Symbios Logic
PCI-SCSI 1/O Processors

Programming Guide
Version 2.1

\\\\\\\\\\\\\\\\\\\\\\\\\

HBIERNT

ACTIVE NEGATION T ECHNOLOGY

1259721

The products described in this publication are products of Symbios Logic Inc.

SCRIPTS and NASM are trademarks and TolerANT is a registered trademark of
Symbios Logic Inc.

Ultra SCSI is the term used by the SCSI Trade Association to describe Fast-20
SCSI, as documented in the SCSI-3 Fast-20 Parallel Interface standard, X3.277-
199X. Ultra2 SCSI is the term used by the SCSI Trade Association to describe Fast-
40 SCSI, as documented in some versions of the SPI-2 draft standard.

It is the policy of Symbios Logic to improve products as new technology,
components, software, and firmware become available. Symbios Logic, therefore,
reserves the right to change specifications without notice.

The products in this manual are not intended for use in life-support appliances,
devices, or systems. Use of these products in such applications without the written
consent of the appropriate Symbios Logic officer is prohibited.

Copyright ©1995, 1996, 1997
By Symbios Logic Inc.

All Rights Reserved

Printed in U.S.A.

We use comments from our readers to improve Symbios product literature. Please
e-mail any comments regarding technical documentation to pubs@symbios.com.

Symbios Logic PCI-SCSI Programming Guide
Purpose and Audience

Purpose and Audience

This manual provides basic information on the SYM53C8XX family
of PCI-SCSI 1/0O Processors to software developers writing device
drivers for SCSI devices that use these products. It describes basic
chip operation and provides detailed information on the SCRIPTS
programming language, a high-level interface for controlling Symbios
Logic SCSI processors. The programming examples and instructions
in this guide assume that the device driver is in “C” language. The
examples are primarily written for PC-based architectures, but
SCRIPTS-based drivers can run on any hardware platform. More
detailed information on SCSI specifications can be found in the
references listed in the section “Additional Information.”

The diskette that accompanies this programming guide contains
several “C”” and SCRIPTS sample programs that implement many of
the programming tasks discussed in this book. It also contains the
NASM SCRIPTS assembler and the NVPCI SCRIPTS debugger.
Please consult the “read me” file on the diskette for a list and
description of all sample programs. For the most up-to-date versions
of these and other sample programs, please contact the Symbios
Logic electronic bulletin board.

Symbios Logic PCI-SCSI Programming Guide

PCI-SCSI Programming Guide
Additional Information

|
ANSI SCSI-2 Standard,

SCSI-3 Parallel Interface
(SPI) Standard

|
SCSI Bench Reference,

SCSI Encyclopedia

What Is SCSI?
Understanding the Small
Computer System Interface

Symbios Logic Electronic
Bulletin Board

SCSI Electronic Bulletin
Board

Symbios Logic Internet
Anonymous FTP Site

Additional Information

The SCSI-2 document is the final, approved standard for SCSI-2.
The SPI document is still in draft. Both of these documents can be
obtained from:

Global Engineering Documents

15 Inverness Way East

Englewood, CO 80112

(800)-854-7179 or (303) 792-2181 (outside U.S.)

Ask for document number X3.131-199X (SCSI-2) or X3.253 (SPI)

The SCSI Bench Reference is an applications-oriented guide to the
basics of SCSI. It is intended as a quick reference guide only. The
SCSI Encyclopedia is a multi-volume reference that describes all
SCSI-1 and SCSI-2 commands and protocols. It contains detailed
information on all topics covered. These and other reference
materials can be ordered from:

ENDL Publications
14426 Black Walnut Court
Saratoga, CA 95070

(408) 867-6642

This easy-to-read book contains a high-level overview of how SCSI
works, based on the SCSI-1 standard. It is excellent for anyone with
no exposure to SCSI. It can be obtained from:

Prentice Hall

Englewood Cliffs, NJ 07632

(201) 767-5937

Ask for document number ISBN 0-13-796855-8

This BBS provides updated information on Symbios Logic SCSI
products, including sample SCRIPTS.
(719) 533-7235

Contact this BBS for general information on SCSI, including the
status of SCSI specifications, and electronic copies of draft
standards.

(719) 533-7950

This FTP site has general information similar to that on the
electronic bulletin board. The address is: ftp.symbios.com
(204.131.200.1) \pub\symchips\scsi.

Symbios Logic PCI-SCSI Programming Guide

PCI-SCSI Programming Guide
Additional Information

I T he Symbios Logic home page has general information about our

Symbios Logic World Wide company and products. The address is http://www.symbios.com.
Web Home Page

Symbios Logic PCI-SCSI Programming Guide iii

PCI-SCSI Programming Guide
Revision Record

Revision Record

Page No. Date Remarks
all 8/96 \ersion. 2.0
6/97 Version 2.1. Added information on

SYM53C885 and SYM53C876; added chapter
on programming multifunction controllers;
minor typographical corrections.

iv Symbios Logic PCI-SCSI Programming Guide

Table of Contents

Contents
Purpose and AUdIENCEoeeviiieiei e i
Additional Informationcoiiiiiiiiii i
ReVISION RECOId........ciiiiiiiei e, iv
LIST OF FIQUIES ...t Xiii
List Of TabIeS ..vuiieieeee e Xvii
Chapter 1
Introduction
What is Covered in This GUIdecccciiiiiiiiiiiiiieceeeee 1-1
ProducCt OVEIVIEWccueeiieeie e e ee e e e e e e e e e e e e eens 1-2
Benefits of Ultra SCSI and Ultra2 SCSIcccooevviiiiiiiiiieeiies 1-5
SYSIEM OVEIVIEW ..uiieiiii e e e e e e e e e e e e 1-6
How SCRIPTS Operations Control the SYM53C8XX.......... 1-7
(@] 0 1Y7=T o1 1 o] 1 1-8
Chapter 2
Programming the SYM53C8XX With SCRIPTS
The SCRIPTS PrOCESSOr ..cccvviiiiieeeee et 2-1
SCRIPTS and the SCSI BUS PhaseSccccoveviieeiiiiiiiieeieeeieeennn, 2-2
Assembling SCSI SCRIPTS.....ooiii e 2-3
USING SCSI SCRIPTS ..ot a e 2-6
SCRIPTS Data SizZ€S....ccuoieiiiiiiiiieeeeie et 2-6
SCSI SCRIPTS Language Elements...........ccooevvviiiinieeeiennnnn. 2-7
SCSI SCRIPTS EXPreSSIiONS.....ccuuiieiieeeeeeiieeeieeeaineeaneeeaneeennns 2-7
SCSI SCRIPTS KEYWOIdSceeeeeiiiiieeeeeeiiiie e 2-8
Description of SCRIPTS INStructions.........ccoeeevivveiieeiiveeineeennee, 2-8
L@ 1 g TSy { (U Ted A To] o P 2-8
Memory Move INStrUCtIONScovviiiiiiii e 2-9
Transfer Control INStructionsc.ccoeeiiiiiiiiiiineie e 2-9
Read/Write INStrUCLIONS........ceviiiiiiiie e, 2-9
Block Move INStruCtionS........cocuiiiiiiiiieieecie e, 2-10
Load and Store INStructionsccoevviviviiieei e, 2-10
Big and Little Endian Byte Addressing..........cccuuuevieeveeiiiiineenennns 2-10
Order of SCRIPTS INStructions..........ccovvevieviiieeiiieeineeeeen, 2-11
Operating Register Access from Firmware...................c....... 2-11
Operating Register Access from SCRIPTS Routines............ 2-11
User Data Byte Ordering........cccoeeeveviieiiiiiieeiiie e ee e 2-11

Symbios Logic PCI-SCSI Programming Guide v

Table of Contents

Vi

Chapter 3
The SYM53C8XX Instruction Set
OVEIVIBW ...ttt e et e e ettt e e e e e e e e e e e eeees 3-1
CALL e 3-2
CHMOWV .o 3-7
CLEAR ...t 3-10
DISCONNECT ..ottt 3-12
IN T 3-13
IN T LY e e e e eene 3-17
JUDM P 3-22
LOAD .. aaae 3-27
177 (O AV P 3-29
MOVE MEMORY ..ottt e e 3-32
MOVE REGISTER ... 3-34
N O e 3-38
e Y = I S 3-39
= I 1 N R 3-41
SELE T e 3-45
] PSP 3-47
STORE ..o 3-49
WAIT DISCONNECT ..o 3-51
WAIT RESELECT ..., 3-52
WAIT SELECT .ottt 3-54
INStruction EXamplescooveuiiiiiiiiieiii e 3-56
1/O Instruction EXamplecccviiiiiiiiiiiiiee e, 3-56
Memory Move Instruction Example..........cccoooeviiiiiiineenennns 3-57
Transfer Control Instruction Example............cccooveeiininennnn. 3-59
Read/Write Instruction EXampleccoooeveiveviiiiieeiiineeennnn. 3-60
Block Move Instruction Exampleccoeiveiiiiiiiiiinenennnn. 3-61
Load/Store Instruction EXxamplecoeviveviiiiieiiiineeennnn. 3-62
Chapter 4
Using the Symbios Logic Assembler
L@ 1T VTN 4-1
SEArting NASM ... 4-1
Command Ling OPtiONS........ooveuieiiiieii e eeee e e e eaes 4-3
A [arch] - Specify processor for code generation 4-3
B - Binary Cross Reference Valuesccooevvivviiiieiiieiineennnn. 4-3
E - Creates an error listing file............coooiiiiiiiiine, 4-3
L - Createsa listing file.......ccocviviieiiiiii e, 4-4
O - Generate output file..........ccooeveiiiiiiii e, 4-4
P - Generate Partial “C” SOUICEoveveiuiieiiiiieeeiiieeeeeennnn 4-4
S - Generate .BIN OULPULcoviiiiiiii e 4-4

Symbios Logic PCI-SCSI Programming Guide

Table of Contents

U - Omit Termination ReCOrdcccoovvviiiimmmiiiiiiiinn 4-4
V - VerD0oSe MESSAQES.......uu it 4-4
X - PatCh OffSetS......coiiiiiiieiiiieiieeeeei e 4-4
Example Assembler Command LiNesccoevvviiiieiiiiiiiinneeeenns 4-5
How NASM Parses SCRIPTS Filescccoooiviiiiiiiiiiiiiinn 4-5
Assembler Declarative Keywords.............uuiiieiiiiiiiiiieeeieiiiiieeeeeeens 4-6
ABSOLUTE ... 4-7
ARCH L 4-7
EN T RY e 4-8
EXTERN Lo 4-8
P A S S 4-9
PROC .o 4-9
RELATIVE ... 4-10
TABLE .o 4-11
Conditional KeYWOrdsSc.oeeeuiiiiiieiiiicie e e 4-13
HE e 4-13
WNEN. ..o 4-13
Logical KEYWOIScoeieeiiiiie e 4-13
N O T e 4-13
AND Lo 4-13
O R e 4-13
Flag Fields.o 4-14
ACK e 4-14
ATIN 4-14
TARGET ..o 4-14
CARRY L 4-14
Qualifier KeYWOIrdScoouuieeeiie e 4-14
DSAREL ... 4-14
FROM o 4-14
IMIASK e 4-15
MEMORY oo 4-15
P T R e 4-15
REG .. 4-15
REL e 4-15
T e e 4-15
WITH o 4-15
NOFLUSH .. 4-15
Other KEYWOITSccvvniiiiieeee e eeans 4-16
ACTION KEYWOITS.coieiiiiiieeeeeeii e 4-16
SCSI PRESES ...ttt 4-16
ReISTEr NAMES ... it 4-16

Symbios Logic PCI-SCSI Programming Guide vii

Table of Contents

viii

Chapter 5

The NASM Output File

OVEIVIBW ...ttt e et e e ettt e e e e e e e e e e e eeees 5-1

NASM Output File SECHIONScccvvviiiiiiiiiiiie e 5-3
SCRIPTS AITAY .o 5-3
EXTEINAl ..cceeee e 5-6
REIATIVE ... 5-7
BNy 5-9
Label PatChes........oouuuiiieiiiiie e 5-9
A o 10] 11 | =P 5-10
Termination ReCOrd........cccoooviiiiiiiiiiiii e, 5-11

