buffer provided by
the NSR to send that packet to the NSR.

The NSR will not expect the ND to preserve or receive packets during any
period of time wherein the NSR has not provided the ND with enough receive
control blocks and buffers to accomodate the incoming data. It is
recommended but not required that the NSR provide the ND with buffers
whose length is zero and that it provide at least rx_hw_threshold number
of receive control blocks at any point in time. The ND must set the buffer size
to the needed size (usually the max_pdu_size from the
udi_nic_bind_cb_t) before calling udi_buf_dma_map .

The ND should return all of the control blocks to the NSR with a zero-length
buffer upon receipt of a udi_nd_disable_req operation.

Note that if a udi_nd_unbind_req or udi_channel_closed operation
occurs, the NSR will not return the receive control blocks or buffers to the ND
device and will deallocate them internally.

This operation cannot be aborted.

REFERENCES udi_nsr_rx_ind, udi_nsr_exp_rx_ind

udi_nd_rx_rdy Network Interface Metalanguage

3-66 UDI NIC Driver Specification - Version 1.01 - 2/2/01

UDI NIC Driver Specification - Version 1.01 - 2/2/01 X-1

Index
Numerics
100VG-AnyLAN 3-7
802.2 3-4

A
Appletalk 3-3
ARP 3-3, 3-5
ATM 3-4
ATM cells 1-3
AUI 3-7
auto-negotiation 3-7

B
bind operations 3-3
blocked 2-2
BNC 3-7
Broadcast 1-3
broadcast 3-5
BSD ifnet/2 3-2
buffer tag 3-7

C
category 2-5
CDLI 3-2
checksums 3-7
configuration parameters 3-7

D
demultiplexing 2-2, 3-4
Duplex 3-7

E
E.164 3-4
Ethernet 3-4
expedited data 3-7

F
FDDI 3-4
Fibre Channel 3-4
filter 2-2
flow control 2-2

receive 3-6
transmit 3-6

G
Generic Metalanguage channels 3-4

H
hash 3-5
header 3-4, 3-5

I
IP 3-3
IP address 1-2
IPX 3-3

L
Link Speed 3-7

M
MAC 3-4
MAC Address 1-2, 3-5
MAC address 3-4, 3-5
Media Type 2-3, 3-5
Media type 2-3
media type 3-4
Multicast 1-3
multicast 3-5
multiplexing 2-2

N
ND 1-2, 2-2, 3-1

Index

X-2 UDI NIC Driver Specification - Version 1.01 - 2/2/01

NDI 3-2
NDIS 3-2
Network Mapper 3-2
NIC 2-2, 3-1
NSR 1-2, 2-2, 3-1, 3-4

O
ODI 3-2
operations

control 3-5, 3-9
transfer 3-5

P
Packet 1-3
packet 3-3, 3-5
packet filtering 3-3
Port Type 3-7
promiscuous mode 1-3
Protocol Stack 3-2
protocol stack 3-3
protocols 3-3

Q
QoS 3-7

S
SNAP 3-4
Streams/DLPI 3-2

T
TCP/IP 3-3
TP 3-7
trace events 2-5
transfer channels 3-6

U
UDI_NIC_MAC_ADDRESS_SIZE 3-4
UDI_NIC_VERSION 2-1
Unicast 1-3

	Copyright Notice
	Acknowledgements
	Abstract
	Table of Contents
	List of Reference Pages
	Alphabetical List of Symbols
	NIC Driver Introduction
	1.1 Introduction
	1.2 Scope
	1.3 Normative References
	1.4 Conformance
	1.5 Terminology

	NIC Driver Requirements and Bindings
	2.1 General Requirements
	2.2 NIC Metalanguage Model
	2.3 Bindings to the UDI Core Specification
	Table 2�1 NIC Enumeration Attributes
	Table 2�2 Media Type Strings
	Table 2�3 NIC Enumeration Attribute Ranking Values
	Table 2�4 NIC Custom Attributes

	2.4 NIC Metalanguage State Diagram
	Figure 2�1 NIC Metalanguage State Diagram
	Table 2�5 NIC Metalanguage Events
	Table 2�6 NIC Metalanguage: Valid Operations by State

	Network Interface Metalanguage
	3.1 Overview
	3.2 Network Interface Metalanguage Environment
	Figure 3�1 UDI Networking Environment
	Table 3�1 Media Types and MAC Address Lengths

	3.3 Network Interface Management
	NAME udi_nd_ctrl_ops_t
	NAME udi_nd_tx_ops_t
	NAME udi_nd_rx_ops_t
	NAME udi_nsr_ctrl_ops_t
	NAME udi_nsr_tx_ops_t
	NAME udi_nsr_rx_ops_t
	Figure 3�2 Connectionless Network Bind Operation
	Figure 3�3 Unbind Operation

	NAME udi_nic_cb_t
	NAME udi_nic_bind_cb_t
	NAME udi_nd_bind_req
	NAME udi_nsr_bind_ack
	NAME udi_nd_unbind_req
	NAME udi_nsr_unbind_ack
	NAME udi_nd_enable_req
	NAME udi_nsr_enable_ack
	NAME udi_nd_disable_req
	Figure 3�4 Control Operation (configure multicast address)

	NAME udi_nic_ctrl_cb_t
	Table 3�2 udi_nic_ctrl_cb_t Argument usage

	NAME udi_nd_ctrl_req
	NAME udi_nsr_ctrl_ack
	NAME udi_nic_status_cb_t
	NAME udi_nsr_status_ind
	NAME udi_nic_info_cb_t
	NAME udi_nd_info_req
	NAME udi_nsr_info_ack
	3.4 Data Transfer Operations
	Figure 3�5 Connectionless data transfer operation

	NAME udi_nic_tx_cb_t
	NAME udi_nsr_tx_rdy
	NAME udi_nd_tx_req
	NAME udi_nd_exp_tx_req
	NAME udi_nic_rx_cb_t
	NAME udi_nsr_rx_ind
	NAME udi_nsr_exp_rx_ind
	NAME udi_nd_rx_rdy

	Index

