NEC

Preliminary User’'s Manual

VR4111™

64/32-bit Microprocessor

LPD30111

Document No. U13137EJ2VOUMOO (2nd edition)
Date Published April 1998 N CP(K)

© NEC Corporation 1998
© MIPS Technologies, Inc. 1998
Printed in Japan

[MEMO]

NOTES FOR CMOS DEVICES

@ PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity
as much as possible, and quickly dissipate it once, when it has occurred. Environmental control
must be adequate. When it is dry, humidifier should be used. Itis recommended to avoid using
insulators that easily build static electricity. Semiconductor devices must be stored and transported
in an anti-static container, static shielding bag or conductive material. All test and measurement
tools including work bench and floor should be grounded. The operator should be grounded using
wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need
to be taken for PW boards with semiconductor devices on it.

® HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided
to the input pins, itis possible that an internal input level may be generated due to noise, etc., hence
causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Inputlevels
of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused
pin should be connected to Voo or GND with a resistor, if it is considered to have a possibility of
being an output pin. All handling related to the unused pins must be judged device by device and
related specifications governing the devices.

@ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS
does not define the initial operation status of the device. Immediately after the power source is
turned ON, the devices with reset function have not yet been initialized. Hence, power-on does
not guarantee out-pin levels, 1/0 settings or contents of registers. Device is not initialized until the
reset signal is received. Reset operation must be executed immediately after power-on for devices
having reset function.

Vr3000, Vr4000, VrR4100, VR4102, VR4110, VrR4111, VrR4300, VR4400, and Vr Series are trademarks of NEC
Corporation.

MIPS is a trademark of MIPS Technologies, Inc.

HSP is a trademark of PC-TEL, Inc.

iAPX is a trademark of Intel Corporation.

DEC VAX is a trademark of Digital Equipment Corporation.

UNIX is a registered trademark in the United States and other countries, licensed exclusively through
X/Open Company, Ltd.

Exporting this product or equipment that include this product may require a governmental license from
the U.S.A. for some countries because this product utilizes technologies limited by the export control
regulations of the U.S.A.

The information in this document is subject to change without notice.

No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from use of a device described herein or any other liability arising
from use of such device. No license, either express, implied or otherwise, is granted under any patents,
copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or
property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety
measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special”, and "Specific". The Specific quality grade applies only to devices developed based on
a customer designated "quality assurance program" for a specific application. The recommended applications
of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each
device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment,
audio and visual equipment, home electronic appliances, machine tools, personal electronic
equipment and industrial robots

Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)

Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books.
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,
they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.

M7 96.5

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC
product in your application, please contact the NEC office in your country to obtain a list of authorized
representatives and distributors. They will verify:

+ Device availability
« Ordering information

« Product release schedule

- Availability of related technical literature

« Development environment specifications (for example, specifications for third-party tools and
components, host computers, power plugs, AC supply voltages, and so forth)

+ Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary

from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California

Tel: 408-588-6000
800-366-9782

Fax: 408-588-6130
800-729-9288

NEC Electronics (Germany) GmbH
Duesseldorf, Germany

Tel: 0211-65 03 02

Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.
Milton Keynes, UK

Tel: 01908-691-133

Fax: 01908-670-290

NEC Electronics Italiana s.r.1.
Milano, Italy

Tel: 02-66 75 41

Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH
Benelux Office

Eindhoven, The Netherlands

Tel: 040-2445845

Fax: 040-2444580

NEC Electronics (France) S.A.
Velizy-Villacoublay, France

Tel: 01-30-67 58 00

Fax: 01-30-67 58 99

NEC Electronics (France) S.A.
Spain Office

Madrid, Spain

Tel: 01-504-2787

Fax: 01-504-2860

NEC Electronics (Germany) GmbH
Scandinavia Office

Taeby, Sweden

Tel: 08-63 80 820

Fax: 08-63 80 388

NEC Electronics Hong Kong Ltd.
Hong Kong

Tel: 2886-9318

Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.
Seoul Branch

Seoul, Korea

Tel: 02-528-0303

Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.
United Square, Singapore 1130
Tel: 65-253-8311

Fax: 65-250-3583

NEC Electronics Taiwan Ltd.
Taipei, Taiwan

Tel: 02-719-2377

Fax: 02-719-5951

NEC do Brasil S.A.
Cumbica-Guarulhos-SP, Brasil
Tel: 011-6465-6810

Fax: 011-6465-6829

J98. 2

MAJOR REVISIONS IN THIS EDITION

Page Description

pP.57 Addition of Table 1-19 Relationships Between CLKSEL Pin Settings and Clock Frequencies

P.67 Addition of a description to MPOWER function in Table 2-4 Initialization Interface Signals

P.68 Addition and change of descriptions of TxD/CLKSEL2, RTS#/CLKSEL1, and DTR#/CLKSELDO functions in Table
2-5 RS-232C Interface Signals

pP.71 Change of descriptions of GPIO49 function in Table 2-11 General-purpose I/O Signals

p.72 Change of descriptions of MIPS16EN function in Table 2-14 Initial Setting Signals

P.73 Addition of a caution to Table 2-15 Dedicated V ppb and GND Signals

P.76 Change of the DBUS32/GPI1048 pin state in the Suspend mode in Table 2-16 Pin Status upon Specific
States

P.101, 102 Addition of descriptions about an ERET instruction to 4.4 ISA MODE

P.230 Addition of descriptions about the 2.5-V power supply system to 8.1.1 RTC Reset

P.233 Addition of descriptions about the 2.5-V power supply system to 8.1.4 Software Shutdown

p.234 Addition of descriptions about the 2.5-V power supply system to 8.1.5 HALTimer Shutdown

P.235 Addition of descriptions about the 2.5-V power supply system to 8.2 POWER-ON SEQUENCE

p.240 Addition of descriptions to 8.4.1 Power Modes (4) Hibernate Mode

P.289 Correction of Figure 11-7 1-Byte Access to Even Address Using 16-Bit Bus (WISAA[2:0] = 101)

P.290 Addition of descriptions and corrections to Figure 11-8 2-Byte Access When Sampling IOCHRDY at High
Level Using 16-Bit Bus (WISAA[2:0] = 101)

pP.291 Correction of Figure 11-9 1-Byte Access to Odd Address Using 16-Bit Bus (WISAA[2:0] = 101) and Figure
11-10 1-Byte Access to Odd Address Using 8-Bit Bus (WISAA[2:0] = 101

p.292 Addition of corrections, descriptions, and a caution to Figure 11-11 2-Byte Access When Sampling ZWS# at
Low Level Using 16-Bit Bus (WISAA[2:0] = 101)

p.292 Correction of Figure 11-12 2-Byte Access When Sampling ZWS# at Low Level Using 8-Bit Bus
(WISAA[2:0] = 101)

P.293 Addition of a description to 11.5.2 (3) Bus Operations in High-Speed System Bus

P.294 Correction of Figure 11-13 2-Byte Access Using 16-Bit Bus (WLCD/M[2:0] = 101) and Figure 11-14 1-Byte
Access Using 8-Bit Bus (WLCD/M[2:0] = 101)

P.295 Correction of Figure 11-15 2-Byte Access When Sampling ZWS# at Low Level Using 16-Bit Bus
(WLCD/M[2:0] = 101) and Figure 11-16 1-Byte Access When Sampling ZWS# at Low Level Using 8-Bit
Bus (WLCD/M[2:0] = 101)

P.296 Correction of Figure 11-17 2-Byte Access to LCD Controller (WLCD/M[2:0] = 010)

p.297 Correction of Figure 11-18 2-Byte Access to LCD Controller (WLCD/M[2:0] = 011) and Figure 11-19
Access to LCD Controller When Data Bus Size Is 32 Bits

p.315 Addition of a description to 13.2 DMA PROIRITY CONTROL

p.355 Addition of a description about the 2.5-V power supply system to 16.1.3 Power-on Control

P.362 Change of descriptions in 16.1.4 (3) Suspend Mode

P.365 Addition of descriptions to 16.2.1 PMUINTREG (0x0B00 00AO)

p.397 Addition of descriptions to 19.1 General

P.425, 426 Change of descriptions about functions of bits 13 to 10 and addition of a description to 20.3.1 PIUCNTREG
(0x0B00 0122)

p.428 Addition of descriptions and a caution to 20.3.2 PIUINTREG (0x0b00 0124)

P.463 Change of descriptions about functions of bits 9 to 4 in 22.2.2 KIUSCANREP (0x0B00 0190)

P.470 Change of a description about a function of bit 4 in 25.2.8 SIULC (0x0C00 0003)

P.622, 625 Addition of descriptions about the ISA mode bit in each Description and Operation of ERET, JAL, JALR,

to 628 JALX, and JR instructions

P.766 Addition of a description about the 2.5-V power supply system to A.2.7 PMU

The mark »shows major revised points.

Readers

Purpose

Organization

How to read this manual

Conventions

PREFACE

This manual targets users who intend to understand the functions of the VR4111 and
to design application systems using this microprocessor.

This manual introduces the architecture and hardware functions of the VR4111 to
users, following the organization described below.

This manual consists of the following contents:

* Introduction

* Pipeline operation

» Cache organization and memory management system
» Exception processing

* Initialization interface

* Interrupts

* Peripheral units

* Instruction set details

It is assumed that the reader of this manual has general knowledge in the fields of
electric engineering, logic circuits, and microcomputers.

The VR4000™ in this manual includes the VR4400™.

To learn in detail about the function of a specific instruction,
—~ Read CHAPTER 3 MIPS™ Ill INSTRUCTION SET SUMMARY, CHAPTER 4
MIPS16 INSTRUCTION SET, CHAPTER 28 MIPS™ IlIl INSTRUCTION SET
DETAILS, and CHAPTER 29 MIPS16 INSTRUCTION SET FORMAT.

To learn about the overall functions of the VrR4111,
- Read this manual in sequential order.

To learn about electrical specifications,
- Refer to Data Sheet which is separately available.

Data significance: Higher on left and lower on right

Active low: XXX# (trailing # after pin and signal names)
Note: Description of item marked with Note in the text
Caution : Information requiring particular attention
Remark: Supplementary information

Numeric representation: binary/decimal ... XXXX
hexadecimal ... OXXXXX
Prefixes representing an exponent of 2 (for address space or memory capacity):
K (kilo) 2°=1024
M (mega) 2= 1024’
G (giga) 2% =1024°
T (tera) 2 =1024"
P (peta) 2% =1024°
E (exa) 2% =1024°

Related Documents

The related documents indicated here may include preliminary version.

preliminary versions are not marked as such.

» User's manual
VR4111 User’'s Manual This manual
VR4102™ User's Manual U12739

» Data sheet
uPD30111 (VR4111) Data Sheet Under preparation

* Application note
VR Series™ Application Note programming guide Under preparation

However,

CONTENTS

CHAPTER 1 INTRODUGCTIONottt s e e e e s ettt e e e e e e e ee e s e e e e e eeaastaaeaeaeeaneses aeeeees 31
R O e N I U RSP PTN 31
1.2 ORDERING INFORMATIONoitiiiiiiiiiiieiieieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeerereeerereeeeeeetetetetetetetetetereeeeeen 32
1.3 64-BIT ARCHITECTURE..... .ottt e e e e e e e e e e raaraans 32
1.4 VRA111 PROGCESSOR.....ciuiiiiiiiiiiiiititieiitetieaeeeeeeeeeeeaeeeeeaeererarerererreeerrrr e 32

1.4.1 Internal BIOCK STFUCLUIE ... ittt ettt e e e e e ettt et e e e e e e snt bt e e e e e e aan e e e eannneneeaeas 33
O 1 (@ I = (= To 1S3 =] £ PP 35
1.5 VRAL10 CPU CORE ..ottt ettt e et et e e e e e e e e e tab s e e e aeeeeateannnaaaaaees 45
1.5.1 Internal BIOCK CONFIQUIALIONuuiiiiiiiiiiiiiie ettt e e e e e e et r e e e e s e nannae sennnereeeeas 45
T O = U o LT 111 (=] £ UERP PP 47
1.5.3 CPU INSIIUCHON SEE OVEIVIEWeeiiiiiiiiiiiie ittt ettt ettt e e st e e e ebe e e e s bbeeessbbebbeeennes 48
1.5.4 Data FOrmats and AQArESSINGcceeeiiiiuuueiieee et iee e e e ettt ee e e e e e tabeeeeae e s e anaeaeeeaeeaaaanneeeeesreeeeens 50
1.5.5 COProCeSSOrS (CPO) ...uuiiiiiieiiiiiiieii e e e e ettt e e e e sttt e e e e e e st e e e e e e e s s bbb e e e eaeeesssstaaeeeaeeeasneesasnereeeeas 52
1.5.6 Floating-Point UNIt (FPU) ..ottt ettt e e e e et e e e e e e aan s e enneeeeaeas 54
1.6 CPU CORE MEMORY MANAGEMENT SYSTEM (MMU)....cccooiiiiiiiiee et 55
1.6.1 Translation Lookaside BUfer (TLB).........cuuu ettt e e e e e e eeeeeas 55
1.6.2 OPerating MOUESuuiiiiiiei ittt e et e e e e e ettt e e e e e st b e e e e e e e s satbaaaeaaeeasaeessasnraeeaeas 55
GRS T O Tor o [TSP EREPPRPP 56
1.7 INSTRUCTION PIPELINEutttitiiiitieiiitiiiiieieeeeeeeeeeeeeeeeeeeeerererererereserereeeeeeeteteteteteteteteeereeeeeen 56
1.8 CLOCK INTERFACE.. ... ittt e e e s e e e e b e e e e e et eestaanraaaaes s 56

CHAPTER 2 PIN FUNCTIONS. ... ettt s e e e s e et s e e e e e e e eaataaa s s e e e eaeaesten seaeaaees 59
2.1 PIN CONFIGURATION. ...cittttttttiit ettt e ettt e e e e e e e e et e e e e e e e ata b aeaeaeaaesssbnsaeeaaeannes . 59
2.2 PIN FUNCTION DESCRIPTION.....cittttititiiitiiiiitieeeeee ettt te et e aeteteaeaaaeaeaaaaaaaaaaaaaaaaaaaaaaaaaees 63

2.2.1 System BUs INterface SIGNaIS.........ooiii it e e e e 64
2.2.2 CIOCK INtEIACE SIGN@AIS....eiiiiiiiiiiiiieie ettt e e e e e e e s e st e e e e e s e aatbaeaaaeesaeeaaeeeannnnes 66
2.2.3 Battery Monitor INterface SIGNAIScooiuiiiiiiee e e e e 66
2.2.4 Initialization INterface SIGNAIScoiiiiiiiiiie e e e e e s e e e e e e s as eraaeeeasneaes 67
2.2.5 RS-232C INtrfaCe SIGNAIScceiiiiiiiiiiie ettt e e et e e e e e e e e e e e e e e e e e e e annaes 68
2.2.6 IrDA INtErfaCe SIGNAIS........ueiiiiiiiiiiiiiii et e e e e e e e e s s e e e e e e e s et b e e e aeeaaeeeannnaes 69
2.2.7 Debug Serial INterface SIGNAIScoii i e et e e e e e e e e e e e ennaes 69
2.2.8 Keyboard INterface SIgNalSuuiiiiiiiiiiiiiii e s e e e e e e e e e naaaes 70
2.2.9 AUdIO INtErfACE SIGNAIS......cei ittt e e e r e e e e e et e e e e e e eeeaaeaaaannnnes 70
2.2.10 Touch Panel/General Purpose A/D Interface Signalscccoeiiiiiiiiieeeiiiiiiiiiee e sciieeeee e 70
2.2.11 General-purpoSe /O SIGNAISeeiiiiaiiiiii ettt e e e e e et e e e e e e e anee s e e ennnees 71
2.2.12 HSP MODEM INterface SIgNQAlS.......cueiiiiiiiiiiiiiiieei ittt e e s ettt e e e e s e st e e e e e e s esntaaeaeeeesessesnnnnes 72
2.2.13 LED INterface SIGNal........ooo ittt e e e e e e e e e e e as 72
2.1.14 Initial SELHNG SIGNAIS ...eeeiiiiiiiiiee e a e e e e e e e e e e araaaaas 72
2.2.15 Dedicated Vop and GND SIQNAIS.......coiiiuiiiiiie et e e et e e e e e s aaeeeeaaeeean 73
2 T 1V 1 N 74
2.3.1 Pin Status upon SPECIfIC SALESccoiiiiiiiiiiiii e e e et e e e e e e enee e eneees 74
2.3.2 Connection of Unused Pins and Pin [/O CirCUILSeeiiiriiiiiiieeiiiie et 77
A T B o1 o T VL@ I O (ol U RO UUPUERTRRNE 80

CHAPTER 3 MIPS IIl INSTRUCTION SET SUMMARYooiiiiiiiiiiiiiie et 81

3.1 CPU INSTRUCTION FORMATSoottiteettitteeeeeeeeeeeeteeeeeeeeeeeeeeeeeeeeseeeeeeeeeeeeeereeeereeeeeeeeeeeteeeeeees 81
3.2 INSTRUCTION CLASSES.ottt ettt e e e e e e e e e e e e e e araa s 82
3.2.1 Load and Store INSIIUCHIONSccoiiiiiiiiiiie ettt et e et e e abs e e e nnnees 82
3.2.2 ComputationNal INSIUCTIONSeiiiiiiiiiieiei et et e e e e st e e e e e e e st e e e e e e e e annee s e e anneeeeeas 86

3.2.3 Jump and BranCh INSITUCLIONScoiiiiiiiiie et e e e e e e e e e e e et ee s snranees 92

3.2.4 SPECIAI INSIIUCHIONSeeitiee ettt e e e ettt e e e e s e bt e e e e e e e e nntbeeeeaeesaeeaaeeeaanneneeeas 96

3.2.5 System Control Coprocessor (CPO) INSIIUCHIONSccoiiiiiiiiiie it e e s e e e 97
CHAPTER 4 MIPS16 INSTRUCTION SET ...uuuuiiuiiieieieieieieueunemmeeereeeeeeeereeereereeeereerereerrrerrerrern 99
S R 1 U 8 I 1L 99
4.2 FEATURES ...ttt e e e e ettt e e e e et e e e ta bt e e e e et e ee e e e e eeas s 99
T 4] ST I 1 s = 100
A4 ISA MODE..... i e 101
4.4.1 Changing ISA Mode Bit By SOftWArE........c..uuiiiiieiiic e e 101
4.4.2 Changing ISA Mode Bit DY EXCEPLIONuuiiiiiiiiiiii ettt a e e e e e e 101
4.4.3 Enabling Change ISA MOGE Bitcciieiiiiiiiiiiiee ettt e e e s et a e e e e s e nnaaaerraeeas 102

45 TYPES OF INSTRUCTIONS ...ttt e e e et e s e e e e e enaab s e e e aaeeeesenen 102
4.6 INSTRUCTION FORMAT ..o aaeaeaeseaeaesesssssssaassesssssssssssssssssssssnsnsnnnrnrnnns 104
4.7 MIPS16 OPERATION CODE BIT ENCODINGouciiiiiiiiiiiiiiin ettt e s e e e aaaaane 108
4.8 OUTLINE OF INSTRUCTIONSouiuiuiiiutututuuntntnuntnunnnnnrnraranererenereaeeeererererereearee 111
4.8.1 PC-Relative INSITUCLIONScoiiiiiiiiiiiie ettt e e e e e s et e e e e e e e e nae e e e e e e e e e e e e anenneeas 111
4.8.2 EXIENG INSIIUCTION ..ttt ettt ettt et e e et e e sbb e e e e s snbbeeeabbeeenans 112
TG I B 1= F= 1] (o] £ TP EPRTR R 114
4.8.4 INSIIUCHON DELAIIS ..ottt ettt e e st e e sbte e e e e e snbbeeeaebeeenan 115
CHAPTER 5 VRALLL PIPELINE ...ttt s etsts e s snts s snsnsnsnennnnnnes 129
5.1 PIPELINE STAGESci oottt ettt ettt et et et e aaeaeaaaaaaaaaaaaanes sres 129
5.1.1 PIPEIING ACHVILIES eeeeeiiee ettt ettt e e e ettt e e e e sttt e e e e e s e anaaeeeeeaeeeaannseeeeeaebneeaaaeeaannenneeas 130

5.2 BRANGCH DELAY .ottt nnnnnnnnnnnnnn sree 132
5.3 LOAD DELAY titiiiit ittt ettt sttt e e e e e et e et e e e e e e e e e e e e et e e et e aaaaaee tarrenan 132
Lo A e | I N R @ T =t o I [N 132
55 INTERLOCK AND EXCEPTION HANDLING........ccotttitiiiie ettt 139
5.5.1 EXCEPLON CONUILIONS ...viiiiiiiiiiiiiiiiee e e ettt e e s ettt e e e s e e e e e e s e et e e e e e e e ssastbeeeeaeeaa aaeeessneraees 142
5.5.2 StAll CONAILIONS ...ttt e e e e ettt e e e e e e e s ba et e e e e e e e e sbeeeeestaeeaaeeeaannseneeas 143
LT B 11 o I @0 o 1110 1SR PPRR PP 144
LT S =1/ o T- L1110 P EPRTR P 145

5.6 CODE COMPATIBILITY .outttutuuuiuteueueueueunueueuenennnenenneereeeeeeeeereeereeereeeeerereeerererrrerrr 145
CHAPTER 6 MEMORY MANAGEMENT SYSTEM......uuutiiiuiuiiitieieieieeeieeerereneenerereerereerereeeeeererern 147
6.1 TRANSLATION LOOKASIDE BUFFER (TLB)...cciiiiiciiiiiiieie e ceciitieee e e e ciienen e e e e 147
6.2 VIRTUAL ADDRESS SPACE ... o it a e e e e e eeaaaan s 147
6.2.1 Virtual-to-Physical ADdress TransIation.............ccciuiriiiiieeeiiiiiiiier e e e e e e iraa e 148

6.2.2 32-bit Mode AdAress TranSIAtioNoo.ueieiii e e e e e e s e e ereeeaa s 149

10

6.2.3 64-bit Mode AdAress TranSIatioN........cccciiiiiiiiiiiiiiiiiic i aaasasnaan sereeenes 150

6.2.4 OPEratiNng MOGESttt ettt e e e e ettt e e e e e e ettt e e e e e e e ntbeeeeaaeeaeaeesaannreeeaean 151

6.2.5 User Mode Virtual AQArESSINGcciiiiurriiiie e iieiiiiee e e e s eesiit e e e e e e e e e e e e e s e atbtaaaeeaesaasassrees braeeeens 151
6.2.6 Supervisor-mode Virtual AAAreSSINGooueiiiiiiiiiie ettt e et e e e e e eeee e e e eeeeas 154
6.2.7 Kernel-mode Virtual AAAreSSINGcocuuiiiiiieiiiiiiiee ettt e e s e st e e e e e s e sanereee s rraeeeas 157

6.3 PHYSICAL ADDRESS SPACEttt a e e e et 165
B.3.1 ROM SPACE ...t i 167
6.3.2 SYSIEM BUS SPBICE ... e 169

SRS I I 101 (=1 g Fo L V@ IS o - Vot SRR 170

B.3.4 LCD SPACE ... 171
6.3.5 DRAM SPACEciiiiiiiiiiiiiee e 171

6.4 SYSTEM CONTROL COPROCESSOR. ...ttt ittt e et 173
6.4.1 FOrmMat Of @ TLB ENIIY ...uvviiiiiiiiiiiiieie ettt e e e st e e e e e s et e e e e e e s et ba e e e e e e e e e e snsnraaeaens 174

6.5 CPO REGISTERS ...oiiiiiii i e et e e e e et e et s e e e e e e eeatabn s e eeaebaaan 175
LRSI R Vg T Lo g =T 1] (=T g (0) PR PPR PP 175
ORIV S - TaTo (o] g S T=To L] 1= o (1) TP 175
6.5.3 EntryLo0 (2) and EntryLOL (3) REQISIEISccccciiiiiiiiiie ettt e e e e s ae e e e e e e eaeas 176

6.5.4 PageMask REGISIET (5) .. eiieei ittt ettt ettt ettt e e e e e et e e e e e e e e nnt e e e e e e e eaanne s eennnneeaeas 177
6.5.5 WIred REGISIEI (B) .uvvriiiiieeiiiiiiit i e e e e eeit et e e e e ettt e e e e e e e st e e e e e e e s s atb e e e e e e e e s ssstbaaeeaeaeaaeessasnrreeaeas 178

RN I =Y o110 T =T RS (=T O (110) I TR 179

6.5.7 Processor Revision Identifier (PRIA) REGISEr (15)....ccciiuiiiiieeeeiiiiiiiiee e eiirriee e e e e 180

6.5.8 CONfig REGISIET (16)eeeeiiieeiiiiitiiiie e e e ettt e e e ettt e e e e e e et et e e e e e e e e ntbeeeeaaeaaannbaeeeeaaeaaaeesaannnneeaens 181

6.5.9 Load Linked Address (LLAAAN) REQISIET (17) ...uuvurrieeeeiiiiiiiiee e e ettt ee e e ertee e e s e e e e e e eaane s 182
6.5.10 Cache Tag Registers (TagLo (28) and TagHi (29))uceeieeiiiiiiiiiieee e 182
6.5.11 Virtual-to-Physical ADdress Translation.............cooiuiiiiiiieee i a e ereae s 183
B.5.12 TLB MiSSES ..ueteiiutiiieeiiiteesitieeeaattteeeaaseeeeesaeeeeeastaeeeaanseeeesanaeeeeasaeeeeasseeeeannseeeeanseeeaeanseeeeanseeeennns 185
6.5.13 TLB INSIIUCTIONS....cetiutteteiiiiteee ettt ettt ettt e e ek bt e e s st et e e s b bt e e e antb e e e s srnnaeeeeanbbeeeeans 185
CHAPTER 7 EXCEPTION PROCESSING. ... 187
7.1 EXCEPTION PROCESSING OPERATION.....iiittiiiiiiieieieee ettt ettt aa e aa e aa e 187
7.2 PRECISION OF EXCEPTIONS .. .ottt sttt e e e e e e e s e e e e e e enaneaans 188
7.3 EXCEPTION PROCESSING REGISTERScciiiiiiiiiiiiiii e eneneeeeeeneenenees 189
AR B R O o1 ()l R L= 1) (=]) PRSP 190
7.3.2 BadVAAAr REGISIET (8) ..vveiieeiiiiiiiiiiiee e ee ettt ettt e e e e st e e e e e e s st e e e e e e setbaaeeaaeessan s ensnraeeeens 191
RS S T O 10 | 2 (T o 1 (=T () ISP URR PP 191
7.3.4 ComMPAre REGISIEN (L1) ..uueiieeiiiiiiiieiee e e eeiire e e e e e et e e e e e e st e e e e e e e s st b e e e eaeeessatbaaeeaeeessan s eesbraeeeens 192
7.3.5 StAtUS REGISTEE (L2) ... eeeiiiiiei ittt e ettt ettt e e e e e e bttt e e e e e s nebe et e e e e e aansbaneeaaeaeaaeasaannreeeaens 192
7.3.6 CaUSE REGISIET (13) ..uuvriiiieeeiiiiiiiitieeeeeittit ittt e e e e s st et e e e e s s satb e et e e e e asssstbeeeaaesessstbaaaeaaeeaaeessansnrreeeens 195
7.3.7 Exception Program Counter (EPC) REQISLEr (L14)eui it iiiiiiiiee e et eieeeee e e 197

7.3.8 WatchLo (18) and WatChHi (19) REQISIEISuviiiiiie ettt 198

7.3.9 XCONtEXt REGISEN (20) ...eeiieeiiiiiiieiie e e e ettt e e e e et e e e e e e e e et et e e e e e e e antbeeeeaaeaaanntaneeeaeeeaanaeaannnneeeens 199
7.3.10 Parity Error REQISIEN (26)......ccicuiieieieeeeiiiiiiie e e e e e eeir et e e e e s et e e e e e s e st e e e e e e s s stataeaaaeeaeessasneaeeaeas 200
7.3.11 Cache ErrOr REGISIEI (27) .oiiieieieie ettt ettt e e e ettt e e e e e et e e e e e e e e ann e nnneeeaeas 200
7.3.12 EITOrEPC REGISIET (B0)..uuiiiiieiiiiiiiiiiiee e eeeiii et e e ettt e e e e e ettt e e e e e st e e e e e s e e atbaateaaeeessasnraeeeens 201

7.4 DETAILS OF EXCEPTIONS ...oiiiiiiiiitiiiiiis ettt ettt e e e e e e et s e s e e e s e e e aabn s e e e aaaennes 203
A R (ot =T o] 1 o] g N Y] o= TR PRP 203
7.4.2 EXCEPON VECIOr LOCALIONSeeiiiiiiiiiiieiiiae ettt e e ettt e e e e ettt e e e e e e ettt e e e e e s snnbeeeeaa e e eeeaeas 203

A e T o 413V o = (ot =Y o] 1 o] ISR 205

T7.4.4 COld RESEE EXCEPLION ..cciiieiieeiie ettt oottt ettt e e e e e e e ettt e e e e e e nntbe e e e e e e eaanntae snnnneeeaaaaan 206

T.4.5 SOt RESEE EXCEPLION ..iiiiiiiiiiiiiiet ettt e e e e e e e e et et e e e e s e s st b e et aaeesasnes sansnraaeeaeeaan 207
T.4.6 NMIEXCEPHON ...ttt ettt e e e e e e ettt e e e e e e s at b et e e e e e e s annbbeeeaaeeeaaeesaannnneeaaaeaan 208
A A Vo o (=TS g (o] g (o =T 1o [PPSR 209
AR T 2 (o =T o T 1 USRI 210
T7.4.9 BUS EITOIr EXCEPIIONuiiiiie ittt ettt e ettt e e e e e et e e e e e s et e e et e e e s e sab e b e eeeeeeanseasstaaeeaeeean 213
7.4.10 SyStEmM Call EXCEOPLIONueieiiiie ettt ettt e e e e sttt e e e e e s e asnbeeeeeaaeeaannneeee srnnneeeaaaaan 214
A N R T == 1 o To [(o =T o1 [o ORI 215
7.4.12 Coprocessor UnNusable EXCEPLIONc.ooii ettt e e e e e e e e e e e annae e e as 216
7.4.13 Reserved INStrUCtioN EXCEPLIONuuiiiiiii ittt e e e e st e e e e et e e e e e e e e eeaaeean 217
A S I - o T (ot o] (o] o H USRI 218
7.4.15 Integer OVErflOW EXCEPLON.cciiiiiiiiiiee ettt e e r e e e e e e e e e e e e e sntba e e e eaaeeaeeaan 219
A VL o (o T o Cet= o] 1o o TSP 219
A A 101 (T (0] o0 (e =T o1 [o 1SR ROPPRP 220

7.5 EXCEPTION PROCESSING AND SERVICING FLOWCHARTSccciiiiviivreeiiiiin e eeeeeeanns 221
CHAPTER 8 INITIALIZATION INTERFACE ... 229
T R o 3] = I L U N [I 0 PSSR 229
T A o O T TP OO P PP PPPTPP PP 230

S B2 S 1Y OSSP 231
8.1.3 Deadman’s SWILCHiiiiiiii e e et 232
8.1.4 SOftWAre SHULAOWNt e et e e e e e e e ettt e e e e e e e nnbbeeeaaeaaeeeeanneeeeeas 233
8.1.5 HALTIMEr SNULAOWNeiiiiiiiiiiiie ettt ettt e e ab e e st et e e s bb e e e s e anbaeeennnnes 234

8.2 POWER-ON SEQUENCEcotttiiiiiiiiiiiiie et e e e e e e e e e e e e aat e e aaeaaees 235
8.3 RESET OF THE CPU COREotttiiiiiiiiiiiiiitiiieie ettt eeee e e eseeeeeeeseeeeeeeeeeseeeeeeeeeeeneeeees 237
S T T A 0o [0 [LTS TP PET P 237
B.3.2 SOt RESEL ...ttt e e e e et n e 238

8.4 VRA111l PROCESSOR MODES.......iicitttiiiiiieee et e e e e e e e e st e e e aaaaene 239
B.4. 1 POWET IMOUES ...ttt ekttt ab e a bt e e et e e e bt e e ekt e e e aab e e e e seb b e e e e anbn e e e nnnees 239
8.4.2 PrIVIIEOE IMOUE ...ttt e oo oottt e e e e e et b ae e e e e e e e e anebeeeeee eeeaaeeeaannereeean 240
8.4.3 REVEISE ENGIAN ...cooiiiiiiiiieie ettt ettt e e et 240
8.4.4 Bootstrap EXCeption VECIOr (BEV).....oooi ettt a e e 240
8.4.5 CaAChE EITOr CRECKviiiiiiiii ettt e e e st e e 241
8.4.6 Parity Error Profibitoooi et a e e e e aeeeas 241
8.4.7 INterrupt ENADIE (IE) ...uvviiiiiie ettt e et e e e e et a e e e e e e e e traaes 241
CHAPTER 9 CACHE MEMORY ... e 243
9.1 MEMORY ORGANIZATION ..ot 243
9.2 CACHE ORGANIZATION. ... ittt ettt e e e e e e et e e e e et e e e tab s e e e aaeeesbaaaaaeaeas 244
9.2.1 Organization of the Instruction Cache (I-Cache)cccceeiiiiiiiiiii e 244

9.2.2 Organization of the Data Cache (D-CaChe)ueiiiiiiiiiiiiiie e 245

9.2.3 ACCESSING thE CACNESccciieiiiiii e e e e e e e e e st e e e e e e e et e e e e nntbaees 246

0.3 CACHE OPERATIONS . ..ottt ittt e et e e e e et et e e e e e e e e s aa b a e e e e e e eenranaan s 247
9.3.1 CaChe WIE POICY ...uuiiiiiiie ettt e e e e e e e e et e e e e e e e s s bbb e e e aaeesaaeeeeasnebaees 247

0.4 CACHE ST ATES .. it e e e e e et e e e e et eeata bt e e e e aeeaebanans enen 248

12

9.5 CACHE STATE TRANSITION DIAGRAMS......cco oo 249
9.5.1 Data Cache State TranSItIONcoiiiiiiiiiiiii et e e e et e e e e e et e e e e e e e e s e e eaannnnes 249
9.5.2 Instruction Cache State TraNSIIONc.eeeiiiiiiiiiiie et e et e e snae sneeeeas 249

9.6 CACHE DATA INTEGRITY .ottt ettt e e e e e et s e e e e e e aas e eaaaaee 250

9.7 MANIPULATION OF THE CACHES BY AN EXTERNAL AGENT......cccccooiiuimrmiiiiinnnnnns 258

CHAPTER 10 CPU CORE INTERRUPTS i eeeeeeeeeeeeeseneseetnsnsnsnsnsnsnnnnnnes 259

10.1 NON-MASKABLE INTERRUPT (NMI)...iioiiiiiiiiiiieiee it ee e siiree e e e e e st e e e e e e s snsnaneeee s 259

10.2 ORDINARY INTERRUPTSottt ettt e e e e e e e et s e e e e e s eeaast e e eeaeaaens 259

10.3 SOFTWARE INTERRUPTS GENERATED IN CPU COREcccccoiiiiniiinieiiiiiinieniinininnnens 260

10.4 TIMER INTERRUPT .ottt e e e ettt e e e e e e e e et s e e e e e e eaabbaeeaesaan 260

10.5 ASSERTING INTERRUPTSouttitiiitiuiuiiieieieieternierereierereeerererereeeeeeeeeeeereeeeeeerererereererrrrrrerree 260
10.5.1 Detecting Hardware INTEITUPLS.......ooi ettt e e e ettt e e e e e et bee e e e e e e s aneaeenneeeaeas 260
10.5.2 Masking INTErrUPL SIGNAISuuviiii i e e s r e e e e s e sanes sennraeeeeas 262

CHAPTER 11 BCU (BUS CONTROL UNIT) .uutiiiiiieiiiiiiiieeie e e s st ee e e e s ssasieeeesae e s snnnnaeeeeeessssnsnnnees 263

111 GENERAL oo 263

11.2 REGISTER SET ..ottt ettt e e e et et s e e et e e et et n e e e eeeeeebenaaseeeeaerenan 263
11.2.1 BCUCNTREGL (OXOBOO 0000)ccuuveieiirieeeiitieeesieeeestteeeasibeeessiteeessinseesastbeeesseeeesssneeeessnneessnnes 264
11.2.2 BCUCNTREG2 (OXOBO0 0002)ccueeeeieiieeeaitieeeaiereeanueeeeaaneeeesssesessneeeeanseeeesassesessnseeeesnseeeeannes 266
11.2.3 BCUSPEEDREG (OXOBO0 O00A)eetiiitieeeitiee e sttt ettt ettt e sttt e e st e e s bt e e sssteeessnnneeeaneneeennnes 267
11.2.4 BCUERRSTREG (OXOBO0 O00C)ceeiiiuieeeatiieeeieeeesauteeeasnteeesaseeeesnseeesasseeesasenessnnseeesnsseeesnnes 269
11.2.5 BCURFCNTREG (OXOBO0 O00E)ceeiiuiiieiiiieeiiiiiee s sitiee e sttt e e sttt e et ee e st e sbeeeesnneeessibeeennes 270
11.2.6 REVIDREG (OXOBO0 O0L0) ...uviiieeiieeeiieiieeesiieeeeseeeeesneeeeansueeesanseeessnseeaeansaeessassessssnseeessnsneeeesanes 271
11.2.7 BCURFCOUNTREG (0OXOBOO 0012)ccuuveieiiiiieiiiieiesiiiieeeaiieeesiteeessiseeessibreesssneessnseeesnnneeesnes 272
11.2.8 CLKSPEEDREG (0XOBO0 0014)uuiiiieieeeiiiieeeeeeeesanieeeesneeeeesseeaesssseeeassseeesansesessnnsesesnseeeesnnees 273
11.2.9 BCUCNTREGS3 (OXOBO0 0016) ...ceeuvveeiirieeeiitieeesieieesiteeeasiieeessiteeessinseesastneeesseeeesssneeessnsneessnnes 274

11.3 CONNECTION OF ADDRESS PINSottt e e a e e enaaees 275
11.3.1 CONNECHON 10 DRAM ...ttt ettt et e e et e e s aab e e s sbe e e e s e e nbbeeennee 275
11.3.2 CONNECLON 10 ROM ...ttt e e e ettt e e e e e st e e e e e e e e e annbaeeeeaeeeaann s eannnneeeaens 277

11.4 NOTES ON USING B QU ...t eeeeeateeeee e sesseesssesesesssesenseenennnnnes 279
11.4.1 CPU COre BUS MOUESooiiiiiiititiiie ettt e e ettt e e e e e ettt e e e e e e e annbee e e e e e e e eannnnnneeeaeas 279
11.4.2 ACCESS DALA SIZEeeiiiiiiiiiiitie ettt ettt e et e e s e e e ee e e b e e nne 279
N e T 2 (@ 11V 1) =T o = Lo = SRR 280
11.4.4 Flash MemOry INtEIfACEuuuiiiie ettt e e e e e e e et e e e e e s e aanes senarreeeens 281
11.4.5 LCD CONrOl INTEITACEceii ettt e e e e e ettt e e e e e e e e e e nneeeeaeas 282
11.4.6 lllegal ACCESS NOLIfICALION.cciiiiiiiiiiii e e e e e e e e ee e e eennraeeeeas 284

11.5 BUS OPERATIONS . ..ottt ettt e et e e et e e e e e e e e e bbb s s e e e e eeeestann s aan 285
L11.5.1 ROM ACCESS. ..ceiieeiiiiitittt e e ettt e e et ettt e e e e et ettt e e e e e bbb e et e e e e e e bbb e e et e e e e e bbb e et e e e e e e ee e e nannrrrreeas 285
11.5.2 SYSIEIM BUS ACCESS ... i e e e e e eeeenes 288
O B O B I [] =T o =T PP PRSP PPPRN 296
11.5.4 DRAM ACCESS (EDO TYPE) ..uuuutiiiiiaeeiaiitieiee e e e e ettt e e e e e ettt e e e e e e aantbeeeeaaeasantbeeeeeaeesaansaneeeeeeaens 298
L1155 REITESI .ot b ettt e e e et e e nne 302
L1158 BUS HOIOeeeieiiiieei ettt ettt e e e st e e e et e e s rateeeanteeeeeaneeeeeeesnneeaeanneeeennes 303

13

CHAPTER 12 DMAAU (DMA ADDRESS UNIT) ittt 305

12,1 GENERAL ... aaaeaeaeas 305
12.2 REGISTER SET ..ottt e e e ettt e e e e et et e ta bt e e e e e e aaabaanseeeeeaesastnnaaeneees 306
12.2.1 AIU IN DMA Base AQAreSS REQISIEISciiieiiiiiiiiiiieeeeiiiiiiite e e e e s sttt e e e e e e s saare e e e e e s ssinsraeeaaesaaaan 307
12.2.2 AU IN DMA AdAreSS REGISIEIS ...ccciiieiiiiieee ettt ettt ettt e e e e e e et e e e e e e e e anneaeeaaaaeaaaas 309
12.2.3 AlIU OUT DMA Base AddreSS REQISIEISccuuiiiiiie it eese et e e e e s a e e e e e s enees 310
12.2.4 AlU OUT DMA AdAreSS REQISIEISuuiiiiiieeieiiiiiiitee e ettt e e e e et ee e e e e e s eibee e e e e e s aannneeeaaaeeaaaeas 312
12.2.5 FIR DMA Base AQAreSS REQISIEIS......uuuiiiieiiiiiiiiiiiee e eeeiitt e e e e e sibae it e e e e e st e e e e e e s snbaaeaeaaeaseaeaas 313
12.2.6 FIR DMA AJAreSS REQISEIS....cciii ittt ee ettt e ettt e e e ettt e e e e e e e b e e e e e e e annaeeeeeeeeeaaaaas 314
CHAPTER 13 DCU (DMA CONTROL UNIT) ciiiiiiiiiiiieeie ittt e e e sibeae e e e e e e 315
P31 GENERAL ...ttt e e e e e et ettt e e e e et et e e e e e e eeaa i aaas naaaaaaeeees 315
13.2 DMA PRIORITY CONTROL ... eeee s eeesessssssntssssnsnesensnsnnnnes 315
13.3 REGISTER SET ..ottt e e e e e et e e e ta bt e e e e e e eaabaa e s e e e e eeesastanaaeeaees 315
13.3.1 DMARSTREG (OXOB0OO 0040) ...cuuvieeiiiiieeniieieeaiteeeasitee e st eeesibseeeatbeeesastr e e s ssbeeaeanbbeeesneeeesnnnnnes 316
13.3.2 DMAIDLEREG (OXOBO0 0042).......ceeeiiuiieeiieeeesteeaeantieeesaneeeeesnaeeaeansaeeesanseeessnseeeesseeessnsseeessnnnees 317
13.3.3 DMASENREG (0XOBOO 0044)uuieeiiiiiieeiitiee ittt ettt ettt e e e e st e e s antnee e nnnanes 318
13.3.4 DMAMSKREG (OXOBOO 0046)ueeeiiueereeiuereeiueeeeaaneeeeaaaeresanseeeeansaeeesaneeeessnseeeesnseeessnsseeessnsnses 319
13.3.5 DMAREQREG (OXOBOO 0048)utteiiiurieiiuieieeiiieeeasiteeessiteteesbseeeatbeeessteaesssnseassnbneessnteeesnnnnnes 320
13.3.6 TDREG (OXOBOO O04A)ceiiueeeeeiitieee ettt e e euteaesstteeeeanteeeesseeaeaaneeeeaantaeeeaseeaeanseeesasseeeeansesseeesnnees 321
CHAPTER 14 CMU (CLOCK MASK UNIT) ciiiiiiiiiiiiiie ettt a e e ee e e e e e snne 323
ot R N SRS 323
I] L € 1) It] 323
14.2.1 CMUCLKMSK (OXOBOO O060)veeeeeieiieeieereesieeeeasseeeeeseeeeesnsseeeansaeeesanseeeassnseesssseessnsseeessnsnses 324
CHAPTER 15 ICU (INTERRUPT CONTROL UNIT) oottt e e ee s 325
15,1 GENERAL ...ttt et e e e e et et e e e e e et a e e et e et a b aaas saaaaaeaeees 325
T] L € I It] N 328
15.2.1 SYSINTIREG (OXOBOO 0080).......uceeeeeurreeauuereeinneraeaeereeaaneeeesanneeeaasneeesasseeesssseeessseeessssseeesnsnnees 329
15.2.2 PIUINTREG (OXOBO0 0082)ccciuuieeiiiiieiiuitteeiieeeeatteeesiteaessibeeesanbneeesseeessnsbeeesssbneessbneeesennnnes 331
15.2.3 AIUINTREG (OXOBO0 0084cceiuieeeaieieeeitereesteeaeantureeaaneeaessnseeeeaseeeesaseeeesanseeessseeeesnsseeeeesnnees 332
15.2.4 KIUINTREG (OXOBOO O086).....ccciuurteeiirrieriireesiiieeeeatteeesasteeessiseeesantneessseeessasseeesssnneesssneeesennnees 333
15.2.5 GIUINTLREG (OXOBOO 0088)eeeeeiiurieeuieresaiteeeeaeeeeeaseeeessneeeesanseeeeanseseesnsseeesssneeessnseeessnsnnees 334
15.2.6 DSIUINTREG (OXOBOO O08A) ... uiteiiuiiieeiiieeesitteeeasitteeesiteeesstseeeessbe e e s snbseessnbeeeesssbeeesantneeesannees 335
15.2.7 MSYSINTLIREG (OXOBOO O08C)ceeeiuuereeiuereesiueeeeaanteeeasneeeessseeeaasteeesaseeesssseaesssneessanseeessnsenes 336
15.2.8 MPIUINTREG (OXOBOO O08E)veeeiirrieeiuirieeiiieeeaniieeessiteeeesitseeeatbeeesmeeeessnnseassnnbeeesnteeessnnnnes 338
15.2.9 MAIUINTREG (OXOBOO 0090)uuteeiieireeiiereeiteeeeatireeanseeaessnseeeesseeeesnsseeessnseeesssseeeesnsseeesnsnnees 339
15.2.10 MKIUINTREG (0XOBOO 0092)ceeiiiuiieiiiiiesiiiieeeaiteeesiteeeasibeeessibreessseeesssseeesssneeesannneeennnnnes 340
15.2.11 MGIUINTLREG (OXOBO0 0094)cceiiirieeiuiieeiaiieeeeatieeeaeeeaessueeaeassteeeeaseeeesnseeesasseeesanseeessnseses 341
15.2.12 MDSIUINTREG (OXOB0OO 0096)cccutriiiiiiieiiiiieeeaiieeesiteee s sibsee e st e siaeeessibeeeesnbeeessnbneeesneeaes 342
15.2.13 NMIREG (OXOBO0 0098)ceeeiiiuiieeiiereestieeeasuteeeaaseeeeeasaeaesseeaeaasteeesaseeessnseeesssseeesansseeeeesnnees 343
15.2.14 SOFTINTREG (OXOBOO O09A)eetiiiuiieiiieteaiiteeeeaitte e sttt e e sib et et e st e e s nbbe e e s ssbeeesanbneeesnnenees 344
15.2.15 SYSINT2REG (OXOBO0 0200).......cceiturieeiueereaaitereaatereeanneeeessneeeeaansereeaasseeesssseeessssseessnsseeesnnnnees 345

14

15.2.16 GIUINTHREG (0XOBO0 0202).......c0cciuiiiiiiiiiiiiiie it 346

15.2.17 FIRINTREG (OXOBOO 0204)cceiteteiitieeeatieeeeaieeeeeaeeeeeeanteeeesnseeeesssseeeassseeeeasseeesnnseeeansseneeenanes 347
15.2.18 MSYSINT2REG (OXOBOO 0206)ceeiureieiiiieeiniieteeniiteeeatieeessiteeessibeeessstreesssteessnneessssneeessnenes 348
15.2.19 MGIUINTHREG (OXOBOO 0208)......cccciuuireeiiuireeaeereesueeaeantueeesaseeesanseeeaaseeessasseessaseeesssseeessnsnes 349
15.2.20 MFIRINTREG (OXOBOO 020A)uuttiieiiiieeaiitiee ettt ee ettt e e st e sibe e e e antbeeesbteeessnneeesanbneesannes 350
15.3 NOTES FOR REGISTER SETTINGcoittiiiiiiiiiiiiiiiie et e st e e e s e e aaaban e e e aaaaees 351
CHAPTER 16 PMU (POWER MANAGEMENT UNIT) ..uiiiiiiiiiiiiiiiieee et 353
G 0 R 7 = N PPN 353
16.1.1 RESEL CONLIOL....uiiiiiiiiiiiteie ettt ettt e ettt e e s b bt e e et bt e e snb e e e e s e snbneeeabbeeenanee 353
G 2 o U 1 1o (o 1LY o I ©o o] o R TURRP PP 354
16.1.3 POWET-0N CONLIOL.....utiiiiiiite ittt ettt ettt ettt e e at et e s hb et e e aab b e e e snbbeeesabnbneeeabbeeenanes 355
16.1.4 POWEE IMOUEeiiieiiiitieie ettt ettt e e e ettt e e e e e e et bttt e e e e e e e nbbte e e e e e e s anneseeeaaeaaeesaannnnnneaens 360
16.2 REGISTER SET ..iiiiitiitiuitiiueutetueeueueeeeeaeaeeeeeeeeeeeeeeneeeeeeeeeeeeeeaeererreeeeererererrrerererrerr 363
16.2.1 PMUINTREG (OXOBOO O0AD)eeeiueireeiutieeeatieeeaeeeeesnueeeesssaeeesanseeeesnnseaeansseeesansesessnseeessnseeeesannes 364
16.2.2 PMUCNTREG (OXOBOO O0A2).....ccoiuueiiiiiiiieeitiee e ettt sttt e sttt e sttt e e s iseeesssbeeessabneeesnnneaeanibeeenanes 366
16.2.3 PMUINT2REG (OXOBOO O0AZ)ueeieeiieiieeeeiiieeeeeeeeestieaeastieeessmseeeesnsaeeeansaeeesnnseeesanneeeaansneeeannnes 368
16.2.4 PMUCNT2REG (OXOBOO O0AB).......uueteiiuteeeeiiiieesiieeesatteeeeaiteeesstteeesnseeesssbeeessstneessnneeesnsneeennes 369
16.2.5 PMUWAITREG (OXOBO0O O0AB)uueeieiiueieeeaitieeeateeeeaueeaeaasteeesanseeessnseeaeanseeeesasseeesanseeeesnsneessnsnes 370
CHAPTER 17 RTC (REALTIME CLOCK UNIT) cuuttiiiiiiiiiiiiiiiiia ettt e siieeeeee e e e ennnes 371
0 R 1 = N PPN 371
17.2 REGISTER SET ...iitttutttuuiuuuueueetuueunnneneeueaeeeenneeeeeeeeeeeeeeeeeeeeearareeeeeeeeeeeeeerererrrerrrrr 372
17.2.1 Elapsed TiME REQISLEISttt e e e e e ettt e e e e e e et bt e e e e e e e e sneaeeeeaeeaaannnee snnreeeeens 373
17.2.2 Elapsed Time COmMPAare REQISIEIS.uuuiiiieiiiiiiiiiiiee e e ettt e e e e e ettt e e e e e st e e e e e e e s sntrereeaeaeeaens 375
17.2.3 RTC LONG 1 REOISIEIS ..ceiieeiiiiiiiii ettt ettt e e e ettt e e e e e e ettt e e e e e e sntbaeeeaaeeaans sannnnneeaeas 377
17.2.4 RTC LONG 1 COUNE REGISIEIS ..uvviiiiiiiiiiiiiiiie e e e eeiiiet e e e ettt e e e e e e st e e e e e e st a e e e e e e s snsraeeesaeeeens 379
17.2.5 RTC LONG 2 REOISEIS ..ceiieiiiiieiiii ettt e ettt e e e e e e ettt e e e e e e snt et e e e e e e s ans sannnnneeaeas 381
17.2.6 RTC LONG 2 COUNE REGISTEIS ...vviviiieiiiiiiiiiie e e e ettt et e e e sttt e e e e e e st e e e e e e st baa e e e e e e s sntraaeeaeeeeas 383
17.2.7 TCIOCK COUNEr REGISIETSeeeiieiieii ittt e ettt et e e e e e ettt e e e e e e e satbeeeeaeeeeannebeennnneeaeas 385
17.2.8 TCIOCK Counter COUNt REGISIEIScciviiiiiie ettt ettt e e e e e e e e e e e e s st ae e e e e eeeeas 387
17.2.9 RTC INEITUPE REGISTEN ..ottt e e e ettt e e e e e e et e e e e e e e e s e enneeeeeeas 389
CHAPTER 18 DSU (DEADMAN'S SWITCH UNIT) oottt e 391
RS T R 1 = N PPN 391
18.2 REGISTER SET ...uittutuutiuiuuuueuuetuueueueeneeenaeeeeereeeeeseeneeeeereeeeeearaeeeeeeeerereeeerrrerererrrrrerrrr 392
18.2.1 DSUCNTREG (OXOBOO O0ED)cccecuureeiuieeeaarieeeeaiereeateeaeaateeeesaseeeessnseeaesnsneessnsseeesanseeesssenennnes 392
18.2.2 DSUSETREG (OXOBOO0 O0E2)ccoiutiiiiiuiiieeiiiieeeiieee s siteee sttt e st e e sbseeesssbreessnbeeeesnneeesnbbeeesanes 393
18.2.3 DSUCLRREG (OXOBOO O0EZ)cceieeieeitieeeeeiiieeeeeeeeesieeaeataeeessseeeessnseeeasnseeesanseeeesnnneeeansseesennne 394
18.2.4 DSUTIMREG (OXOBOO OOEB)cccuveieiiriieeiiiiieesitieesitee e ettt sttt e sbs e e atb e e site e e nnneeesanbneeesenee 395

18.3 REGISTER SETTING FLOW ...ttt ettt a et e et s e e e e e e e eeaabn s e e e aaeannes 396

15

CHAPTER 19 GIU (GENERAL PURPOSE /O UNIT) cooiiiiiiiiiieiie e 397

19,1 GENERAL ..., aaaaaaaaas 397
19.2 REGISTER SET .. ittt e e ettt e e e e e et e e e ta s e e e e e e eastanneeeeaeaessstanaaeneees 398
19.2.1 GIUIOSELL (OXOBOO OL00) ...eeeeiutteeeaiteeeenitieeesitreeeaiteeessiteeessiseeeeantreesssseeesssneeessntneesssneeeseennnnes 399
19.2.2 GIUIOSELH (OXOBO0 0102)ceeiiuieeeiuierieeuieaeasiteeesaeeeeeaseeaesnsseaeaasseeesaseeessnsseeesssseeesasseeeseesnnees 400
19.2.3 GIUPIODL (OXOBOO OL04)eeiiiiiiieeeiiiieeesteee ettt ettt et e e st e e s st e e e sabe e e e abbeeesnbeeeeeennnees 401
19.2.4 GIUPIODH (OXOBOO 0106)......cceiiuueeeiiereeeiuieeeasnteeeeatereesasseaesaneeeeaassneeesaseeeesssseeessssseessnseeeeessnnees 402
19.2.5 GIUINTSTATL (OXOBOO 0L108)ueeeeiuiriieiiiieeiiieeeaaiteeeestteeesiseeessibeeesasbneeesnseeessbbeeessntneeenn snnnes 403
19.2.6 GIUINTSTATH (OXOBOO OL0A)eeieeiiiiiieeetieeeseteeeeasiteeeeseeeeesnseeeeaasaeeesaneeeeesnneeaeansaeeeeanseeessnnnees 404
19.2.7 GIUINTENL (OXOBOO OLOC).....cceiuteeeiiirieeiuieeeesteeeeaiteeesiteee e sibs e e anbbeeessteeesssbeeeesntreeesneeeeeennnees 405
19.2.8 GIUINTENH (OXOBOO OL0E) ...eeeeiiuieeeaieiieeeiiieessteeeeassteeeeseeeaessseeesssteeesanseeessnneeaesnsaeeesanseeesssnnees 406
19.2.9 GIUINTTYPL (OXOBOO OL110) ..eeeiitiieeiuinieeiiieeeaiieeeaaiteeessiteeeesiseeesssbeeesssteeessnnneeesneneeesnnnneeenennnnes 407
19.2.10 GIUINTTYPH (OXOBO0 0112)......ueieeiiiiieeiieeeeaiteeeeantieeeensaeeessseeeeeanseeeesnseeeesssseeesssseeessnsseeesnsnnees 408
19.2.11 GIUINTALSELL (OXOBOO OL14)eeiiutiiieiiiieeiiiee ettt ettt e ettt ettt e e e st eesite e nene s 409
19.2.12 GIUINTALSELH (OXOBO0 0L116) ...eeeitvreeeiuiereeiuiieeeaiireeaueeeesaneeeeaanseeeesnseeeesssseeesssseeessnsseeesnnseses 410
19.2.13 GIUINTHTSELL (OXOBOO OL18)....cceiuttiieiiieeeiiiieeeaiireeesieeeessiteeeasibeeessnseeessbneeessebeeesnstneeennnennes 411
19.2.14 GIUINTHTSELH (OXOBOO OLL1A)....cciitiieeiiiieeiitieeeasitieeesieeeesseeeeassteeesanseeeesnneeaesnsaeeesanseeessnnenes 412
19.2.15 GIUPODATL (OXOBOO0 OL11C) ..cuutieieiuiiiieiiiieeaitieeeaaitee e sttt e e st ee et e s st e e snnaeeesntbeeesnntneeennnnees 414
19.2.16 GIUPODATH (OXOBO0 OL11E)......uuteeiiiiieiiieeeesitieeeaiieeeenieeaesseeeeeeanteeeesseeeessnseeeesnseeeeanneeeesnnnnees 416
19.2.17 GIUUSEUPDN (OXOBOO 02E0D)eeiiitiieiiieieeitiee e ettt ettt e e st site e e e e e st e e e snnneeesnnnees 417
19.2.18 GIUTERMUPDN (OXOBOO 02E02)evveeieeieesiiieeeeseeeeeaieeaesnseeeessseeeesansseesssseaeassseeessnseeessnsees 418
CHAPTER 20 PIU (TOUCH PANEL INTERFACE UNIT) .ottt 419
20.1 GENERAL ..ottt ettt e e et e e e et e e e e e et e aa e aaaaaeay aeeearrrna, 419
b2 O 0 R = 1 (o Tod 1 DI T= Vo | - U 41O OPPRP 420
20.2 SCAN SEQUENCER STATE TRANSITIONciiiiiiiiiiiec it eeaav e e e e aaaens 422
20.3 REGISTER SET ..iuiuiuitiuititiuiiiuuutuueeeeueueueeeeeaeeereeeeeeeeeeeeeeeeeeeeeeeeeereeeeeeeeeeeeeerrrrrrrererrr 424
20.3.1 PIUCNTREG (OXOBO0 0122)ceeiuiieeiiiieeaaiieeesanteeaeateeeesnneeaesssseeeeasseeeesnsseeesasseeesasseesesnseseesannees 425
20.3.2 PIUINTREG (OXOBO0 OL124)cciititeeiiiiieiiieee et ee ettt ettt e e e e et e e s sbte e s s nnbeeeesabneesanbneeeeennnees 428
20.3.3 PIUSIVLREG (OXOBOO 0126)......c.uueeeiiurieeiiereeateeeeaneereeanseeaessneeeaesseeeesasseeesssseeessssseessnseeeesesnnees 429
20.3.4 PIUSTBLREG (OXOBOO 0128).......uutieiiiiieiiiiiesiiiieeeaiieeesiteaeasibeee st e s sineessnsseeesssbneessnseeee s snnnes 430
20.3.5 PIUCMDREG (OXOBOO D12A) ...ceiiueieeeiiiieeeeieae s ateeeaesieeeesneeaesssseaeesnteeeeanseeeesnseeeaanneeesanseeessnnnees 431
20.3.6 PIUASCNREG (OXOBO0 0L130)...ccuutteeeireteeiuteeeeatreeeasiteeessiteeessssseeeatseeessneneesssnseesantseessnsneessnnnees 433
20.3.7 PIUAMSKREG (OXOBOO0 0132)uuuiieiiiiireeeiieeesiteeeeasseeeessseeeeansseaeaasteeesanseeessnsseesansseeesnnseeessnsnses 435
20.3.8 PIUCIVLREG (OXOBOO OL3E) ...ccitviieiiirieeiiiieesiieeeasitieessiteeeesbseeeastbeeesanteaessnnneeestbeeesntnee e nnnees 436
20.3.9 PIUPBNmREG (0x0B00 02A0 to 0x0B0OO 02AE, 0xOB00O 02BC to 0x0OB0OO 02BE) 437
20.3.10 PIUABNREG (0xOB0O 02B0 t0 OXOBOO 02B6)........uuvieiiiieeiiiiiieeriiieesiieee s siiee e st sneea e eneee s 438

20.4 REGISTER SETTING FLOW. ...ttt ettt e st e e e e e e e e e banan s e e e e e e eaanaaans 439
20.5 RELATIONSHIPS AMONG TPX, TPY, ADIN, AND AUDIOIN PINS AND STATES..... 441
20.6 TIMINGottt e e e e ettt e e et e e e et b a et e e et e e e te b e e e e e et ee et a e e et eee e eaaaeeeerraa, 442
20.6.1 Touch/Release DeteCtion TiMING........cueeeiiiiuiriiieeeeiiiiiereeee e e s e aeeesssibrr e e e e e e s ssibrreeaeeesaaaaaeaas 442
20.6.2 A/D POIT SCAN TIMING .eetiiiiiiiiiiiie e e ettt e e e ettt e e e e e s e aeeeeeeaaeasaaseaseeeeaeesaasnsseeeaaasaaasnsnnnsneeeaaaaan 442

20.7 DATA LOSS INTERRUPT CONDITIONS ..ot 443

16

CHAPTER 21 AIU (AUDIO INTERFACE UNIT) oottt 445

30 N R € = N L RSOSSN 445
21.2 REGISTER SET .ottt e e ettt e e e e et e e et s e e e e e eeaetenaeeeeeensenan 445
21.2.1 MDMADATREG (0OXOBOO OL60)uuvieeeeeiiiiiiiieeeeeseiitireeseeesseitireeeeeesessssseseaaessssssseseeessssnssssnnens 446
21.2.2 SDMADATREG (OXOBOO 0162)ueeeeiiaeiaiiiieieeaeeaaaiiieeeeaaeaaasttaeeaaeaaaaneseeeaaaeasansaseeeaeaesannnnnnnes 447
21.2.3 SODATREG (OXOBOO OLB6)ueeetviaieeeieeaieesieeaieessteesneeessreessesssseesseessssesssessssseessnessseesssseeses 447
21.2.4 SCNTREG (OXOBOO OL168)....cccetiauuuueieeaaaaaaiureeeaaaasaaaitaeeeaaaasaaanseseeeaaesaaansseeeeaesaaannsseeeeaeaeaanaannnnes 448
21.2.5 SCNVRREG (OXOBOO OL6A) ..ccuveeiiiieiieeiiiieeteesiteesiieesiteesteeestaeesseeestseesseeasteeanseessseesnsesssessnseeeses 449
21.2.6 MIDATREG (OXOBOO 0L170) ..eeeiiuitieieeeeasaaiiteeeeae e s aaitteeeaaeesaanstaseeeaaesaannssseeeaaesaannnseeeaaasaaansannnens 450
21.2.7 MCNTREG (OXOBOO OL72)uuiiieieieeeeiiiiiiieee e e s ettt e e e e s sstaas e e e e e e s sesaaaaeeaeeessassasseaaeeesaessssseeseeeens 451
21.2.8 MCNVRREG (OXOBOO O174) .. uuieeieieiaeeaaitteeee e e e ettt e e e e e e ettt e e e e e e e amntteee e e e e s aannebeeeaaaseaannsneeeeeeens 452
21.2.9 DVALIDREG (OXOBOO OL178) ...uuuvviiieieeiiiiiiieeeeeeiiiiiteeaeeesssiataeesaeessssatsaesaeessasssssesseesssssssseesseeens 453
21.2.10 SEQREG (OXOBOO OL7A) . ..eiiiiieiiiee ettt ettt e e e e e e ettt e e e e e s e stae e e e e e e e s anaaeeeeaeeeaannseeeeseeeens 454

b2 I N R | N I] = e (0)7(0] 2100 0 i 4 3 SR UPTUOPPP 455

21.3 OPERATION SEQUENCGE ..ottt a e e e e e e e aar s 456
21.3.1 OULPUL (SPEAKE) .. e ettt e ettt e e e e e et e e e e e e st e et e e e e e s s stbeaeeaeeessassbaaeeeeeeaaeesannnnnes 456
21.3.2 INPUL (MIC) ..ottt e et et e en s 457
CHAPTER 22 KIU (KEYBOARD INTERFACE UNIT) ..ottt 459
A R €1 = NN N PPN 459
A o =L € 1S =1] N PN 459
22.2.1 KIUDATN (0XOB0OO 0180 t0 OXOBOO0 OL8A) ...ceieiiiiiiiiiieeeeeeitiieee e e ettt e e et e e e e e e e nneeeeaaa e s 460
22.2.2 KIUSCANREP (OXOBO0 0190)....cccuuttiteeiiiieieeesitieseeesiteesseeestneesseeessseessesssseesssessssessnsessssessnseesses 463
22.2.3 KIUSCANS (OXOBOO 0192)...ccieiiiiiieiieeee e ettt e e e e ettt e e e e e e e e sstae e e e e e e e amsbeeeaaaeaaansaneeaaeeesanaannnnes 465
22.2.4 KIUWKS (OXOBOO 0194) ...cuviiiieeeuiieiiieeiteeaiteesiteessaeessteessteessseesiseesseeesseeassesessesesesssseesnsessesseees 466
22.2.5 KIUWKI (OXOBOO OL96)eeeeeeeiiiunrnieiaaeeaaaitteeeeaeaaaaiteeeeaaaeesansseeaaaaasaaanssseeaaaasaannnseeeaaasanaesaannnens 467
22.2.6 KIUINT (OXOBOO 0198)ceeuiiiiieirieeiiiesitiesiteesiteessteessseessseessseessseesssesssesassessssessnsessssessnssseessenenes 468
22.2.7 KIURST (OXOBOO OLOA).... . eeiieieiiitieiiee e e e e ettt ee e e e e ettt ee e e e e e e snabeeeaaeaaaanntaeeeaaeeaaannsbeeaaaeaeaesaannnns 469
22.2.8 KIUGPEN (OXOBO0 OL19C) ..utieiuiieiiiesiieesiieesieeesteeesteeateeasseessbeeansesssseesnsesssseesnsessssessssesssneesaseenes 470
22.2.9 SCANLINE (OXOBOO OLOE).....cciiiiiueiietia e aiiiteiee e e e e ettt e e e e e e et e e e e e e e e amsbeeeaaaeaaansaeeeeaeeesanaannnnes 472
CHAPTER 23 DSIU (DEBUG SERIAL INTERFACE UNIT) ..oiiiiiiiiiiiiiei et 477
22 T8 B €1 = NN N PPN 477
A T o =l € 1S =1] N SN 477
23.2.1 PORTREG (OXOBOO OLAD) ..ciiiiiiiitiiieeae e eaitteeee e e e e ettt ee e e e e aassese e e e e e e e anneeeeeeaeeaannssneaaaeaeaannannnens 478
23.2.2 MODEMREG (OXOBOO OLA2)ceiiiiiiieeiieaieeeieeateessteessteesibeesnseessbeesnseessseesseeessseessnessseesssneesns 479
23.2.3 ASIMOOREG (OXOBOO OLAZ)eiiiiiiee ettt ettt e e e ettt e e e e e e e et e e e e e e e aannnteeeaaeeaeannesnnnnes 480
23.2.4 ASIMOLREG (OXOBOO OLAB)eeeeutiiiiieeniieiieesiieessteessteessteesiteessseessteesseessseeesseeesseessseesnsesssseseeses 481
23.2.5 RXBORREG (OXOBOO OLAB) ...t iiiueiietiaaiaaiteeiee e e e e e ettt e e e e e aasateeeeaaeaaaansaeseeaaeaaaanteeeeeaeaesaansnnnens 482
23.2.6 RXBOLREG (OXOBOO OLAA) ...ueieiiieitieeititesieeesteeasteeeteeateessbeeateesnteeanteessbeesnseessbeessseessseesnnseees 482
23.2.7 TXSORREG (OXOBOO OLAC) ...t iiiteiieteae ettt iee e e e e e ettt ee e e e e e aaateeeeaaaeaaamsbeeeeaaeaaaansbseeeaeaesaanennnnes 483
23.2.8 TXSOLREG (0XOBOO OLAE) .. cuuteitiiaiieetieaieeeieeateesteesteesnbeesnteessbeesneeesseeesseeessseessaessseeessnseees 483
23.2.9 ASISOREG (OXOBOO OLBO)...ccceiiuitieieeaaaaaaitteeeaaaesaaisteeeaaaesaanseseeeaaesaannsseeeaaesaannsseeeaaeaaaanaannnes 484
23.2.10 INTROREG (OXOBO0 OL1B2)......ceeiuiiaiieaiieaieesieeaieessieesteessteesnseessseesssesssseesseessssesssnesssesesnsesses 485
23.2.11 BPRMOREG (OXOBOO OL1BB)......ccettiaaiiiuirieaaeaaaaaitiieeeaeeeaaineeeeaaaesaanneeeeaaaesaanneeeeeaeesaannsseeeeeaens 486