Chapter 6

Using the Registers to Control Chip Operations

L@ 1T TN 6-1

T O8I (= | =] 6-1

DIMA REQISTEIS ...ttt 6-4

SCRIPTS REQISEIS. ..cuuiiiiiii e e e e e e e eaaeees 6-5

INTErTUPTL REQISTETS ...t 6-6

Test and Miscellaneous RegIStersccovvviiiiiiiviiiecii e, 6-7

General PUrpose RegISIErS.....ccvuuuiiiiii et 6-8

Register Initializationcoooiiiii i 6-8

Chapter 7

Integrating SCRIPTS Programs Into “C” Language
Drivers

L@ 1T VT 7-1
Initializing the SYMB53C8XX.....ccovvviiiiiiieeeeeieeee e, 7-1
Table Indirect OPerations............cceuuuiireeieriiineeeeeereeeeeeenns 7-3

PatChiNg .oevei e 7-7
EXTERN BUFfErS....oiiiiiieii e 7-7
RELATIVE BUfErS.....coiiiiiiiieee e 7-8
ABSOLUTE ValUES ...c.u i 7-8
BUTfEr AQOIESSESvuneeeieeiiee et 7-8
BYLE COUNES ... e 7-9
Absolute JUMP/CALL AdAreSSeSccevvvvvuiieeeeeiiineeeeeeennnnn 7-9
ENtry LOCATIONS.uuiiiiiiiiii e 7-9
Self Modifying SCRIPTS Codecoevvviiieiiiiieeciieeceieeeee, 7-9

RunNing a SCRIPTS Program...........ccoveeviiiiiiieeeeeeiiiee e 7-11

Symbios Logic PCI-SCSI Programming Guide

Table of Contents

Chapter 8
Writing Device Drivers With SCRIPTS
OVEBIVIBW ...ttt ettt e et e e e e e aa s 8-1
Command BIOCK.oooi e 8-3
Power Up EXample.......ooioii e 8-3
1/O REQUESE PrOCESSceeeiie ettt 8-4
How to Write a Device Driver With SCRIPTSccoovviiiiiines 8-6
Table INdirect AAAreSSINgccovvvvuiieeieiiiie e 8-7
Block Move INStrUCLIONS.c.uuuiiieiiiiiii e 8-7
Select/Reselect INStruCtionsuuveeeiieiiiiiieeeeeie e, 8-8
Defining a Tablecooovniiii e 8-10
Relative AdAreSSING......cuuuuuieiiieiiiae e 8-11
Chapter 9
SCRIPTS Programming Topics
L@ YT T 9-1
Scatter/Gather OPerations...........ooeuuuuiiieeieiiiiir e 9-1
Loophack MOEcocuniiiici e 9-4
Loopback Example - Selection............ccuuiviiiiiiiiiiiiiiceiie, 9-4
Byte Recovery on Target DiSCONNECtccovveviiiiieiiiieiiieeee, 9-9
Saving the State of the
SYMBBCEXX it 9-9
Updating the SCRIPTS Program..........ccooeeveviiiiiieeieeiiineen. 9-12
Cleaning Up .oovu e 9-12
Example Byte Recovery COde........ccoouvuiiieiieiiiiieeeeeeiieeee 9-12
Synchronous Negotiation and Transfer..........cccooooeviiiiiiineennnn. 9-18
Interrupt Handlingcooovmmiiiiiiie e 9-19
Polling and Hardware Interrupts.........cccoeeveveiieiiiiiiieecineeees 9-19
REGISTETS ... 9-19
Fatal vs. Non-Fatal Interruptsccooooovviiiiiiiiniiiie e 9-20
IMIASKING .t 9-21
Stacked INtEITUPLS.....cceuiii e, 9-22
Halting in an Orderly Fashionccccoooiiiiiiiiii, 9-23
Sample Interrupt Service Routingcccoeeeviviiiieinceiee. 9-23
Migrating Existing Software to Ultra and Ultra2 SCSI 9-24
Clock Divider BitS........cuuieiiiiiiiiie e 9-25
Ultra EnNable Bit........c.uoiiiiiiiiiiie e 9-25
Loading the New Register Values...........ccoooeevivviiiiiiineiinnennn. 9-25
Negotiating Synchronous Transferscccceeevvviiviveinnnenns 9-26
Using the SCSI Clock Doubler.........ccocoiviiiiiiiiiiceeen, 9-26
Using the SCSI
Clock QUAadrupler..........cooov i 9-27
Using the SCRIPTS RAM ... 9-28
Loading SCRIPTS RAM ..o 9-28
Programming Techniques when Using SCRIPTS RAM 9-30
Patching Internal and External SCRIPTS Programs............. 9-36

Symbios Logic PCI-SCSI Programming Guide iX

Table of Contents

Chapter 10

Multi-Threaded 1/0

OVEIVIBW ...ttt ettt ettt e ettt e e e e aaa e e e eenes 10-1
Multi-threaded Operations FIOWcccceivieiiiiiiiienieenns 10-2
SCRIPTS AFB8S ... iiieeiiiieee ettt 10-3
Multi-Threaded SCRIPTS Exampleccoovveiviiiiiiieeeienns 10-3
Using the SIGP bit to Abort an Instruction 10-9
1/O ComPIEtioNcooeiiiiiieeee e 10-11

Chapter 11

Programming Multifunction Devices

Using the SYM53C885 Power Management Feature 11-1
(@d0] 14 F- W1V, [0 o L= P 11-2
SN00Z8 MOEceiii e 11-2
Register Bits Used for Power Management......................... 11-2

Programming the SYM53C885 Internal Arbiter....................... 11-3

Chapter 12

Using the SYM53C8XX in Target Applications

OVEBIVIBW ...ttt e e e e e et e e e e e eaa e e e eeene 12-1

Registers Used for Target Operation.............covveveeeiiinneeeeennnnnn. 12-3

Using SCRIPTS for Target Operations...........ccccceeevivieeieinnenns 12-4
Sample Target Operation SCRIPTS Program 12-4

Synchronous Negotiation by a Target Device...........cceeeeenen... 12-17

Chapter 13

Debugging the SYM53C8XX

OVEBIVIBW ...ttt ettt e e ettt e e e e eab e e e eenes 13-1

Chip Debugging GUIElNEScoiiiiiiiiiiieeiiei e 13-3
Common Problems/Things to Checkccccocovviveviinneen, 13-4

Appendix A

NASM Error Messages

BT Ol S e e A-1

Fatal ErTOrS ... e A-15

WVAITINGS et e e e e rananes A-16

Symbios Logic PCI-SCSI Programming Guide

Table of Contents

Appendix B

Register Summaries

SYM53C810A Operating RegiSterscvevvvieveiiieeeiiieeeiiieeeeannn. B-1
SYMB53C815 Operating RegiSters..........ccuuevruiiieerereiiieeeeeeennnnnn B-7
SYM53C825A Operating RegIStErSovvvvviieeiiiiieieiiie e, B-12
SYMB53C860 Operating RegiSters..........ccuuevuriiiieereeiiiiieeeeeeennnnn B-18
SYM53C875 Operating REQIStErS.ccevuieeiiiieeeiii e, B-24
SYMB53C876 Operating RegiSters...........couevuviiiieeeeeiiiiieeeeeeennnnn B-30
SYM53C885 SCSI Register SUMMArYc.ceevvviiieiiiiieeeeiis B-36
SYMB53C895 Operating RegiSters..........ccuuvvvviiieeeeeeiiiiieeeeeeennnnn B-42
Appendix C

Multi-Threaded SCRIPTS Example

GIOSSAIY ..ttt Glossary-1
INAEX e Index-1
Symbios Logic PCI-SCSI Programming Guide Xi

Table of Contents

Xii Symbios Logic PCI-SCSI Programming Guide

List of Figures

List of Figures

Chapter 1

Introduction

Figure 1-1

SYMBS3C8XX Block Diagram, 1-5
Figure 1-2

Typical SCRIPTS Operation, 1-8
Chapter 2

Programming the SYM53C8XX With SCRIPTS

Figure 2-1

Assembling SCSI SCRIPTS. 2-5
Chapter 3

The SYM53C8XX Instruction Set

Figure 3-1

Use of the Mask Keyword 3-5
Figure 3-2

Reselection Instruction. i 3-40
Figure 3-3

WAIT RESELECT and the SIGP bit. 3-53
Figure 3-4

/O Instruction Type 3-57
Figure 3-5

Memory Move InstructionPart1....................... 3-58
Figure 3-6

Memory Move InstructionPart2....................... 3-58
Figure 3-7

Transfer Control Instruction 3-59
Figure 3-8

Read/Write Instruction. 3-60
Figure 3-9

Block Move Instruction 3-61
Figure 3-10

Load/Store Instruction. i 3-62

Symbios Logic PCI-SCSI Programming Guide Xiii

List of Figures

Chapter 5
The NASM Output File

Figure 5-1
Structures ina SCRIPTS Program 5-2

Chapter 7
Integrating SCRIPTS Programs Into ““C”” Language

Drivers

Figure 7-1

SCRIPTS Source File 7-12
Figure 7-2

NASM OQutput File 7-16

Chapter 8

Writing Device Drivers With SCRIPTS

Figure 8-1

The Role of the SCSI Device Driver 8-1
Figure 8-2

SCSI Device Driver Layerst 8-2
Figure 8-3

PowerUpExample 8-4
Figure 8-4

O Operation i e e e 8-5
Figure 8-5

Table Indirect Addressing 8-9
Figure 8-6

Table Definition 8-10

Chapter 9
SCRIPTS Programming Topics

Figure 9-1
Storing Data Structures in SCRIPTSRAM 9-29

Figure 9-2

Figure 9-3
External Script (OUT): i 9-32

Xiv Symbios Logic PCI-SCSI Programming Guide

List of Figures

Figure 9-4
Internal Script (.LIS): 9-33

Figure 9-5

Chapter 10
Multi-Threaded 1/O

Figure 10-1
Multi-threaded System Operation 10-1

Figure 10-2
Multi-threaded SCRIPTS Operational Flow 10-3

Symbios Logic PCI-SCSI Programming Guide XV

List of Figures

XVi Symbios Logic PCI-SCSI Programming Guide

List of Tables

List of Tables

Chapter 1
Introduction

Table 1-1
Features and Functions of SYM53C8XX Family Chips....... 1-3

Table 1-2
Conventions Used in This Programming Guide 1-9

Chapter 2
Programming the SYM53C8XXWith SCRIPTS

Table 2-1
SCSI Protocol and SCRIPTS instructions 2-2

Table 2-2
Big and Little Endian Byte Addressing. 2-10

Chapter 3
The SYM53C8XX Instruction Set

Table 3-1
SCRIPTS Instructions Supported by the SYM53C8XX Family. 3-1

Chapter 4
Using the Symbios Logic Assembler

Table 4-2
Code Generation Keywords 4-6

Table 4-3
Miscellaneous Keywords 4-6

Table 4-1
Data Definition and Storage Keywords. 4-6

Symbios Logic PCI-SCSI Programming Guide XVii

List of Tables

Xviii

Chapter 5
The NASM Output File

Table 5-1
Relationship Between Entry and PROC Statements
andOQutput File

Chapter 6
Using the Registers to Control Chip Operations

Table 6-1
SYMB3C8XX SCSIRegisters

Table 6-2
SYMBS3C8XX DMA Registers.

Table 6-3
SYMBS3C8XX SCRIPTS Registersuu...

Table 6-4
SYMBS3C8XX Interrupt Registers

Table 6-5
SYMB3C8XX Test Registers. i

Table 6-6
SYMB53C8XX General Purpose Registers

Table 6-7
53C815/53C810A/53C860 Startup Bits.

Table 6-8
SYM53C825A/875/876/885/895 Startup Bits

Symbios Logic PCI-SCSI Programming Guide

List of Tables

Chapter 7
Integrating SCRIPTS Programs Into ““C”” Language

Drivers

Chapter 8
Writing Device Drivers With SCRIPTS

Chapter 9
SCRIPTS Programming Topics

Chapter 10
Multi-Threaded 1/O

Chapter 11

Programming Multifunction Devices

Table 11-1

SYMb53C885 Power Management Registers. 11-3
Chapter 12

Using the SYM53C8XX in Target Applications

Table 12-1

SCSI Protocol and Target SCRIPTS Instructions 12-1
Table 12-2

Register Bits Used for Target Operation. 12-3
Chapter 13

Debugging the SYM53C8XX

Table 13-1

Registers Useful for Debugging SYM53C8XX 13-1

Symbios Logic PCI-SCSI Programming Guide Xix

List of Tables

XX

Chapter A
NASM Error Messages

Chapter B
Register Summaries

Chapter C
Multi-Threaded SCRIPTS Example

Symbios Logic PCI-SCSI Programming Guide

Introduction
What is Covered in This Guide

Chapter 1
Introduction

What is Covered in This Guide

This manual provides basic information for writing device drivers
that use the SYM53C810A, SYM53C815, SYM53C825A,
SYM53C860, SYM53C875, and SYM53C895, SYM53C876, and
the SCSI portion of the SYM53C885(this group of products is
referred to as SYM53C8XX).

