
UDI IA-32/IA-64 ABI Binding
Specification
Version 1.01

Uniform Driver Interface

http://www.project-UDI.org/specs.html

UDI IA-32/IA-64 ABI Binding Specification

UDI IA-32/IA-64 ABI Binding Specification - Version 1.01 - 2/2/01 iii

The UDI IA-32/IA-64 ABI Binding Specification defines binary bindings of the UDI Core
Specification to the Intel 32-bit and 64-bit processor instruction set architectures referred to as IA-
32 and IA-64, respectively, allowing binary portability of UDI drivers across environments
supporting these ABIs.

This is an optional extension to the UDI Core Specification, which is defined in a separate book.
The intended audience for this book includes environment implementors and build utility
implementors.

See the Document Organization chapter in the UDI Core Specification for a description of other
books in the UDI Specification collection, as well as references to additional tutorial materials.

Status of This Document
This document has been reviewed by Project UDI Members and other interested parties and has
been endorsed as a Final Specification. It is a stable document and may be used as reference
material or cited as a normative reference from another document. This version of the
specification is intended to be ready for use in product design and implementation. Every attempt
has been made to ensure a consistent and implementable specification. Implementations should
ensure compliance with this version.

Abstract

 Preface

 iv UDI IA-32/IA-64 ABI Binding Specification - Version 1.01 - 2/2/01

Copyright Notice
Copyright © 2000-2001 Adaptec, Inc; Compaq Computer Corporation; Hewlett-Packard
Company; International Business Machines Corporation; Intel Corporation; Interphase
Corporation; The Santa Cruz Operation, Inc; Sun Microsystems (“copyright holders”). All Rights
Reserved.

This document and other documents on the Project UDI web site (www.project-UDI.org) are
provided by the copyright holders under the following license. By obtaining, using and/or copying this
document, or the Project UDI document from which this statement is linked, you agree that you have
read, understood, and will comply with the following terms and conditions:

Permission to use, copy, and distribute the contents of this document, or the Project UDI document from
which this statement is linked, in any medium for any purpose and without fee or royalty is hereby
granted, provided that you include all of the following on ALL copies of the document, or portions
thereof, that you use:

1. A link or URI to the original Project UDI document.

2. The pre-existing copyright notice of the original author, or, if it doesn’t exist, a Project
UDI copyright notice of the form shown above.

3. If it exists, the STATUS of the Project UDI document.

When space permits, inclusion of the full text of this NOTICE should be provided. In addition, credit
shall be attributed to the copyright holders for any software, documents, or other items or products that
you create pursuant to the implementation of the contents of this document, or any portion thereof.

No right to create modifications or derivatives is granted pursuant to this license.

THIS DOCUMENT IS PROVIDED "AS IS," AND COPYRIGHT HOLDERS MAKE NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE DOCUMENT
ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH
CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS,
TRADEMARKS OR OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR THE
PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOF.

The names and trademarks of copyright holders may NOT be used in advertising or publicity pertaining
to this document or its contents without specific, written prior permission. Title to copyright in this
document will at all times remain with copyright holders.

http://www.project-UDI.org

UDI IA-32/IA-64 ABI Binding Specification - Version 1.01 - 2/2/01 v

Preface

Acknowledgements
The authors would like to thank everyone who reviewed working drafts of the specification and
submitted suggestions and corrections.

The authors would especially like to thank their significant others for putting up with the many hours of
overtime put into the development of this specification over long periods.

Thanks to the following folks who contributed significant amounts of time, ideas, or authoring in
support of the development of this specification or in working on the prototype implementations which
helped us validate the specification:

Allyn Bowers (Intel)
Steve Bytnar (System Technologies Group)
Mark Evenson (HP)
Kurt Gollhardt (SCO)
Matt Kaufmann (SCO)
Robert Lipe (SCO)
Scott Popp (SCO)
Kevin Quick (Interphase)
John Ronciak (Intel)
Rob Tarte (Pacific CodeWorks)
Linda Wang (Sun)

Finally, thanks to David Roberts (Certek Software Designs) for designing the Project UDI logo.