23.2.12 DSIURESETREG (0XOBOO OLB8)......ccictiirriiiiieiriiiiiesiriesitie sttt 487

23.3 DESCRIPTION OF OPERATIONS ..ottt ettt e e et n e e e naeaaanan s 488
AR B R D F- 1 - W o] 11 T | S PP P PP PPPPPP PP 488

P2 TR I N =g] 1 01 ES=1 o o PR RPETRUR 489
DA TR TG B = =Tt =Y o] 1o o PP PPRR PP 490
CHAPTER 24 LED (LED CONTROL UNIT)tuiiiiiiiiiiiiiiiiiiee e isiiieeeee e e s ssieveeee e e e s s snnssnaeeeaeessnnnnnnneneeeees 4 93
241 GENERAL. ..o 493
24.2 REGISTER SET .ottt e et e e e e e e e e e s e e e e e e e ae e e e e e eanrenen 493
24.2.1 LEDHTSREG (0OXOBOO0 0240)ccciuueieiitieeaiiiieeesieteesieeeeaibeeesitee e nineeesantre e s snseeaesbbeeesnneeesnnnnes 494
24.2.2 LEDLTSREG (OXOBOO 0242)cceiiueieeiuiieeaitieeeaaneeeeasnteeeaanteeeesseeeesnsseeeanseeeesanseeesssnseesanseeessnsnnees 495
24.2.3 LEDCNTREG (OXOBO0 0248)cciitiiieiiiieeiiiiee ettt ettt et e sttt s st e e s b e e antne e e s e 496
24.2.4 LEDASTCREG (OXOBOO 024A).......uutiiiuieeeaiiieeeaaieeeaseteeeasnteeeesseeaesneeeeanseeeesanseeesanneeeeaseeessnsnees 497
24.2.5 LEDINTREG (OXOBOO 024C)coiiiitiiiiiiiiieeiiiee e ettt ettt ettt et e sba e et eesnnte e e e nnnees 498

24.3 OPERATION FLOW ...ttt sttt e e e e et et e e e e e e e e e ta b s e e e e e e eeesenns an 499
CHAPTER 25 SIU (SERIAL INTERFACE UNIT) .ottt 501
25.1 GENERAL ..ottt e e et e e e et e aa e e aaaaeat aaeeaarrna, 501
25.2 REGISTER SET ..iiiiiiitiuiiitiiuiiuuitiuieieueueaeeeeeeeaeeeeeeeseeeeeeeaeeeeeeeeeeeeeeeeeeeeeeeeererrrerrrererererrrer 501
25.2.1 SIURB (0x0CO00 0000: LCR[7] = 0, REAA)ueieiiiiieeiiiiieesiee s eiee et eeee e e ste e sneee e 502
25.2.2 SIUTH (0X0C00 0000: LCR[7] = 0, WIIE) ... ttteeeiiteieiiiieee ettt ettt 502
25.2.3 SIUDLL (OXOCO00 0000: LCR[7] = 1) tiioueieeiitiieeeaieeeesieeeesieeeeseeeeessseeaesaseeesssnseeessnseeeesnseeeesnnsnees 502
25.2.4 SIUIE (OXOCO00 000L: LCRI7] = 0) wttteiiurieeiittieeeiiiete e siteee e et e st et e e st st e e s sibre e s antne e e e 503
25.2.5 SIUDLM (0XOC00 0001: LCR[7] = 1) teiiueieeiiiiieeeeieeeesteeeeaieeeeeeeeeessnteeeesneeeessmneeaesnneeeeanneeeesnnseses 504
25.2.6 SIUIID (OXOCO00 0002: REAA) .. ceeeuvrieiiiiiieeiiiie e sttt ettt e sttt e sttt et e e abb e e s nte e e s nebeeesanbnee e e nnnees 505
25.2.7 SIUFC (OXOCO00 0002: WIIE) ...eeeeueereeeiteeeesiieeeeaseeeessueeeesssteeeeaseaessneeeeanseeeesnsseeesssseeesasneeeessnnees 507
25.2.8 SIULC (OXOC00 0003)....uuteeeiireeeeauirieesiieeeeatreeesasseeessusseeaastseesssseeessbseeeaasseessasseeesssneeesansnnneeennees 510
25.2.9 SIUMC (OXOCO0 O004).....eeeeeiueieeeaiereeaueeaeaatteeesaseeeeasneeeeaanteeeeaseeaesasseeeaassseesanseeesssseeeeansnseeeesnnees 511
25.2.10 SIULS (OXOCO0 0005)ceeiuereeeiireeeaiiteeeeaitreeesteeeesteeeesstaeeesamteeesssbseeeasbeeessnbteeesnbbeeesasenbneeennnees 512
25.2.11 SIUMS (OXOCO0 0006) .. .ceeiureeeaaueereeiuueraaaerreeaaseeeessneeeeaaseeeeeaseeeessseeeaaseseesasseeesssseeesmsssseeessnnees 514
25.2.12 SIUSC (OXOCO0 Q007) .eveeeeirreeeiutrteesitteeeatbeeesameeee s sibeeeeasteee e sttt e e s bseeeaabbeeesanbeeesssbeeeeantsbneeennnnes 515
25.2.13 SIUIRSEL (OXOCO0 0008).......eceiuureeiuereeaatieeeaaeneeasueeeeasereeaaseeeesasseeeaasseessanseeessssseesansseeeessnnees 516
25.2.14 SIURESET (OXOC00 0009)eitiititeiitieeasiieeeesiieteesisee e st eeesite e e stbeeesantre e e sabseaesbneeesnnbeeesennnees 518
25.2.15 SIUCSEL (OXOCO0 O00A)eeeeeiieeeeeaieeeeaaitieeeseeeaesneeeeassteeesanseeesasneeesansseeesseeeesnsseeeannseeeeesnnses 518
CHAPTER 26 HSP (MODEM INTERFACE UNIT) oottt 519
26.1 GENERAL ..ottt ettt e e e e et e e e e e e ettt e e aaaaray aaeeaerrna, 519
26.2 REGISTER SET ..iuiiiuiiiuititiuiiiuuutiuteeeueueuneeeereeeaeeeeeseeeeeeeeeeeeeaeeeeeaeeeereeeeeeeeeeerrerrrererrrerererer 521
26.2.1 HSP INItIAIIZE REQISIET ...ce ittt e e e e ettt e e e e e s et e e e e e e e e s aaeeeaanneeeeeas 522
26.2.2 HSP Data Register, HSP INAE@X REQISTENccciiiiiiiiiiee ettt a e e e ee e e 523
26.2.3 HSP ID Register, HSP 1/0O Address Program Confirmation Register...........occcoevieiiiiiiiiieneenn. 531
26.2.4 HSP Signature CheCKING POI.........cciiiiiiiiiiie ettt e e e st e e e e e s et e e e e e e s ensnsesnsraees 531

26.3 POWER CONTROL ...ttt sttt e e e e et et s e e e e e e e e ta b r e s e e e e eeataba i aeeeaeeeeeaen an 532

18

CHAPTER 27 FIR (FAST IrDA INTERFACE UNIT) .ooiiiiiiiiieiriieeeesee e 535

A R €1 = N = USRS 535
27.2 REGISTER SET ..ottt e e e ettt e e e e et e e et s e e e e e eeaeten e e e e eanrenan 535
27.2.1 FRSTR (OXOC00 0040)uueeeiirieeeaiirteesiteaeatteeeesiteee s sibeeeessbb e e e atteeesambeeesssbeeeeanbbeeesnbeaeseesabeeeean 536

27.2.2 DPINTR (OXOC00 0042)......cceeeitieeeaaueeeeaaeeeeaanteeeeaaseeeeaaneeaesaseeeeaanseeeesnsseaesasseeesanseeessnseeeeessnseeeenn 537

27.2.3 DPCNTR (OXOC00 O044)etieiiiieeiiiite et ee sttt ettt sttt et e e et e e st e e nbb et e e snbr e e e sabaeee e sebeeeean 538

b T B (0)0 T 0[O 0010) PSS 539

27.2.5 RDR (OXOC0O0 0052)eieiiuueeeeiiiieeaiieteariteee e sttt eeestae e e s teeee s asb e e e anbse e e sbbeeesabbeeeeanteeeeanbaeeeesneneeeean 540

27.2.6 IMR (OXOCO0 0054)eeieiieieeeeeiiieeeaieeeeeeeteeeesnteeeessaeeesaseeeeaanteeeaanseeaeanneeaesasseeeeanseeeeannenaneeennneneenn 541

27.2.7 FSR (OXOCO0 O056).....ccciiuueeeeiirieeiiieteaiiieeeeasteeeestteeesaateeessibe e e e antee e e sbeeeesabbeeeeasteeeesnbeeaeeesnebeeeean 542

D I 2 S = 8 A (0) (0L 00 1003 S 544

27.2.9 CRCSR (OXOCO0 D05C)......uuueeeiireeeiitieeaiieeeesteeeeaiteeesstteeeassbee e s asba e e e sbseae s sbbeeeeanteeeesneeeessebeeeean 545

27.2.10 FIRCR (OXOCO00 Q05E).......ceeeiiiieeaaeeteeeiteeeeatieeeaaseeeesaneeeaeateeeeaaseeeesanseeeesnseeeeanseeeesanseeeessneeeenn 546

27.2.11 MIRCR (OXOCO0 O0B0)eeeeiuereeeiirriesiiteeeeastreeeatseeesiteeesssbeeesanteeeesbeeeesabbeeesanteeeesnbaeeesesnneeeean 548

27.2.12 DMACR (OXOC0O0 00B2).....cceeiuuireeaeereeaiueeaeaanteeeeatereesaseeeesaseeeeaaseresanseeeeansseeeassseeessnseeessnsnseeeenn 549

27.2.13 DMAER (OXOC00 O0624)eeeiitieeeaiirieeitieeeaattee e ettt et e e st e e e sbte e e s sabee e s snbseesabbeeesnnteeeeas sabeeeeas 550

A S 15 1 = B (0)10 1 00 I 00 <) PSR 551

27.2.15 RXIR (OXOC0O0 O0B8)uvveeeiirireeiirieeiiteeeatteeesaiteeesaibeeeesbeeeeabbeeesabeeesasbeeeeantaeeesateaeaesnnneeeean 552

A = B (0 (0L 0 00 A SRS 553

27.2.17 RXSTS (OXOCO0 O0BC)veeeeirieeeiieieeaiieee ettt e e sttt e sttt e et e e e st e e sabee e e e bb e e e s abbe e e e nnbeeeeansabeeeeas 555

27.2.18 TXFL (OXOCO0 O0BE).......ueieeiuiieeaiireeeiieeeasiteeeeateeeesueeaessnteeesanseeeesneeaessseeeaasseeesannenaeaessnnneeenn 557

27.2.19 MRXF (OXOCO00 O070)uueeeeiitieeeiitieeaiieee sttt e s asteeeesbeee e s stbe e e sasbe e e e sabeeeeabbeeeabteeeaanbneeeneenaneeeeas 558

27.2.20 RXFL (OXOCO0 O074)...cueeeeeeeieeeaieeeeaauteeeaanteeeeataeeesseeaesasaeeeaanseeeeanneeaesseeeesasseeesasenaeaessseeeenn 559
CHAPTER 28 MIPS Ill INSTRUCTION SET DETAILS.....cooeiiii ettt 561
28.1 INSTRUCTION NOTATION CONVENTIONS ..ottt e e aaaeee 561
28.2 LOAD AND STORE INSTRUCTIONSoutiiiieieieeieeeeeeeeeeeeeeeeeeeeeereeereeeeeeeseeeeerreererersrerereeeee 563
28.3 JUMP AND BRANCH INSTRUCTIONS. ..ottt a e e a e e aana s 564
28.4 SYSTEM CONTROL COPROCESSOR (CP0O) INSTRUCTIONScoccciiiieieeeeeciiiieeeeeenn, 565
28.5 CPU INSTRUGCTION . uttuiii ittt ittt sttt e e s e ettt r e s e e e e e ea st s e e e e e s eeebaa s s eeeaeeeestannanses aas 565
28.6 CPU INSTRUCTION OPCODE BIT ENCODING......cctutttiiiieeieiiieieeereeeeeeereeeeereseeeseseeeseaeaeees 711
CHAPTER 29 MIPS16 INSTRUCTION SET FORMAT ..., 713
CHAPTER 30 VR4111 COPROCESSOR 0 HAZARDSoooieeiieieiieees 753
CHAPTER 31 PLL PASSIVE COMPONENTScooiiiiii e, 759
APPENDIX A DIFFERENCES BETWEEN VR4111 AND VRA102cccooviviiiiiieiieeeeeeeeee, 761
A.1l SUMMARY OF DIFFERENCES.........otttiiitiiiiiiiiiiieieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeereeeaeaeaaaeaeneaeeaeaeeees 761
A.2 DETAILS OF DIFFERENCESoiii ittt s e e 762
YN R 05 Tod o = I1Y =1 42 To) o YOO PPPPPN 762

YA | 1 i (8 (ox 1T o ST = SRR UPRTR 762

AL2.3 PN FUNCHON ..ttt ettt e ettt e bt e e e st e e e ettt e e e bbb e e e antbb e e e e anbn e e e nnneeas 763

A.2.4 MEMOTY CAPACILY ...eeteiiieeeeiiiteeiee e ettt e e e e e ettt e e e e s e e ateeeeeaaeaaasaeeeeeeaeeaaannsbeeeeaeeaaannssnsbeneeaaeaann 765

AL2.5 BCU i 766

E N ST 1Y PRSPPI 766
AL2T7 PMU oo 766
A28 GlU .o e e e e e e e e e e e a e e e e neeas 767
AL2.9 AU Lo 767
AL2.00 KIU oo e neeeas 767
AL2. 1L DSIU e 767
A2 02 H P e e e e e e e e 768
AL2.L3 FIR e e 768
APPENDIX B INDEX ... n e e e e e e nn e nne 1ean s 769

20

LIST OF FIGURES (1/5)

Fig. No. Title Page
1-1 Vr4111 Internal Block Diagram and Example of Connection to External Blocks 32
1-2 VRrR4110 CPU Core Internal BIOCK DIagramcooiiiiiiiiiiiiieaae et ee et ee e e e eneeeeeaaeens 45
1-3 VRALLL CPU REUISIEIS .eiiieeiiiiiiiiiie e ettt ettt e e e e e e ettt e e e e e et e e e e e e e e saatb e et eaeeeassstbaaaaaeaeseeeantbenees 47
1-4 CPU Instruction Formats (32-bit length instruction) 48
1-5 CPU Instruction Formats (16-bit length instruction) 49
1-6 Little-Endian Byte Ordering in WOrd Data.........oooiuuueiiiee ettt e e e e e e e e e e annes 50
1-7 Little-Endian Byte Ordering in Double WOrd Datal............coccuiiiiieeeiiiiiiiieee et e e e esiveree e e e s e snnaee e 51
1-8 Misaligned Word Accessing (Little-ENdian)............oooii it e e e e eiaeeee 2 eeenees 51
1-9 (01 =0 = Lo |5 (=T £ PP TPPPPP 52
1-10 External Circuit Of CIOCK OSCIIALON..........ciiiiiiie e e e e e e e e tbreeeaaeeeanees 57
1-11 Examples of Oscillator with Bad CONNECHONiiiiiiiiiiiiiee et e e e e e s ssaaraaes eeennees 58
2-1 VRA111 Signal ClasSifiCatiON.........ciiiuiiiiiiee ittt e e e e e s e e e e e e e e s b e et e e e s saanes e eeannrbeees 63
3-1 MIPS 11 ISA CPU INSIIUCHON FOIMALSeeeiiiiiiiieiiiie ettt et et esnr e e e e nnneee s 81
3-2 Byte Specification Related to Load and Store INSrUCtIONSuueiiiiiiiiiiiiee e 83
5-1 PIPEIINE SEAGES ... eeeiieii ittt oottt e e e e oottt et e e e e e e aat et et e e e e e e nnteeeeeaeeeaaeeeaantbreeeaaeaeaanne 129
5-2 Instruction EXecution in the PIPEIINEcoo i e e e 130
5-3 PIPEIINE ACHIVILIES ...ttt oo oottt e e e e e e a bttt e e e e e e e nbbee e e e e e e e eaaeeeaantbseeeaaeasaanne 130
5-4 (2T = L le] o 1 1T PO OPPPUPPUPRN 132
5-5 Add InStruction PIipeling ACLIVILIESeiiiiieiii e e e e et e e e e e aeeeeaaeeeannes 133
5-6 JALR Instruction Pipeline Activities 134
5-7 BEQ INStruction PIPeling ACHIVITIESeeeieiieeee ettt ettt e e e e et e e e e e e nbbe e e e e s eeeeaaeaeannes 135
5-8 TLT INStruction PIPElING ACHVITIESuviiiiee ittt e s e e e e e e s e e e e e e s st eeaeeeesnrreees 136
5-9 LW Instruction Pipeline Activities 137
5-10 SW Instruction Pipeline Activities 138
5-11 Interlocks, EXCePiONS, aNd FAUILSooiii ettt e e e e e et e e e e e e e eeeeaaeeeanees 139
5-12 [Cel=T o1 (o] A I D =] (=Tod 1 1o] o [P RUOPPPUPPUPRN 142
5-13 Data CaChe MiISS STAUL........ooiieiiii ittt e e e ettt e e e e e e sttt e e e e e ean e e snebseeeaaeasaannes 143
5-14 CACHE INSIIUCHON STAIleeeieiiiie ettt e sttt e st et e e s ntb e e s anbn e e e nanees 143
5-15 [IoF= To D F- = W 1] (=] (oL GO PP OUPPUPRTPTN 144
5-16 MD BUSY INTEIIOCK ...ttt e e et e e e e e et e e e e e e s e abbreeeeeeeanaeessnntbaaeeaeeesannses 144
6-1 Virtual-to-Physical ADdress TranSIationeiieiiiiiiiiiiiee et e s e e e e st ee seanraaees 148
6-2 32-bit Mode Virtual Address Translation 149
6-3 64-bit Mode Virtual Address Translation 150
6-4 USEr MOUE AGAIESS SPACE eeiieeiieee ettt e e e ettt e e e e e e et eee et e e e e s aasaeeeeeeaaeaasneeeeeaaaeaannssneeaeeeeaaaasaannes 152
6-5 SUPEINVISOr MOAE AQUIESS SPACE.eiiiiiiiiiiiiiiee e et ittt e e e e s et e e e e e s e e e e e e et e taeeaeessassssaaaeae srrreeeaeean 155
6-6 Kernel Mode AArESS SPACEuueiiiiiiiiiiiii ettt e e e e e ettt e e e e e e e aaee e e e e e e e s e naeeeeeaaasaasasseeeaaeeeeaaaasaannes 158
6-7 XKPNYS ArEa AGAIESS SPACEiiiiiiiiiiiiiee ettt e e et e e e e s et e e e e e s e bt e e e e e e s aasatbretaeeeaann aeeeessrbaees 159
6-8 VRA111 PhySiCal AQArESS SPACEueeiiiieeieiiiii ittt e e ettt e e e e e ettt e e e e e e e nnaeaeeeeeeeaannnreeeeaa aeeeas 165
6-9 CPO REQIStErs @N0 the TLBcccciiiiiiiiiii ettt e e et e e e e e st e e e e s e s satbaeeeaaeessnts sesntraeaaaeean 173
6-10 FOrmat Of @ TLB ENEIY ...ttt e e e e ettt e e e e e e e nbb et eee e e e e e sntbseeeaaeasannes 174

21

LIST OF FIGURES (2/5)

Fig. No. Title Page
6-11 Tao ot S =T 1) (= OO UPSPPRRRIOt 175
6-12 Random Register 175
6-13 EntryLo0 and ENtryLOL REQISIEIS ...uuiiiiiiiiiiiiiiiies ettt e e e e e st e e e e e e e e sasbbaa e e e st e aeeeeasnees 176
6-14 Page MaSK REGISEETeeeeieiie ettt ettt e oottt et e e e e e e s ettt e e e e e e e e e s nntbeeeeeaeeesamsannntaneeaaaeesaanns 177
6-15 Positions Indicated by the Wired Register 178
6-16 VT =To I =T o 1] (] RS PTPP 178
6-17 L 1Y T = oo) (= TP UPPRPP 179
6-18 Lo I LT |11 (=] TS UPSRRRSROE 180
6-19 CoNfig REGISIEI FOIMALuiiiiiiii ittt et e e e e e e s e et e e e s e s s aatbeteaaeeessisstbbaseaaeeessanes 181
6-20 [0 [o | g 2 =T o 1] (] TP UPRRPP 182
6-21 I T | Mo I 2 LT | (= PR UP PP 182
6-22 I Te | T S =T 0[] (= PR 183
6-23 TLB AdAreSs TIaNSIALION.........ccoiiiiiiieiiiiie ettt e e ettt e e e bt e e s s abb e e e e anbe e e e sma e e e e enne e e e naneee 184
7-1 CONtEXE REGISIET FOIMMALuuiiiiieiiiiiiiee e e e et e e e e e s st e e e e e e s e s atb e eeaaeeassastbeseeseeeessasmsbaeseaaeeesannnes 190
7-2 BadVAdAr REQISIEr FOIMIALooiiieieeiii ettt ettt e e e e e e e et e e e e e e e e e e nnbireeeaeeeeeannes 191
7-3 (000N 1 a1 2 Yo [(=T 0] €1 - L USROS UPRRPR 191
7-4 COMPAre REGISIEN FOIMALceiiiiiiiiiiiii ettt e e e et e et e e e e e e e et eeeeeeaeasaasneeaeeeeaeeaeaansmreneeaaeeesaannes 192
7-5 StAtUS REGISTEN FOMMIALuiiiiiiiie et e e e e s e e e e e e e et e e e e e e e e s satbtbreeeeaesessnsbbaseeeeeesannnes 192
7-6 Status Register DiagnoStic StatuS FIEIooii i e e e e e 193
7-7 CaUSE REGISIEI FOIMMALuuiiiiiie ittt e e e e e e e e e e e e e st eteaaeeessastbebaetaeeessasmsbaeseaaeeessnnnes 195
7-8 EPC Register Format (When MIPS16 ISA IS Disabled)cooiiiiiiiiiiieii e 197
7-9 EPC Register Format (When MIPS16 ISA Is Enabled) 198
7-10 WatChLO REQISTEN FOIMALeeeiiieei ittt ettt e e ettt e e e e e e e et e e e e e e e e e nntbeeeeaaeaaaaeeeaannnnneeaens 198
7-11 WatChHI REGISIEr FOIMALuiiiiiieeiiiiiiit et e et e e e e e s e e e e e e s st e e e e e e e s ssbbaaeeaeeeaaeessassereeeeas 198
7-12 XCONEXE REGISIET FOIMMAL......ciiiiiiiieiiii ettt e ettt e e e e e e et e e e e e e e e anatbeeeeaeeeaan e e ansaneeeaaeaann 199
7-13 Parity Error Register Format 200
7-14 Cache Error Register Format 200
7-15 ErrorEPC Register Format (When MIPS16 ISA Is Disabled)cccouvieieiiiiiiiiii e 202
7-16 ErrorEPC Register Format (When MIPS16 ISA IS Enabled) ... 202
7-17 Common EXCEPtioN HANAIINGuviiiiieiiiiiiiiee ettt e e e e e s e e e e e e s st ra e e e e e e aeeaeeeannnnes 222
7-18 TLB/XTLB Refill EXCeption HaNGIINGcoo. oottt e e e e e eeeeaae e ns 224
7-19 Cold Reset EXCEPtion HANGIING.........cooiiiiiiiieeiieiiiiii et e et a e e e s e e e e e e st e e e e e e e aeaeaeeeennnnnes 226
7-20 Soft Reset and NMI EXCeption HANAINGcooooiiiiiiiiiee et a e et e 227
8-1 230
8-2 231
8-3 232
8-4 233
8-5 234
8-6 VRr4111 Activation Sequence (When Battery Check IS OK)ocuviiiiiiieiiiiiiiiiiece et 236
8-7 Vr4111 Activation Sequence (When Battery Check IS NG)cccuuiiiiiiiiiaiieee e 236
8-8 (0] [0 [2= S PRSP PPP PP 237
8-9 Y0 == PRSPPI 238

LIST OF FIGURES (3/5)

Fig. No. Title Page

9-1 Logical Hierarchy of Memory 243
9-2 (0= Tl LIS T o] o o] ¢ AP T PRTR PSR 244
9-3 INSrUCtioN CAChE LINE FOMMAL........eiiieiitiee ittt et e e s e e s nneee s 245
9-4 Data CaChe LINE FOMMALiiiiiiiiiiiiei ettt e e e e ettt et e e e e e e e e nt b e e e e e e e e e s eannnseeneeaaaeeann 245
9-5 Cache Data and Tag Organization 246
9-6 Data Cache State DIAGIAMcoiii it e ettt e e e e e e s et e e e e aae e e s e sbbeeeeeaaeeeaammseneeeaaaaaann 249
9-7 INStruction Cache State DIAgIAIMiieiiiiiiiiiiee e e e et e e e e e s e e e e e e e e s s b e r e e e aeeeseasstbaareaaseeeesannnnres 249
9-8 Data Check FIow on INStrUCION FEICH ...t a e 250
9-9 Data Check FIOW 0N LOad OPEratiONSccuuviiiiiiee e ittt e e e e e ettt e e e e e s e et e e e e e e e s seantbreeeeaeeseeesanes 250
9-10 Data Check FIOW 0N StOre OPEIratiONS.coiiiiieiiiiiiee e ettt e e e e et e e e e e e s e s nebe e e e aeaeesaannneeeeeneeaeeeaannn 251
9-11 Data Check Flow on Index_Invalidate OperationS...........c.ieciiiiiiiiiiiiee e ieiiiiees e e e e s s e s e e e s e e enesnesanns 251
9-12 Data Check Flow on Index_Writeback_Invalidate Operations............oooouuiiiiiriaeiiiiiiieei e 252
9-13 Data Check Flow on Index_Load_Tag Operations 252
9-14 Data Check Flow on Index_Store_Tag Operations 253
9-15 Data Check Flow on Create_Dirty OPeratiONSuuuiiieeiiiiiiiiiieeeiisiiiiere e e e sesitireeeeessssneraeeeaessasnss snnees 253
9-16 Data Check Flow on Hit_Invalidate OPerationsoocueeeeiiaaiiiiiiiee e e e e e e e e eeaeees senees 254
9-17 Data Check Flow on Hit_Writeback_Invalidate OpPerationseevieiiiiiiiiieee e e e 254
9-18 Data Check FIOW 0N Fill OPEratiONS.coiiiiiiiiii ettt e e e e et e e e e e e e e s aneeeeeeeeareeeaaaeeeann 255
9-19 Data Check Flow on Hit_Writeback Operations..............uuviiiiiiiiiiiiiiie e 255
9-20 WWIEEDACK FIOW. ...ttt e e oottt e e e e e e e e aatte e e e e e e e st e s e nnbbeeeeaeaeeaeannnes 256
9-21 RETHT FIOW. ...ttt h et e ekt e e e b et e e e bb e e et e b et e e et e e e e enbne e e e nanees 256
9-22 WIteDaCK & REFII FIOW ..ot e ettt e e e e e e e e et e e e e e e e e e annnees 257
10-1 Non-maskable INtErruPt SIGNAL............e it e e et e e e e e e e e eeeeae e e nn 259
10-2 Hardware INtEITUPE SIONQAISvviiiiieiiiiiiiiii e e e e e e e s e e e e e e e e e s ettt e b et e e e e s srsnsbbaeeaaeeeeann 261
10-3 Masking of the Interrupt REQUEST SIGNQAISeeiiiiiiiiiie e e e s e e e e 262
111 Example of 32-Bit LCD Controller Interface CONNECHION...........ooiiuiiiiiiiiae e 283
11-2 ROM 4-Byte Read, 16-Bit Mode (WROMA[2:0] = 110)uuetiiiiiieeiiiieeeiiiie e sieee et e e saneee s 286
11-3 ROM 4-Byte Read, 32-Bit Mode (WROMA[2:0] = 110) ..ccceiueeeeiieeeesiieeeaiereesieeeessneeeesseeeessnneeeesnneeeeanes 286
11-4 PageROM 4-Word Read, 16-Bit Mode (WROMA[2:0] = 111, WPROM[1:0] = 10)eevevvveeeiiieneiireeenns 287
11-5 PageROM 4-Word Read, 32-Bit Mode (WROMA[2:0] = 111, WPROM[1:0] = 10)evverivereeiiiineaiieeennns 287
11-6 Flash Memory Mode, 2-BYLE ACCESSuuuiiiiiei ittt ie e ettt e e e st e e e e e st e e e e e e s s b b aeeaaeessas aeeeananes 288
11-7 1-Byte Access to Even Address Using 16-Bit Bus (WISAA[2:0] = 101)uuiieiieiiiiiiiieeea e eeiieieee e 289
11-8 2-Byte Access When Sampling IOCHRDY at High Level Using 16-Bit Bus (WISAA[2:0] = 101)........... 290
11-9 1-Byte Access to Odd Address Using 16-Bit Bus (WISAA[2:0] = 101) 291
11-10 1-Byte Access to Odd Address Using 8-Bit Bus (WISAA[2:0] = 101) ..ecveeeiiiiiiieiieeeieiiiieeee e eeiivien e 291
11-11 2-Byte Access When Sampling ZWS# at Low Level Using 16-Bit Bus (WISAA[2:0] = 101).......cccee...... 292
11-12 2-Byte Access When Sampling ZWS# at Low Level Using 8-Bit Bus (WISAA[2:0] = 101).......ccceeeeennn. 292
11-13 2-Byte Access Using 16-Bit Bus (WLCD/M[2:0] = 10L) ..eciiiiuiiiiiieee et e e et e e e e e e e e e e enneeeen s 294
11-14 1-Byte Access Using 8-Bit Bus (WLCD/M[2:0] = 101) ...ccuvuiiierieeiiiiiiiieiiee e e e e seeiiivees e e e e e e s ssirnrae e e e e e e e 294
11-15 2-Byte Access When Sampling ZWS# at Low Level Using 16-Bit Bus (WLCD/M[2:0] = 101)............... 295
11-16 1-Byte Access When Sampling ZWS# at Low Level Using 8-Bit Bus (WLCD/M[2:0] = 101).................. 295
11-17 2-Byte Access to LCD Controller (WLCD/M[2:0] = 010) ...uueuuiiiiieaeeeaeiiieie e e et ee e e e e nineeeeaee e 296

23

LIST OF FIGURES (4/5)

Fig. No. Title Page
11-18 2-Byte Access to LCD Controller (WLCD/M[2:0] = 011)..uuuieiiieeiiiiiiiiiiieee e e s eeiiiiere e e e e e s sivvaeeeeeeesessnnsnnnns 297
11-19 Access to LCD Controller When Data Bus Size Is 32 Bits 297
11-20 4-Byte Access t0 DRAM (16-Bit MOUE)uueiiieiiiiiiiiiiie e e ettt ettt e e s e e e e e e s eebaaa e e e e e e sen e e e e nnnnes 298
11-21 8-Byte Access t0 DRAM (32-Bit MOOE)ueeiiieiiiiiiiiie ettt ettt e e e e e e e e e e e e e e e e e e e nneees 298
11-22 Byte Read of Odd Address in DRAM (16-Bit Mode) 299
11-23 Byte Read of Even Address in DRAM (16-Bit MOUE)coiiieiiiiiiiaiiiiiee e 299
11-24 Byte Write to Odd Address in DRAM (16-Bit MOUE)occuuiiiiiieiiiiiiiiiie e csiieee e e eivaaee e e 300
11-25 Byte Write to Even Address in DRAM (16-Bit MOAE)ouuuiiiiiieiiiiiiieee et 300
11-26 Read Cycle for DRAM (iN 32-Bit MOUE)........uuiiieeiiiiiiiiiiie ettt e e e e et e e e e e e e st e e e aeaeeeennnnes 301
11-27 Write Cycle for DRAM (iN 32-Bit MOUE)eiiiiieiiiiiiiii ettt e e et e e e e e eaeeeaanneees 301
11-28 CBR Refresh (16-Bit MOUE)......ccciiiiiiiiie ettt et e e e e e et e e e e e e st a e e e e e e s sstbatbaeeeaeeeansnnnes 302
11-29 Self Refresh (16-Bit IMOUE) ...ttt ettt e e e e e et e e e e e e eanae snntbeeeeaeeeannnnees 302
11-30 Bus Hold in Fullspeed Mode and Standby MOAEcuuiiiiiiiiiiiiiiice et e 303
11-31 Bus Hold in Suspend Mode 304
12-1 DMA Space Used in DMA TIaNSTEISttt ettt e e e ettt e e e e e s et eeeaaeeaan e e e nnnnees 305
14-1 Block Diagram of CMU and Peripheral BIOCKScccoiiiiiiiiiiie et e 323
15-1 INErrUPt CONIOL OULIINEttt e ettt e e e e e e ettt e e e e e e e s antb e e e aeeeaaeesaannnneeeeeas 327
16-1 Activation via Power Switch Interrupt (BATTINH/BATTINTH = 1) cuuiiiiiiiiiiiiieeee e 356
16-2 Activation via Power Switch Interrupt (BATTINH/BATTINT# =0) 356
16-3 Activation via GPIO Activation Interrupt (BATTINH/BATTINT# = 1) 357
16-4 Activation via GPIO Activation Interrupt (BATTINH/BATTINTH = 0)...ccoiiiiiieiiee e cciieeee e 357
16-5 Activation via DCD Interrupt (BATTINH/BATTINTH = 1) ..ot 358
16-6 Activation via DCD Interrupt (BATTINH/BATTINT# = 0) 358
16-7 Activation via Alarm Interrupt (BATTINH/BATTINTH = 1) ..euiiiiiiiiiiiieieee e e e eeee e 359
16-8 Activation via Alarm Interrupt (BATTINH/BATTINTH = 0).eieiiiiiiiiiieee et e et e e e e e e e e e snenes 359
16-9 Power Mode State TraNSILIONoii et e e ettt e e e e e s et et e e e e e e s anteeeeeeeeeaaeeaaannnnes 361
20-1 PIU Peripheral BIOCK DIGQIaMcoiiiiiiiiiieie ettt e e e e ettt e e e e e e antbee e e e e e e s anteeeeeeseeeaaeeeaannnnes 420
20-2 Coordinate Detection EQUIVAIENT CIFCUILS.........ccuiiiiiie ettt e e e e e e e e e e e e s esan e e e e e snenes 421
20-3 Internal Block DIiagram Of PIU ... ittt e e e e sttt e e e e e e e e e e e e e annneeeeeeas 421
20-4 Scan Sequencer State TranSition DIAgIamMuvuiiieeiiiiiiiiee e e e e st e e e s et e e e e e e e s sasaee seneees 422
20-5 Interval Times and States 429
20-6 Touch/Release Detection Timing 442
20-7 F D elo] Yo T I T 0111 T TR 442
211 Speaker Output and AUDIOOUT PN ..ottt e e ettt e e e e e e s e e e e e e e e e e e eennneees 456
21-2 AUDIOIN Pin and MIC OPEIAtiONuuiiiieiiiiiiiiieeeeeseiiitreeaeeessttraeeaaeeasstaaaseaaeessasaraeeaeeessasnrsraereaaeesins 457
22-1 Scan Operation and Key Data StOre REQISIEI..........uiiiiiiiiiiiiiiee et e s e e e e e s abaas sneees 462
22-2 Connection of Keyboard INterface PiN....... ... e e 471

24

LIST OF FIGURES (5/5)

Fig. No. Title Page

22-3 Transition of Sequencer Status 473
22-4 Basic Operation TiIMING Chart ...t e e e e et e e e e e e e e s ennmas e eeeaaeeeenn 474
23-1 Data Format for Transmission and RECEPLIONcciiiuuiiiiiiiie et e e e e e e e e e eeaeees 488
23-2 Transmit Complete Interrupt Timing 489
23-3 Receive Complete INTErruPt TIMING.coei ittt e e e e e s et e e e e e e e e e e annnneereeeeaaeeeann 490
23-4 RECEIVE EITON TIMING 1oiiiiiiiiiiiiiiet e e ee ettt e e e e e e ettt e e e e e e s et e et e e e e e s s atbbeseeeaeeeaeassstbaseeaeeseasnssbaneaaaeeeann 491
25-1 Connection Example Between the VrR4111 and IrDA ModUIEcoeeeeiiiiiiiieii e 517
26-1 HSP UNit BIOCK DIAGIAM ...viiiiieiiiiiiiiit ettt e sttt e e e e et e e e e e e st b et e e e e s e satbaateaeesssntsntbraaeaeeessnnres 519
26-2 Circuit Configuration Block Diagram EXamPIESeooiiiiiiiiiii e e 520
26-3 Block Diagram of HSP Interface POWEr CONMIOL..........uuiiiiiiiiiiiiiiiee et e et e e e e e e e e s enae e 532
28-1 V2T R R @ o Toto o [T 2]y = g oo Lo [T T PSP EPR PR 711
31-1 Example of Connection of PLL PasSive COMPONENTS.........ciiiiiiiiiiiiieeeeiiiiiiieeeeeessitvareeeeessssnnaeeaeesssnnens 759

25

LIST OF TABLES (1/4)

Table No. Title Page
1-1 BCU REGISIEIS. ..eiiiiiii ittt ettt e e e e s ettt e e e e e et et bt e et e e e e easatb e et aaeesasatbeaeaaeaeessasstaaeeeaessansnnnes 35
1-2 DIMAAU REQISTEIS ...ttt ettt ettt e ookttt e e e e s e et ettt e e e e e e natteeeeaaeeaamnebeeeeaeeeaannnnneeeeeaeeeaannnees 35
1-3 (DT OA U I =T £ 1= £ PRSP OUPPRPRRIOt 36
1-4 CMU Register.... 36
1-5 (@10 I =T 1] (=] £ TP SUP PSP 37
1-6 PIMU REQISTEIS ..eeiieiiiiiit ettt ettt e e e oottt e e e e e o et be et e e e e e e e ntaeeeeeaeeeaassaseeeaaaeaa e easnsseeeeaesaaannnens 37
1-7 L O 2 LT |5 (=] £ PSR OPPRPTRIOt 38
1-8 (DS W =T o 1] (] £ PP R RO SRPTRIOt 39
1-9 (11O I =T 1] (=] £ PSR PPPPTRIOE 39
1-10 e LU Lo 1) (=] (PRSP URPTROt 40
1-11 AlU Registers..... 41
1-12 LU LT o 1) (=] PP URPTOE 42
1-13 (DS [0 =T o 1] (] £ PP UPPTRIOE 42
1-14 LED REQISLEIS ...eeiiieeiiiiitiiee e e et ettt e e e e ettt e e e e e 4ot b e et e e e e e e s n e b e et eea e e e nbae et eeeeeeaannebeeeeaaeaeeeaannneneeeaeeaaannnnns 43
1-15 Y LU I =T | 1= = PSR OUPUPPTROt 43
1-16 [S ol S U= 1] (= (RO R P O U URPTRIOE 43
1-17 L d=To 1] (=] € PRSP OPPPPRROt 44
1-18 System Control Coprocessor (CP0) Register Definitions 53
1-19 Relationships Between CLKSEL Pin Settings and Clock Frequencies 57
2-1 System BUS INTEIACE SIGNAISuviiiiiiiie i e e e e e e et e e e e e s s st b er e et e reaeeeesannees 64
2-2 (o [oTod Q] (=] g 7= Tt =TS T [F= U T TSP UPRRPR 66
2-3 Battery Monitor INterface SIGNAISc.iiiiiiiiiiiiiei et e e e e e e e e e e e e st eraerereaaeeesannes 66
2-4 Initialization INtErface SIGNAIS.........oo et e e e e e e e et e e e e e e e e nneaeeeas 67
2-5 RS-232C Interface Signals 68
2-6 IFDA INTEITACE SIGNQ@USeeeeeieeieie ettt e e e e ettt et e e e e e e e ne b bt e e e e e e e e e e annmreeeeeaaeeaaannenneeas 69
2-7 Debug Serial INterface SIgNalS.........ueeiiiiiiiiiiiiiiee et e e e e e e s e e e e e e e e st ar e reaaeeesannees 69
2-8 Keyboard INterface SIgNAISeeiiiiiiii ettt e e e et e e e e e e e e e et besre e e e e e e e e e annes 70
2-9 AUIO INTEIFACE SIGNAIS ...t e e e e e et e e e e e e s e bt e e e e e et e e e s nnaberaeaaaaeas 70
2-10 Touch Panel/General Purpose A/D Interface SIgNalSooooiioiiiiiiiiiie e 70
2-11 General-pUrPoSEe /O SIGNAIScouiiiei et e e e e e e e e e e st a e e e e e e e s ee bbb e e eaaeeesaannes 71
2-12 HSP MODEM Interface Signals 72
2-13 (I DT (= g = Lot oI o o - USSP UPRRPR 72
2-14 INItIAI SELHNQG SIGNAIS ... eeeeeeee ettt e e e e ettt et e e e e e e s e bbbt e e e e e e e e e e s ensaneeeeeaaeeeeannnnnees 72
2-15 Dedicated VDD and GND SIQNaIS........ccoiiiuiiiiiiie ittt e e e e e e s e e e e e s eeaarr e e e e e e s eesneaaeeeas 73
2-16 Pin Status UPON SPECIFIC STALEScei it e et e e e e e s e e e e e e s eeeeaeeeaannnnes 74
2-17 Connection of Unused Pins and Pin 1/O CirCUIt TYPE......uuuiiiiieii ittt ettt e e e e e e e e e e e 77
3-1 Number of Delay Slot Cycles Necessary for Load and Store Instructions 82
3-2 (o= 1o /S (o] (=N 1 51 1 101 (o] o TSR URPTROE 84
3-3 Load/Store INStruction (EXLENAEA ISA)eeiii ittt e e e r e e e e e et r e e e e e e s e e e eennnenes 85
3-4 ALU IMMeEdIiate INSIFUCTIONeeiiiiei ittt ettt e ettt e e e e e et e e e e e e e ntbeeeeaaeasaaeesaannnneeeaeas 86
3-5 ALU Immediate Instruction (EXENAEA ISA).....oeiiiiiiiiiiiiie et a e e e an e e e e 87
3-6 Three-Operand TYPE INSTIUCTIONooii ittt e ettt e e e e e s et be e e e e e e s anbeeeeee reeeeaaeaann 87
3-7 Three-Operand Type Instruction (EXtENAEd ISA)uuiiiiiiiiiiiiiiee et e e s eaaae s 88

26

LIST OF TABLES (2/4)

Table No. Title Page
3-8 SRt INSIIUCHION ...ttt e et e e e e e ar e s saneenene s 88
3-9 Shift Instruction (Extended ISA) 89
3-10 MUItiply/Divide INSIIUCTIONSuviiiiiieeiiciieie et e e e e e e e e e e st eaeeessat b e et eaeeeasastbee santbraeeeeeasannnes 90
3-11 Multiply/Divide Instructions (EXtENAEA ISA)eeeiiiiiee e e e e e e eaae e e e e enees 90
3-12 Number of Stall Cycles in Multiply and Divide Instructions 91
3-13 Number of Delay Slot Cycles in Jump and Branch INStrUCHONS...........oooiiiiiiiiiiiiiieieee e 92
3-14 B8 [0 o J L1S £ (0 o3 1T o USSR 93
3-15 BranCh INSTIUCTIONSeeeiiiee ittt e e e e e ettt e e e e e e e e saee e e e e e e e aannnebeeeaaasaanaeeesansnseeeaaeasaannes 94
3-16 Branch INStructions (EXIENAEA ISA)uuiiiiiie ittt e st a e e e e s e e e e e e s et bareeaaesaeaaeessanees 95
3-17 SPECIAI INSIIUCTIONS ...ttt e ookttt e e e e e e bt et e e e e e e e naateeeeae eeeeaeesaannnnseeeaaean 96
3-18 Special INStructions (EXIENAEA ISA)......ccoi ittt e e e e s e e e e s st e e santraeeaaeean 96
3-19 System Control Coprocessor (CPO) INSITUCLIONSuiiiiiiiiiiiiiiee e e e e e e 97
4-1 General-Purpose Registers 100
4-2 Sy LeTol F= Ul =T £ (=T £ PP PPPPP 101
4-3 MIPS16 INSLrUCHION St OULINEeeeiii ittt et e e e e et e e e e e e e anneeee e e eeeeaaeaeaannes 103
4-4 FIEIA DEFINITION ...ttt b et e e b e e s e e e sab e e san e e ne e seneenene s 104
4-5 Bit Encoding of Major Operation COUE (OP) «.eeeeeeauurrereeeaeaaiiiieieeaeasaaiteeeeaeeesaaneaeeeeeaeasaanneseeeaeesaans aeaannes 108
4-6 RR Minor Operation Code (RR-TYPE INSIIUCLION)uvviiiiiiiiiiiiiiiee e e e e e st e e e e e e s siaveeaes 108
4-7 RRR Minor Operation Code (RRR-TYPE INSIIUCHION)eeiiiiiiiiiiiiiiie et e e e e 109
4-8 RRRI-A Minor Operation Code (RRI-Type ADD INSTIUCLION).........uuuiiiiiiiiiiiiiiee et ee e e 109
4-9 SHIFT Minor Operation Code (SHIFT-TYPe INStrUCHION)coiiiuiiiiiieei ettt e e 109
4-10 I8 Minor Operation Code (I18-Type Instruction).............ccccvveeeeenn. 109
4-11 164 Minor Operation Code (64-bit Only, 164-Type Instruction) 110
4-12 BasSe PC AdAreSS SEING.....ciceiiiiiiiiiiie ettt e ettt e e e e e e e e e e e st e et e e e e s ssatbaeteaeesasssssntbraeeaeeesannres 111
4-13 Extendable MIPS16 Instructions 113
4-14 Load and Store Instructions............ 115
4-15 ALU IMMeEdIiate INSIIUCHIONSeeeeeiieei ittt ettt e ettt e e e e e s ettt e e e e e e s aabeeeeeaaeeaanneeeenbaneeeaaeasaannes 118
4-16 TWO-/Three-Operand REGISIEr TYPEuuuiiiii it e e e ettt e e e e s s e e e e e s s e e e e e e e s sntbbareaaaeesansns s aarrrees 120
4-17 S 111) 0 T 1T LR 122
4-18 MUItiply/DiVide INSIIUCTIONSuviiiiiie et e e e e e e e st e e e e e e s sntb e et eaeeeasastbee santbsaeeaeeassnnnes 124
4-19 Jump and BranCh INSITUCTIONS.ottt e e e et e e e e e e e e e e e e e e e anneeeeeas 126
4-20 SPECIAI INSIIUCTIONS ...t e e e e e et e e e e e s et b e e e e e e s sa st tbeeaee beeaaeessasntreeeaaeean 127
5-1 Description of Pipeline Activities During Each Stage...........coeiiiiiiiiiiiii e s 131
5-2 Correspondence of Pipeline Stage to Interlock and Exception Conditions.... 140
5-3 [T T e To I) (=1 [0 Yo PP OPPPUPPUPRN 141
5-4 Description Of Pipeling EXCEPLION ...ttt ettt e e e ettt e e e e e e s ntte e e e e e e e seeeaaaasannnes 141
6-1 CompPAariSON Of USEQ AN XUSEQuveeeeieeiaiuiiieitaeeeaaite et e e e e e atbee e e e e e e s aantbeeeeaaeaaaanbaeeeeaaeasansaseeeas snseneeaaaann 152
6-2 32-bit and 64-bit SUPErVISOr MOAE SEOMENTS......cciiiiiiiiie et e e e e r e e e ean aaeean 156
6-3 32-bit Kernel MOOE SEGMENTS. ittt e ettt e e e e e e et et e e e e e e anbeeeeaaeeesannes snnneneeaaaean 160
6-4 64-Dit KErnel MOOE SEOMENTS. ... iiiiiiiie e ettt e et e e e e ettt e e e e e s st e e e e e e easstbaaeaaeeesssbsssnsraeaeaeean 162
6-5 Cacheability and the XKphYS AAAreSS SPACE.........uiiiiiiiiiiiiiiii ettt e e e e e e e e anebaeee 2eeas 163

27

LIST OF TABLES (3/4)

Table No. Title Page
6-6 VRA111 PhySiCal AQArESS SPACE ...eeiiieiiiiiiiiiiie e ettt e ettt e e e et e e e e e et e e e e e e s e sa b et e e e e e easans aeeeaan 166
6-7 ROM Addresses (When Using 16-bit Data Bus) 167
6-8 ROM Addresses (When Using 32-bit Data Bus) 168
6-9 Internal I/O Space 1 170
6-10 Internal I/O Space 2 170
6-11 DRAM Addresses (When Using 16-bit DAta BUS)c.coeiiiiuiiiirieaiaiiiiiee et e e e eiieeeee e e 171
6-12 DRAM Addresses (When Using 32-bit Data BUS)cciiiiuiiiiiieeiiiiiiieice ettt e e e e e e e e e e s sivnneeaee e 172
6-13 (0= Tl TSI AN [T 11 12 1 DO PRSPPIt 177
6-14 MaSK ValUES aNA PAJE SIZES.....ccccciiiiiiiiiiiee e eiiieet e e ettt e e e e s st e e e e e s e s bbb e e e ee e e s e sataaetaaeesaeeeaesassnnnes 177
7-1 CPO EXCePLioN ProCeSSING REGISIEIS.uuiiiieiiiiiiiiiie e e s eeiiiie e e e e s s sttt e e e e e e s st e et e e e e sasataaeaeaesaasans eeeennnnes 189
7-2 Cause Register EXCeption CoAe FIEId ..ot e e e e eneees 196
7-3 64-Bit Mode Exception Vector Base Addresses 204
7-4 32-Bit Mode Exception Vector Base Addresses 204
7-5 Lot o1 o Al = 1] 1102 @] o [T OSSR PRPTRIOt 205
11-1 BCU REGISIEIS. ..ttt i ittt ettt e ettt e e e e e et e e e e e s et e et e e e e e e s e tat bt et aeeeaasstbeeeaaeaeessasstaaneeaessansnnres 263
11-2 Example of DRAM Connection and Address Output from VRALL11..........covviiiiiiiiiiiieaeiiiiiee e 275
11-3 Example of ROM Connection and Address Output from VRAL11.......cccvveiiieiiiiiiiiiiie e 277
11-4 Access Size Restrictions for AAAreSS SPACES.......c.uuuiiiiie it a e et e e e e e e aan eeeeeeas 279
11-5 ROM Mode Settings and AcCeSS-ENabIEd DEVICEScviiiiiiiiiiiiiie ettt e e e s 280
11-6 Example of Bit Inversion in Data in VrR4111 and at DATA[15:0] PiNS......ccooiiiiiiiiiiiieieee e 282
11-7 lllegal Access Notification MethOdS..........coooiiiiiiiiei i 284
11-8 Access Times During Ordinary ROM Read Mode 285
11-9 PageROM Read MOUE ACCESS TIME....uuuiiiiieeeiiiiiititeee e e s ettt eeeeessaeatraeteeeesassrbaetaaessasstbeeraaeeassssresannees 287
11-10 SYSEM BUS ACCESS TIMES iiiiiiiieee ittt e e e ettt e e e e e et bttt e e e e e e aeteeeeeaeeaansbeeeeaaeaaansbseeeae bseeeaaeaaannnnes 288
11-11 High-Speed System Bus Access Times 293
11-12 Access TIMES fOr LCD INEITACE......ooi ittt e e e e st e e e eeeeaeeeaannnees 296
12-1 DIMAAU REQISTEIS ...ttt ee ettt ettt e e oo ookttt et e e e e o ek e et e e e e e e e e e saeeeeeeaaeeaamnsbeeeeaeeeaanasnsaneeeaesaaannnnes 306
13-1 (DY AN o T 1V == TS URPTRIOE 315
13-2 (DT OA U I L= |1 (=] £ PRSP PRPRRRIOt 315
14-1 (1Y 1O J=To 1] (= G PRSP PRPTROt 323
15-1 (@10 I =T 1) 1= £ PSP SPSP 328
16-1 Bit OPEerations DUMNNG RESEL.......uuiiiiiiiiiiiii ettt e e e s e s e e e e e e s st b aeteeeeeesatbaeeestbaeeeaessannnnnes 353
16-2 Bit Operations DUFNG SNULAOWIN ..ot e e e e et e e e e e e s e nbbeeeaaeeeeeaeeeaannnees 354
16-3 POWET IMOE ...ttt et ekttt e et e e e b bt e ekttt e e ea bt e e anbb e e e e e anbe e e e nnbeeeenabeeeean 361
16-4 PIMU REQISTEIS ..ttt ettt e e e oottt e e e e e e s st te et e e e e e e e nbaeeeeeeae e e sbeseeaaaae e aeaannneeeeeaeeaaannnens 363
17-1 IO S =T 1) (=] (PP URPTIOE 372

28

LIST OF TABLES (4/4)

Table No. Title Page
18-1 (DS = To 1] (T ¢ PP RUUOPPPUPPUPRN 392
19-1 GPIO PN FUNCLIONS ...ttt sttt sb ettt b e bt e b e e s ean e e st e saneenene s 397
19-2 (110 =T] (=] £ TP 398
19-3 Correspondences Between Interrupt Mask and Interrupt Hold 413
194 Correspondences Between GPIO[47..32] and FUNCHON PINSocuuiiiiiiiiiiiiiieee e 415
19-5 Correspondence Between GPIO[48] and FUNCLION PiN...........oiiiiiiiiiiiiiieee e 416
20-1 e LU o LT 1) (=] £ PP OPPPPPPUPRN 424
20-2 PIUCNTREG Bit Manipulation and STAtEScooiiiiiiiiie et e e e eieeeee e e e e e e e enees 427
20-3 PIUASCNREG Bit Manipulation @nd StAteS.........ccuiiiuiriiiieeeiiiiiiiiee e e e sttt e e e e e s searre e e e e e s seianreeaeee s e snnees 434
20-4 Detected Coordinates and Page BUFFEIS........oooi it e 437
20-5 A/D Ports and Data BUfEIS..........ooiiiiieii e 438
20-6 Mask Clear During Scan Sequence Operation 439
21-1 F N L =T o 1S =] £ PP UPRRPT 445
22-1 LU LT o 1) (=] PR OUPPUPRTRTN 459
23-1 (D] [0 =T oI (= PR TU T SPPPUPRTPTN 477
23-2 RECEIVE EITON CAUSES ..ottt ettt ettt ettt ettt st e st e et st e e st et e e st e s ean e nan e e saneenene s 491
24-1 LED REQISIEIS .. .uitiiiieeiiiiiiiett e e e e ettt e e e e ettt e e e e e sttt e e e e e e s st b aaeeeeeessstbaseaeeeessastbsbeaaeaaaeeesnntbeeeeaeeaenantes 493
25-1 Y LU I =T[5y 1= £ PSR PPPP 501
25-2 Correspondence Between Baud Rates and DiVISOISocuuuuiiiiieiiiiiiiieee et eiieeee e e eieeeee s 504
25-3 Interrupt Function 506
26-1 [Sl = =T 1) (= £ PP OPPPUPPUPRN 521
26-2 Control Register DEfINITIONScoi et e e et e e e e e e et e e e e e e e e e e e e e aanneeeeeaaeean 523
27-1 [S =T] 1= £ PSR OPPPUPRTPTN 535
28-1 CPU Instruction Operation NOLATIONSocuueiiireeeeaieeieee ettt e e e e e e et ee e e e e e s antbeeaeaeeeaantbeeeneeeeeaaaaan 562
28-2 Load and Store COMMON FUNCHONSciiiuiiiiiiiiie ittt s 563
28-3 Access Type Specifications for Loads/Stores 564
30-1 VRA111 COProCeSSOr O HAZAMSeeieiiiiiiiiiiie ettt e e e e e ettt e e e e e e e tbe et e e e e e e aansaeeeeeaaeseannne s annes 754
30-2 Calculation Example of CP0 Hazard and Number of Instructions Inserted.............cccovvvveeeeeiiiiiiiieneeenns 757

29

[MEMO]

30

CHAPTER 1 INTRODUCTION

This chapter describes the outline of the Vr4111 (uPD30111), which is a 64-/32-bit RISC microprocessor.

1.1 FEATURES

The Vr4111, which is a high-performance 64-/32-bit microprocessor employing the RISC (reduced instruction set
computer) architecture developed by MIPS, is one of the RISC microprocessor Vr-Series™ products manufactured
by NEC.

The Vr4111 is ideally suited for battery-driven high-performance portable information equipment.

It mainly consists of the high-performance ultra-low-power consumption Vr4111™ CPU core, and has various
peripheral functions including a DMA controller, software modem interface, serial interface, keyboard interface, IrDA
interface, touch panel interface, real-time clock, A/D converter, and D/A converter.

The external bus width of this device can be selected between 32 bits and 16 bits. This function enables the
VRrR4111 to process voluminous data at high speed.

This processor supports instruction set architecture (ISA) of MIPS I, MIPS II, MIPS Ill, and MIPS16. It does not
support LL, LLD, SC, SCD, and floating point instructions.

The features of the Vr4111 are described below.

<~ Employs 64-bit RISC CPU Core (Vr4110 equivalent)
< Internal 64-bit processing
< Optimized 5-stage pipeline
< Conforms to MIPS I, Il, lll instruction sets (with the FPU, LL, LLD, SC, and SCD instructions left out)
< Supports high-speed product-sum operation instructions to execute applications in high speed
< On-chip 16-Kbyte instruction cache and 8-Kbyte data cache
<~ 32-double-entry translation lookaside buffer (TLB) for virtual address management
< 32-bit physical address space and 40-bit virtual address space
< On-chip peripheral units suited for portable equipment
* Memory controller (supports ROM, EDO-type DRAM, and flash memory)
* ISA-bus interface
» Keyboard interface
« Touch panel interface (on-chip 4-channel A/D converter)
« Controller complying with IrDA 1.1 (FIR)
« Software modem interface supporting the HSP modem™ of PC-TEL
« DMA controller
« Serial interface
» Debug serial interfaces
« Interrupt controller
« Audio interface (on-chip digital 1/0, A/D and D/A converters)
« General-purpose A/D converter: 3 channels
» General-purpose ports
<~ Effective power management features, which include the following four operating modes:
 Fullspeed mode: normal operating mode in which all clocks operate
« Standby mode: all internal clocks stop except for interrupt-related clocks
» Suspend mode: bus clock and all internal clocks stop except for interrupt-related clocks
< Hibernate mode: all clocks generated by the CPU core stop

31

CHAPTER 1 INTRODUCTION

< External input clock: 32.768 kHz, 18.432 MHz (for internal CPU core and peripheral unit operation), 48 MHz
(dedicated for FIR IrDA interface)
< Supports ISA bus subset

< Clock supply management function for each on-chip peripheral unit to implement low-power consumption
< Operation supply voltage: Voo = 3.0 to 3.6 V

1.2 ORDERING INFORMATION

Part Number Package Maximum Operation Frequency
* uPD30111S1-80-3C 224-pin fine-pitch BGA (16 x 16 mm) 80 MHz
uPD30111S1-100-3C 224-pin fine-pitch BGA (16 x 16 mm) 100 MHz

1.3 64-BIT ARCHITECTURE

The Vr4111 microprocessor has a 64-bit architecture. However, it can also run 32-bit applications.

1.4 VrR4111 PROCESSOR

The Vr4111 consists of the VrR4110 CPU core and seventeen peripheral units. It can connect external controllers
directly.

Figure 1-1 is an internal block diagram of the Vr4111 processor.

Figure 1-1. Vr4111 Internal Block Diagram and Example of Connection to External Blocks

32.768 kHz 18.432 MHz

A0k A0k
[os] (o]] i, b -[ood-| -2

LCD Module | KIU | 0
[T
PD16662 RTC

LCD Panel |~ ISE
480 x 240 Vr4110 CPU core

80/100 MHz Icu

Dl e pel- [
Buffer PMU
PCcard

RoMm/ cMU TN ﬂ
Flash memory I
-
Touch panel

Bus Control Unit -~ siu RS-232C

YT I_‘_I; | Driver |

- IR

Vr4111 | FIR — > -Driver

(o |-~

EDO DRAM

32

CHAPTER 1 INTRODUCTION

1.4.1 Internal Block Structure

1)

)

®)

(4)

©)

(6)

@)

®)

9)

The following provides an outline of the peripheral units.
For the CPU core, refer to 1.5 VrR4110 CPU CORE.

Bus Control Unit (BCU)

In the Vr4111, the bus control unit (BCU) transfers data between the VrR4110 CPU core and SysAD bus. It also
controls external circuits, such as the LCD controller connected to the system bus, DRAM, ROM (flash memory
or masked ROM), and PCMCIA controller, and transfers data between the Vr4111 and these external devices,
using the address and data buses.

Real-time Clock Unit (RTC)

The real-time clock (RTC) is provided with an accurate counter that operates on a 32.768-kHz clock pulse
supplied from the clock generator. It is also provided with several counters and Compare registers for
controlling various interrupts.

Deadman’s Switch Unit (DSU)
The Deadman’s switch unit (DSU) is used to check whether the processor is running normally. If the register of
this unit is not cleared by software within a specified period, the system is shut down.

Interrupt Control Unit (ICU)
The interrupt control unit (ICU) controls interrupt requests that are caused by factors either internal or external to
the Vr4111, and informs the Vr4110 CPU core when an interrupt request occurs.

Power Management Unit (PMU)

The power management unit (PMU) outputs signals necessary to control the power of the entire system
including the Vr4111. The signals are used to control the PLL of the VrR4110 CPU core and the internal clocks
(pipeline clock, TClock, and MasterOut) in low-power modes.

Direct Memory Access Address Unit (DMAAU)
The direct memory access address unit (DMAAU) controls the address of three different DMA transfers.

Direct Memory Access Control Unit (DCU)
The direct memory access control unit (DCU) controls the arbitration of three different DMA transfers.

Clock Mask Unit (CMU)
The clock mask unit (CMU) controls the way the clocks TClock and MasterOut are supplied from the Vr4110
CPU core to internal peripheral units.

General Purpose I/O Unit (GIU)
The general purpose I/O unit (GIU) controls 49 GPIO pins.

(10) Audio Interface Unit (AlU)

The audio interface unit (AlU) executes mic-input sampling and audio signal output by controlling the internal
A/D converter and D/A converter.

33

CHAPTER 1 INTRODUCTION

(11)Keyboard Interface Unit (KIU)
The keyboard interface unit (KIU) has 12 scan lines and 8 detection lines. It can detect when any of 64/80/96
keys are pressed. It supports key rollover for two to three continuous strokes.

(12) Touch Panel Interface Unit (PIU)
The touch panel interface unit (PIU) detects when the touch panel is touched, by controlling the internal A/D
converter.

(13)Debug Serial Interface Unit (DSIU)
The debug serial interface unit (DSIU) is a serial interface for debugging. It supports a maximum transfer rate of
115 kbps.

(14) Serial Interface Unit (SIU)
The serial interface unit (SIU) conforms to the RS-232-C specification and is compatible with NS16550. It
supports a maximum transfer rate of 1.15 Mbps. Also available is an IrDA serial interface supporting a
maximum transfer rate of 115 kbps, but this interface and the RS-232-C interface are mutually exclusive.

(15) Fast IrDA Interface Unit (FIR)
The FIR unit is a unit for performing 0.5- to 4-Mbps IrDA communication. This unit operates based on a
dedicated 48-MHz clock input.

(16)Host Signal Processing Unit (HSP)
The HSP unit is used to realize a software modem. It interfaces the CPU core with an external codec device,
and controls them.

(17) Light Emitting Diode Unit (LED)
The LED unit is used to control the lighting of external LED.

34

CHAPTER 1 INTRODUCTION

1.4.2 1/O Registers
The I/O registers are used for peripheral unit control.