« This chapter introduces the SYM53C8XX features and
functions, and the parts of the PCI-SCSI system that are involved
in operating the chip.

« Chapter 2 describes the SCRIPTS processor and programming
language in depth, including how SCRIPTS programs are
integrated with “C” code to execute SCSI commands.

« Chapter 3 describes the SYM53C8XX instruction set, with
detailed functional descriptions and usage guidelines for all of the
instructions supported by the SYM53C8XX.

o Chapter 4 and Chapter 5 cover the Symbios Logic Assembler
(NASM), including directives, and the .out file format.

« Chapter 6 contains functional and address information on the
SYM53C8XX register set.

« Chapter 7 illustrates the relationship between the SCRIPTS
program and the “C” language device driver.

o Chapter 8 and Chapter 9 address specific kinds of driver
applications, with code samples for all applications discussed.

« Chapter 10 contains guidelines for writing SCRIPTS for multi-
threaded applications.

« Chapter 11 contains specific information for programming the
Symbios Logic multifunction controllers SYM53CX885 and
SYM53C876.

« Chapter 12 provides guidelines that are specific to using the
SYM53C8XX in a target device.

o Chapter 13 provides information on debugging SCRIPTS
programs.

« The appendixes contain a listing of NASM error messages, a
glossary, a register summary, and a sample multi-threaded
SCRIPTS program.

Symbios Logic PCI-SCSI Programming Guide 1-1

Introduction
Product Overview

1-2

This manual is written for users who are familiar with the SCSI and
PCI specifications, and have a working knowledge of computer
architectures and programming. The Preface of this document
identifies sources for obtaining some of this background information,
if needed.

Product Overview

The SYM53C8XX PCI-SCSI 1/O Processor is based on the
SYM53C7XX SCSI 1/O Processor family architecture, with a host
interface to the Peripheral Component Interconnect (PCI) bus.

The SYM53C8XX connects to the PCI bus without glue logic. The
SYM53C810A and SYM53C860 are optimized for motherboard
applications; a complete design can be implemented in less than four
square inches of space on the motherboard. The SYM53C815,
SYMS53C825A, SYM53C875, and SYM53C895 are ideal for host
adapter and motherboard applications, because of an added external
memory interface which allows BIOS code to be placed in an
external EEPROM to provide a bootable host adapter. The
SYMB53C825A, SYM53C875, and SYM53C895 have 4KB of
onboard RAM for SCRIPTS instruction storage, to minimize PCI
bus overhead by performing SCRIPTS instruction fetches without
using the PCI bus. The SYM53C885 and SYM53C876 are
multifunction controllers that each use only one PCI bus load. The
SYM53C885 includes a SCSI 1/0 Processor and an Ethernet
controller, and the SYM53C876 contains two independent SCSI
functions.

The Symbios Logic SCSI 1/O Processors are the first products to
concentrate the functions of an intelligent SCSI adapter board onto a
single chip. The SYM53C8XX integrates a high-performance SCSI
core, a PCI bus master DMA core, and the SCSI SCRIPTS™
processor to meet the flexibility requirements of SCSI-3 and future
SCSI standards. It executes multi-threaded 1/O algorithms with
minimum host processor intervention, reducing the protocol
overhead required for SCSI operations to as little as one interrupt per
SCSI 1/0. The SCRIPTS language, a high-level instruction set,
provides complete programmability of 1/O operations and supports
the flexibility needed for multi-threaded 1/0O algorithms. The
SYM53C8XX uses SCRIPTS to provide: phase sequencing without
processor intervention; automatic bus arbitration; data or phase
comparison for independent SCSI algorithm decisions; and DMA
interface control. All SYM53C8XX family chips are also supported
by Symbios Logic software for connecting SCSI devices, including
BIOS support for Symbios Logic SCSI processors and drivers for
most types of SCSI peripherals under the major operating systems.

Symbios Logic PCI-SCSI Programming Guide

Introduction
Product Overview

All SYM53C8XX chips feature on chip single-ended drivers;
synchronous and asynchronous transfer capabilities; and Symbios
Logic TolerANT® driver and receiver technology, for single-ended
signal integrity in any cabling environment. They support bus
mastering, automatic selection/reselection time-outs, 32-bit memory
addressing, a 32-bit data bus, and PCI bursting. The features and
functions of individual chips in the SYM53C8XX family are
summarized in Table 1-1.

Note: the SCSI portion of the SYM53C885 is functionally
comparable to the SYM53C875. For specific information on the
features and functions of the SYM53C885, refer to the
SYM53C885 Data Manual. For specific information on
programming the Ethernet function of the SYM53C885, refer to
the Symbios Logic PCI-Ethernet Programming Guide.

Note: the SYM53C876 has two SCSI functions, each
comparable to the SYM53C875. For specific information on the
features and functions of the SYM53C876, refer to the
SYM53C876 Data Manual.

Table 1-1
Features and Functions of SYM53C8XX
Family Chips
SYM53C875,
SYM53C825A, SYM53C875J,
SYM53C810A SYM53C860 SYM53C815 SYM53C825A SYM53C87538, SYM53C895
SYM53C875N
Max. Transfer 5 MB/s async. 5 MB/sasync. 5 MB/sasync. 10 MB/s 10 MBI/s 10 MBI/s
Rate 10 MB/s sync. 20 MB/s 10 MB/s sync. async. async. async.
sync. (w/ 20 MB/s sync. 40 MBY/s 80 MB/s
Ultra SCSI) sync. (w/ sync. (w/
Ultra SCSI) Ultra2 SCSI)
DMAFIFOSize 80 80 64 88 or 536 88 or 536 112 or 816
(bytes)
Synchronous 8 8 8 16 16 31
Offset (levels)
SCRIPTS RAM no no no yes yes yes
Differential SCSI hO no no yes yes LVD and
high voltage
differential
Wide SCSI no no no yes yes yes
External Memory NO no yes yes yes yes

Interface

Symbios Logic PCI-SCSI Programming Guide

1-3

Introduction

Product Overview

Table 1-1 (Continued)
Features and Functions of SYM53C8XX

Family Chips
SYM53C875,
SYM53C825A, SYM53C875J,
SYMS53C810A SYM53C860 SYM53C815 SYM53C825A) SYM53C87538, SYM53C895
SYM53C875N
Instruction yes yes no yes yes yes
Prefetch
Load/Store yes yes no yes yes yes
Instructions
Enhanced Move NO no no yes yes yes
Register
Capability
SCSI Selected yes yes no yes yes yes
As ID Bits
Number of 32-bit 2 2 2 10 10 10
SCRATCH
Registers
PCI Caching yes yes no yes yes yes
Selectable IRQ Yes yes no yes yes yes
Disable
Little Endian Little Endian Big or Little Big or Little Big or Little Big or Little
Lo . Endian Endian Endian Endian
Big/Little Endian
support (except (except
53C825A)) 53C875J,
53C875JB)
100 PQFP 100 PQFP 128 PQFP 160 PQFP 160 PQFP, 208 PQFP
Package 169 BGA,
208 PQFP
Figure 1-1 is a block diagram of the SYM53C8XX, with a map of
SCSI data and control paths through the chips.
1-4 Symbios Logic PCI-SCSI Programming Guide

PCI
Bus |

SCSI Connection
Vdd | \llss

Introduction
Benefits of Ultra SCSI and Ultra2 SCSI

_____SCSI Term Connection

External Memory
(when supported)

SYM53C8XX > - SCSI Bus »
f .
SCLK Peripheral
External Oscillator or
Optional — Bulkhead

Internal Connection
to PCI Bus Clock

CPU Baseboard

Figure 1-1
SYM53C8XX Block Diagram

CPU Box

Benefits of Ultra SCSI and Ultra2

SCSI

Ultra SCSI is an extension of the SCSI-3 standard that expands the
bandwidth of the SCSI bus and allows faster synchronous SCSI
transfer rates. When enabled, Ultra SCSI performs 20 megatransfers
per second, which results in approximately doubling the synchronous
transfer rates of fast SCSI-2. The SYM53C860 and SYM53C875
can perform 8-bit or 16-bit Ultra SCSI synchronous transfers as fast
as 20 MB/s or 40 MB/s.

Symbios Logic PCI-SCSI Programming Guide 1-5

Introduction
System Overview

1-6

Ultra2 SCSI extends SCSI performance beyond Ultra SCSI rates, up
to 40 megatransfers per second. It also defines a new physical
interface, Low Voltage Differential SCSI (LVD), that retains the
reliability of high voltage differential SCSI while allowing a longer
cable and more devices on the bus than Ultra SCSI. The
SYM53C895 can perform 16-bit, Ultra2 SCSI synchronous
transfers as fast as 80 MB/s.

The advantages of Ultra SCSI and Ultra2 SCSI are most noticeable
in heavily loaded systems, or large-block size applications such as
video on-demand and image processing. One advantage of Ultra
SCSI and Ultra2 SCSI are that they significantly improve SCSI
bandwidth while preserving existing hardware and software
investments. Symbios Logic Ultra SCSI and Ultra2 SCSI chips are
all compatible with Fast-SCSI software; the only changes required
are to enable the chip to negotiate for the faster synchronous transfer
rates. The SYM53C860 and SYM53C875 can use the same board
socket as an SYM53C810A and SYM53CB825A, respectively, with
the addition of an 80MHz SCLK. The SYM53C875 contains an
internal SCSI clock doubler, allowing it to transfer data at Ultra
SCSI rates with a 40MHz clock. The SYM53C895 contains an
internal SCSI clock quadrupler, allowing it to transfer data at Ultra2
SCSI rates with a 40 MHz clock.

Some changes to existing cabling or system designs may be needed to
maintain signal integrity at Ultra SCSI synchronous transfer rates.
These design issues are discussed in the Ultra SCSI and Ultra2 SCSI
chip data manuals.

System Overview

To execute SCSI SCRIPTS programs, the SYM53C8XX requires
only a SCSI SCRIPTS starting address; all subsequent instructions
are fetched from external memory or internal SCRIPTS RAM (when
supported). The SYM53C8XX fetches up to eight dwords at a time
across the DMA interface and loads them into the internal chip
registers. When the chip is operating at its highest frequency,
instruction fetching and decoding takes as little as 500 nanoseconds
(ns).The chip fetches instructions until a SCRIPTS interrupt occurs
or until an external, unexpected event (such as a hardware error)
causes an interrupt. The full set of SCSI features in the instruction
set allows re-entry to the algorithm at any point. This high level
interface can be used for both normal operation and exception
conditions.

Symbios Logic PCI-SCSI Programming Guide

|
How SCRIPTS Operations

Control the SYM53C8X X

Introduction
System Overview

A typical SCRIPTS operation is illustrated in Figure 1-2. Before
SCRIPTS operation begins, the host processor writes the Data
Structure Address (DSA, 10-13h) register value to initialize the
pointer for table indirect operations. To begin SCRIPTS operation,
the host processor writes the starting address of the SCRIPTS
instructions into the DMA SCRIPTS Pointer Register (DSP, 2C-
2Fh) register of the SYM53C8XX. Once it receives this address, the
SYMB53C8XX becomes a bus master and fetches the first SCRIPTS
instruction. The SYM53C8XX executes all steps of the instruction,
moving through the appropriate bus phases and interrupting only
when the SCRIPTS operation is completed or the SYM53C8XX
requires service from the external processor. This leaves the host
processor free for other tasks. The SYM53C8XX fetches the next
instruction, and the process begins again.

Software developers can develop SCSI SCRIPTS source code in any
text editor. The Symbios Assembler (NASM) assembles SCRIPTS
code into an array of assembled SCRIPTS instructions that can be
included in the main “C” language program and linked together to

Symbios Logic PCI-SCSI Programming Guide 1-7

Introduction
Conventions

create an executable driver. When compiled, these programs control

the operation of the SYM53C8XX.