 Preface

 vi UDI IA-32/IA-64 ABI Binding Specification - Version 1.01 - 2/2/01

UDI IA-32/IA-64 ABI Binding Specification - Version 1.01 - 2/2/01 vii

Table of Contents

Abstract ...iii
Copyright Notice ... iv
Acknowledgements... v
Table of Contents..vii

1 Introduction to the IA-32/IA-64 ABI Bindings1-1
1.1 Overview .. 1-1
1.2 General Requirements .. 1-1
1.3 Normative References .. 1-2

2 IA-32 ABI Binding ..2-1
2.1 Processor Architecture ... 2-1

2.1.1 Supported processor types .. 2-1
2.1.2 Endianness .. 2-1
2.1.3 Driver packaging subdirectories ... 2-1

2.2 Runtime Architecture ... 2-2
2.2.1 Binary Bindings to the Source Specifications .. 2-2

2.2.1.1 Sizes of UDI-specific data types .. 2-3
2.2.1.2 Implementation-dependent macros .. 2-3
2.2.1.3 UDI functions implemented as macros .. 2-4

2.2.2 Building the Driver Object ... 2-4
2.2.2.1 Object file format ... 2-4
2.2.2.2 Static driver properties encapsulation .. 2-5

3 IA-64 ABI Binding ..3-1
3.1 Processor Architecture ... 3-1

3.1.1 Supported processor types .. 3-1
3.1.2 Endianness .. 3-1
3.1.3 Driver packaging subdirectories ... 3-1

3.2 Runtime Architecture ... 3-2
3.2.1 Binary Bindings to the Source Specifications .. 3-2

3.2.1.1 Sizes of UDI-specific data types .. 3-2
3.2.1.2 Implementation-dependent macros .. 3-3
3.2.1.3 UDI functions implemented as macros .. 3-4

 Table of Contents

 viii UDI IA-32/IA-64 ABI Binding Specification - Version 1.01 - 2/2/01

3.2.2 Building the Driver Object ... 3-4
3.2.2.1 Object file format ... 3-4
3.2.2.2 Static driver properties encapsulation .. 3-4

UDI IA-32/IA-64 ABI Binding Specification - Version 1.01 - 2/2/01 1-1

Introduction to the IA-32/IA-64 ABI Bindings 1

1.1 Overview

The UDI IA-32/IA-64 ABI Binding Specification defines binary bindings of the UDI Core Specification
to the Intel 32-bit and 64-bit processor instruction set architectures referred to as IA-32 and IA-64,
respectively, allowing binary portability of UDI drivers across environments supporting these ABIs.

This chapter defines general requirements for use of the UDI IA-32/IA-64 ABI Binding Specification.
Chapter 2 defines the specifics of the IA-32 ABI Binding. Chapter 3 defines the specifics of the IA-64
ABI Binding.

1.2 General Requirements

Build utilities that build UDI binary modules targeted for these ABIs must create such binary modules in
conformance with the definitions and requirements in this Specification. UDI environments that support
installing UDI binary modules for these ABIs must interpret such modules in conformance with the
definitions and requirements in this Specification.

Binary modules conforming to this Specification must contain no global external symbol definitions
besides those explicitly exported via "provides" declarations or explicitly required by the UDI Core
Specification: udi_init_info for driver modules, and udi_meta_info for metalanguage library
modules. Any such module may contain unresolved external symbol references, but if any such symbols
not explicitly listed in this Specification are outside the union of all symbol names explicitly exported
(via “provides” declaration or similar mechanism) by interfaces listed in the module’s “requires”
declarations, the module shall be considered in error, and the behavior of any attempt to use the module
in a target environment is implementation-dependent.

As described in Chapter 33, “Introduction to ABI Bindings”, of the UDI Core Specification, a UDI ABI
binding must specify the following components:

1. A processor architecture, instruction set definition, and endianness. This defines the
supported instruction sets, and endianness of the compiled UDI driver, as well as
corresponding subdirectory names for the UDI packaging format.

2. Runtime architecture. This defines the procedure calling conventions, register usage, stack
conventions, data layouts, etc.