Table 1-1. BCU Registers

Register symbols Function Address
BCUCNTREG1 BCU Control Register 1 0x0B00 0000
BCUCNTREG2 BCU Control Register 2 0x0B00 0002
BCUSPEEDREG BCU Access Cycle Change Register 0x0B00 000A
BCUERRSTREG BCU BUS ERROR Status Register 0x0B00 000C
BCURFCNTREG BCU Refresh Control Register 0x0B00 000E
REVIDREG Peripheral Unit Revision ID Register 0x0B00 0010
BCURFCOUNTREG BCU Refresh Cycle Count Register 0x0B00 0012
CLKSPEEDREG Clock Setting Register 0x0B00 0014
BCUCNTREG3 BCU Control Register 3 0x0B00 0016

Table 1-2. DMAAU Registers

Register symbols Function Address
AIUIBALREG AIU IN DMA Base Address Register Low 0x0B00 0020
AIUIBAHREG AlU IN DMA Base Address Register High 0x0B00 0022
AIUIALREG AlU IN DMA Address Register Low 0x0B00 0024
AIUIAHREG AlU IN DMA Address Register High 0x0B00 0026
AIUOBALREG AIU OUT DMA Base Address Register Low 0x0B00 0028
AIUOBAHREG AlU OUT DMA Base Address Register High 0x0B00 002A
AIUOALREG AIU OUT DMA Address Register Low 0x0B00 002C
AIUOAHREG AlU OUT DMA Address Register High 0x0B00 002E
FIRBALREG FIR DMA Base Address Register Low 0x0B00 0030
FIRBAHREG FIR DMA Base Address Register High 0x0B00 0032
FIRALREG FIR DMA Address Register Low 0x0B00 0034
FIRAHREG FIR DMA Address Register High 0x0B00 0036

35

CHAPTER 1 INTRODUCTION

36

Table 1-3. DCU Registers

Register symbols

Function

Address

DMARSTREG DMA Reset Register 0x0B00 0040
DMAIDLEREG DMA Sequencer Status Register 0x0B00 0042
DMASENREG DMA Sequencer Enable Register 0x0B00 0044
DMAMSKREG DMA Mask Register 0x0B00 0046
DMAREQREG DMA Request Register 0x0B00 0048
TDREG Transfer Direction Setting Register 0x0B0O0 004A

Table 1-4. CMU Register

Register symbol

Function

Address

CMUCLKMSK

CMU Clock Mask Register

0x0B00 0060

CHAPTER 1 INTRODUCTION

Table 1-5. ICU Registers

Register symbols

Function

Address

SYSINT1REG Level 1 System Interrupt Register 1 0x0B00 0080
PIUINTREG Level 2 PIU Interrupt Register 0x0B00 0082
AIUINTREG Level 2 AlU Interrupt Register 0x0B00 0084
KIUINTREG Level 2 KIU Interrupt Register 0x0B00 0086
GIUINTLREG Level 2 GIU Interrupt Register Low 0x0B00 0088
DSIUINTREG Level 2 DSIU Interrupt Register 0x0B0O 008A

MSYSINT1REG

Level 1 Mask System Interrupt Register 1

0x0B00 008C

MPIUINTREG Level 2 Mask PIU Interrupt Register 0x0B00 008E
MAIUINTREG Level 2 Mask AlIU Interrupt Register 0x0B00 0090
MKIUINTREG Level 2 Mask KIU Interrupt Register 0x0B00 0092
MGIUINTLREG Level 2 Mask GIU Interrupt Register Low 0x0B00 0094
MDSIUINTREG Level 2 Mask DSIU Interrupt Register 0x0B00 0096
NMIREG Battery Interrupt Select Register 0x0B00 0098
SOFTINTREG Software Interrupt Register 0x0B00 009A
SYSINT2REG Level 1 System Interrupt Register 2 0x0B00 0200
GIUINTHREG Level 2 GIU Interrupt Register High 0x0B00 0202
FIRINTREG Level 2 FIR Interrupt Register 0x0B00 0204

MSYSINT2REG

Level 1 Mask System Interrupt Register 2

0x0B00 0206

MGIUINTHREG

Level 2 Mask GIU Interrupt Register High

0x0B00 0208

MFIRINTREG

Level 2 Mask FIR Interrupt Register

0x0B00 020A

Table 1-6. PMU Registers

Register symbols

Function

Address

PMUINTREG PMU Interrupt/Status Register 0x0B00O 00AO0
PMUCNTREG PMU Control Register 0x0B0OO 00A2
PMUINT2REG PMU Interrupt Register 2 0x0B00 00A4
PMUCNT2REG PMU Control Register 2 0x0B0OO 00A6
PMUWAITREG PMU Wait Count Register 0x0B00 00A8

37

CHAPTER 1 INTRODUCTION

38

Table 1-7. RTC Registers

Register symbols Function Address
ETIMELREG Elapsed Time L Register 0x0B0O 00CO
ETIMEMREG Elapsed Time M Register 0x0B00 00C2
ETIMEHREG Elapsed Time H Register 0x0B0O 00C4
ECMPLREG Elapsed Compare L Register 0x0B0O0 00C8
ECMPMREG Elapsed Compare M Register 0x0B0O 00CA
ECMPHREG Elapsed Compare H Register 0X0B00 00CC
RTCL1LREG RTC Long 1 L Register 0x0B0O 00DO
RTCL1HREG RTC Long 1 H Register 0x0B00 00D2
RTCL1CNTLREG RTC Long 1 Count L Register 0x0B0O 00D4
RTCL1CNTHREG RTC Long 1 Count H Register 0x0B00 00D6
RTCL2LREG RTC Long 2 L Register 0x0B0O 00D8
RTCL2HREG RTC Long 2 H Register 0x0B0O 00DA
RTCL2CNTLREG RTC Long 2 Count L Register 0x0B0O 00DC
RTCL2CNTHREG RTC Long 2 Count H Register 0x0B0O 00DE
TCLKLREG TClock L Register 0x0B00 01CO
TCLKHREG TClock H Register 0x0B00 01C2
TCLKCNTLREG TClock Count L Register 0x0B00 01C4
TCLKCNTHREG TClock Count H Register 0x0B00 01C6
RTCINTREG RTC Interrupt Register 0x0B00 01DE

CHAPTER 1 INTRODUCTION

Table 1-8. DSU Registers

Register symbols

Function

Address

DSUCNTREG DSU Control Register 0x0B00 00EO
DSUSETREG DSU Cycle (Dead Time) Set Register 0x0B0O0 00E2
DSUCLRREG DSU Clear Register 0x0B00 00E4
DSUTIMREG DSU Elapsed Time Register 0x0B00 00E6

Table 1-9. GIU Registers

Register symbols

Function

Address

GIUIOSELL GPIO Input/Output Select Register L 0x0B00 0100
GIUIOSELH GPIO Input/Output Select Register H 0x0B00 0102
GIUPIODL GPIO Port Input/Output Data Register L 0x0B00 0104
GIUPIODH GPIO Port Input/Output Data Register H 0x0B00 0106
GIUINTSTATL GPIO Interrupt Status Register L 0x0B00 0108
GIUINTSTATH GPIO Interrupt Status Register H 0x0B00 010A
GIUINTENL GPIO Interrupt Enable Register L 0x0B00O 010C
GIUINTENH GPIO Interrupt Enable Register H 0x0B00 010E
GIUINTTYPL GPIO Interrupt Type (Edge or Level) Select Register L 0x0B00 0110
GIUINTTYPH GPIO Interrupt Type (Edge or Level) Select Register H 0x0B00 0112

GIUINTALSELL

GPIO Interrupt Active Level Select Register L

0x0B00 0114

GIUINTALSELH

GPIO Interrupt Active Level Select Register H

0x0B00 0116

GIUINTHTSELL

GPIO Interrupt Hold/Through Select Register L

0x0B00 0118

GIUINTHTSELH

GPIO Interrupt Hold/Through Select Register H

0x0B00 011A

GIUPODATL GPIO Port Output Data Register L 0x0B00O 011C
GIUPODATH GPIO Port Output Data Register H 0x0BO00 011E
GIUUSEUPDN GPIO Pull-up/Pull-down Enable Register 0x0B00 02E0

GIUTERMUPDN

GPIO Pull-up/Pull-down Set Register

0x0B00 02E2

39

CHAPTER 1 INTRODUCTION

40

Table 1-10. PIU Registers

Register symbols

Function

Address

PIUCNTREG PIU Control Register 0x0B00 0122
PIUINTREG PIU Interrupt Cause Register 0x0B00 0124
PIUSIVLREG PIU Data Sampling Interval Register 0x0B00 0126
PIUSTBLREG PIU A/D Converter Start Delay Register 0x0B00 0128
PIUCMDREG PIU A/D Command Register 0x0B00 012A
PIUASCNREG PIU A/D Port Scan Register 0x0BO00 0130
PIUAMSKREG PIU A/D Scan Mask Register 0x0B00 0132
PIUCIVLREG PIU Check Interval Register 0x0BO00 013E
PIUPBOOREG PIU Page 0 Buffer 0 Register 0x0B00 02A0
PIUPBO1REG PIU Page 0 Buffer 1 Register 0x0B00 02A2
PIUPBO2REG PIU Page 0 Buffer 2 Register 0x0B00 02A4
PIUPBO3REG PIU Page 0 Buffer 3 Register 0x0B00 02A6
PIUPB10REG PIU Page 1 Buffer 0 Register 0x0B00 02A8
PIUPB11REG PIU Page 1 Buffer 1 Register 0x0B00 02AA
PIUPB12REG PIU Page 1 Buffer 2 Register 0x0B00 02AC
PIUPB13REG PIU Page 1 Buffer 3 Register 0x0B00 02AE
PIUABOREG PIU AD Scan Buffer 0 Register 0x0B00 02B0O
PIUAB1REG PIU AD Scan Buffer 1 Register 0x0B00 02B2
PIUAB2REG PIU AD Scan Buffer 2 Register 0x0B00 02B4
PIUAB3REG PIU AD Scan Buffer 3 Register 0x0B00 02B6
PIUPBO4REG PIU Page 0 Buffer 4 Register 0x0B00 02BC
PIUPB14REG PIU Page 1 Buffer 4 Register 0x0B00 02BE

CHAPTER 1 INTRODUCTION

Table 1-11. AlU Registers

Register symbols

Function

Address

MDMADATREG Mike Input DMA Data Register 0x0B00 0160
SDMADATREG Speaker Output DMA Data Register 0x0B00 0162
SODATREG Speaker Output Data Register 0x0B00 0166
SCNTREG Speaker Output Control Register 0x0B00 0168
SCNVRREG Speaker Conversion Rate Register 0x0B00 016A
MIDATREG Mike Input Data Register 0x0B00 0170
MCNTREG Mike Input Control Register 0x0B00 0172
MCNVRREG Mike Conversion Rate Register 0x0B00 0174
DVALIDREG Data Valid Register 0x0B00 0178
SEQREG Sequential Operation Enable Register 0x0B00 017A
INTREG AlU Interrupt Register 0x0B00 017C

41

CHAPTER 1 INTRODUCTION

42

Table 1-12. KIU Registers

Register symbols

Function

Address

KIUDATO KIU DataO Register 0x0B00 0180
KIUDAT1 KIU Datal Register 0x0B00 0182
KIUDAT2 KIU Data2 Register 0x0B00 0184
KIUDAT3 KIU Data3 Register 0x0B00 0186
KIUDAT4 KIU Data4 Register 0x0B00 0188
KIUDAT5 KIU Data5 Register 0x0B00 018A
KIUSCANREP KIU Scan/Repeat Register 0x0B00 0190
KIUSCANS KIU Scan Status Register 0x0B00 0192
KIUWKS KIU Wait Keyscan Stable Register 0x0B00 0194
KIUWKI KIU Wait Keyscan Interval Register 0x0B00 0196
KIUINT KIU Interrupt Register 0x0B00 0198
KIURST KIU Reset Register 0x0B00 019A
KIUGPEN KIU General Purpose Output Enable Register 0x0B00 019C
SCANLINE KIU Scan Line Register 0x0B00 019E

Table 1-13. DSIU Registers

Register symbols

Function

Address

PORTREG Port Change Register 0x0B00 01A0
MODEMREG Modem Control Register 0x0B00 01A2
ASIMOOREG Asynchronous Mode 0 Register 0x0B00 01A4
ASIMO1REG Asynchronous Mode 1 Register 0x0B00 01A6
RXBORREG Receive Buffer Register (Extended) 0x0B00 01A8
RXBOLREG Receive Buffer Register 0x0B00 01AA
TXSORREG Transmit Data Register (Extended) 0x0B00 01AC
TXSOLREG Transmit Data Register 0x0B00 O1AE
ASISOREG Status Register 0x0B00 01BO
INTROREG Debug SIU Interrupt Register 0x0B00 01B2
BPRMOREG Baud-rate Generator Prescaler Mode Register 0x0B00 01B6

DSIURESETREG

Debug SIU Reset Register

0x0B00 01B8

CHAPTER 1 INTRODUCTION

Table 1-14. LED Registers

Register symbols Function Address
LEDHTSREG LED H Time Set Register 0x0B00 0240
LEDLTSREG LED L Time Set Register 0x0B00 0242
LEDCNTREG LED Control Register 0x0B00 0248
LEDASTCREG LED Auto Stop Time Count Register 0x0B00 024A
LEDINTREG LED Interrupt Register 0x0B00 024C

Table 1-15. SIU Registers

Register symbols Function LCR[7] Address
SIURB Receiver Buffer Register (Read) 0 0x0CO00 0000
SIUTH Transmitter Holding Register (Write)

SIUDLL Divisor Latch (Least Significant Byte) Register 1

SIVIE Interrupt Enable Register 0 0x0C00 0001
SIUDLM Divisor Latch (Most Significant Byte) Register 1

SIVIID Interrupt Identification Register (Read) - 0x0C00 0002
SIUFC FIFO Control Register (Write)

SIULC Line Control Register - 0x0C00 0003
SIUMC MODEM Control Register - 0x0C00 0004
SIULS Line Status Register - 0x0C00 0005
SIUMS MODEM Status Register - 0x0C00 0006
SIUSC Scratch Register - 0x0C00 0007
SIUIRSEL SIU/FIR IrDA Selector - 0x0C00 0008
SIURESET SIU Reset Register - 0x0C00 0009
SIUCSEL SIU Echo Back Control Register - 0x0CO00 000A

Remark LCRJ[7]is bit 7 of the SIULC register.

Table 1-16. HSP Registers

Register symbols Function

Address

HSPINIT

HSP Initialize Register

0x0C00 0020

HSPDATA[7:0]

HSP Data Register [7:0]

0x0C00 0022

HSPDATA[15:8]

HSP Data Register [15:8]

0x0CO00 0023

HSPINDEX HSP Index Register 0x0CO00 0024
HSPID[7:0] HSP ID Register 0x0C00 0028
HSPPCSJ[7:0] HSP 1/O Address Program Confirmation Register 0x0C00 0029

HSPPCTEL[7:0]

HSP Signature Checking Port

0x0CO00 0029

43

CHAPTER 1 INTRODUCTION

44

Table 1-17. FIR Registers

Register symbols Function Address
FRSTR FIR Reset Register 0x0C00 0040
DPINTR DMA Page Interrupt Register 0x0C00 0042
DPCNTR DMA Page Control Register 0x0CO00 0044
TDR Transmit Data Register 0x0C00 0050
RDR Receive Data Register 0x0C00 0052
IMR Interrupt Mask Register 0x0CO00 0054
FSR FIFO Setup Register 0x0C00 0056
IRSR1 IR Setup Register 1 0x0C00 0058
CRCSR CRC Setup Register 0x0C00 005C
FIRCR FIR Control Register 0x0C00 005E
MIRCR MIR Control Register 0x0C00 0060
DMACR DMA Control Register 0x0C00 0062
DMAER DMA Enable Register 0x0C00 0064
TXIR Transmission Indicate Register 0x0C00 0066
RXIR Reception Indicate Register 0x0CO00 0068
IFR Interrupt Flag Register 0x0CO00 006A
RXSTS Reception Status Register 0x0C00 006C
TXFL Transmit Frame Length Register 0x0C00 006E
MRXF Maximum Receive Frame Length Register 0x0C00 0070
RXFL Receive Frame Length Register 0x0C00 0074

CHAPTER 1 INTRODUCTION

1.5 Vr4110 CPU CORE

Figure 1-2 shows the internal block diagram of the Vr4110 CPU core.

In addition to the conventional high-performance integer operation units, this CPU core has the full-associative
format translation look aside buffer (TLB), which has 32 entries that provide mapping to 2- page pairs (odd and even)
for one entry. Moreover, it also has instruction caches, data caches, and bus interface.

Figure 1-2. Vr4110 CPU Core Internal Block Diagram

VR4110 CPU core

VA bus R
- A A A A A v
ID bus -
D A A A A AT
LA Yy A A A
Bus Data Instruction CPO CPU
Control(o)
Control(i) »| Interface Cache Cache
Address/Data(0) (8K bytes) (16K bytes) TLB
Address/Datay(j) >

Clock
Generator

?

Internal Clock

1.5.1 Internal Block Configuration

(1) CcPU
CPU has hardware resources to process an integer instruction. They are the 64-bit register file, 64-bit integer
data bus, and multiply-and-accumulate operation unit.

(2) Coprocessor 0 (CPO0)
CPO incorporates a memory management unit (MMU) and exception handling function. MMU checks whether
there is an access between different memory segments (user, supervisor, and kernel) by executing address
conversion. The translation lookaside buffer (TLB) converts virtual addresses to physical addresses.

(3) Instruction cache
The instruction cache employs direct mapping, virtual index, and physical tag. Its capacity is 16K bytes.

(4) Data cache
The data cache employs direct mapping, virtual index, physical tag, and write back. Its capacity is 8K bytes.

45

CHAPTER 1 INTRODUCTION

(5) CPU bus interface
The CPU bus interface controls data transmission/reception between the Vr4110 CPU core and the BCU, which

is one of peripheral units. The Vr4110 CPU interface consists of two 32-bit multiplexed address/data buses (one
is for input, and another is for output), clock signals, and control signals such as interrupts.

(6) Clock generator
The following clock inputs are oscillated and supplied to internal units.
 32.768-kHz clock for RTC unit:
oscillating a 32.768-kHz crystal resonator input via an internal oscillator to supply to the RTC unit.
« 18.432-MHz clock for serial interface and the Vr4111's reference operating clock:
oscillating an 18.432-MHz crystal resonator input via an internal oscillator, and then multiplying it by phase-

locked loop (PLL) to generate a pipeline clock (PClock). The internal bus clock (TClock) is generated from
PClock and supplied to peripheral units.

46

CHAPTER 1 INTRODUCTION

1.5.2 CPU Registers

The Vr4110 CPU core has thirty two 64-bit general-purpose registers (GPRSs).
In addition, the processor provides the following special registers:

< 64-hit Program Counter (PC)

< 64-bit HI register, containing the integer multiply and divide upper doubleword result
< 64-hit LO register, containing the integer multiply and divide lower doubleword result

Two of the general-purpose registers have assigned the following functions:

<~ r0 is hardwired to a value of zero, and can be used as the target register for any instruction whose result is to
be discarded. r0 can also be used as a source when a zero value is needed.

< r31is the link register used by link instruction, such as JAL (Jump and Link) instructions. This register can be

used for other instructions. However, be careful that use of the register by a link instruction will not coincide
with use of the register for other operations.

The register group is provided within the CPO, to process exceptions and to manage addresses.
CPU registers can operate as either 32-bit or 64-bit registers, depending on the Vr4111 processor mode of

operation.

The operation of the CPU register differs depending on what instructions are executed: 32-bit instructions or
MIPS16 instructions. For details, refer to CHAPTER 4 MIPS16 INSTRUTION SET SUMMARY.
Figure 1-3 shows the CPU registers.

Figure 1-3. VRr4111 CPU Registers

General-purpose register

63 3231 0 Multiply/divide register
r0=0 63 3231 0
rl | Hi I
r2
63 3231 0
; |
. 0 |
O
O
r29 Program Counter
r30 63 3231 0
r31 = LinkAddress PC I

The Vr4111 has no Program Status Word (PSW) register as such; this is covered by the Status and Cause
registers incorporated within the System Control Coprocessor (CPO0).

The CPO registers are used for exception handling or address management. The overview of these registers is
described in 1.5.5 Coprocessors (CPO0).

47

CHAPTER 1 INTRODUCTION

1.5.3 CPU Instruction Set Overview
For CPU instructions, there are two types of instructions — 32-bit length instruction (MIPS IllI) and 16-bit length
instruction (MIPS16).

(1) MIPS Il Instruction
All the CPU instructions are 32-bit length when executing MIPS Il instructions, and they are classified into three
instruction formats as shown in Figure 1-4: immediate (I-type), jump (J-type), and register (R-type). The field of
each instruction format is described in CHAPTER 3 MIPS 1lIl INSTRUCTION SET SUMMARY .

Figure 1-4. CPU Instruction Formats (32-bit length instruction)

31 26 25 21 20 16 15 0
I-type (immediate) op rs rt immediate

31 26 25 0
J-type (jump) op target

31 26 25 21 20 16 15 11 10 65 0
R-type (register) op rs rt rd sa funct

The instruction set can be further divided into the following five groupings:

(1) Load and store instructions move data between memory and general-purpose registers. They are all
immediate (I-type) instructions, since the only addressing mode supported is base register plus 16-bit,
signed immediate offset.

(2) Computational instructions perform arithmetic, logical, shift, multiply, and divide operations on values in
registers. They include R-type (in which both the operands and the result are stored in registers) and I-type
(in which one operand is a 16-bit signed immediate value) formats.

(3) Jump and branch instructions change the control flow of a program. Jumps are always made to an absolute
address formed by combining a 26-bit target address with the high-order bits of the Program Counter (J-type
format) or register address (R-type format). The format of the branch instructions is | type. Branches have
16-hit offsets relative to the Program Counter. JAL instructions save their return address in register 31.

(4) Coprocessor 0 (System Control Coprocessor, CPO) instructions perform operations on CPO registers to
control the memory-management and exception-handling facilities of the processor.

(5) Special instructions perform system calls and breakpoint operations, or cause a branch to the general
exception-handling vector based upon the result of a comparison. These instructions occur in both R-type
(both the operands and the result are stored in registers) and I-type (one operand is a 16-bit signed
immediate value) formats.

For the operation of each instruction, refer to CHAPTER 3 MIPS Il INSTRUCTION SET SUMMARY and
CHAPTER 28 MIPS 11l INSTRUCTION SET DETAILS.

48

CHAPTER 1 INTRODUCTION

(2) MIPS16 Instruction
All the CPU instructions except for JAL and JALX are 16-bit length when executing MIPS16 instructions, and they
are classified into thirteen instruction formats as shown in Figure 1-5.
The field of each instruction format is described in CHAPTER 4 MIPS 16 INSTRUCTION SET.

Figure 1-5. CPU Instruction Formats (16-bit length instruction)

15 1110 0
I-type | op | immediate |
15 1110 87 0
RI-type | op | rX I immediate |
15 1110 87 54 0
RR-type | op | X I ry | funct |
15 1110 87 54 0
RRI-type | RRI | rX I ry | immediate |
15 1110 87 54 21 0
RRR-type | RRR | x [v | = [F]
15 1110 87 5 4 3 0
RRIA-type | RRR-A | X I ry | F I immediatel
15 1110 87 54 21 0
Shift-type | SHIFT | rX I ry | Shamt | F |
15 1110 87 0
18-type | 18 | funct I immediate |
15 1110 87 54 0
I8_MOVR324ype | I8 [funct | v | 3o |
15 1110 87 43 0
I8_MOV32Rtype | I8 | fnct | reopoazy | 2 |
15 1110 87 0
164-type | 164 | funct I immediate |
15 1110 87 54 0
RI164-type | 164 | funct I ry immediate |

JAL, JALX-type

31 27 26 25 21 20 16 15 0
JAL I X |immediate 20:16|immediate 25:21 immediate 15:0

49

CHAPTER 1 INTRODUCTION

The instruction set can be further divided into the following four groupings:

(a) Load and store instructions move data between memory and general-purpose registers. They include RRI-,
RI-, 18-, and RI64-types.

(b) Computational instructions perform arithmetic, logical, shift, multiply, and divide operations on values in
registers. They include RI-, RRIA-, 18-, RI64-, 164-, RR-, RRR-, I8_MOVR32-, and I18_MOV32R-types.

(c) Jump and branch instructions change the control flow of a program. They include JAL-/JALX-, RR-, RI-, 18-,
and I-types.

(d) Special instructions are break and extend instructions. The break instruction transfers control to an exception
handler. The extend instruction extends the immediate field of the next instruction. They are RR- and I-types.
When extending the immediate field of the next instruction by using the extend instruction, one cycle is
needed for executing the extend instruction, and another cycle is needed for executing the next instruction.

For more details of each instruction’s operation, refer to CHAPTER 4 MIPS16 INSTRUCTION SET and
CHAPTER 29 MIPS16 INSTRUCTION SET FORMAT.

1.5.4 Data Formats and Addressing
The Vr4111 uses following four data formats:

<> Doubleword (64 bits)
<> Word (32 bits)

<> Halfword (16 bits)

<> Byte (8 bits)

For the VrR4110 CPU core, byte ordering within all of the larger data formats - halfword, word, doubleword - can

be configured in either big-endian or little-endian order. However, the V r4111 supports the little-endian order
only.

Endianness refers to the location of byte 0 within the multi-byte data structure.

When configured as a little-endian system, byte 0 is always the least-significant (rightmost) byte, which is
compatible with iIAPX™ and DEC VAX™ conventions. Figures 1-6 and 1-7 show this configuration.

Figure 1-6. Little-Endian Byte Ordering in Word Data

Higher Word Bityo.

address address %1 o4 23 o 15 - o\
12 | 15 | 14 | 13 I " |
8 | u || 1w || o & |
4 | 7 | 6 | 5 I 4 |

Lower o | 3 | 2 | 1 || o |

address

Remarks 1. The lowest byte is the lowest address.

2. The address of word data is specified by the lowest byte’s address.

50

CHAPTER 1 INTRODUCTION

In this manual, bit 0 is always the least-significant (rightmost) bit; thus, bit designations are always little-endian.
Figure 1-7 shows little-endian byte ordering in doublewords.

Figure 1-7. Little-Endian Byte Ordering in Double Word Data

. Word Half word Byte
a%grk;irs Do;dbclltraevsvsrd {63 4_8JL 47 3£ {31 * 16‘ 15 8 7 0
16 |23 | 22 | 20 | 20 || 10| 18 | 17 | 16 |
8 |15 [1413 12110 o 5]
Lower o [7 e s fafsf2]a]fol]

address

Remarks 1. The lowest byte is the lowest address.
2. The address of word data is specified by the lowest byte’s address.

The CPU core uses the following byte boundaries for halfword, word, and doubleword accesses:
< Halfword: An even byte boundary (0, 2, 4...)
<~ Word: A byte boundary divisible by four (0, 4, 8...)

<- Doubleword: A byte boundary divisible by eight (0, 8, 16...)

The following special instructions to load and store data that are not aligned on 4-byte (word) or 8-byte
(doubleword) boundaries:

LWL LWR SWL SWR
LDL LDR SDL SDR

These instructions are used in pairs to provide an access to misaligned data. Accessing misaligned data incurs
one additional instruction cycle over that required for accessing aligned data.

Figure 1-8 shows the access of a misaligned word that has byte address 3 for the little-endian conventions.

Figure 1-8. Misaligned Word Accessing (Little-Endian)

Higher Bit No.

address . A
31 24 23 16 15 8 7 0
| s [s 4 |
E | | | |

Lower

address

51

CHAPTER 1 INTRODUCTION

1.5.5 Coprocessors (CPO0)
MIPS ISA defines 4 types of coprocessors (CPO to CP3).

» CPO translates virtual addresses to physical addresses, switches the operating mode (kernel, supervisor, or
user mode), and manages exceptions. It also controls the cache subsystem to analyze a cause and to return
from the error state.

» CP1isreserved for floating-point instructions.

» CP2isreserved for future definition by MIPS.

» CP3is no longer defined. CP3 instructions are reserved for future extensions.

Figure 1-9 shows the definitions of the CPO register, and Table 1-18 shows simple descriptions of each register.
For the detailed descriptions of the registers related to the virtual system memory, refer to Chapter 6. For the

detailed descriptions of the registers related to exception handling, refer to Chapter 7.

Figure 1-9. CPO Registers

Register No. Register name Register No. Register name
0 Index* 16 Config*
1 Random* 17 LLAddr*
2 EntryLoO* 18 WatchLo**
3 EntryLol* 19 WatchHi**
4 Context** 20 XContext**
5 PageMask* 21 -
6 Wired* 22 -
7 - 23 -
8 BadVAddr** 24 -
9 Count** 25 -
10 EntryHi* 26 PErr*
11 Compare** 27 CacheErr**
12 Status** 28 TagLo*
13 Cause** 29 TagHi*
14 EPC** 30 ErrorEPC**
15 PRId* 31 -

* for Memory management
** for Exception handling
- Reserved

52

CHAPTER 1 INTRODUCTION

Table 1-18. System Control Coprocessor (CP0) Register Definitions

Number Register Description
0 Index Programmable pointer to TLB array
1 Random Pseudo-random pointer to TLB array (read only)
2 EntryLoO Low half of TLB entry for even VPN
3 EntryLol Low half of TLB entry for odd VPN
4 Context Pointer to kernel virtual PTE in 32-bit mode
5 PageMask TLB page mask
6 Wired Number of wired TLB entries
7 O Reserved for future use
8 BadVAddr Virtual address where the most recent error occurred
9 Count Timer count
10 EntryHi High half of TLB entry (including ASID)
11 Compare Timer compare
12 Status Status register
13 Cause Cause of last exception
14 EPC Exception Program Counter
15 PRId Processor revision identifier
16 Config Configuration register (specifying memory mode system)
17 LLAddr Reserved for future use
18 WatchLo Memory reference trap address low bits
19 WatchHi Memory reference trap address high bits
20 XContext Pointer to kernel virtual PTE in 64-bit mode
21to 25 O Reserved for future use
26 PEr"* Cache parity bits
27 CacheErr'™* Index and status of cache error
28 TagLo Cache Tag register (low)
29 TagHi Cache Tag register (high)
30 ErrorEPC Error Exception Program Counter
31 O Reserved for future use

Note This register is defined to maintain compatibility with the Vr4100™. This register is not used
VRr4111 hardware.

in the

53

CHAPTER 1 INTRODUCTION

1.5.6 Floating-Point Unit (FPU)

The Vr4111 does not support the floating-point unit (FPU). Coprocessor Unusable exception will occur if any
FPU instructions are executed. If necessary, FPU instructions should be emulated by software in an exception
handler.

54

CHAPTER 1 INTRODUCTION

1.6 CPU CORE MEMORY MANAGEMENT SYSTEM (MMU)

The Vr4111 has a 32-bit physical addressing range of 4 Gbytes. However, since it is rare for systems to
implement a physical memory space as large as that memory space, the CPU provides a logical expansion of
memory space by translating addresses composed in the large virtual address space into available physical memory
addresses. The Vr4111 supports the following two addressing modes:

<> 32-bit mode, in which the virtual address space is divided into 2 Ghytes for user process and 2 Ghytes for the
kernel.
<> 64-bit mode, in which the virtual address is expanded tol Tbyte (2° bytes) of user virtual address space.

A detailed description of these address spaces is given in Chapter 6.

1.6.1 Translation Lookaside Buffer (TLB)

Virtual memory mapping is performed using the translation lookaside buffer (TLB). The TLB converts virtual
addresses to physical addresses. It runs by a full-associative method. It has 32 entries, each mapping a pair of
pages having a variable size (1 KB to 256 KB).

(1) Joint TLB (JTLB)

JTLB holds both an instruction address and data address.

For fast virtual-to-physical address decoding, the Vr4111 uses a large, fully associative TLB (joint TLB) that
translates 64 virtual pages to their corresponding physical addresses. The TLB is organized as 32 pairs of even-odd
entries, and maps a virtual address and address space identifier (ASID) into the 4-Gbyte physical address space.

The page size can be configured, on a per-entry basis, to map a page size of 1 KB to 256 KB. A CPO register
stores the size of the page to be mapped, and that size is entered into the TLB when a new entry is written. Thus,
operating systems can provide special purpose maps; for example, a typical frame buffer can be memory-mapped
using only one TLB entry.

Translating a virtual address to a physical address begins by comparing the virtual address from the processor
with the physical addresses in the TLB; there is a match when the virtual page number (VPN) of the address is the
same as the VPN field of the entry, and either the Global (G) bit of the TLB entry is set, or the ASID field of the virtual
address is the same as the ASID field of the TLB entry.

This match is referred to as a TLB hit. If there is no match, a TLB Miss exception is taken by the processor and
software is allowed to refill the TLB from a page table of virtual/physical addresses in memory.

1.6.2 Operating Modes
The Vr4111 has three operating modes:

< User mode
< Supervisor mode

< Kernel mode

The manner in which memory addresses are translated or mapped depends on these operating modes. Refer to
CHAPTER 6 MEMORY MANAGEMENT SYSTEM for details.

55

CHAPTER 1 INTRODUCTION

1.6.3 Cache

The Vr4111 chip incorporates instruction and data caches, which are independent of each other. This
configuration enables high-performance pipeline operations. Both caches have a 64-bit data bus, enabling a one-
clock access. These buses can be accessed in parallel. The instruction cache of the Vr4111 has a storage
capacity of 4 KB, while the data cache has a capacity of 1 KB.

A detailed description of caches is given in CHAPETE 9 CACHE ORGANIZATION AND OPERATION .

1.7 INSTRUCTION PIPELINE

The Vr4111 has a 5-stage instruction pipeline. Under normal circumstances, one instruction is issued each
cycle.
A detailed description of pipeline is provided in Chapter 5.

1.8 CLOCK INTERFACE

The Vr4111 has the following nine clocks.

< CLKX1, CLKX2 (input)
These are oscillation inputs of 18.432 MHz, and used to generate operation clocks for the CPU core, serial
interface, and touch panel interface.
< RTCX1, RTCX2 (input)
These are oscillation inputs of 32.768 kHz, and used for PMU and RTC.
< FIRCLK (input)
This is a 48-MHz clock input, and used for FIR.
< PClock (internal)
This clock is used to control the pipeline used in the Vr4110 CPU core, and for units relating to the pipeline.
This clock is generated from the clock input of CLKX1 and CLKX2 pins. Its frequency is determined by
CLKSELJ2..0] pins.
< MasterOut (internal)
This is a bus clock of the Vr4110 CPU core, and used for interrupt control. The contents of the CP0Q’s count
register are incremented synchronously with this clock. Its frequency is 1/8, 1/12, or 1/16 of PClock
frequency, and is determined by the CLKSEL][2..0] pins.
< TClock (internal)
This is an operation clock for VrR4110 CPU core bus, internal bus of the Vr4111, and on-chip peripheral unit.
Its frequency is 1/2, 1/3, or 1/4 of the PClock frequency, and is determined by the CLKSEL[2..0] pins.
< BUSCLK (output)
This clock is supplied to the controller on the system bus. Its frequency in determined by CLKSEL[2..0] pins.
< HSPMCLK (output)
This clock is supplied to the external CODEC. Its frequency is determined by the HSPMCLKD register.
< HSPSCLK (input)
This is an operation clock for the external CODEC and the modem interface.

56

CHAPTER 1 INTRODUCTION

Table 1-19. Relationships Between CLKSEL Pin Settings and Clock Frequencies

CLKSEL[2:0] PClock TClock MasterOut BUSCLK
111 98.1 MHz 24.5 MHz 6.13 MHz 6.13 MHz
110 90.5 MHz 22.7 MHz 5.67 MHz 5.67 MHz
101 84.1 MHz 28.0 MHz 7.01 MHz 7.01 MHz
100 78.5 MHz 26.2 MHz 6.54 MHz 6.54 MHz
011 69.3 MHz 23.1 MHz 5.77 MHz 5.77 MHz
010 65.4 MHz 21.8 MHz 5.45 MHz 5.45 MHz
001 62.0 MHz 20.7 MHz 5.17 MHz 5.17 MHz
000 49.1 MHz 24.5 MHz 6.13 MHz 6.13 MHz

Figure 1-10 shows an external circuit of the clock oscillator.

Figure 1-10. External Circuit of Clock Oscillator

(a) Crystal oscillation (b) External clock
VR4111 VR4111

! GND External
77'7- Note 1
e o
T

Open | Note 2

Note 2

Notes 1. CLKX1, RTCX1
2. CLKX2, RTCX2

Cautions 1. When using a clock oscillator, run wires in the area of this figure shown by broken lines,
according to the following rules, to avoid effects such as stray capacitance:

¢ Minimize the wire.

* Never cause the wires to cross other signal lines or run near a line carrying a large
varying current.

« Cause the grounding point of the capacitor of the oscillator circuit to have the same
potential as GND. Never connect the capacitor to a ground pattern carrying a large
current.

« Never extract a signal from the oscillator.

2. Take it into consideration that no load such as wiring capacity is applied to the CLKX2 or
RTCX2 pin when inputting an external clock.

Figure 1-11 shows examples of oscillator having bad connection.

57

CHAPTER 1

INTRODUCTION

58

Figure 1-11. Examples of Oscillator with Bad Connection

(a) Connection circuit wiring is too long.

Notel Note2 GND|

=

i sl

T

(c) A high varying current flows near a signal line.

Notel Note2 GND

—
Large
current |:| | |

%vi_

(e) A signal is extracted.

Note2 Notel GND

-0

ik

(b) There is another signal line crossing.

Notel Note2 GND
X
R

77T

(d) A current flows over the ground line of the
generator circuit
(The potentials of points A, B, and C change).

VDD

Notel Note2 GND

s

I T
s

Notes 1. CLKX2, RTCX2
2. CLKX1, RTCX1

CHAPTER 2 PIN FUNCTIONS

2.1 PIN CONFIGURATION

» 224-pin fine-pitch GBA (16 x 16 mm)

*

uPD30111S1-80-3C

uPD30111S1-100-3C

Top View

Bottom View

O

o~ © W1 T O
B R - |

N o
o -

Qo o~ © W1 T MmN o

1

x

000000
000000
000000
000000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
000000
000000
000000
000000

OO
OO
OO
OO

0O
cO
0O
0O

00O
00O
00O

(©]
(©]
(©]
(©] 00O

(ON©)]
(ON©)]
(ON©)]
(ON©)]

000000
000000
000000
000000

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

/

M NP R T UV

K L

G H J

A B C D E F

K J HGF E DC B A

V UTRPNML

Index mark

59

CHAPTER 2

PIN FUNCTIONS

Pin No. | Power Pin Name Pin No. | Power Pin Name Pin No. | Power Pin Name
System System System

Al 3.3V | Vbp3 C15 3.3V RTS#/CLKSEL1 H15 3.3V GND3

A2 3.3V SHB# C16 3.3V GND3 H16 33V KPORT6

A3 3.3V BUSCLK C17 3.3V ILCSENSE H17 3.3V KPORT4

A4 3.3V HLDACK# C18 3.3V AFERST# H18 25V | Vbbp2

A5 3.3V IOCHRDY D1 3.3V DATAS5 J1 33V DATA20/GPIO20

A6 3.3V MEMW# D2 3.3V DATA3 J2 3.3V DATA17/GPIO17

A7 3.3V | ADD23 D3 3.3V DATAG6 J3 3.3V DATA22/GPI022

A8 3.3V | Vbp3 D4 3.3V GND3 Ja 3.3V DATA19/GPIO19

A9 3.3V | ADD18 D5 3.3V MEMCS16# J15 3.3V KSCAN9/GPI041

Al0 3.3V | ADD15 D6 3.3V ADD25 J16 3.3V | Vbbp3

All 3.3V | ADD8 D7 3.3V GND3 Ji7 25V GND2

Al2 3.3V | ADD7 D8 3.3V ADD19 J18 3.3V KSCAN11/GPIO43

Al3 25V | Vbb2 D9 3.3V | ADD16 K1 3.3V DATA23/GP1023

Ala 3.3V DCD#/GPIO15 D10 3.3V ADD14 K2 3.3V DATA26/GPI026

Al5 3.3V | TxD/CLKSEL2 D11 3.3V VbD3 K3 3.3V DATA25/GPI1025

Al6 3.3V IRDOUT# D12 3.3V GND3 K4 3.3V DATA21/GPI1021

Al7 3.3V IRING D13 3.3V ADD4 K15 3.3V KSCAN7/GPI039

Al8 3.3V | Vbp3 D14 3.3V CTS# K16 3.3V KSCAN10/GP1042

B1 3.3V DATA1 D15 3.3V GND3 K17 3.3V KSCANS5/GPI037

B2 3.3V IOR# D16 3.3V GND3 K18 3.3V KSCANS8/GPI1040

B3 3.3V IOW# D17 3.3V SDI L1 3.3V DATA27/GPI027

B4 3.3V LEDOUT# D18 3.3V SDO L2 3.3V DATA31/GPIO31

B5 3.3V FIRCLK E1l 3.3V DATA9 L3 3.3V DATA29/GPIO29

B6 3.3V HLDRQ# E2 3.3V DATA4 L4 3.3V DATA24/GP1024

B7 3.3V | ZWS# E3 3.3V DATA7 L15 3.3V KSCAN3/GPIO35

B8 3.3V | ADD24 E4 3.3V DATA10 L16 33V KSCANG6/GPIO38

B9 3.3V | ADD21 E15 3.3V OPD# L17 3.3V KSCANO/GPI032

B10 3.3V | ADD12 E16 3.3V HSPSCLK L18 3.3V KSCAN4/GPI036

B11 3.3V | ADD6 E17 3.3V FS M1 3.3V DATA30/GPIO30

B12 25V GND2 E18 3.3V HCO M2 3.3V | Vbbp3

B13 3.3V DSR# F1 3.3V DATA13 M3 3.3V GND3

B14 3.3V IRDIN F2 3.3V DATAS8 M4 3.3V DATA28/GPI028

B15 3.3V FIRDIN#/SEL F3 3.3V DATA11l M15 3.3V KSCAN2/GPI0O34

B16 3.3V BATTINH/BATTINT# F4 3.3V DATA14 M16 3.3V MIPS16EN

B17 3.3V OFFHOOK F15 3.3V KPORT3 M17 3.3V GND3

B18 3.3V MUTE F16 3.3V HSPMCLK M18 3.3V KSCAN1/GPIO33

C1l 3.3V DATA2 F17 3.3V TELCON N1 25V | Vbbp2

Cc2 3.3V DATAO F18 3.3V KPORT1 N2 3.3V | ADD3

C3 3.3V GND3 Gl 25V VbD2 N3 3.3V | ADD10

Cc4 3.3V GND3 G2 3.3V DATA12 N4 3.3V GND2

C5 3.3V GND3 G3 3.3V DATA15 N15 3.3V GND3

C6 3.3V | I0CS16# G4 3.3V | GND3 N16 3.3V | Vbp3

Cc7 3.3V MEMR# G15 3.3V KPORT7 N17 25V | VbpP

C8 3.3V | ADD22 G16 3.3V KPORT2 N18 3.3V GND3

c9 3.3V | ADD20 G17 3.3V KPORTO P1 3.3V ADD9

C10 3.3V | ADD17 G18 3.3V KPORT5 P2 3.3V | ADDO

Cl1 3.3V | ADD13 H1l 3.3V DATA16/GPIO16 P3 3.3V | ADD2

C12 3.3V | ADD5 H2 25V GND2 P4 3.3V | ADD11

C13 3.3V RxD H3 3.3V DATA18/GPIO18 P15 2.5V | Vbbp2 (VbDPD)

Cl4 3.3V DTR#/CLKSELO H4 3.3V VbD3 P16 25V GNDP

60

CHAPTER 2 PIN FUNCTIONS

Pin No. Power Pin Name Pin No. Power Pin Name Pin Power | Pin Name
System System No. System

P17 3.3V CLKX2 T6 3.3V AVDD U13 3.3V GPIO9

P18 25V GND2 (GNDPD) T7 3.3V LCAS# ul4 3.3V GPIO6

R1 3.3V ADD1 T8 3.3V ROMCS2# U15 3.3V GPIOS

R2 3.3V POWER T9 3.3V RD# Ul6 3.3V GPIO1

R3 3.3V GND3 T10 3.3V WR# ul7 3.3V GPIO2

R4 3.3V GND3 T11 3.3V DBUS32/GP1048 u18 3.3V CGND

R5 3.3V AUDIOIN T12 3.3V DDOUT/GPI044 V1 3.3V VbD3

R6 3.3V DVbD T13 3.3V GPIO11 V2 3.3V PIUGND

R7 3.3V MRAS2#/ULCAS# T14 3.3V GPIO8 V3 3.3V TPX0

R8 3.3V MRAS1# T15 3.3V GND3 A 3.3V TPY1

R9 3.3V ROMCS1# T16 33V GND3 V5 3.3V ADIN2

R10 3.3V RSTOUT T17 3.3V GPIOO V6 3.3V AUDIOOUT

R11 3.3V GND3 T18 3.3V RTCX1 V7 3.3V MRAS3#/UUCAS#

R12 3.3V GPIO49 Ul 3.3V MPOWER V8 3.3V MRASO#

R13 3.3V DDIN/GP1045 U2 3.3V RTCRST# V9 3.3V ROMCSO0#

R14 3.3V GPIO12 U3 3.3V AGND V10 3.3V VbD3

R15 3.3V GND U4 3.3V TPX1 V11l 3.3V LCDCS#

R16 3.3V CVbD U5 3.3V TPYO V12 3.3V DCTS#/GPI047

R17 3.3V RTCX2 U6 3.3V ADIN1 V13 3.3V GPIO14

R18 3.3V CLKX1 u7 3.3V DGND V14 3.3V GPIO10

T1 3.3V POWERON u8 3.3V UCAS# V15 3.3V GPIO7

T2 3.3V RSTSW# U9 3.3V ROMCS3# V16 33V GPIO4

T3 3.3V GND3 uU10 3.3V LDCRDY V17 3.3V GPIO3

T4 3.3V PIUVDD Ull 3.3V DRTS#/GP1046 V18 3.3V VbD3

T5 3.3V ADINO U1z 3.3V GPIO13

61

CHAPTER 2 PIN FUNCTIONS

PIN IDENTIFICATION

ADD [0:25]
ADIN [0:2]
AFERST#
AGND
AUDIOIN
AUDIOOUT
AVDD
BATTINH
BATTINT
BUSCLK
CGND
CLKSEL [0:2]
CLKX1
CLKX2
CTS#
CVbD
DATA [0:31]
DBUS32
DCD#
DCTS#
DDIN
DDOUT
DGND
DRTS#
DSR#
DTR#
DVbD
FIRCLK
FIRDIN#
FS

GND2, GND3
GNDP, GNDPD
GPIO [0:49]
HCO
HLDACK#
HLDRQ#
HSPMCLK
HSPSCLK
ILCSENSE
IOCHRDY
IOCS16#
IOR#

IOW#
IRDIN

: Address Bus

: General Purpose Input for A/D
. AFE Reset

: GND for A/D

: Audio Input

: Audio Output

: Vob for A/ID

: Battery Inhibit

: Battery Interrupt Request
: System Bus Clock

: GND for Oscillator

: Clock Select

: Clock X1

: Clock X2

: Clear to Send

: VoD for Oscillator

: Data Bus

: Data Bus 32

: Data Carrier Detect

: Debug Serial Clear to Send
: Debug Serial Data Input

: Debug Serial Data Output
: GND for D/A

: Debug Serial Request to Send
: Data Set Ready

: Data Terminal Ready

: Vop for D/A

: FIR Clock

: FIR Data Input

: Frame Synchronization

: Ground

: Ground for PLL

: General Purpose 1/0

: Hardware Control 0

: Hold Acknowledge

: Hold Request

: HSP Codec Master Clock
: HSP Codec Serial Clock

. Input Loop Current Sensing
: 1/O Channel Ready

: 1/O Chip Select 16

: 1/0 Read

: 1/O Write

. IrDA Data Input

Remark # indicates active low.

62

IRDOUT#
IRING
KPORT [0:7]
KSCAN [0:11]
LCAS#
LCDCS#
LCDRDY
LEDOUT#
MEMCS16#
MEMR#
MEMW#
MIPS16EN
MPOWER
MRAS [0:3]#
MUTE
OFFHOOK
OPD#
PIUGND
PIUVDD
POWER
POWERON
RD#
ROMCS [0:3]#
RSTOUT
RSTSW#
RTCRST#
RTCX1
RTCX2
RTS#

RxD

SDI

SDO

SEL

SHB#
TELCON
TPX [0:1]
TPY [0:1]
TxD

UCAS#
ULCAS#

UUCAS#

VbD2, VDD3
VobpP, VbbPD
WR#

Z\WSH#

. IrDA Data Output

. Input Ring

: Key Code Data Input

: Key Scan Line

: Lower Column Address Strobe
: LCD Chip Select

: LCD Ready

. LED Output

: Memory Chip Select 16

: Memory Read

: Memory Write

: MIPS16 Enable

: Main Power

: DRAM Row Address Strobe

: Mute

: Off Hook

: Output Power Down

: GND for Touch Panel Interface
: Vop for Touch Panel Interface
: Power Switch

: Power On State

: Read

: ROM Chip Select

: System Bus Reset Output

: Reset Switch

: Real-time Clock Reset

: Real-time Clock X1

: Real-time Clock X2

: Request to Send

: Receive Data

: HSP Serial Data Input

: HSP Serial Data Output

: IrDA Module Select

: System Hi-Byte Enable

: Telephone Control

: Touch Panel X I1/0

: Touch Panel Y I/O

: Transmit Data

: Upper Column Address Strobe
: Lower Byte of Upper Column

Address Strobe

: Upper Byte of Upper Column

Address Strobe

: Power Supply Voltage
: Vob for PLL

: Write

: Zero Wait State

CHAPTER 2 PIN FUNCTIONS

2.2 PIN FUNCTION DESCRIPTION

The functional classification of the Vr4111 pins is listed below.

Remark # indicates active low.

RxD

TxD/CLKSEL2

RS-232C RTS#/CLKSEL1

Interface DTR#/CLKSELO

CTS#

DCD#/GPI015

DSR#

I'DA FIRDIN#/SEL

Interface IRDIN

IRDOUT#

DDOUT/GPIO44

Debug serial DDIN/GPIO45

Interface DRTS#/GP1046

DCTS#/GPI1047

POWER

Initialization RSTSW#

Interface RTCRST#

MPOWER

POWERON

Battery monitor BATTINH/

Interface { BATTINT#

Keyboard KPORT (0:7)

Interface KSCAN (0:11)/

GPIO (32:43)

Audio { AUDIOOUT

Interface AUDIOIN

CLKX1

Clock CLKX2

Interface RTCX1

RTCX2

FIRCLK

LED { LEDOUT#
Interface

VobP

GNDP

CVobp

CGND

DVob

Dedicated DGND

Voo, GND AVop

AGND

PIUVop

PIUGND

VooPD

GNDPD

Figure 2-1. V r4111 Signal Classification

Vr4102

ADD (0:25)
DATA (0:15)
DATA (16:31)/
GPIO (16:31)
LCDRDY
LCDCS#

RD#

WR#

ROMCS (0:3)#
UUCASH#MRAS3#
ULCAS#MRAS2#
MRAS (0:1)#
UCAS#
LCASH#
BUSCLK
SHB#

|OR#

IOW#

MEMR#
MEMW#
ZWSH#
RSTOUT
MEMCS16#
lOCS16#
IOCHRDY
HLDRQ#
HLDACK#

LCD
Interface

Memory
Interface

~

~System bus interface

ISA bus
Interface

I:zé EgB } Touch panel/

: general-purpose A/D interface
ADIN (0:2)
General-purpose 1/0
(including alternate-function

pins and DCD# inputs)

GPIO (0:49)

IRING
ILCSENSE
OFFHOOK
MUTE
AFERST#
SDI

FS > HSP modem interface
SDO
HSPSCLK
TELCON
HCO
HSPMCLK
OPD#

DBUS32/GPI048

Initialization setting
MIPS16EN

63

CHAPTER 2 PIN FUNCTIONS

2.2.1 System Bus Interface Signals
These signals are used when the Vr4111 is connected to a DRAM, ROM, or LCD, or other devices in the system
through the system bus.

Table 2-1. System Bus Interface Signals (1/2)

Signal

/10

Description of function

ADDI[25..0]

This is a 26-bit address bus. The VR4111 uses this to specify addresses for the DRAM, ROM, LCD, or
system bus (ISA).

DATA[15..0]

/10

This is a 16-bit data bus. The VR4111 uses this to transmit and receive data with a DRAM, ROM, LCD,
or system bus.

DATA[31..16)/
GPIO[31..16]

/10

This function differs depending on how the DBUS32 pin is set.

<When DBUS32 = 1> : DATA[31..16]
It is the high-order 16 bits of the 32-bit data bus.
This bus is used for transmitting and receiving data between the VR4111 and the DRAM and ROM.

<When DBUS32 = 0> : GPIO[31..16]
It is a general-purpose 1/0 (GPIO) port.

LCDCS#

This is the LCD chip select signal. This signal is active when the VrR4111 is performing LCD access
using the ADD/DATA bus.

RD#

This is active when the VR4111 is reading data from the LCD, RAM, or ROM.

WR#

This is active when the VR4111 is writing data to the LCD, RAM, or ROM.

LCDRDY

This is the LCD ready signal. Set this signal as active when the LCD controller is ready to receive
access from the VrR4111.

ROMCSI[3..2J#

The function differs with the setting of the DBUS32 pin.
<When DBUS32 = 1>

This becomes the chip select signal for the extended ROM or DRAM.
<When DBUS32 = 0>

This is the ROM chip select signal.

ROMCSI1..0J#

This is the ROM chip select signal.

UUCASH/
MRAS[3]#

This function differs depending on how the DBUS32 pin is set.

<When DBUS32 = 1> : UUCAS#
This signal is active when a valid column address is output via the ADD bus during access of
DATA[31:24] in the 32-bit data bus.
When the access bus size to the LCD is 32 bits, this also becomes active when a valid address is
output to the ADD bus while accessing DATA[31:24].

<When DBUS32 = 0> : MRAS[3]#
This is the DRAM’s RAS signal. Up to four DRAM units can be connected, and this signal is active
when a valid row address is output via the ADD bus for the DRAM connected to the high-order address.

ULCASH/
MRAS[2]#

This function differs depending on how the DBUS32 pin is set.

<When DBUS32 = 1> ULCAS#
This signal is active when a valid column address is output via the ADD bus during access of
DATA[23:16] in the 32-bit data bus.
When the access bus size to the LCD is 32 bits, this also becomes active when a valid address is
output to the ADD bus while accessing DATA[23:16].

<When DBUS32 = 0> MRAS[2]#
This is the DRAM’s RAS signal. This signal is active when a valid row address is output via the ADD
bus for the DRAM connected to the next-highest address after the highest high-order address.

64

CHAPTER 2 PIN FUNCTIONS

Table 2-1. System Bus Interface Signals (2/2)

Signal 110 Description of function

MRAS[1..0J# O | This is the DRAM’s RAS signal.

UCAS# O | This is the DRAM’s CAS signal. This signal is active when a valid column address is output via the ADD
bus during access of DATA[15:8] in the DRAM.
When the access bus size to the LCD is 32 bits, this also becomes active when a valid address is output
to the ADD bus while accessing DATA[15:8].

LCAS# O [This is the DRAM's CAS signal. This signal is active when a valid column address is output via the ADD
bus during access of DATA[7:0] in the DRAM.
When the access bus size to the LCD is 32 bits, this also becomes active when a valid address is output
to the ADD bus while accessing DATA[7:0].

BUSCLK O | This is the system bus clock. It is used to output the clock that is supplied to the controller on the
system bus. Its frequency is determined by the state of the CLKSEL2/TxD, CLKSEL1/RTS#, and
CLKSELO/DTR# pins. (See 2.2.5 RS-232C Interface Signals .)

SHB# O [This is the system bus high-byte enable signal. During system bus access, this signal is active when the
high-order byte is valid on the data bus.

IOR# O | This is the system bus I/O read signal. It is active when the VR4111 accesses the system bus to read
data from an I/O port.

IOW# O [This is the system bus I/O write signal. It is active when the VR4111 accesses the system bus to write
data to an 1/O port.

MEMR# O | This is the system bus memory read signal. It is active when the VR4111 accesses the system bus to
read data from memory.

MEMW# O | This is the system bus memory write signal. It is active when the VR4111 accesses the system bus to
write data to memory.

ZWS# I | This is the system bus zero wait state signal. Set this signal as active to enable the controller on the
system bus to be accessed by the VrR4111 without a wait interval.

RSTOUT O [This is the system bus reset signal. It is active when the VR4111 resets the system bus controller.

MEMCS16# I | This is a dynamic bus sizing request signal.
Set this signal as active when system bus memory accesses data in 16-bit width.

10CS16# I | This is a dynamic bus sizing request signal.
Set this signal as active when system bus 1/0 accesses data in 16-bit width.

IOCHRDY I | This is the system bus ready signal. Set this signal as active when the system bus controller is ready to
be accessed by the VrR4111.

HLDRQ# || This is a hold request signal for the system bus and DRAM bus that is sent from an external bus master.

HLDACK# O | This is a hold acknowledge signal for the system bus and DRAM bus that is sent to an external bus

master.

65

CHAPTER 2 PIN FUNCTIONS

2.2.2 Clock Interface Signals
These signals are used to supply clocks. Table 2-2 lists functions of these signals.

Table 2-2. Clock Interface Signals

Signal 1/0 Description of function
RTCX1 I | This is the 32.768-kHz oscillator’s input pin. It is connected to one side of a crystal resonator.
RTCX2 O | This is the 32.768-kHz oscillator's output pin. It is connected to one side of a crystal resonator.
CLKX1 | | This is the 18.432-MHz oscillator’s input pin. It is connected to one side of a crystal resonator.
CLKX2 O | This is the 18.432-MHz oscillator’s output pin. It is connected to one side of a crystal resonator.
FIRCLK I | This is the 48-MHz clock input pin. Fix this at high level when FIR is not used.

The operating frequency of CPUCORE can be set by the CLKSEL2/TxD, CLKSEL1/RTS#, and CLKSELO/DTR#

signals.
For details of these signals, refer to 2.2.5 RS-232C Interface Signals .

2.2.3 Battery Monitor Interface Signals
These signals indicate when an external agent is able to provide enough power for system operations. Table 2-3

describes the functions of these signals.

Table 2-3. Battery Monitor Interface Signals

Signal I/0 Description of function
BATTINH/ | | This function differs depending on how the MPOWER pin is set.
BATTINT# <When MPOWER = 0>

BATTINH function
This signal enables/prohibits activation due to power-on.
1: Enable activation (power-on)
0 : Prohibit activation (power on)

<When MPOWER = 1>

BATTINT# function
This is an interrupt signal that is output when remaining power is low during normal operations. The
external agent checks the remaining battery power. Activate the signal at this pin if voltage sufficient
for operations cannot be supplied.

66

CHAPTER 2 PIN FUNCTIONS

2.2.4 Initialization Interface Signals

These signals are used when an external agent initializes the processor operation parameters. Table 2-4
describes the functions of these signals.

Table 2-4. Initialization Interface Signals

Signal I/0 Description of function
* | MPOWER O [This signal indicates the VR4111 is operating. This signal is inactive during Hibernate mode.
POWERON O | This signal indicates the VR4111 is ready to operate. It becomes active when a power-on factor is

detected and becomes inactive when the BATTINH/BATTINT# signal check operation is completed.

POWER | | This signal indicates that the POWER ON switch has been pressed.
RSTSW# I | This signal indicates that the RESET switch has been pressed.
RTCRST# I | This signal resets RTC. When power is first supplied to a device, the external agent must assert the

signal at this pin for about 600 ms.

67

CHAPTER 2 PIN FUNCTIONS

2.2.5 RS-232C Interface Signals
These signals control data transmission and reception between the VR4111 and an RS-232C controller. Table 2-
5 describes the functions of these signals.

Table 2-5. RS-232C Interface Signals

Signal 110 Description of function
RxD | [This is a receive data signal. It is used when the RS-232C controller sends serial data to the VrR4111.
CTS# I | This is the transmit enable (“clear-to-send”) signal. This signal is asserted when the RS-232C controller is

ready to receive transmission of serial data.

DCD#/ I [This is a carrier detection signal. This signal is asserted when valid serial data is being received. It is
GPIO[15] also used when detecting a power-on factor for the VR4111.
When this pin is not used for DCD# signal, this pin can be used as an interrupt detection function for the
GIU unit.
DSR# | | This is the data set ready signal. Assert this signal to set up transmission and reception of serial data

between the RS-232C controller and the VrR4111.

TxD/ 1/0 | This function differs depending on the operating status.

CLKSEL[2), « During normal operation (output)

RTS#/ Signals used for serial communication

CLKSEL[1], TxD signal (output):

DTR# This is a transmit data signal. It is used when the VR4111 sends serial data to the RS-232C controller.
CLKSEL[0] RTS# signal (output):

This is a transmit request signal. This signal is asserted when the VR4111 is ready to receive serial
data from the RS-232C controller.

DTR# signal (output):
This is a terminal equipment ready signal. This signal is asserted when the VR4111 is ready to
transmit or receive serial data.

¢ When RTC reset (input)
Signals (CLKSEL[2:0]) used to set the CPU core operation frequency, BUSLK frequency, and internal
bus clock frequency. These signals are sampled when the RTCRST# signal changes from low level to
high level.
The relationships between the CLK pin setting and each clock frequency are shown below.

CLKSEL[2:0] CPU core operation BUSCLK output Internal bus clock Interrupt control

frequency frequency frequency clock frequency
111 98.1 MHz 6.13 MHz 24.5 MHz 6.13 MHz
110 90.5 MHz 5.67 MHz 22.6 MHz 5.67 MHz
101 84.1 MHz 7.01 MHz 28.0 MHz 7.01 MHz
100 78.5 MHz 6.54 MHz 26.2 MHz 6.54 MHz
011 69.3 MHz 5.77 MHz 23.1 MHz 5.77 MHz
010 65.4 MHz 5.45 MHz 21.8 MHz 5.45 MHz
001 62.0 MHz 5.17 MHz 20.7 MHz 5.17 MHz
000 49.1 MHz 6.13 MHz 24.5 MHz 6.13 MHz

Caution Some of these frequency settings may not be selectable in the future.

68

CHAPTER 2 PIN FUNCTIONS

2.2.6 IrDA Interface Signals
These signals are used to control data transmission and reception between the VR4111 and an IrDA controller.
Table 2-6 describes the functions of these signals.

Table 2-6. IrDA Interface Signals

Signal I/O | Description of function
IRDIN I | This is the IrDA serial data input signal. It is used when the VR4111 sends serial data to the IrDA
controller, for both FIR and SIR. If the IrDA controller used is an HP product, however, this signal should
be used for only SIR.
FIRDIN#/SEL 1/0 | This function differs according to the IrDA controller used (for how to switch a controller, refer to 24.2.13).
* HP’s controller
FIRDIN#: It is an FIR receive data input signal.
* TEMIC's controller
SEL: It is an output port for external FIR/SIR switching.
* SHARP’s controller
Use is prohibited.
IRDOUT# O | This is the IrDA serial data output signal for both SIR and FIR. It is used when the IrDA controller sends
serial data to the VR4111.

2.2.7 Debug Serial Interface Signals
These signals are used to control data transmission and reception between the VR4111 and a external debug

serial controller.

Table 2-7 describes the functions of these signals.

Table 2-7. Debug Serial Interface Signals

Signal 110 Description of function

DDOUT/ O | This is the debug serial data output signal. It is used when an external debug serial data controller sends
GPI0O[44] serial data to the VrR4111.

When this pin is not used for the DDOUT signal, it can be used as a general-purpose output port.
DDIN/ 1/0 | This is the debug serial data input signal. It is used when the VR4111 sends serial data to an external
GPIO[45] debug serial controller.

When this pin is not used for the DDIN signal, it can be used as a general-purpose output port.
DRTS#/ O | This is a transmission request signal. The VR4111 asserts this signal before sending serial data.
GPIO[46] When this pin is not used for the DRTS# signal, it can be used as a general-purpose output port.
DCTS#/ 1/0 | This is a transmit acknowledge signal. The VR4111 asserts this signal when it is ready to receive
GPIO[47] transmitted serial data.

When this pin is not used for the DCTS# signal, it can be used as a general-purpose output port.

69

CHAPTER 2 PIN FUNCTIONS

2.2.8 Keyboard Interface Signals

These signals are used to control a keyboard circuit to the VR4111. Table 2-8 describes the functions of these
signals.

Table 2-8. Keyboard Interface Signals

Signal 1/0 Description of function

KPORT[7..0] I | This is a keyboard scan data input signal. It is used to scan for pressed keys on the keyboard.

KSCAN[11..0}/ O | These signal are used as keyboard scan data output signals and a general-purpose output port. The scan
GPIO[43..32] line is set as active when scanning for pressed keys on the keyboard.

Pins that are not used for the key scan operation can be used as a general-purpose output port.

2.2.9 Audio Interface Signals

This signal is used to input/output audio signals. Table 2-9 describes the functions of this signal.

Table 2-9. Audio Interface Signals

Signal 110 Description of function

AUDIOOUT O [This is an audio output signal. Analog signals that have been converted via the on-chip 10-bit D/A
converter are output.

AUDIOIN || This pin is the audio input pin.

2.2.10 Touch Panel/General Purpose A/D Interface Signals
These are the signals to the on-chip A/D converter of the Vr4111. Four of these signals are used for a touch

panel, and the remaining three are used as general-purpose input pins. Table 2-10 describes the functions of these
signals.

Table 2-10. Touch Panel/General Purpose A/D Interface Signals

Signal 110 Description of function

TPX[1..0] 1/0 | This is an I/O signal that is used for the touch panel. It uses the voltage applied to the X coordinate and
the voltage input to the Y coordinate to detect which coordinates on the touch panel are being pressed.

TPY[1..0] I/0 | This is an I/O signal that is used for the touch panel. It uses the voltage applied to the Y coordinate and
the voltage input to the X coordinate to detect which coordinates on the touch panel are being pressed.

ADIN[2..0] | [This is a general-purpose A/D input signal.

70

CHAPTER 2 PIN FUNCTIONS

2.2.11 General-purpose /O Signals
These are general-purpose 1/O pins of the VR4111. Ordinary, 33 of the 49 GPIO pins are used as alternate-
function pins. Table 2-11 describes the functions of these signals.

Table 2-11. General-purpose I/O Signals

Signal 110 Description of function
GPIO[3..0] 1/0 | These are maskable power-on factors. After start-up, they are used as ordinary GPIO pins.
GPIO[8..4] 1/0 | These are ordinary GPIO pins.
GPIO[12..9] 1/0 | These are maskable power-on factors. After start-up, they are used as ordinary GPIO pins.

GPIO[14..13] 1/0 | These are ordinary GPIO pins.

DATA[31..16])/ | I/O | See 2.2.1 System Bus Interface Signals

GPIO[31..16]

KSCAN[11..0)/ O | See 2.2.8 Keyboard Interface Signals
GPIO[43..32]

DDOUT/ O | See 2.2.7 Debug Serial Interface Signals
GP10[44]

DDIN/GPIO[45] | I/O | See 2.2.7 Debug Serial Interface Signals

DRTS#/ O |See 2.2.7 Debug Serial Interface Signals

GPIO[46]

DCTS#/ 1/0 | See 2.2.7 Debug Serial Interface Signals

GPIO[47]

DBUS32/ 1/0 | See 2.2.14 Initialization Setting Signals

GPIO[48]

GPIO[49] O | This function differs depending on the operating status.

« During normal operation
It can be used as a general-purpose output port.

¢ When RTC reset
This signal is sampled when the RTCRTS# signal changes from low level to high level.

71

CHAPTER 2 PIN FUNCTIONS

2.2.12 HSP MODEM Interface Signals

Table 2-12. HSP MODEM Interface Signals

Signal 1/0 Function
IRING I | RING signal detect signal. This pin becomes active when the RING signal is detected.
ILCSENSE | | Handset detect signal.
OFFHOOK O | On-hook relay control signal.
MUTE O | Modem speaker mute control signal.
AFERST# O | CODEC reset signal.
SDI | | Serial input signal from CODEC.
FS | | Frame synchronization signal from CODEC.
SDO O | Serial output signal to CODEC.
HSPSCLK | | Operation clock input of modem interface block for CODEC.
TELCON O | Handset relay control signal.
HCO O | CODEC control signal.
HSPMCLK O | Clock output to CODEC.
OPD# O | Use this pin for controlling power of CODEC and DAA. This signal is set as active when to set power
supply to them ON.

2.2.13 LED Interface Signal

Table 2-13. LED Interface Signal

Signal

Description of function

LEDOUT#

This is an output signal for lighting LEDs.

2.2.14 Initial Setting Signals

Table 2-14. Initial Setting Signals

Signal Name

1/0 Function Description

DBUS32/
GPI0[48]

1/0 The function differs with the state of the RTCRST# signal

« During normal operation (output)
This can be used as a general-purpose output port.

e When RTC reset (input)
This is the switching signal for the data bus width. This signal is sampled when the RTCRST#
signal changes from low level to high level.

1: The data bus has a 32-bit width.
0: The data bus has a 16-bit width.

MIPS16EN

This pin enables the use of MIPS16 instructions. This signal is sampled when the RTCRST#
signal changes from low level to high level.

1: Enables the use of MIPS16 instructions
0: Disables the use of MIPS16 instructions

72

CHAPTER 2 PIN FUNCTIONS

2.2.15 Dedicated V oo and GND Signals

Table 2-15. Dedicated V oo and GND Signals

Signal Name Power-Supply System Function Description

VobP 25V Dedicated Vop for the PLL analog unit.

GNDP 25V Dedicated GND for the PLL analog unit.

VbbPD 25V Dedicated Vob for the PLL digital unit. Its function is identical to Voo2.

GNDPD 25V Dedicated GND for the PLL digital unit. Its function is identical to GND2.

CVbD 3.3V Dedicated Vob for the oscillator.

CGND 3.3V Dedicated GND for the oscillator.

DVbbp 3.3V Dedicated Vob for the D/A converter. The voltage applied to this pin
becomes the maximum of the analog output of AUDIOOUT.

DGND 3.3V Dedicated GND for D/A converter. The voltage applied to this pin
becomes the minimum of the analog output of AUDIOOUT.

AVop 3.3V Dedicated Vob for the A/D converter. The voltage applied to this pin
becomes the maximum voltage that can be detected by the A/D interface
signals (8 lines).

AGND 3.3V Dedicated GND for the A/D converter. The voltage applied to this pin
becomes the minimum voltage that can be detected by the A/D interface
signals (8 lines).

PIUVDD 33V Dedicated Vbp for touch-sensitive panel interface.

PIUGND 3.3V Dedicated GND for touch-sensitive panel interface.

VDD2 25V Normal 2.5-V system Vbb.

GND2 25V Normal 2.5-V system GND.

Vbb3 3.3V Normal 3.3-V system Vbb.

GND3 3.3V Normal 3.3-V system GND.

% Caution The V r4111 has two types of power supplies. There are no restrictions as to the sequence in
which these power supplies are applied. However, do not apply one type of power for more than
one second while the other power supply is not applied.

73

CHAPTER 2 PIN FUNCTIONS

2.3 PIN STATUS

2.3.1 Pin Status upon Specific States
Table 2-16 lists the pin states after the Vr4111 is reset or when it is in the power mode.

Table 2-16. Pin Status upon Specific States (1/3)

After Reset by the

In the Hibernate

Signal Name ﬁlf;e;_?z;i:y Deadman’s Switch :\;Otzz Suspend Mode or Shut. Down Ezlr;ng aBus
or RSTSW by the HAL Timer
ADD[25..0] 0 0 Note 1 0 Hi-z
DATA[15..0] 0 0 Note 1 0 Hi-Z
DATA[31..16]/ o/ o/ Note 1 o/ Hi-z/
GPIO[31..16] Hi-Z Hi-Z Hi-Z Note 1
LCDCS# Hi-Z 1 1 Hi-Z 1
RD# Hi-Z 1 1 Hi-Z Hi-Z
WR# Hi-Z 1 1 Hi-Z Hi-Z
LCDRDY O O | | |
ROMCS#[3..2] Hi-Z Note 2 Note 2 Note 2 Note 2
ROMCS#{1..0] Hi-Z 1 1 Hi-Z 1
UUCAS#/MRAS#[3] Note 3 Note 4 0 0 Hi-z
ULCAS#/MRAS#(2] Note 3 Note 4 0 0 Hi-Z
MRAS#[1..0] 1 Note 4 0 0 Hi-Z
UCAS# 0 Note 4 0 0 Hi-Z
LCAS# 0 Note 4 0 0 Hi-z
BUSCLK 0 0 Note 1 0 Note 5
SHB# Hi-Z 1 1 Hi-Z Hi-Z
IOR# Hi-Z 1 1 Hi-Z Hi-Z
IOW# Hi-Z 1 1 Hi-Z Hi-Z
MEMR# Hi-Z 1 1 Hi-Z Hi-Z
MEMW# Hi-Z 1 1 Hi-Z Hi-Z
Z\WSH# O O | | |
RSTOUT Hi-Z 1 0 Hi-Z Note 6
Notes 1. Maintains the state of the previous Full-Speed Mode.