Figure 1-2
Typical SCRIPTS Operation

1-8

Host System SYMB3C8XX
S Write DSP :
< Registers S
S Interrupt when C
T done
S
E |
M SCRIPTS
Processor
System Memory < B A 5
N \ U Fetch instruction from S
. ' S internal or external Y
| memory SCRIPTS RAM
. - . (when supported)
N \‘\ (Expanded view) / //
\\ Data Structure
“\ Message Buffer
\ Command Buffer
s Data Buffer ,
. Status Buffer

The following types of notation are used in this programming guide
to represent screen displays, command line entries, and variables in

the code examples:

Symbios Logic PCI-SCSI Programming Guide

Table 1-2
Conventions Used in This
Programming Guide

Introduction
Conventions

Item Definition

Example

square optional items in

CALL [REL] Address, [{IF |

braces instruction examples VWHEN} [NOT] CARRY]
a

courier used for code samples, program exe

font filenames, command

line information,
prompts, etc. that
appear in body text

All Caps Keywords

JUWP [REL] Address, [{IF|
VHEN} [NOT] CARRY]

Curly choose between items
braces enclosed in curly braces

b

SELECT [ATN] { FROMAddr ess
| 1D}, [REL] Address

{}“..” theitem enclosed in
the curly braces can be
repeated as often as

SET
{ ACK| ATN| TARGET| CARRY}
[and

desired { ACK| ATN| TARGET| CARRY}. . .
]
| OR, select one item I NTFLY int_value, [{IF |
from a list WHEN} [NOT] CARRY]
\ line continuation RELATI VE basel abel \

Symbios Logic PCI-SCSI Programming Guide 1-9

Introduction
Conventions

1-10 Symbios Logic PCI-SCSI Programming Guide

Programming the SYM53C8XX With SCRIPTS
The SCRIPTS Processor

Chapter 2

Programming the SYM53C8XXWith
SCRIPTS

The SCRIPTS Processor

The advantages of SCSI SCRIPTS and the SCRIPTS processor can
be utilized only with the SYM53C7XX and SYM53C8XX families
of SCSI processors. The SCRIPTS processor is a specially designed
processor, located in the SYM53C8XX, that permits instructions to
be fetched from internal or external memory. Algorithms written in
the SCSI SCRIPTS language are assembled to control the SCSI and
DMA modules. Complex SCSI bus sequences, including multiple
SCRIPTS instructions, execute independently of the host processor.

SCSI SCRIPTS reside in host computer memory or internal
SCRIPTS RAM during system operation, allowing for fast
execution. If instructions reside in external memory, the
SYM53C8XX chip fetches SCRIPTS programs from memory using
bus master DMA transfers. If instructions reside in SCRIPTS RAM,
they are fetched directly from RAM without generating PCI bus
traffic. The SCRIPTS processor allows users to fine tune SCSI
operations such as adjusting to new device types, adapting to changes
in SCSI logical definitions, or quickly incorporating new options
(such as vendor unique commands or new SCSI specifications). The
SCRIPTS processor fetches SCRIPTS instructions from system
memory to control operation of the SYM53C8XX. The SCRIPTS
processor does not compile code; SCRIPTS programs must be
assembled for execution by the NASM assembler and then compiled
with a standard “C” compiler as part of a “C” program. Third
generation SCSI devices can be programmed with SCRIPTS using
only a few hundred lines of SCRIPTS code. SCRIPTS are
independent of the CPU, operating system, or system bus being
used, so they are portable across platforms.

Symbios Logic PCI-SCSI Programming Guide 2-1

Programming the SYM53C8XX With SCRIPTS

SCRIPTS and the SCSI Bus Phases

SCRIPTS and the SCSI Bus Phases

One important advantage of SCSI SCRIPTS is that the SCRIPTS
language corresponds directly to SCSI protocol. In conjunction with
the high level language syntax, it provides an excellent vehicle to
master the complexity of SCSI. The one-to-one relationship between
protocol phases and SCRIPTS instructions means that SCRIPTS
can be customized to specific operations on the SCSI bus, and that
SCSI software development is simplified by using SCRIPTS. SCSI
uses the bus phases in the order shown in Table 2-1. This table also
shows the SCSI SCRIPTS instructions that correspond to the SCSI

bus phases for initiator and target roles.

Definition

SCRIPTS
instruction
(initiator role)

SCRIPTS
instruction
(target role)

This phase indicates that the SCSI
bus is available.

This phase allows the initiator to gain SELECT ATN RESELECT
control of the SCSI bus.

During this phase, the initiator SELECT ATN WAIT SELECT
selects a target device to perform the

desired function. The Attention

option notifies the target that upon

successful selection the initiator

desires to send further messages.

The target reselects with the initiator WAIT RESELECT
during this phase RESELECT

During this phase, the initiator may n MOVEWHEN MOVEWITH
send messages to the target, suchas MSG_OUT MSG_OUT
queuing information and error

recovery information.

During this phase, the initiator may n MOVEWHEN MOVEWITH
send a command in the form of a CMD CMD

command descriptor block (CDB) to
the target buffer.

Table 2-1

SCSI Protocol and SCRIPTS

instructions
Bus Phase
Bus Free
Arbitration
Selection
Reselection
Message Out
Command

2-2

Symbios Logic PCI-SCSI Programming Guide

Table 2-1
SCSI Protocol and SCRIPTS
instructions (Continued)

Programming the SYM53C8XX With SCRIPTS
Assembling SCSI SCRIPTS

Bus Phase

Definition

SCRIPTS
instruction
(initiator role)

SCRIPTS
instruction
(target role)

Data In/Out

Status

Message In

Disconnect

Data In and Data Out phases are
used to send data to the initiator or
to the target and are used dependent
on the information transferred
during the Command phase. This
phase is optional. For example, a Test
Unit Ready command does not
require a data transfer.

During this phase, the initiator will
receive status information from the
target about the previously executed
CDB.

During this phase, the initiator will
receive messages from the target.
These messages can acknowledge or
reject previously sent initiator
messages. They also can provide
other information like queuing,
disconnect, or parity errors.

This phase is used to end the
initiator's connection with the bus.

After successful completion of an I/O
operation and a request for
disconnect, the bus returns to the
Bus Free state, indicating that it is
now available.

MOVE

MOVEWHEN
STATUS

MOVE WHEN
MSG_IN

WAIT
DISCONNECT

WAIT
DISCONNECT

MOVE

MOVEWITH
STATUS

MOVE WITH
MSG_IN

DISCONNECT

DISCONNECT

Assembling SCSI SCRIPTS

SCRIPTS are assembled with the Symbios Logic Assembler
(NASM™), a DOS command line-driven assembler that supports
Symbios Logic SCSI processors (SYM53C7XX and SYM53C8XX).
NASM assembles SCSI SCRIPTS for inclusion in SCSI device
driver software programs. NASM is described in detail in Chapter 4.

SCSI SCRIPTS programs can be created with any text editor that
generates ASCII files. These source files must be transformed from
their text form into the SCRIPTS processor's instruction language
before they can be executed by the SYM53C8XX. This is

Symbios Logic PCI-SCSI Programming Guide

2-3

Programming the SYM53C8XX With SCRIPTS

Assembling SCSI SCRIPTS

2-4

accomplished by running NASM. NASM generates an output file

(. out) that is compatible with all standard “C” compilers, as well as
a cross-reference list (. | i s) file that includes the source instruction
and the assembled output on the same line. The . | i s file is useful for
debugging code. All instructions and data are represented as
hexadecimal numbers in C-style array declarations. The . out file can
be included in the “C” program and linked together with other
system support object files to form the final executable code.

When the executable is run, areas of host memory are reserved for
SCSI data transfer buffers and the SCRIPTS instructions. The
instructions, which look like 32-bit integer arrays to the “C”
program, are loaded into the appropriate area of memory by the “C”
code. The driver program loads the address of the first instruction
into the SYM53C8XX to begin SCRIPTS execution.

Symbios Logic PCI-SCSI Programming Guide

Figure 2-1
Assembling SCSI SCRIPTS

programc
| "C" source code

Programming the SYM53C8XX With SCRIPTS
Assembling SCSI SCRIPTS

scripts .ss

SCRIPTS
Source Code

Symbios Logic
Assembler

scripts.lis
cross reference file

include scri pts. out support.c
"C" compatible

[

5./ progr am obj

N o o &

support. obj

6] Host Linker

program exe
SCSI driver

Werite SCSI SCRIPTS source code

Assemble the source code using the Symbios Logic
Assembler

Write “C” language source code and include
assembled SCRIPTS code

Compile all code using a “C” compiler
The result is object (.obj) code
Link all object modules together

The result is an executable program

Symbios Logic PCI-SCSI Programming Guide 2-5

Programming the SYM53C8XX With SCRIPTS
Using SCSI SCRIPTS

Using SCSI SCRIPTS

SCRIPTS Data Sizes

Address a 32-bit number
Value a 32-bit number
Count a 24-bit number
Data an 8-bit number
ID a 4-bit encoded SCSI ID

2-6 Symbios Logic PCI-SCSI Programming Guide

|
SCSI SCRIPTS Language

Elements

1
SCSI SCRIPTS

Expressions

name

label

Programming the SYM53C8XX With SCRIPTS
Using SCSI SCRIPTS

A name is a string of one or more consecutive characters.
It may consist of letters, numbers, underscores, and dollar
signs, but must begin with an alphabetic character. When
used for labels, externals, and variables in the relative data
area, names are passed on to the host development system
and are subject to the host's syntactic restrictions. Names
cannot be reserved words in the host language. For
example, Turbo C, which is used as the host development
system for NASM, does not allow names to begin with a
digit or to contain a dollar sign ($). Therefore, the SCSI
SCRIPTS writer for DOS and Turbo C should avoid
names of this form.

A label is a name followed by a colon. Labels are symbolic
addresses that can be used as transfer control destination
points (such as jump or call destinations). Labels are case-
sensitive.

comment Comments are used to notate the SCRIPTS. They are

optional and are ignored by the compiler. Comments
begin with a semi-colon and continue to the end of a line.

Arithmetic Operators

Symbol

+

Meaning

addition

subtraction

Bitwise Operators

Symbol

&
|

XOR
SHL
SHR

Meaning
Logical AND
Logical OR
Exclusive OR
Shift left
Shift right

The value of all expressions is automatically extended to 32 bits.
When expressions are used in a context where the evaluated value is

Symbios Logic PCI-SCSI Programming Guide 2-7

Programming the SYM53C8XX With SCRIPTS

Description of SCRIPTS Instructions

SCSI SCRIPTS Keywords

|
I/0O Instructions

2-8

less than 32 bits, the least significant bits will be used. For example, if
an expression is used to represent a count, normally 24 bits, for a
Move instruction, the evaluated value will be truncated to 24 bits.
The user will be notified if the expression has been truncated and if
the value of the expression is changed during truncation. The
symbols for the bitwise operators are used only for register
manipulations. Any other instruction using comparison must spell
out AND or OR.

The SCSI SCRIPTS keywords have eight types: Declarative,
Conditional, Logical, Flag Field, Qualifier, Action, SCSI Phase, and
Register Name. Keywords are written in all capital letters for clarity,
but are not case-sensitive. Refer to Chapter 4 for detailed
descriptions of individual keywords.

Description of SCRIPTS Instructions

This section contains an overview of the types of instructions
supported by SCRIPTS. Each instruction, including all legal forms,
is described in detail in Chapter 3.

The I/O Instruction type is selected when the two high order bits of
the DCMD register are 01, with op code bit values of 000-100. 1/O
Instructions perform SCSI operations such as Selection and
Reselection. Each function is a direct command to the SCSI portion
of the SYM53C8XX. The I/O operations, chosen with the op code
bits in the DCMD register, are:

Op Code Target Initiator

000 RESELECT SELECT, SELECTWITH ATN
001 DISCONNECT WAIT FOR DISCONNECT
010 WAIT FOR SELECT WAIT FOR RESELECT

011 SET SET

100 CLEAR CLEAR

Symbios Logic PCI-SCSI Programming Guide

|
Memory Move Instructions

|
Transfer Control

Instructions

|
Read/Write Instructions

Programming the SYM53C8XX With SCRIPTS
Description of SCRIPTS Instructions

The Memory Move Instruction type is selected when the two high
order bits of the DCMD register are 11.The Memory Move
instruction allows you to transfer data from one 32-bit memory
location to another. The source or the destination may be a chip
register. A 24-bit byte counter allows large moves to occur with no
intervention from the host processor. If both addresses are in system
memory, the SYM53C8XX functions as a high-speed DMA
controller, able to move data at sustained speeds up to 47 megabytes
per second (MB/s) without using the host processor or its cache
memory. Data is moved from the source address into the chip's DMA
FIFO and then out to the destination address. This instruction type
does not allow indirect addressing, so the physical 32-bit address
must be in the SCRIPTS instruction.