3. Binary bindings to the source-level UDI specifications. This specifies the sizes of
fundamental UDI data types, the binary-portability requirements of implementation-
dependent UDI macros and functional interfaces, and other miscellaneous binary bindings
related to the source-level specifications.

4. Building the driver object. This specifies the object file format, and the encapsulation of
the static driver properties in the object files.

Normative References IA-32/IA-64 ABI Intro

1-2 UDI IA-32/IA-64 ABI Binding Specification - Version 1.01 - 2/2/01

1.3 Normative References

The UDI IA-32/IA-64 ABI Binding Specification references the following non-UDI specifications, listed
below. These specifications contain provisions that, through reference in this document, constitute
provisions of the UDI IA-32/IA-64 ABI Binding Specification.

1. System V Application Binary Interface Specification
(http://www.sco.com/developer/devspecs)

2. System V Application Binary Interface Intel 386 Architecture Processor Supplement
Specification (http://www.sco.com/developer/devspecs)

3. IA-64 Software Conventions and Runtime Architecture Guide
(http://developer.intel.com/design/ia64/devinfo.htm)

4. ELF-64 Object File Format Specification
(http://www.sco.com/developer/gabi/contents.html)

5. Processor-Specific ELF Supplement for IA-64 (available from Intel Corporation)

The UDI IA-32/IA-64 ABI Binding Specification also references and depends on the UDI Core
Specification and the UDI Physical I/O Specification. (Note, though, that conformance to this
Specification does not require conformance to the UDI Physical I/O Specification; all references to the
UDI Physical I/O Specification are relevant only to drivers and environments that conform to the UDI
Physical I/O Specification).

UDI IA-32/IA-64 ABI Binding Specification - Version 1.01 - 2/2/01 2-1

IA-32 ABI Binding 2

The IA-32 ABI binding defines binary bindings for UDI modules that run on IA-32 processors. This
allows a UDI driver or library to be compiled once for IA-32 and distributed to any conforming IA-32
platform. (However, this does not preclude source distributions).

2.1 Processor Architecture

2.1.1 Supported processor types

The IA-32 binding works across any processor that conforms to the 32-bit Intel architecture. This
includes the Intel® processor types listed in Table 2-1 and all compatible clones by other manufacturers
(e.g. AMD, Cyrix, etc.). For maximum binary portability across IA-32 processors, you must compile a
UDI module so that it does not depend on any specific IA-32 target processor type. Driver packages
must use the subdirectory names specified in Table 2-1 for their IA-32 driver binaries. All binary driver
packages for IA-32 must include at least a generic ia32 binary, but may also include one or more
specific binaries.

2.1.2 Endianness

The IA-32 ABI binding supports only little-endian IA-32 binary UDI modules.

2.1.3 Driver packaging subdirectories

Chapter 31, “Packaging & Distribution Format”, of the UDI Core Specification defines a directory
hierarchy for the contents of UDI driver packages. This hierarchy must contain the various components
of a UDI driver “package”. The package includes the files that must be provided with a driver to make
it installable and useable. In a driver package, one or more “bin ” directories contain the driver and/or
library binary modules. Beneath the “bin ” directory, <abi> subdirectories contain the binaries for a
particular ABI. (See Chapter 31, “Packaging & Distribution Format”, of the UDI Core Specification for
more information.)

The <abi> subdirectory names defined for the IA-32 ABI, with their corresponding processor types,
are defined in Table 2-1 below.

Table 2-1 <abi> subdirectories for IA-32

Directory Name Processor Type

ia32 Any IA-32 Processor

ia32_p Any Pentium Processor

Runtime Architecture IA-32 ABI

2-2 UDI IA-32/IA-64 ABI Binding Specification - Version 1.01 - 2/2/01

Note that the Pentium II Xeon™ and Celeron™ processors share the same instruction set with the
Pentium II processor and thus correspond to ia32_p2 . Likewise, the Pentium III Xeon processor
corresponds to ia32_p3 .