2. When used as the chip select for the ROM or extended ROM, this is the same as ROMCSJ[1..0]#.
When used as the RAS for the extended DRAM, this is the same as MRAS[1..0]#.

3. When DBUS32 =1, the low level is output.
When DBUS32 = 0, the high level is output.

4. Reset by the RSTSW# signal: The pin outputs a low level. (Self refresh)

Reset by the Deadman’s switch: The pin outputs a high level.

5. Bus hold from the Suspend Mode: The state of the previous Full-Speed Mode is maintained.
Bus hold from Full-Speed Mode or Standby Mode: Outputs clocks.
6. Normal operation proceeds.

74

CHAPTER 2 PIN FUNCTIONS

Table 2-16. Pin Status upon Specific States (2/3)

After Reset by the

In the Hibernate

Signal Name ﬁtﬂe};?g:z:y Deadman’s Switch :\:;22 Suspend Mode or Shut Down zglr;ng aBus
or RSTSW by the HAL Timer
I0CS16# O O O O O
MEMCS16# O O O O O
IOCHRDY O O O O O
HLDRQ# 0 0 0 O 0
HLDACK# Hi-Z 1 Note 1 Hi-Z Note 1
RTCX1 O O O O O
RTCX2 O O O O O
CLKX1 O O O O O
CLKX2 O O O O O
FIRCLK O O O O O
BATTINH/BATTINT O O O O O
#
MPOWER 0 1 1 0 1
POWERON 0 0 0 0 0
POWER O O O O O
RSTSW# O O O O O
RTCRST# O O O O O
RxD O O O O O
TxD/CLKSEL[2] Hi-Z 1 1 1 Note 1
RTS#/CLKSEL[1] Hi-Z 1 1 1 Note 1
CTS# O O O O O
DCD#/GPIO[15] O O O O O
DTR#/CLKSEL][O] Hi-Z 1 1 1 Note 1
DSR# O O O O O
IRDIN# O O O O O
IRDOUT 0 0 0 0 Note 1
FIRDIN#/SEL Hi-Z Hi-Z Note 2 Hi-Z Note 2
DDIN#/ g/ g/ o/ o/ o/
GPIO[45]"*® Hi-Z Note 2 Note 2 Note 2 Note 2
DDOUT#/ 1/ 1 1 1/ 1/
GPIO[44]"*? 1 Note 2 Note 2 Note 2 Note 2
DRTSH#/ 1/ 1 1 1/ 1/
GPIO[46]"*® 1 Note 2 Note 2 Note 2 Note 2
DCTS#/ g/ g/ o/ o/ o/
GPIO[47]"*® Hi-Z Note 2 Note 2 Note 2 Note 2

Notes 1.

Normal operation proceeds.

2. The state of the previous Full-Speed Mode is maintained.
3. Software can switch the function pin and the output port.

75

CHAPTER 2 PIN FUNCTIONS

Table 2-16. Pin Status upon Specific States (3/3)

After Reset by the

In the Hibernate

Signal Name ﬁtﬂe};?g:z:y Deadman’s Switch :\:;22 Suspend Mode or Shut Down zglr(ijng aBus
or RSTSW by the HAL Timer
KPORTI[7..0] O O O O O
KSCAN[11..0]/ Hi-Z/ Hi-z/ Note 2/ Hi-z/ Note 3
GPIO[43..32]""* Hi-Z Note 2 Note 2 Note 2
AUDIOOUT 0 0 Note 2 0 Note 3
TPX[1..0] 1 1 Note 2 1 Note 3
TPY[1..0] Hi-Z Hi-Z Note 2 Hi-Z Note 3
ADIN[2..0] O O O O 0
AUDIOIN O O O O O
GPI0[14..0] Hi-Z Hi-Z Note 2 Hi-Z Note 3
IRING O O O O O
ILCSENSE O O | | O
OFFHOOK™"** Hi-Z Hi-Z Note 2 Hi-Z Note 2
MUTE"™"* Hi-Z Hi-Z Note 2 Hi-Z Note 2
AFERST""* 0 0 Note 2 0 Note 2
SDI O O | | O
FS O O O O O
SDO 0 0 Note 2 0 Note 2
HSPSCLK O O O O O
TELCON™"* Hi-Z Hi-Z Note 2 Hi-Z Note 2
HCo™ 0 0 Note 2 0 Note 2
HSPMCLK"™** 0 0 Note 2 0 Note 2
OPD# 0 0 Note 2 0 Note 2
LEDOUT# 1 Note 3 Note 3 Note 3 Note 3
DBUS32/ Hi-z/ Hi-z/ Note 2/ Hi-z/ Note 2/
GPIO[48]"** Hi-Z Note 2 Note 2 Note 2 Note 2
MIPS16EN Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z
GPIO[49]"*® Note 6 Note 2 Note 2 Note 2 Note 2

Notes 1.

Software can switch the function pin and the output port.

The state of the previous Full-Speed Mode is maintained.

R L

76

Normal operation proceeds.
When initializing, always set BSC hit (D1) in the HSPINT register (0x0c000020) to one.
After the RTC reset is released, this functions as an output port.

Input state. Input low level.

CHAPTER 2 PIN FUNCTIONS

2.3.2 Connection of Unused Pins and Pin I/O Circuits

Table 2-17. Connection of Unused Pins and Pin I/O Circuit Type (1/3)

Signal Internal External Drive 1/O circuit type
processing processing capability

ADD[25..0] Slew rate buffer - 120 pF A
DATA[15..0] - - 40 pF A
DATA[31..16)/ - Note 1 40 pF A
GPIO[31..16]

LCDCS# Slew rate buffer - 40 pF A
RD# Slew rate buffer Note 2 120 pF A
WR# Slew rate buffer Note 2 120 pF A
LCDRDY - Note 3 - A
ROMCSJ[3..2]# Slew rate buffer Note 4 40 pF A
ROMCSJ1..0]# Slew rate buffer - 40 pF A
UUCAS#/MRAS[3]# | Slew rate buffer Note 2 120 pF A
ULCAS#/MRAS|2]# Slew rate buffer Note 2 120 pF A
MRASI1..0]# Slew rate buffer Note 2 40 pF A
UCAS# Slew rate buffer Note 2 120 pF A
LCAS# Slew rate buffer Note 2 120 pF A
BUSCLK Slew rate buffer - 40 pF A
SHB# Slew rate buffer Note 2 40 pF A
IOR# Slew rate buffer Note 2 40 pF A
Iow# Slew rate buffer Note 2 40 pF A
MEMR# Slew rate buffer Note 2 40 pF A
MEMW# Slew rate buffer Note 2 40 pF A
Z\WSH# Note 5 Note 3 - A
RSTOUT Slew rate buffer Pull up 40 pF A
IOCS16# Note 5 Note 3 - A
MEMCS16# Note 5 Note 3 - A
IOCHRDY Note 5 Note 3 - A

Notes 1. Pins DATA[31...16] in the Vr4111 function as GPIO[31...16] when using the 16-bit data bus.

When using these pins as GPIO[31...16], pull them up or pull down so as not to input an
intermediate-level signal.
2. When the bus hold function is used, pull-ups are recommended outside the Vr4111.
Do not input an intermediate-level signal.
4. When used as the RAS signal of extended DRAM, external pull-up is recommended for the

VR4111.

5. When the MPOWER pin outputs the low-level, intermediate-level input is enabled.

77

CHAPTER 2 PIN FUNCTIONS

Table 2-17. Connection of Unused Pins and Pin I/O Circuit Type (2/3)

Signal Internal External Drive 1/O circuit type
processing processing capability

HLDRQ# Note 1 Note 2 - A

HLDACK# Slew rate buffer - 40 pF A

RTCX1 - Resonator - -

RTCX2 - Resonator - -

CLKX1 - Resonator - -

CLKX2 - Resonator - -

FIRCLK - Note 3 - A

BATTINH/ Schmitt - - B

BATTINT#

MPOWER - - 40 pF A

POWERON - - 40 pF A

POWER Schmitt - - B

RSTSW# Schmitt - - B

RTCRST# Schmitt - - B

RxD - - - A

TxD/CLKSEL[2] - Pull up/ 40 pF A
Pull down

RTS#/CLKSEL[1] - Pull up/ 40 pF A
Pull down

CTS# - - - A

DCD#/GPIO[15] Schmitt Pull up - B

DTR#/CLKSEL[0] - Pull up/ 40 pF A
Pull down

DSR# - - - A

IRDIN - Pull up - A

IRDOUT# - - 40 pF A

FIRDIN#/SEL - Pull up/ 40 pF A
Pull down

DDIN#/ - B 40 pF A

GPIO[45]

DDOUT/ - - 40 pF A

GPIO[44]

DRTS#/ - - 40 pF A

GPIO[46]

DCTSH/ - B 40 pF A

GPIO[47]

Notes 1. Intermediate-level inputis enabled when the MPOWER pin is set for low-level output.
2. When the bus hold function is used : Pull up.
When the bus hold function is not used : Connect to Voo.
3. When FIR unit is used : Attach an oscillator.
When FIR unit is not used : Connect to Voo.

CHAPTER 2 PIN FUNCTIONS

Table 2-17. Connection of Unused Pins and Pin I/O Circuit Type (3/3)

Signal Internal External Drive 1/O circuit type
processing processing capability
KPORT[7..0] Schmitt, Pull down - - B
KSCANJ[11..0)/ - - 40 pF A
GPIO[43..32]
AUDIOOUT - Note 1 - F
TPX[1..0] - - 120 pF or more C
TPY[1] - - 120 pF or more D
TPY[0] - - 120 pF or more C
ADIN[2..0] - - - E
AUDIOIN - - - E
GPIO[14..0] Schmitt Note 2 40 pF B
Note 2
IRING Schmitt Pull down - B
ILCSENSE - Pull down - A
OFFHOOK - - 40 pF A
MUTE - - 40 pF A
AFERST# - - 40 pF A
SDI - Pull up/ - A
Pull down
FS - Pull up/ - A
Pull down
SDO - - 40 pF A
HSPSCLK - - - A
TELCON - - 40 pF A
HCO - - 40 pF A
HSPMCLK - - 40 pF A
OPD# - - 40 pF A
LEDOUT# - - 40 pF A
DBUS32/ - Pull up/ 40 pF A
GPIO[48] Pull down
MIPS16EN - Pull up/ 40 pF A
Pull down
GPI0O[49] - Pull down - A

Notes 1. Connect an operation amplifier which has high-impedance input characteristics, since the output level

of AUDIOOUT pin varies according to the external impedance.

2. If internal pull-ups or pull-downs are used in GPIO[14:0], software can switch between pull up, pull

down, and open.

If an internal pull-up or pull-down resistor is not used, then provide an external pull-up or pull-down

resistor.

79

CHAPTER 2 PIN FUNCTIONS

2.3.3 Pin I/O Circuits
Type A Type D
VoD % Vop
data ":D—l P-ch data ":D—l P-ch
IN/OUT IN/OUT
output N-ch output N-ch
disable disable
P-ch==
o V]
T
input J _ml_ ==
enable
Type B VDD Vref
pullup DC l . —
enable |L_> P-ch erlgg;g ® I N-ch
% vop
data ':Do—l P-ch
IN/OUT
Type E
—1 p_
open drain _D | Nech IN V] P-ch
output * ° Y oh == *
disable - T >
» Vref
Type F
|
pulldown | N-ch |
enable analog o OUT
output
voltage
Type C
VDD
data ':D—l P-ch
IN/OUT
o
output N-ch
disable
P-ch==
1
N-c'r_i_

Vref

80

CHAPTER 3 MIPS Il INSTRUCTION SET SUMMARY

This chapter is an overview of the MIPS 1l ISA central processing unit (CPU) instruction set; refer to the Chapter
28 MIPS 1l INSTRUCTION SET DETAILS for detailed descriptions of individual CPU instructions.

3.1 CPU INSTRUCTION FORMATS

Each MIPS Ill ISA CPU instruction consists of a single 32-bit word, aligned on a word boundary. There are three
instruction formats - immediate (I-type), jump (J-type), and register (R-type) - as shown in Figure 3-1. The use of a
small number of instruction formats simplifies instruction decoding, allowing the compiler to synthesize more
complicated and less frequently used instruction and addressing modes from these three formats as needed.

Figure 3-1. MIPS lll ISA CPU Instruction Formats

31 26 25 2120 16 15 0
I-type (immediate) | op rs rt immediate I
31 2625 0
J-type (jump) | op target I
31 26 25 2120 16 15 1110 65 0
R-type (register) | op rs rt rd sa func I
op: 6-bit operation code
rs: 5-bit source register specifier
rt: 5-bit target (source/destination) register specifier or

branch condition

immediate: 16-bit immediate value, branch displacement, or
address displacement

target: 26-bit unconditional branch target address
rd: 5-bit destination register specifier

sa: 5-bit shift amount

func: 6-bit function field

(1) Support of the MIPS ISA

The Vr4111 does not support a multiprocessor operating environment. Thus the synchronization support
instructions defined in the MIPS Il and MIPS Il ISA - the load linked and store conditional instructions - cause
reserved instruction exception. The load/link (LL) bit is eliminated.

Note that the SYNC instruction is handled as a NOP instruction since all load/store instructions in this processor
are executed in program order.

81

CHAPTER 3 MISP Il INSTRUCTION SET SUMMARY

3.2 INSTRUCTION CLASSES

The CPU instructions are classified into five classes.

3.2.1 Load and Store Instructions

Load and store are immediate (I-type) instructions that move data between memory and the general-purpose

registers. The only addressing mode that load and store instructions directly support is base register plus 16-bit
signed immediate offset.

)

@)

®)

82

Scheduling a Load Delay Slot

A load instruction that does not allow its result to be used by the instruction immediately following is called a
delayed load instruction. The instruction slot immediately following this delayed load instruction is referred to as
the load delay slot.

In the VR4000 Series, a load instruction can be followed directly by an instruction that accesses a register that is
loaded by the load instruction. In this case, however, an interlock occurs for a necessary number of cycles. Any
instruction can follow a load instruction, but the load delay slot should be scheduled appropriately for both
performance and compatibility with the VR Series microprocessors. For detail, see CHAPTER 5 Vr4111
PIPELINE.

Store Delay Slot

When a store instruction is writing data to a cache, the data cache is kept busy at the DC and WB stages. If an
instruction (such as load) that follows directly the store instruction accesses the data cache in the DC stage, a
hardware-driven interlock occurs. To overcome this problem, the store delay slot should be scheduled.

Table 3-1. Number of Delay Slot Cycles Necessary for Load and Store Instructions

Instruction Necessary number of PCycles
Load 1
Store 1

Defining Access Types

Access type indicates the size of a VR4111 processor data item to be loaded or stored, set by the load or store
instruction opcode. Access types and accessed byte are shown in Table 3-2.

Regardless of access type or byte ordering (endianness), the address given specifies the low-order byte in the
addressed field. For a little-endian configuration, the low-order byte is the least-significant byte.

The access type, together with the three low-order bits of the address, define the bytes accessed within the
addressed doubleword (shown in Table 3-2). Only the combinations shown in Table 3-2 are permissible; other
combinations cause address error exceptions.

Tables 3-2 and 3-3 list the ISA-defined load/store instructions and extended-ISA instructions, respectively.

CHAPTER 3 MISP Il INSTRUCTION SET SUMMARY

Figure 3-2. Byte Specification Related to Load and Store Instructions

Access type Low-order Accessed byte
(value) address bit (Little endian)
2 1 0|63 0
Doubleword (7) 0|0 |O |7 |6 |5]4 (3]2]|1]|O0
7-byte (6) o|o |0 6 |54 |32]1]o0
0|0 |12 |7 |6 (5]4 |3 [|2]1
6-byte (5) o|o |0 5 |4 |3]2 1]o0
0|1 |0 |7 |6 |5]4 |3 |2
5-byte (4) oo |o 4 |3]2 |10
O |1 (1|7 |6 |5 |4 |3
Word (3) oo |o 31210
1]0 (0|7 [6 |5 |4
Triple byte (2) 0|0 |O 2 (1|0
0|0 |1 312 |1
11]0 |0 6 |5 |4
1]0 (1]7 (6 |5
Halfword (1) 0|0 |O 110
0|1 {0 3]2
11]0 |0 5 |4
1|1 (0 |7 |6
Byte (0) 0|0 |O 0
0|0 |1 1
0|1 {0 2
0 1 |1 3
11]0 ([0 4
11]0 |1 5
11|10 6
1|1 (1 (7

CHAPTER 3 MISP Il INSTRUCTION SET SUMMARY

Table 3-2. Load/Store Instruction

Instruction

Format and Description op base | rt | offset

Load Byte

LB rt, offset (base)
The offset is sign extended and then added to the contents of the register base to form the virtual address.
The bytes of the memory location specified by the address are sign extended and loaded into register rt.

Load Byte Unsigned

LBU rt, offset (base)
The offset is sign extended and then added to the contents of the register base to form the virtual address.
The bytes of the memory location specified by the address are zero extended and loaded into register rt.

Load Halfword

LH rt, offset (base)
The offset is sign extended and then added to the contents of the register base to form the virtual address.
The halfword of the memory location specified by the address is sign extended and loaded to register rt.

Load Halfword

LHU rt, offset (base)

Unsigned The offset is sign extended and then added to the contents of the register base to form the virtual address.
The halfword of the memory location specified by the address is zero extended and loaded to register rt.
Load Word LW rt, offset (base)

The offset is sign extended and then added to the contents of the register base to form the virtual address.
The word of the memory location specified by the address is sign extended and loaded to register rt. In the
64-bit mode, it is further sign extended to 64 bits.

Load Word Left

LWL rt, offset (base)

The offset is sign extended and then added to the contents of the register base to form the virtual address.
Shifts to the left the word whose address is specified so that the address-specified byte is at the left-
most position of the word. The result of the shift operation is merged with the contents of register rt
and loaded to register rt. In the 64-bit mode, it is further sign extended to 64 bits.

Load Word Right

LWR rt, offset (base)

The offset is sign extended and then added to the contents of the register base to form the virtual address.
Shifts to the right the word whose address is specified so that the address-specified byte is at the right-
most position of the word. The result of the shift operation is merged with the contents of register rt and
loaded to register rt. In the 64-bit mode, it is further sign extended to 64 bits.

Store Byte

SB rt, offset (base)
The offset is sign extended and then added to the contents of the register base to form the virtual address.
The least significant byte of register rt is stored to the memory location specified by the address.

Store Halfword

SH rt, offset (base)
The offset is sign extended and then added to the contents of the register base to form the virtual address.
The least significant halfword of register rt is stored to the memory location specified by the address.

Store Word

SW rt, offset (base)
The offset is sign extended and then added to the contents of the register base to form the virtual address.
The lower word of register rt is stored to the memory location specified by the address.

Store Word Left

SWL rt, offset (base)

The offset is sign extended and then added to the contents of the register base to form the virtual address.
Shifts to the right the contents of register rt so that the left-most byte of the word is in the position of the
address-specified byte. The result is stored to the lower word in memory.

Store Word Right

SWR rt, offset (base)

The offset is sign extended and then added to the contents of the register base to form the virtual address.
Shifts to the left the contents of register rt so that the right-most byte of the word is in the position of the
address-specified byte. The result is stored to the upper word in memory.

84

CHAPTER 3 MISP Il INSTRUCTION SET SUMMARY

Table 3-3. Load/Store Instruction (Extended ISA)

Instruction

Format and Description | op | base | rt | offset

Load Doubleword

LD rt, offset (base)
The offset is sign extended and then added to the contents of the register base to form the virtual address.
The doubleword of the memory location specified by the address are loaded into register rt.

Load Doubleword Left

LDL rt, offset (base)

The offset is sign extended and then added to the contents of the register base to form the virtual address.
Shifts to the left the double word whose address is specified so that the address-specified byte is at the
left-most position of the double word. The result of the shift operation is merged with the contents of
register rt and loaded to register rt.

Load Doubleword
Right

LDR rt, offset (base)

The offset is sign extended and then added to the contents of the register base to form the virtual address.
Shifts to the right the double word whose address is specified so that the address-specified byte is at
the right-most position of the double word. The result of the shift operation is merged with the contents
of register rt and loaded to register rt.

Load Word Unsigned

LWU rt, offset (base)
The offset is sign extended and then added to the contents of the register base to form the virtual address.
The word of the memory location specified by the address are zero extended and loaded into register rt

Store Doubleword

SD rt, offset (base)
The offset is sign extended and then added to the contents of the register base to form the virtual address.
The contents of register rt are stored to the memory location specified by the address.

Store Doubleword Left

SDL rt, offset (base)

The offset is sign extended and then added to the contents of the register base to form the virtual address.
Shifts to the right the contents of register rt so that the left-most byte of the double word is in the
position of the address-specified byte. The result is stored to the lower doubleword in memory.

Store Doubleword
Right

SDR rt, offset (base)

The offset is sign extended and then added to the contents of the register base to form the virtual address.
Shifts to the left the contents of register rt so that the right-most byte of the double word is in the
position of the address-specified byte. The result is stored to the upper doubleword in memory.

85

CHAPTER 3 MISP Il INSTRUCTION SET SUMMARY

3.2.2 Computational Instructions

Computational instructions perform arithmetic, logical, and shift operations on values in registers. Computational
instructions can be either in register (R-type) format, in which both operands are registers, or in immediate (I-type)
format, in which one operand is a 16-bit immediate.

Computational instructions are classified as:

(1) ALU immediate instructions (Tables 3-4 and 3-5)

(2) Three-operand type instructions (Tables 3-6 and 3-7)
(3) Shift instructions (Tables 3-8 and 3-9)

(4) Multiply/divide instructions (Table 3-10 and 3-11)

To maintain data compatibility between the 64- and 32-bit modes, it is necessary to sign-extend 32-bit operands
correctly. If the sign extension is not correct, the 32-bit operation result is meaningless.

Table 3-4. ALU Immediate Instruction

Instruction

Format and Description | op rs rt immediate

Add Immediate

ADDI rt, rs, immediate

The 16-bit immediate is sign extended and then added to the contents of register rs to form a 32-bit
result. The result is stored into register rt. In the 64-bit mode, the operand must be sign extended. An
exception occurs on the generation of 2's complement overflow.

Add Immediate
Unsigned

ADDIU rt, rs, immediate

The 16-bit immediate is sign extended and then added to the contents of register rs to form a 32-bit
result. The result is stored into register rt. In the 64-bit mode, the operand must be sign extended. No
exception occurs on the generation of integer overflow.

Set On Less Than
Immediate

SLTI rt, rs, immediate

The 16-bit immediate is sign extended and then compared to the contents of register rt treating both
operands as signed integers. If rs is less than the immediate, the result is set to 1; otherwise, the result
is set to 0. The result is stored to register rt.

Set On Less Than
Immediate Unsigned

SLTIU rt, rs, immediate

The 16-bit immediate is sign extended and then compared to the contents of register rt treating both
operands as unsigned integers. If rs is less than the immediate, the result is set to 1; otherwise, the
result is set to 0. The result is stored to register rt.

And Immediate

ANDI rt, rs, immediate
The 16-bit immediate is zero extended and then ANDed with the contents of the register. The result is
stored into register rt.

Or Immediate

ORI rt, rs, immediate
The 16-bit immediate is zero extended and then ORed with the contents of the register. The result is
stored into register rt.

Exclusive Or XORI rt, rs, immediate

Immediate The 16-bit immediate is zero extended and then Ex-ORed with the contents of the register. The result
is stored into register rt.

Load Upper LUI rt, immediate

Immediate The 16-bit immediate is shifted left by 16 bits to set the lower 16 bits of word to 0. The result is stored

into register rt. In the 64-bit mode, the operand must be sign extended.

86

CHAPTER 3 MISP Il INSTRUCTION SET SUMMARY

Table 3-5. ALU Immediate Instruction (Extended ISA)

Instruction

Format and Description | op | rs | rt immediate

Doubleword Add
Immediate

DADDI rt, rs, immediate

The 16-bit immediate is sign extended to 64 bits and then added to the contents of register rs to form a
64-bit result. The result is stored into register rt.

An exception occurs on the generation of integer overflow.

Doubleword Add
Immediate Unsigned

DADDIU rt, rs, immediate

The 16-bit immediate is sign extended to 64 bits and then added to the contents of register rs to form a
64-bit result. The result is stored into register rt.

No exception occurs on the generation of overflow.

Table 3-6. Three-Operand Type Instruction

Instruction

Format and Description | op | rs | rt | rd | sa | funct

Add

ADD rd, rs, rt

The contents of registers rs and rt are added together to form a 32-bit result. The result is stored into
register rd. In the 64-bit mode, the operand must be sign extended. An exception occurs on the
generation of integer overflow.

Add Unsigned

ADDU rd, rs, rt

The contents of registers rs and rt are added together to form a 32-bit result. The result is stored into
register rd. In the 64-bit mode, the operand must be sign extended. No exception occurs on the
generation of integer overflow.

Subtract

SUB rd, rs, rt

The contents of register rt are subtracted from the contents of register rs. The 32-bit result is stored
into register rd. In the 64-bit mode, the operand must be sign extended. An exception occurs on the
generation of integer overflow.

Subtract Unsigned

SUBU rd, rs, 1t

The contents of register rt are subtracted from the contents of register rs. The 32-bit result is stored
into register rd. In the 64-bit mode, the operand must be sign extended. No exception occurs on the
generation of integer overflow.

Set On Less Than

SLT rd, rs, rt

The contents of registers rs and rt are compared, treating both operands as signed integers. If the
contents of register rs is less than that of register rt, the result is set to 1; otherwise, the result is set to
0. The result is stored to register rd.

Set On Less Than
Unsigned

SLTU rd, rs, rt

The contents of registers rs and rt are compared treating both operands as unsigned integers. If the
contents of register rs is less than that of register rt, the result is set to 1; otherwise, the result is set to
0. The result is stored to register rd.

And

AND rd, rt, rs
The contents of register rs are logical ANDed with that of general register rt bit-wise. The result is
stored to register rd.

OR rd, t, rs
The contents of register rs are logical ORed with that of general register rt bit-wise. The result is stored
to register rd.

Exclusive Or

XOR rd, it, rs
The contents of register rs are logical Ex-ORed with that of general register rt bit-wise. The result is
stored to register rd.

Nor

NOR rd, rt, rs
The contents of register rs are logical NORed with that of general register rt bit-wise. The result is
stored to register rd.

87

CHAPTER 3 MISP Il INSTRUCTION SET SUMMARY

Table 3-7. Three-Operand Type Instruction (Extended ISA)

Instruction

Format and Description | op | rs | r | rd sa funct

Doubleword Add

DADD rd, rt, rs
The contents of register rs are added to that of register rt. The 64-bit result is stored into register rd.
An exception occurs on the generation of integer overflow.

Doubleword Add
Unsigned

DADDU rd, rt, rs
The contents of register rs are added to that of register rt. The 64-bit result is stored into register rd. No
exception occurs on the generation of integer overflow.

Doubleword Subtract

DSUB rd, rt, rs
The contents of register rt are subtracted from that of register rs. The 64-bit result is stored into register
rd. An exception occurs on the generation of integer overflow.

Doubleword Subtract
Unsigned

DSUBU rd, rt, rs
The contents of register rt are subtracted from that of register rs. The 64-bit result is stored into register
rd. No exception occurs on the generation of integer overflow.

Table 3-8. Shift Instruction

Instruction

Format and Description | op s rt rd sa funct

Shift Left Logical

SLL rd, rs, sa
The contents of register rt are shifted left by sa bits and zeros are inserted into the emptied lower bits.
The 32-bit result is stored into register rd. In the 64-bit mode, the operand must be sign extended.

Shift Right Logical

SRL rd, rs, sa
The contents of register rt are shifted right by sa bits and zeros are inserted into the emptied higher
bits. The 32-bit result is stored into register rd. In the 64-bit mode, the operand must be sign extended.

Shift Right Arithmetic

SRA rd, rt, sa
The contents of register rt are shifted right by sa bits and the emptied higher bits are sign extended.
The 32-bit result is stored into register rd. In the 64-bit mode, the operand must be sign extended.

Shift Left Logical
Variable

SLLV rd, rt, rs

The contents of register rt are shifted left and zeros are inserted into the emptied lower bits. The lower
five bits of register rs specify the shift count. The 32-bit result is stored into register rd. In the 64-bit
mode, the operand must be sign extended.

Shift Right Logical
Variable

SRLV rd, it, rs

The contents of register rt are shifted right and zeros are inserted into the emptied higher bits. The
lower five bits of register rs specify the shift count. The 32-bit result is stored into register rd. In the 64-
bit mode, the operand must be sign extended.

Shift Right Arithmetic
Variable

SRAV rd, rt, rs

The contents of register rt are shifted right and the emptied higher bits are sign extended. The lower
five bits of register rs specify the shift count. The 32-bit result is stored into register rd. In the 64-bit
mode, the operand must be sign extended.

88

CHAPTER 3 MISP Il INSTRUCTION SET SUMMARY

Table 3-9. Shift Instruction (Extended ISA)

Instruction

Format and Description | op | rs | r rd sa funct

Doubleword Shift Left
Logical

DSLL rd, rs, sa
The contents of register rt are shifted left by sa bits and zeros are inserted into the emptied lower bits.
The 64-bit result is stored into register rd.

Doubleword Shift
Right Logical

DSRL rd, rs, sa
The contents of register rt are shifted right by sa bits and zeros are inserted into the emptied higher
bits. The 64-bit result is stored into register rd.

Doubleword Shift
Right Arithmetic

DSRA rd, rt, sa
The contents of register rt are shifted right by sa bits and the emptied higher bits are sign extended.
The 64-bit result is stored into register rd.

Doubleword Shift Left
Logical Variable

DSLLV rd, rt, rs
The contents of register rt are shifted left and zeros are inserted into the emptied lower bits. The lower
six bits of register rs specify the shift count. The 64-bit result is stored into register rd.

Doubleword Shift
Right Logical Variable

DSRLV rd, i, rs
The contents of register rt are shifted right and zeros are inserted into the emptied higher bits. The
lower six bits of register rs specify the shift count. The 64-bit result is stored into register rd.

Doubleword Shift
Right Arithmetic
Variable

DSRAV rd, rt, rs
The contents of register rt are shifted right and the emptied higher bits are sign extended. The lower six
bits of register rs specify the shift count. The 64-bit result is stored into register rd.

Doubleword Shift Left
Logical + 32

DSLL32 rd, rt, sa
The contents of register rt are shifted left by 32 + sa bits and zeros are inserted into the emptied lower
bits. The 64-bit result is stored into register rd.

Doubleword Shift
Right Logical + 32

DSRL32 rd, it, sa
The contents of register rt are shifted right by 32 + sa bits and zeros are inserted into the emptied
higher bits. The 64-bit result is stored into register rd.

Doubleword Shift
Right Arithmetic + 32

DSRA32 rd, rit, sa
The contents of register rt are shifted right by 32 + sa bits and the emptied higher bits are sign
extended. The 64-bit result is stored into register rd.

89

CHAPTER 3 MISP Il INSTRUCTION SET SUMMARY

Table 3-10. Multiply/Divide Instructions

Instruction

Format and Description | op rs r rd sa funct

Multiply

MULT rs, rt

The contents of registers rt and rs are multiplied, treating both operands as 32-bit signed integers. The
64-bit result is stored into special registers HI and LO. In the 64-bit mode, the operand must be sign
extended.

Multiply Unsigned

MULTU rs, 1t

The contents of registers rt and rs are multiplied, treating both operands as 32-bit unsigned integers.
The 64-bit result is stored into special registers HI and LO. In the 64-bit mode, the operand must be
sign extended.

Divide

DIV rs, 1t

The contents of register rs are divided by that of register rt, treating both operands as 32-bit signed
integers. The 32-bit quotient is stored into special register LO, and the 32-bit remainder is stored into
special register HI. In the 64-bit mode, the operand must be sign extended.

Divide Unsigned

DIVU rs, 1t

The contents of register rs are divided by that of register rt, treating both operands as 32-bit unsigned
integers. The 32-bit quotient is stored into special register LO, and the 32-bit remainder is stored into
special register HI. In the 64-bit mode, the operand must be sign extended.

Move From HI

MFHI rd
The contents of special register HI are loaded into register rd.

Move From LO

MFLO rd
The contents of special register LO are loaded into register rd.

Move To HI MTHI rs
The contents of register rs are loaded into special register HI.
Move To LO MTLO rs
The contents of register rs are loaded into special register LO.
Table 3-11. Multiply/Divide Instructions (Extended ISA) (1/2)
Instruction Format and Description | op | rs | r | rd sa funct
Doubleword Multiply DMULT rs, 1t

The contents of registers rt and rs are multiplied, treating both operands as signed integers. The 128-
bit result is stored into special registers HIl and LO.

Doubleword Multiply
Unsigned

DMULTU rs, rt
The contents of registers rt and rs are multiplied, treating both operands as unsigned integers. The
128-bit result is stored into special registers HI and LO.

Doubleword Divide

DDIV rs, 1t

The contents of register rs are divided by that of register rt, treating both operands as signed integers.
The 64-bit quotient is stored into special register LO, and the 64-bit remainder is stored into special
register HI.

Doubleword Divide
Unsigned

DDIVU rs, rt

The contents of register rs are divided by that of register rt, treating both operands as unsigned
integers. The 64-bit quotient is stored into special register LO, and the 64-bit remainder is stored into
special register HI.

90

CHAPTER 3 MISP Il INSTRUCTION SET SUMMARY

Table 3-11. Multiply/Divide Instructions (Extended ISA) (2/2)

Instruction Format and Description | op | rs | r | rd sa | funct |
Multiply and Add 16- MADD16 rs, rt
bit Integer The contents of registers rt and rs are multiplied, treating both operands as 16-bit signed integers (by
sign extending to 64 bits). The result is added to the combined value of special registers HI and LO.
The 64-bit result is stored into special registers HI and LO.
Doubleword Multiply DMADD16 rs, rt

and Add 16-bit Integer The contents of registers rt and rs are multiplied, treating both operands as 16-bit signed integers (by
sign extending to 64 bits). The result is added to value of special register LO. The 64-bit result is stored

into special register LO.

MFHI and MFLO instructions after a multiply or divide instruction generate interlocks to delay execution of the
next instruction, inhibiting the result from being read until the multiply or divide instruction completes.
Table 3-12 gives the number of processor cycles (PCycles) required to resolve interlock or stall between various

multiply or divide instructions and a subsequent MFHI or MFLO instruction.

Table 3-12. Number of Stall Cycles in Multiply and Divide Instructions

Instruction Number of instruction cycles
MULT 1
MULTU 1
DIV 35
DIVU 35
DMULT 4
DMULTU 4
DDIV 67
DDIVU 67
MADD16 1
DMADD16 1

91

CHAPTER 3 MISP Il INSTRUCTION SET SUMMARY

3.2.3 Jump and Branch Instructions

Jump and branch instructions change the control flow of a program. All jump and branch instructions occur with a
delay of one instruction: that is, the instruction immediately following the jump or branch instruction (this is known as
the instruction in the delay slot) always executes while the target instruction is being fetched from memory.

For instructions involving a link (such as JAL and BLTZAL), the return address is saved in register r31.

Table 3-13. Number of Delay Slot Cycles in Jump and Branch Instructions

Instruction Necessary number of cycles
Branch instruction 1
Jump instruction 1

(1) Overview of jump instructions

Subroutine calls in high-level languages are usually implemented with J or JAL instructions, both of which are J-
type instructions. In J-type format, the 26-bit target address shifts left 2 bits and combines with the high-order 4
bits of the current program counter to form a 32-bit or 64-bit absolute address.

Returns, dispatches, and cross-page jumps are usually implemented with the JR or JALR instructions. Both are
R-type instructions that take the 32-bit or 64-bit byte address contained in one of the general-purpose registers.
For more information, refer to Chapter 28 MIPS 1l INSTRUCTION SET DETAILS .

(2) Overview of branch instructions

A branch instruction has a PC-related signed 16-hit offset.
Tables 3-14 through 3-16 show the lists of Jump, Branch, and Extended ISA instructions, respectively.

92

CHAPTER 3 MISP Il INSTRUCTION SET SUMMARY

Table 3-14. Jump Instruction

Instruction Format and Description | op target

Jump J target
The contents of 26-bit target address is shifted left by two bits and combined with the high-order four
bits of the PC. The program jumps to this calculated address with a delay of one instruction.

Jump And Link JAL target

The contents of 26-bit target address is shifted left by two bits and combined with the high-order four
bits of the PC. The program jumps to this calculated address with a delay of one instruction. The
address of the instruction following the delay slot is stored into r31 (link register).

Instruction Format and Description op target
Jump And Link JALX target
Exchange The contents of 26-bit target address is shifted left by two bits and combined with the high-order four

bits of the PC. The program jumps to this calculated address with a delay of one instruction, and then
the ISA mode bit is reversed. The address of the instruction following the delay slot is stored into r31
(link register).

Instruction Format and Description op rs rn rd sa funct
Jump Register JR rs
The program jumps to the address specified in register rs with a delay of one instruction.
Jump And Link JALR rs, rd
Register The program jumps to the address specified in register rs with a delay of one instruction.

The address of the instruction following the delay slot is stored into rd.

There are the following common restrictions for Tables 3-15 and 3-16.

(1) Branch address

All branch instruction target addresses are computed by adding the address of the instruction in the delay slot to
the 16-bit offset (shifted left by 2 bits and sign-extended to 64 bits). All branches occur with a delay of one
instruction.

(2) Operation when unbranched

If the branch condition does not meet in executing a Likely instruction, the instruction in its delay slot is nullified.
For all other branch instructions, the instruction in its delay slot is unconditionally executed.

Remark The target instruction of the branch is fetched at the EX stage of the branch instruction. Comparison
of the operands of the branch instruction and calculation of the target address is performed at phase 2
of the RF stage and phase 1 of the EX stage of the instruction. Branch instructions require one cycle
of the branch delay slot defined by the architecture. Jump instructions also require one cycle of delay
slot. If the branch condition is not satisfied in a branch likely instruction, the instruction in its delay slot
is nullified.

93

CHAPTER 3 MISP Il INSTRUCTION SET SUMMARY

There are special symbols used in the instruction formats of Tables 3-15 through 3-19.

REGIMM : Opcode
Sub : Sub-operation code
CO : Sub-operation identifier
BC : BC sub-operation code
br : Branch condition identifier
op : Operation code
Table 3-15. Branch Instructions
Instruction Format and Description | op rs rt offset

Branch On Equal

BEQ rs, rt, offset
If the contents of register rs are equal to that of register rt, the program branches to the target address.

Branch On Not Equal

BNE rs, rt, offset
If the contents of register rs are not equal to that of register rt, the program branches to the target
address.

Branch On Less Than
Or Equal To Zero

BLEZ rs, offset
If the contents of register rs are less than or equal to zero, the program branches to the target address.

Branch On Greater
Than Zero

BGTZ rs, offset
If the contents of register rs are greater than zero, the program branches to the target address.

Instruction

Format and Description REGIMM rs sub offset

Branch On Less Than
Zero

BLTZ rs, offset
If the contents of register rs are less than zero, the program branches to the target address.

Branch On Greater
Than Or Equal To
Zero

BGEZ rs, offset
If the contents of register rs are greater than or equal to zero, the program branches to the target
address.

Branch On Less Than
Zero And Link

BLTZAL rs, offset
The address of the instruction that follows delay slot is stored to register r31 (link register). If the
contents of register rs are less than zero, the program branches to the target address.

Branch On Greater
Than Or Equal To
Zero And Link

BGEZAL rs, offset
The address of the instruction that follows delay slot is stored to register r31 (link register). If the
contents of register rs are greater than or equal to zero, the program branches to the target address.

Instruction

Format and Description COPO BC | br | offset

Branch On
Coprocessor 0 True

BCOT offset

Adds the 16-bit offset (shifted left by two bits and sign extended to 32 bits) to the address of the
instruction in the delay slot to calculate out the branch target address. If the conditional signal of the
coprocessor 0 is true, the program branches to the target address with one-instruction delay.

Branch On
Coprocessor 0 False

BCOF offset

Adds the 16-bit offset (shifted left by two bits and sign extended to 32 bits) to the address of the
instruction in the delay slot to calculate out the branch target address. If the conditional signal of the
coprocessor 0 is false, the program branches to the target address with one-instruction delay.

94

CHAPTER 3 MISP Il INSTRUCTION SET SUMMARY

Table 3-16. Branch Instructions (Extended ISA)

Instruction

Format and Description | op | rs | rt offset

Branch On Equal
Likely

BEQL rs, rt, offset
If the contents of register rs are equal to that of register rt, the program branches to the target address.
If the branch condition is not met, the instruction in the delay slot is discarded.

Branch On Not Equal
Likely

BNEL rs, rt, offset
If the contents of register rs are not equal to that of register rt, the program branches to the target
address. If the branch condition is not met, the instruction in the delay slot is discarded.

Branch On Less Than
Or Equal To Zero
Likely

BLEZL rs, offset
If the contents of register rs are less than or equal to zero, the program branches to the target address.
If the branch condition is not met, the instruction in the delay slot is discarded.

Branch On Greater

BGTZL rs, offset

Than Zero If the contents of register rs are greater than zero, the program branches to the target address. If the
branch condition is not met, the instruction in the delay slot is discarded.
Instruction Format and Description REGIMM rs sub offset

Branch On Less Than
Zero Likely

BLTZL rs, offset
If the contents of register rs are less than zero, the program branches to the target address. If the
branch condition is not met, the instruction in the delay slot is discarded.

Branch On Greater
Than Or Equal To
Zero Likely

BGEZL rs, offset
If the contents of register rs are greater than or equal to zero, the program branches to the target
address. If the branch condition is not met, the instruction in the delay slot is discarded.

Branch On Less Than
Zero And Link Likely

BLTZALL rs, offset

The address of the instruction that follows delay slot is stored to register r31 (link register). If the
contents of register rs are less than zero, the program branches to the target address. If the branch
condition is not met, the instruction in the delay slot is discarded.

Branch On Greater
Than Or Equal To
Zero And Link Likely

BGEZALL rs, offset

The address of the instruction that follows delay slot is stored to register r31 (link register). If the
contents of register rs are greater than or equal to zero, the program branches to the target address. If
the branch condition is not met, the instruction in the delay slot is discarded.

Instruction

Format and Description COPO BC | br | offset

Branch On
Coprocessor 0 True
Likely

BCOTL offset

Adds the 16-bit offset (shifted left by two bits and sign extended to 32 bits) to the address of the
instruction in the delay slot to calculate out the branch target address. If the conditional signal of the
coprocessor 0 is true, the program branches to the target address with one-instruction delay. If the
branch condition is not met, the instruction in the delay slot is discarded.

Branch On
Coprocessor 0 False
Likely

BCOFL offset

Adds the 16-bit offset (shifted left by two bits and sign extended to 32 bits) to the address of the
instruction in the delay slot to calculate out the branch target address. If the conditional signal of the
coprocessor 0O is false, the program branches to the target address with one-instruction delay. If the
branch condition is not met, the instruction in the delay slot is discarded.

95

CHAPTER 3 MISP Il INSTRUCTION SET SUMMARY

3.2.4 Special Instructions

Special instructions generate software exceptions.

Their formats are R-type (Syscall, Break). The Trap

instruction is available only for the VrR4000 Series. All the other instructions are available for all Vr Series.

Table 3-17. Special Instructions

Instruction

Format and Description | SPECIAL| 1S rn rd sa funct

Synchronize

SYNC
Completes the load/store instruction executing in the current pipeline before the next load/store
instruction starts execution.

System Call SYSCALL
Generates a system call exception, and then transits control to the exception handling program.
Breakpoint BREAK
Generates a break point exception, and then transits control to the exception handling program.
Table 3-18. Special Instructions (Extended ISA) (1/2)
Instruction Format and Description |SPECIAL| s | rt rd sa funct

Trap If Greater Than
Or Equal

TGE rs, 1t

The contents of register rs are compared with that of register rt, treating both operands as signed
integers. If the contents of register rs are greater than or equal to that of register rt, an exception
occurs.

Trap If Greater Than
Or Equal Unsigned

TGEU rs, 1t

The contents of register rs are compared with that of register rt, treating both operands as unsigned
integers. If the contents of register rs are greater than or equal to that of register rt, an exception
occurs.

Trap If Less Than

TLT rs, 1t
The contents of register rs are compared with that of register rt, treating both operands as signed
integers. If the contents of register rs are less than that of register rt, an exception occurs.

Trap If Less Than

TLTU rs, 1t

Unsigned The contents of register rs are compared with that of register rt, treating both operands as unsigned
integers. If the contents of register rs are less than that of register rt, an exception occurs.
Trap If Equal TEQ rs, 1t

If the contents of registers rs and rt are equal, an exception occurs.

Trap If Not Equal

TNE rs, 1t
If the contents of registers rs and rt are not equal, an exception occurs.

96

CHAPTER 3 MISP Il INSTRUCTION SET SUMMARY

Table 3-18. Special Instructions (Extended ISA) (2/2)

Instruction

Format and Description |REG|MM| rs | sub immediate

Trap If Greater Than
Or Equal Immediate

TGEI rs, immediate

The contents of register rs are compared with 16-bit sign-extended immediate data, treating both
operands as signed integers. If the contents of register rs are greater than or equal to 16-bit sign-
extended immediate data, an exception occurs.

Trap If Greater Than
Or Equal Immediate
Unsigned

TGEIU rs, immediate

The contents of register rs are compared with 16-bit zero-extended immediate data, treating both
operands as unsigned integers. If the contents of register rs are greater than or equal to 16-bit sign-
extended immediate data, an exception occurs.

Trap If Less Than
Immediate

TLTI rs, immediate

The contents of register rs are compared with 16-bit sign-extended immediate data, treating both
operands as signed integers. If the contents of register rs are less than 16-bit sign-extended immediate
data, an exception occurs.

Trap If Less Than
Immediate Unsigned

TLTIU rs, immediate

The contents of register rs are compared with 16-bit zero-extended immediate data, treating both
operands as unsigned integers. If the contents of register rs are less than 16-bit sign-extended
immediate data, an exception occurs.

Trap If Equal
Immediate

TEQI rs, immediate
If the contents of register rs and immediate data are equal, an exception occurs.

Trap If Not Equal
Immediate

TNEI rs, immediate
If the contents of register rs and immediate data are not equal, an exception occurs.

3.2.5 System Control Coprocessor (CP0) Instructions

System control coprocessor (CPO) instructions perform operations specifically on the CPO registers to manipulate
the memory management and exception handling facilities of the processor.

Table 3-19. System Control Coprocessor (CPO) Instructions (1/2)

Instruction

Format and Description |COPO | sub | rt | rd 0

Move To System
Control Coprocessor

MTCO rt, rd
The word data of general-purpose register rt in the CPU are loaded into general-purpose register rd in
the CPO.

Move From System
Control Coprocessor

MFCO rt, rd
The word data of general-purpose register rd in the CPO are loaded into general-purpose register rt in
the CPU.

Doubleword Move To
System Control
Coprocessor 0

DMTCO rt, rd
The doubleword data of general-purpose register rt in the CPU are loaded into general-purpose register
rd in the CPO.

Doubleword Move
From System Control
Coprocessor 0

DMFCO rt, rd
The doubleword data of general-purpose register rd in the CPO are loaded into general-purpose
register rt in the CPU.

97

CHAPTER 3 MISP Il INSTRUCTION SET SUMMARY

Table 3-19. System Control Coprocessor (CPO) Instructions (2/2)

Instruction

Format and Description |COP0 | co | funct

Read Indexed TLB
Entry

TLBR
The TLB entry indexed by the index register is loaded into the entryHi, entryLo0, entryLol, or page
mask register.

Write Indexed TLB
Entry

TLBWI
The contents of the entryHi, entryLoO, entryLol, or page mask register are loaded into the TLB entry
indexed by the index register.

Write Random TLB
Entry

TLBWR
The contents of the entryHi, entryLoO, entryLol, or page mask register are loaded into the TLB entry
indexed by the random register.

Probe TLB For
Matching Entry

TLBP
The address of the TLB entry that matches with the contents of entryHi register is loaded into the index
register.

Return From

ERET

Exception The program returns from exception, interrupt, or error trap.
Instruction Format and Description COPO co funct
STANDBY STANDBY
The processor’s operating mode is transited from fullspeed mode to standby mode.
SUSPEND SUSPEND
The processor’s operating mode is transited from fullspeed mode to suspend mode.
HIBERNATE HIBERNATE
The processor’s operating mode is transited from fullspeed mode to hibernate mode.
Instruction Format and Description CACHE | base | op offset

Cache Operation

Cache op, offset (base)

The 16-bit offset is sign extended to 32 bits and added to the contents of the register case, to form
virtual address. This virtual address is translated to physical address with TLB. For this physical
address, cache operation that is indicated by 5-bit sub-opcode is performed.

98

CHAPTER 4 MIPS16 INSTRUCTION SET

4.1 OUTLINE

If the MIPS16 ASE (Application-Specific Extension), which is an expanded function for MIPS ISA (Instruction Set
Architecture), is used, system costs can be considerably reduced by lowering the memory capacity requirement of
embedded hardware. MIPS16 is an instruction set that uses the 16-bit instruction length, and is compatible with MIPS
I, 1, 11, 1V, and V" instruction sets in any combination. Moreover, 32-bit instruction length binary data can be
executed with the VR4111.

Note The VR4100 Series currently supports the MIPS |, I, and Il instruction sets.
4.2 FEATURES

» 16-bit length instruction format

* Reduces memory capacity requirements to lower overall system cost

» MIPS16 instructions can be used with MIPS instruction binary

» Compatibility with MIPS I, 11, 111, IV, and V instruction sets

» Used with switching between MIPS16 instruction length mode and 32-bit MIPS instruction length mode.
* Supports 8-bit, 16-bit, 32-bit, and 64-bit data formats

» Provides 8 general-purpose registers and special registers

» Improved code generation efficiency using special 16-bit dedicated instructions

99

CHAPTER 4 MIPS16 INSTRUCTION SET

4.3 REGISTER SET

Tables 4-1 and 4-2 show the MIPS16 register sets. These register sets form part of the register sets that can be
accessed in 32-bit instruction length mode. MIPS16 ASE can directly access 8 of the 32 registers that can be used in
the 32-bit instruction length mode.

In addition to these 8 general-purpose registers, the special instructions of MIPS16 ASE reference the stack
pointer register (sp), return address register (ra), condition code register (t8), and program counter (pc). sp and ra are
mapped by fixing to the general-purpose registers in the 32-bit instruction length mode.

MIPS16 has 2 move instructions that are used in addressing 32 general-purpose registers.

Table 4-1. General-Purpose Registers

MIPS16 register 32-bit MIPS
] . . Symbol Comment
encoding register encoding
0 16 sO General-purpose register
1 17 sl General-purpose register
2 2 vO General-purpose register
3 3 vl General-purpose register
4 4 a0 General-purpose register
5 5 al General-purpose register
6 6 a2 General-purpose register
7 7 a3 General-purpose register
N/A 24 t8 MIPS16 condition code register. BTEQZ, BTNEZ,
CMP, CMPI, SLT, SLTU, SLTI, and SLTIU instructions
are implicitly referenced.
N/A 29 sp Stack pointer register
N/A 31 ra Return address register

Notes 1. The symbols are the general assembler symbols.

2. The MIPS register encoding numbers 0 to 7 correspond to the MIPS16 binary encoding of the
registers, and are used to show the relationship between this encoding and the MIPS registers. The
numbers 0 to 7 are not used to reference registers, except within binary MIPS16 instructions. Registers
are referenced from the assembler using the MIPS name ($16, $17, $2, etc.) or the symbol name (s0,
s1, v0, etc.). For example, when register number 17 is accessed with the register file, the programmer
references either $17 or sl even if the MIPS16 encoding of this register is 001.

3. The general-purpose registers not shown in this table cannot be accessed with a MIPS16 instruction
set other than the Move instruction. The Move instruction of MIPS16 can access all 32 general-purpose
registers.

4. To reference the MIPS16 condition code registers with this manual, either T, t8, or $24 has to be used,
depending on the case. These three names reference the same physical register.

100

CHAPTER 4 MIPS16 INSTRUCTION SET

Table 4-2. Special Registers

Symbol

Description

PC

Program counter. The PC-relative Add instruction and Load
instruction can access this register.

HI

The upper word of the multiply or divide result is inserted

LO

The lower word of the multiply or divide result is inserted

4.4 ISA MODE

MIPS16 ASE supports procedure calling, and returns from the MIPS16 instruction length mode or the 32-bit MIPS

instruction length mode to the MIPS16 instruction length mode or the 32-bit MIPS instruction length mode.

» The JAL instruction supports calling to the same ISA.

» The JALX instruction supports calling that inverses ISA.

» The JALR instruction supports calling to either ISA.

» The JR instruction supports also returning to either ISA.

* MIPS16 ASE also supports a return operation from exception processing.

» The ERET instruction, which is defined only in 32-bit instruction length mode, supports returning to ISA when

an exception has not occurred.

The ISA mode bit defines the instruction length mode to be executed. If the ISA mode bit is 0, the processor

executes only 32-bit MIPS instructions. If the ISA mode bit is 1, the processor executes only MIPS16 instructions.

4.4.1 Changing ISA Mode Bit by Software

Only the JALX, JR, and JALR instructions change the ISA mode bit between the MIPS16 instruction mode and the
32-bit instruction length mode. The ISA mode bit cannot be directly overwritten by software. The JALX changes the
ISA mode bit to select another ISA mode. The JR instruction and JALR instruction load the ISA mode bit from bit O of
the general-purpose register that holds the target address. Bit 0 is not a part of the target address. Bit 0 of the target

address is always 0, and no address exception is generated.

Moreover, the JAL, JALR, and JALX instructions save the ISA mode bit to bit O of the general-purpose register that
acquires the return address. The contents of this general-purpose register are later used by the JR and JALR
instruction for return and restoration of the ISA mode.

* 4.4.2 Changing ISA Mode Bit by Exception
Even if an exception occurs, the ISA mode does not change. When an exception occurs, the ISA mode bit is
cleared to 0 so that the exception is serviced with 32-bit code. Then the ISA mode status before the exception
occurred is saved to the least significant bit of the EPC register or the error EPC register. During return from an
exception, the ISA mode before the exception occurred is returned to by executing the JR or ERET instruction with
the contents of this register. Moreover, the ISA mode bit is cleared to O after cold reset and soft reset of the CPU
core, and the 32-bit instruction length mode returns to its initial state.

101

CHAPTER 4 MIPS16 INSTRUCTION SET

% 4.4.3 Enabling Change ISA Mode Bit

Changing the ISA mode bit is valid only MIPS16EN is set to active when the RTCRST is selected, and the MIPS16
instruction mode is enabled. The operation of the JALX, JALR, JR, and ERET instructions in the 32-bit instruction
mode, differs depending on whether the MIPS16 instruction mode is enabled or prohibited. If the MIPS16 instruction
mode is prohibited, the JALX instruction generates a reserved instruction exception. The JR and JALR instructions
generate an address exception when bit 0 of the source register is 1. The ERET instruction generates an address
exception when bit 0 of the EPC or error EPC register is 1. If the MIPS16 instruction mode is enabled, the JALX
instruction executes JAL, and the ISA mode bit is inverted. The JR and JALR instructions load the ISA mode from bit
0 of the source register. The ERET instruction loads the ISA mode from bit O of the EPC or error EPC register. Bit 0
of the target address is always 0, and no address exception is generated even when bit 0 of the source register is 1.

4.5 TYPES OF INSTRUCTIONS
This section describes the different types of instructions, and indicates the MIPS16 instructions included in each

group.
Instructions are divided into the following types.

Load and Store instructions : Move data between memory and the general-purpose registers.

Computational instructions : Perform arithmetic operations, logical operations, and shift operations on values
in registers.

Jump and Branch instructions: Change the control flow of a program.

Special instructions . Break instructions and Extend instructions. Break transfers control to an

exception handler. Extend enlarges the immediate field of the next instruction.
Instructions that can be extended with Extend are indicated as Note 1 in Table
4-3 MIPS16 Instruction Set Outline.

102

CHAPTER 4 MIPS16 INSTRUCTION SET

Table 4-3. MIPS16 Instruction Set Outline

Op Description Op Description
Load and Store instructions Multiply/Divide instructions
LB Load Byte MULT Multiply
LBU"™"* Load Byte Unsigned MULTU Multiply Unsigned
LH"e! Load Halfword DIV Divide
LHU"™** Load Halfword Unsigned DIVU Divide Unsigned
Lwteet Load Word MFHI Move From HI
Lwuyreest Load Word Unsigned MFLO Move From LO
LD"e=n? Load Doubleword DMULT""? Doubleword Multiply
SBhet Store Byte DMULTU™"? Doubleword Multiply Unsigned
SH"™** Store Halfword DDIV"*? Doubleword Divide
Sswieet Store Word DDIVU"™*? Doubleword Divide Unsigned
spheet? Store Doubleword

Jump/Branch instructions

Arithmetic instructions: ALU immediate instructions JAL Jump and Link

LIt Load Immediate JALX Jump and Link Exchange

ADDIU™"* Add Immediate Unsigned JR Jump Register

DADDIU™*? | Doubleword Add Immediate Unsigned JALR Jump and Link Register

SLTI"! Set on Less Than Immediate BEQZ"™"* Branch on Equal to Zero

SLTIU™e* Set on Less Than Immediate Unsigned BNEZ"*! Branch on Not Equal to Zero

CMP™** Compare Immediate BTEQZ™"* Branch on T Equal to Zero
BTNEZ""* Branch on T Not Equal to Zero

Arithmetic instructions: 2/3 operand register instructions Bt Branch Unconditional

ADDU Add Unsigned

SUBU Subtract Unsigned Shift instructions

DADDU"™"? Doubleword Add Unsigned SLLYe* Shift Left Logical

DSUBU"*? Doubleword Subtract Unsigned SRL"™** Shift Right Logical

SLT Set on Less Than SRAY®* Shift Right Arithmetic

SLTU Set on Less Than Unsigned SLLV Shift Left Logical Variable

CMP Compare SRLV Shift Right Logical Variable

NEG Negate SRAV Shift Right Arithmetic Variable

AND AND DSLL"*"? Doubleword Shift Left Logical

OR OR DSRL"*"? Doubleword Shift Right Logical

XOR Exclusive OR DSRA"*2 Doubleword Shift Right Arithmetic

NOT Not DSLLV"™*? Doubleword Shift Left Logical Variable

MOVE Move DSRLV"*? Doubleword Shift Right Logical Variable
DSRAV"*? Doubleword Shift Right Arithmetic Variable

Special instructions

EXTEND Extend
BREAK Breakpoint
Notes 1. Extendable instruction. For details, see 4.8.2 Extend instructions

2.

Can be used in 64-bit mode and 32-bit kernel mode.

103

CHAPTER 4 MIPS16 INSTRUCTION SET

4.6 INSTRUCTION FORMAT

The MIPS16 instruction set has a length of 16 bits and is located at the half-word boundary. One part of Jump
instructions and instructions for which the Extend instruction extends immediate become 32 bits in length, but
crossing the word boundary does not represent a problem.

The instruction format is shown below. Variable subfields are indicated with lower case letters (rx, ry, rz,
immediate, etc.).

In the case of special functions, constants are input to the two instruction subfields op and funct. These values are
indicated by upper case mnemonics. For example, in the case of the Load Byte instruction, op is LB, and in the case
of the Add instruction, op is SPECIAL, and function is ADD.

The constants of the fields used in the instruction formats are shown below.

Table 4-4. Field Definition

Field Definition
op 5-bit major operation code
rx 3-bit source/destination register specification
ry 3-bit source/destination register specification
immediate or imm 4-bit, 5-bit, 8-bit, or 11-bit immediate value,

branch displacement, or address displacement

rz 3-bit source/destination register specification

Functor F Function field

I-type (immediate) instruction format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

op immediate

RI-type instruction format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

op rx immediate

RR-type instruction format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

op rx ry Funct

RRI-type instruction format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

op rx ry immediate

104

CHAPTER 4 MIPS16 INSTRUCTION SET

RRR-type instruction format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
RRR rx ry rz F
RRI-A type instruction format
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
RRI-A rx ry F immediate
SHIFT instruction format
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
SHIFT rx ry shamt Nete F

Note The 3-bit shamt field can encode shift count numbers from 0 to 7. 0-bit shift (NOP) cannot be executed. 0 is
regarded as shift count 8.

15

14

13

12

11

I8-type instruction format

10

9

5

4

3

2 1

18

Funct

immediate

15

I8 MOVR32 instruction format (used only with MOVR32 instruction)

14

13

12

11

10

9

8

7

6

5

4

3

2 1

18

Funct

ry

r32[4:0]

15

I8_MOV32R instruction format (used only with MOV32R instruction)

14

13

12

11

10

9

8

7

6

5

4

3

2 1

18

Funct

r32[2:0, 4:3]No

rz

Note The r32 field uses special bit encoding. For example, encoding of $7 (00111) is 11100 in the r32 field.

105

CHAPTER 4 MIPS16 INSTRUCTION SET

164-type | nstruction format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
164 Funct immediate
R164-type instruction format
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

164 Funct ry immediate

JAL and JALX instruction format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
JAL X | immediate 20:16 immediate 25:21 immediate 15:0
JAL in case of X = 0 instruction
JALX in case of X = 1 instruction
EXT-I instruction format
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
EXTEND immediate 10:5 immediate 15:11 MAJOR ojojojoJo]o immediate 4.0
EXT-RI instruction format
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
EXTEND immediate 10:5 immediate 15:11 MAJOR X 0]0]0 immediate 4.0
EXT-RRI instruction format
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

EXTEND

immediate 10:5

immediate 15:11

MAJOR

ry

immediate 4.0

106

CHAPTER 4 MIPS16 INSTRUCTION SET

EXT-RRI-A instruction format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
EXTEND immediate 10:4 imm 14:11 RRI-A X ry F imm 3:0
EXT-SHIFT instruction format
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

EXTEND

immediate 4.0

S5Nm

0jo0ojojJjo]oO

SHIFT

X

ry

0

0|0 F

Note Only in the case of DSLL, the S5 bit is the most significant bit of the

6-bit shift count field (shamt).

In the case of all 32-bit extended shifts, S5 must be 0. For a normal shift instruction, the display of shift

count 0 is considered as shift count 8, but the extended shift instruction does not perform such mapping

changes. Therefore, 0-bit shift using the extended format is possible.

EXT-I8 instruction format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
EXTEND immediate 10:5 immediate 15:11 18 Funct ofofo immediate 4:0
EXT-164 instruction format
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
EXTEND immediate 10:5 immediate 15:11 164 Funct o|o0|oO immediate 4:0
EXT-RI64 instruction format
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
EXTEND immediate 10:5 immediate 15:11 164 Funct ry immediate 4:0
EXT-SHIFT64 instruction format
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
EXTEND shamt 4:0 sefoJOof0]0O]O0 RR ojo|oO ry Function

Note The S5 bit is the most significant bit of the 6-bit shift count field (shamt). In the case of a normal shift

instruction, the display of shift count 0 is considered as shift count 8, but the extended shift instruction does

not perform such mapping changes.

Therefore, 0-bit shift using the extended format is possible.

107

CHAPTER 4 MIPS16 INSTRUCTION SET

4.7 MIPS16 OPERATION CODE BIT ENCODING
This section describes encoding for major operation code and minor operation code. Table 4-5 shows bit encoding
of the MIPS16 major operation code. Tables 4-6 to 4-11 show bit encoding of the minor operation code. The italic

operation codes in the tables are instructions for the extended ISA.

Table 4-5. Bit Encoding of Major Operation Code (op)

Instruction Instruction bits [13:11]
bits
[15:14] 000 001 010 011 100 101 110 111
00 addiusp™** | addiupc™*? b jal(xte® beqz bnez SHIFT Id
01 RRI-A addiug"** slti sltiu 18 li cmpi sd
10 b Ih lwsp Iw Ibu lhu lwpc Iwu
11 sb sh sSwsp Sw RRR RR extend 164

Notes 1. addiusp : addiu rx, sp, immediate
2. addiupc : addiu rx, pc, immediate
3. jal(x) : jalinstruction and jalx instruction
4. addiu8 : aadiu rx, immediate

Table 4-6. RR Minor Operation Code (RR-Type Instruction)

Instruction Instruction bits [2:0]
bits
[4:3] 000 001 010 011 100 101 110 111
00 j@ahrteet O st sltu sliv break srlv srav
01 dsrf*°? [0 cmp neg and or xor not
10 Mfhi] mflo dsra**’ dsllv O dsrlv dsrav
11 mult multu div divu dmult dmultu ddiv ddivu

Notes 1. J(al)r: jr rx instruction (ry = 000)
jr ra instruction (ry = 001, rx = 000)
jalr ra, rx instruction (ry = 010)
2. dsrl and dsra use the rx register field to encode the shift count (8-digit shift for 0). In the case of the
extended version of these two instructions, the EXT-SHIFT64 format is used. Only these two RR
instructions can be extended.

Remarks The symbols in the figures have the following meaning.
0: Execution of operation code with an asterisk on the current VrR4111 causes a reserved instruction
exception to be generated. This code is reserved for future extension.
@ : Operation code with @is invalid, but no reserved instruction exception is generated in the Vr4111.

108

CHAPTER 4 MIPS16 INSTRUCTION SET

Table 4-8. RRRI-A Minor Operation Code (RRI-Type ADD Instruction)

Table 4-7. RRR Minor Operation Code (RRR-Type Instruction)

00

Instruction bits [1:0]

01

10

11

daddu

addu

dsubu

subu

Instruction bit [4]

0

1

addiu***

daddiu™**

Notes 1. . addiu ry, rx, immediate
2. daddiu: daddiu ry, rx immediate
Table 4-9. SHIFT Minor Operation Code (SHIFT-Type Instruction)
Instruction bits [1:0]
00 01 10 11
sli dsll srl sra
Table 4-10. 18 Minor Operation Code (I18-Type Instruction)
Instruction bits [10:8]
000 001 010 011 100 101 110 111
bteqz btnez swrasp"*** adjsp™*°? 0 mov32r "*°? 0 movr32"**
Notes 1. swrasp: sw ra, immediate(sp)
2. adjsp : addiu sp, immediate

3. mov32r: move r32,rz
4. movr32: move ry, r32

Remark The symbols used in the figures have the following meaning.

0: Execution of operation code with an asterisk on the current VrR4111 causes a reserved instruction
exception to be generated. This code is reserved for future extension.

109

CHAPTER 4 MIPS16 INSTRUCTION SET

Table 4-11. 164 Minor Operation Code (64-bit Only, 164-Type Instruction)

000

001

Instruction bits [10:8]

010 011 100 101 110

111

Idsp

Note 1

Note 2

sdsp

Note 5

ldpc

Note 7

dadiupc

Note 3

sdrasp dadjsp"** daddiu5"*®

Note 8

dadiusp

Notes 1.

110

© N oG WD

Idsp
sdsp
sdrasp
dadjsp
Idpc
daddiu5:
dadiupc:
dadiusp:

. Id ry, immediate

. sd ry, immediate

. sd ra, immediate

. daddiu sp, immediate
. Id ry, immediate

daddiu ry, immediate
daddiu ry, pc, immediate
daddiu ry, sp, immediate

CHAPTER 4 MIPS16 INSTRUCTION SET

4.8 OUTLINE OF INSTRUCTIONS

This section describes the assembler syntax and defines each instruction. Instructions can be divided into the

following four types.

* Load and Store instructions

» Computational instructions

« Jump and Branch instructions
* Special instructions

4.8.1 PC-Relative Instructions

PC-relative instructions is the instruction format first defined among the MIPS16 instruction set. MIPS16 supports

both extension and non-extension through the Extend instruction for four PC-relative instructions.

Load Word LW rx, offset(pc)

Load Doubleword LD ry, offset(pc)

Add Immediate Unsigned ADDIU rx, pc, immediate
Doubleword Add Immediate Unsigned DADDIU ry, pc, immediate

All these instructions calculate the PC value of a PC-relative instruction or the PC value of the instruction
immediately preceding as the base address. The address calculation base using various function combinations is

shown next.