In chips that support instruction prefetching, the NOFLUSH
qualifier can be used to prevent the prefetch buffer from being
flushed when the chip performs a Memory to Memory Move

instruction.

The Transfer Control instruction type is selected when the two high
order bits of the DCMD register are 10. Transfer Control
Instructions perform SCRIPTS operations such as JUMP, CALL,
RETURN, and INTERRUPT. These instructions allow comparisons
of current phase values on the SCSI bus or the first byte of data on
any asynchronous incoming bytes, and transfer control to another
address depending on the results of the comparison test. These
operations may conduct a test of the ALU carry bit, and may enable
interrupt on the fly, so that the interrupt instruction will not halt the
SCRIPTS processor.

Read/Write Instructions perform the following register operations:

Moves the SCSI First Byte Received (SFBR) register

Move from SFER (08h) to a specified register address

Move to SFBR Moves a specified register value to the SFBR register

Reads a specified register, modifies it, and writes the

Read/Modify/Write result back into the same register

The Read/Write Instruction type is selected when the two high order
bits of the DCMD register are 01, with the op code bit values from
101-111. Read/Write Instructions perform various register
operations, depending on the value of the operator bits as shown on
page 3- 35.

Symbios Logic PCI-SCSI Programming Guide 2-9

Programming the SYM53C8XX With SCRIPTS

Big and Little Endian Byte Addressing

|
Block Move Instructions

|
Load and Store

Instructions

Table 2-2
Big and Little Endian
Byte Addressing

2-10

The Block Move instruction type is selected when the two high order
bits of the DCMD register are 00. The Block Move instruction
transfers data (user data or SCSI information) to or from user
memory from or to the SCSI bus. The data may come from any
memory address, so scatter/gather operations for user data are
transparent to the chip and the external processor. A separate Block
Move instruction is written for each piece of data to be moved. This
instruction allows indirect and table indirect addressing.

Load and Store instructions are available only in the
SYM53C810A/53C860/53C825A/53C875. They are a more
efficient way than the Memory Move instruction to move data
directly to/from memory from/to an internal register because they
have two dwords instead of three and require one PCI bus ownership
instead of two. These instructions will move a maximum of four
bytes. The Load/Store instruction type is selected when the three
high order bits of the DCMD register are 111. The memory address
may map to external memory space or to the SCRIPTS RAM.

Big and L.ittle Endian Byte
Addressing

The guidelines in this section will help assure proper byte lane
ordering in Big or Little Endian designs. Please check the features list
for each chip to determine which products support Big and/or Little
Endian addressing.

Big Endian addressing is used primarily in designs based on
Motorola processors. The SYM53C8XX treats D(31-24) as the
lowest physical memory address. Little Endian is used primarily in
designs based on Intel processors. This mode treats D(7-0) as the
lowest physical memory address.

System data (31-24) (23-16) (15-8) (7-0)

bus

53C8XX pins 31-24 23-16 15-8 7-0
Register SCNTL3 SCNTL2 SCNTL1 SCNTLO
Little Endian 03h 02h 01lh 00h

addr

Big Endian 00h 01h 02h 03h

addr

Symbios Logic PCI-SCSI Programming Guide

Order of SCRIPTS
Instructions

Operating Register Access
from Firmware

Operating Register Access
from SCRIPTS Routines

User Data Byte Ordering

Programming the SYM53C8XX With SCRIPTS
Big and Little Endian Byte Addressing

To ensure that SCSI SCRIPTS instructions are in the correct order,
each SCRIPTS routine must be compiled in the target architecture.
The “C” output (.OUT) file lists arrays of dword (32-bit) values,
which are stored in the memory by the processor and in the correct
order for the subsequent execution. For a Little Endian SCRIPTS
instruction to execute on a Big Endian machine, the bytes will need
to be reversed before execution. A PROM cannot be moved from one
environment to another without re-ordering bytes within each word.
The best way to guarantee correct byte ordering is to make sure the
SCRIPTS are placed in memory with the op code byte on the same
byte lane as the DCMD register in the SYM53C8XX.

To develop code that works in either mode, use equates for the
register names with an endian switch specified at compile time to
include the appropriate set of address values. Note that the change is
only for byte access. If 32 bits are accessed, there is no address
change from Big to Little Endian.

NASM uses logical names to access registers. Names do not change
when the mode changes, nor does the binary code required to access
a register.

Data transfers to or from system memory from or to the SCSI bus
always start at the beginning address and continue until the last byte
is sent. No internal re-ordering of the data for either mode occurs. A
serial stream of data is assumed, and the first byte on the SCSI bus is
associated with the lowest address in system memory, regardless of
Big or Little Endian.

Symbios Logic PCI-SCSI Programming Guide 2-11

Programming the SYM53C8XX With SCRIPTS
Big and Little Endian Byte Addressing

2-12 Symbios Logic PCI-SCSI Programming Guide

Table 3-1

SCRIPTS Instructions Supported by the
SYM53C8XX Family

The SYM53C8XX Instruction Set
Overview

Chapter 3

The SYM53C8XX Instruction Set

Overview

This section describes the SYM53C8XX SCSI 1/0 Processor
instruction set. Additional information may be found in the
SYMb53C8XX product data manuals. The first section of this chapter
contains an alphabetical list of all SCSI instructions. Each instruction
is presented with a detailed description and usage guidelines. The
second section of the chapter presents illustrations of how all of the
instruction types are expressed in SCSI SCRIPTS language, NASM
output, and the binary form that is executed by the SCSI processor.
The SYM53C8XX Family supports the following SCRIPTS
instructions, grouped by instruction type. The individual instruction
entries list the SYM53C8XX family members that support each
instruction.

Instruction Type Commands

RESELECT, SELECT, SELECTWITH ATN, DISCONNECT, WAIT
DISCONNECT,WAIT SELECT,WAIT RESELECT, SET, CLEAR

Memory Move MOVE MEMORY

Transfer Control JUMP, CALL, RETURN, INTERRUPT, INTFLY
Read/Write MOVE REGISTER

Block Move MOVE, CHMOV

Load/Store LOAD, STORE

Symbios Logic PCI-SCSI Programming Guide 3-1

The SYM53C8XX Instruction Set
CALL

CALL

CALL { REL(Address) | Address} [, {I F| WHEN} [NOT] [ATN| Phase] [AND
| OR] [data[AND MASK data]]]

CALL {REL(Address) | Address} [, {IF | WHEN}[NOT] [Carry]

Supported by: All Symbios Logic PCI-SCSI 1/O Processors
Definition: SCSI Transfer Control, Call subroutine
Operands: REL indicates the use of relative addressing by setting the high order

bit in the DBC register.

Address is the location to which execution will be transferred if the
subroutine is called. This address is stored in the second dword of the
instruction.

WHEN forces the SCRIPTS engine to wait for a valid SCSI bus
phase before continuing. A valid phase is indicated by assertion of the
SREQ/ signal.

IF causes the SYM53C8XX to check immediately for a valid SCSI
bus phase without waiting. IF should not be used when comparing
for a phase, as this could yield unpredictable results. The only
exception is if aWHEN conditional was used just prior to the IF
conditional, for any given sequence of phase checks.

NOT negates the comparison. It clears the True bit if present,
otherwise the True bit is set.

Phase is used to specify the Message, Command/Data, and
Input/Output bit values that identify the SCSI phase in the
instruction. The desired phase value is compared with the actual
values of the SCSI phase lines before the SYM53C8XX performs the
instruction. This field is only valid for initiator mode and should not
be used in target mode.

ATN is used to indicate that a jump should take place based on an
initiator SATN/ signal. This field is valid only for target mode and
should not be used in initiator mode.

data when this field is present it represents an 8-bit value that is
stored in the data field of the instruction. In addition the Compare
Data bit is set.

MASK when this field is present it represents an 8-bit value that is
stored in the mask field of the instruction. Any bit that is set in the
mask causes the corresponding bit in the data byte to be ignored at
the time of the comparison.

3-2 Symbios Logic PCI-SCSI Programming Guide

Example:

Format:

The SYM53C8XX Instruction Set
CALL

CARRY is used to indicate that a jump should take place based on
the value of the carry bit in the ALU. Carry comparisons cannot take
place at the same time as data and phase comparisons.

CALL REL (Address), WHEN DATA QUT

DCMD Register DBC Register DSPS Register
3130 |29 27 26 24123122 |21 | 20 |19 |18 17 |16 |15 8|7 0|31 0
10 001 XXX X 10 0 0 X | X X |[X [X..X|X.X Call Address
Instr Type | Op code scsi Rel |RES |Carry | RES |True [Comp |Comp |Wait [Mask | Data| Call Address
Phase Addr Test Data |Phase or offset

Mode

Fields:

Op code - Transfer Control Instruction, Call subroutine

SCSI Phase - These bits reflect the actual values of the SCSI phase
lines. The bit values are defined below.

Phase Message Command / Data Input / Output
DATA_OUT 0 0 0

DATA_IN 0 0 1
COMMAND 0 1 0

STATUS 0 1 1

RES4 1 0 0

RES5 1 0 1
MESSAGE_OUT 1 1 0
MESSAGE_IN 1 1 1

* Note: O - False, negated; 1 - True, asserted, For

these phases, SEL is negated and BSY is asserted.

* Res4 and Res5 are reserved SCSI phases. These combinations should not be
used for standard SCSI implementations

Relative Addr Mode - Relative Addressing Mode indicates that the
24-bit value in DSPS is to be used as an offset from DSP

Carry Test - When this bit is set, True/False comparisons may be
made based on the ALU Carry bit

True - Transfer on TRUE/FALSE condition
0 - Transfer if condition is FALSE
1 - Transfer if condition is TRUE

Compare Data - Compare data byte to first byte of the received
data

0 - Do not compare data

1 - Perform comparison

Compare Phase - Compare current SCSI phase to SCSI phase field
or SATNY/. This bit is set whenever the Phase operand is used.

0 - Do not compare phase

1 - Perform comparison

Symbios Logic PCI-SCSI Programming Guide 3-3

The SYM53C8XX Instruction Set
CALL

Wait - Wait for valid phase. This bit is set by the WHEN operand in
the instruction, and cleared by the IF operand.

0 - Perform comparison immediately

1 - Wait for valid phase (SREQ/ asserted by target)

Mask - 8-bit field that is used to mask the value in SFBR before the
comparison with the data field in the instruction takes place. As a
result of this operation, any bits that are set will cause the
corresponding bit in the data byte to be ignored. If this field is not
specified, a mask of 0x00 is used.

Data - 8-bit field that is compared with the incoming data in SFBR
after the mask operation with the mask byte takes place. Comparison
indicates either an equal or not equal condition. If the Data field is
not specified, the compare data bit is cleared and 0x00 is coded for
both the mask and data bytes.

Call Addr - a 32-bit address (or 24-bit offset, if relative addressing is
used) where execution will continue if the subroutine is called.

Description: The SCSI CALL instruction is a conditional subroutine call that
causes the next SCRIPTS instruction to be fetched from memory at
the 32-bit call address (or 24- bit offset). It is invoked if all conditions
in the instruction or data are met. If the comparison is false, the
SCRIPTS processor will not branch to the destination but will
instead fetch the next in-line instruction and continue execution. If
the subroutine is called, the next in-line instruction address is stored
in the chip's TEMP register, and will be restored to the DSP register
in response to a RETURN instruction following the CALL.

When the optional data field is used, it is compared to the first byte of
the most recent asynchronous data, message, command, or status
byte received. The user's SCSI SCRIPTS program can determine
which routine to execute next based on actual data values received.
Using a series of these compares, the algorithm can process complex
sequences with no intervention required by the external processor.

When the optional MASK keyword and its associated value are
specified, the SCRIPTS processor allows selective comparisons of
bits within the data byte. This comparison is illustrated in Figure 3-1.
During the comparison, any bits that are set in the mask data will
cause the corresponding bit in the data byte to be ignored for the
comparison.

3-4 Symbios Logic PCI-SCSI Programming Guide

Figure 3-1
Use of the Mask Keyword

Notes:

Legal Forms:

The SYM53C8XX Instruction Set
CALL

SFBR Mask
Value

Masked
SFBR Data

SCRIPTS does not directly support nested CALLs. If two CALL
instructions are issued without any intervening RETURN
instruction, then the first return address in the chip's TEMP register
is overwritten by the second CALL and lost.