2.2 Runtime Architecture

The runtime architecture for this IA-32 ABI binding shall be the IA-32 runtime architecture as defined
in the System V Application Binary Interface Specification (http://www.sco.com/developer/devspecs) and
the System V Application Binary Interface Intel 386 Architecture Processor Supplement Specification
(http://www.sco.com/developer/devspecs).

In particular, a compliant environment must provide an execution environment, implement object file
support, and provide linking and loading.

2.2.1 Binary Bindings to the Source Specifications

This section defines the binary bindings to the source-level UDI Specifications. Only a few aspects of
the source-level UDI Specifications are implementation-dependent, requiring additional specification for
binary portability. These fall into three categories: the sizes of fundamental UDI data types, the binary-
portability requirements of implementation-dependent UDI macros, and the specification of UDI
functional interfaces, beyond the UDI utility functions, that are allowed to be implemented as macros.
Utility functions in UDI can always be implemented as macros without breaking binary portability, but
ABI-conforming environments must always provide functional versions, to allow for build environments
that choose not to do so. For more information, see Chapter 19, “Introduction to Utility Functions”, of
the UDI Core Specification.

ia32_p4 Pentium-4 Processor

ia32_p3 Pentium III Processor

ia32_p2 Pentium II Processor

ia32_pmmx Pentium Processor with MMX™ Technology

ia32_ppro Pentium Pro Processor

ia32_486 Intel486™ Processor

ia32_386 Intel386™ Processor

Table 2-1 <abi> subdirectories for IA-32

Directory Name Processor Type

UDI IA-32/IA-64 ABI Binding Specification - Version 1.01 - 2/2/01 2-3

IA-32 ABI Runtime Architecture

2.2.1.1 Sizes of UDI-specific data types

As indicated in Chapter 33, “Introduction to ABI Bindings”, of the UDI Core Specification, an ABI
specification must specify the size of each of the following data types, defined as follows for the IA-32
ABI binding.

2.2.1.2 Implementation-dependent macros

An implementation-dependent macro is an interface specified to be a macro, other than a utility macro,
in a UDI Specification. The expansion of such macros is not specified at the source level, but in order to
allow binary portability an ABI must specify the effect of such expansion on code generation, especially
including any external symbol references. Further, any environment or platform dependencies must be
hidden behind external function calls contained in the macro expansion, so that the compiled UDI
module can be installed on different platforms.

Only the UDI Core Specification and the UDI Physical I/O Specification may specify implementation-
dependent macros. There are only two such macros in those specifications: the UDI_HANDLE_ID macro
and the UDI_HANDLE_IS_NULL macro.

For the IA-32 ABI, the UDI_HANDLE_ID macro must return the exact, non-transformed contents of the
specified handle, without producing any external symbol references. The actual C definition of the
macro may be provided in an implementation-dependent manner in udi.h. Depending on the actual type
definition of the handle type, acceptable definitions include:

#define UDI_HANDLE_ID(handle, handle_type) \
((void *)(handle))

and:

Table 2-2 UDI-specific data type sizes for IA-32

Data Type Size Description

void * 32 bits Pointer type

udi_size_t 32 bits Abstract type – Size type

udi_index_t 8 bits Abstract type – Index type

udi_buf_path_t 32 bits Opaque type – Buffer path handle

udi_channel_t 32 bits Opaque type – Channel handle

udi_origin_t 32 bits Opaque type – Control block origin handle

udi_timestamp_t 32 bits Opaque type – Timestamp type

udi_dma_constraints_t 32 bits Opaque type – DMA constraints handle

udi_dma_handle_t 32 bits Opaque type – DMA handle

udi_pio_handle_t 32 bits Opaque type – PIO handle

Runtime Architecture IA-32 ABI

2-4 UDI IA-32/IA-64 ABI Binding Specification - Version 1.01 - 2/2/01

#define UDI_HANDLE_ID(handle, handle_type) \
(*(void **)&(handle))

The UDI_HANDLE_IS_NULL macro must return TRUE if the handle value is zero. For the IA-32 ABI,
all handle types are 32 bits, so this can be done using appropriate (void *) casts and comparing
against NULL. The actual C definition of the macro may be provided in an implementation-dependent
manner in udi.h . Depending on the actual type definition of the handle type, acceptable definitions
include:

#define UDI_HANDLE_IS_NULL(handle, handle_type) \
((void *)(handle) == NULL)

and:

#define UDI_HANDLE_IS_NULL(handle, handle_type) \
(*(void **)&(handle) == NULL)

2.2.1.3 UDI functions implemented as macros

As previously noted, an ABI binding must specify for each non-utility UDI functional interface whether
it must always be implemented as an external function call, must be implemented as a macro, or may be
either.