Table 4-12. Base PC Address Setting

Instruction

Base PC value

Non-extension PC-relative instructions
not located in Jump delay slot

PC of instruction

Extension PC-relative instruction

PC of Extend instruction

Non-extension PC-relative instruction in
Jump delay slot of JR or JALR

PC of JR instruction or JALR instruction

Non-extension PC-relative instruction in
Jump delay slot of JAL or JALX

PC of initial halfword of JAL or JALX"™®

Note Because the JAL and JALX instruction length is 32 bits.

The PC value used as the base for address calculation for the PC-relative instruction outlines shown in tables 4-14
and 4-15 is called base PC value. The base PC value is defined so as to be equivalent to the exception program

counter (EPC) value related to the PC-relative instruction.

111

CHAPTER 4 MIPS16 INSTRUCTION SET

4.8.2 Extend Instruction

The Extend instruction can extend the immediate fields of MIPS16 instructions, which have fewer immediate fields
than equivalent 32-bit MIPS instructions. The Extend instruction must always precede (by one instruction) the
instruction whose immediate field you want to extend. Every extended instruction consumes four bytes in program
memory instead of two bytes (two bytes for Extend and two bytes for the instruction being extended), and it can cross
a word boundary.

For example, the MIPS16 instruction

Iw ry, offset (rx)

contains a five-bit immediate. The immediate expands to 16 bits (000000000 offset(1100) before execution in the
pipeline. This allows 32 different offset values of 0, 4, 8, and up through 124. Once extended, this instruction can hold
any of the normal 65,536 values in the range —32768 through 32767.

Shift instructions are extended to 5-bit unsigned immediate values. All other immediate instructions expand to
either signed or unsigned 16-bit immediate values. The only exceptions are

addiu ry, rx, immediate
daddiu ry, rx, immediate

which can be extended only to a 15-bit signed immediate.

There is only one restriction. Extended instructions should not be placed in jump delay slots. Otherwise, the
results are unpredictable because the pipeline would attempt to execute one half the instruction.

Table 4-13 lists the MIPS16 extendable instructions, the size of their immediate, and how much each immediate
can be extended when preceded with the Extend instruction.

For the instruction format of the Extend instruction, see 4.6 Instruction Format .

112

CHAPTER 4 MIPS16 INSTRUCTION SET

Table 4-13. Extendable MIPS16 Instructions

. .) Extended Instruction
MIPS16 Instruction MIPS16 Immediate Instruction Format)
Immediate Format
Load Byte 5 RRI 16 EXT-RRI
Load Byte Unsigned 5 RRI 16 EXT-RRI
Load Halfword 5 RRI 16 EXT-RRI
Load Halfword Unsigned 5 RRI 16 EXT-RRI
Load Word 5 RRI 16 EXT-RRI
8 RI 16 EXT-RI
Load Word Unsigned 5 RRI 16 EXT-RRI
Load Doubleword 5 RRI 16 EXT-RRI
Store Byte 5 RRI 16 EXT-RRI
Store Halfword 5 RRI 16 EXT-RRI
Store Word 5 (Other) RRI 16 EXT-RRI
8 (SW rx, offset(sp)) RI 16 EXT-RI
8 (SW ra, offset(sp)) 18 16 EXT-I8
Store Doubleword 5 (SD ry, offset(rx)) RRI 16 EXT-RRI
8 (Other) 164 16 EXT-164
Load Immediate 8 RI 16 EXT-RI
Add Immediate Unsigned 4 (ADDIU ry, rx, imm) RRI-A 15 EXT-RRI-A
8 (ADDIU sp, imm) 18 16 EXT-I8
8 (Other) RI 16 EXT-RI
Doubleword Add Immediate Unsigned 4 (DADDIU ry, rx, imm) RRI-A 15 EXT-RRI-A
5 (DADDIU 1y, pc, imm) RI64 16 EXT-RI64
164 16 EXT-164
8 (Other)
Set on Less Than Immediate 8 RI 16 EXT-RI
Set on Less Than Immediate Unsigned 8 RI 16 EXT-RI
Compare Immediate 8 RI 16 EXT-RI
Shift Left Logical 3 SHIFT 5 EXT-SHIFT
Shift Right Logical 3 SHIFT 5 EXT-SHIFT
Shift Right Arithmetic 3 SHIFT 5 EXT-SHIFT
Doubleword Shift Left Logical 3 SHIFT 6 EXT-SHIFT
Doubleword Shift Right Logical 3 RR 6 EXT- SHIFT64
Doubleword Shift Right Arithmetic 3 RR 6 EXT- SHIFT64
Branch on Equal to Zero 8 RI 16 EXT-RI
Branch on Not Equal to Zero 8 RI 16 EXT-RI
Branch on T Equal to Zero 8 18 16 EXT-I8
Branch on T Not Equal to Zero 8 18 16 EXT-18
Branch Unconditional 11 | 16 EXT-I

113

CHAPTER 4 MIPS16 INSTRUCTION SET

4.8.3 Delay Slots
MIPS16 instructions normally execute in one cycle. However, some instructions have special requirements that

must be met to assure optimum instruction flow. The instructions include All Load, Branch, and Multiply/Divide

instr

1)

@)

®)

(4)

114

uctions.

Load delay slots
MIPS16 operates with delayed loads. This is similar to the method used by 32-bit MIPS instruction sets. If
another instruction references the load destination register before the load operation is completed, one cycle
occurs automatically. To assure the best performance, the compiler should always schedule load delay slots as
early as possible.

Branch delay slots not supported

Unlike for 32-bit MIPS instructions, there are no branch delay slots for branch instructions in MIPS16. If a branch
is taken, the instruction that immediately follows the branch (instruction corresponding to 32-bit MIPS delay slot)
is cancelled. There are no restrictions on the instruction that follows a branch instruction, and such instruction is
executed only when a branch is not taken. Branches, jumps, and extended instructions are permitted in the
instruction slot after a branch.

Jump delay slots
With MIPS186, there is a delay of one cycle after each jump instruction. The processor executes any instruction in
the jump delay slot before it executes the jump target instruction. Two restrictions apply to any instruction placed
in the jump delay slot:
1. Do not specify a branch or jump in the delay slot.
2. Do not specify an extended instruction (32-bits) in the delay slot. Doing so will make the results
unpredictable.

Multiply and divide scheduling

Multiply and divide latency depends on the hardware implementation. If an MFLO or MFHI instruction references
the Multiply or Divide result registers before the result is ready, the pipeline stalls until the operation is complete
and the result is available. However, to assure the best performance, the compiler should always schedule
Multiply and Divide instructions as early as possible.

MIPS16 requires that all MFHI and MFLO instructions be followed by two instructions that do not write to the HI
or LO registers. Otherwise, the data read by MFLO or MFHI will be undefined. The Extend instruction is counted
singly as one instruction.

CHAPTER 4 MIPS16 INSTRUCTION SET

4.8.4 Instruction Details
(1) Load and Store Instructions
Load and Store instructions move data between memory and the general-purpose registers. The only addressing

mode that is supported is the mode for adding immediate offset to the base register.

Table 4-14. Load and Store Instructions (1/3)

Instruction Format and Description

Load Byte LB ry, offset (rx)

The 5-bit immediate is zero extended and then added to the contents of general-purpose register rx to
form the virtual address. The bytes of the memory location specified by the address are sign extended
and loaded into general-purpose register ry.

Load Byte Unsigned LBU ry, offset (rx)

The 5-bit immediate is zero extended and then added to the contents of general-purpose register rx to
form the virtual address. The bytes of the memory location specified by the address are zero extended
and loaded into general-purpose register ry

Load Halfword LH ry, offset (rx)

The 5-bit immediate is shifted left one bit, zero extended, and then added to the contents of general-
purpose register rx to form the virtual address. The halfword of the memory location specified by the
address is sign extended and loaded to general-purpose register ry.

If the least significant bit of the address is not 0, an address error exception is generated.

Load Halfword LHU ry, offset (rx)

Unsigned The 5-bit immediate is shifted left one bit, zero extended, and then added to the contents of general-
purpose register rx to form the virtual address. The halfword of the memory location specified by the
address is zero extended and loaded to general-purpose register ry.

If the least significant bit of the address is not 0, an address error exception is generated.

Load Word LW ry, offset (rx)

The 5-bit immediate is shifted left two bits, zero extended, and then added to the contents of general-
purpose register rx to form the virtual address. The word of the memory location specified by the
address is loaded to general-purpose register ry. In the 64-bit mode, it is further sign extended to 64
bits.

If either of the lower two bits is not 0, an address error exception is generated.

LW rx, offset (pc)

The two lower bits of the BasePC value associated with the instruction are cleared to form the masked
BasePC value. The 8-bit immediate is shifted left two bits, zero extended, and then added to the
masked BasePC to form the virtual address. The contents of the word at the memory location specified
by the address are loaded to general-purpose register rx. In the 64-bit mode, it is further sign extended
to 64 bits.

LW rx, offset (sp).

The 8-bit immediate is shifted left two bits, zero extended, and then added to the contents of general-
purpose register sp to form the virtual address. The contents of the word at the memory location
specified by the address are loaded to general-purpose register rx. In the 64-bit mode, it is further sign
extended to 64 bits.

If either of the two lower bits of the address is 0, an address error exception is generated.

115

CHAPTER 4 MIPS16 INSTRUCTION SET

Table 4-14. Load and Store Instructions (2/3)

Instruction

Format and Description

Load Word Unsigned

LWU ry, offset (rx)

The 5-bit immediate is shifted left two bits, zero extended to 64 bits, and then added to the contents of
general-purpose register rx to form the virtual address. The word of the memory location specified by
the address is zero extended and loaded to general-purpose register ry.

If either of the two lower bits of the address is not 0, an address error exception is generated.

This operation is defined in the 64-bit mode and the 32-bit kernel mode. When this instruction is
executed in the 32-bit user/supervisor mode, a reserved instruction exception is generated.

Load Doubleword

LD ry, offset (rx)

The 5-bit immediate is shifted left three bits, zero extended to 64 bits, and then added to the contents
of general-purpose register rx to form the virtual address. The 64-bit doubleword of the memory
location specified by the address is loaded to general-purpose register ry.

If any of the lower three bits of the address is not 0, an address error exception is generated.

This operation is defined in the 64-bit mode and the 32-bit kernel mode. When this instruction is
executed in the 32-bit user/supervisor mode, a reserved instruction exception is generated.

LD ry, offset (pc)

The lower three bits of the base PC value related to the instruction are cleared to form the masked
BasePC value.

The 5-bit immediate is shifted left three bits, zero extended to 64 bits, and then added to the masked
BasePC to form the virtual address. The 64-bit doubleword at the memory location specified by the
address is loaded to general-purpose register ry.

This operation is defined in the 64-bit mode and the 32-bit kernel mode. When this instruction is
executed in the 32-bit user/supervisor mode, a reserved instruction exception is generated.

LD ry, offset (sp)

The 5-bit immediate is shifted left three bits, zero extended to 64 bits, and added to the contents of
general-purpose register sp to form the virtual address. The 64-bit doubleword at the memory location
specified by the address is loaded to general-purpose register ry.

If any of the three lower bits of the address is not 0, an address error exception is generated.

This operation is defined in the 64-bit mode and the 32-bit kernel mode. When this instruction is
executed in the 32-bit user/supervisor mode, a reserved instruction exception is generated.

116

CHAPTER 4 MIPS16 INSTRUCTION SET

Table 4-14. Load and Store Instructions (3/3)

Instruction

Format and Description

Store Byte

SB ry, offset (rx)

The 5-bit immediate is zero extended and then added to the contents of general-purpose register rx to
form the virtual address. The least significant byte of general-purpose register ry is stored to the
memory location specified by the address.

Store Halfword

SH ry, offset (rx)

The 5-bit immediate is shifted left one bit, zero extended, and then added to the contents of general-
purpose register rx to form the virtual address. The lower halfword of general-purpose register ry is
stored to the memory location specified by the address.

If the least significant bit of the address is not 0, an address error exception is generated.

Store Word

SW ry, offset (rx)

The 5-bit immediate is shifted left two bits, zero extended, and then added to the contents of general-
purpose register rx to form a virtual address. The contents of general-purpose register ry are stored to
the memory location specified by the address. If either of the two lower bits of the address is not 0, an
address error exception is generated.

SW rx, offset (sp)

The 8-bit immediate is shifted left two bits, zero extended, and then added to the contents of general-
purpose register sp to form the virtual address. The contents of general-purpose register rx are stored
to the memory location specified by the address. If either of the two lower bits of the address is not O,
and address error exception is generated.

SW ra, offset (sp)

The 8-bit immediate is shifted left two bits, zero extended, and then added to the contents of general-
purpose register sp to form the virtual address. The contents of general-purpose register ra are stored
to the memory location specified by the address. If either of the two lower bits of the address is not 0,
an address error exception is generated.

Store Doubleword

SD ry, offset (rx)

The 5-bit immediate is shifted left three bits, zero extended to 64 bits, and then added to the contents
of general-purpose register rx to form the virtual address. The 64 bits of general-purpose register ry are
stored to the memory location specified by the address. If any of the lower three bits of the address is
not 0, an address error exception is generated.

This operation is defined in the 64-bit mode and the 32-bit kernel mode. When this instruction is
executed in the 32-bit user/supervisor mode, a reserved instruction exception is generated.

SD ry, offset (sp)

The 5-bit immediate is shifted left three bits, zero extended to 64 bits, and then added to the contents
of general-purpose register sp to form the virtual address. The 64 bits of general-purpose register ry
are stored to the memory location specified by the address.

If any of the lower three bits of the address is not 0, an address error exception is generated.

This operation is defined in the 64-bit mode and the 32-bit kernel mode. When this instruction is
executed in the 32-bit user/supervisor mode, a reserved instruction exception is generated.

SD ra, offset (sp).

The 8-bit immediate is shifted left three bits, zero extended to 64 bits, and then added to the contents
of general-purpose register sp to form the virtual address. The 64 bits of general-purpose register ra
are stored to the memory location specified by the memory. If any of the three lower bits of the address
is not 0, an address error exception is generated.

This operation is defined in the 64-bit mode and the 32-bit kernel mode. When this instruction is
executed in the 32-bit user/supervisor mode, a reserved instruction exception is generated.

117

CHAPTER 4 MIPS16 INSTRUCTION SET

(2) Computational instructions
Computational instructions perform arithmetic, logical, and shift operations on values in registers. There are four
categories of Computational instructions: ALU Immediate, Two/Three-Operand Register-Type, Shift, and
Multiply/Divide.

Table 4-15. ALU Immediate Instructions (1/2)

Instruction Format and Description

Load Immediate LI rx, immediate
The 8-bit immediate is zero extended and loaded to general-purpose register rx.

Add Immediate ADDIU ry, rx, immediate

Unsigned The 4-bit immediate is sign extended and then added to the contents of general-purpose register rx to
form a 32-bit result. The result is placed into general-purpose register ry. No integer overflow exception
occurs under any circumstances. In the 64-bit mode, the operand must be a 64-bit value formed by
sign-extending a 32-bit value.

ADDIU rx, immediate

The 8-bit immediate is sign extended and then added to the contents of general-purpose register rx to
form a 32-bit result. The result is placed into general-purpose register rx. No integer overflow exception
occurs under any circumstances. In the 64-bit mode, the operand must be a 64-bit value formed by
sign-extending a 32-bit value.

ADDIU sp, immediate

The 8-bit immediate is shifted left three bits, sign extended, and then added to the contents of general-
purpose register sp to form a 32-bit result. The result is placed into general-purpose register sp. No
integer overflow exception occurs under any circumstances. In the 64-bit mode, the operand must be a
64-bit value formed by sign-extending a 32-bit value.

ADDIU rx, pc, immediate

The two lower bits of the BasePC value associated with the instruction are cleared to form the masked
BasePC value. The 8-bit immediate is shifted left two bits, zero extended, and then added to the
masked BasePC value to form the virtual address. This address is placed into general-purpose register
rx. No integer overflow exception occurs under any circumstances.

ADDIU rx, sp, immediate

The 8-bit immediate is shifted left two bits, zero extended, and then added to the contents of register
sp to form a 32-bit result. The result is placed into general-purpose register rx. No integer overflow
exception occurs under any circumstance. In the 64-bit mode, the operand must be a 64-bit value
formed by sign-extending a 32-bit value.

118

CHAPTER 4 MIPS16 INSTRUCTION SET

Table 4-15. ALU Immediate Instructions (2/2)

Instruction

Format and Description

Doubleword Add
Immediate Unsigned

DADDIU ry, rx, immediate

The 4-bit immediate is sign extended to 64 bits, and then added to the contents of register rx to form a
64-bit result. The result is placed into general-purpose register ry. No integer overflow exception occurs
under any circumstances.

This operation is defined in the 64-bit mode and the 32-bit kernel mode. When this instruction is
executed in the 32-bit user/supervisor mode, a reserved instruction exception is generated.

DADDIU ry, immediate

The 5-bit immediate is sign extended to 64 bits, and then added to the contents of register ry to form a
64-bit result. The result is placed into general-purpose register ry. No integer overflow exception occurs
under any circumstances.

This operation is defined in the 64-bit mode and the 32-bit kernel mode. When this instruction is
executed in the 32-bit user/supervisor mode, a reserved instruction exception is generated.

DADDIU sp, immediate

The 8-bit immediate is shifted left three bits, sign extended to 64 bits, and then added to the contents
of register sp to form a 64-bit result. The result is placed into general-purpose register sp. No integer
overflow exception occurs under any circumstances.

This operation is defined in the 64-bit mode and the 32-bit kernel mode. When this instruction is
executed in the 32-bit user/supervisor mode, a reserved instruction exception is generated.

DADDIU ry, pc, immediate

The two lower bits of the BasePC value associated with the instruction are cleared to form the masked
BasePC value. The 5-bit immediate is shifted left two bits, zero extended, and added to the masked
BasePC value to form the virtual address. This address is placed into general-purpose register ry. No
integer overflow exception occurs under any circumstances.

This operation is defined in the 64-bit mode and the 32-bit kernel mode. When this instruction is
executed in the 32-bit user/supervisor mode, a reserved instruction exception is generated.

DADDIU ry, sp, immediate

The 5-bit immediate is shifted left two bits, zero extended to 64 bits, and then added to the contents of
register sp to form a 64-bit result. This result is placed into register ry. No integer overflow exception
occurs under any circumstances.

This operation is defined in the 64-bit mode and the 32-bit kernel mode. When this instruction is
executed in the 32-bit user/supervisor mode, a reserved instruction exception is generated.

Set on Less Than
Immediate

SLTI rx, immediate

The 8-bit immediate is zero extended and subtracted from the contents of general-purpose register rx.
Considering both quantities as signed integers, if rx is less than the zero-extended immediate, the
result is set to 1; otherwise, the result is set to 0. The result is placed into register T ($24).

Set on Less Than
Immediate Unsigned

SLTIU rx, immediate

The 8-bit immediate is zero extended and subtracted from the contents of general-purpose register rx.
Considering both quantities as signed integers, if rx is less than the zero-extended immediate, the
result is set to 1; otherwise, the result is set to 0. The result is placed into register T ($24).

Compare Immediate

CMPI rx, immediate
The 8-bit immediate is zero extended and exclusive ORed in 1-bit units with the contents of general-
purpose register rx. The result is placed into register T ($24).

119

CHAPTER 4 MIPS16 INSTRUCTION SET

Table 4-16. Two-/Three-Operand Register Type (1/2)

Instruction

Format and Description

Add Unsigned

ADDU rz, rx, ry

The contents of general-purpose registers rx and ry are added together to form a 32-bit result. The
result is placed into general-purpose register rz. No integer overflow exception occurs under any
circumstances. In the 64-bit mode, the operand must be a 64-bit value formed by sign-extending a 32-
bit value.

Subtract Unsigned

SUBU rz, rx, ry

The contents of general-purpose register ry are subtracted from the contents of general-purpose
register rx. The 32-bit result is placed into general-purpose register rz. No integer overflow exception
occurs under any circumstances. In the 64-bit mode, the operand must be a 64-bit value formed by
sign-extending a 32-bit value.

Doubleword Add
Unsigned

DADDU rz, rx, ry

The contents of general-purpose register ry are added to the contents of general-purpose register rx.
The 64-bit result is placed into register rz. No integer overflow exception occurs under any
circumstances.

This operation is defined in the 64-bit mode and the 32-bit kernel mode. When this instruction is
executed in the 32-bit user/supervisor mode, a reserved instruction exception is generated.

Doubleword Subtract
Unsigned

DSUBU rz, rx, ry

The contents of general-purpose register ry are subtracted from the contents of general-purpose
register rx. The 64-bit result is placed into general-purpose register rz. No integer overflow exception
occurs under any circumstances.

This operation is defined in the 64-bit mode and the 32-bit kernel mode. When this instruction is
executed in the 32-bit user/supervisor mode, a reserved instruction exception is generated.

Set on Less Than

SLT rx, ry

The contents of general-purpose register ry are subtracted from the contents of general-purpose
register rx. Considering both quantities as signed integers, if the contents of rx are less than the
contents of ry, the result is set to 1; otherwise, the result is set to 0. The result is placed into register T
($24).

No integer overflow exception occurs. The comparison is valid even if the subtraction overflows.

Set on Less Than
Unsigned

SLTU rx, ry

The contents of general-purpose register ry are subtracted from the contents of general-purpose
register rx. Considering both quantities as unsigned integers, if the contents of rx are less than the
contents of ry, the result is set to 1; otherwise, the result it set to 0. The result is place in register T
($24).

No integer overflow exception occurs. The comparison is valid even if the subtraction overflows.

120

CHAPTER 4 MIPS16 INSTRUCTION SET

Table 4-16. Two-/Three-Operand Register Type (2/2)

Instruction Format and Description
Compare CMP rx, ry
The contents of general-purpose register ry are Exclusive-ORed with the contents of general-purpose
register rx. The result is placed into register T ($24).
Negate NEG rx, ry

The contents of general-purpose register ry are subtracted from zero to form a 32-bit result. The result
is placed in general-purpose register rx.

AND AND rx, ry
The contents of general-purpose register ry are logical ANDed with the contents of general-purpose
register rx in 1-bit units. The result is placed in general-purpose register rx.

OR OR rx, ry

The contents of general-purpose register ry are logical ORed with the contents of general-purpose
register ry. The result is placed in general-purpose register rx.

Exclusive OR

XOR rx, ry
The contents of general-purpose register ry are Exclusive-ORed with the contents of general-purpose
register rx in 1-bit units. The result is placed in general-purpose register rx.

NOT

NOT rx, ry
The contents of general-purpose register ry are inverted in 1-bit units and placed in general-purpose
register rx.

Move

MOVE ry, r32
The contents of general-purpose register r32 are moved to general-purpose register ry. R32 can
specify any one of the 32 general-purpose registers.

Move

MOVE r32, rz
The contents of general-purpose register rz are moved to general-purpose register r32. r32 can specify
any one of the 32 general-purpose registers

121

CHAPTER 4 MIPS16 INSTRUCTION SET

Table 4-17. Shift Instructions (1/2)

Instruction

Format and Description

Shift Left Logical

SLL rx, ry, immediate

The 32-bit contents of general-purpose register ry are shifted left and zeros are inserted into the
emptied low-order bits. The 3-bit immediate specifies the shift count. A shift count of 0 is interpreted as
a shift count of 8. The result is placed in general-purpose register rx. In the 64-bit mode, the value that
is formed by sign-extending shifted 32-bit value is stored as the result.

Shift Right Logical

SLR rx, ry, immediate

The 32-bit contents of general-purpose register ry are shifted right, and zeros are inserted into the
emptied high-order bits. The 3-bit immediate specifies the shift count. A shift count of O is interpreted
as a shift count of 8. The result is placed in general-purpose register rx. In the 64-bit mode, the value
that is formed by sign-extending shifted 32-bit value is stored as the result.

Shift Right Arithmetic

SRA rx, ry, immediate

The 32-bit contents of general-purpose register ry are shifted right and the emptied high-order bits are
sign extended. The 3-bit immediate specifies the shift count. A shift count of O is interpreted as a shift
count of 8. In the 64-bit mode, the value that is formed by sign-extending shifted 32-bit value is stored
as the result.

Shift Left Logical
Variable

SLLV ry, rx

The 32-bit contents of general-purpose register ry are shifted left, and zeros are inserted into the
emptied low-order bits. The five low-order bits of general-purpose register rx specify the shift count.
The result is placed in general-purpose register ry. In the 64-bit mode, the value that is formed by sign-
extending shifted 32-bit value is stored as the result.

Shift Right Logical
Variable

SRLV ry, rx

The 32-bit contents of general-purpose register ry are shifted right, and the emptied high-order bits are
sign extended. The five lower-order bits of general-purpose register rx specify the shift count. The
register is placed in general-purpose register ry. In the 64-bit mode, the value that is formed by sign-
extending shifted 32-bit value is stored as the result.

Shift Right Arithmetic
Variable

SRAV ry, rx

The 32-bit contents of general-purpose register ry are shifted right, and the emptied high-order bits are
sign extended. The five low-order bits of general-purpose register rx specify the shift count. The result
is placed in general-purpose register ry. In the 64-bit mode, the value that is formed by sign-extending
shifted 32-bit value is stored as the result.

122

CHAPTER 4 MIPS16 INSTRUCTION SET

Table 4-17. Shift Instructions (2/2)

Instruction

Format and Description

Doubleword Shift Left
Logical

DSLL rx, ry, immediate

The 64-bit doubleword contents of general-purpose register ry are shifted left, and zeros are inserted
into the emptied low-order bits. The 3-bit immediate specifies the shift count. A shift count of 0 is
interpreted as a shift count of 8. The 64-bit result is placed in general-purpose register rx.

This operation is defined in the 64-bit mode and the 32-bit kernel mode. When this instruction is
executed in the 32-bit user/supervisor mode, a reserved instruction exception is generated.

Doubleword Shift
Right Logical

DSRL ry, immediate

The 64-bit doubleword contents of general-purpose register ry are shifted right, and zeros are inserted
into the emptied high-order bits. The 3-bit immediate specifies the shift count. A shift count of 0 is
interpreted as a shift count of 8.

This operation is defined in the 64-bit mode and the 32-bit kernel mode. When this instruction is
executed in the 32-bit user/supervisor mode, a reserved instruction exception is generated.

Doubleword Shift
Right Arithmetic

DSRA ry, immediate

The 64-bit doubleword contents of general-purpose register ry are shifted right, and the emptied high-
order bits are sign extended. The 3-bit immediate specifies the shift count. A shift count of 0 is
interpreted as a shift count of 8.

This operation is defined in the 64-bit mode and the 32-bit kernel mode. When this instruction is
executed in the 32-bit user/supervisor mode, a reserved instruction exception is generated.

Doubleword Shift Left
Logical Variable

DSLLV ry, rx

The 64-bit doubleword contents of general-purpose register ry are shifted left, and zeros are inserted
into the emptied low-order bits. The six low-order bits of general-purpose register rx specify the shift
count. The result is placed in general-purpose register ry.

This operation is defined in the 64-bit mode and the 32-bit kernel mode. When this instruction is
executed in the 32-bit user/supervisor mode, a reserved instruction exception is generated.

Doubleword Shift
Right Logical Variable

DSRLYV ry, rx

The 64-bit doubleword contents of general-purpose register ry are shifted right, and zeros are inserted
into the emptied high-order bits. The six low-order bits of general-purpose register rx specify the shift
count. The result is placed in general-purpose register ry.

This operation is defined in the 64-bit mode and the 32-bit kernel mode. When this instruction is
executed in the 32-bit user/supervisor mode, a reserved instruction exception is generated.

Doubleword Shift
Right Arithmetic
Variable

DSRAV ry, rx

The 64-bit doubleword contents of general-purpose register ry are shifted right, and the emptied high-
order bits are sign extended. The six low-order bits of general-purpose register rx specify the shift
count. The result is placed in general-purpose register ry.

This operation is defined in the 64-bit mode and the 32-bit kernel mode. When this instruction is
executed in the 32-bit user/supervisor mode, a reserved instruction exception is generated.

123

CHAPTER 4 MIPS16 INSTRUCTION SET

Table 4-18. Multiply/Divide Instructions (1/2)

Instruction

Format and Description

Multiply

MULT rx, ry

The contents of general-purpose registers rx and ry are multiplied, treating both operands as 32-bit
two's complement values. No integer overflow exception occurs.

In the 64-bit mode, the operand must be a 64-bit value formed by sign-extending a 32-bit value.

The low-order 32-bit word of the result are placed in special register LO, and the high-order 32-bit word
is placed in special register HI. In the 64-bit mode, each result is sign extended and then stored.

If either of the two immediately preceding instructions is MFHI or MFLO, their transfer instruction
execution result becomes undefined. To obtain the correct result, insert two or more other instructions
between the MFHI, MFLO instructions, and the MULT instruction.

Multiply Unsigned

MULTU rx, ry

The contents of general-purpose registers rx and ry are multiplied, treating both operands as 32-bit
unsigned values. No integer overflow exception occurs. In the 64-bit mode, the operand must be a 64-
bit value formed by sign-extending a 32-bit value. The low-order 32-bit word of the result is placed in
special register LO, and the high-order 32-bit word is placed in special register HI. In the 64-bit mode,
each result is sign extended and stored.

If either of the two immediately preceding instructions is MFHI or MFLO, the result of execution of
these transfer instructions is undefined. To obtain the correct result, insert two or more other
instructions between the MFHI, MFLO instructions and the MULTU instruction.

Divide

DIV rx, ry

The contents of general-purpose register rx are divided by the contents of general-purpose register ry,
treating both operands as 32-bit two's complement values. No integer overflow exception occurs. The
result when the divisor is 0 is undefined. The 32-bit quotient is placed in special register LO, and the
32-bit remainder is placed in special register HI. In the 64-bit mode, the result is sign extended.
Normally, this instruction is executed after instructions checking for division by zero and overflow.

If either of the two immediately preceding instructions is MFHI or MFLO, the result of execution of
these transfer instructions is undefined. To obtain the correct result, insert two or more other
instructions between the MFHI, MFLO instructions and the DIV instruction.

Divide Unsigned

DIVU rx, ry

The contents of general-purpose register rx are divided by the contents of general-purpose register ry,
treating both operands as unsigned values. No integer overflow exception occurs. The result when the
divisor is 0 is undefined. The 32-bit quotient is placed in special register LO, and the 32-bit remainder is
placed in special register HI. In the 64-bit mode, the result is sign extended.

Normally, this instruction is executed after instructions checking for division by zero.

If either of the two immediately preceding instructions is MFHI or MFLO, the result of execution of
these transfer instructions is undefined. To obtain the correct result, insert two or more other
instructions between the MFHI, MFLO instructions and the DIVU instruction.

Move From HI

MFHI rx

The contents of special register HI are loaded into general-purpose register rx.

To ensure correct operation when an interrupt occurs, do not use an instruction that changes the Hl
register (MULT, MULTU, DIV, DIVU, DMULT, DMULTU, DDIV, DDIVU) for the two instructions after
the MFHI instruction.

124

CHAPTER 4 MIPS16 INSTRUCTION SET

Table 4-18. Multiply/Divide Instructions (2/2)

Instruction

Format and Description

Move From LO

MFLO rx

The contents of special register LO are loaded into general-purpose register rx.

To ensure correct operation when an interrupt occurs, do not use an instruction that changes the Hl
register (MULT, MULTU, DIV, DIVU, DMULT, DMULTU, DDIV, DDIVU) for the two instructions after
the MFLO instruction.

Doubleword Multiply

DMULT rx, ry

The 64-bit contents of general-purpose register rx and ry are multiplied, treating both operands as two's
complement values. No integer overflow exception occurs. The low-order 64 bits of the result are
placed in special register LO, and the high-order 64 bits are placed in special register HI.

If either of the two immediately preceding instructions is MFHI or MFLO, the result of execution of
these transfer instructions is undefined. To obtain the correct result, insert two or more other
instructions between the MFHI, MFLO instructions and the DMULT instruction.

This operation is defined in the 64-bit mode and the 32-bit kernel mode. When this instruction is
executed in the 32-bit user/supervisor mode, a reserved instruction exception is generated.

Doubleword Multiply
Unsigned

DMULTU rx, ry

The 64-bit contents of general-purpose registers rx and ry are multiplied, treating both operands as
unsigned values. No integer overflow exception occurs. The low-order 64 bits of the result are placed in
special register LO, and the high-order 64 bits of the result are placed in special register Hl.

If either of the two immediately preceding instructions is MFHI or MFLO, the result of execution of
these transfer instructions is undefined. To obtain the correct result, insert two or more other
instructions between the MFHI, MFLO instructions and the DMULTU instruction.

This operation is defined in the 64-bit mode and the 32-bit kernel mode. When this instruction is
executed in the 32-bit user/supervisor mode, a reserved instruction exception is generated.

Doubleword divide

DDIV rx, ry

The 64-bit contents of general-purpose registers rx are divided by the contents of general-purpose
register ry, treating both operands as two's complement values. No integer overflow exception occurs.
The result when the divisor is 0 is undefined. The 64-bit quotient is placed in special register LO, and
the 64-bit remainder is placed in special register HI. Normally, this instruction is executed after
instructions checking for division by zero and overflow.

If either of the two immediately preceding instructions is MFHI or MFLO, the result of execution of
these transfer instructions is undefined. To obtain the correct result, insert two or more other
instructions between the MFHI, MFLO instructions and the DDIV instruction.

This operation is defined in the 64-bit mode and the 32-bit kernel mode. When this instruction is
executed in the 32-bit user/supervisor mode, a reserved instruction exception is generated.

Doubleword Divide
Unsigned

DDIVU rx, ry

The 64-bit contents of general-purpose register rx are divided by the contents of general-purpose
register ry, treating both operands as unsigned values. No integer overflow exception occurs. The
result when the divisor is 0 is undefined. The 64-bit quotient is placed in special register LO, and the
64-bit remainder is placed in special register HI. Normally, this instruction is executed after an
instruction checking for division by zero.

If either of the two immediately preceding instructions is MFHI or MFLO, the result of execution of
these transfer instructions is undefined. To obtain the correct result, insert two or more other
instructions between the MFHI, MFLO instructions and the DDIVU instruction.

This operation is defined in the 64-bit mode and the 32-bit kernel mode. When this instruction is
executed in the 32-bit user/supervisor mode, a reserved instruction exception is generated.

125

CHAPTER 4 MIPS16 INSTRUCTION SET

(3) Jump and Branch Instructions
Jump and Branch instructions change the control flow of a program.
All Jump instructions occur with a one-instruction delay. That is, the instruction immediately following the jump is
always executed.
Branch instructions do not have a delay slot. If a branch is taken, the instruction immediately following the branch
is never executed. If the branch is not taken, the instruction immediately following the branch is always executed.
Table 4-19 shows the MIPS16 Jump and Branch instructions.

Table 4-19. Jump and Branch Instructions (1/2)

Instruction Format and Description

Jump and Link JAL target

The 26-bit target address is shifted left two bits and combined with the high-order four bits of the
address of the delay slot. The program unconditionally jumps to this calculated address with a delay of
one instruction. The address of the instruction immediately following the delay slot is placed in register
ra. The ISA Mode bit is left unchanged. The value stored in ra bit O will reflect the current ISA Mode bit.

Jump and Link JALX target

Exchange The 26-bit target address is shifted left two bits and combined with the high-order four bits of the
address of the delay slot. The program unconditionally jumps to this calculated address with a delay of
one instruction. The address of the instruction immediately following the delay slot is placed in register
ra. The ISA Mode bit is inverted with a delay of one instruction. The value stored in ra bit 0 will reflect
the ISA Mode bit before execution of the Jump execution.

Jump Register JR rx

The program unconditionally jumps to the address specified in general-purpose register rx, with a delay
of one instruction. The instruction sets the ISA Mode bit to the value in rx bit 0. If the Jump target
address is in the MIPS16 instruction length mode, no address exception occurs when bit O of the
source register is 1 because bit O of the target address is 0 so that the instruction is located at the
halfword boundary.

If the 32-bit length instruction mode is changed, an address exception occurs when the jump target
address is fetched if the two low-order bits of the target address are not 0.

JRra

The program unconditionally jumps to the address specified in register ra, with a delay of one
instruction. The instruction sets the ISA Mode bit to the value in ra bit 0. If the Jump target address is in
the MIPS16 instruction length mode, no address exception occurs when bit 0 of the source register is 1
because bit 0 of the target address is 0 so that the instruction is located at the halfword boundary.

If the 32-bit length instruction mode is changed, an address exception occurs when the jump target
address is fetched if the two low-order bits of the target address are not 0.

Jump and Link JALR ra, rx

Register The program unconditionally jumps to the address contained in register rx, with a delay of one
instruction. This instruction sets the ISA Mode bit to the value in rx bit 0. The address of the instruction
immediately following the delay slot is placed in register ra. The value stored in ra bit O will reflect the
ISA mode bit before the jump execution is executed.

If the Jump target address is in the MIPS16 instruction length mode, no address exception occurs
when bit O of the source register is 1 because bit 0 of the target address is 0 so that the instruction is
located at the halfword boundary.

If the 32-bit length instruction mode is changed, an address exception occurs when the jump target

address is fetched if the two low-order bits of the target address are not 0.

126

CHAPTER 4 MIPS16 INSTRUCTION SET

Table 4-19. Jump and Branch Instructions (2/2)

Instruction

Format and Description

Branch on Equal to
Zero

BEQZ rx, immediate

The 8-bit immediate is shifted left one bit, sign extended, and then added to the address of the
instruction after the branch to form the target address. If the contents of general-purpose register rx are
equal to zero, the program branches to the target address. No delay slot is generated.

Branch on Not Equal
to Zero

BNEZ rx, immediate

The 8-bit immediate is shifted left one bit, sign extended, and then added to the address of the
instruction after the branch to form the target address. If the contents of general-purpose register rx are
not equal to zero, the program branches to the target address. No delay slot is generated.

Branch on T Equal to
Zero

BTEQZ immediate

The 8-bit immediate is shifted left one bit, sign extended, and then added to the address of the
instruction after the branch to form the target address. If the contents of special register T ($24) are not
equal to zero, the program branches to the target address. No delay slot is generated.

Branch on T Not
Equal to Zero

BTNEZ immediate

The 8-bit immediate is shifted left one bit, sign extended, and then added to the address of the
instruction after the branch to form the target address. If the contents of special register T ($24) are not
equal to zero, the program branches to the target address. No delay slot is generated.

Branch Unconditional

B immediate

The 11-bit immediate is shifted left one bit, sign extended, and then added to the address of the
instruction after the branch to form the target address. The program branches to the target address
unconditionally.

(4) Special Instructions

Special instructions unconditionally perform branching to general exception vectors. Special instructions are of

the R type. Table 4-20 shows two special instructions.

Table 4-20. Special Instructions

Instruction Format and Description
Breakpoint BREAK immediate
A breakpoint trap occurs, immediately and unconditionally transferring control to the exception handler.
By using a 6-bit code area, parameters can be sent to the exception handler. If the exception handler
uses this parameter, the contents of memory including instructions must be loaded as data.
Extend EXTEND immediate

The 11-bit immediate is combined with the immediate in the next instruction to form a larger immediate
equivalent to 32-bit MIPS. The Extend instruction must always precede (by one instruction) the
instruction whose immediate field you want to extend. Every extended instruction consumes four bytes
in program memory instead of two bytes (two bytes for Extend and two bytes for the instruction being
extended), and it can cross a word boundary. (For details, see 4.8.2 Extend Instruction.)

127

[MEMO]

128

CHAPTER 5 VR4111 PIPELINE

This chapter describes the basic operation of the VR4111 processor pipeline, which includes descriptions of the
delay slots (instructions that follow a branch or load instruction in the pipeline), interrupts to the pipeline flow caused
by interlocks and exceptions, and CPO hazards.

5.1 PIPELINE STAGES

The VR4111 has a five-stage instruction pipeline; each stage takes one PCycle (one cycle of Pclock), and each
PCycle has two phases: ®1 and ®2, as shown in Figure 5-1. Thus, the execution of each instruction takes at least

5 PCycles. An instruction can take longer - for example, if the required data is not in the cache, the data must be
retrieved from main memory. Once the pipeline has been filled, five instructions are executed simultaneously.

Figure 5-1. Pipeline Stages

| PCycle |
PClock / \ / \ / \ / \ / \ /
Phase | o1 | o2 | o1 | o2 | o1 | 02 | o1 | 02 | o1 | @2 |
Cycle | F RF EX DC WB I

The five pipeline stages are:

< IF - Instruction cache fetch
< RF - Register fetch

< EX - Execution

< DC - Data cache fetch

< WB - Write back

Figure 5-2 shows the five stages of the instruction pipeline. In this figure, a row indicates the execution process
of each instruction, and a column indicates the processes executed simultaneously.

129

CHAPTER 5 VR4111 PIPELINE

Figure 5-2. Instruction Execution in the Pipeline

| PCycle | (Five stages)
1
| IF1 | IF2 |RF1|RF2 | EX1|[EX2|DC1|DC2|WB1|WB2

|IF1 IF2 | RF1|RF2 [EX1|EX2|DC1|DC2|WB1 WBZI

IF1 | IF2 [RF1|RF2 | EX1|EX2|DC1|DC2|WB1 WBZI

IF1 | IF2 [RF1|RF2 | EX1|EX2|DC1|DC2|WB1 WBZI

IF1 | IF2 [RF1|RF2|[EX1|EX2|DC1|DC2|WB1 WBZI

Current CPU cycle

5.1.1 Pipeline Activities

Figure 5-3 shows the activities that can occur during each pipeline stage; Table 5-1 describes these pipeline
activities.

Figure 5-3. Pipeline Activities

| PCycle |
Phase |d31|d32|d31|d32|d31|d32|d31|d32|d31|d32|
Cycle |IF1 IF2 | RF1 | RF2 | EX1 | EX2 | DC1 | DC2 | WB1 WBZI
| Fetch IDC | ICA
and
Decode ITLB | ITC
ALU IDEC| RF
EX
Load/Store DVA DCA |DLA
DTLB |pbTC WB
Branch | sa | [om DCW

BAC

130

CHAPTER 5 VR4111 PIPELINE

Table 5-1. Description of Pipeline Activities During Each Stage

Cycle Phase Mnemonic Description
Pl IDC Instruction cache address decode
ITLB Instruction address translation
F P2 ICA Instruction cache array access
ITC Instruction tag check
Pl IDEC Instruction decode
RF P2 RF Register operand fetch
BAC Branch address calculation
P1 EX Execution stage
DVA Data virtual address calculation
EX SA Store align
P2 DCA Data cache address decode/array access
DTLB Data address translation
?1 DLA Data cache load align
DC DTC Data tag check
DTD Data transfer to data cache
®1 DCW Data cache write
WB
WB Write back to register file

131

CHAPTER 5 VR4111 PIPELINE

5.2 BRANCH DELAY

During a Vr4111’s pipeline operation, a one-cycle branch delay occurs when:

e Target address is calculated by a Jump instruction
« Branch condition of branch instruction is met and then logical operation starts for branch-destination

comparison

The instruction address generated at the EX stage in the Jump/Branch instruction are available in the IF stage,
two instructions later. No branch delay slot due to a branch instruction occurs in MIPS16 ISA. When a branch
condition is met, the instruction representing a delay slot is discarded.

Figure 5-4 illustrates the branch delay and the location of the branch delay slot.

Figure 5-4. Branch Delay

| PCycle |
Branch | IF RE 4 EX DC WB I
\
(Branch delay slot) | IF \ RF EX DC wWB I
\
Target | YIE RF EX DC WB I

Branch delay

5.3 LOAD DELAY

A load instruction that does not allow its result to be used by the instruction immediately following is called a
delayed load instruction. The instruction immediately following this delayed load instruction is referred to as the load
delay slot.

In the VR4111, the instruction immediately following a load instruction can use the contents of the loaded register,
however in such cases hardware interlocks insert additional delay cycles. Consequently, scheduling load delay slots
can be desirable, both for performance and VR-Series processor compatibility.

5.4 PIPELINE OPERATION
The operation of the pipeline is illustrated by the following examples that describe how typical instructions are

executed. The instructions described are: ADD, JALR, BEQ, TLT, LW, and SW. Each instruction is taken through
the pipeline and the operations that occur in each relevant stage are described.

132

CHAPTER 5 VR4111 PIPELINE

(1) Add instruction (Add rd, rs, rt)

IF stage

RF stage

EX stage

DC stage

WB stage

In ®d1 of the IF stage, the eleven least-significant bits of the virtual address are used to access the
instruction cache. In ®2 of the IF stage, the cache index is compared with the page frame number
and the cache data is read out. The virtual PC is incremented by 4 so that the next instruction can
be fetched.

During ®2, the 2-port register file is addressed with the rs and rt fields and the register data is valid
at the register file output. At the same time, bypass multiplexers select inputs from either the EX-
or DC-stage output in addition to the register file output, depending on the need for an operand
bypass.

The ALU controls are set to do an A + B operation. The operands flow into the ALU inputs, and the
ALU operation is started. The result of the ALU operation is latched into the ALU output latch
during 1.

This stage is a NOP for this instruction. The data from the output of the EX stage (the ALU) is
moved into the output latch of the DC.

During ®1, the WB latch feeds the data to the inputs of the register file, which is accessed by the
rd field. The file write strobe is enabled. By the end of @1, the data is written into the file.

Figure 5-5. Add Instruction Pipeline Activities

| PCycle |

Phase |q>1|q>2|q>1|¢2|¢1|¢2|¢1|¢2|¢1|¢2|
Cycle | IF1 | IF2 | RF1 | RF2 | EX1 | EX2 | DC1 | DC2 | WB1 WBZI
ioc | ica
me |irclibec| re | Ex |

133

CHAPTER 5 VR4111 PIPELINE

(2) Jump and Link Register instruction (JALR rd, rs)

IF stage

RF stage

EX stage

DC stage

WB stage

134

Same as the IF stage for the ADD instruction.

A register specified in the rs field is read from the file during ®2 at the RF stage, and the value
read from the rs register is input to the virtual PC latch synchronously. This value is used to fetch
an instruction at the jump destination. The value of the virtual PC incremented during the IF stage
is incremented again to produce the link address PC + 8 where PC is the address of the JALR
instruction. The resulting value is the PC to which the program will eventually return. This value is
placed in the Link output latch of the Instruction Address unit.

The PC + 8 value is moved from the Link output latch to the output latch of the EX stage.

The PC + 8 value is moved from the output latch of the EX stage to the output latch of the DC
stage.

Refer to the ADD instruction. Note that if no value is explicitly provided for rd then register 31 is
used as the default. If rd is explicitly specified, it cannot be the same register addressed by rs; if it
is, the result of executing such an instruction is undefined.

Figure 5-6. JALR Instruction Pipeline Activities

| PCycle |
Phase | P1 | P2 | P1 | P2 | P1 | P2 | P1 | P2 | o1 | P2 |
Cycle | IF1 IF2 | RF1 | RF2 | EX1 | EX2 | DC1 | DC2 | WB1 WBZI
IDC | ICA
ITLB |ITC IDEC | RF EX
BAC

CHAPTER 5 VR4111 PIPELINE

(3) Branch on Equal instruction (BEQ rs, rt, offset)

IF stage

RF stage

EX stage

DC stage

WB stage

Same as the IF stage for the ADD instruction.

During @2, the register file is addressed with the rs and rt fields. A check is performed to
determine if each corresponding bit position of these two operands has equal values. If they are
equal, the PC is set to PC + target, where target is the sign-extended offset field. If they are not
equal, the PCis setto PC + 4.

The next PC resulting from the branch comparison is valid at the beginning of ®2 for instruction
fetch.

This stage is a NOP for this instruction.

This stage is a NOP for this instruction.

Figure 5-7. BEQ Instruction Pipeline Activities

| PCycle |
Phase | P1 | P2 | P1 | P2 | P1 | P2 | P1 | P2 | o1 | P2 |
Cycle |IF1 IF2 | RF1 | RF2 | EX1 | EX2 | DC1 | DC2 | WB1 WBZI
IDC | ICA
ITLB |ITC IDEC | RF EX
BAC

135

CHAPTER 5 VR4111 PIPELINE

(4) Trap if Less Than instruction (TLT rs, rt)

136

IF stage

RF stage

EX stage

DC stage

WB stage

Same as the IF stage for the ADD instruction.

Same as the RF stage for the ADD instruction.

ALU controls are set to do an A — B operation. The operands flow into the ALU inputs, and the
ALU operation is started. The result of the ALU operation is latched into the ALU output latch
during ®1. The sign bits of operands and of the ALU output latch are checked to determine if a
less than condition is true. If this condition is true, a Trap exception occurs. The value in the PC
register is used as an exception vector value, and from now on any instruction will be invalid.

No operation

The EPC register is loaded with the value of the PC if the less than condition was met in the EX
stage. The Cause register ExCode field and BD bit are updated appropriately, as is the EXL bit
of the Status register. If the less than condition was not met in the EX stage, no activity occurs in
the WB stage.

Figure 5-8. TLT Instruction Pipeline Activities

| PCycle |
Phase |<Dl|d32|d31|d32|d31|d32|d31|d32|d31|d32|
Cycle |IF1 IF2 | RF1 | RF2 | EX1 | EX2 | DC1 | DC2 | WB1 WBZI
IDC | ICA
ITLB ||Tc IDEC| RF | EX |

CHAPTER 5 VR4111 PIPELINE

(5) Load Word instruction (LW rt, offset (base))

IF stage

RF stage

EX stage

DC stage

WB stage

Same as the IF stage for the ADD instruction.

Same as the RF stage for the ADD instruction. Note that the base field is in the same position as

the rs field.

Refer to the EX stage for the ADD instruction. For LW, the inputs to the ALU come from
GPR[base] through the bypass multiplexer and from the sign-extended offset field. The result of
the ALU operation that is latched into the ALU output latch in ®1 represents the effective virtual

address of the operand (DVA).

The cache tag field is compared with the Page Frame Number (PFN) field of the TLB entry. After

passing through the load aligner, aligned data is placed in the DC output latch during ®2.

During @1, the cache read data is written into the register file addressed by the rt field.

Figure 5-9. LW Instruction Pipeline Activities

o1 | o2 | o1 | o2 | o1 | ®2 | o1 | @2 | o1 | o2 |

|

L A U B W A W A W A U
|
|

IF1 IF2 | RF1 | RF2 | EX1 | EX2 | DC1 | DC2 | WB1 WBZI

ioc | ica
me [itc]ibec| RF | Ex | bcA |oia

DVA DTLB |pTC

137

CHAPTER 5 VR4111 PIPELINE

(6) Store Word instruction (SW rt, offset (base))

IF stage

RF stage

EX stage

DC stage

WB stage

138

Same as the IF stage for the ADD instruction.
Same as the RF stage for the LW instruction.

Refer to the LW instruction for a calculation of the effective address. From the RF output latch,
the GPR]rt] is sent through the bypass multiplexer and into the main shifter, where the shifter
performs the byte-alignment operation for the operand. The results of the ALU are latched in the
output latches during ®1. The shift operations are latched in the output latches during ®2.

Refer to the LW instruction for a description of the cache access.

If there was a cache hit, the content of the store data output latch is written into the data cache at
the appropriate word location.

Note that all store instructions use the data cache for two consecutive PCycles. If the following
instruction requires use of the data cache, the pipeline is slipped for one PCycle to complete the
writing of an aligned store data.

Figure 5-10. SW Instruction Pipeline Activities

| PCycle |

Phase |q>1|q>2|q>1|¢2|¢1|¢2|¢1|¢2|¢1|¢2|
Cycle | IF1 | IF2 | RF1 | RF2 | EX1 | EX2 | DC1 | DC2 | wB1 WBZI
ioc | ica
T |itclibec| RF | Ex

pva | pTe |ore
| sa | | o DCW

CHAPTER 5 VR4111 PIPELINE

5.5 INTERLOCK AND EXCEPTION HANDLING

Smooth pipeline flow is interrupted when cache misses or exceptions occur, or when data dependencies are
detected. Interruptions handled using hardware, such as cache misses, are referred to as interlocks, while those
that are handled using software are called exceptions. As shown in Figure 5-11, all interlock and exception
conditions are collectively referred to as faults.

Figure 5-11. Interlocks, Exceptions, and Faults

Faults
Softwaf/ \Hardwme
Exceptions Interlocks

| /\

Abort I Stall Slip

At each cycle, exception and interlock conditions are checked for all active instructions.

Because each exception or interlock condition corresponds to a particular pipeline stage, a condition can be
traced back to the particular instruction in the exception/interlock stage, as shown in Table 5-2. For instance, an LDI
Interlock is raised in the Register Fetch (RF) stage.

Tables 5-2 to 5-4 describe the pipeline interlocks and exceptions listed in Table 5-2.

139

CHAPTER 5 VR4111 PIPELINE

Table 5-2. Correspondence of Pipeline Stage to Interlock and Exception Conditions

Stage IF RF EX DC wB
Status
Interlock Stall - ™ - DTM -
ICM DCM
DCB
Slip - LDI - - -
MDI
SLI
CPO
Exception IAErT NMI Trap Reset -
ITLB OVF DTLB
IPErT DAErr TMod
INTr DPErr
IBE WAT
SYSC DBE
BP
Cun
RSVD

Remark In the above table, exception conditions are listed up in higher priority order.

140

CHAPTER 5 VR4111 PIPELINE

Table 5-3. Pipeline Interlock

Interlock Description
IT™™ Interrupt TLB Miss
ICM Interrupt Cache Miss
LDI Load Data Interlock
MDI MD Busy Interlock
SLI Store-Load Interlock
CPO Coprocessor 0 Interlock
DTM Data TLB Miss
DCM Data Cache Miss
DCB Data Cache Busy

Table 5-4. Description of Pipeline Exception

Exception Description
IAErr Instruction Address Error exception
NMI Non-maskable Interrupt exception
ITLB ITLB exception
IPErr Instruction Parity Error exception
INTr Interrupt exception
IBE Instruction Bus Error exception
SYSC System Call exception
BP Breakpoint exception
CUn Coprocessor Unusable exception
RSVD Reserved Instruction exception
Trap Trap exception
OVF Overflow exception
DAErr Data Address Error exception
Reset Reset exception
DTLB DTLB exception
DTMod DTLB Modified exception
WAT Watch exception
DBE Data Bus Error exception

141

CHAPTER 5 VR4111 PIPELINE

5.5.1 Exception Conditions

When an exception condition occurs, the relevant instruction and all those that follow it in the pipeline are
cancelled. Accordingly, any stall conditions and any later exception conditions that may have referenced this
instruction are inhibited; there is no benefit in servicing stalls for a cancelled instruction.

When an exceptional conditions is detected for an instruction, the VR4111 will kill it and all following instructions.
When this instruction reaches the WB stage, the exception flag and various information items are written to CPO
registers. The current PC is changed to the appropriate exception vector address and the exception bits of earlier
pipeline stages are cleared.

This implementation allows all preceding instructions to complete execution and prevents all subsequent
instructions from completing. Thus the value in the EPC is sufficient to restart execution. It also ensures that
exceptions are taken in the order of execution; an instruction taking an exception may itself be killed by an
instruction further down the pipeline that takes an exception in a later cycle.

Figure 5-12. Exception Detection

Ecxepti0n| IF1 | IF2 |RF1|RF2;EX1:EX2{DC1;:DC2:WB1 WBZI
1 | IF1 IF2{ RF1:RF2{EX1;EX2:DC1;{DC2;WB1 WBZI
2 \ IF1 ;{ IF2 |RF1;{ RF2 {EX1}{ EX2:;DC1;:DC2{WB1 WBZI
Exception vector IF1 | IF2 |RF1|RF2 [EX1 [EX2|DC1|DC2|WB1 WBZI
: Killed stage
. Interpret

142

CHAPTER 5 VR4111 PIPELINE

5.5.2 Stall Conditions
Stalls are used to stop the pipeline for conditions detected after the RF stage. When a stall occurs, the processor

will resolve the condition and then the pipeline will continue. Figure 5-13 shows a data cache miss stall, and Figure

5-14 shows a CACHE instruction stall.

Figure 5-13. Data Cache Miss Stall

| F [rRe]ex|Dc|we WBIuo|WB WB WBI

Y 7

| F [rRe|Ex|DC DCI...|DC pc | bc WBI

|IF RF | EX ExI...|Ex Ex | ex | bc WBI

|IF RF RFI...|RF rRF | RF | EX | DC WBI

@ Detect data cache miss
@ Start moving data cache line to write buffer

@ Get last word into cache and restart pipeline

If the cache line to be replaced is dirty 0 the W bit is set O the data is moved to the internal write buffer in the
next cycle. The write-back data is returned to memory. The last word in the data is returned to the cache at 3, and

pipelining restarts.

Figure 5-14. CACHE Instruction Stall

| F [rRe]ex|Dc|we WBIuo|WB WB WBI

7 7

| F [rRe|Ex|DC DCI...|DC DC | DC WBI

|IF RF | EX ExI...|Ex Ex | ex | bc WBI

| F [rF RFI...|RF RF | RF | Ex | DC WBI

@ CACHE instruction start

@ CACHE instruction complete

When the CACHE instruction enters the DC pipe-stage, the pipeline stalls while the CACHE instruction is
executed. The pipeline begins running again when the CACHE instruction is completed, allowing the instruction

fetch to proceed.

143

CHAPTER 5 VR4111 PIPELINE

5.5.3 Slip Conditions

During @2 of the RF stage and ®1 of the EX stage, internal logic will determine whether it is possible to start the
current instruction in this cycle. If all of the source operands are available (either from the register file or via the
internal bypass logic) and all the hardware resources necessary to complete the instruction will be available
whenever required, then the instruction “run”; otherwise, the instruction will “slip”. Slipped instructions are retired on
subsequent cycles until they issue. The backend of the pipeline (stages DC and WB) will advance normally during
slips in an attempt to resolve the conflict. NOPs will be inserted into the bubble in the pipeline. Instructions killed by
branch likely instructions, ERET or exceptions will not cause slips.

Figure 5-15. Load Data Interlock

loadA | IF [RF [Ex|DC WBI
Load B | F | RF| Ex|DC WBI

\ Bypass
ADD A, B | IF EX WBI

éé

@ Detect load interlock

@ Get the target data

rRF | Ex | DC WBI

Load Data Interlock is detected in the RF stage shown in as Figure 5-15 and also the pipeline slips in the stage.
Load Data Interlock occurs when data fetched by a load instruction and data moved from HI, LO or CPO register is
required by the next immediate instruction. The pipeline begins running again when the clock after the target of the
load is read from the data cache, HI, LO and CPO registers. The data returned at the end of the DC stage is input
into the end of the RF stage, using the bypass multiplexers.

Figure 5-16. MD Busy Interlock

| F [rRF|Ex|DC WBI

\ Bypass

MFLO/MFHI | IF EX WB I

éé

@ Detect MD busy interlock

@ Get target data

rRF | Ex | DC WBI

144

CHAPTER 5 VR4111 PIPELINE

MD Busy Interlock is detected in the RF stage as shown in Figure 5-16 and also the pipeline slips in the stage.
MD Busy Interlock occurs when Hi/Lo register is required by MFHi/Lo instruction before finishing Mult/Div execution.
The pipeline begins running again the clock after finishing Mult/Div execution. The data returned from the Hi/Lo
register at the end of the DC stage is input into the end of the RF stage, using the bypass multiplexers.

Store-Load Interlock is detected in the EX stage and the pipeline slips in the RF stage. Store-Load Interlock
occurs when store instruction followed by load instruction is detected. The pipeline begins running again one clock
after.

Coprocessor 0 Interlock is detected in the EX stage and the pipeline slips in the RF stage. A coprocessor
interlock occurs when an MTCO instruction for the Configuration or Status register is detected.

The pipeline begins running again one clock after.

5.5.4 Bypassing

In some cases, data and conditions produced in the EX, DC and WB stages of the pipeline are made available to
the EX stage (only) through the bypass data path.

Operand bypass allows an instruction in the EX stage to continue without having to wait for data or conditions to
be written to the register file at the end of the WB stage. Instead, the Bypass Control Unit is responsible for ensuring
data and conditions from later pipeline stages are available at the appropriate time for instructions earlier in the
pipeline.

The Bypass Control Unit is also responsible for controlling the source and destination register addresses supplied
to the register file.

5.6 CODE COMPATIBILITY

The VR4110 CPU core can execute all programs that can be executed in other VR-Series processors. But the
reverse is not necessarily true. Programs complied using a standard MIPS compiler can be executed in both types
of processors. When using manual assembly, however, write programs carefully so that compatibility with other Vr-
series processors can be maintained. Matters which should be paid attention to when porting programs between the
VR4110 CPU core and other VR-Series processors are listed below.

® The VR4110 CPU core does not support floating-point instructions since it has no Floating-Point Unit (FPU).
® Multiply-add instructions (DMADD16, MADD16) are added in the VR4110 CPU core.

® |nstructions for power modes (HIBERNATE, STANDBY, SUSPEND) are added in the VR4110 CPU core to
support power modes.

® The VR4110 CPU core does not have the LL bit to perform synchronization of multiprocessing. Therefore, the
CPU core does not support instructions which manipulate the LL bit (LL, LLD, SC, SCD).

® A 16-bit length MIPS16 instruction set is added in the VR4110 CPU core.

® The CPO hazards of the VR4110 CPU core are equally or less stringent than those of other processors (see
Chapter 30 for details).

For more information, refer to Chapter 4, Chapter 28, the Vr4000, VrR4400 User’s Manual, or the VrR4300™ User’s
Manual.

145

[MEMO]

146

CHAPTER 6 MEMORY MANAGEMENT SYSTEM

The Vr4111 provides a memory management unit (MMU) which uses a translation lookaside buffer (TLB) to
translate virtual addresses into physical addresses. This chapter describes the virtual and physical address spaces,
the virtual-to-physical address translation, the operation of the TLB in making these translations, and the CPO
registers that provide the software interface to the TLB.

6.1 TRANSLATION LOOKASIDE BUFFER (TLB)

Virtual addresses are translated into physical addresses using an on-chip TLB. The on-chip TLB is a fully-
associative memory that holds 32 entries, which provide mapping to odd/even page pairs for one entry. The pages
can have five different sizes, 1 K, 4 K, 16 K, 64 K, and 256 K, and can be specified in each entry. If it is supplied
with a virtual address, each of the TLB entries is checked simultaneously to see whether they match the virtual
addresses that are provided with the ASID field and saved in the EntryHi register.

If there is a virtual address match, or “hit,” in the TLB, the physical page number is extracted from the TLB and
concatenated with the offset to form the physical address.

If no match occurs (TLB “miss”), an exception is taken and software refills the TLB from the page table resident in
memory. The software writes to an entry selected using the Index register or a random entry indicated in the
Random register.

If more than one entry in the TLB matches the virtual address being translated, the operation is undefined and the
TLB may be disabled. In this case, the TLB-Shutdown (TS) bit of the Status register is set to 1, and the TLB
becomes unusable (an attempt to access the TLB results in a TLB Mismatch exception regardless of whether there
is an entry that hits). The TS bit can be cleared only by a reset.

Note that virtual addresses may be converted to physical addresses without using a TLB, depending on the
address space that is being subjected to address translation. For example, address translation for the ksegO or
ksegl address space does not use mapping. The physical addresses of these address spaces are determined by
subtracting the base address of the address space from the virtual addresses.

6.2 VIRTUAL ADDRESS SPACE

The address space of the CPU is extended in memory management system, by converting (translating) huge
virtual memory addresses into physical addresses.

The physical address space of the Vr4111 is 4 Gbytes and 32-bit width addresses are used.

For the virtual address space, up to 2 Gbytes (2*) are provided as a user's area and 32-bit width addresses are
used in the 32-bit mode. In the 64-bit mode, up to 1 Thyte (2%) is provided as a user's area and 64-bit width
addresses are used. For the format of the TLB entry in each mode, refer to 6.4.1.

As shown in Figures 6-2 and 6-3, the virtual address is extended with an address space identifier (ASID), which
reduces the frequency of TLB flushing when switching contexts. This 8-bit ASID is in the CPO EntryHi register, and
the Global (G) bit is in the EntryLo0O and EntryLol registers, described later in this chapter.

147

CHAPTER 6 MEMORY MANAGEMENT SYSTEM

Figure 6-1. Virtual-to-Physical Address Translation

1 The virtual page number (VPN) in the
virtual address (VA) is compared with
the VPN in the TLB.

2 If there is a match, the page frame
number (PFN) representing the high-
order bits of the physical address is
output from the TLB.

3 The offset is then added to the PFN
passing through the TLB.

6.2.1 Virtual-to-Physical Address Translation

Converting a virtual address to a physical address begins by comparing the virtual address from the processor
with the virtual addresses in the TLB; there is a match when the virtual page number (VPN) of the address is the
same as the VPN field of the entry, and either:

Virtual address

| ASID VPN I | Offset
| G ASID VPN I
L TLB
entry
| PFN I
TLB |
v v
| PFN I | Offset

<~ the Global (G) bit of the TLB entry is set to 1, or
< the ASID field of the virtual address is the same as the ASID field of the TLB entry.

This match is referred to as a TLB hit. If there is no match, a TLB Mismatch exception is taken by the processor

Physical address

and software is allowed to refill the TLB from a page table of virtual/physical addresses in memory.

If there is a virtual address match in the TLB, the physical address is output from the TLB and concatenated with
the offset, which represents an address within the page frame space. The offset does not pass through the TLB.
Instead, the low-order bits of the virtual address are output without being translated. See descriptions about the
virtual address space for details. For details about the physical address, see 6.5.11 Virtual-to-Physical Address

Translation .

The next two sections describe the 32-bit and 64-bit mode address translations.

148

CHAPTER 6 MEMORY MANAGEMENT SYSTEM

6.2.2 32-bit Mode Address Translation

Figure 6-2 shows the virtual-to-physical-address translation of a 32-bit mode address. The pages can have five
different sizes between 1 Kbyte (10 bits) and 256 Kbytes (18 bits), each being 4 times as large as the preceding one
in ascending order, thatis 1 K, 4 K, 16 K, 64 K, and 256 K.

<~ Shown at the top of Figure 6-2 is the virtual address space in which the page size is 1 Kbyte and the offset is
10 bits. The 22 bits excluding the ASID field represents the virtual page number (VPN), enabling selecting a
page table of 4 M entries.

< Shown at the bottom of Figure 6-2 is the virtual address space in which the page size is 256 Kbytes and the
offset is 18 hits. The 14 bits excluding the ASID field represents the VPN, enabling selecting a page table of

16 K entries.
Figure 6-2. 32-bit Mode Virtual Address Translation
Virtual address for 4M (2?%) 1-Kbyte pages
39 32 31 29 28 10 9 0
ASID VPN Offset I
8 22 10
22 bits = 4M pages _A J
\/Vi;tual—to—physical address The offset is passed to
translation with the TLB physical address without
being changed.
[ris]
Bits 31 to 29 of the virtual 32-bit physical address
address select the user, 31 ¢ 0
supervisor, or kernel \ 4
address space. PFN Offset I
Virtual-to-physical address
translation with the TLB The offset is passed to
physical address without
being changed.
39 323129 28 18 17 0
| ASID VPN Offset I

~
8 14 18
14 bits = 16K pages

Virtual address for 16K (2**) 256-Kbyte pages

149

CHAPTER 6 MEMORY MANAGEMENT SYSTEM

6.2.3 64-bit Mode Address Translation

Figure 6-3 shows the virtual-to-physical-address translation of a 64-bit mode address. The pages can have five
different sizes between 1 Kbyte (10 bits) and 256 Kbytes (18 bits), each being 4 times as large as the preceding one
in ascending order, that is 1K, 4K, 16K, 64K, and 256K. This figure illustrates the two possible page sizes: a 1-
Kbyte page (10 bits) and a 256-Kbyte page (18 bits).

< Shown at the top of Figure 6-3 is the virtual address space in which the page size is 1 Kbyte and the offset is
10 bits. The 30 bits excluding the ASID field represents the virtual page number (VPN), enabling selecting a
page table of 1 G entry.

<~ Shown at the bottom of Figure 6-3 is the virtual address space in which the page size is 256 Kbytes and the
offset is 18 bits. The 22 bits excluding the ASID field represents the VPN, enabling selecting a page table of
4 M entries.

Figure 6-3. 64-bit Mode Virtual Address Translation

Virtual address for 1G (2*) 1-Kbyte pages

71 64 63 62 61 40 39 10 9 0
ASID Oor-1 VPN Offset I
8 2 22 30 10
30 bits = 1G pages A)
~ _
Grtual-to-physical address The offset is passed to
translation with the TLB physical address without
being changed.
IELEI 32-bit physical address
Bits 62 and 63 of the virtual
address select the user, 31 ¢ 0
supervisor, or kernel \ 4
address space. PFN Offset I

Virtual-to-physical address

translation with the TLB The offset is passed to

physical address without
being changed.