The REL keyword, which indicates relative addressing, is unrelated
to the declarative keyword RELATIVE that establishes relative
buffers.

CALL address

CALL address, |F ATN

CALL address, |F Phase

CALL address, |F CARRY

CALL address, |F data

CALL address, |F data AND MASK dat a

CALL address, |F ATN AND data

CALL address, |F ATN AND data AND MASK dat a
CALL address, |F Phase AND data

CALL address, |F Phase AND data AND MASK dat a
CALL address, VWHEN Phase

CALL address, WHEN CARRY

CALL address, WHEN data

CALL address, WHEN data AND MASK dat a

CALL address, WHEN Phase AND data

CALL address, WHEN Phase AND data AND MASK dat a
CALL address, |F NOT ATN

CALL address, |F NOT Phase

CALL address, |F NOTI CARRY

CALL address, |F NOT data

CALL address, |F NOT data AND MASK dat a

Symbios Logic PCI-SCSI Programming Guide 3-5

The SYM53C8XX Instruction Set
CALL

3-6

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

address, |F NOT ATN OR data

address, |F NOT ATN OR data AND MASK dat a
address, | F NOT Phase OR data

address, | F NOT Phase OR data AND MASK dat a
address, WHEN NOT Phase

address, VWHEN NOT CARRY

address, WHEN NOT data

address, WHEN NOT data AND MASK dat a

address, VWHEN NOT Phase OR data

addr ess, VWHEN NOT Phase OR data AND MASK dat a
REL(addr ess)

REL(address), | F ATN

REL(address), |F Phase

REL(address), |F CARRY

REL(address), |IF data

REL(address), |F data AND MASK dat a

REL(address), |F ATN AND data

REL(address), |IF ATN AND data AND MASK dat a
REL(address), |F Phase AND data

REL(address), |F Phase AND data AND MASK dat a
REL(addr ess), WHEN Phase

REL(address), WHEN CARRY

REL(addr ess), WHEN dat a

REL(address), WHEN data AND MASK dat a
REL(address), WHEN Phase AND data
REL(address), WHEN Phase AND data AND MASK dat a
REL(address), |IF NOT ATN

REL(address), |F NOT Phase

REL(address), | F NOT CARRY

REL(address), |F NOT data

REL(address), |F NOT data AND MASK dat a
REL(address), |IF NOT ATN OR data
REL(address), |F NOT ATN OR data AND MASK dat a
REL(address), |IF NOT Phase OR data
REL(address), |IF NOT Phase OR data AND MASK data
REL(addr ess), WHEN NOT Phase

REL(addr ess), WHEN NOT CARRY

REL(address), WHEN NOT data

REL(address), WHEN NOT data AND MASK dat a
REL(address), WHEN NOT Phase OR data

REL(address), WHEN NOT Phase OR data AND MASK dat a

Symbios Logic PCI-SCSI Programming Guide

Supported by:

Definition:

Operands:

Example:

Format:

Fields:

The SYM53C8XX Instruction Set
CHMOV

CHMOV

CHVOV {FROM | count,} [PTR] address,{WTH | VWHEN} phase

SYMS53C825A, SYMS3C875, SYMS53C885, SYM53C876,
SYM53C895

Wide SCSI Block Move

FROM indicates table indirect addressing mode

Note: FROM and PTR must not be used in the same instruction.
count is the number of bytes to transfer across the SCSI bus.
PTR sets the indirect bit if present, it is clear otherwise.

Note: FROM and PTR must not be used in the same instruction.

address is the 32-bit starting address of the data in memory, unless
PTR is present. If PTR is present, address represents the location of
the starting address.

WITH/WHEN set the mode for the device; WITH for target mode
and WHEN for initiator mode.

Phase is used to specify the Message, Command/Data, and
Input/Output bit values that identify the SCSI phase in the
instruction. The desired phase value is compared with the actual
values of the SCSI phase lines before the SYM53C8XX performs the
instruction. This field is only valid for initiator mode and should not
be used in target mode.

CHVMOV FROM dev_1 W TH Data_In
CHMOV 6, data_buf, WHEN Dat a_CQut

DCMD Register DBC Register | DSPS register
31 30 29 28 27 26 24 |23 0 31 0

00 X X X XXX XX... XX XX... XX
Instruction | Indirect | Table Op code [SCSI Byte Count Dest Addr
type Indirect Phase

Instruction type - 00 = Block Move

Indirect - Indirect Addressing Mode
0 - Use destination field as an address
1 - Use destination field as an address to an address

Table Indirect - Table Indirect Addressing Mode
0 - Use Absolute addressing mode
1 - Use destination address as offset from the value of DSA register.

Symbios Logic PCI-SCSI Programming Guide 3-7

The SYM53C8XX Instruction Set

CHMOV

3-8

Description:

Op code- Defines whether the instruction will be executed as a
Block Move or a Chained Block Move. This bit value has different
meanings, depending on whether the chip is operating in target or
initiator role.

Target Initiator
MOVE Opcode =0 Opcode=1
CHMOV Opcode=1 Op code =0

SCSI Phase - These bits reflect the actual values of the SCSI phase
lines. The bit values are defined below.

Phase Message Command / Data Input / Output
DATA_OUT 0 0 0

DATA_IN 0 0 1
COMMAND 0 1 0

STATUS 0 1 1

RES4 1 0 0

RES5 1 0 1
MESSAGE_OUT 1 1 0
MESSAGE_IN 1 1 1

* Note: O - False, negated; 1 - True, asserted. For

these phases, SEL is negated and BSY is asserted.

* Res4 and Res5 are reserved SCSI phases. These combinations should not be
used for standard SCSI implementations

Byte Count - 24-bit number indicating the number of bytes to
transfer.

Dest Addr - Address to perform data transfer on, or offset from the
DSA to fetch table indirect information.

There are various forms of the Chained Block Move instruction. The
“address” and “count” specify the address and byte count fields of
the instruction. If the optional keyword “PTR” is present, then the
indirect bit will be set. If PTR is present, the address specified in the
instruction is the address of the pointer to the data in memory.
“Phase” specifies the phase field of the instruction. WITH or WHEN
are used to specify the Block Move function codes. WITH is used to
signal the target role which sets the phase values, and WHEN is the
initiator “test for phase” feature.

The 53C8XX waits for a valid phase (initiator) or drives the phase
lines (target). In the initiator role, it performs a comparison looking
for a match between the phase specified in the SCRIPTS instruction
and the actual value on the bus. If the phases do not match, an
external interrupt occurs. A test prior to the Move instruction could
be used to avoid this interrupt. If the phase does match, data is then
transferred in or out according to the phase lines. When the count

Symbios Logic PCI-SCSI Programming Guide

Notes:

Legal Forms:

The SYM53C8XX Instruction Set
CHMOV

goes to zero, the SYM53C8XX fetches the next sequential SCRIPTS
instruction.

The Chained Move instruction transfers data to and from memory
locations. Data may come from any data location, so scatter/gather
operations are transparent to the chip and external processor.

When the SYM53C8XX executes several CHMOV instructions and
the ends are on an odd byte boundary, the chip temporarily stores
the residual byte in the SODL register (send operations) or SWIDE
register (receive operations). The SYM53C8XX takes the first byte
from the subsequent CHMOV or MOVE instruction and lines it up
with the residual byte in order to complete a wide transfer and
maintain a continuous wide data flow on the SCSI bus.

For more information on Chained Block Move Instructions, please
see the appropriate SYM53C8XX data manual.

CHMOV count, address, W TH phase
CHMOV count, address, WHEN phase
CHMOV count, PTR address, W TH phase
CHMOV count, PTR address, WHEN phase
CHMOV FROM addr ess, W TH phase
CHMOV FROM addr ess, WHEN phase

Symbios Logic PCI-SCSI Programming Guide 3-9

The SYM53C8XX Instruction Set

CLEAR

3-10

Supported by:
Definition:

Operands:

Examples:

Format:

Fields:

Description:

CLEAR

CLEAR{ACK| ATN| TARGET | CARRY} [and{ACK| ATN| TARGET | CARRY}
]

All Symbios Logic PCI-SCSI 1/O Processors
Deasserts SCSI ACK or ATN, or clears internal flags

ACK - clears the Assert SCSI ACK bit
ATN - clears the Assert SCSI ATN bit
TARGET - clears the Set Target role bit
CARRY - clears the CARRY bit in the ALU

CLEAR TARGET
CLEAR ACK and TARGET

DCMD Register DBC Register DSP_S
Register
31 30 29 27 |26 24{2311 (10 9 87 |6 5 413 2 031 0
01 100 000 |0.0 |X X 00 |X 00 |X 000 |00...00
Instr |Op RES | RES [Set/ |Set/ RES |Assert |RES |Assert |RES |RES
Type |code Clear |Clear SCSI SCsSI
Carry | Target ACK ATN

Instruction Type - 1/O
Op code - Clear instruction

Set/Clear Carry
1 - clears the Carry bit in the ALU
0 - has no effect

Set /Clear Target Mode
1 - places the chip into initiator mode
0 - has no effect

Set/Clear SCSI ACK
1 - deasserts the SCSI acknowledge signal
0 - has no effect

Set/Clear SCSI ATN
1 - deasserts the SCSI attention signal
0 - has no effect

The chip deasserts the signals indicated in the instruction. Currently
four bits are defined, allowing the SCSI SACK, target role, and
SATN bits to be cleared as well as the CARRY bit in the ALU. Bit 10
is for CARRY, bit 9 is for target, bit 6 is for Acknowledge, and bit 3 is
for Attention.

Symbios Logic PCI-SCSI Programming Guide

The SYM53C8XX Instruction Set

CLEAR
Notes:
Legal Forms: CLEAR ACK
CLEAR ATN
CLEAR TARGET
CLEAR CARRY

CLEAR ACK and ATN

CLEAR ACK and TARGET

CLEAR ACK and CARRY

CLEAR ATN and TARGET

CLEAR ATN and CARRY

CLEAR TARGET and CARRY

CLEAR ACK and ATN and TARGET

CLEAR ACK and ATN and CARRY

CLEAR ACK and ATN and TARGET and CARRY

Symbios Logic PCI-SCSI Programming Guide 3-11

The SYM53C8XX Instruction Set
DISCONNECT

Supported by:
Definition:
Operands:

Example:

Format:

Fields:

Description:

Notes:

Legal Forms:

3-12

DISCONNECT

DI SCONNECT
All Symbios Logic PCI-SCSI 1/O Processors

Perform disconnect

None

DI SCONNECT

DCMD Register DBC Register DSPS Register
31 30 29 25 |24 23 0 31 0

01 00100 0 (010100 N 000 (010 FEUP 00
Instr Type Op Code |RES |Reserved Reserved

Instruction Type - I/O
Op Code—Disconnect instruction

The DISCONNECT instruction causes the chip (when in target
role) to physically disconnect from the bus.

This instruction has no effect on the initiator if it is issued by a target.
To disconnect from the SCSI bus, use the SET TARGET instruction
before this instruction.

DI SCONNECT

Symbios Logic PCI-SCSI Programming Guide

The SYM53C8XX Instruction Set
INT

INT

INT int_value [, {IF | WHEN}[NOT][ATN | Phase][AND | OR] [data[Al
MASK dat a]]]
INT int_value [, {IF | WHEN}[NOT] CARRY]

Supported by: All Symbios Logic PCI-SCSI 1/O Processors
Definition: SCSI Transfer Control - Generate Interrupt and halt SCRIPTS
operation
Operands: int_value is a user defined 32-bit value that will be available in the

DSPS register at the time of the interrupt.

WHEN forces the SCRIPTS engine to wait for a valid SCSI bus
phase before continuing. A valid phase is indicated by assertion of the
SREQ/ signal.

IF causes the SYM53C8XX to check immediately for a valid SCSI
bus phase without waiting. IF should not be used when comparing
for a phase, as this could yield unpredictable results. The only
exception is if aWHEN conditional was used just prior to the IF
conditional, for any given sequence of phase checks.

NOT negates the comparison. It clears the True bit if present,
otherwise the True bit is set.

Phase is used to specify the Message, Command/Data, and
Input/Output bit values that identify the SCSI phase in the
instruction. The desired phase value is compared with the actual
values of the SCSI phase lines before the SYM53C8XX performs the
instruction. This field is only valid for initiator mode and should not
be used in target mode.