For the IA-32 ABI, all non-utility functional interfaces must be implemented as external function calls,
except udi_assert , which must be implemented either as a macro that does nothing or as a macro
that calls the following function when the assertion condition test fails:

void __udi_assert(const char *expr,
const char *filename,
int lineno);

2.2.2 Building the Driver Object

The UDI Core Specification defines the generic aspects of the packaging and distribution of UDI
drivers, whether distributed in source or binary format. The ABI binding defines the object file format
and the binding of the static driver properties to the driver’s object files.

2.2.2.1 Object file format

The object file format for this IA-32 binding shall be the ELF-32 object file format as defined in the
System V Application Binary Interface Specification and the System V Application Binary Interface Intel
386 Architecture Processor Supplement Specification.

Any driver package that includes IA-32 binary modules in a particular alternate version within the
package must include IA-32 binary modules for all modules in that alternate.

UDI IA-32/IA-64 ABI Binding Specification - Version 1.01 - 2/2/01 2-5

IA-32 ABI Runtime Architecture

2.2.2.2 Static driver properties encapsulation

A driver’s static driver properties shall be encapsulated in the ELF-32 object file of the driver’s primary
module, in a special no-load section of that object file called, “.udiprops ”. The contents of this
section are ASCII-encoded, null-terminated strings from the “udiprops.txt ” file. The only
differences between the contents of the “udiprops.txt ” file and the “.udiprops ” section are that:

• Comments are removed.

• Extraneous white space is removed.

• All line terminator characters are removed, and each declaration is appended with a null
character (‘\0’), so that each declaration is stored as a single, null terminated string.

• Blank lines may be present (i.e. a null character may appear without any preceeding non-null
text, even at the beginning and end of the properties section).

Runtime Architecture IA-32 ABI

2-6 UDI IA-32/IA-64 ABI Binding Specification - Version 1.01 - 2/2/01

UDI IA-32/IA-64 ABI Binding Specification - Version 1.01 - 2/2/01 3-1

IA-64 ABI Binding 3

The IA-64 ABI binding defines binary bindings for UDI modules that run on IA-64 processors. This
allows a UDI driver or library to be compiled once for IA-64 (for a particular endianness) and
distributed to any conforming IA-64 platform that supports the same endianness. (However, this does not
preclude source distributions).

3.1 Processor Architecture

3.1.1 Supported processor types

The IA-64 binding is designed to work across any processor that conforms to the 64-bit Intel
Architecture. This includes the Intel® processor types listed in Table 3-1. For maximum binary
portability across IA-64 processors, you must compile a UDI module so that it does not depend on any
specific IA-64 target processor type. Driver packages must use the subdirectory names specified in Table
3-1 for their IA-64 binaries. All binary driver packages for IA-64 must include at least a generic
ia64_le or ia64_be binary, but may also include one or more specific binaries.

3.1.2 Endianness

The IA-64 ABI binding supports both big- and little-endian IA-64 binary UDI modules, but conformant
build tools and environments are only required to support one endianness or the other.

It is recommended, but not required, that little-endian binaries be supported.

3.1.3 Driver packaging subdirectories

Chapter 31, “Packaging & Distribution Format”, of the UDI Core Specification defines a directory
hierarchy for the contents of UDI driver packages. This hierarchy must contain the various components
of a UDI driver “package”. The package includes the files that must be provided with a driver to make
it installable and useable. In a driver package, one or more “bin ” directories contain the driver and/or
library binary modules. Beneath the “bin ” directory, <abi> subdirectories contain the binaries for a
particular ABI. (See Chapter 31, “Packaging & Distribution Format”, of the UDI Core Specification for
more information.)