S Y
71 64 63 62 61 40 39 18 17 0
| ASID Oor-1 VPN Offset I

8 2 22 22 18
22 bits = 4M pages
Virtual address for 4M (2%) 256-Kbyte pages

150

CHAPTER 6 MEMORY MANAGEMENT SYSTEM

6.2.4 Operating Modes
The processor has three operating modes that function in both 32- and 64-bit operations:

< User mode
< Supervisor mode
< Kernel mode

User and Kernel modes are common to all Vr-Series processors. Generally, Kernel mode is used to executing
the operating system, while User mode is used to run application programs. The Vr4000 series processors have a
third mode, which is called Supervisor mode and categorized in between User and Kernel modes. This mode is
used to configure a high-security system.

When an exception occurs, the CPU enters Kernel mode, and remains in this mode until an exception return
instruction (ERET) is executed. The ERET instruction brings back the processor to the mode in which it was just
before the exception occurs.

These modes are described in the next three sections.

6.2.5 User Mode Virtual Addressing

During the single user mode, a 2-Gbyte (2% bytes) virtual address space (useg) can be used in the 32-bit mode.
In the 64-bit mode, a 1-Thyte (2% bytes) virtual address space (xuseg) can be used.

As shown in Tables 6-2 and 6-3, each virtual address is extended independently as another virtual address by
setting an 8-bit address space ID area (ASID), to support user processes of up to 256. The contents of TLB can be
retained after context switching by allocating each process by ASID. useg and xuseg can be referenced via TLB.
Whether a cache is used or not is determined for each page by the TLB entry (depending on the C bit setting in the
TLB entry).

The User segment starts at address 0 and the current active user process resides in either useg (in 32-bit mode)
or xuseg (in 64-bit mode). The TLB identically maps all references to useg/xuseg from all modes, and controls
cache accessibility.

The processor operates in User mode when the Status register contains the following bit-values:

< KSU =10
< EXL=0
< ERL=0

In conjunction with these bits, the UX bit in the Status register selects 32- or 64-bit User mode addressing as
follows:

< When UX = 0, 32-bit useg space is selected.
< When UX = 1, 64-bit xuseg space is selected.

Table 6-1 lists the characteristics of each user segment (useg and xuseg).

151

CHAPTER 6 MEMORY MANAGEMENT SYSTEM

Figure 6-4. User Mode Address Space

32-bitmodé‘*® 64-bitmode
OXFFFF FFFF OXFFFF FFFF FFFF FFFF
Address error Address error
0x8000 0000 0x0000 0100 0000 0000
OX7FFF FFFF 0x0000 OOFF FFFF FFFF
2 Ghytes with 1 Thbyte with
TLB mapping useg TLB mapping xuseg
0x0000 0000 0x0000 0000 0000 0000

Note The Vr4111 uses 64-bit addresses within it. When the processor is running in Kernel mode, it saves

152

the contents of each register or restores their previous contents to initialize them before switching the
context. For 32-bit mode addressing, bit 31 is sign-extended to bits 32 to 63, and the resulting 32 bits
are used for addressing. Usually, it is impossible for 32-bit mode programs to generate invalid
addresses. If context switching occurs and the processor enters Kernel mode, however, an attempt
may be made to save an address other than the sign-extended 32-bit address mentioned above to a
64-bit register. In this case, user-mode programs are likely to generate an invalid address.

Table 6-1. Comparison of useg and xuseg

Address bit Status register bit value Segment Address range Size
value KSU | EXL | ERL | UX name
32-bit 10 0 0 0 useg 0x0000 0000 2 Gbytes
A[31]=0 to (2* bytes)
OX7FFF FFFF
64-bit 10 0 0 1 xuseg 0x0000 0000 0000 0000 1 Thyte
A[63..40] =0 to (2 bytes)

0x0000 00FF FFFF FFFF

CHAPTER 6 MEMORY MANAGEMENT SYSTEM

(1) useg (32-bit mode)
In User mode, when UX = 0 in the Status register and the most significant bit of the virtual address is 0, this
virtual address space is labeled useg.
Any attempt to reference an address with the most-significant bit set while in User mode causes an Address
Error exception (see CHAPTER 7 EXCEPTION PROCESSING).
The TLB Mismatch exception vector is used for TLB misses.

(2) xuseg (64-bit mode)
In User mode, when UX = 1 in the Status register and bits 63 to 40 of the virtual address are all 0, this virtual
address space is labeled xuseg.
Any attempt to reference an address with bits 63:40 equal to 1 causes an Address Error exception (see
CHAPTER 7 EXCEPTION PROCESSING).
The XTLB Mismatch exception vector is used for TLB misses.

153

CHAPTER 6 MEMORY MANAGEMENT SYSTEM

6.2.6 Supervisor-mode Virtual Addressing

Supervisor mode shown in Figure 6-5 is designed for layered operating systems in which a true kernel runs in
Kernel mode, and the rest of the operating system runs in Supervisor mode.

All of the suseg, sseg, xsuseg, xsseg, and csseg spaces are referenced via TLB. Whether cache can be used or
not is determined by bit C of each page’s TLB entry.

The processor operates in Supervisor mode when the Status register contains the following bit-values:

< KSuU =01
< EXL=0
< ERL=0

In conjunction with these bits, the SX bit in the Status register selects 32- or 64-bit Supervisor mode addressing:

< When SX = 0, 32-bit supervisor space is selected.
< When SX =1, 64-bit supervisor space is selected.

Figure 6-5 shows the supervisor mode address space, and Table 6-2 lists the characteristics of the Supervisor
mode segments.

154

CHAPTER 6 MEMORY MANAGEMENT SYSTEM

Figure 6-5. Supervisor Mode Address Space

32-bit mode™°*® 64-bit mode
OXFFFF FFFF OXFFFF FFFF FFFF FFFF
Address error Address error
0XE000 0000 OXFFFF FFFF EQ00 0000
OXDFFF FFFF | 05 Ghytes with OXFFFF FFFF DFFF FFFF | 0.5 Gbytes with
0xC000 0000 | T-BmMapping 5584 OXFFFF FFFF C000 0000 | '-BMapping csseg
OXBFFF FFFF OXFFFF FFFF BFFF FFFF
Address error Address error
0x8000 0000 0x4000 0100 0000 0000
OX7FFF FFFF 0x4000 OOFF FFFF FFFF 1 Thyte with
TLB mapping XSseg
2 Ghytes with 0x4000 0000 0000 0000
TLB mapping Ox3FFF FFFF FFFF FFFF
suseg Address error
0x0000 0100 0000 0000
0x0000 OOFF FFFF FFFF 1 Thyte with
0X0000 0000 0x0000 0000 0000 0000 TLB mapping XSuseg

Note The VrR4111 uses 64-bit addresses within it. For 32-bit mode addressing, bit 31 is sign-extended to bits
32 to 63, and the resulting 32 bits are used for addressing. Usually, it is impossible for 32-bit mode
programs to generate invalid addresses. In an operation of base register + offset for addressing,
however, a two’'s complement overflow may occur, causing an invalid address. Note that the result
becomes undefined. Two factors that can cause a two’s complement follow:

<~ When offset bit 15 is 0, base register bit 31 is 0, and bit 31 of the operation “base register + offset” is 1
< When offset bit 15 is 1, base register bit 31 is 1, and bit 31 of the operation “base register + offset” is 0

155

CHAPTER 6 MEMORY MANAGEMENT SYSTEM

1)

)

®)

156

Table 6-2. 32-bit and 64-bit Supervisor Mode Segments

Address bit Status register bit value Segment Address range Size
value KSU EXL ERL SX name
32-bit 01 0 0 0 suseg 0x0000 0000 2 Ghytes
A[31]=0 to (2% bytes)
OX7FFF FFFF
32-bit 01 0 0 0 sseg 0xC000 0000 512 Mbytes
A[31..29] = 110 to (2* bytes)
OxDFFF FFFF
64-bit 01 0 0 1 xsuseg 0x0000 0000 0000 0000 1 Thyte
A[63..62] = 00 to (2% bytes)
0x0000 OOFF FFFF FFFF
64-bit 01 0 0 1 xsseg 0x4000 0000 0000 0000 1 Thyte
A[63..62] = 01 to (2* bytes)
0x4000 00FF FFFF FFFF
64-bit 01 0 0 1 csseg OxFFFF FFFF C000 0000 512 Mbytes
A[63..62] = 11 to (2% bytes)

OXFFFF FFFF DFFF FFFF

suseg (32-bit Supervisor mode, user space)

When SX = 0 in the Status register and the most-significant bit of the virtual address space is set to 0, the suseg
virtual address space is selected; it covers 2 Gbytes (2* bytes) of the current user address space. The virtual
address is extended with the contents of the 8-bit ASID field to form a unique virtual address. This mapped
space starts at virtual address 0x0000 0000 and runs through Ox7FFF FFFF.

sseg (32-bit Supervisor mode, supervisor space)

When SX = 0 in the Status register and the three most-significant bits of the virtual address space are 110, the
sseg virtual address space is selected; it covers 512 Mbytes (2% bytes) of the current supervisor virtual address
space. The virtual address is extended with the contents of the 8-bit ASID field to form a unique virtual address.
This mapped space begins at virtual address 0xC000 0000 and runs through OXDFFF FFFF.

xsuseg (64-bit Supervisor mode, user space)

When SX = 1 in the Status register and bits 63 and 62 of the virtual address space are set to 00, the xsuseg
virtual address space is selected; it covers 1 Tbyte (2 bytes) of the current user address space. The virtual
address is extended with the contents of the 8-bit ASID field to form a unique virtual address. This mapped
space starts at virtual address 0x0000 0000 0000 0000 and runs through 0x0000 00FF FFFF FFFF.

CHAPTER 6 MEMORY MANAGEMENT SYSTEM

(4) xsseg (64-bit Supervisor mode, current supervisor space)
When SX = 1 in the Status register and bits 63 and 62 of the virtual address space are set to 01, the xsseg
virtual address space is selected; it covers 1 Thyte (2 bytes) of the current supervisor virtual address space.
The virtual address is extended with the contents of the 8-bit ASID field to form a unique virtual address. This
mapped space begins at virtual address 0x4000 0000 0000 0000 and runs through 0x4000 00FF FFFF FFFF.

(5) csseg (64-bit Supervisor mode, separate supervisor space)
When SX = 1 in the Status register and bits 63 and 62 of the virtual address space are set to 11, the csseg
virtual address space is selected; it covers 512 Mbytes (2°° bytes) of the separate supervisor virtual address
space. The virtual address is extended with the contents of the 8-bit ASID field to form a unique virtual address.
This mapped space begins at virtual address OxFFFF FFFF C000 0000 and runs through OxFFFF FFFF DFFF
FFFF.

6.2.7 Kernel-mode Virtual Addressing
If the Status register satisfies any of the following conditions, the processor runs in Kernel mode.

< KSU =00
< EXL=1
< ERL=1

The addressing width in Kernel mode varies according to the state of the KX bit of the Status register, as follows:

< When KX = 0, 32-bit kernel space is selected.
< When KX = 1, 64-bit kernel space is selected.

The processor enters Kernel mode whenever an exception is detected and it remains in Kernel mode until an
exception return (ERET) instruction is executed and results in ERL and/or EXL = 0. The ERET instruction restores
the processor to the mode existing prior to the exception.

Kernel mode virtual address space is divided into regions differentiated by the high-order bits of the virtual
address, as shown in Figure 6-6. Table 6-3 lists the characteristics of the 32-bit Kernel mode segments, and Table
6-4 lists the characteristics of the 64-bit Kernel mode segments.

157

CHAPTER 6 MEMORY MANAGEMENT SYSTEM

Figure 6-6. Kernel Mode Address Space

32-bitmode"*¢* 64-bit mode
OXFFFF FFFF _ OxFFFF FFFF FFFF FFFF | & chutes with
0.5 Gbytes with TLB mapping ckseg
TLB mapping kseg3 OxFFFF FFFF EO0O 0000
0XE000 0000 OxFFFF FFFF DFFF FFFF 0.5 Gbytes with
OXDFFF FFFF TLB mapping cksseg
0.5 Gbytes with " OxFFFF FFFF CO00 0000
TLB mapping Ss€g OXFFFF FFFF BFFF FFFF | 0.5 Gbytes without
0xC000 0000 TLB mapping cksegl
OXBFEE FFFF _ OxFFFF FFFF A0O00 0000 uncacheable
0-5T(E§Vt95 without cseql OXFFFF FFFF 9FFF FFFF | 0.5 Gbytes without
uncan?gaptl)rI]g 9 TLB mapping ckseg0
0xA000 0000 OxFFFF FFFF 8000 0000 cacheablehote 2
OxFFFF FFFF 7FFF FFFF
OXOFFF FFFF 0.5 Gbytes without Address error
TLB mapping kseg0 0xC000 OOFF 8000 0000
cacheable
0x8000 0000 0xCO000 O0FF 7FFF FFFF _ ‘
With TLB mapping xkseg
OX7FFF FFFF 0xC000 0000 0000 0000
OXBFFF FFFF FFFF FFFF | Without TLB mapping
(See Table 6-7 for xkphys
0x8000 0000 0000 0000 details.)
2 Gbytes with TLB OX7FFF FFFF FFFF FFFF
mapping Address error
0x4000 0100 0000 0000
kuseg 0x4000 OOFF FFFFFFFF |)1y i i
mapping xksseg
0x4000 0000 0000 0000
Ox3FFF FFFF FFFF FFFF
Address error
0x0000 0100 0000 0000
0x0000 OOFF FFFF FFFF 1 Thyte with TLB
mapping xkuseg
0x0000 0000 0x0000 0000 0000 0000

Notes 1. The VR4111 uses 64-bit addresses within it. For 32-bit mode addressing, bit 31 is sign-extended to
bits 32 to 63, and the resulting 32 bits are used for addressing. Usually, a 64-bit instruction is used
for the program in 32-bit mode. In an operation of base register + offset for addressing, however, a
two’s complement overflow may occur, causing an invalid address. Note that the result becomes

undefined. Two factors that can cause a two’'s complement follow:

<- When offset bit 15 is 0, base register bit 31 is 0, and bit 31 of the operation “base register + offset”
is 1

<- When offset bit 15 is 1, base register bit 31 is 1, and bit 31 of the operation “base register + offset”
is0

2. The KO field of the Config register controls cacheability of kseg0 and cksegO.

158

CHAPTER 6 MEMORY MANAGEMENT SYSTEM

Figure 6-7. xkphys Area Address Space

OXBFFF FFFF FFFF FFFF

0xB800 0001 0000 0000
0xB800 0000 FFFF FFFF

0xB800 0000 0000 0000
OXB7FF FFFF FFFF FFFF

0xB000 0001 0000 0000
0xB000 0000 FFFF FFFF

0xB000 0000 0000 0000
OXAFFF FFFF FFFF FFFF

0xA800 0001 0000 0000
0xA800 0000 FFFF FFFF

0xA800 0000 0000 0000
OXATFF FFFF FFFF FFFF

0XA000 0001 0000 0000
0XA000 0000 FFFF FFFF

0XA000 0000 0000 0000
OX9FFF FFFF FFFF FFFF

0x9800 0001 0000 0000
0x9800 0000 FFFF FFFF

0x9800 0000 0000 0000
0x97FF FFFF FFFF FFFF

0x9000 0001 0000 0000
0x9000 0000 FFFF FFFF

0x9000 0000 0000 0000
OX8FFF FFFF FFFF FFFF

0x8800 0001 0000 0000
0x8800 0000 FFFF FFFF

0x8800 0000 0000 0000
OX87FF FFFF FFFF FFFF

0x8000 0001 0000 0000
0x8000 0000 FFFF FFFF

0x8000 0000 0000 0000

Address error

4 Gbytes without
TLB mapping
cacheable

Address error

4 Gbytes without
TLB mapping
cacheable

Address error

4 Gbytes without
TLB mapping
cacheable

Address error

4 Gbytes without
TLB mapping
cacheable

Address error

4 Gbytes without
TLB mapping
cacheable

Address error

4 Gbytes without
TLB mapping
cacheable

Address error

4 Gbytes without
TLB mapping
cacheable

Address error

4 Gbytes without
TLB mapping
cacheable

159

CHAPTER 6 MEMORY MANAGEMENT SYSTEM

)

)

160

Table 6-3. 32-bit Kernel Mode Segments

Address bit value Status register bit value Segment Virtual address Physical Size
KSU | EXL | ERL | KX name address
32-bit KSU =00 0 kuseg 0x0000 0000 TLB map 2 Ghytes
A[31]=0 or to (2% bytes)
EXL=1 OX7FFF FFFF
32-bit or 0 ksegO 0x8000 0000 0x0000 0000 512 Mbytes
A[31..29] = 100 ERL=1 to to (2* bytes)
OX9FFF FFFF | Ox1FFF FFFF
32-bit 0 ksegl 0xA000 0000 0x0000 0000 512 Mbytes
A[31..29] = 101 to to (2% bytes)
OXBFFF FFFF | OX1FFFFFFF
32-bit 0 ksseg 0xC000 0000 TLB map 512 Mbytes
A[31..29] = 110 to (2% bytes)
OXDFFF FFFF
32-bit 0 kseg3 0xE000 0000 TLB map 512 Mbytes
A[31..29] =111 to (2* bytes)
OXFFFF FFFF

kuseg (32-bit Kernel mode, user space)

When KX = 0 in the Status register, and the most-significant bit of the virtual address space is 0, the
virtual address space is selected,; it is the current 2-Gbyte (2*-byte) user address space.

The virtual address is extended with the contents of the 8-bit ASID field to form a unique virtual address.
References to kuseg are mapped through TLB. Whether cache can be used or not is determined by bit C of

kuseg

each page’s TLB entry.

If the ERL bit of the Status register is 1, the user address space is assigned 2 Gbytes (2 bytes) without TLB
mapping and becomes unmapped (with virtual addresses being used as physical addresses) and uncached so
that the cache error handler can use it. This allows the Cache Error exception code to operate uncached using
rO as a base register.

kseg0 (32-bit Kernel mode, kernel space 0)

When KX = 0 in the Status register and the most-significant three bits of the virtual address space are 100, the
ksegO virtual address space is selected:; it is the current 512-Mbyte (2*-byte) physical space.

References to ksegO are not mapped through TLB; the physical address selected is defined by subtracting
0x8000 0000 from the virtual address.

The KO field of the Config register controls cacheability (see CHAPTER 7 EXCEPTION PROCESSING).

CHAPTER 6 MEMORY MANAGEMENT SYSTEM

®)

(4)

(5)

ksegl (32-bit Kernel mode, kernel space 1)

When KX = 0 in the Status register and the most-significant three bits of the virtual address space are 101, the
kseg1 virtual address space is selected; it is the current 512-Mbyte (2%-byte) physical space.

References to ksegl are not mapped through TLB; the physical address selected is defined by subtracting
0xA000 0000 from the virtual address.

Caches are disabled for accesses to these addresses, and main memory (or memory-mapped I/O device
registers) is accessed directly.

ksseg (32-bit Kernel mode, supervisor space)

When KX = 0 in the Status register and the most-significant three bits of the virtual address space are 110, the
ksseg virtual address space is selected; it is the current 512-Mbyte (2”-byte) virtual address space. The virtual
address is extended with the contents of the 8-bit ASID field to form a unique virtual address.

References to ksseg are mapped through TLB. Whether cache can be used or not is determined by bit C of
each page’s TLB entry.

kseg3 (32-bit Kernel mode, kernel space 3)

When KX = 0 in the Status register and the most-significant three bits of the virtual address space are 111, the
kseg3 virtual address space is selected:; it is the current 512-Mbyte (2”-byte) kernel virtual space. The virtual
address is extended with the contents of the 8-bit ASID field to form a unique virtual address.

References to kseg3 are mapped through TLB. Whether cache can be used or not is determined by bit C of
each page’s TLB entry.

161

CHAPTER 6 MEMORY MANAGEMENT SYSTEM

Table 6-4. 64-bit Kernel Mode Segments

Address bit Status register bit value | Segment Virtual address Physical Size
value ksu | ExL | ERL | kX name address
64-bit KSU =00 1 xkuseg 0x0000 0000 0000 0000 TLB map 1 Thyte
A[63..62] = 00 or to (2% bytes)
EXL=1 0x0000 OOFF FFFF FFFF
64-bit or 1 | xksseg 0x4000 0000 0000 0000 TLB map 1 Thyte
A[63..62] = 01 ERL=1 to (2° bytes)
0x4000 00FF FFFF FFFF
64-bit 1 xkphys 0x8000 0000 0000 0000 0x0000 0000 4 Gbytes
A[63..62] = 10 to to (2% bytes)
OXBFFF FFFF FFFF FFFF | OXFFFF FFFF
64-bit 1 xkseg 0xC000 0000 0000 0000 TLB map 2°-2%
A[63..62] = 11 to bytes
0xC000 O0OFF 7FFF FFFF
64-bit 1 cksegO0 OxFFFF FFFF 8000 0000 0x0000 0000 | 512 Mbytes
A[63..62] = 11 to to (2% bytes)
A[63..31] = -1 OxFFFF FFFF OFFF FFFF | Ox1FFF FFFF
64-bit 1 cksegl OxFFFF FFFF AOOO 0000 0x0000 0000 512 Mbytes
A[63..62] = 11 to to (2* bytes)
A[63..31] =-1 OxFFFF FFFF BFFF FFFF Ox1FFF FFFF
64-bit 1 cksseg OxFFFF FFFF C000 0000 TLB map 512 Mbytes
A[63..62] = 11 to (2% bytes)
A[63..31] =-1 OxFFFF FFFF DFFF FFFF
64-bit 1 ckseg3 OxFFFF FFFF EOOO 0000 TLB map 512 Mbytes
A[63..62] = 11 to (2* bytes)
A[63..31] =-1 OxFFFF FFFF FFFF FFFF

(6)

@)

162

xkuseg (64-bit Kernel mode, user space)

When KX = 1 in the Status register and bits 63 and 62 of the virtual address space are 00, the xkuseg virtual
address space is selected; it is the 1-Tbyte (2* bytes) current user address space. The virtual address is
extended with the contents of the 8-bit ASID field to form a unique virtual address.

References to xkuseg are mapped through TLB. Whether cache can be used or not is determined by bit C of
each page’s TLB entry.

If the ERL bit of the Status register is 1, the user address space is assigned 2 Gbytes (2 bytes) without TLB
mapping and becomes unmapped (with virtual addresses being used as physical addresses) and uncached so
that the cache error handler can use it. This allows the Cache Error exception code to operate uncached using
rO as a base register.

xksseg (64-bit Kernel mode, current supervisor space)

When KX =1 in the Status register and bits 63 and 62 of the virtual address space are 01, the xksseg address
space is selected; it is the 1-Tbyte (2* bytes)current supervisor address space. The virtual address is extended
with the contents of the 8-bit ASID field to form a unique virtual address.

References to xksseg are mapped through TLB. Whether cache can be used or not is determined by bit C of
each page’s TLB entry.

CHAPTER 6 MEMORY MANAGEMENT SYSTEM

(8) xkphys (64-bit Kernel mode, physical spaces)
When the KX = 1 in the Status register and bits 63 and 62 of the virtual address space are 10, the virtual
address space is called xkphys and selected as either cached or uncached. If any of bits 58 to 32 of the
address is 1, an attempt to access that address results in an address error.
Whether cache can be used or not is determined by bits 59 to 61 of the virtual address. Table 6-5 shows
cacheability corresponding to 8 address spaces.

Table 6-5. Cacheability and the xkphys Address Space

Bits 61-59 Cacheability Start address

0 Cached 0x8000 0000 0000 0000
to
0x8000 0000 FFFF FFFF

1 Cached 0x8800 0000 0000 0000
to
0x8800 0000 FFFF FFFF

2 Uncached 0x9000 0000 0000 0000
to
0x9000 0000 FFFF FFFF

3 Cached 0x9800 0000 0000 0000
to
0x9800 0000 FFFF FFFF

4 Cached 0xA000 0000 0000 0000
to
0XA000 0000 FFFF FFFF

5 Cached 0xA800 0000 0000 0000
to
0xA800 0000 FFFF FFFF

6 Cached 0xB00O 0000 0000 0000
to
0xB000 0000 FFFF FFFF

7 Cached 0xB800 0000 0000 0000
to
0xB800 0000 FFFF FFFF

(9) xkseg (64-bit Kernel mode, physical spaces)
When the KX = 1 in the Status register and bits 63 and 62 of the virtual address space are 11, the virtual
address space is called xkseg and selected as either of the following:

« kernel virtual space xkseg, the current kernel virtual space; the virtual address is extended with the contents
of the 8-hit ASID field to form a unique virtual address
References to xkseg are mapped through TLB. Whether cache can be used or not is determined by bit C of
each page’s TLB entry.

« one of the four 32-bit kernel compatibility spaces, as described in the next section.

163

CHAPTER 6 MEMORY MANAGEMENT SYSTEM

(10)64-bit Kernel mode compatible spaces (cksegO, cksegl, cksseg, and ckseg3)

If the conditions listed below are satisfied in Kernel mode, cksegO, cksegl, cksseg, or ckseg3 (each having 512

Mbytes) is selected as a compatible space according to the state of the bits 30 and 29 (two low-order bits) of the
address.

<~ The KX bit of the Status register is 1.
< Bits 63 and 62 of the 64-bit virtual address are 11.
< Bits 61 to 31 of the virtual address are all 1.

(i) ckseg0

This space is an unmapped region, compatible with the 32-bit mode kseg0 space. The KO field of the Config
register controls cacheability and coherency.

(ii) cksegl

This space is an unmapped and uncached region, compatible with the 32-bit mode ksegl space.

(iii) cksseg

This space is the current supervisor virtual space, compatible with the 32-bit mode ksseg space.
References to cksseg are mapped through TLB. Whether cache can be used or not is determined by bit C of
each page’s TLB entry.

(iv) ckseg3

164

This space is the current supervisor virtual space, compatible with the 32-bit mode kseg3 space.
References to ckseg3 are mapped through TLB. Whether cache can be used or not is determined by bit C of
each page’s TLB entry.

CHAPTER 6 MEMORY MANAGEMENT SYSTEM

6.3 PHYSICAL ADDRESS SPACE

Using a 32-bit address, the processor physical address space encompasses 4 Gbytes. The Vr4111 uses this 4-
Gbyte physical address space as shown in Figure 6-8.

Figure 6-8. Vr4111 Physical Address Space

OxFFFF FFFF
(Mirror Image of 0x0000 0000 to Ox1FFF FFFF Area)

0x2000 0000
OX1FFF FFFF

ROM Area (Include Boot ROM)

0x1800 0000
OX17FF FFFF

System Bus I/0O Area (ISA-10)

0x1400 0000
OX13FF FFFF

System Bus 1/0 Area (ISA-MEM)

0x1000 0000
OXOFFF FFFF

RFU

0x0D00 0000
OXOCFF FFFF

Internal 1/0 Area 1
0x0C00 0000

OXOBFF FFFF

Internal 1/0O Area 2
0x0B00 0000
Ox0AFF FFFF

LCD/High-Speed System Bus Area

0x0A00 0000
Ox09FF FFFF
RFU
0x0400 0000
Ox03FF FFFF
DRAM Area

0x0000 0000

165

CHAPTER 6 MEMORY MANAGEMENT SYSTEM

166

Table 6-6. VR4111 Physical Address Space

Physical address Space Capacity (bytes)
OxFFFF FFFF to 0x2000 0000 Mirror image of Ox1FFF FFFF to 0x0000 0000 356G
Ox1FFF FFFF to 0x1800 0000 ROM space 128 M
0x17FF FFFF to 0x1400 0000 System bus I/0O space (ISA-IO) 64 M
0x13FF FFFF to 0x1000 0000 System bus memory space (ISA-MEM) 64 M
OxOFFF FFFF to 0xOD0OO 0000 Space reserved for future use 48 M
0xOCFF FFFF to 0x0C00 0000 Internal 1/0O space 1 16 M
OxOBFF FFFF to 0x0B0O 0000 Internal 1/0 space 2 16 M
O0x0AFF FFFF to 0XxOA00 0000 LCD/high-speed system bus memory space 16 M
0x09FF FFFF to 0x0400 0000 Space reserved for future use 96 M
0x03FF FFFF to 0x0000 0000 DRAM space 64 M

CHAPTER 6 MEMORY MANAGEMENT SYSTEM

6.3.1 ROM Space
The ROM space differs depending on the data bus’ bit width and the capacity of the ROM being used.

» The data bus’ bit width is set via the DBUS32 pin.
* The ROM capacity is set via the BCUNTREG1's ROM64 bit and EXT_ROM64 bit.

The physical addresses of the ROM space are listed below.

Table 6-7. ROM Addresses (When Using 16-bit Data Bus)

Physical address

ADDI[25:0] pin

When using 32-M ROM
(DBUS32=0, ROM64=0)

When using 64-M ROM
(DBUS32=0, ROM64=1)

Ox1FFF FFFF to Ox1FCO 0000

OX3FF FFFF to
0x3C0 0000

Bank 3 (ROMCS[3]#)

O0x1FBF FFFF to 0x1F80 0000

0x3BF FFFF to
0x380 0000

Bank 2 (ROMCS[2]#)

Bank 3 (ROMCS[3]#)

0x1F7F FFFF to Ox1F40 0000

0x37F FFFF to
0x340 0000

Bank 1 (ROMCS[1]#)

0x1F3F FFFF to 0x1F00 0000

0x33F FFFF to
0x300 0000

Bank 0 (ROMCS[0]#)

Bank 2 (ROMCS[2]#)

Ox1EFF FFFF to Ox1E80 0000

OX2FF FFFF to
0x280 0000

Ox1E7F FFFF to Ox1EOO0 0000

0x27F FFFF to
0x200 0000

0x1DFF FFFF to 0x1800 0000

OX1FF FFFF to
0x000 0000

ROM space reserved for
future use

Bank 1 (ROMCS[1]#)

Bank 0 (ROMCS|0]#)

ROM space reserved for
future use

167

CHAPTER 6 MEMORY MANAGEMENT SYSTEM

168

Table 6-8. ROM Addresses (when using 32-bit data bus)

(a) When using 32-Mbit extended ROM

When using 32-Mbit ROM When using 64-Mbit ROM
Physical address ADD[25:0] pin | (DBUS32 =1, ROM64 =0, (DBUS32 = 1, ROM64 = 1,
EXT ROM64 = 0) EXT _ROM64 = 0)
OX1FFFFFFF to OX3FFFFFFF to | Bank 1 (ROMCS#[1]) Bank 1 (ROMCS#[1])
0x1F800000 0x3800000
OX1F7FFFFF to OXx37FFFFFF to | Bank 0 (ROMCS#[0])
0x1F000000 0x3000000
OX1EFFFFF to OX2FFFFFF to | Bank 3 (ROMCSH#[3]) Bank 0 (ROMCS#[0])
0x1E800000 0x2800000
OX1E7FFFFF to OX27FFFFFto | Bank 2 (ROMCS#[2])
0x1E000000 0x2000000
O0x1DFFFFFF to Ox1FFFFFF to ROM space reserved for Bank 3 (ROMCS#[3]) "™
0x1D800000 0x1800000 future use
OX1D7FFFFF to OX17FFFFF to Bank 2 (ROMCS#[2]) "
0x1D000000 0x1000000
O0x1CFFFFFF to OxOFFFFFF to ROM space reserved for
0x18000000 0x0000000 future use

(b) When using 64-Mbit extended ROM

When using 32-M ROM When using 64-M ROM
Physical address ADD[25:0] pin | (DBUS32 =1, ROM64 =0, (DBUS32 = 1, ROM64 = 1,
EXT ROM64 =1) EXT ROM64 = 1)
OX1FFFFFFF to OX3FFFFFFF to | Bank 1 (ROMCS#[1]) Bank 1 (ROMCS#[1])
0x1F800000 0x3800000
OX1F7FFFFF to OX37FFFFFF to | Bank 0 (ROMCS#[0])
0x1F000000 0x3000000
OX1EFFFFFF to OX2FFFFFFto | Bank 3 (ROMCSH#[3]) Bank 0 (ROMCS#[0])
0x1E000000 0x2000000
OX1DFFFFFF to OX1FFFFFFto | Bank 2 (ROMCSH#[2]) Bank 3 (ROMCS#[3]) "*
0x1D000000 0x1000000
0x1CFFFFFF to OXOFFFFFF to ROM space reserved for Bank 2 (ROMCS#[2]) "™
0x1C000000 0x0000000 future use
0x1BFFFFFF to O0x3FFFFFF to ROM space reserved for
0x18000000 0x0000000 future use

Note Can be used exclusively from the extension DRAM.

CHAPTER 6 MEMORY MANAGEMENT SYSTEM

6.3.2 System Bus Space
The following three types of system bus space are available.

» System bus I/O space
This corresponds to the ISA’s I/O space.

« System bus memory space
This corresponds to the ISA’s memory space.

» High-speed system bus memory space
The access speed can be set independently of the system bus memory space.
There are 16 Mbytes of high-speed system bus memory space. Therefore, the ADD[25:24] pin is fixed as
10.
When system bus memory has been accessed from the high-speed system bus memory space, the
LCDCS# pin becomes active.
The high-speed system bus memory space is used exclusively from the LCD space. To switch between
these two types of space, set the ISAM/LCD bitin BCUCNTREG1.

169

CHAPTER 6 MEMORY MANAGEMENT SYSTEM

6.3.3 Internal I/O Space

The VR4111 has two internal I/O spaces. Each of these spaces are described below.

170

Table 6-9. Internal I/0O Space 1

Physical address

Internal 1/0

O0xOCFF FFFF to 0x0C00 0080

Reserved for future use

0x0CO00 007F to 0x0C00 0060

FIR2

0x0CO00 005F to 0x0C00 0040

FIR

0x0CO00 003F to 0x0C00 0020

HSP (Software modem interface)

0x0CO00 001F to 0x0C00 0000

SIU (equivalent to 16550)

Table 6-10. Internal I/O Space 2

Physical address

Internal 1/0

0xOBFF FFFF to 0x0B0O 0300

Reserved for future use

0x0B00 02FF to 0x0B0OO 02EO0 GlU2
0x0B00 02DF to 0x0B0O 02C0 PMU2
0x0B00 02BF to 0x0B0O0O 02A0 PIU2

0x0B00 029F to 0xO0BOO 0280

Reserved for future use

0x0B00 027F to 0xOB0OO 0260

A/D test

0x0B00 025F to 0x0BOO 0240

LED

0x0B00 023F to 0x0B0OO 0220

Reserved for future use

0x0B00 021F to 0x0B0OO 0200

ICU2

0x0BO0O 01FF to 0xOB0OO 01EOQ

Reserved for future use

0x0B00 01DF to 0x0B0O 01CO RTC2
0x0B0O0 01BF to 0x0BOO 01A0 DSIU
0x0B00 019F to 0xOBOO 0180 KIU
0x0B0O0 017F to 0xOB0OO 0160 AlU

0x0B0O0 015F to 0xOB0OO 0140

Reserved for future use

0x0B0O0 013F to 0xOB0OO 0120 PIU1
0x0B00 011F to 0xOBOO 0100 Glul
0x0BOO OOFF to 0xO0B0OO O0EO DSU
0x0B00 OODF to 0x0BOO 00CO RTC1
0x0B0O 00BF to 0x0BOO 00AO PMU
0x0B00 009F to 0xOBOO 0080 ICU1
0x0B0O0 007F to 0xOBOO 0060 CMU
0x0B00 005F to 0xOBOO 0040 DCU
0x0B0O0 003F to 0xOB0OO 0020 DMAA
0x0B00 001F to 0xOBOO 0000 BCU

CHAPTER 6 MEMORY MANAGEMENT SYSTEM

6.3.4 LCD Space

This space is used to access the external LCD controller.
The data bus’s bit width is set via the DBUS32 pin and the BCUCNTREG3'’s LCD 32 bit.

DBUS32 pin == 0: 16 bits
DBUS32 pin ==

BCUCNTREG3's LCD32 == 0: 16 bits
BCUCNTREGS's LCD32 == 1: 32 bits

The data accessed via this space can be bit-inverted/bit-reinverted by the GMODE bit of BCUCNTREG2.

The LCD space is used exclusively from the high-speed system bus memory space. To switch between these
two types of space, set the ISAM/LCD bit in BCUCNTREGL.

6.3.5 DRAM Space

The DRAM space differs depending on the data bus’ bit width and the capacity of the DRAM being used.

» The data bus’ bit width is set via the DBUS32 pin.
» The DRAM capacity is set via the BCUCNTREG1's DRAM64 bit and EX_DRAM®64 bit.

The physical addresses of the DRAM space are listed below.
For details of ADD[25:0] pin connection, refer to 11.3 CONNECTION OF ADDRESS PINS.

Table 6-11. DRAM Addresses (When Using 16-bit Data Bus)

Physical address

When using 16-Mbit DRAM
(DBUS32 = 0, DRAM64 = 0)

When using 64-Mbit DRAM
(DBUS32 = 0, DRAM64 = 1)

0x03FF FFFF to 0x02000000

0x01FF FFFF to 0x01800000

0x017F FFFF to 0x01000000

0x00FF FFFF to 0x00800000

DRAM space reserved for future use

DRAM space reserved for future use

Bank 3 (UUCAS#/MRASH#[3])

Bank 2 (ULCAS#MRAS#[2])

Bank 1 (MRAS#[1])

0x007F FFFF to 0x00600000

Bank 3 (UUCAS#/MRASH[3])

0x005F FFFF to 0x00400000

Bank 2 (ULCAS#/MRAS#[2])

0x003F FFFF to 0x00200000

Bank 1 (MRAS#[1])

0x001F FFFF to 0x00000000

Bank 0 (MRAS#[0])

Bank 0 (MRAS#[0])

171

CHAPTER 6 MEMORY MANAGEMENT SYSTEM

Table 6-12. DRAM Addresses (When Using 32-bit Data Bus)

(@) When using 16-M bit extended DRAM

Physical address

When using 16-M DRAM
(DBUS32 =1, DRAM64 =0,
EXT_DRAM64 = 0)

When using 64-M DRAM
(DBUS32 =1, DRAM64 =1,
EXT_DRAM64 = 0)

0x03FFFFFF to 0x28000000

0x027FFFFF to 0x02400000

0x023FFFFF to 0x02000000

0x01FFFFFF to 0x01800000

0x017FFFFF to 0x01000000

DRAM space reserved for
future use

DRAM space reserved for
future use

Bank 3 (ROMCS#[3])"*

Bank 2 (ROMCS#[2])"*

Bank 1 (MRAS#[1])

O0xO00FFFFFF to 0x00e00000

0x00dFFFFF to 0x00c00000

Bank 3 (ROMCS#[3])

0x00bFFFFF to 0x00a00000

0x009FFFFF to 0x00800000

Bank 2 (ROMCS#[2])

0x007FFFFF to 0x00600000

0x005FFFFF to 0x00400000

Bank 1 (MRAS#[1])

0x003FFFFF to 0x00200000

0x001FFFFF to 0x00000000

Bank 0 (MRAS#[0])

Bank 0 (MRAS#[0])

(b) When using 64-M bit extended DRAM

Physical address

When using 16-M DRAM
(DBUS32 =1, DRAM64 = 0,
EXT_DRAMG64 = 1)

When using 64-M DRAM
(DBUS32 = 1, DRAM64 = 1,
EXT_DRAM64 = 1)

0x03FFFFFF to 0x03000000

0x02FFFFFF to 0x02800000

DRAM space reserved for
future use

Bank 3 (ROMCS#[3])"*

0x027FFFFF to 0x02000000

0x01FFFFFF to 0x01800000

Bank 3 (ROMCS#[3])

Bank 2 (ROMCS#[2])"*

0x017FFFFF to 0x01000000

0x00FFFFFF to 0x00800000

Bank 2 (ROMCS #[2])

Bank 1 (MRAS #[1])

0x007FFFFF to 0x00600000

0x005FFFFF to 0x00400000

Bank 1 (MRAS#[1])

0x003FFFFF to 0x00200000

0x001FFFFF to 0x00000000

Bank 0 (MRAS #[0])

Bank 0 (MRAS #[0])

Note Can be used exclusively from the extension ROM

CHAPTER 6 MEMORY MANAGEMENT SYSTEM

6.4 SYSTEM CONTROL COPROCESSOR

The System Control Coprocessor (CPO) is implemented as an integral part of the CPU, and supports memory

management, address translation, exception handling, and other privileged operations.

The CPO contains the

registers and a 32-entry TLB shown in Figure 6-9. The sections that follow describe how the processor uses each of
the memory management-related registers.

Remark

Each CPO register has a unique number that identifies it; this number is referred to as the register

number.
between exception processing and registers.

Figure 6-9. CPO Registers and the TLB

See Chapter 1 for details. Also see Chapter 7 for the CPO functions and the relationships

EntryLoO Index Context BadVAddr
EntryHi 2 0 5 8
10* EntryLol
3* Random Count Compare
11+
31
PageMask Status Cause
TLB 12* 13*
Wired EPC WatchLo
6* 14* 18*
(Safe entries) PRId WatchHi XContext
(See Random register for the 15* 19* 20*
TLB Wired boundary.)
Config Parity Error Cache Error
0 [127/255 0 16* 26* 27*
LLAddr TagLo TagHi ErrorEPC
17* 28* 29* 30*

Used for memory management Used for exception processing

Remark *: Register number

Caution When accessing the CPO register, some instructions require consideration of
the interval time until the next instruction is executed, because it takes a while
from when the contents of the CPO register change to when this change is
reflected on the CPU operation. This time lag is called CPO hazard. For details,
see Chapter 30.

173

CHAPTER 6 MEMORY MANAGEMENT SYSTEM

6.4.1 Format of a TLB Entry
Figure 6-10 shows the TLB entry formats for both 32- and 64-bit modes. Each field of an entry has a

corresponding field in the EntryHi, EntryLoO, EntryLol, or PageMask registers.

Figure 6-10. Format of a TLB Entry

(a) 32-bit mode

127 115 114 107 106 96
| 0 MASK 0 I
13 8 11
95 75 74 73 72 71 64
| VPN2 G 0 ASID I
21 1 2 8
63 60 59 38 37 35 34 33 32
| 0 PFN c D|lv|o I
4 22 3 1 1 1
31 28 27 6 5 3 1 0
| 0 PFN C Dlv]|oO I
4 22 3 1 1 1
(b) 64-bit mode
255 211 210 203 202 192
| 0 MASK 0 I
45 8 11
191 190 189 168 167 139 138 137 136 135 128
R 0 VPN2 G 0 ASID I
2 22 29 1 2 8
127 92 91 70 69 67 66 65 64
| 0 PFN C Dfv]o I
36 22 3 1 1 1
63 28 27 6 5 3 2 10
| 0 PFN C D|lv|o I
36 22 3 1 1 1

The format of the EntryHi, EntryLoO, EbtryLol, and PageMask registers are nearly the same as the TLB entry.
However, it is unknown what bit of the EntryHi register corresponds to the TLB G bit.

174

CHAPTER 6 MEMORY MANAGEMENT SYSTEM

6.5 CPO REGISTERS
The CPO registers explained below are accessed by the memory management system and software. The
parenthesized number that follows each register name is the register number.

6.5.1 Index Register (0)

The Index register is a 32-bit, read/write register containing five low-order bits to index an entry in the TLB. The
most-significant bit of the register shows the success or failure of a TLB probe (TLBP) instruction.

The Index register also specifies the TLB entry affected by TLB read (TLBR) or TLB write index (TLBWI)
instructions.

Figure 6-11. Index Register

31 30 5 4 0
P 0 Index I
1 26 5
P . Indicates whether probing is successful or not. It is set to 1 if the latest TLBP instruction fails. It is

cleared to 0 when the TLBP instruction is successful.
Index : Specifies an index to a TLB entry that is a target of the TLBR or TLBWI instruction.
0 . Reserved for future use. Write 0 in a write operation. When this field is read, 0 is read.

6.5.2 Random Register (1)

The Random register is a read-only register. The low-order 5 bits are used in referencing a TLB entry. This
register is decremented each time an instruction is executed. The values that can be set in the register are as
follows:

< The lower bound is the content of the Wired register.
< The upper bound is 31.

The Random register specifies the entry in the TLB that is affected by the TLBWR instruction. The register is
readable to verify proper operation of the processor.

The Random register is set to the value of the upper bound upon Cold Reset. This register is also set to the
upper bound when the Wired register is written. Figure 6-12 shows the format of the Random register.

Figure 6-12. Random Register

31 5 4 0
0 Random I

27 5

Random : TLB random index
0 . Reserved for future use. Write O in a write operation. When this field is read, O is read.

175

CHAPTER 6 MEMORY MANAGEMENT SYSTEM

6.5.3 EntryLoO (2) and EntryLo1l (3) Registers

The EntryLo register consists of two registers that have identical formats: EntryLoO, used for even virtual pages
and EntryLol, used for odd virtual pages. The EntryLoO and EntryLol registers are both read-/write-accessible.
They are used to access the built-in TLB. When a TLB read/write operation is carried out, the EntryLoO and
EntryLo1l registers hold the contents of the low-order 32 bits of TLB entries at even and odd addresses, respectively.

Figure 6-13. EntryLoO and EntryLol Registers

(a) 32-bit mode

31 28 27 6 5 3 2 1 0
EntryLo0 | 0 PFN C DIV |G I
4 22 3 1 1 1
31 28 27 6 5 3 2 1
EntryLol | 0 PFN C DIV |G I
4 22 3 1 1 1

(b) 64-bit mode

63 28 27 6 5 3 2 1 0
EntryLoO | 0 PEN C D|V |G I
36 22 3 1 1 1
63 28 27 6 5 3 2 1 0
EntryLol | 0 PFN C DIV |G I
36 22 3 1 1 1
PFN : Page frame number; high-order bits of the physical address.
C : Specifies the TLB page attribute (see Table 6-13).
D . Dirty. If this bit is set to 1, the page is marked as dirty and, therefore, writable. This bit is actually a
write-protect bit that software can use to prevent alteration of data.
\% : Valid. If this bit is set to 1, it indicates that the TLB entry is valid; otherwise, a TLB Invalid exception

(TLBL or TLBS) occurs.

G : Global. If this bit is set in both EntryLoO and EntryLol, then the processor ignores the ASID during TLB
lookup.

0 : Reserved for future use. Write 0 in a write operation. When this field is read, 0 is read.

The coherency attribute (C) bits are used to specify whether to use the cache in referencing a page. When the

cache is used, whether the page attribute is “cached” or “uncached” is selected by algorithm.
Table 6-13 lists the page attributes selected according to the value in the C bits.

176

CHAPTER 6 MEMORY MANAGEMENT SYSTEM

Table 6-13. Cache Algorithm

C bit value Cache algorithm

Cached

Cached

Uncached

Cached

Cached

Cached

Cached

~N~N|j|lojloa |~]J]W]|N | |O

Cached

6.5.4 PageMask Register (5)

The PageMask register is a read/write register used for reading from or writing to the TLB; it holds a comparison
mask that sets the page size for each TLB entry, as shown in Table 6-14. Page sizes must be from 1 Kbyte to 256
Kbytes.

TLB read and write instructions use this register as either a source or a destination; Bits 18 to 11 that are targets
of comparison are masked during address translation.

Figure 6-14. Page Mask Register

31 19 18 11 10 0
0 MASK 0 I

13 8 11

MASK : Page comparison mask, which determines the virtual page size for the corresponding entry.
0 : Reserved for future use. Write 0 in a write operation. When this field is read, O is read.

Table 6-14 lists the mask pattern for each page size. If the mask pattern is one not listed below, the TLB behaves
unexpectedly.

Table 6-14. Mask Values and Page Sizes

Page size Bit
18 17 16 15 14 13 12 11
1 Kbyte 0 0 0 0 0 0 0 0
4 Kbytes 0 0 0 0 0 0 1 1
16 Kbytes 0 0 0 0 1 1 1 1
64 Kbytes 0 0 1 1 1 1 1 1
256 Kbytes 1 1 1 1 1 1 1 1

177

CHAPTER 6 MEMORY MANAGEMENT SYSTEM

6.5.5 Wired Register (6)

The Wired register is a read/write register that specifies the lower boundary of the random entry of the TLB as
shown in Figure 6-15. Wired entries cannot be overwritten by a TLBWR instruction. They can, however, be
overwritten by a TLBWI instruction. Random entries can be overwritten by both instructions.

Figure 6-15. Positions Indicated by the Wired Register

T 31

Range specified by
the Random register

Value in the Wired register

T

Range of Wired
entries

| 0

The Wired register is set to 0 upon Cold Reset. Writing this register also sets the Random register to the value of
its upper bound (see 6.5.2 Random Register (1)). Figure 6-16 shows the format of the Wired register.

Figure 6-16. Wired Register

31 5 4 0
0 Wired I

27 5

Wired : TLB wired boundary
0 . Reserved for future use. Write 0 in a write operation. When this field is read, 0 is read.

178

CHAPTER 6 MEMORY MANAGEMENT SYSTEM

6.5.6 EntryHi Register (10)

The EntryHi register is write-accessible. It is used to access the on-chip TLB. The EntryHi register holds the
high-order bits of a TLB entry for TLB read and write operations. If a TLB Mismatch, TLB Invalid, or TLB Modified
exception occurs, the EntryHi register holds the high-order bit of the TLB entry. The EntryHi register is also set with
the virtual page number (VPN2) for a virtual address where an exception occurred and the ASID. See Chapter 7 for
details of the TLB exception.

The ASID is used to read from or write to the ASID field of the TLB entry. It is also checked with the ASID of the
TLB entry as the ASID of the virtual address during address translation.

The EntryHi register is accessed by the TLBP, TLBWR, TLBWI, and TLBR instructions.

Figure 6-17. EntryHi Register

(a) 32-bit mode
31 11 10 8 7 0
VPN2 0 ASID I

21 3 8

(b) 64-bit mode
63 62 61 40 39 11 10 8 7 0
R Fill VPN2 0 ASID I

VPN2: Virtual page number divided by two (mapping to two pages)
ASID : Address space ID. An 8-bit ASID field that lets multiple processes share the TLB; each process has a
distinct mapping of otherwise identical virtual page numbers.

R . Space type (00 - user, 01 - supervisor, 11 — kernel). Matches bits 63 and 62 of the virtual address.
Fill : Reserved. Ignored on write. When read, returns zero.
0 : Reserved for future use. Write O in a write operation. When this field is read, 0 is read.

179

CHAPTER 6 MEMORY MANAGEMENT SYSTEM

6.5.7 Processor Revision Identifier (PRId) Register (15)
The 32-bit, read-only Processor Revision Identifier (PRId) register contains information identifying the

impl

ementation and revision level of the CPU and CPO0. Figure 6-18 shows the format of the PRId register.
Figure 6-18. PRId Register

31 16 15 8 7 0
0 Imp Rev I

16 8 8

Imp : CPU core processor ID number (0xOC for the Vr4111)
Rev : CPU core processor revision number

0

180

. Reserved for future use. Write 0 in a write operation. When this field is read, 0 is read.

The low-order byte (bits 7:0) of the PRId register is interpreted as a revision number, and the high-order byte
(bits 15:8) is interpreted as an implementation number. The processor revision number is stored as a value in
the form y.x, where y is a major revision number in bits 7 to 4 and x is a minor revision number in bits 3 to 0.

The processor revision number can distinguish some CPU core revisions, however there is no guarantee that
changes to the CPU core will necessarily be reflected in the PRId register, or that changes to the revision
number necessarily reflect real CPU core changes. Therefore, create a program that does not depend on the
processor revision number area.

CHAPTER 6 MEMORY MANAGEMENT SYSTEM

6.5.8 Config Register (16)

The Config register specifies various configuration options selected on Vr4111 processors.

Some configuration options, as defined by the EC and BE fields, are set by the hardware during Cold Reset and
are included in the Config register as read-only status bits for the software to access. Other configuration options
are read/write (AD, EP, and KO fields) and controlled by software; on Cold Reset these fields are undefined. Since
only a subset of the VrR4000 Series options are available in the Vr4111, some bits are set to constants (e.g., bits
14:13) that were variable in the VrR4000 Series. The Config register should be initialized by software before caches
are used. Figure 6-19 shows the format of the Config register.

Figure 6-19. Config Register Format

31 30 2827 24 23222120191817 16 15 14 13 12 11 9 8 6 5 32 0
0 EC EP |AD| O |M16/ O |1 |0 |BE| 10 |[CS| IC DC 0 KO I

1 3 4 12 1 2 1 1 1 2 1 3 3 3 3

EC : System interface clock (TClock) frequency ratio (read only)
0 — Processor clock frequency divided by 2
1 - Processor clock frequency divided by 3
2 - Processor clock frequency divided by 4
3to 7 - Reserved
EP : Transfer data pattern (cache write-back pattern) setting
0 — DD: 1 word/1 cycle
Others - Reserved
AD : Accelerate data mode
0 — Vr4000 Series compatible mode
1 - Reserved
M16: MIPS16 ISA mode enable/disable indication (read only)
0 — MIPS16 instruction cannot be executed
1 - MIPS16 instruction can be executed.
BE : BigEndianMem. Endian mode of memory and a kernel.
0 - Little endian
1 - Reserved
CS : Cache size mode indication (fixed to 1)
0 - IC = 2" Byte/DC = 2"
1 - IC =2" Byte/DC = 2™
IC : Instruction cache size indication. In the Vr4111, 2'"” bytes.
100 - 16 Kbytes
Others - Reserved
DC : Data cache size indication. In the Vr4111, 2°°? bytes.
011 - 8 Kbytes
Others - Reserved
KO : ksegO cache coherency algorithm
010 - Uncached
Others - Cached
1 : 1lisreturned when read.
: Oisreturned when read.

181

CHAPTER 6 MEMORY MANAGEMENT SYSTEM

Caution Be sure to set the EP field and the AD bit to 0. If they are set with any other values, the
processor may behave unexpectedly.

6.5.9 Load Linked Address (LLAddr) Register (17)

The read/write Load Linked Address (LLAddr) register is not used with the Vr4111 processor except for
diagnostic purpose, and serves no function during normal operation.

LLAddr register is implemented just for compatibility between the Vr4111 and Vr4000/Vr4400.

Figure 6-20 LLAddr Register

PAddr I

32

PAddr: 32-bit physical address

6.5.10 Cache Tag Registers (TagLo (28) and TagHi (29))

The TagLo and TagHi registers are 32-bit read/write registers that hold the primary cache tag during cache
initialization, cache diagnostics, or cache error processing. The Tag registers are written by the CACHE and MTCO
instructions.

Figures 6-21 and 6-22 show the format of these registers.

Figure 6-21. TaglLo Register

(@) When used with data cache

31 10 9 8 7 6 0
PTaglLo V|D|W 0 I
22 1 1 1 7

(b) When used with instruction cache

31 10 9 8 0
PTaglLo \Y 0 I
22 1 9

PTagLo: Specifies physical address bits 31 to 10.

\% : Valid bit

D . Dirty bit. However, this bit is defined only for the compatibility with the VR4000 Series processors,
and does not indicate the status of cache memory in spite of its readability and writability. This bit
cannot change the status of cache memory.

w : Write-back bit (set if cache line has been updated)

. Reserved for future use. Write 0 in a write operation. When this field is read, O is read.

o

182

CHAPTER 6 MEMORY MANAGEMENT SYSTEM

Figure 6-22. TagHi Register

31 0

32

0: Reserved for future use. Write 0 in a write operation. When this field is read, 0 is read.

6.5.11 Virtual-to-Physical Address Translation

During virtual-to-physical address translation, the CPU compares the 8-bit ASID (when the Global bit, G, is not set
to 1) of the virtual address to the ASID of the TLB entry to see if there is a match. One of the following comparisons
are also made:

< In 32-bit mode, the high-order bits"*® of the 32-bit virtual address are compared to the contents of the VPN2
(virtual page number divided by two) of each TLB entry.

< In 64-bit mode, the high-order bits"® of the 64-bit virtual address are compared to the contents of the VPN2
(virtual page number divided by two) of each TLB entry.

If a TLB entry matches, the physical address and access control bits (C, D, and V) are retrieved from the
matching TLB entry. While the V bit of the entry must be set to 1 for a valid address translation to take place, it is
not involved in the determination of a matching TLB entry.

Figure 6-23 illustrates the TLB address translation flow.

Note The number of bits differs from page sizes. The table below shows the examples of high-order bits of the
virtual address in page size of 256 Kbytes and 1 Kbytes.

Page size 256 Kbytes 1 Kbyte
Mode
32-bit mode bits 31 to 19 bits 31 to 11
64-bit mode bits 63, 62, 39 to 19 bits 63, 62, 39 to 11

183

CHAPTER 6 MEMORY MANAGEMENT SYSTEM

Figure 6-23. TLB Address Translation

Virtual address (input)

VPN
and
ASID

Address
OK?

Address
OK?

Supervisor
mode?

Address Address \
error] error
Address Address
i error OK?
Exception Exception
Exception

Global

(" me)
k Modified)]

Exception
{ Access \ { Access \
\ main memory / \ cache memory /

Physical Address (output)

Uncached
area?

TLB \ TLB \ XTLB \
Invalid Mismatchj Mismatch J

Exception Exception Exception

184

CHAPTER 6 MEMORY MANAGEMENT SYSTEM

6.5.12 TLB Misses

If there is no TLB entry that matches the virtual address, a TLB Refill (miss) exception occurs
control bits (D and V) indicate that the access is not valid, a TLB Modified or TLB Invalid exception occurs. If the C
bit is 010, the retrieved physical address directly accesses main memory, bypassing the cache.

Note

If the access

Note See Chapter 7 for details of the TLB Miss exception.

6.5.13 TLB Instructions
The instructions used for TLB control are described below.

(a) Translation lookaside buffer probe (TLBP)
The translation lookaside buffer probe (TLBP) instruction loads the Index register with a TLB number that
matches the content of the EntryHi register. If there is no TLB number that matches the TLB entry, the highest-
order bit of the Index register is set.

(b) Translation lookaside buffer read (TLBR)
The translation lookaside buffer read (TLBR) instruction loads the EntryHi, EntryLoO, EntryLol, and PageMask
registers with the content of the TLB entry indicated by the content of the Index register.

(c) Translation lookaside buffer write index (TLBWI)
The translation lookaside buffer write index (TLBWI) instruction writes the contents of the EntryHi, EntryLoO,
EntryLol, and PageMask registers to the TLB entry indicated by the content of the Index register.

(d) Translation lookaside buffer write random (TLBWR)

The translation lookaside buffer write random (TLBWR) instruction writes the contents of the EntryHi, EntryLoO,
EntryLol, and PageMask registers to the TLB entry indicated by the content of the Random register.

185

[MEMO]

186

CHAPTER 7 EXCEPTION PROCESSING

This chapter describes CPU exception processing, including an explanation of hardware that processes
exceptions, followed by the format and use of each CPU exception register.

7.1 EXCEPTION PROCESSING OPERATION

The processor receives exceptions from a number of sources, including translation lookaside buffer (TLB) misses,
arithmetic overflows, 1/O interrupts, and system calls. When the CPU detects an exception, the normal sequence of
instruction execution is suspended and the processor enters Kernel mode (see Chapter 6 for a description of system
operating modes). If an exception occurs while executing a MIPS16 instruction, the processor stops the MIPS16
instruction execution, and shifts to the 32-bit instruction execution mode.

The processor then disables interrupts and transfers control for execution to the exception handler (located at a
specific address as an exception handling routine implemented by software). The handler saves the context of the
processor, including the contents of the program counter, the current operating mode (User or Supervisor), statuses,
and interrupt enabling. This context is saved so it can be restored when the exception has been serviced.

When an exception occurs, the CPU loads the Exception Program Counter (EPC) register with a location where
execution can restart after the exception has been serviced. The restart location in the EPC register is the address
of the instruction that caused the exception or, if the instruction was executing in a branch delay slot, the address of
the branch instruction immediately preceding the delay slot. Note that no branch delay slot generated by executing
a branch instruction exists when the processor operates in the MIPS16 mode.

When MIPS16 instructions are enabled to be executed, bit 0 of the EPC register indicates the operating mode in
which an exception occurred. It indicates 1 when in the MIPS16 instruction mode, and indicates 0 when in the MIPS
Il instruction mode.

The Vr4111 processor supports a Supervisor mode and fast TLB refill for all address spaces. The Vr4111 also
provides the following functions:

< Interrupt enable (IE) bit

<~ Operating mode (User, Supervisor, or Kernel)

< Exception level (normal or exception is indicated by the EXL bit in the Status register)
<~ Error level (normal or error is indicated by the ERL bit in the Status register).

Interrupts are enabled when the following conditions are satisfied:

(1) Interrupt enable
An interrupt is enabled when the following conditions are satisfied.

¢ Interrupt enable bit (IE) = 1

e EXLbit=0, ERL bit=0
e Corresponding IM field bits in the Status register = 1

187

CHAPTER 7 EXCEPTION PROCESSING

(2) Operating mode
The operating mode is specified by KSU bit in the Status register when both the exception level and error level
are normal (0). The operation enters Kernel mode when either EXL bit or ERL bit in the Status register is set to
1.

(3) Exception/error levels
Returning from an exception resets the exception level to normal (0) (for details, see Chapter 28).

The registers that retain address, cause, and status information during exception processing are described in 7.3
EXCEPTION PROCESSING REGISTERS. For a description of the exception process, see 7.4 DETAILS OF
EXCEPTIONS.

7.2 PRECISION OF EXCEPTIONS

VrR4111 exceptions are logically precise; the instruction that causes an exception and all those that follow it are
aborted and can be re-executed after servicing the exception. When succeeding instructions are killed, exceptions
associated with those instructions are also killed. Exceptions are not taken in the order detected, but in instruction
fetch order.

The exception handler can still determine exception and its origin. The cause of the program can be restarted by
rewriting the destination register - not automatically, however, as in the case of all the other precise exceptions
where no status change occurs.

188

CHAPTER 7 EXCEPTION PROCESSING

7.3 EXCEPTION PROCESSING REGISTERS

This section describes the CPO registers that are used in exception processing. Table 7-1 lists these registers,

along with their number-each register has a unique identification number that is referred to as its register number.
The CPO registers not listed in the table are used in memory management (see Chapter 6 for details).

The exception handler examines the CPO registers during exception processing to determine the cause of the

exception and the state of the CPU at the time the exception occurred.

The registers in Table 7-1 are used in exception processing, and are described in the sections that follow.

Table 7-1. CPO0 Exception Processing Registers

Register name Register number
Context register 4
BadVAddr register 8
Count register 9
Compare register 11
Status register 12
Cause register 13
EPC register 14
WatchLo register 18
WatchHi register 19
XContext register 20
Parity Error register 26
Cache Error register 27
ErrorEPC register 30

This register is prepared to

hardware.

maintain compatibility with the Vr4100. This register is not used in the Vr4111

189

CHAPTER 7 EXCEPTION PROCESSING

7.3.1 Context Register (4)

The Context register is a read/write register containing the pointer to an entry in the page table entry (PTE) array
on the memory; this array is a table that stores virtual-to-physical address translations. When there is a TLB miss,
the operating system loads the unsuccessfully translated entry from the PTE array to the TLB. The Context register
is used by the TLB Refill exception handler for loading TLB entries. The Context register duplicates some of the
information provided in the BadVAddr register, but the information is arranged in a form that is more useful for a
software TLB exception handler. Figure 7-1 shows the format of the Context register.

Figure 7-1. Context Register Format

(a) 32-bit mode
31 25 24 4 3 0
PTEBase BadVPN2 0 I

7 21 4

(b) 64-bit mode
63 25 24 4 3 0

PTEBase BadVPN2 0 I

39 21 4

PTEBase : The PTEBase field is a base address of the PTE entry table.
BadVPN2 : The BadVPN2 field is written by hardware if a TLB miss occurs. This field holds the value (VPN2)

obtained by halving the virtual page number of the most recent virtual address for which
translation failed.

0 : Reserved for future use. Write 0 in a write operation. When this field is read, O is read.

The PTEBase field is used by software as the pointer to the base address of the PTE table in the current user
address space.

The 21-bit BadVPN2 field contains bits 31-11 of the virtual address that caused the TLB miss; bit 10 is excluded
because a single TLB entry maps to an even-odd page pair. For a 1-Kbyte page size, this format can directly
address the pair-table of 8-byte PTEs. When the page size is 4 Kbytes or more, shifting or masking this value
produces the correct PTE reference address.

190

CHAPTER 7 EXCEPTION PROCESSING

7.3.2 BadVAddr Register (8)

The Bad Virtual Address (BadVAddr) register is a read-only register that saves the most recent virtual address
that failed to have a valid translation, or that had an addressing error. Figure 7-2 shows the format of the BadVAddr
register.

Caution This register saves no information after a bus error exception, because it is not an address
error exception.

Figure 7-2. BadVAddr Register Format

(a) 32-bit mode

BadVAddr I

32

(b) 64-bit mode
63 0
BadVAddr I

64

BadVAddr: Most recent virtual address for which an addressing error occurred, or for which address
translation failed.

7.3.3 Count Register (9)

The read/write Count register acts as a timer. It is incremented in synchronization with the MasterOut clock (1/8,
1/12, or 1/16 frequencies of the PClock), regardless of whether instructions are being executed, retired, or any
forward progress is actually made through the pipeline.

This register is a free-running type. When the register reaches all ones, it rolls over to zero and continues
counting. This register is used for self-diagnostic test, system initialization, or the establishment of inter-process
synchronization.

Figure 7-3 shows the format of the Count register.

Figure 7-3. Count Register Format

31 0
Count I

32

Count: 32-bit up-date count value that is compared with the value of the Compare register.

191

CHAPTER 7 EXCEPTION PROCESSING

7.3.4 Compare Register (11)

The Compare register causes a timer interrupt; it maintains a stable value that does not change on its own.

When the value of the Count register (see 7.3.3 Count Register (9)) equals the value of the Compare register,
the IP(7) bit in the Cause register is set. This causes an interrupt as soon as the interrupt is enabled.

Writing a value to the Compare register, as a side effect, clears the timer interrupt request.

For diagnostic purposes, the Compare register is a read/write register. Normally, this register should be only
used for a write. Figure 7-4 shows the format of the Compare register.

Figure 7-4. Compare Register Format

31 0
Compare I

32

Compare: Value that is compared with the count value of the Count register.
7.3.5 Status Register (12)
The Status register is a read/write register that contains the operating mode, interrupt enabling, and the

diagnostic states of the processor. Figure 7-5 shows the format of the Status register.

Figure 7-5. Status Register Format

31 29 28 27 26 25 24 16 15 8 7 6 5 4 3 2 1 O
0 cw| 0 [RE DS IM (7:0) |KX |SX [UX| KSU [erL|exL IEI
3 1 2 1 9 8 1 1 1 2 1 1 1
CUO : Enables/disables the use of the coprocessor (1 — Enabled, 0 - Disabled).
CPO can be used by the kernel at all times.
0 . Reserved for future use. Write 0 in a write operation. When this bit is read, 0 is read.
RE : Enables/disables reversing of the endian setting in User mode (0 — Disabled, 1 — Enabled). This bit
must be set to 0 since the Vr4111 supports the little-endian order only.
DS : Diagnostic Status field (see Figure 7-6).
IM . Interrupt Mask field used to enable/disable interrupts (0 — Disabled, 1 - Enabled). This field consists

of 8 bits that are used to control eight interrupts. The bits are assigned to interrupts as follows:
IM7 : Masks a timer interrupt.

IM(6:2) : Mask ordinary interrupts (Int(4:0)"*°). However, Int4"** never occur in the Vr4111.
IM(1:0) : Software interrupts.

Note Int(4:0) are internal signals of the VR4110 CPU core. For details about connection to the on-
chip peripheral units, refer to Chapter 15.

192

CHAPTER 7 EXCEPTION PROCESSING

KX . Enables 64-bit addressing in Kernel mode (0 - 32-bit, 1 — 64-hit). If this bit is set, an XTLB Refill
exception occurs if a TLB miss occurs in the Kernel mode address space.

SX . Enables 64-bit addressing and operation in Supervisor mode (0 — 32-bit, 1 - 64-hit). If this bit is
set, an XTLB Refill exception occurs if a TLB miss occurs in the Supervisor mode address space.

UX: . Enables 64-bit addressing and operation in User mode (0 - 32-bit, 1 — 64-bit). If this bit is set, an

XTLB Refill exception occurs if a TLB miss occurs in the User mode address space.
KSU : Sets and indicates the operating mode (10 - User, 01 - Supervisor, 00 - Kernel).