ATN indicates that an interrupt should take place based on an
initiator SATNY/ signal. This field is valid only for target mode and
should not be used in initiator mode.

data represents an 8-bit value that is stored in the data field of the
instruction. In addition the Compare Data bit is set.

MASK represents an 8-bit value that is stored in the mask field of the
instruction. Any bit that is set in the mask causes the corresponding
bit in the data byte to be ignored at the time of the comparison.

CARRY indicates that an interrupt should take place based on the
value of the carry bit in the ALU. Carry comparisons cannot take
place at the same time as data and phase comparisons.

Example: I NT 0x00000001, WHEN NOT COMVAND
I NT 0x200010F7, |F OxF8 AND MASK 0x07

Symbios Logic PCI-SCSI Programming Guide 3-13

The SYM53C8XX Instruction Set

INT

3-14

Format:

Fields:

DSPS

DCMD Register DBC Register Register

3130 29 27|26 24|23 22|21 20 |19 18 17 16 158 |7 0|31 O

10 011 XXX [0 0|0 0 X X X X XX [XX [XX

Instr |Op SCSI |RES |Carry |RES |True |Comp|Comp |Wait [Mask |Data |int_value

Type |[code |Phase Test Data |Phase

Instruction Type - Transfer Control.
Op code - Interrupt Instruction.

SCSI Phase - These bits reflect the actual values of the SCSI phase
lines. The bit values are defined below.

Phase Message Command / Data Input / Output
DATA_OUT 0 0 0

DATA_IN 0 0 1
COMMAND 0 1 0

STATUS 0 1 1

RES4 1 0 0

RES5 1 0 1
MESSAGE_OUT 1 1 0
MESSAGE_IN 1 1 1

* Note: O - False, negated; 1 - True, asserted. For

these phases, SEL is negated and BSY is asserted.

* Res4 and Res5 are reserved SCSI phases. These combinations should not be
used for standard SCSI implementations

Carry Test - When this bit is set, true/false comparisons may be
made based on the ALU Carry bit. Carry comparisons cannot be
made at the same time as data and phase comparisons.

True - Transfer on TRUE/FALSE condition
0 - Transfer if condition is FALSE
1 - Transfer if condition is TRUE

Compare Data - Compare data byte to first byte of the received
data.

0 - Do not compare data

1 - Perform comparison

Compare Phase - Compare current SCSI phase to SCSI phase field
or SATNY/. This bit is set whenever the Phase operand is used.

0 - Do not compare phase

1 - Perform comparison

Wait - Wait for valid phase. This bit is set by the WHEN operand in
the instruction, and cleared by the IF operand.

0 - Perform comparison immediately

1 - Wait for valid phase (SREQ/ asserted by target)

Symbios Logic PCI-SCSI Programming Guide

Description:

Notes:

The SYM53C8XX Instruction Set
INT

Mask - 8-bit field that is used to mask the value in SFBR before the
comparison with the data field in the instruction takes place. As a
result of this operation, any bits that are set will cause the
corresponding bit in the data byte to be ignored. If this field is not
specified, a mask of 0x00 is used.

Data - 8-bit field that is compared with the incoming data after the
mask operation with the mask byte takes place. Comparison indicates
either an equal or not equal condition. If the Data field is not
specified, the compare data bit is cleared and 0x00 is coded for both
the mask and data bytes.

Int_Value - a 32-bit user defined value that is available to the
external processor to identify the cause of the interrupt. If the
interrupt conditions are met, the int_value will be available in the
DSPS register for the processor to use to determine the cause of the
interrupt.

The SCSI Interrupt instruction causes the chip to conditionally halt
execution and post an interrupt request to the external processor. It
is used if the SCSI phase, data, or attention condition compares true
with the phase, data, or attention condition described in the
instruction. The NOT quialifier is used for the comparison to
determine a boolean true/false outcome of the comparison. If the
comparison is false, the SCRIPTS processor will not post the
interrupt but will instead fetch the next in-line instruction and
continue execution.

When the optional data field is used, it is compared to the first byte of
the SFBR. This contains the most recent byte of any kind of data that
has been moved into the SFBR register. The user's SCSI SCRIPTS
program can determine which routine to execute next based on
actual data values received. Using a series of these compares, the
algorithm can process complex sequences with no intervention
required by the external processor.

When the optional MASK keyword and its associated value are
specified the SCRIPTS processor allows selective comparisons of bits
within the data byte. This comparison is illustrated in Figure 3-1.
During the comparison, any bits that are set in the mask byte will
cause the corresponding bit in the data byte to be ignored for the
comparison.

Symbios Logic PCI-SCSI Programming Guide 3-15

The SYM53C8XX Instruction Set

INT

3-16

Legal Forms:

I NT
I NT
I NT
I NT
I NT
I NT
I NT
I NT
I NT
I NT
I NT
I NT
I NT
I NT
I NT
I NT
I NT
I NT
I NT
I NT
I NT
I NT
I NT
I NT
I NT
I NT
I NT
I NT
I NT
I NT
I NT

nt _val ue
nt _val ue,
nt _val ue,
nt _val ue,
nt _val ue,
nt _val ue,
nt _val ue,
nt _val ue,
nt _val ue,
nt _val ue,
nt _val ue,
nt _val ue,
nt _val ue,
nt _val ue,
nt _val ue,
nt _val ue,
nt _val ue,
nt _val ue,
nt _val ue,
nt _val ue,
nt _val ue,
nt _val ue,
nt _val ue,
nt _val ue,
nt _val ue,
nt _val ue,
nt _val ue,
nt _val ue,
nt _val ue,
nt _val ue,
nt _val ue,

| F ATN

| F Phase

| F CARRY

| F data

| F data AND MASK dat a

| F ATN AND dat a

| F ATN AND dat a AND MASK dat a
| F Phase AND dat a

| F Phase AND data AND MASK dat a
VWHEN Phase

VWHEN CARRY

VWHEN dat a

WHEN dat a AND MASK dat a

WHEN Phase AND dat a

WHEN Phase AND data AND MASK dat a
| F NOT ATN

I F NOT Phase

I F NOT CARRY

I F NOT data

I F NOT data AND MASK dat a

I F NOT ATN OR data

I F NOT ATN OR data AND MASK dat a

I F NOT Phase OR data

I F NOT Phase OR data AND MASK dat a
VWHEN NOT Phase

WHEN NOT CARRY

WHEN NOT dat a

VWHEN NOT data AND MASK data

VWHEN NOT Phase OR data

WHEN NOT Phase OR data AND MASK dat a

Symbios Logic PCI-SCSI Programming Guide

Supported by:
Definition:

Operands:

The SYM53C8XX Instruction Set
INTFLY

INTFLY

INTFLY [int_value] [, {IF| WHEN}[NOT][ATN | Phase] [AND | OR]
[dat a[AND MASK dat a]]]
INTFLY [int_value] [, {IF | VWHEN}[NOT] CARRY]

All SYM53C8XX PCI-SCSI 1/O Processors
Generate Interrupt and Continue SCRIPTS Execution

int_value is a user defined 32-bit value that is written to the DSPS
register at the time of the interrupt. However, as stated in the Note
below, since the processor continues to execute, the value is
immediately overwritten with the next instruction fetch. Refer to the
Note at the end of this section for more information.

WHEN forces the SCRIPTS engine to wait for a valid SCSI bus
phase before continuing. A valid phase is indicated by assertion of the
SREQ/ signal.

IF causes the SYM53C8XX to check immediately for a valid SCSI
bus phase without waiting. IF should not be used when comparing
for a phase, as this could yield unpredictable results. The only
exception is if aWHEN conditional was used just prior to the IF
conditional, for any given sequence of phase checks.

NOT negates the comparison. It clears the True bit if present,
otherwise the True bit is set.

Phase is used to specify the Message, Command/Data, and
Input/Output bit values that identify the SCSI phase in the
instruction. The desired phase value is compared with the actual
values of the SCSI phase lines before the SYM53C8XX performs the
instruction. This field is only valid for initiator mode and should not
be used in target mode.

ATN indicates that an interrupt should take place based on the state
of the initiator SATN/ signal. This field is valid only for target mode
and should not be used in initiator mode.

data represents an 8-bit value that is stored in the data field of the
instruction. In addition the Compare Data bit is set.

MASK represents an 8-bit value that is stored in the mask field of the
instruction. Any bit that is set in the mask causes the corresponding
bit in the data byte to be ignored at the time of the comparison.

CARRY indicates that a jump should take place based on the value
of the carry bit in the ALU. Carry comparisons cannot be made in
the same instruction as data or phase comparisons.

Symbios Logic PCI-SCSI Programming Guide 3-17

The SYM53C8XX Instruction Set

INTFLY

Example: I NTELY 0x00000001, WHEN NOT COMVAND
I NTFLY 0x200010F7, |IF OxF8 AND MASK 0x07

Format:

. . DSPS
DCMD Register DBC Register Register
31 30 29 27 |26 24 |23 22 |21 20 |19 18 17 16 158 (7 0|31 O
10 011 XXX |0 0 0 1 X X X X X. X [X.X [X..X
Instr |Op SCSI [RES |RES|Carry [Int |True |{Comp |{Comp [Wait |Mask |Data [Int_
Type |code |Phase Test |on Data |Phase Value
Fly
Fields: Instruction Type - Transfer Control

Op code - Interrupt on the Fly Instruction

SCSI Phase - These bits reflect the actual values of the SCSI phase
lines. The bit values are defined below.

Phase Message Command / Data Input / Output
DATA_OUT 0 0 0

DATA_IN 0 0 1
COMMAND 0 1 0

STATUS 0 1 1

RES4 1 0 0

RESS5 1 0 1
MESSAGE_OUT 1 1 0
MESSAGE_IN 1 1 1

* Note: O - False, negated; 1 - True, asserted. For

these phases, SEL is negated and BSY is asserted.

* Res4 and Res5 are reserved SCSI phases. These combinations should not be
used for standard SCSI implementations

Carry Test- When this bit is set, true/false comparisons may be
made based on the ALU Carry bit. Carry comparisons cannot be
made in the same instruction as data or phase comparisons.

Int on Fly - When this bit is set, the Interrupt instruction will not
halt the SCRIPTS processor.

True - Transfer on TRUE/FALSE condition
0 - Transfer if condition is FALSE
1 - Transfer if condition is TRUE

Compare Data - Compare data byte to first byte of the received
data.

0 - Do not compare data

1 - Perform comparison

Compare Phase - Compare current SCSI phase to SCSI phase field
or SATN. This bit is set whenever the Phase operand is used.

0 - Do not compare phase

1 - Perform comparison

3-18 Symbios Logic PCI-SCSI Programming Guide

Description:

Notes:

The SYM53C8XX Instruction Set
INTFLY

Wait - Wait for valid phase. This bit is set by the WHEN operand in
the instruction, and cleared by the IF operand.

0 - Perform comparison immediately

1 - Wait for valid phase (SREQ/ asserted by target)

Mask - 8-bit field that is used to mask the value in SFBR before the
comparison with the data field in the instruction takes place. As a
result of this operation, any bits that are set will cause the
corresponding bit in the data byte to be ignored. If this field is not
specified, a mask of 0x00 is used.

Data - 8-bit field that is compared with the incoming data after the
mask operation with the mask byte takes place. Comparison indicates
either an equal or not equal condition. If the Data field is not
specified, the compare data bit is cleared and 0x00 is coded for both
the mask and data bytes.

Int_Value - a 32-bit user defined value that identifies the cause of the
interrupt. Even though the int_value is stored, since the processor
continues to execute, it is immediately overwritten with the next
instruction fetch. Refer to the Note at the end of this section for more
information.

The SCSI Interrupt on-the-Fly instruction causes the chip to
conditionally set the INTFLY bit in the ISTAT register and post an
interrupt request to the external processor. It is invoked if the SCSI
phase, data, or attention condition compares true with the phase,
data, or attention condition described in the instruction.

The NOT qualifier is used to indicate a boolean true/false desired
outcome of the comparison. If the comparison is false, the SCRIPTS
processor will not post the interrupt but will instead fetch the next
instruction and continue SCRIPTS execution.

When the optional data field is used, it is compared to the first byte of
the SFBR. This contains the most recent byte of any kind of data that
has been moved into the SFBR register. The user's SCSI SCRIPTS
program can determine which routine to execute next based on
actual data values received. Using a series of these compares, the
algorithm can process complex sequences with no intervention
required by the external processor.