Runtime Architecture IA-64 ABI

3-2 UDI IA-32/IA-64 ABI Binding Specification - Version 1.01 - 2/2/01

The <abi> subdirectory names defined for the IA-64 ABI, with their corresponding processor types,
are defined in Table 3-1 below.

3.2 Runtime Architecture

The runtime architecture for this IA-64 ABI binding shall be the IA-64 runtime architecture as defined
in the IA-64 Software Conventions and Runtime Architecture Guide
(http://developer.intel.com/design/ia64/devinfo.htm) from Intel and Hewlett-Packard. This is the
definition of the runtime architecture that is common to all operating environments on the IA-64
architecture.

3.2.1 Binary Bindings to the Source Specifications

This section defines the binary bindings to the source-level UDI Specifications. Only a few aspects of
the source-level UDI Specifications are implementation-dependent, requiring additional specification for
binary portability. These fall into three categories: the sizes of fundamental UDI data types, the binary-
portability requirements of implementation-dependent UDI macros, and the specification of UDI
functional interfaces, beyond the UDI utility functions, that are allowed to be implemented as macros.
Utility functions in UDI can always be implemented as macros without breaking binary portability, but
ABI-conforming environments must always provide functional versions, to allow for build environments
that choose not to do so. For more information, see Chapter 19, “Introduction to Utility Functions”, of
the UDI Core Specification.

3.2.1.1 Sizes of UDI-specific data types

As indicated in Chapter 33, “Introduction to ABI Bindings”, of the UDI Core Specification, an ABI
specification must specify the size of each of the following data types, defined as follows for the IA-64
ABI binding.

Table 3-1 <abi> subdirectories for IA-64

Directory Name Processor Type

ia64_le Any IA-64 Processor in little-endian mode

ia64_be Any IA-64 Processor in big-endian mode

ia64_le_itanium Intel Itanium™ Processor in little-endian mode

ia64_be_itanium Intel Itanium™ Processor in big-endian mode

Table 3-2 UDI-specific data type sizes for IA-64

Data Type Size Description

void * 64 bits Pointer type

udi_size_t 64 bits Abstract type – Size type

udi_index_t 8 bits Abstract type – Index type

udi_buf_path_t 64 bits Opaque type – Buffer path handle

UDI IA-32/IA-64 ABI Binding Specification - Version 1.01 - 2/2/01 3-3

IA-64 ABI Runtime Architecture

3.2.1.2 Implementation-dependent macros

An implementation-dependent macro is an interface specified to be a macro, other than a utility macro,
in a UDI Specification. The expansion of such macros is not specified at the source level, but in order to
allow binary portability an ABI must specify the effect of such expansion on code generation, especially
including any external symbol references. Further, any environment or platform dependencies must be
hidden behind external function calls contained in the macro expansion, so that the compiled UDI
module can be installed on different platforms.

Only the UDI Core Specification and the UDI Physical I/O Specification may specify implementation-
dependent macros. There are only two such macros in those specifications: the UDI_HANDLE_ID macro
and the UDI_HANDLE_IS_NULL macro.

For the IA-64 ABI, the UDI_HANDLE_ID macro must return the exact, non-transformed contents of the
specified handle, without producing any external symbol references. The actual C definition of the
macro may be provided in an implementation-dependent manner in udi.h. Depending on the actual type
definition of the handle type, and the target programming model (e.g. LP64 vs P64), acceptable
definitions include:

#define UDI_HANDLE_ID(handle, handle_type) \
((void *)(handle))

and:

#define UDI_HANDLE_ID(handle, handle_type) \
(*(void **)&(handle))

The UDI_HANDLE_IS_NULL macro must return TRUE if the handle value is zero. For the IA-64 ABI,
all handle types are 64 bits, so this can be done using appropriate (void *) casts and comparing
against NULL. The actual C definition of the macro may be provided in an implementation-dependent
manner in udi.h . Depending on the actual type definition of the handle type, acceptable definitions
include:

#define UDI_HANDLE_IS_NULL(handle, handle_type) \
((void *)(handle) == NULL)

and:

udi_channel_t 64 bits Opaque type – Channel handle

udi_origin_t 64 bits Opaque type – Control block origin handle

udi_timestamp_t 64 bits Opaque type – Timestamp type

udi_dma_constraints_t 64 bits Opaque type – DMA constraints handle

udi_dma_handle_t 64 bits Opaque type – DMA handle

udi_pio_handle_t 64 bits Opaque type – PIO handle

Table 3-2 UDI-specific data type sizes for IA-64

Data Type Size Description

Runtime Architecture IA-64 ABI

3-4 UDI IA-32/IA-64 ABI Binding Specification - Version 1.01 - 2/2/01

#define UDI_HANDLE_IS_NULL(handle, handle_type) \
(*(void **)&(handle) == NULL)

3.2.1.3 UDI functions implemented as macros

As previously noted, an ABI binding must specify for each non-utility UDI functional interface whether
it must always be implemented as an external function call, must be implemented as a macro, or may be
either.

For the IA-64 ABI, all non-utility functional interfaces must be implemented as external function calls,
except udi_assert , which must be implemented either as a macro that does nothing or as a macro
that calls the following function when the assertion condition test fails:

void __udi_assert(const char *expr,
const char *filename,
int lineno);

3.2.2 Building the Driver Object

The UDI Core Specification defines the generic aspects of the packaging and distribution of UDI
drivers, whether distributed in source or binary format. The ABI binding defines the object file format
and the binding of the static driver properties to the driver’s object files.

3.2.2.1 Object file format

The object file format for this IA-64 binding shall be the ELF-64 object file format as defined in the
ELF-64 Object File Format Specification (http://www.sco.com/developer/gabi/contents.html) and in the
Processor-Specific ELF Supplement for IA-64 (available from Intel Corporation).

The appropriate endian bit indicating the target endianness of the driver module must be set in the ELF-
64 file header, as defined in the ELF-64 Object File Format Specification.

Any driver package that includes little-endian IA-64 binary modules in a particular alternate version
within the package must include little-endian IA-64 binary modules for all modules in that alternate.

Any driver package that includes big-endian IA-64 binary modules in a particular alternate version
within the package must include big-endian IA-64 binary modules for all modules in that alternate.

3.2.2.2 Static driver properties encapsulation

A driver’s static driver properties shall be encapsulated in the ELF-64 object file of the driver’s primary
module, in a special no-load section of that object file called, “.udiprops ”. The contents of this
section are ASCII-encoded, null-terminated strings from the “udiprops.txt ” file. The only
differences between the contents of the “udiprops.txt ” file and the “.udiprops ” section are that:

• Comments are removed.

• Extraneous white space is removed.

• All line terminator characters are removed, and each declaration is appended with a null
character (‘\0’), so that each declaration is stored as a single, null terminated string.

UDI IA-32/IA-64 ABI Binding Specification - Version 1.01 - 2/2/01 3-5

IA-64 ABI Runtime Architecture

• Blank lines may be present (i.e. a null character may appear without any preceeding non-null
text, even at the beginning and end of the properties section).

Runtime Architecture IA-64 ABI

3-6 UDI IA-32/IA-64 ABI Binding Specification - Version 1.01 - 2/2/01

	Copyright Notice
	Acknowledgements
	Abstract
	Table of Contents
	Introduction to the IA-32/IA-64 ABI Bindings
	1.1 Overview
	1.2 General Requirements
	1.3 Normative References

	IA-32 ABI Binding
	2.1 Processor Architecture
	Table 2�1 <abi> subdirectories for IA-32

	2.2 Runtime Architecture
	Table 2�2 UDI-specific data type sizes for IA-32

	IA-64 ABI Binding
	3.1 Processor Architecture
	Table 3�1 <abi> subdirectories for IA-64

	3.2 Runtime Architecture
	Table 3�2 UDI-specific data type sizes for IA-64