ERL : Sets and indicates the error level (0 - Normal, 1 — Error).
EXL : Sets and indicates the exception level (0 - Normal, 1 - Exception).
IE . Sets and indicates interrupt enabling/disabling (0 - Disabled, 1 — Enabled).

Figure 7-6 shows the details of the Diagnostic Status (DS) field. All DS field bits other than the TS bit are
writable.

Figure 7-6. Status Register Diagnostic Status Field

24 23 22 21 20 19 18 17 16
0 BEV TS SR 0 CH CE DE I
2 1 1 1 1 1 1 1

BEV : Specifies the base address of a TLB Refill exception vector and common exception vector (0 -
Normal, 1 - Bootstrap).

TS : Occurs the TLB to be shut down (read-only) (0 — Not shut down, 1 — Shut down). This bit is used to
avoid any problems that may occur when multiple TLB entries match the same virtual address. After
the TLB has been shut down, reset the processor to enable restart. Note that the TLB is shut down
even if a TLB entry matching a virtual address is marked as being invalid (with the V bit cleared).

SR : Occurs a Soft Reset or NMI exception (0O — Not occurred, 1 - Occurred).

CH : CPO condition bit (0 —» False, 1 — True). This bit can be read and written by software only; it cannot
be accessed by hardware.

CE, DE: These are prepared to maintain compatibility with the Vr4100, and are not used in the Vr4111
hardware.

0 : Reserved for future use. Write 0 in a write operation. When this field is read, 0 is read.

The status register has the following fields where the modes and access status are set.

193

CHAPTER 7 EXCEPTION PROCESSING

@

@

©)

“

®)

(6)

™

Interrupt enable
Interrupts are enabled when all of the following conditions are true:

< IEis setto 1.

< EXL is cleared to 0.

< ERL is cleared to 0.

< The appropriate bit of the IM is set to 1.

Operating modes
The following Status register bit settings are required for User, Kernel, and Supervisor modes.

<> The processor is in User mode when KSU = 10, EXL =0, and ERL = 0.
< The processor is in Supervisor mode when KSU = 01, EXL =0, and ERL = 0.
<> The processor is in Kernel mode when KSU = 00, EXL =1, or ERL = 1.

32- and 64-bit modes

The following Status register bit settings select 32- or 64-bit operation for User, Kernel, and Supervisor
operating modes. Enabling 64-bit operation permits the execution of 64-bit opcodes and translation of 64-hbit
addresses. 64-bit operation for User, Kernel and Supervisor modes can be set independently.

< 64-bit addressing for Kernel mode is enabled when KX bit = 1. 64-bit operations are always valid in Kernel
mode.

< 64-bit addressing and operations are enabled for Supervisor mode when SX bit = 1.

< 64-bit addressing and operations are enabled for User mode when UX bit = 1.

Kernel address space accesses
Access to the kernel address space is allowed when the processor is in Kernel mode.

Supervisor address space accesses
Access to the supervisor address space is allowed when the processor is in Supervisor or Kernel mode.

User address space accesses
Access to the user address space is allowed in any of the three operating modes.

Status after reset

The contents of the Status register are undefined after Cold resets, except for the following bits in the
diagnostic status field.

TS and SR are cleared to 0.

» ERL and BEV are setto 1.

* SRis 0 after Cold reset, and is 1 after Soft reset or NMI interrupt.

Remark Cold reset and Soft reset are CPU core reset (see 8.3 RESET OF THE CPU CORE). For the reset of

194

all the Vr4111 including peripheral units, refer to CHAPTER 8 INITIALIZATION INTERFACE and
CHAPTER 16 PMU.

CHAPTER 7 EXCEPTION PROCESSING

7.3.6 Cause Register (13)

The 32-bit read/write Cause register holds the cause of the most recent exception. A 5-bit exception code
indicates one of the causes (see Table 7-2). Other bits holds the detailed information of the specific exception. All
bits in the Cause register, with the exception of the IP1 and IPO bits, are read-only; IP1 and IPO are used for software
interrupts. Figure 7-7 shows the fields of this register; Table 7-2 describes the Cause register codes.

Figure 7-7. Cause Register Format

31 30 29 28 27 16 15 8 7 6 2 1 0
BD| 0 CE 0 IP(7..0) 0 | ExcCode 0 I
1 1 2 12 8 1 5 2
BD . Indicates whether the most recent exception occurred in the branch delay slot (1 - In delay slot, O
- Normal).
CE . Indicates the coprocessor number in which a Coprocessor Unusable exception occurred.
This field will remain undefined for as long as no exception occurs.
P . Indicates whether an interrupt is pending (1 — Interrupt pending, 0 — No interrupt pending).
IM7 . A timer interrupt.

IM(6:2) : Ordinary interrupts (Int(4:0)"*°). However, Int4"*° never occurs in the Vr4111.
IM(1:0) : Software interrupts. Only these bits cause an interrupt exception, when they are set to 1
by means of software.

Note Int(4:0) are internal signals of the VR4110 CPU core. For details about connection to the on-
chip peripheral units, refer to Chapter 15.

ExcCode: Exception code field (refer to Table 7-2 for details).
0 : Reserved for future use. Write O in a write operation. When this field is read, 0 is read.

195

CHAPTER 7 EXCEPTION PROCESSING

Table 7-2. Cause Register Exception Code Field

Exception code Mnemonic Description
0 Int Interrupt exception
1 Mod TLB Modified exception
2 TLBL TLB Refill exception (load or fetch)
3 TLBS TLB Refill exception (store)
4 AdEL Address Error exception (load or fetch)
5 AdES Address Error exception (store)
6 IBE Bus Error exception (instruction fetch)
7 DBE Bus Error exception (data load or store)
8 Sys System Call exception
9 Bp Breakpoint exception
10 RI Reserved Instruction exception
11 CpU Coprocessor Unusable exception
12 Ov Integer Overflow exception
13 Tr Trap exception
14 to 22 O Reserved for future use
23 WATCH Watch exception
24 to0 31 O Reserved for future use

The Vr4111 has eight interrupt request sources, IP7 to IPO.

For the detailed description of interrupts, refer to Chapter 10.

(1) 1P7

This bit indicates whether there is a timer interrupt request.

It is set when the values of Count register and Compare register match.

(2) IP6to IP2

IP6 to IP2 reflect the state of the interrupt request signal of the CPU core.

(3) IP1and IPO

These bits are used to set/clear a software interrupt request.

196

CHAPTER 7 EXCEPTION PROCESSING

7.3.7 Exception Program Counter (EPC) Register (14)

The Exception Program Counter (EPC) is a read/write register that contains the address at which processing
resumes after an exception has been serviced. The contents of this register change depending on whether
execution of MIPS16 instructions is enabled or disabled. Setting the MIPS16EN pin after RTC reset specifies
whether execution of the MIPS16 instructions is enabled or disabled.

When the MIPS16 instruction execution is disabled, the EPC register contains either:

» Virtual address of the instruction that caused the exception.
» Virtual address of the immediately preceding branch or jump instruction (when the instruction associated with
the exception is in a branch delay slot, and the BD bit in the Cause register is set to 1).

When the MIPS16 instruction execution is enabled, the EPC register contains either:

» Virtual address of the instruction that caused the exception and ISA mode at which an exception occurs.

» Virtual address of the immediately preceding branch or jump instruction and ISA mode at which an exception
occurs (when the instruction associated with the exception is in a branch delay slot of the jump instruction, and
the BD bit in the Cause register is set to 1).

When the 16-bit instruction is executed, the EPC register contains either:

» Virtual address of the instruction that caused the exception and ISA mode at which an exception occurs.

» Virtual address of the immediately preceding Extend or jump instruction and ISA mode at which an exception
occurs (when the instruction associated with the exception is in a branch delay slot of the jump instruction or in
the instruction following the Extend instruction, and the BD bit in the Cause register is set to 1).

The EXL bit in the Status register is set to 1 to keep the processor from overwriting the address of the exception-
causing instruction contained in the EPC register in the event of another exception.

Figure 7-8 shows the EPC register format when MIPS16 ISA is disabled, and Figure 7-9 shows the EPC register
format when MIPS16 ISA is enabled.

Figure 7-8. EPC Register Format (When MIPS16 ISA Is Disabled)

(a) 32-bit mode
31 0
EPC I

32

(b) 64-bit mode
63 0

EPC I

64

EPC: Restart address after exception processing.

197

CHAPTER 7 EXCEPTION PROCESSING

Figure 7-9. EPC Register Format (When MIPS16 ISA Is Enabled)

(a) 32-bit mode
31 1 0
EPC EIM I

32

EPC: Restart address after exception processing [31:1].
EIM: ISA mode at which an exception occurs.
(1: when MIPS16 SIA instruction is executed, 0: when MIPS Il ISA instruction is executed.)

(b) 64-bit mode
63 1 0
EPC EIM I

64

EPC: Restart address after exception processing [63:1].
EIM: ISA mode at which an exception occurs.
(1: when MIPS16 SIA instruction is executed, 0: when MIPS Il ISA instruction is executed.)

7.3.8 WatchLo (18) and WatchHi (19) Registers
The VRr4111 processor provides a debugging feature to detect references to a selected physical address; load
and store instructions to the location specified by the WatchLo and WatchHi registers cause a Watch exception.
Figures 7-10 and 7-11 show the format of the WatchLo and WatchHi registers.

Figure 7-10. WatchLo Register Format

WatchLo Register

31 3 2 1 O
PAddr0O 0 [R|W I
29 1 1 1

PAddr0 : Specifies physical address bits 31 to 3.

R . If this bit is set to 1, an exception will occur when a load instruction is executed.
w . If this bit is set to 1, an exception will occur when a store instruction is executed.
0 : Reserved for future use. Write 0 in a write operation. When this field is read, O is read.

Figure 7-11. WatchHi Register Format

WatchHi Register

31 0
0 |
32
0 . Reserved for future use. Write 0 in a write operation. When this field is read, 0 is read.

198

CHAPTER 7 EXCEPTION PROCESSING

7.3.9 XContext Register (20)

The read/write XContext register contains a pointer to an entry in the page table entry (PTE) array, an operating
system data structure that stores virtual-to-physical address translations. If a TLB miss occurs, the operating system
loads the untranslated data from the PTE into the TLB to handle the software error.

The XContext register is used by the XTLB Refill exception handler to load TLB entries in 64-bit addressing
mode.

The XContext register duplicates some of the information provided in the BadVAddr register, and puts it in a form
useful for the XTLB exception handler.

This register is included solely for operating system use. The operating system sets the PTEBase field in the
register, as needed. Figure 7-12 shows the format of the XContext register.

Figure 7-12. XContext Register Format

63 35 34 33 32 4 3 0
PTEBase R BadVPN2 0 I

29 2 29 4

PTEBase : The PTEBase field is a base address of the PTE entry table.
BadVPN2 : This field holds the value (VPN2) obtained by halving the virtual page number of the most recent
virtual address for which translation failed.

R : Space type (00 - User, 01 Supervisor, 11 — Kernel). The setting of this field matches virtual
address bits 63 and 62.
0 : Reserved for future use. Write 0 in a write operation. When this field is read, O is read.

The 29-bit BadVPN2 field has bits 39 to 11 of the virtual address that caused the TLB miss; bit 10 is excluded
because a single TLB entry maps to an even-odd page pair. For a 1-Kbyte page size, this format may be used
directly to address the pair-table of 8-byte PTEs. For 4-Kbyte-or-more page and PTE sizes, shifting or masking this
value produces the appropriate address.

199

CHAPTER 7 EXCEPTION PROCESSING

7.3.10 Parity Error Register (26)

The Parity Error (PErr) register is a readable/writable register. This register is defined to maintain software-
compatibility with the VrR4100, and is not used in hardware because the VrR4111 has no parity.

Figure 7-13 shows the format of the PErr register.

Figure 7-13. Parity Error Register Format

31 8 7 0

0 Diagnostic I

24 8

Diagnostic : 8-bit self diagnostic field.
0 . Reserved for future use. Write 0 in a write operation. When this field is read, 0 is read.

7.3.11 Cache Error Register (27)

The Cache Error register is a readable/writable register. This register is defined to maintain software-compatibility
with the Vr4100, and is not used in hardware because the Vr4111 has no parity.

Figure 7-14 shows the format of the Cache Error register.

Figure 7-14. Cache Error Register Format

31 0
0 |
32
0 . Reserved for future use. Write 0 in a write operation. When this field is read, 0 is read.

200

CHAPTER 7 EXCEPTION PROCESSING

7.3.12 ErrorEPC Register (30)

The Error Exception Program Counter (ErrorEPC) register is similar to the EPC register. It is used to store the
Program Counter value at which the Cache Error, Cold Reset, Soft Reset, or NMI exception has been serviced.

The read/write ErrorEPC register contains the virtual address at which instruction processing can resume after
servicing an error. The contents of this register change depending on whether execution of MIPS16 instructions is
enabled or disabled. Setting the MIPS16EN pin after RTC reset specifies whether the execution of MIPS16
instructions is enabled or disabled.

When the MIPS16 ISA is disabled, this address can be:

» Virtual address of the instruction that caused the exception.
» Virtual address of the immediately preceding branch or jump instruction, when the instruction associated with
the error exception is in a branch delay slot.

When the MIPS16 instruction execution is enabled during a 32-bit instruction execution, this address can be:

» Virtual address of the instruction that caused the exception and ISA mode at which an exception occurs.
» Virtual address of the immediately preceding branch or jump instruction and ISA mode at which an exception
occurs when the instruction associated with the exception is in a branch delay slot.

When the MIPS16 instruction execution is enabled during a 16-bit instruction execution, this address can be:

» Virtual address of the instruction that caused the exception and ISA mode at which an exception occurs.

« Virtual address of the immediately preceding jump instruction or Extend instruction and ISA mode at which an
exception occurs when the instruction associated with the exception is in a branch delay slot of the jump
instruction or is the instruction following the Extend instruction.

The contents of the ErrorEPC register do not change when the ERL bit of the Status register is set to 1. This
prevents the processor when other exceptions occur from overwriting the address of the instruction in this register
which causes an error exception.

There is no branch delay slot indication for the ErrorEPC register.

Figure 7-15 shows the format of the ErrorEPC register when the MIPS16ISA is disabled. Figure 7-16 shows the
format of the ErrorEPC register when the MIPS16ISA is enabled.

201

CHAPTER 7 EXCEPTION PROCESSING

Figure 7-15. ErrorEPC Register Format (When MIPS16 ISA Is Disabled)

(a) 32-bit mode
31 0
ErrorEPC I

32

(b) 64-bit mode
63 0
ErrorEPC I

64

ErrorEPC: Program counter that indicates the restart address after Cold reset, Soft reset, or NMI
exception.

Figure 7-16. ErrorEPC Register Format (When MIPS16 ISA Is Enabled)

(a) 32-bit mode
31 1 0
ErrorEPC EriM I

31 1

ErrorEPC: Virtual restart address [31: 1] after Cold reset, Soft reset, or NMI exception.
ErlM: ISA mode at which an error exception occurs (1: MIPS16 ISA, 0: MIPS Il ISA).

(b) 64-bit mode

63 1 0
ErrorEPC EriM I
63 1

ErrorEPC: Virtual restart address [63: 1] after Cold reset, Soft reset, or NMI exception.
ErlM: ISA mode at which an error exception occurs (1: MIPS16 ISA, 0: MIPS Il ISA).

202

CHAPTER 7 EXCEPTION PROCESSING

7.4 DETAILS OF EXCEPTIONS

This section describes causes, processes, and services of the Vr4111's exceptions.

7.4.1 Exception Types
This section gives sample exception handler operations for the following exception types:

< Cold Reset

< Soft Reset

< NMI

<> Remaining processor exceptions

When the EXL and ERL bits in the Status register are 0, either User, Supervisor, or Kernel operating mode is
specified by the KSU bits in the Status register. When either the EXL or ERL bit is set to 1, the processor is in
Kernel mode.

When the processor takes an exception, the EXL bit is set to 1, meaning the system is in Kernel mode. After
saving the appropriate state, the exception handler typically resets the EXL bit back to 0. The exception handler
sets the EXL bit to 1 so that the saved state is not lost upon the occurrence of another exception while the saved
state is being restored.

Returning from an exception also resets the EXL bit to 0. For details, see Chapter 28 MIPS 1ll INSTRUCTION
SET DETAILS.

7.4.2 Exception Vector Locations
The Cold Reset, Soft Reset, and NMI exceptions are always branched to the following reset exception vector

address (virtual). This address is in an uncached, unmapped space.

<> OXxBFCO0 0000 in 32-bit mode
<~ OXxFFFF FFFF BFCO 0000 in 64-bit mode

Addresses for the remaining exceptions are a combination of a vector offset and a base address.
64-/32-bit mode exception vectors and their offsets are shown below.

203

CHAPTER 7 EXCEPTION PROCESSING

Table 7-3. 64-Bit Mode Exception Vector Base Addresses

Vector base address (virtual) Vector offset
Cold Reset OxFFFF FFFF BFCO 0000 0x0000
Soft Reset (BEV is automatically set to 1)
NMI
TLB Refill (EXL = 0) OXFFFF FFFF 8000 0000 (BEV = 0) 0x0000
XTLB Refill (EXL = 0) OxFFFF FFFF BFCO 0200 (BEV =1) 0x0080
Other exceptions 0x0180

Table 7-4. 32-Bit Mode Exception Vector Base Addresses

Vector base address (virtual) Vector offset
Cold Reset 0xBFCO 0000 0x0000
Soft Reset (BEV is automatically set to 1)
NMI
TLB Refill (EXL = 0) 0x8000 0000 (BEV = 0) 0x0000
XTLB Refill (EXL = 0) 0xBFCO0 0200 (BEV = 1) 0x0080
Other exceptions 0x0180

(1) TLB Refill Exception Vector
When BEV bit = 0, the vector base address (virtual) for the TLB Refill exception is in kseg0 (unmapped) space.

< 0x8000 0000 in 32-bit mode
< OxFFFF FFFF 8000 0000 in 64-bit mode

When BEV bit = 1, the vector base address (virtual) for the TLB Refill exception is in ksegl (uncached,
unmapped) space.

< OxBFCO0 0200 in 32-bit mode
<> OxFFFF FFFF BFCO 0200 in 64-bit mode

This is an uncached, non-TLB-mapped space, allowing the exception handler to bypass the cache and TLB.

204

CHAPTER 7 EXCEPTION PROCESSING

7.4.3 Priority of Exceptions

While more than one exception can occur for a single instruction, only the exception with the highest priority is

reported. Table 7-5 lists the priorities.

Table 7-5. Exception Priority Order

Priority

Exceptions

High

I e s I I e

—

Low

Cold Reset

Soft Reset

NMI

Address Error (instruction fetch)
TLB/XTLB Reéfill (instruction fetch)
TLB Invalid (instruction fetch)
Bus Error (instruction fetch)
System Call

Breakpoint

Coprocessor Unusable
Reserved Instruction

Trap

Integer Overflow

Address Error (data access)
TLB/XTLB Refill (data access)
TLB Invalid (data access)

TLB Modified (data write)
Watch

Bus Error (data access)

Interrupt (other than NMI)

Hereafter, handling exceptions by hardware is referred to as “process”, and handling exception by software is

referred to as “service”.

205

CHAPTER 7 EXCEPTION PROCESSING

7.4.4 Cold Reset Exception

Cause

The Cold Reset exception occurs when the ColdReset# signal (internal) is asserted and then deasserted. This

exception is not maskable. The Reset# signal (internal) must be asserted along with the ColdReset# signal (for
details, see Chapter 8).

Processing

The CPU provides a special interrupt vector for this exception:

<> OxBFCO0 0000 (virtual) in 32-bit mode
<> OxXFFFF FFFF BFCO0 0000 (virtual) in 64-bit mode

The Cold Reset vector resides in unmapped and uncached CPU address space, so the hardware need not

initialize the TLB or the cache to process this exception. It also means the processor can fetch and execute

instructions while the caches and virtual memory are in an undefined state.

The contents of all registers in the CPU are undefined when this exception occurs, except for the following

register fields:

When the MIPS16 instruction execution is disabled while the ERL of Status register is 0, the PC value at which
an exception occurs is set to the ErrorEPC register.

When the MIPS16 instruction execution is enabled while the ERL of Status register is 0, the PC value at which
an exception occurs is set to the ErrorEPC register and the ISA mode in which an exception occurs is set to
the least significant bit of the ErrorEPC register.

TS and SR of the Status register are cleared to 0.

ERL and BEV of the Status register are set to 1.

The Random register is initialized to the value of its upper bound (31).

The Wired register is initialized to 0.

Bits 31 to 28 and bits 22 to 3 of the Config register are set to fixed values.

All other bits are undefined.

Servicing
The Cold Reset exception is serviced by:

206

Initializing all processor registers, coprocessor registers, TLB, caches, and the memory system
Performing diagnostic tests
Bootstrapping the operating system

CHAPTER 7 EXCEPTION PROCESSING

7.4.5 Soft Reset Exception

Cause
A Soft Reset (sometimes called Warm Reset) occurs when the ColdReset# signal remains deasserted while the
Reset# signal goes from assertion to deassertion (for details, see Chapter 8).
A Soft Reset immediately resets all state machines, and sets the SR bit of the Status register. Execution begins
at the reset vector when the reset is deasserted. This exception is not maskable.

Caution Inthe V r4111, a soft reset never occurs.

Processing
The CPU provides a special interrupt vector for this exception (same location as Cold Reset):

<> OxBFCO0 0000 (virtual) in 32-bit mode
<> OXFFFF FFFF BFCO0 0000 (virtual) in 64-bit mode

This vector is located within unmapped and uncached address space, so that the cache and TLB need not be
initialized to process this exception. The SR bit of the Status register is set to 1 to distinguish this exception from
a Cold Reset exception.

When this exception occurs, the contents of all registers are preserved except for the following registers:

* When the MIPS16 instruction execution is disabled, the PC value at which an exception occurs is set to the
ErrorEPC register.
When the MIPS16 instruction execution is enabled, the PC value at which an exception occurs is set to the
ErrorEPC register and the ISA mode in which an exception occurs is set to the least significant bit of the
ErrorEPC register.

» TS hit of the Status register is cleared to 0.

» ERL, SR, and BEV bits of the Status register are setto 1.

During a soft reset, access to the operating cache or system interface may be aborted. This means that the
contents of the cache and memory will be undefined if a Soft Reset occurs.

Servicing
The Soft Reset exception is serviced by:

» Preserving the current processor states for diagnostic tests
» Reinitializing the system in the same way as for a Cold Reset exception

207

CHAPTER 7 EXCEPTION PROCESSING

7.4.6 NMI Exception

Cause
The Nonmaskable Interrupt (NMI) exception occurs when the NMI signal (internal) becomes active. This interrupt
is not maskable; it occurs regardless of the settings of the EXL, ERL, and the IE bits in the Status register (for
details, see Chapters 10 and 15).

Processing
The CPU provides a special interrupt vector for this exception:

<> OXBFCO0 0000 (virtual) in 32-bit mode
<> OXFFFF FFFF BFCO0 0000 (virtual) in 64-bit mode

This vector is located within unmapped and uncached address space so that the cache and TLB need not be
initialized to process an NMI interrupt. The SR bit of the Status register is set to 1 to distinguish this exception
from a Cold Reset exception.

Unlike Cold Reset and Soft Reset, but like other exceptions, NMI is taken only at instruction boundaries. The
states of the caches and memory system are preserved by this exception.

When this exception occurs, the contents of all registers are preserved except for the following registers:

* When the MIPS16 instruction execution is disabled, the PC value at which an exception occurs is set to the
ErrorEPC register.
When the MIPS16 instruction execution is enabled, the PC value at which an exception occurs is set to the
ErrorEPC register and the ISA mode in which an exception occurs is set to the least significant bit of the
ErrorEPC register.

» The TS bit of the Status register is cleared to 0.

» The ERL, SR, and BEV bits of the Status register are setto 1.

Servicing
The NMI exception is serviced by:

» Preserving the current processor states for diagnostic tests
» Reinitializing the system in the same way as for a Cold Reset exception

208

CHAPTER 7 EXCEPTION PROCESSING

7.4.7 Address Error Exception

Cause
The Address Error exception occurs when an attempt is made to execute one of the following. This exception is
not maskable.

< Execution of the LW, LWU, SW, or CACHE instruction for word data that is not located on a word boundary
« Execution of the LH, LHU, or SH instruction for half-word data that is not located on a half-word boundary

e Execution the LD or SD instruction for double-word data that is not located on a double-word boundary

« Referencing the kernel address space in User or Supervisor mode

« Referencing the supervisor space in User mode

« Referencing an address that does not exist in the kernel, user, or supervisor address space in 64-bit Kernel,
User, or Supervisor mode
< Branching to an address that was not located on a ward boundary when the MIPS16 instruction is disabled

¢ Branching to address whose least-significant 2 bits are 10 when the MIPS16 instruction is enabled

Processing
The common exception vector is used for this exception. The AdJEL or AJES code in the Cause register is set. If
this exception has been caused by an instruction reference or load operation, AdEL is set. If it has been caused
by a store operation, AdES is set.
When this exception occurs, the BadVAddr register stores the virtual address that was not properly aligned or
was referenced in protected address space. The contents of the VPN field of the Context and EntryHi registers
are undefined, as are the contents of the EntryLo register.
When the MIPS16 instruction is disabled, the EPC register contains the address of the instruction that caused the
exception. However, if this instruction is in a branch delay slot, the EPC register contains the address of the
preceding jump or branch instruction, and the BD bit of the Cause register is set to 1.
When the MIPS16 instruction is enabled, the EPC register contains the address of the instruction that caused the
exception, and the least significant bit stores the ISA mode in which an exception occurs. However, if this
instruction is in a branch delay slot or is the instruction following the Extend instruction, the EPC register contains
the address of the preceding jump or Extend instruction, and the BD bit of the Cause register is set to 1.

Servicing

The kernel reports the UNIX™ SIGSEGV (segmentation violation) signal to the current process, and this exception
is usually fatal.

209

CHAPTER 7 EXCEPTION PROCESSING

7.4.8 TLB Exceptions
Three types of TLB exceptions can occur:

» TLB Refill exception occurs when there is no TLB entry that matches a referenced address.

» A TLB Invalid exception occurs when a TLB entry that matches a referenced virtual address is marked as
being invalid (with the V hit set to 0).

» The TLB Modified exception occurs when a TLB entry that matches a virtual address referenced by the
store instruction is marked as being valid (with the V bit set to 1).

The following three sections describe these TLB exceptions.

(1) TLB Refill Exception (32-bit Space Mode)/XTLB Refill Exception (64-bit Space Mode)

Cause
The TLB Refill exception occurs when there is no TLB entry to match a reference to a mapped address space.
This exception is not maskable.

Processing
There are two special exception vectors for this exception; one for references to 32-bit address spaces, and one
for references to 64-bit address spaces. The UX, SX, and KX bits of the Status register determine whether the
user, supervisor or kernel address spaces referenced are 32-bit or 64-bit spaces. When the EXL bit of the Status
register is set to 0, either of these two special vectors is referenced. When the EXL bit is set to 1, the common
exception vector is referenced.
This exception sets the TLBL or TLBS code in the ExcCode field of the Cause register. If this exception has been
caused by an instruction reference or load operation, TLBL is set. If it has been caused by a store operation,
TLBS is set.
When this exception occurs, the BadVAddr, Context, XContext and EntryHi registers hold the virtual address that
failed address translation. The EntryHi register also contains the ASID from which the translation fault occurred.
The Random register normally contains a valid location in which to place the replacement TLB entry. The
contents of the EntryLo register are undefined.
When the MIPS16 instruction is disabled, the EPC register contains the address of the instruction that caused the
exception. However, if this instruction is in a branch delay slot, the EPC register contains the address of the
preceding jump or branch instruction, and the BD bit of the Cause register is set to 1.
When the MIPS16 instruction is enabled, the EPC register contains the address of the instruction that caused the
exception, and the least significant bit stores the ISA mode in which an exception occurs. However, if this
instruction is in a branch delay slot or is the instruction following the Extend instruction, the EPC register contains
the address of the preceding jump or Extend instruction, and the BD bit of the Cause register is set to 1.

210

CHAPTER 7 EXCEPTION PROCESSING

Servicing

To service this exception, the contents of the Context or XContext register are used as a virtual address to fetch
memory words containing the physical page frame and access control bits for a pair of TLB entries. The memory
word is written into the TLB entry by using the EntryLoO, EntryLol, or EntryHi register.

It is possible that the physical page frame and access control bits are placed in a page where the virtual address
is not resident in the TLB. This condition is processed by allowing a TLB Refill exception in the TLB REéfill
exception handler. In this case, the common exception vector is used because the EXL bit of the Status register
is setto 1.

(2) TLB Invalid Exception

Cause
The TLB Invalid exception occurs when the TLB entry that matches with the virtual address to be referenced is
invalid (the V bit is set to 0). This exception is not maskable.

Processing
The common exception vector is used for this exception. The TLBL or TLBS code in the ExcCode field of the
Cause register is set. If this exception has been caused by an instruction reference or load operation, TLBL is
set. If it has been caused by a store operation, TLBS is set.
When this exception occurs, the BadVAddr, Context, Xcontext, and EntryHi registers contain the virtual address
that failed address translation. The EntryHi register also contains the ASID from which the translation fault
occurred. The Random register normally stores a valid location in which to place the replacement TLB entry.
The contents of the EntryLo register are undefined.
When the MIPS16 instruction is disabled, the EPC register contains the address of the instruction that caused the
exception. However, if this instruction is in a branch delay slot, the EPC register contains the address of the
preceding jump or branch instruction, and the BD bit of the Cause register is set to 1.
When the MIPS16 instruction is enabled, the EPC register contains the address of the instruction that caused the
exception, and the least significant bit stores the ISA mode in which an exception occurs. However, if this
instruction is in a branch delay slot or is the instruction following the Extend instruction, the EPC register contains
the address of the preceding jump or Extend instruction, and the BD bit of the Cause register is set to 1.

Servicing
Usually, the V bit of a TLB entry is cleared in the following cases:

<> When a virtual address does not exist
A

<> When the virtual address exists, but is not in main memory (a page fault)
<> When a trap is required on any reference to the page (for example, to maintain a reference bit)

After servicing the cause of a TLB Invalid exception, the TLB entry is located with a TLBP (TLB Probe) instruction,
and replaced by an entry with its Valid bit set to 1.

211

CHAPTER 7 EXCEPTION PROCESSING

(3) TLB Modified Exception

Cause
The TLB Modified exception occurs when the TLB entry that matches with the virtual address referenced by the
store instruction is valid (bit V is 1) but is not writable (bit D is 0). This exception is not maskable.

Processing
The common exception vector is used for this exception, and the Mod code in the ExcCode field of the Cause
register is set.
When this exception occurs, the BadVAddr, Context, Xcontext, and EntryHi registers contain the virtual address
that failed address translation. The EntryHi register also contains the ASID from which the translation fault
occurred. The contents of the EntryLo register are undefined.
When the MIPS16 instruction is disabled, the EPC register contains the address of the instruction that caused the
exception. However, if this instruction is in a branch delay slot, the EPC register contains the address of the
preceding jump or branch instruction, and the BD bit of the Cause register is set to 1.
When the MIPS16 instruction is enabled, the EPC register contains the address of the instruction that caused the
exception, and the least significant bit stores the ISA mode in which an exception occurs. However, if this
instruction is in a branch delay slot or is the instruction following the Extend instruction, the EPC register contains
the address of the preceding jump or Extend instruction, and the BD bit of the Cause register is set to 1.

Servicing
The kernel uses the failed virtual address or virtual page number to identify the corresponding access control bits.
The page identified may or may not permit write accesses; if writes are not permitted, a write protection violation
occurs.
If write accesses are permitted, the page frame is marked dirty (/writable) by the kernel in its own data structures.
The TLBP instruction places the index of the TLB entry that must be altered into the Index register. The word
data containing the physical page frame and access control bits (with the D bit set to 1) is loaded to the EntryLo
register, and the contents of the EntryHi and EntryLo registers are written into the TLB.

212

CHAPTER 7 EXCEPTION PROCESSING

7.4.9 Bus Error Exception

Cause
A Bus Error exception is raised by board-level circuitry for events such as bus time-out, local bus parity errors,
and invalid physical memory addresses or access types. This exception is not maskable.
A Bus Error exception occurs only when a cache miss refill, uncached reference, or unbuffered write occurs
synchronously. In other words, it occurs when an illegal access is detected during BCU read.
For details of illegal accesses, refer to 11.4.6 lllegal Access Notification

Processing
The common interrupt vector is used for a Bus Error exception. The IBE or DBE code in the ExcCode field of the
Cause register is set, signifying whether the instruction caused the exception by an instruction reference, load
operation, or store operation.
When the MIPS16 instruction is disabled, the EPC register contains the address of the instruction that caused the
exception. However, if this instruction is in a branch delay slot, the EPC register contains the address of the
preceding jump or branch instruction, and the BD bit of the Cause register is set to 1.
When the MIPS16 instruction is enabled, the EPC register contains the address of the instruction that caused the
exception, and the least significant bit stores the ISA mode in which an exception occurs. However, if this
instruction is in a branch delay slot or is the instruction following the Extend instruction, the EPC register contains
the address of the preceding jump or Extend instruction, and the BD bit of the Cause register is set to 1.

Servicing
The physical address at which the fault occurred can be computed from information available in the System
Control Coprocessor (CPO0) registers.

« If the IBE code in the Cause register is set (indicating an instruction fetch), the virtual address is contained
in the EPC register (or 4 + the contents of the EPC register if the BD bit of the Cause register is set to 1).

» If the DBE code is set (indicating a load or store), the virtual address of the instruction that caused the
exception is saved to the EPC register.

The virtual address of the load and store instruction can then be obtained by interpreting the instruction. The
physical address can be obtained by using the TLBP instruction and reading the EntryLo register to compute the
physical page number.

At the time of this exception, the kernel reports the UNIX SIGBUS (bus error) signal to the current process, but
the exception is usually fatal.

213

CHAPTER 7 EXCEPTION PROCESSING

7.4.10 System Call Exception

Cause

A System Call exception occurs during an attempt to execute the SYSCALL instruction. This exception is not
maskable.

Processing
The common exception vector is used for this exception, and the Sys code in the ExcCode field of the Cause
register is set.
The EPC register contains the address of the SYSCALL instruction unless it is in a branch delay slot, in which
case the EPC register contains the address of the preceding branch instruction.
If the SYSCALL instruction is in a branch delay slot, the BD bit of the Status register is set to 1; otherwise this bit
is cleared.

Servicing
When this exception occurs, control is transferred to the applicable system routine.
To resume execution, the EPC register must be altered so that the SYSCALL instruction does not re-execute; this
is accomplished by adding a value of 4 to the EPC register before returning.
If a SYSCALL instruction is in a branch delay slot, interpretation of the branch instruction is required to resume
execution.

214

CHAPTER 7 EXCEPTION PROCESSING

7.4.11 Breakpoint Exception

Cause
A Breakpoint exception occurs when an attempt is made to execute the BREAK instruction. This exception is not
maskable.

Processing
The common exception vector is used for this exception, and the BP code in the ExcCode field of the Cause
register is set.
When the MIPS16 instruction is disabled, the EPC register contains the address of the instruction that caused the
exception. However, if this instruction is in a branch delay slot, the EPC register contains the address of the
preceding jump or branch instruction, and the BD bit of the Cause register is set to 1.
When the MIPS16 instruction is enabled, the EPC register contains the address of the instruction that caused the
exception, and the least significant bit stores the ISA mode in which an exception occurs. However, if this
instruction is in a branch delay slot or is the instruction following the Extend instruction, the EPC register contains
the address of the preceding jump or Extend instruction, and the BD bit of the Cause register is set to 1.

Servicing
When the Breakpoint exception occurs, control is transferred to the applicable system routine. Additional
distinctions can be made by analyzing the unused bits of the BREAK instruction (bits 25 to 6), and loading the
contents of the instruction whose address the EPC register contains. A value of 4 must be added to the contents
of the EPC register to locate the instruction if it resides in a branch delay slot.
To resume execution, the EPC register must be altered so that the BREAK instruction does not re-execute; this is
accomplished by adding a value of 4 to the EPC register before returning.
When a Breakpoint exception occurs while executing the MIPS16 instruction, a valve of 2 should be added to the
EPC register before returning.
If a BREAK instruction is in a branch delay slot, interpretation (decoding) of the branch instruction is required to
resume execution.

215

CHAPTER 7 EXCEPTION PROCESSING

7.4.12 Coprocessor Unusable Exception

Cause
The Coprocessor Unusable exception occurs when an attempt is made to execute a coprocessor instruction for
either:

<> a corresponding coprocessor unit that has not been marked usable (Status register bit, CU[0] = 0), or
<> CPO instructions, when the unit has not been marked usable (Status register bit, CU[0] = 0) and the process
executes in User or Supervisor mode.

This exception is not maskable.

Processing
The common exception vector is used for this exception, and the CPU code in the ExcCode field of the Cause
register is set. The CE bit of the Cause register indicates which of the four coprocessors was referenced.
When the MIPS16 instruction is disabled, the EPC register contains the address of the instruction that caused the
exception. However, if this instruction is in a branch delay slot, the EPC register contains the address of the
preceding jump or branch instruction, and the BD bit of the Cause register is set to 1.
When the MIPS16 instruction is enabled, the EPC register contains the address of the instruction that caused the
exception, and the least significant bit stores the ISA mode in which an exception occurs. However, if this
instruction is in a branch delay slot or is the instruction following the Extend instruction, the EPC register contains
the address of the preceding jump or Extend instruction, and the BD bit of the Cause register is set to 1.

Servicing
The coprocessor unit to which an attempted reference was made is identified by the CE bit of the Cause register.
One of the following processing is performed by the handler:

< If the process is entitled access to the coprocessor, the coprocessor is marked usable and the
corresponding state is restored to the coprocessor.

<> If the process is entitled access to the coprocessor, but the coprocessor does not exist or has failed,
interpretation of the coprocessor instruction is possible.

<- If the BD bit in the Cause register is set to 1, the branch instruction must be interpreted; then the
coprocessor instruction can be emulated and execution resumed with the EPC register advanced past the
coprocessor instruction.

<> If the process is not entitled access to the coprocessor, the kernel reports UNIX SIGILL/ILL_PRIVIN_FAULT
(illegal instruction/privileged instruction fault) signal to the current process, and this exception is fatal.

216

CHAPTER 7 EXCEPTION PROCESSING

7.4.13 Reserved Instruction Exception

Cause
The Reserved Instruction exception occurs when an attempt is made to execute one of the following instructions:

 Instruction with an undefined major opcode (bits 31 to 26)

» SPECIAL instruction with an undefined minor opcode (bits 5 to 0)

* REGIMM instruction with an undefined minor opcode (bits 20 to 16)

* 64-bit instructions in 32-bit User or Supervisor mode

* RRinstruction with an undefined minor op code (bits 4 to 0) when executing the MIPS16 instruction
» I8 instruction with an undefined minor op code (bits 10 to 8) when executing the MIPS16 instruction

64-bit operations are always valid in Kernel mode regardless of the value of the KX bit in the Status register. This
exception is not maskable.

Processing
The common exception vector is used for this exception, and the RI code in the ExcCode field of the Cause
register is set.
When the MIPS16 instruction is disabled, the EPC register contains the address of the instruction that caused the
exception. However, if this instruction is in a branch delay slot, the EPC register contains the address of the
preceding jump or branch instruction, and the BD bit of the Cause register is set to 1.
When the MIPS16 instruction is enabled, the EPC register contains the address of the instruction that caused the
exception, and the least significant bit stores the ISA mode in which an exception occurs. However, if this
instruction is in a branch delay slot or is the instruction following the Extend instruction, the EPC register contains
the address of the preceding jump or Extend instruction, and the BD bit of the Cause register is set to 1.

Servicing
All currently defined MIPS ISA instructions can be executed. The process executing at the time of this exception
is handled by a UNIX SIGILL/ILL_RESOP_FAULT (illegal instruction/reserved operand fault) signal. This error is
usually fatal.

217

CHAPTER 7 EXCEPTION PROCESSING

7.4.14 Trap Exception

Cause

The Trap exception occurs when a TGE, TGEU, TLT, TLTU, TEQ, TNE, TGEI, TGEUI, TLTI, TLTUI, TEQI, or
TNEI instruction results in a TRUE condition. This exception is not maskable.

Processing
The common exception vector is used for this exception, and the Tr code in the ExcCode field of the Cause
register is set.
The EPC register contains the address of the trap instruction causing the exception unless the instruction is in a
branch delay slot, in which case the EPC register contains the address of the preceding branch instruction and
the BD bit of the Cause register is set to 1.

Servicing

At the time of a Trap exception, the kernel reports the UNIX SIGFPE/FPE_INTOVF_TRAP (floating-point
exception/integer overflow) signal to the current process, but the exception is usually fatal.

218

CHAPTER 7 EXCEPTION PROCESSING

7.4.15 Integer Overflow Exception

Cause
An Integer Overflow exception occurs when an ADD, ADDI, SUB, DADD, DADDI, or DSUB instruction results in a
2's complement overflow. This exception is not maskable.

Processing
The common exception vector is used for this exception, and the Ov code in the ExcCode field of the Cause
register is set.
The EPC register contains the address of the instruction that caused the exception unless the instruction is in a
branch delay slot, in which case the EPC register contains the address of the preceding branch instruction and
the BD bit of the Cause register is set to 1.

Servicing
At the time of the exception, the kernel reports the UNIX SIGFPE/FPE_INTOVF_TRAP (floating-point
exception/integer overflow) signal to the current process, and this exception is usually fatal.

7.4.16 Watch Exception

Cause
A Watch exception occurs when a load or store instruction references the physical address specified by the
WatchLo/WatchHi registers. The WatchLo/WatchHi registers specify whether a load or store or both could have
initiated this exception.

» When the R bit of the WatchLo register is setto 1: Load instruction
* When the W bit of the WatchLo register is set to 1: Store instruction
» When both the R bit and W bit of the WatchLo register are set to 1: Load instruction or store instruction

The CACHE instruction never causes a Watch exception.
The Watch exception is postponed while the EXL bit in the Status register is set to 1, and Watch exception is only
maskable by setting the EXL bit in the Status register to 1.

Processing
The common exception vector is used for this exception, and the WATCH code in the ExcCode field of the Cause
register is set.
When the MIPS16 instruction is disabled, the EPC register contains the address of the instruction that caused the
exception. However, if this instruction is in a branch delay slot, the EPC register contains the address of the
preceding jump or branch instruction, and the BD bit of the Cause register is set to 1.
When the MIPS16 instruction is enabled, the EPC register contains the address of the instruction that caused the
exception, and the least significant bit stores the ISA mode in which an exception occurs. However, if this
instruction is in a branch delay slot or is the instruction following the Extend instruction, the EPC register contains
the address of the preceding jump or Extend instruction, and the BD bit of the Cause register is set to 1.

219

CHAPTER 7 EXCEPTION PROCESSING

Servicing
The Watch exception is a debugging aid; typically the exception handler transfers control to a debugger, allowing
the user to examine the situation. To continue, once the Watch exception must be disabled to execute the
faulting instruction. The Watch exception must then be reenabled. The faulting instruction can be executed
either by the debugger or by setting breakpoints.

7.4.17 Interrupt Exception

Cause

Note

The Interrupt exception occurs when one of the eight interrupt conditions ™" is asserted. In the Vr4111, interrupt
requests from internal peripheral units first enter the ICU and are then notified to the CPU core via one of four
interrupt sources (Int [3:0]) or NMI.

Each of the eight interrupts can be masked by clearing the corresponding bit in the IM field of the Status register,
and all of the eight interrupts can be masked at once by clearing the IE bit of the Status register or setting the

EXL/ERL bit.
Note: They are 1 timer interrupt, 5 ordinary interrupts, and 2 software interrupts.
Of the five ordinary interrupts, Int4 is never asserted active.

Processing
The common exception vector is used for this exception, and the Int code in the ExcCode field of the Cause
register is set.
The IP field of the Cause register indicates current interrupt requests. It is possible that more than one of the bits
can be simultaneously set (or cleared) if the interrupt request signal is asserted and then deasserted before this
register is read.
When the MIPS16 instruction is disabled, the EPC register contains the address of the instruction that caused the
exception. However, if this instruction is in a branch delay slot, the EPC register contains the address of the
preceding jump or branch instruction, and the BD bit of the Cause register is set to 1.
When the MIPS16 instruction is enabled, the EPC register contains the address of the instruction that caused the
exception, and the least significant bit stores the ISA mode in which an exception occurs. However, if this
instruction is in a branch delay slot or is the instruction following the Extend instruction, the EPC register contains
the address of the preceding jump or Extend instruction, and the BD bit of the Cause register is set to 1.

Servicing
If the interrupt is caused by one of the two software-generated exceptions (SWO0 or SW1), the interrupt condition
is cleared by setting the corresponding Cause register bit to 0.
If the interrupt is caused by hardware, the interrupt condition is cleared by deactivating the corresponding
interrupt request signal.

220

CHAPTER 7 EXCEPTION PROCESSING

7.5 EXCEPTION PROCESSING AND SERVICING FLOWCHARTS

The remainder of this chapter contains flowcharts for the following exceptions and guidelines for their handlers:
<- Common exceptions and a guideline to their exception handler
< TLB/XTLB Refill exception and a guideline to their exception handler

< Cold Reset, Soft Reset and NMI exceptions, and a guideline to their handler.

Generally speaking, the exceptions are "processed” by hardware (HW); the exceptions are then “serviced” by
software (SW).

221

CHAPTER 7 EXCEPTION PROCESSING

Figure 7-17. Common Exception Handling (1/2)

(a) Handling exceptions other than Cold reset, Soft reset, NMI,
and TLB/XTLB Refill (hardware)

Entry Hi - VPN2, ASID « EntryHi and X/Context registers are set only
X/Context —« VPN2 when a TLB Refill, TLB Invalid, or TLB
Set Cause register (ExcCode, CE) Modified exception occurs.

Check for multiple
exceptions

Yes

Yes
M16 = 1?
(config20)

Instruction
in branch slot?,

BD bit—1 BD bit—0
ves Instruction No EPC -PC—-4 EPC-~PC
in branch delay pc-2Noel pc-2Noe?
slot? EPC —EIM EPC — EIM
BD bit—1 BD bit—0
EPC-PC-4 EPC-PC
Kernel mode is set and interrupts
are disabled.
A 4 Y Y

« BadVAddr is set only when a TLB
Refill, TLB Invalid, or TLB Modefied
exception occurs (BadVAddr is not set
when a Bus Error exception occurs).

=0 (Normal) =1 (bootstrap)

PC ~ OXFFFF FFFF bfcO 0200 +180

PC ~ OxFFFF FFFF 8000 0000 +180
(Unmapped,uncached space)

(Unmapped, cacheable space)

| -l |

Lt Ral

[To guideline to general exception handler}

Notes 1. When the JR or JALR instruction of MIPS16 instructions
2. When the Extend instruction of MIPS16 instructions

Caution The interrupts can be masked by setting the IE or IM bit. The Watch exception can be set to

pending state by setting the EXL bit.

222

CHAPTER 7 EXCEPTION PROCESSING

Figure 7-17. Common Exception Handling (2/2)

(b) Servicing common exceptions (software)

Execute MFCO instruction
X/Context register
EPC register
Status register
Cause register

Execute MFCO instruction
(Status bit setting)
KSU bit — 00
EXL bit - O
IE bit — 1

Check the Cause register, and jump
to each routine

The processor is reset. |

Check the Cause register, and jumpi

to each routine

Execute MTCO instruction
EPC register
Status register

ERET

The occurrence of TLB Refill, TLB Invalid,and TLB Modified
exceptions is disabled by using an unmapped space.

The occurrence of the Watch and Interrupt exceptions is
disabled by setting EXL = 1.

Other exceptions are avoided in the OS programs.

However, the Cold Reset, Soft Reset, and NMI exceptions are
enabled.

(In Kernel mode, interrupts are enabled.)

After EXL = 0 is set, all exceptions are enabled (although the
Interrupt exception can be masked by the IE and IM bits, and the
Cache Error exception can be masked by the DE bit.)

The register files are saved.

The execution of the ERET instruction is disabled in the branch
delay slots for the other jump instructions.

The processor does not execute an instruction in the branch
delay slot for the ERET instruction.

PC <« EPC,EXL < 0

223

CHAPTER 7 EXCEPTION PROCESSING

Figure 7-18. TLB/XTLB Refill Exception Handling (1/2)

(a) Handling TLB/XTLB Refill exceptions (hardware)

EntryHi - VPN2, ASID
X/Context — VPN2
Set Cause register (ExcCode, CE)

Check for multiple Yes

exceptions

Instruction

in delay slot?,
BD bit~1 BD bit—0
EPC-PC4 EPC-PC
PCc 2Nule 1 PC o 2Note 2
EPC~EIM EPC ~EIM
BD bit~1 BD bit~0
EPC —PC-4 EPC-PC
XTLB Refill TLB Refill TLB Refill
Vector offset = 0x080 Vector offset = 0x000 Vector offset = 0x180

[|

Kernel mode is set and interrupts are disabled.

=1 (bootstrap)

=0 (Normal)

A

PC ~ OxFFFF FFFF BFCO 0200 + vector
(Unmapped, uncached space)

/

PC ~ OxFFFF FFFF 8000 0000 + vector offset
(Unmapped, cacheable space)

| [
Lot]

[To guideline to TLB/XTLB exception handler]

Notes 1. When the JR or JALR instruction of MIPS16 instructions
2. When the Extend instruction of MIPS16 instructions

224

CHAPTER 7 EXCEPTION PROCESSING

Figure 7-18. TLB/XTLB Refill Exception Handling (2/2)

(b) Servicing TLB/XTLB Refill exceptions (software)

Execute MFCO instruction
X/Context register

Servicing by each exception routine

/'

The occurrence of TLB Refill, TLB Invalid, and TLB
Modified exceptions is disabled by using an unmapped space.

The occurrence of the Watch and Interrupt exceptions is
disabled by setting EXL= 1.

Other exceptions are avoided in the OS programs.

However, the Cold Reset, Soft Reset, and NMI exceptions
are enabled.

The physical address for a virtual address that is loaded into
the Context register is loaded into the EntryLo register and written
to the TLB.

As long as a data/instruction address exists in the mapping
space, another TLB Refill exception may occur. In such

a case, EXL = 1 is set, causing a jump to the common
exception vector. (In this case, the common exception handler
handles the TLB miss, the ERET instruction returns control to
the user program, then a TLB Refill exception is generated
again.)

The execution of the ERET instruction is disabled in the
branch delay slots for other jump instructions.

The processor does not execute an instruction in the branch
delay slot for the ERET instruction.

PC < EPC,EXL- 0

225

CHAPTER 7 EXCEPTION PROCESSING

Figure 7-19. Cold Reset Exception Handling

Cold Reset
Exception

(Hardware)

Instruction
in delay slot?

BD bit~1 BD bit—0
T truction ErrorEPCN—tPg:—4 ErrorEPC «-NF:CZ
ote ote
in branch delay, PC-2 PC-2
slot? ErrorEPC —EIM ErrorEPC ~ EIM

BD bt 1 BD bit 0
ErrorEPC - PC—-4 ErrorEPC - PC

| >|< * y

Random register — 31
Wired register - 0
Update Configue register bit
31:28||Undef(27:23)||22:6||Undef(5:0)

Set Status register
BEV bit~1
TS bit—1
SR bit—1
ERL bit—1

| PC — OXFFFF FFFF BFCO 0000

* The processor provides no means
of distinguishing between an NMI
exception and Soft Reset exception,
so that this must be determined at
the system level.

(Software)

Servicing by NMI
exception routine

ERET

Servicing by Servicing by
Soft Reset Cold Reset
exception routine exception routine

Notes 1. When the JR or JALR instruction of MIPS16 instructions
2. When the Extend instruction of MIPS16 instructions

226

CHAPTER 7 EXCEPTION PROCESSING

Figure 7-20. Soft Reset and NMI Exception Handling

(Hardware)
Soft Reset or
NMI exception
Instruction
in delay slot?
BD bit~1 BD bit~0
Yes ErrorEPC - PC—4 ErrorEPC - PC
7 Instruction pc-oNete 1 pc—oNote 2
Qbranch delay EfrorEPC — EIM EfrorEPC — EIM
BD bit~1 BD bit~0
ErrorEPC - PC-4 ErrorEPC ~PC
Set Status register
BEV bit—1
TS bit-0
SR bit-1
ERL bit—1
PC — OXFFFF FFFF BFCO 0000
» The processor provides no means of
(Software) distinguishing between an NMI

exception and Soft Reset exception,
so that this must be determined at the

) system level.
Servicing by NMI
exception routine
ERET
Servicing by Servicing by
Soft Reset Cold Reset
exception routine exception routine

Notes 1. When the JR or JALR instruction of MIPS16 instructions
2. When the Extend instruction of MIPS16 instructions

227

[MEMO]

228

CHAPTER 8 INITIALIZATION INTERFACE

This chapter describes the initialization interface and processor modes. It also explains the reset signal
descriptions and types, signal- and timing-related dependence, and the initialization sequence during each mode
that can be selected by the user.

Remark # that follows signal names indicates active low.

8.1 RESET FUNCTION

There are five ways to reset the VR4111. Each is summarized below.

229

CHAPTER 8 INITIALIZATION INTERFACE

8.1.1 RTC Reset

During power-on, set the RTCRST# pin as active. After waiting (about 600 ms) for the 32.768-kHz oscillator to
begin oscillating when the power supply is stable at 3.0 V or above, setting the RTCRST# pin as inactive causes the
RTC unit to begin counting. Then, the states of the DBUS32/GP1048, MIPS16EN, CLKSEL2/TxD, CLKSEL1/RTS#,
and CLKSELO/DTR# pins are read after one RTC cycle. Next, when the POWER pin, DCD# pin, or GPIO[3] pin
becomes inactive, the VR4111 asserts the POWERON pin and uses the BATTINH/BATTINT# signal to perform a
battery level check. If the battery check’s result is OK, the VR4111 asserts the MPOWER pin and waits for the
stabilization time period (about 350 ms) for the external agent's DC/DC converter, then begins PLL oscillation and
starts all clocks (a period of about 16 ms following the start of PLL oscillation is required for stabilization of PLL
oscillation).

% During an RTC reset, supplying voltage to the 2.5-V power-supply systems (Vop2, VooP, VooPD) can be stopped
to reduce the leak current. The following operation will not be affected by supplying voltage of 2.3 V or more to
these power supplies within the period from when the MPOWER pin becomes active to when PLL starts oscillation.
However, this function is available from version 2.0.

An RTC reset does not save any of the status information and it completely initializes the processor’s internal
state. Since the DRAM is not switched to self refresh mode, the contents of DRAM after an RTC reset are not at all
guaranteed.

After a reset, the processor becomes the system bus master and it begins the Cold reset exception sequence to
access the reset vectors in the ROM space. Since only part of the internal status is reset when a reset occurs in the
VR4111, the processor should be completely initialized by software.

After Power-On, the processor’'s pin statuses are undefined since the RTCRST# becomes active, until the
32.768-kHz clock oscillator starts oscillation. The pin statuses after oscillation starts are described in CHAPTER 2
PIN FUNCTION.

* Figure 8-1. RTC Reset
/L /L /L (L
L 77 77 77 77
RTCRST# (Input) j
L [L /L [L
ﬁ/ ‘ 17 7/ 7
POWER (Input) 1 7‘ p p !
POWERON (Output) 7l—/ lt B . .
lflf)/)/ /{}/
o (O) L) 7
MPOWER (Output ;
7, L /L [L
7 77
Vbbp2, VbbP, VbbPD P ,
17
f—
ColdReset# (Internal) 7L_/
(L /L /L

Reset# (Internal)

PLL (Internal)

i
/ Ly
(Internal, 32 Enjzc) f_U_U_U-l_l_I_l_U_LU

Fr

Undefined f >32ms Undefined giaple oscillation
Stable oscillation < >
- 16 ms
> 600 ms - > [E—
350 ms 16MasterClock™*®

Note MasterClock is the basic clock used in the CPU core.

230

CHAPTER 8

INITIALIZATION INTERFACE

8.1.2 RSTSW

After the RSTSW# pin becomes active and then becomes inactive 100 us later, the VR4111 starts PLL oscillation

and starts all clocks (a period of about 16 ms following the start of PLL oscillation is required for stabilization of PLL

oscillation).

A reset by RSTSW initializes the entire internal state except for the RTC timer and the PMU.
After a reset, the processor becomes the system bus master and it begins the Cold reset exception sequence to
access the reset vectors in the ROM space. Since only part of the internal status is reset when a reset occurs in the
VR4111, the processor should be completely initialized by software.

RSTSW(i)
MRAS(0:3)#(0)
UCAS#/LCAS#(0)
POWER(i)
MPOWER(0)
ColdReset#(internal

Reset#(internal)

PLL(internal) muwuummuuw
JuuuuuuuuLy

RTC
(internal, 32kHz)

Caution

Figure 8-2. RSTSW

Stable oscillation

Stable oscillation

-

L (L 7
7/

\L

== Undefined q==1===f

.l

>3RTC

-
-

16ms

"

[

Stable oscillation

TAARARRARAR
uyuuuuy

-

Rl

16MasterClock™°®

Note MasterClock is the basic clock used in the CPU core.

If the RSTSW# signal becomes active at the same time the CPU transits to the Hibernate mode, the

CPU may be activated without asserting the POWER signal after the MPOWER signal becomes

inactive.

231

CHAPTER 8 INITIALIZATION INTERFACE

8.1.3 Deadman’s Switch

After the Deadman’s switch unit is enabled, if the Deadman’s switch is not cleared within the specified time
period, the VR4111 is immediately returned to reset status. Setting and clearing of the Deadman’s switch is
performed by software.

A reset by the Deadman’s switch initializes the entire internal state except for the RTC timer and the PMU. Since
the DRAM is not switched to self refresh mode, the contents of DRAM after a Deadman’s switch reset are not at all
guaranteed.

After a reset, the processor becomes the system bus master and it begins the Cold reset exception sequence to
access the reset vectors in the ROM space. Since only part of the internal status is reset when a reset occurs in the
VR4111, the processor should be completely initialized by software.

Figure 8-3. Deadman’s Switch

/L /L
77 77

RSTSW#()) H
POWER(i) L L B
}//{ I/’f
1/ 71/
MPOWER(0) H
\ r
ColdReset#(internal) - p y
77 |
Reset#(intermal) Stable oscillation \ /L Stable oscillation

-
o AL
RTC f—l I—

(internal, 32kHz) .| l_l I_/

Stable oscillation) - >
Undefined 16ms

16MasterClock°®

Note MasterClock is the basic clock used in the CPU core.

232

CHAPTER 8 INITIALIZATION INTERFACE

8.1.4 Software Shutdown

When the software executes the HIBERNATE instruction, the VR4111 sets the DRAM to self refresh mode and
sets the MPOWER pin as inactive, then enters reset status. Recovery from reset status occurs when the POWER
pin is asserted, when a WakeUpTimer interrupt occurs, when the DCD# pin is asserted, or when the GPIOJ[0:3],
GPI0[9:12] pins are asserted.

During a software shutdown, supplying voltage to the 2.5-V power-supply systems (Vop2, VooP, VooPD) can be
stopped to reduce the leak current. The following operation will not be affected by supplying voltage of 2.3 V or
more to these power supplies within the period from when the MPOWER pin becomes active to when PLL starts
oscillation. However, this function is available from version 2.0.

A reset by software shutdown initializes the entire internal state except for the RTC timer and the PMU.

After a reset, the processor becomes the system bus master and it begins the Cold reset exception sequence to
access the reset vectors in the ROM space. Since only part of the internal status is reset when a reset occurs in the
VR4111, the processor should be completely initialized by software.

Figure 8-4. Software Shutdown

MRAS(0:3)#/
UCASH#/LCAS# I /L /L /L

(Output) i 7t i 7

l_// l 17 17 77

POWER (Input)] I 0 /0

ﬂ 1/ 71/ 71/

POWERON (Output) 1 !r " P /

1/ 1/ 1/
MPOWER (Output) 7L
-
J 1/ 1/
Vbbp2, VbbP, VbbPD \ . ,
JJ

ColdReset# (Internal) \

(L /L /L 1
77 7/ 7

Reset# (Internal) \

/L (L

7L 7L 7

17 7 /
PLL (Internal) mﬂ“ﬂ_ﬂﬂ_ﬂm Stopped [’ // ““l

(Internal, 32 kHz) I_I_ﬂ_rl_/ . u |_|

Stable oscillation

>32ms Undefined Stable oscillation
6ms
Note 1 16MasterClock™**?

Notes 1. Wait time for activation. It can be changed by setting PMUWAITREG (see 16.2.5 PMUWAITREG
(0x0BO00 00A8)).
2. MasterClock is the basic clock used in the CPU core.

233

CHAPTER 8 INITIALIZATION INTERFACE

8.1.5 HALTimer Shutdown

After an RTC reset is canceled, if the HAL timer is not canceled by software within about four seconds (the
HALTIMERRST bit of the PMUCNTREG register is not set to 1), the VR4111 enters reset status (see 16.1.2
Shutdown Control). Recovery from reset status occurs when the POWER pin is asserted or when a WakeUpTimer
interrupt occurs.

% During a HALTimer shutdown, supplying voltage to the 2.5-V power-supply systems (Voo2, VooP, VooPD) can be
stopped to reduce the leak current. The following operation will not be affected by supplying voltage of 2.3 V or
more to these power supplies within the period from when the MPOWER pin becomes active to when PLL starts
oscillation. However, this function is available from version 2.0.

A reset by HAL timer initializes the entire internal state except for the RTC timer and the PMU.

After a reset, the processor becomes the system bus master and it begins the Cold reset exception sequence to
access the reset vectors in the ROM space. Since only part of the internal status is reset when a reset occurs in the
VR4111, the processor should be completely initialized by software.

* Figure 8-5. HALTimer Shutdown

MRAS(0:3)#/ =i

UCASH/LCAS# (r 74 /L /L
(Output) l_’/f /e /e X
J ! 77 77 1/
POWER (Input) . /L /L (f
7 1)) 7
POWERON (Output) p l—/ !T p : p
—— r /F /F 1f
MPOWER (Output) i ;

__ff_ F /{// ///{

Vbobp2, VbbP, VbbPD Y .
77 7 ﬁ‘

_/——/f—
ColdReset# (Internal)
o=
Reset# (Internal)
/
PLL (Internal) .IJ-”
/
RTC
AU

(Internal, 32 kHz)

égg)r

[
S s W / ﬂjﬂum
UL U A u

S

Stable oscillation ><32 m>s Undefined stable oscillation
-
4s 16 ms
Note 1

16MasterClock™*?

Notes 1. Wait time for activation. It can be changed by setting PMUWAITREG (see 16.2.5 PMUWAITREG
(0x0BO00 00A8)).
2. MasterClock is the basic clock used in the CPU core.

234

CHAPTER 8 INITIALIZATION INTERFACE

8.2 POWER-ON SEQUENCE

The factors that cause the VR4111 to switch from hibernate mode or shutdown mode to full speed mode are
called power-on factors. There are four power-on factors: assertion of the POWERON pin, assertion of the DCD#
pin, activation of the wakeup timer, and assertion of the GPIO pins (GPIO[3..0], GPIO[12..9]). When an activation
factor occurs, the VR4111 asserts the POWERON pin, then provides notification to external agents that the VR4111
is ready for power-on. Three RTC clocks after the POWERON pin is asserted, the VR4111 checks the state of the
BATTINH/BATTINT# pin. If the BATTINH/BATTINT# pin’s state is low, the POWERON pin is deasserted one RTC
clock after the BATTINH/BATTINT# pin check is completed, then the VR4111 is not activated. If the
BATTINH/BATTINT# pin's state is high, the POWERON pin is deasserted three RTC clocks after the
BATTINH/BATTINT# pin check is completed, then the MPOWER pin is asserted and the VR4111 is activated.

While the MPOWER pin is inactive, supplying voltage to the 2.5-V power-supply systems (Voo2, VooP, VooPD)
can be stopped to reduce the leak current. The following operation will not be affected by supplying voltage of 2.3 V
or more to these power supplies within the period from when the MPOWER pin becomes active to when PLL starts
oscillation. However, this function is available from version 2.0.

Figure 8-6 shows a timing chart of VR4111 activation and Figure 8-7 shows a timing chart of when activation fails
due to the BATTINH/BATTINT# pin’s “low” state.

235

CHAPTER 8 INITIALIZATION INTERFACE

Figure 8-6. V R4111 Activation Sequence (When Battery Check Is OK)

POWERON (Output) / \ /L
————— P/
7
MPOWER (Output)
e
VbD2, VDDP, VDDPD ,
ColdReset# (Internal) .Y ’
Reset# (Internal) /L /
7F
BATTINH/BATTINT# (Input) / \ .
— 7
PLL (internal) A T i
I
reamema 2z | U UTUUUUU UL

P b

Detection of Check BATTINH/ Activation of
activation factor BATTINT# pin CPU

Figure 8-7. V R4111 Activation Sequence (When Battery Check Is NG)

POWERON (Output) / \

Stable oscillation

MPOWER (Output) L

Vob2, VooP, VbbPD Q Vv

ColdReset# (Internal) |

Reset# (Internal) L

BATTINH/BATTINT# (Input) \ /

PLL (Internal) H

rewena, 20 [U U UUUUUUUUUUUUULN

S !

Detection of Check BATTINH CPU not activated

activation factor /BATTINT# pin

236

CHAPTER 8 INITIALIZATION INTERFACE

8.3 RESET OF THE CPU CORE

This section describes the reset sequence of the VR4110 CPU core. For details about factors of reset or reset of
the whole VR4111, refer to 8.1 RESET FUNCTION and Chapter 16.

8.3.1 Cold Reset
In the VrR4111, a cold reset sequence is executed in the CPU core in the following cases:

* RTC reset

* RSTSW reset

» Deadman’s SW shutdown

» Software shutdown

* HAL Timer shutdown

» Battery low shutdown

» Battery lock release shutdown

A Cold Reset completely initializes the CPU core, except for the following register bits.

* The TS and SR bits of the Status register are cleared to 0.

» The ERL and BEV bits of the Status register are setto 1.

* The upper limit value (31) is set in the Random register.

» The Wired register is initialized to 0.

» Bits 31 to 28 of the Config register are set to 0 and bits 22 to 3 to 0x04800; the other bits are undefined.
» The values of the other registers are undefined.

Once power to the processor is established, the ColdReset# (internal) and the Reset# (internal) signals are
asserted and a Cold Reset is started. After approximately 2 ms assertion, the ColdReset# signal is deasserted
synchronously with MasterOut. Then the Reset# signal is deasserted synchronously with MasterOut, and the Cold
Reset is completed.

Upon reset, the CPU core becomes bus master and drives the SysAD bus (internal). After Reset# is deasserted,
the CPU core branches to the Reset exception vector and begins executing the reset exception code.

Figure 8-8. Cold Reset

/L /L /L

7) 71/ 77
VDD /

MasterClock " [
(Internal) _/,
ColdReset# \
(Internal) {F /F
Reset# \ * -t [
(Internal) /L /L
7/ 7 <i

S S UNGENET. oo f__j'_\ "_f—
(Intrmal) seesmsssned U R S _I__I__[_\i LU

Note MasterClock is the basic clock used in the CPU core.

237

CHAPTER 8 INITIALIZATION INTERFACE

8.3.2 Soft Reset

Caution Soft Reset is not supported in the presentV ~ r4111.

A Soft Reset initializes the CPU core without affecting the clocks; in other words, a Soft Reset is a logic reset. In a
Soft Reset, the CPU core retains as much state information as possible; all state information except for the following
is retained:

» The TS bit of the Status register is cleared to 0.

* The SR, ERL and BEYV bits of the Status register are set to 1.
» The Count register is initialized to O.

» The IP7 bit of the Cause register is cleared to 0.

» Any Interrupts generated on the SysAD bus are cleared.

* NMI is cleared.

» The Config register is initialized.

A Soft Reset is started by assertion of the Reset# signal, and is completed at the deassertion of the Reset# signal
synchronized with MasterOut. In general, data in the CPU core is preserved for debugging purpose.

Upon reset, the CPU core becomes bus master and drives the SysAD bus (internal). After Reset# is deasserted,
the CPU core branches to the Reset exception vector and begins executing the reset exception code.

Figure 8-9. Soft Reset

(L

77

VDD H

e e \ _ [\ _
e T\ . .
e\ A\ T\ f

. S ANRN RN AN AR WA RNRWRNAY]

Note MasterClock is the basic clock used in the CPU core.

—
SN
—
—~—
—
—~

238

CHAPTER 8 INITIALIZATION INTERFACE

8.4 VR4111 PROCESSOR MODES

The VR4111 supports various modes, which can be selected by the user. The CPU core mode is set each time a

write occurs in the Status register and Config register. The on-chip peripheral unit mode is set by writing to the 1/0

register.

This section describes the CPU core’s operation modes. For operation modes of on-chip peripheral units, see the

chapters describing the various units.

8.4.1 Power Modes

)

@)

®)

The VR4111 supports four power modes: Fullspeed mode, Standby mode, Suspend mode, and Hibernate mode.

Fullspeed Mode

This is the normal operation mode.

The VR4111's default status sets operation under Fullspeed mode. After the processor is reset, the VR4111
returns to Fullspeed mode.

Standby Mode

When a STANDBY instruction has been executed, the processor can be set to Standby mode. During Standby
mode, all of the internal clocks in the CPU core except for the timer and interrupt clocks are held at high level.
The peripheral units all operate as they do during Fullspeed mode. This means that DMA operations are
enabled during Standby mode.

When the STANDBY instruction completes the WB stage, the VR4111 remains idle until the SysAD internal bus
enters the idle state. Next, the clocks in the CPU core are shut down and pipeline operation is stopped.
However, the PLL, timer, and interrupt clocks continue to operate, as do the internal bus clocks (TClock and
MasterOut).

During Standby mode, the processor is returned to Fullspeed mode if any interrupt occurs, including a timer
interrupt that occurs internally.

Suspend Mode

When the SUSPEND instruction has been executed, the processor can be set to Suspend mode. During
Suspend mode, the processor stalls the pipeline and supplying all of the internal clocks in the CPU core except
for PLL timer and interrupt clocks are stopped. The VR4111 stops supplying TClock to peripheral units.
Accordingly, during Suspend mode peripheral units can only be activated by a special interrupt unit (DCD#
control, etc.). While in this mode, the register and cache contents are retained.

When the SUSPEND instruction completes the WB stage, the VR4111 switches the DRAM to self refresh mode
and then waits for the SysAD internal bus to enter the idle state. Next, the clocks in the CPU core are shut down
and pipeline operation is stopped. The VR4111 then stops supplying TClock to peripheral units. However, the
PLL, timer, and interrupt clocks continue to operate, as do the MasterOut.

The processor remains in Suspend mode until an interrupt is received, at which time it returns to Fullspeed
mode.

239

CHAPTER 8 INITIALIZATION INTERFACE

(4) Hibernate Mode

When the HIBERNATE instruction has been executed, the processor can be set to Hibernate mode. During
Hibernate mode, the processor stops supplying clocks to all units. The register and cache contents are retained
and output of TClock and MasterOut is stopped. The processor remains in Hibernate mode until the POWER
pin is asserted or a WakeUpTimer interrupt occurs at which the processor returns to Fullspeed mode.

In this mode, supplying voltage to the 2.5-V power-supply systems (VDD2, VDDP, VDDPD) can be stopped.
When the voltage of the 2.5-V power supplies becomes 0 V, the power dissipation becomes almost 0 W (it is not
exactly 0 V because there are a 32.768-kHz oscillator and on-chip peripheral circuits operating at 32.768 kHz).
However, this function is available from version 2.0.

8.4.2 Privilege Mode
The VR4111 supports three system modes: kernel expanded addressing mode, supervisor expanded addressing
mode, and user expanded addressing mode. These three modes are described below.

(1) Kernel Expanded Addressing Mode
When the Status register’'s KX bit has been set, an expanded TLB miss exception vector is used when a TLB
miss occurs for the kernel address. While in kernel mode, the MIPS Il operation code can always be used,
regardless of the KX bit.

(2) Supervisor Expanded Addressing Mode
When the Status register’'s SX bit has been set, the MIPS Il operation code can be used when in supervisor
mode and an expanded TLB miss exception vector is used when a TLB miss occurs for the supervisor address.

(3) User Expanded Addressing Mode
When the Status register’'s UX bit has been set, the MIPS IIl operation code can be used when in user mode,
and an expanded TLB miss exception vector is used when a TLB miss occurs for the user address. When this
bit is cleared, the MIPS | and Il operation codes can be used, as can 32-bit virtual addresses.

8.4.3 Reverse Endian

When the Status register’'s RE bit has been set, the endian ordering is reversed to adopt the user software’s
perspective. However, the RE bit of the Status register must be set to 0 since the VR4111 supports the little-endian
order only.

8.4.4 Bootstrap Exception Vector (BEV)

The BEV bit is used to generate an exception during operation testing (diagnostic testing) of the cache and main
memory system. This bit is automatically set to 1 after reset or NMI exception.

When the Status register’s BEV bit has been set, the address of the TLB miss exception vector is changed to the
virtual address OxFFFF FFFF BFCO 0200 and the ordinary execution vector is changed to address OxFFFF FFFF
BFCO 0380.

When the BEV bit is cleared, the TLB miss exception vector’s address is changed to OxFFFF FFFF 8000 0000
and the ordinary execution vector is changed to address OxFFFF FFFF 8000 0180.

240

CHAPTER 8 INITIALIZATION INTERFACE

8.4.5 Cache Error Check
The Status register’s CE bit has no meaning because the Vr4111 does not support cash parity.

8.4.6 Parity Error Prohibit
When the Status register’'s DE bit has been set, the processor does not issue any cache parity error exceptions.

8.4.7 Interrupt Enable (IE)

When the Status register’s IE bit has been cleared, no interrupts can be received except for reset interrupts and
nonmaskable interrupts.

241

[MEMO]

242

CHAPTER 9 CACHE MEMORY

This chapter describes in detail the cache memory: its place in the VrR4110 CPU core memory organization, and
individual organization of the caches.
This chapter uses the following terminology:

< The data cache may also be referred to as the D-cache.
<> The instruction cache may also be referred to as the I-cache.

These terms are used interchangeably throughout this book.

9.1 MEMORY ORGANIZATION

Figure 9-1 shows the Vr4110 CPU core system memory hierarchy. In the logical memory hierarchy, the caches
lie between the CPU and main memory. They are designed to make the speedup of memory accesses transparent
to the user.

Each functional block in Figure 9-1 has the capacity to hold more data than the block above it. For instance,
physical main memory has a larger capacity than the caches. At the same time, each functional block takes longer to
access than any block above it. For instance, it takes longer to access data in main memory than in the CPU on-chip
registers.

Figure 9-1. Logical Hierarchy of Memory

VR4110 CPU core

|Register | |Register | Register

Cache
Cache

|I-cache | |D-cache | |

\
Faster Increasing
access time data capacity

Disc, CD-ROM, Memory
tape, etc. media

243

CHAPTER 9 CACHE MEMORY

The Vr4110 CPU core has two on-chip caches: one holds instructions (the instruction cache), the other holds data
(the data cache). The instruction and data caches can be read in one PClock cycle.

2 PCycles are needed to write data. However, data writes are pipelined and can complete at a rate of one per
PClock cycle. In the first stage of the cycle, the store address is translated and the tag is checked; in the second
stage, the data is written into the data RAM.

9.2 CACHE ORGANIZATION

This section describes the organization of the on-chip data and instruction caches. Figure 9-2 provides a block
diagram of the Vr4110 CPU core cache and memory model.

Figure 9-2. Cache Support

VR4110 CPU core

Main memory

\J

Cache controller

Y Caches

D-cache I-cache: Instruction cache
D-cache: Data cache

(1) Cache Line Lengths
A cache line is the smallest unit of information that can be fetched from main memory for the cache, and that is
represented by a single tag.
The line size for the instruction/data cache is 4 words (16 bytes).
For the cache tag, see 9.2.1 and 9.2.2.

(2) Cache Sizes
The instruction cache in the VrR4110 CPU core is 16 Kbytes; the data cache is 8 Kbytes.

9.2.1 Organization of the Instruction Cache (I-Cache)

Each line of I-cache data (although it is actually an instruction, it is referred to as data to distinguish it from its tag)
has an associated 23-bit tag that contains a 22-bit physical address, and a single valid bit.

The Vr4110 CPU core I-cache has the following characteristics:

< direct-mapped
< indexed with a virtual address
< checked with a physical tag

< organized with a 4-word (16-byte) cache line.

Figure 9-3 shows the format of a 4-word (16-byte) I-cache line.

244

CHAPTER 9 CACHE MEMORY

Figure 9-3. Instruction Cache Line Format

22 21 0
\ PTag
1 22 31 0
Data
Data
Data
Data

Ptag : Physical tag (bits 31 to 10 of physical address)
VvV : Valid bit

Data: Cache data

9.2.2 Organization of the Data Cache (D-Cache)

Each line of D-cache data has an associated 25-bit tag that contains a 22-bit physical address, a Valid bit, a Dirty
bit, and a Write-back bit.
The Vr4110 CPU core D-cache has the following characteristics :

< write-back

< direct-mapped

< indexed with a virtual address

< checked with a physical tag

< organized with a 4-word (16-byte) cache line.

Figure 9-4 shows the format of a 4-word (16-byte) D-cache line.

Figure 9-4. Data Cache Line Format

24 23 22 21 0
W \% D PTag
1 1 22
63 0
Data
Data

W : Write-back bit (set if cache line has been written)
D : Dirty bit

VvV : Valid bit

Ptag : Physical tag (bits 31 to 10 of physical address)
Data: D-cache data

245

CHAPTER 9 CACHE MEMORY

9.2.3 Accessing the Caches
Figure 9-5 shows the virtual address (VA) index into the caches. The number of virtual address bits used to index

the instruction and data caches depends on the cache size.

(1) Data cache addressing
Using VA (12:4). The most-significant bit is VA12 because the cache size is 8 Kbytes.
The least-significant bit is VA4 because the line size is 4 words (16 bytes).

(2) Instruction cache addressing
Using VA (13:4). The most-significant bit is VA13 because the cache size is 16 Kbytes.
The least-significant bit is VA4 because the line size is 4 words (16 bytes).

Figure 9-5. Cache Data and Tag Organization

-

Tags Data

Tag line Data line

| 64
Wi

Data

VA (12:4)

for data cache (8 Kbytes)

VA (13:4)

for instruction cache (16 Kbytes)

246

CHAPTER 9 CACHE MEMORY

9.3 CACHE OPERATIONS

As described earlier, caches provide fast temporary data storage, and they make the speedup of memory
accesses transparent to the user. In general, the CPU core accesses cache-resident instructions or data through the
following procedure:

1. The CPU core, through the on-chip cache controller, attempts to access the next instruction or data in the
appropriate cache.
2. The cache controller checks to see if this instruction or data is present in the cache.
< If the instruction/data is present, the CPU core retrieves it. This is called a cache hit.
< If the instruction/data is not present in the cache, the cache controller must retrieve it from memory. This is
called a cache miss.
3. The CPU core retrieves the instruction/data from the cache and operation continues.

It is possible for the same data to be in two places simultaneously: main memory and cache. This data is kept
consistent through the use of a write-back methodology; that is, modified data is not written back to memory until the
cache line is to be replaced.

Instruction and data cache line replacement operations are described in the following sections.

9.3.1 Cache Write Policy
The Vr4110 CPU core manages its data cache by using a write-back policy; that is, it stores write data into the
. Some time later this data is independently written into memory. In

Note

cache, instead of writing it directly to memory
the VR4111 implementation, a modified cache line is not written back to memory until the cache line is to be replaced
either in the course of satisfying a cache miss, or during the execution of a write-back CACHE instruction.

When the CPU core writes a cache line back to memory, it does not ordinarily retain a copy of the cache line, and
the state of the cache line is changed to invalid.

Note Contrary to the write-back, the write-through cache policy stores write data into the memory and cache
simultaneously.

247

CHAPTER 9 CACHE MEMORY

9.4 CACHE STATES

(1) Cache line
The three terms below are used to describe the state of a cache line:

< Dirty: a cache line containing data that has changed since it was loaded from memory.

<~ Clean: a cache line that contains data that has not changed since it was loaded from memory.

<> Invalid: a cache line that does not contain valid information must be marked invalid, and cannot be used.
For example, after a Soft Reset, software sets all cache lines to invalid. A cache line in any other state than
invalid is assumed to contain valid information. Neither Cold reset nor Soft reset makes the cache state
invalid. Software makes the cache state invalid.

(2) Data cache
The data cache supports three cache states:

< invalid
< valid clean
< valid dirty

(3) Instruction cache
The instruction cache supports two cache states:

< invalid
< valid

The state of a valid cache line may be modified when the processor executes a CACHE operation. CACHE
operations are described in Chapter 28.

248

CHAPTER 9 CACHE MEMORY

9.5 CACHE STATE TRANSITION DIAGRAMS

The following section describes the cache state diagrams for the data and instruction cache lines. These state
diagrams do not cover the initial state of the system, since the initial state is system-dependent.

9.5.1 Data Cache State Transition

The following diagram illustrates the data cache state transition sequence. A load or store operation may include
one or more of the atomic read and/or write operations shown in the state diagram below, which may cause cache
state transitions.

< Read (1) indicates a read operation from main memory to cache, inducing a cache state transition.

< Write (1) indicates a write operation from CPU core to cache, inducing a cache state transition.

< Read (2) indicates a read operation from cache to the CPU core, which induces no cache state transition.
< Write (2) indicates a write operation from CPU core to cache, which induces no cache state transition.

Figure 9-6. Data Cache State Diagram

CACHE op CACHE op

Write (1)

Write (1)
CACHE op

Read (2) Read (2)

Write (2)

Write-back

9.5.2 Instruction Cache State Transition
The following diagram illustrates the instruction cache state transition sequence.

< Read (1) indicates a read operation from main memory to cache, inducing a cache state transition.
< Read (2) indicates a read operation from cache to the CPU core, which induces no cache state transition.

Figure 9-7. Instruction Cache State Diagram

CACHE op
Read (2) valid) _ Read (1)

Invalid

249

CHAPTER 9 CACHE MEMORY

9.6 CACHE DATA INTEGRITY

Figures 9-8 to 9-22 shows checking operations for various cache accesses.

Figure 9-8. Data Check Flow on Instruction Fetch

Refill (See
Figure 9-21)

Data Fetch

Figure 9-9. Data Check Flow on Load Operations

< Start)
Hit
Tag Check

Miss or
Invalid

V =0 (invalid)

or
.) W =0 (clean)
V bit & W bit

V =1 (valid)and
W =1 (dirty)

Refill (see
Write-back and Figure 9-21)
Refill (see
Figure 9-21)

Data Load to
Register

END

250

CHAPTER 9 CACHE MEMORY

Figure 9-10. Data Check Flow on Store Operations

Start

(o)

Hit
Tag Check :
Miss . :
V =0 (invalid)
or
@ W bit W =0 (clean)
V =1 (valid) and
W =1 (dirty) Refill (see
Write-back and Figure 9-21)
Refill (see
Figure 9-22)
Data Write
to Data Cache
END

Figure 9-11. Data Check Flow on Index_Invalidate Operations

Start

:

Valid bit Clear

END

251

CHAPTER 9 CACHE MEMORY

Figure 9-12. Data Check Flow on Index_Writeback _Invalidate Operations

= 0 (Invalid)

=1 (Valid)
=0 (Clean)

=1 (Dirty)

Write-back
(see Figure 9-20)

Valid bit and
W bit Clear

Figure 9-13. Data Check Flow on Index_Load_Tag Operations

Tag Read to TagLo

W bit Read to TagLo Data cache only

252

CHAPTER 9 CACHE MEMORY

Figure 9-14. Data Check Flow on Index_Store_Tag Operations

(Start)

Tag Write
from TagLo

‘ END)

Figure 9-15. Data Check Flow on Create_Dirty Operations

Miss or Invalid

Hit
) - =0 (Clean)
= V bit & W bit >

= 1 (dirty)

Write-back
(see Figure 9-20)

V bit and W bit set,
Tag write

253

CHAPTER 9 CACHE MEMORY

254

Figure 9-16. Data Check Flow on Hit_Invalidate Operations

Miss or Invalid

Valid bit Clear

‘ END ’

Figure 9-17. Data Check Flow on Hit_Writeback_Invalidate Operations

Tag Check Miss or Invalid

_ =0 (Clean)

=1 (Dirty)

Write-back
(see Figure 9-20)

Valid bit Clear

|

CHAPTER 9 CACHE MEMORY

Figure 9-18. Data Check Flow on Fill Operations

Refill (see
Figure 9-21)

Figure 9-19. Data Check Flow on Hit_Writeback Operations

= 1 (Dirty)

Write-back (see
Figure 9-20)

W bit clear

Miss or Invalid

=0 (Clean)

Data cache only

END

Data cache only

255

CHAPTER 9 CACHE MEMORY

Figure 9-20. Writeback Flow

O

Write-back
to memory

<eoor >

Yes

Figure 9-21. Refill Flow

O

Write data
to Cache

Cache line
Invalid

(Bus Error Exception)

256

CHAPTER 9 CACHE MEMORY

Figure 9-22. Writeback & Refill Flow

O

f

Write-back
to memory

<eonr >

Yes

Refill Start

A

. Error
Error bit
Write data

to cache Cache line
OK Invalid
I
N0 O C Bus Error Exception>
Yes

Remark Write-back Procedure:
On a store miss write-back, data tag is checked and data is transferred to the write buffer. If an error is

detected in the data field, the write back is not terminated; the erroneous data is still written out to main
memory. If an error is detected in the tag field, the write-back bus cycle is not issued.
The cache data may not be checked during CACHE operation.

257

CHAPTER 9 CACHE MEMORY

9.7 MANIPULATION OF THE CACHES BY AN EXTERNAL AGENT

The Vr4111 does not provide any mechanisms for an external agent to examine and manipulate the state and
contents of the caches.

258

CHAPTER 10 CPU CORE INTERRUPTS

Four types of interrupt are available on the CPU core. These are:

<> one non-maskable interrupt, NMI
<~ five ordinary interrupts

< two software interrupts

< one timer interrupt

For the interrupt request input to the CPU core, see Chapter 15.
10.1 NON-MASKABLE INTERRUPT (NMI)

The non-maskable interrupt is acknowledged by asserting the NMI signal (internal), forcing the processor to
branch to the Reset Exception vector. This signal is latched into an internal register at the rising edge of MasterOut,
as shown in Figure 10-1.

NMI only takes effect when the processor pipeline is running.

This interrupt cannot be masked.

Figure 10-1 shows the internal service of the NMI signal. The NMI signal is latched into an internal register by the
rising edge of MasterOut. The latched signal is inverted to be transferred to inside the device as an NMI request.

Figure 10-1. Non-maskable Interrupt Signal

(Internal register)

NMI signal — NMI request

MasterOut

10.2 ORDINARY INTERRUPTS
Ordinary interrupts are acknowledged by asserting the Int(4:0) signals (internal). However, Int4 never occurs in

the Vr4111.
This interrupt request can be masked with the IM (6:2), IE, and EXL fields of the Status register.

259

CHAPTER 10 CPU CORE INTERRUPTS

10.3 SOFTWARE INTERRUPTS GENERATED IN CPU CORE

Software interrupts generated in the CPU core use bits 1 and 0 of the IP (interrupt pending) field in the Cause
register. These may be written by software, but there is ho hardware mechanism to set or clear these bits.

After the processing of a software interrupt exception, corresponding bit of the IP field in the Cause register must
be cleared before returning to ordinary routine or enabling multiple interrupts until the operation returns to normal
routine.

This interrupt request is maskable through the IM (1:0), IE, and EXL fields of the Status register.

10.4 TIMER INTERRUPT

The timer interrupt uses bit 7 of the IP (interrupt pending) field of the Cause register. This bit is set automatically
whenever the value of the Count register equals the value of the Compare register, and an interrupt request is
acknowledged.

This interrupt is maskable through IM7 of the IM field of the Status register.

10.5 ASSERTING INTERRUPTS

10.5.1 Detecting Hardware Interrupts
Figure 10-2 shows how the hardware interrupts are readable through the Cause register.

< The timer interrupt signal, IP7, is directly readable as bit 15 of the Cause register.
< Bits 4:0 of the Interrupt register are bit-wise ORed with the current value of the Int(4:0) signals and the result is

directly readable as bits 14:10 of the Cause register.

IP(1:0) of the Cause register, which are described in Chapter 7, are software interrupts. There is no hardware
mechanism for setting or clearing the software interrupts.

260

CHAPTER 10 CPU CORE INTERRUPTS

Figure 10-2. Hardware Interrupt Signals

4 3 2 1 O

I Interrupt register (4:0)

1 IP3
1 P4
s 1D IP5
1D IP6

Timer interrupt IP7

10
11

12
——» See Figure 10-3
13

14

15

Cause register
(15:10)

MasterOut ——»» (Internal register)

11

Int3 Intl

Int4 Int2 Int0

Remark Int4 never occurs in the VrR4111.

261

CHAPTER 10 CPU CORE INTERRUPTS

10.5.2 Masking Interrupt Signals
Figure 10-3 shows the masking of the CPU core interrupt signals.

< Cause register bits 15 to 8 (IP7 to IP0O) are AND-ORed with Status register interrupt mask bits 15 to 8 (IM7 to
IMO) to mask individual interrupts.

< Status register bit 0 is a global Interrupt Enable (IE). It is ANDed with the output of the AND-OR logic to
produce the CPU core interrupt signal. The EXL bit in the Status register also enables these interrupts.

Figure 10-3. Masking of the Interrupt Request Signals

Status register
SRO

IE

Status register
SR (15:8)
IMO | 8
IM1 |9
IM2 |10
IM3 [118/
IM4 112
IM5 |13

IM6 |14
IM7 |15

CPU core interrupt

ﬁl;,

Software interrutpts { PO |8

T

generated in CPU core P1 |9
IP2 |10
IP3 [118 AND logic
Ordinary P4 l#’
interrupts iP5 |13

IP6 |14 AND-OR logic
Timer interrupt —»| IP7 |15

Cause register

(15:8)
Bit Function Setting
IE Whole interrupts enable 1: Enable
0 : Disable
IM(7:0) Interrupt mask Each bit 1: Enable
0 : Disable
IP(7:0) Interrupt request Each bit 1: Pending
0 : Not pending

262

CHAPTER 11 BCU (BUS CONTROL UNIT)

This chapter describes the BCU’s operations and register settings.
11.1 GENERAL

In the VR4111, the BCU receives data that has passed via the VR4110 CPU core and the SysAD bus. The BCU
also controls external agents via the system bus, such as an LCD controller, DRAM, ROM (Flash memory or masked
ROM), or PCMCIA controller, and it transmits and receives data with these external agents via the ADD bus and

DATA bus.

11.2 REGISTER SET
The BCU registers are listed below.

Table 11-1. BCU Registers

Address R/W Register symbols Function
0x0B00 0000 R/W | BCUCNTREG1 BCU Control Register 1
0x0B00 0002 R/W | BCUCNTREG2 BCU Control Register 2
0x0B00 000A R/W | BCUSPEEDREG BCU Access Cycle Change Register
0x0B00 000C R/W | BCUERRSTREG BCU BUS ERROR Status Register
0x0B00 000E R/W | BCURFCNTREG BCU Refresh Control Register
0x0B00 0010 R REVIDREG Revision ID Register
0x0B00 0012 R/W | BCURFCOUNTREG | BCU Refresh Count Register
0x0B00 0014 R CLKSPEEDREG Clock Speed Register
0x0B00 0016 R/W | BCUCNTREG3 BCU Control Register 3

Each register is described in detail as follows.

263

CHAPTER 11

BCU (BUS CONTROL UNIT)

11.2.1 BCUCNTREG1 (0x0BO0O 0000)

(1/2)
Bit D15 D14 D13 D12 D11 D10 D9 D8
Name ROM64 DRAM64 ISAM/LCD PAGE128 Reserved | PAGEROM2 | Reserved PAGEROMO
R/W R/W R/W R/W R/W R R/W R R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0
Bit D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved ROMWEN2 | Reserved ROMWENO | Reserved Reserved |BUSHERREN| RSTOUT
R/W R R/W R R/W R R R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0
Bit Name Function
D[15] ROM64 Sets the capacity of the ROM to be used
1: 64M-bit ROM
0: 32M-bit ROM
D[14] DRAM64 Sets the capacity of the DRAM to be used
1: 64M-bit DRAM
0: 16M-bit DRAM
D[13] ISAM/LCD Assigns space from 0xOA00 0000 to OXOAFF FFFF as the physical address space.
1: As ISA high-speed memory space
0: As LCD space
D[12] PAGE128 Sets the maximum burst access size for Page ROM.
1: 128-bit (16 byte)
0 : 64-bit (8 byte)
D[11] Reserved Write O to this bit. 0 is returned after a read.
D[10] PAGEROM2 This is the page ROM access enable bit for the ROM space in banks 3 and 2 (16-bit
mode) or in bank 1 (32-bit mode).
1: Page ROM
0: Ordinary ROM
D[9] Reserved Write O to this bit. 0 is returned after a read.
D[8] PAGEROMO This is the page ROM access enable bit for the ROM space in banks 1 and 0 (16-bit

mode) or in bank 0 (32-bit mode).
1: Page ROM
0: Ordinary ROM

264

CHAPTER 11 BCU (BUS CONTROL UNIT)

(2/2)
Bit Name Function
D[7] Reserved Write O to this bit. 0 is returned after a read.
D[6] ROMWEN2 This enables flash memory write and issues a flash memory register read-only bus

cycle for the ROM space in banks 3 and 2 (16-bit mode) or in bank 1 (32-bit mode).
1: Enable (Not affected by PAGEROM?2)

0 : Prohibit
D[5] Reserved Write O to this bit. 0 is returned after a read.
D[4] ROMWENO This enables flash memory write and issues a flash memory register read-only bus

cycle for the ROM space in banks 1 and 0 (16-bit mode) or in bank 0 (32-bit mode).
1: Enable (Not affected by PAGEROMO)

0 : Prohibit

D[3..2] Reserved Write O to these bits. 0 is returned after a read.

D[1] BUSHERREN This is the bus timeout detection enable bit, which is used when a bus hold has been
received.

1: Performs timeout detection when a bus hold has been received.
0 : Does not perform timeout detection when a bus hold has been received.

D[0] RSTOUT RSTOUT control bit
1: High level
0: Low level

This register is used to set parameters such as the bus interface’s bus cycle and memory type to be used.

For the setting of the PAGEROM2 and ROMWEN?2 bits, the target ROM area differs depending on the data bus
mode. The access target ROM area is banks 3 and 2 in 16-bit data bus mode, and is banks 3, 2, and 1 in 32-bit data
bus mode.

For the setting of the PAGEROMO and ROMWENQO bits, the target ROM area differs depending on the data bus
mode. The access target ROM area is banks 3 and 2 in 16-bit data bus mode, and is banks 3, 2, and 1 in 32-bit data
bus mode.

For details of the bank assignment in the ROM area and DRAM area, refer to 6.3.1 ROM Space and 6.3.5 DRAM
Space, respectively.

When a timeout is detected while the BUSHERREN bit is set to 1, the RSTOUT pin is set to high to request bus
release from the external bus master (in this case, the HLDRQ# pin of the bus master should be set to high). An
interrupt request is then sent to the CPU by setting the bit BERRST of the BCUERRSTREG register to 1. Write 0 to
the RSTOUT bit to make the RSTOUT pin low. Detection is not performed in the suspend mode.

265

CHAPTER 11

BCU (BUS CONTROL UNIT)

11.2.2 BCUCNTREG2 (0x0BO0O 0002)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
R/W R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved GMODE
R/W R R R R R R R R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15..1] Reserved Write O to these bits. 0 is returned after a read.

D[0] GMODE This is the access data control bit for LCD space.
1: Do not invert the access data for LCD space
0 : Invert the access data for LCD space

This register is used to specify whether data is inverted (translated to 2's complement) or not when accessing the

LCD space.

The LCD space is accessed when the ISAM/LCD bit of BCUCNTREGL1 is 0. When it is 1, this address space is
used as the ISA high-speed memory space. In this case, the contents of the BCUCNTREG?2 register are invalid, and

inversion of access data is not performed.

266

CHAPTER 11 BCU (BUS CONTROL UNIT)

11.2.3 BCUSPEEDREG (0x0B00O 000A)

(1/2)
Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved | WPROM[1] | WPROM[0] | Reserved | WLCD/M[2] | WLCD/M[1] | WLCD/M[O]
R/W R R R/W R/W R R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0
Bit D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved WISAA [2] | WISAA 1] WISAA [0] Reserved | WROMA[2] | WROMA[1] | WROMA[O]
R/W R R/W R/W R/W R R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0
Bit Name Function
D[15..14] Reserved Write O to these bits. 0 is returned after a read.
D[13..12] WPROM][1..0] Page ROM access speed
11: RFU
10 : 1TClock
01: 2TClock
00 : 3TClock
D[11] Reserved Write O to this bit. 0 is returned after a read.
D[10..8] WLCD/M[2..0] Access speed to physical address space from 0xOA00 0000 to OXOAFF FFFF
LCD(ISAM/LCD=0) ISA-MEM(ISAM/LCD=1)
111: RFU 1TClock
110: RFU 2TClock
101: RFU 3TClock
100: RFU 4TClock
011 : 2TClock 5TClock
010 : 4TClock 6TClock
001 : 6TClock 7TClock
000 : 8TClock 8TClock
D[7] Reserved Write O to this bit. 0 is returned after a read.

267

CHAPTER 11 BCU (BUS CONTROL UNIT)

2/2)

Bit

Name

Function

D[6..4]

WISAA[2..0]

System bus access speed
111:
110:
101 :
100 :
011 :
010:
001 :
000 :

RFU. Operation is not guaranteed when this value has been set.
RFU. Operation is not guaranteed when this value has been set.
3TClock "

4TClock "™

5TClock

6TClock

7TClock

8TClock

D[3]

Reserved

Write 0 to this bit. 0 is returned after a read.

D[2..0]

WROMA[2..0]

ROM access speed
111:
110:
101 :
100 :
011 :
010:
001 :
000 :

2TClock
3TClock
4TClock
5TClock
6TClock
7TClock
8TClock
9TClock

Note When the WISAA [2:0] bits are set to 101 or 100, the AC characteristics between BUSCLK and the system
bus interface signals (ADD [25:0], SHB#, MEMR#, MEMW#, IOR#, and IOW#) are not guaranteed.

This register is used to set the access speed for the LCD, system bus, page ROM, and ROM.

The lowest speed is set when “0” is set to all of the following bits: WLCD/M[2..0], WPROMI[1..0], WISAA|2..0],
and WROMAJ2..0]. Setting “1” to all of these bits sets the highest speed.

The value set to WPROM][1..0] is valid only when “1” has been set to the PAGEROM bit in BCUCNTREGL.

268

CHAPTER 11 BCU (BUS CONTROL UNIT)

11.2.4 BCUERRSTREG (0x0B00 000C)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
R/W R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved BERRST
R/W R R R R R R R R/W1C
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15..1] Reserved Write O to these bits. 0 is returned after a read.

D[0] BERRST Bus error status. Clear to 0 when 1 is written.
1: Bus error
0: Normal

This register is used to indicate when a bus error interrupt request has occurred.
The bus error interrupt can be cleared by setting BERRST to 1.

269

CHAPTER 11 BCU (BUS CONTROL UNIT)

11.2.5 BCURFCNTREG (0x0B00O 000E)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved BRF[13] BRF[12] BRF[11] BRF[10] BRF[9] BRF[8]
R/W R R R/W R/W R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 1 0
Other resets 0 0 Undefined Undefined Undefined Undefined Undefined Undefined

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name BRF[7] BRF[6] BRF[5] BRF[4] BRF[3] BRF[2] BRF[1] BRF[0]
R/W R/W R/W R/W R/W R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets | Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined

Bit Name Function
D[15..14] Reserved Write O to these bits. 0 is returned after a read.

D[13..0] BRF[13..0] Use this bit to set the number of DRAM refresh cycles (with TClock cycle).

The refresh interval can be obtained by calculating the following expression:

Refresh interval = BRF[13..0] x TClock

Therefore, the setting value should be obtained by calculating the number of used DRAM refresh cycles (ex.
4,096 cycles/128 ms in the yPD42S16165) and the bus access cycles (each address space/bus hold cycle). For
TClock, see 10.2.8 CLKSPEEDREG.

If a bus timeout occurs, one DRAM refresh cycle is lost. It occurs when the ready signal and HLDRQ# signal do
not become high level in a certain period during the system bus I/O MEM, LCD/high-speed bus, or bus hold cycle.

270

CHAPTER 11 BCU (BUS CONTROL UNIT)

11.2.6 REVIDREG (0x0B00 0010)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name RID[3] RID[2] RID[1] RID[0] MJREV[3] | MJREV[2] | MJREV[1] | MJIREV[0]
R/W R R R R R R R R
RTCRST 0 0 0 1 0 0 0 0
Other resets 0 0 0 1 Undefined Undefined Undefined Undefined

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved Reserved Reserved Reserved MNREV[(3] | MNREV[2] MNREV[1] | MNREVI[O0]
R/W R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 Undefined Undefined Undefined Undefined

Bit Name Function
D[15..12] RID[3:0] This is the processor revision ID. 0x02 indicates the VrR4111.

D[11..8] MJREV][3..0] Major revision number
D[7..4] Reserved Write O to these bits. 0 is returned after a read.
D[3..0] MNREV([3..0] Minor revision number

This register is used to indicate revisions of the VR4111's peripheral units.

The revision number is stored as a value in the form y.x, where y is a major revision number and x is a minor
revision number.

Major revision number and minor revision number can distinguish the revision of the CPU and the peripheral
units, however there is no guarantee that changes to the CPU and the peripheral units will necessarily be reflected in
this register, or that changes to the revision number necessarily reflect real CPU’s and units’ changes. For this
reason, these values are not listed and software should not rely on the revision number in PREVIDREG to
characterize the units.

271

CHAPTER 11 BCU (BUS CONTROL UNIT)

11.2.7 BCURFCOUNTREG (0x0B00 0012)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved | BRFC[13] | BRFC[12] | BRFC[11] | BRFC[10] BRFCI9] BRFCI[8]
R/W R R R/W R/W R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 Undefined Undefined Undefined Undefined Undefined Undefined

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name BRFC[7] BRFCI6] BRFC[5] BRFC[4] BRFCI[3] BRFC[2] BRFC[1] BRFCI[0]
R/W R/W R/W R/W R/W R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 1
Other resets [Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined

Bit Name Function
D[15..14] Reserved Write O to these bits. 0 is returned after a read.

D[13..0] BRFCJ[13..0] Number of the current DRAM refresh cycle.

This register is used to indicate the current refresh cycle count value.

When the value of this register is 0x0000, a refresh cycle request is generated and the BCURFCNTREG (0x0B0O
000E) value is set. The counter operates irrespective of refresh cycle generation.

Even after the refresh cycle request is generated, if no refresh cycle is generated because of other bus cycles
(system bus I/O MEM, LCD/high-speed system bus, or bus hold) and if this register is 0x0000, bus timeout occurs
(during bus hold cycle, this depends on the setting of BCUCNTREGL'’s bit 1).

272

CHAPTER 11 BCU (BUS CONTROL UNIT)

11.2.8 CLKSPEEDREG (0x0B00 0014)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name DIv2B DIV3B DIV4B Reserved Reserved Reserved Reserved Reserved
R/W R R R R R R R R
RTCRST Undefined Undefined Undefined 0 0 0 0 0
Other resets | Undefined Undefined Undefined 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved Reserved Reserved CLKSP[4] CLKSPI[3] CLKSP[2] CLKSP[1] CLKSPI[0]
R/W R R R R R R R R
RTCRST 0 0 0 Undefined Undefined Undefined Undefined Undefined
Other resets 0 0 0 Undefined Undefined Undefined Undefined Undefined

Bit Name Function
D[15] DIV2B Used to calculate the operating clock (TClock) of peripheral unit.

D[14] DIV3B Used to calculate the operating clock (TClock) of peripheral unit.
D[13] DIV4B Used to calculate the operating clock (TClock) of peripheral unit.
D[12..5] Reserved RFU. Write 0 to these bits. 0 is returned after a read.

D[4..0] CLKSP[4..0] Used to calculate the operating clock (PClock) of the CPU core.

The following expression is used to calculate the operating clock (TClock) of peripheral unit.
When DIV2B =0,
TClock = (18.432 MHz/CLKSP[4:0]) x 32

When DIV3B =0,
TClock = (18.432 MHz/CLKSP[4:0]) x 21.33

When DIV4B = 0,
TClock = (18.432 MHz/CLKSP[4:0]) x 16

The following expression is used to calculate the operating clock (PClock) of the CPU core.

PClock = (18.432 MHz/CLKSP[4:0]) x 64

273

CHAPTER 11

BCU (BUS CONTROL UNIT)

11.2.9 BCUCNTREGS (0x0B00 0016)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name EXT_ EXT_ EXT_ EXT_ EXT_ Reserved Reserved Reserved
ROM64 DRAM64 ROMCSJ3] ROMCSJ[2] MEM
R/W R/W R/W R/W R/W R/W R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets O O O O O 0 0 0
Bit D7 D6 D5 D4 D3 D2 D1 DO
Name LCD32 Reserved Reserved Reserved Reserved Reserved Reserved Reserved
R/W R/W R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets O 0 0 0 0 0 0 0
Bit Name Function
D[15] EXT_ROM64 Sets the capacity of the expansion ROM to be used.
1: 64M-bit ROM
0: 32M-bit ROM
D[14] EXT_DRAM64 Sets the capacity of the expansion DRAM to be used.
1: 64M-bit DRAM
0: 16M-bit DRAM
D[13..12] EXT_ROMCS[3..2] Assigns space of banks 3 and 2 (32-bit mode).
11: Bank 3 = ROM, bank 2 = ROM
10: Bank 3 = ROM, bank 2 = DRAM
01: RFU
00: Bank 3 = DRAM, bank 2 = DRAM
D[11] EXT_MEM Enables/Disables an access to expansion memory (ROM/DRAM).
1: Enable
0: Disable
D[10..8] Reserved Write O to these bits. 0 is returned after a read.
D[7] LCD32 Sets the data bus size of LCD space (32-bit mode).
1: 32 hits
0: 16 bits
D[6..0] Reserved Write O to these bits. 0 is returned after a read.

This register can be set only in 32-bit data bus mode (DBUS32 = 1).
The data bus size of high-speed system bus is fixed to 16 bits.

274

CHAPTER 11 BCU (BUS CONTROL UNIT)

11.3 CONNECTION OF ADDRESS PINS

11.3.1 Connection to DRAM

Table 11-2 shows the connection example between the Vr4111 and DRAM.
The data of row address and column address that correspond to RAS signal (MRAS[3:0]#) and CAS signal
(UUCASH#, ULCAS#, UCASH#, and LCAS#), respectively, are output to DRAM (multiplexed-addressing supported), via
the Vr4111’'s ADD pin (ADD[23:9]).
See the table below for the physical address corresponding to each address.

Table 11-2. Example of DRAM Connection and Address Output from V

(a) In 16-bit data bus mode (DBUS32 = 0)

rRA111 (1/2)

DRAM address pin 16M-bit DRAM (1 Mbit x 16) 64M-bit DRAM (4 Mbits x 16)
ADD pin Row Column ADD pin Row Column

A12/NC™** ADD20 adr20

AL11/NC™*? ADD20 adr20 ADD22 adr22

A10/NC™*? ADD19 adr19 ADD21 adr21
A9 ADD18 adrl8 adr20 ADD18 adrl8 adr20
A8 ADD17 adrl7 adrl9 ADD17 adrl7 adrl9
A7 ADD16 adrl6 adr8 ADD16 adrl6 adr8
A6 ADD15 adrl5 adr7 ADD15 adrl5 adr7
A5 ADD14 adrl4 adré ADD14 adrl4 adr6
A4 ADD13 adrl3 adr5 ADD13 adrl3 adr5
A3 ADD12 adrl2 adr4 ADD12 adrl2 adr4
A2 ADD11 adrll adr3 ADD11 adrll adr3
Al ADD10 adrl0 adr2 ADD10 adrl0 adr2
A0 ADD9 adr9 adrl ADD9 adr9 adrl

Notes 1. uPD42S64165/uPD42S65165
2. uPD42S16165/uPD42S518165

Remark adr[22:1]: CPU Core or DMAAU physical address bit.

275

CHAPTER 11 BCU (BUS CONTROL UNIT)

276

Table 11-2. Example of DRAM Connection and Address Output from V

(b) In 32-bit data bus mode (DBUS32 = 1)

rRA111 (2/2)

DRAM address pin 16M-bit DRAM (1 Mbit x 16) 64M-bit DRAM (4 Mbits x 16)
ADD pin Row Column ADD pin Row Column

A12/NC™** ADD20 adr20

AL11/NC™*? ADD20 adr20 ADD23 adr23

A10/NC™*? ADD19 adr19 ADD22 adr22
A9 ADD18 adrl8 adr20 ADD18 adrl8 adr20
A8 ADD17 adrl7 adrl9 ADD17 adrl7 adrl9
A7 ADD16 adrl6 adr8 ADD16 adrl6 adr8
A6 ADD15 adrl5 adr7 ADD15 adrl5 adr7
A5 ADD14 adrl4 adré ADD14 adrl4 adr6
A4 ADD13 adrl3 adr5 ADD13 adrl3 adr5
A3 ADD12 adrl2 adr4 ADD12 adrl2 adr4
A2 ADD11 adrll adr3 ADD11 adrll adr3
Al ADD10 adrl0 adr2 ADD10 adrl0 adr2
A0 ADD9 adr9 adr21 ADD9 adr9 adr2l

Notes 1. uPD42S64165/uPD42S65165
2. uPD42S16165/uPD42518165

Remark adr[23:2]: CPU Core or DMAAU physical address bit.

CHAPTER 11 BCU (BUS CONTROL UNIT)

11.3.2 Connection to ROM

Table 11-3 shows a connection example between the Vr4111 and ROM.

Table 11-3. Example of ROM Connection and Address Output fromV ~ r4111 (1/2)

(a) In 16-bit data bus mode (DBUS32 = 0)

ROM address pin 32M-bit ROM (2 Mbits x 16) 64M-bit DRAM (4 Mbits x 16)
ADD pin adr ADD pin adr
A21 ADD22 adr22
A20 ADD21 adr21 ADD21 adr21
Al9 ADD20 adr20 ADD20 Adr20
Al18 ADD19 adrl9 ADD19 adrl9
Al7 ADD18 adrl8 ADD18 Adr18
Al6 ADD17 adrl7 ADD17 Adrl7
Al5 ADD16 adrl6 ADD16 adrl6
Al4d ADD15 adrl5 ADD15 Adr15
A13 ADD14 adrl4 ADD14 adrl4
Al2 ADD13 adrl3 ADD13 Adr13
All ADD12 adrl2 ADD12 adrl2
Al0 ADD11 adrll ADD11 Adrll
A9 ADD10 adrl0 ADD10 adrl0
A8 ADD9 adr9 ADD9 adr9
A7 ADDS8 adr8 ADDS8 adr8
A6 ADD7 adr7 ADD7 adr7
A5 ADD6 adré ADD6 adré
A4 ADD5 adr5 ADD5 Adr5
A3 ADD4 adr4 ADD4 adr4
A2 ADD3 adr3 ADD3 adr3
Al ADD2 adr2 ADD2 Adr2
A0 ADD1 adrl ADD1 adrl

Remark adr[22:1]: CPU Core or DMAAU physical address bit.

277

CHAPTER 11 BCU (BUS CONTROL UNIT)

278

Table 11-3. Example of ROM Connection and Address Output fromV ~ r4111 (2/2)

(b) In 32-bit data bus mode (DBUS32 = 1)

ROM address pin 32M-bit ROM (2 Mbits x 16) 64M-bit DRAM (4 Mbits x 16)
ADD pin adr ADD pin Adr
A21 ADD23 Adr23
A20 ADD22 adr22 ADD22 Adr22
A19 ADD21 adr21 ADD21 Adr21
Al18 ADD20 adr20 ADD20 adr20
Al7 ADD19 adrl9 ADD19 adrl9
Al6 ADD18 adrl8 ADD18 adrl8
Al5 ADD17 adrl7 ADD17 adrl7
Al4d ADD16 adrl6 ADD16 adrl6
A13 ADD15 adrl5 ADD15 adrl5
Al2 ADD14 adrl4 ADD14 adrl4
All ADD13 adrl3 ADD13 adrl3
Al0 ADD12 adrl2 ADD12 adrl2
A9 ADD11 adrll ADD11 adrll
A8 ADD10 adrl0 ADD10 adrl0
A7 ADD9 adr9 ADD9 adr9
A6 ADDS8 adr8 ADDS8 adr8
A5 ADD7 adr7 ADD7 adr7
A4 ADD6 adré ADDG6 adré
A3 ADD5 adr5 ADD5 adr5
A2 ADD4 adr4 ADD4 adr4
Al ADD3 adr3 ADD3 adr3
A0 ADD2 adr2 ADD2 adr2

Remark adr[23:2]: CPU Core or DMAAU physical address bit.

CHAPTER 11 BCU (BUS CONTROL UNIT)

11.4 NOTES ON USING BCU

11.4.1 CPU Core Bus Modes
The VR4111 is designed on the assumption that the CPU core is set to the following mode.

* Writeback datarate : D
« Accelerate data ratio : VR4x00 compatible mode

Therefore, set the Config Register as below:

« EP:0000
e AD:O

11.4.2 Access Data Size
In the VR4111, access size is restricted for each address space. Access sizes for the following address spaces

are listed below.

Table 11-4. Access Size Restrictions for Address Spaces

Address space R/W Access size (bytes) Remark

16 8 4 3 2 1

ROM/PageROM R @) O @) O O @)

Flash memory w x x A x AN x Note 1

System bus I/0O space R/W O O O X O O

System bus memory space R/W O O @) X O O

On-chip I/0 space 1 R/W @) O @) X @) @)

On-chip I/O space 2 R/W X O O X O X

LCD space R/W X O O X O O Notes 2, 3

High-speed system bus memory space R/W X O O X O O | Note 3

DRAM RIW O O O o o o

Notes 1. The access size when writing to flash memory must be the same as the data bus width such as below;
In 32-bit mode: 4 bytes
In 16-bit mode: 2 bytes
2. Use as uncached.
The LCD space and high-speed system bus memory space are mapped to the same physical
address.
Use BCUCNTREG1's ISAM/LCD bit to switch between the two.

Remark O, A : accessible, x : not accessible

279

CHAPTER 11 BCU (BUS CONTROL UNIT)

11.4.3 ROM Interface
(1) Switching among ROM, PageROM, and Flash Memory Modes
The VR4111 supports three modes (ROM, PageROM and Flash Memory). The mode setting in ROM bank is set

via BCUCNTREG1's ROMWEN and PAGEROM bits.

Table 11-5. ROM Mode Settings and Access-Enabled Devices

Mode Setting Access-enabled devices
ROMWEN2/0 PAGEROM2/0 Memory read Flash Memory Flash Memory
register read write

Ordinary ROM 0 0 Ordinary ROM N/A N/A
PageROM
Flash Memory

PageROM 0 1 PageROM N/A N/A

Flash Memory 1 don't care Ordinary ROM Flash Memory Flash Memory
PageROM
Flash Memory

Remark The initial setting is Ordinary ROM mode.

(2) Access Speed Setting

280

The VR4111 enables the access speed to be changed when operating in Ordinary ROM mode or PageROM

mode.

For details, see 11.5.1 ROM Access .

CHAPTER 11 BCU (BUS CONTROL UNIT)

11.4.4 Flash Memory Interface

(1) Notes for Specific Modes

@)

The following two modes are available for flash memory.

Ordinary ROM mode (memory read only)
Flash Memory mode (supports memory write and register read)

The following notes apply to these modes.

(@) Notes for Ordinary ROM mode

» Write is prohibited
The WR# pin is not asserted even when a write operation is attempted.

» Flash memory register read is prohibited
The Ordinary ROM mode is the mode in which bus cycles suite for memory read operations are issued.
Since the AC characteristics of flash memory are different for register read and memory read operations,
accurate data cannot be obtained by reading the flash memory register while in this mode.

(b) Notes for Flash Memory mode

» Be sure to access in 2-byte units or 4-byte units (depending on data bus width) when writing to flash
memory.

Example of write sequence for flash memory

An example of a write sequence for flash memory is shown below.

Caution This example’s operations have not been confirmed using an actual system.

~N o o0 b~ WwN

Using GPIO as an output port, apply the flash memory write voltage (Vep).

If the VR4111's on-chip GPIOs cannot be used, set up an external output port and then control the write
voltage.

Set the VR4111 to flash memory mode (Set “1” to the BCUCNTREG’s ROMWEN bit).

Wait until the flash memory write voltage become stable.

Issue the flash memory write command from the VR4111.

Write data from the VR4111 to flash memory.

Wait until the flash memory write completion signal (ry/by) becomes stable.

Wait until the flash memory write completion signal gives natification of write completion.

After write to flash memory is completed, notification can be obtained by receiving an interrupt from the flash
memory write completion signal (ry/by) or by polling the flash memory register.

Read the flash memory register.

 If write succeeded, start processing from “9”.

 If write failed, start processing from “12".

If writing new data to flash memory, start processing from “4”.

If write to flash memory is completed, start processing from “10”.

281

CHAPTER 11 BCU (BUS CONTROL UNIT)

10 Compare the data written to flash memory with the original data.
 If the data matches, perform processing at “11".
 If the data does not match
Start processing from “1” when rewriting.
If processing is interrupted, start processing from “11”".
11 Apply the write voltage (Vre) to the flash memory, and end processing after flash memory mode has been
canceled.
12 Clear any error data in the flash memory register.
« If writing again
If the write voltage is too low, start processing from “1”.
In all other cases, start processing from “4”.
» If processing is completed, perform processing at “11".

(3) Notes for Using Memory Capacity
The capacity of the memory (ROM and DRAM) to be used can be set by using the ROM64 and DRAM®64 bits of
the BCUCNTREGL register. In this case, take into consideration that the physical addresses and banks of the
ROM differ depending on the setting of the ROM64 and DRAM®64 bits of BCUCNTREG1, as shown in 6.3.1 ROM
Space and 6.3.5 DRAM Space.

(4) Usage of Expansion Memory when Data Bus Size is 32 hits
In 32-bit data bus size mode, the expansion memory (ROM and DRAM) can be used by setting the proper
values to the EXT_ROM64, EXT_DRAM64, EXT_ROMCSJ[3:2], and EXT_MEM of BCUCNTREGS. In this case,
set EXT_ROM64, EXT_DRAM®64, and EXT_ROMCSJ[3:2] before setting EXT_MEM (access enable). When
manipulating these settings, take into consideration that the physical addresses and banks of the memory differ
as shown in 6.3.1 ROM Space and 6.3.5 DRAM Space.

11.4.5 LCD Control Interface

(1) Access Size
Available access sizes for accessing the LCD controller interface are 1 byte, 2 bytes, 4 bytes, and 8 bytes.

(2) Data Inversion
When “0” has been set to the BCUCNTREG1's ISAM/LCD bit and to BCUCNTREG2’'s GMODE bit, the VR4111

inverts the bits in the data being read or written via the LCD controller interface.

Table 11-6. Example of Bit Inversion in Datain V' R4111 and at DATA[15:0] Pins

Data in VR4111 | Data at DATA [15:0] Pins

0x0000 OXFFFF
OxA5A5 Ox5A5A
0x1234 OXEDCB

282

CHAPTER 11 BCU (BUS CONTROL UNIT)

(3) Data Bus Size
In the Vr4111, if the LCD32 hit of BCUCNTREGS3 is set to 1 during the 32-bit data bus mode (DBUS32 = 1), the
data bus size of the LCD controller interface is expanded to 32 bits (16 bits as default). In this case, the signals
UUCAS#/MRAS3#, ULCAS#/MRAS2#, UCAS#, and LCAS# are used to indicate the effective data on the
DATA[31:0] pins, not SHB# nor ADDO.

Figure 11-1. Example of 32-bit LCD Controller Interface Connection

Ve4111 LCD Controller

oaratsro) (K >l oatapLo)
ADD [25:0] > ADD [25:0]

UUCAS# BE3#
ULCAS# >I>' > BE2#
UCASH# BE1#
LCAS# Buffer BEO#
LCDCS# > CS#
LCDRDY - RDY

Caution Take sufficient consideration for the countermeasure against noises (such as undershoot,
overshoot, or cross talk) for the UUCAS#MRAS3#, ULCAS#MRAS2#, UCAS#, and LCAS#
signals, because they also function as the DRAM’s CAS signals.

Using buffers is recommended for long lines — for example, use cables to connect an LCD
controller.

283

CHAPTER 11 BCU (BUS CONTROL UNIT)

11.4.6 lllegal Access Notification

(1) Types of lllegal Access
Under the following circumstances, the Vr4111 provides notification concerning illegal access of the CPU core,
by the unmaskable interrupt request (bus error exception) during a read operation, and by the maskable
interrupt request (Int0) set with the BCUERRSTREG’s BERRST bit during a write operation.

* Bus deadlock
A deadlock is judged when a bus timeout (DRAM refresh interval + a) occurs due to the non-return of a ready
signal via the system bus or LCD controller interface, in which case notification of illegal access is given.
(0 < a < DRAM refresh interval)

» Address space reserved for future use
Notification of illegal access is given when the processor has accessed any of the following addresses.

OxOFFF FFFF to 0x0C00 0000

0x09FF FFFF to 0x0400 0000

(2) Natification Method for lllegal Access
The methods used to notify the CPU core are listed below.

Table 11-7. lllegal Access Notification Methods

Access type lllegal access natification method

Processor read request Notification by bus error caused by SysCmd

Processor write request | Notification by interrupt exception (Int0)

Remark To clear the interrupt source caused by a processor write request, write “1” to BCUERRSTREG's
bit1.

284

CHAPTER 11 BCU (BUS CONTROL UNIT)

11.5 BUS OPERATIONS

The bus operations of buses controlled by the BCU are described below.
The BCU's operating clock (TClock, internal) appears in the timing chart for each bus operation.
TClock is determined within a range of 20 to 28 MHz by CLKSEL[2:0] pin settings.

Remark # that follows signal names indicates active low.

11.5.1 ROM Access
The VR4111 supports the following three modes for ROM access.
Use BCUCNTREG1's PAGEROM bits and ROMWEN bits to set the mode.

* Ordinary ROM read mode (ROMWEN, PAGEROM = 00)
* PageROM read mode (ROMWEN, PAGEROM = 01)
» Flash Memory mode (ROMWEN = 1)

(1) Ordinary ROM Read Mode
Set ROMWEN = 0 and PAGEROM = 0.
WROMA[2:0] (BCUSPEEDREG [2:0]) can be used to set the access time during the ordinary ROM read mode,
as shown in Table 11-8.
Figures 11-2 and 11-3 show 4-byte read timing chart data for when WROMA [2:0] is set to “110". If access uses
a data size larger than 4 bytes, the Trom cycle is continued until the required access size is reached.

Table 11-8. Access Times During Ordinary ROM Read Mode

WROMA [2:0] | Trom (TClock)

000

001

010

011

100

101

110

N|[w]|l |[N]|0]|©

111

285

CHAPTER 11 BCU (BUS CONTROL UNIT)

Figure 11-2. ROM 4-Byte Read, 16-Bit Mode (WROMA[2:0] = 110)

Trom Trom

TCLock (intenal)

ADD[25:0] X X
ROMCS[3:0J# \ [
RD# \ [\ [

. {
DATA[15:0] N Rz () {)

Figure 11-3. ROM 4-Byte Read, 32-Bit Mode (WROMA[2:0] = 110)

Trom

-
o VAT A aVaVATaTa

ADDI[25:0] X
ROMCSI[3:0# \ /
RD# \ /

B) S G S ((

Data is sampled at the rising edge of the TClock following the last Trom-state TClock.
The bus operation types for ordinary ROM are as follows.

1-byte read, 2-byte read, 3-byte read, 1-word read, 2-word read, and 4-word read (1 word = 4 bytes)

286

CHAPTER 11 BCU (BUS CONTROL UNIT)

(2) PageROM Read Mode
Set ROMWEN = 0 and PAGEROM = 1.
WROMA[2:0] (BCUSPEEDREG [2:0]) and WPROM[1:0] (BCUSPEEDREG [13:12]) can be used to set the
access time of the Page ROM read cycle (Tprom).
Figures 11-4 and 11-5 show 16-byte read timing charts for when WROMA [2:0] is set to “111" and WPROM [1:0]
is set to “10". The ROMCS[3:0]# and RD# pins are held at low level during Trom cycles.

Table 11-9. PageROM Read Mode Access Time

WROMA [2:0] [Trom (TClock) WPROM [1:0] | Tprom (TClock)

000 9 00 3

001 8 01 2

010 7 10 1

011 6 11 RFU

100 5

101 4

110 3

111 2

Figure 11-4. PageROM 4-Word Read, 16-Bit Mode (WROMA[2:0] = 111, WPROM][1:0] = 10)

Trom TpromTpromTpromTpromTpromTpromTprom

R e

reeacieny L L\ LYY
oopso] X XX XXX XX
ROMCS[3:0}#) [
RD#] [

DATA[15:0] 1))tz -

Figure 11-5. PageROM 4-Word Read, 32-Bit Mode (WROMA[2:0] = 111, WPROM][1:0] = 10)

Trom JTpromTpromTprom

aomersy [LWL

aoppsg X X X X
ROMCSI[3:0}# \ [
RD# \ [

STTEED)) S @ S 4 (L{((8

287

CHAPTER 11 BCU (BUS CONTROL UNIT)

(3) Flash Memory Mode
Set ROMWEN = 1.
This mode is used to meet the electrical characteristics required for writing to flash memory and for accessing
the flash memory register. This mode can also be used to read to flash memory.
Note that the access time is constant when in this mode.

Figure 11-6. Flash Memory Mode, 2-Byte Access

Frash memory mode access cycle

ADD[25:0] X

ROMCS[3:0# \ /
RD#/WR# \ |

11.5.2 System Bus Access

(1) Bus Operations in System Bus of ISA Memory Space and ISA I/O Space
WISAA[2:0] (BCUSPEEDREG [6:4]) can be used to set the access time.

Table 11-10. System Bus Access Times

WISAA [2:0] | Tisa (TClock)

000

001

010

011

100

w ||| | N |0

101

110 RFU

111 RFU

288

CHAPTER 11 BCU (BUS CONTROL UNIT)

(2) Access to System Bus of ISA Memory Space and ISA 1/0O Space
The relationships between the data bus and SHB#, ADDO signals during 16-/8-bit access to the system bus are
shown below.

SHB# ADD[0] IOCS16# Write Read Remark
MEMCS16# | DATA[15:8] DATA[7:0] DATA[15:8] DATA[7:0]

0 0 0 o o © ©

1 0 0 x o) O ©

0 1 0 o Copy of © 0

DATA[15:8]

1 1 0 X x O O Note 1
O 0 1 x o O © Note 2
0 1 1 x o) O © Note 3

Notes 1. This combination is never output.
2. Byte access to even addresses
3. Byte access to odd addresses

Remarks ‘O’ indicates the system bus outputs invalid data.
‘" indicates the system bus output invalid data.
©: indicates the data sampled by system bus.
‘0" indicates the data not sampled by system bus.

Figure 11-7. 1-Byte Access to Even Address Using 16-Bit Bus (WISAA[2:0] = 101)

| | Tisa | Tisa | Tisa | |
Tclock (Internal)| | I | I | I l I | I | l | I l I | I | I I I |
ADD (25:0) X
SHB# H
I0CS16# /—
MEMCS16# \ 5 5 5

IOR#/IOW# \ ,
MEMR#/MEMW#

IOCHRDY / \

ZWS# /

DATA (15:0)
(Write)]

289

CHAPTER 11 BCU (BUS CONTROL UNIT)

Figure 11-8 illustrates 2-byte access when sampling IOCHRDY at high level.

* The IOCHRDY signal is sampled 1-Tisa cycle later from the falling edge of the IOR#/I0W# or MEMR#MEMW#
signal. When IOCHRDY is active, data becomes valid 1-Tisa cycle later. When IOCHRDY is inactive, one more wait
of 1-Tisa cycle is inserted.

If the system bus access time has been set as three TClocks (WISAA[2:0] = 101), the bus cycle will end after
waiting for at least three TCLocks (Tisa periods) after the ready signal is sampled using IOCHRDY.

* If high-level IOCHRDY is sampled, the IOCS16# or MEMCS16# signal is sampled for 1-Tisa cycle from sampling
IOCHRDY.

* Figure 11-8. 2-Byte Access When Sampling IOCHRDY at High Level Using 16-Bit Bus (WISAA[2:0] = 101)

ADD (25:0) X

SHB# L

I0CS16# \ r{\
MEMCS16# =
N

IOR#/IOW# \
MEMR#MEMW

IOCHRDY

ZWSH# /

DATA (15:0) X
(Write)

DATA (15:0) : .. <§> C

(Read)

290

CHAPTER 11 BCU (BUS CONTROL UNIT)

Figures 11-9 and 11-10 show timing charts for 1-byte access.
Figure 11-9. 1-Byte Access to Odd Address Using 16-Bit Bus (WISAA[2:0] = 101)

| | Tisa | Tisa | Tisa | |
ek terna)) [T L LT LT L LTI

ADD (25:0) X

SHB# L

IOCS16#

MEMCS16#

IOR#/IOW# \
MEMR#MEMW

IOCHRDY

L~

O P~

ZWS# 7

DATA (15:0) X
(Write)

DATA (15:0) ™™N.oooorrrrreemsessssnnnesseesesssseens 213D e
Read) —— <X

Figure 11-10. 1-Byte Access to Odd Address Using 8-Bit Bus (WISAA[2:0] = 101)

| | Tisa | Tisa | Tisa | |
Telock gnternay [L L L L LI LI LI LJ LT LT LT L

ADD (25:0) X

I0CS16# 7

MEMCS16#

IOR#/IOW# \
MEMR#MEMW

o ——
o

P -0

IOCHRDY

ZWS# /

DATA (15:0) X
(Write)

DATA (15:0) >H'Z ..
(Read) Cao <

291

*

*

*

CHAPTER 11 BCU (BUS CONTROL UNIT)

Figures 11-11 and 11-12 illustrate 2-byte access when sampling ZWS# at low level.
The bus cycle will end after waiting for at least 3 TCLocks (1-Tisa cycle) after the ready signal is sampled using

ZWS#. The ZWS# signal is sampled at every rising edge of TClock in the second and later Tisa periods.

If high-level ZWS# is sampled, one more wait of 1-Tisa cycle is inserted.

Caution Be sure not to change the level of the ZWS# signal in 1-Tisa cycle.
Figure 11-11. 2-Byte Access When Sampling ZWS# at Low Level Using 16-Bit Bus (WISAA[2:0] = 101)

‘ | Tisa | Tisa ‘ |

Teock oneernaty | L] L} L L L LJ L L 1

ADD (25:0) X

sHB# L

I0CS16# \
MEMCS16#
IOR#/IOW#

MEMR#/MEMW#

A (P~
P
P

IOCHRDY
ZWS# \ /{\ /{\ /{\ /
-/ -/ -/

DATA (15:0) X
(Write)

Y D S —— HiZ e aaT <

(Read) \f/

Figure 11-12. 2-Byte Access When Sampling ZWS# at Low Level Using 8-Bit Bus (WISAA[2:0] = 101)

| | Tisa | Tisa | | Tisa | Tisa | |

Tclock (Internal)

ADD (25:0) X X

IOCS16# 7
MEMCS16#
IOR#/IOW#

MEMR#/MEMW#

PR
~
~

N

J -
~
~

IOCHRDY

ZWSH# \ééé/ N . S S s

DATA (15:0) Y Y

(Write)

DATA (15:0) ~Mreerrererrerrererrenns 1SS u G L SSIND c
Road) —— @ @ C

292

CHAPTER 11 BCU (BUS CONTROL UNIT)

(3) Bus Operations in High-Speed System Bus
The space of physical address from 0x0A00 0000 to OXOAFF FFFF can be used as the high-speed system bus
memory space by setting the ISAM/LCD bit of BCUCNTREG1. WLCD/M [2:0] (BCUSPEEDREG [10:8]) can be
used to set the access time for access to this space, as shown in the table below.
The operation of the high-speed system bus is the same as that of system bus in the ISA memory space or ISA
1/0 space, except for access time settings and LCDCS# signal activation.

Table 11-11. High-Speed System Bus Access Times

WLCD/W [2:0] Tisa (TClock)

000

001

010

011

100

101

Nl W |d|lOO|lO | N)|

110

111 1

293

CHAPTER 11 BCU (BUS CONTROL UNIT)

294

Figure 11-13. 2-Byte Access Using 16-Bit Bus (WLCD/M[2:0] = 101)

| | Tisa | Tisa | Tisa |
Tclock(lnternal)l | I | I | I | I | I | I | I | I | I | I | I |
ADD (25:0) X
SHB# L
LCDCS# \ ’
MEMCS16# \ j\ j\ i /
J J N4

MEMR#/MEMW# \ /

IOCHRDY \
y X x
ZWS# /V ~ V\
o e0 TITTT)
DATA(élesz;g; ..] (_)(/ //

Figure 11-14. 1-Byte Access Using 8-Bit Bus (WLCD/M[2:0] = 101)

| | Tisa | Tisa | Tisa |

Tclock(lnternal)||||||||||||||||||||||||

ADD (25:0) X

LCDCSH# \ /

MEMR#/MEMW# \ ’

IOCHRDY

P
Oag
P

MEMCS16# /

ZWSH [~
20 TTTT T

YN V-NCET0) N A A YR L2
050 SR

CHAPTER 11 BCU (BUS CONTROL UNIT)

Figure 11-15. 2-Byte Access When Sampling ZWS# at Low Level
Using 16-Bit Bus (WLCD/M[2:0] = 101)

Tclock (Internal)
ADD (25:0)
SHB#

LCDCS#

MEMCS16#

MEMR#/ MEMW#

IOCHRDY

Z\WS#

DATA (15:0)
(Write)
DATA (15:0)
(Read)

Tclock (Internal)
ADD (25:0)

LCDCS#

MEMCS16#
MEMR#/MEMW#
IOCHRDY

Z\WS#

DATA (15:0)
(Write)
DATA (15:0)
(Read)

| | Tisa

Tisa

X
L
\ /
LD S S A—
\ /
NS S Y A—
[[/ /[/] X
A — HEZ, e rssessane an ey
T
Figure 11-16. 1-Byte Access When Sampling ZWS# at Low Level
Using 8-Bit Bus (WLCD/M[2:0] = 101)
‘ ‘ Tisa ‘ Tisa |
N I I
X
LA S
N N N \
\ /
NS S S A—
[[/[/][] X
AN — HIZ et < ?> <T77

295

CHAPTER 11 BCU (BUS CONTROL UNIT)

11.5.3 LCD Interface

The space of the physical address, from 0xOA00 0000 to OXOAFF FFFF can be used as the LCD space by setting
the ISM/LCD bit of the BCUCNTREGL1 to 0. WLCD/M[2:0] (BCUSPEEDREG [10:8]) can be used to set the access
time.

Table 11-12. Access Times for LCD Interface

WLCD/M Ticd (TClock)
[2:0]
000 8
001 6
010 4
011 2

100 - 111 RFU

When the LCD interface is used in 16-bit bus width, SHB# and ADDO are used to specify bytes. When the LCD
interface is used in 32-bit bus width, UUCAS#, ULCAS#, UCAS#, and LCAS# are used to specify bytes.

Figure 11-17. 2-Byte Access to LCD Controller (WLCD/M[2:0] = 010)

I | l«—— Ticd ——»|

Tclock (Internal)

ADD (25:0) 1

Leocs# \ [
RDHWR# \ [
-

LCDRDY [

DATA (15:0) X
(Write)

DATA (15:0) SRTTTTPPRTTTIN . s SSNTTRIRTY A VI
(Read) @ C

296

CHAPTER 11 BCU (BUS CONTROL UNIT)

* Figure 11-18. 2-Byte Access to LCD Controller (WLCD/M[2:0] = 011)

Wait cycle insertion via LCDRDY signal
| | | | | Ted | |

teockmerna [L L L L L L L L

ADD (25:0) X

SHB# L

LCDCS# \ /

RD#/WR# \ /

LCDRDY —\ é /

DATA (15:0) X
(Write)

DATA (15:0) RNV or 2SRV VERRRNIVD s U
(Read) > C oK

* Figure 11-19. Access to LCD Controller When Data Bus Size Is 32 Bits

Wait insertion via LCDRDY signal
| | | | | Tied | |

Tclock (Internal)

ADD (25:0) X

UUCASH#/ULCAS