When the optional MASK keyword and its associated value are
specified the SCRIPTS processor allows selective comparisons of bits
within the data byte. This comparison is illustrated in Figure 3-1.
During the comparison, any bits that are set in the mask field will
cause the corresponding bit in the data byte to be ignored for the
comparison.

Unlike the INT instruction, the INTFLY does not allow a driver
program to make an inquiry to the chip for the i nt _val ue. Even
though the i nt _val ue is stored, since the processor continues to

Symbios Logic PCI-SCSI Programming Guide 3-19

The SYM53C8XX Instruction Set
INTFLY

execute, it is immediately overwritten with the next instruction fetch.
Users who want an accessible interrupt value can use the move
memory instruction to store a user defined value to a known memory
location before executing the INTFLY instruction.

Legal Forms: I NTFLY
I NTFLY, |IF ATN
I NTFLY, |F Phase
I NTFLY, |F CARRY
INTFLY, |F data
I NTFLY, |F data AND MASK dat a
I NTFLY, |IF ATN AND data
I NTFLY, |IF ATN AND data AND MASK data
I NTFLY, | F Phase AND data
I NTFLY, |F Phase AND data AND MASK dat a
I NTFLY, WHEN Phase
I NTFLY, WHEN CARRY
I NTFLY, WHEN dat a
I NTFLY, WHEN data AND MASK dat a
I NTFLY, WHEN Phase AND dat a
I NTFLY, WHEN Phase AND data AND MASK dat a
I NTFLY, |F NOT ATN
I NTFLY, | F NOT Phase
I NTFLY, |F NOT CARRY
I NTFLY, |F NOT data
I NTFLY, |IF NOT data AND MASK data
I NTFLY, |IF NOT ATN OR data
I NTFLY, |IF NOT ATN OR data AND MASK dat a
I NTFLY, |F NOT Phase OR dat a
I NTFLY, |F NOT Phase OR data AND MASK dat a
I NTFLY, WHEN NOT Phase
I NTFLY, WHEN NOT CARRY
I NTFLY, WHEN NOT dat a
I NTFLY, WHEN NOT data AND MASK dat a
I NTFLY, WHEN NOT Phase OR data
I NTFLY, WHEN NOT Phase OR data AND MASK dat a
I NTFLY i nt _val ue
I NTFLY int_value, IF ATN
I NTFLY int_val ue, |IF Phase
I NTFLY int_val ue, |IF CARRY
INTFLY int_value, IF data
INTFLY int _value, |IF data AND MASK dat a
INTFLY int_value, IF ATN AND data
INTFLY int_value, |F ATN AND data AND MASK dat a
I NTFLY int_val ue, | F Phase AND data
INTFLY int_value, |IF Phase AND data AND MASK dat a
I NTFLY int_val ue, WHEN Phase
I NTFLY int_val ue, WHEN CARRY
I NTFLY int_val ue, WHEN data

3-20 Symbios Logic PCI-SCSI Programming Guide

I NTFLY
I NTFLY
I NTFLY
I NTFLY
I NTFLY
I NTFLY
I NTFLY
I NTFLY
I NTFLY
I NTFLY
I NTFLY
I NTFLY
I NTFLY
I NTFLY
I NTFLY
I NTFLY
I NTFLY
I NTFLY

nt _val ue,
nt _val ue,
nt _val ue,
nt _val ue,
nt _val ue,
nt _val ue,
nt _val ue,
nt _val ue,
nt _val ue,
nt _val ue,
nt _val ue,
nt _val ue,
nt _val ue,
nt _val ue,
nt _val ue,
nt _val ue,
nt _val ue,
nt _val ue,

The SYM53C8XX Instruction Set
INTFLY

VWHEN data AND MASK dat a

WHEN
WHEN

Phase AND dat a
Phase AND data AND MASK dat a

I F NOT ATN

I F NOT Phase

I F NOT CARRY

I F NOT data

I F NOT data AND MASK dat a

I F NOT ATN OR data

I F NOT ATN OR data AND MASK dat a
I'F NOT Phase OR data

I F NOT Phase OR data AND MASK data

VWHEN
WHEN
WHEN
WHEN
WHEN
WHEN

NOT Phase

NOT CARRY

NOT data

NOT data AND MASK dat a

NOT Phase OR data

NOT Phase OR data AND MASK dat a

Symbios Logic PCI-SCSI Programming Guide 3-21

The SYM53C8XX Instruction Set
JUMP

JUMP

JUMP{ REL(Addr ess) | Address} [, {I F| WHEN} [NOT] [ATN| Phase] AND|
OR] [data[AND MASK data]]]
JUWP {[REL] (Address) | Address} [, {IF | WHEN}[NOT] CARRY]

Supported by: All Symbios Logic PCI-SCSI 1/O Processors
Definition: SCSI Transfer Control - Jump
Operands: REL indicates the use of relative addressing.

Address is the location to which execution will be transferred if the
subroutine is called. If REL is used, Address is the offset from the
current DSP value.

WHEN forces the SCRIPTS engine to wait for a valid SCSI bus
phase before continuing. A valid phase is indicated by assertion of the
SREQ/ signal.

IF causes the SYM53C8XX to check immediately for a valid SCSI
bus phase without waiting. IF should not be used when comparing
for a phase, as this could yield unpredictable results. The only
exception is if aWHEN conditional was used just prior to the IF
conditional, for any given sequence of phase checks.

NOT negates the comparison. It clears the True bit if present,
otherwise the True bit is set.

Phase is used to specify the Message, Command/Data, and
Input/Output bit values that identify the SCSI phase in the
instruction. The desired phase value is compared with the actual
values of the SCSI phase lines before the SYM53C8XX performs the
instruction. This field is only valid for initiator mode and should not
be used in target mode.

ATN is used to indicate that a jump should take place based on the
state of the initiator SATN signal. This field is valid only for target
mode and should not be used in initiator mode.

data represents an 8-bit value that is stored in the data field of the
instruction. In addition, this keyword indicates that the Compare
Data bit is set.

MASK represents an 8-bit value that is stored in the mask field of the
instruction. Any bit that is set in the mask causes the corresponding
bit in the data byte to be ignored at the time of the comparison.

CARRY indicates that a jump should take place based on the value
of the carry bit in the ALU.

3-22 Symbios Logic PCI-SCSI Programming Guide

Example:

Format:

Fields:

The SYM53C8XX Instruction Set

JUMP

JUWP Do_Next _Command WHEN COMVAND
JUWP Dat a_Check, |F DATA IN AND 0x80 MASK Ox7F

. . DSPS
DCMD Register DBC Register Register
31 30 29 27 (26 24|23 22 |22 20 (19 18 17 16 |158 |7 0 (31 O
10 000 XXX [X 0 0 0 X X X X XXX XXX
Instr |Opcode [SCSI [Rel |RES [Carry|RES |[True |[Comp [Comp |Wait |Mask |Data |Dest
Type Phase |Addr Test Data |Phase Addr

Instruction Type - Transfer Control
Op code - Jump instruction

SCSI Phase - These bits reflect the actual values of the SCSI phase
lines. The bit values are defined below.

Phase Message Command / Data Input / Output
DATA OUT 0 0 0

DATA_IN 0 0 1
COMMAND 0 1 0

STATUS 0 1 1

RES4 1 0 0

RES5 1 0 1
MESSAGE_OUT 1 1 0
MESSAGE_IN 1 1 1

* Note: O - False, negated; 1 - True, asserted. For

these phases, SEL is negated and BSY is asserted.

* Res4 and Res5 are reserved SCSI phases. These combinations should not be
used for standard SCSI implementations

Relative Addr - Relative Addressing Mode indicates that the 24-bit
address value in the instruction is to be used as an offset from the
current DSP address (which is pointing to the next instruction, not
the one currently executing).

Carry Test - When this bit is set, true/false comparisons may be
made based on the ALU Carry bit. Comparisons to the state of the
Carry flag may not be made in conjunction with other comparisons.

True - Transfer on TRUE/FALSE condition
0 - Transfer if condition is FALSE
1 - Transfer if condition is TRUE

Compare Data - Compare data byte to first byte of the received
data.

0 - Do not compare data

1 - Perform comparison

Compare Phase - Compare current SCSI phase to SCSI phase field
or SATNY/. This bit is set whenever the Phase operand is used.

0 - Do not compare phase

1 - Perform comparison

Symbios Logic PCI-SCSI Programming Guide 3-23

The SYM53C8XX Instruction Set
JUMP

Wait - Wait for valid phase. This bit is set by the WHEN operand in
the instruction, and cleared by the IF operand.

0 - Perform comparison immediately

1 - Wait for valid phase (SREQ/ asserted by target)

Mask - 8-bit field that is used to mask the value in SFBR before the
comparison with the data field in the instruction takes place. As a
result of this operation, any bits that are set will cause the
corresponding bit in the data byte to be ignored. If this field is not
specified, a mask of 0x00 is used.

Data - 8-bit field that is compared with the incoming data after the
mask operation with the mask byte takes place. Comparison indicates
either an equal or not equal condition. If the Data field is not
specified, the Compare Data bit is cleared and 0x00 is coded for both
the mask and data bytes.

Dest Addr - a 32-bit address (or 24-bit offset) where execution will
continue if the jump is executed.

Description: The SCSI Jump instruction is a conditional jump to the destination
address, if the SCSI phase, data, or attention condition compares
true with the phase, data, or attention condition described in the
instruction. If the comparison is false, the SCRIPTS processor will
not branch to the destination but will instead fetch the next
instruction and continue execution.

When the optional data field is used, it is compared to the SFBR.
This contains the most recent byte of any kind of data that has been
moved into the SFBR register. The user's SCSI SCRIPTS program
can determine which routine to execute next based on actual data
values received. Using a series of these compares, the algorithm can
process complex sequences with no intervention required by the
external processor.

When the optional MASK keyword and its associated value are
specified, the SCRIPTS processor allows selective comparisons of
bits within the data byte. During the compare, any mask bits that are
set will cause the corresponding bit in the data byte to be ignored for
the comparison.

Notes: Jump instructions are used to control the flow of the SCRIPTS
routines. They are used to avoid phase mismatch interrupts in
situations where multiple phase sequences are possible.

The REL keyword, which indicates relative addressing, is unrelated
to the declarative keyword RELATIVE that establishes relative
buffers.

3-24 Symbios Logic PCI-SCSI Programming Guide

Legal Forms:

The SYM53C8XX Instruction Set
JUMP

JUWP address

JUWP address, |F ATN

JUWVP address, |F Phase

JUWP address, | F CARRY

JUWP address, |F data

JUWP address, |F data AND MASK dat a

JUWP address, |F ATN AND data

JUWP address, |F ATN AND data AND MASK dat a
JUWP address, |F Phase AND dat a

JUWVP address, |F Phase AND data AND MASK dat a
JUWP addr ess, VWHEN Phase

JUWP address, VWHEN CARRY

JUWP address, WHEN data

JUWP address, VWHEN data AND MASK dat a

JUWP address, WHEN Phase AND dat a

JUWP addr ess, WHEN Phase AND data AND MASK dat a
JUWVP address, |F NOT ATN

JUWP address, |F NOT Phase

JUWP address, |F NOT CARRY

JUWP address, |F NOT data

JUWP address, |F NOT data AND MASK data

JUWP address, |IF NOT ATN OR data

JUVP address, |F NOT ATN OR data AND MASK dat a
JUWP address, |F NOT Phase OR data

JUWP address, |F NOT Phase OR data AND MASK dat a
JUWP address, WHEN NOT Phase

JUWP address, WHEN NOT CARRY

JUWP address, WHEN NOT data

JUWVP address, WHEN NOT data AND MASK dat a

JUWVP addr ess, VWHEN NOT Phase OR data

JUWVP address, WHEN NOT Phase OR data AND MASK dat a
JUWMP REL(address)

JUWP REL(address), |F ATN

JUWP REL(address), |F Phase

JUWP REL(address), |F CARRY

JUWP REL(address), |F data

JUWP REL(address), |F data AND MASK dat a

JUWP REL(address), |IF ATN AND dat a

JUWMP REL(address), |IF ATN AND data AND MASK dat a
JUWP REL(address), |F Phase AND data

JUWP REL(address), |F Phase AND data AND MASK dat a
JUMP REL(address), WHEN Phase

JUWP REL(address), WHEN CARRY

JUWP REL(address), WHEN data

JUMP REL(address), WHEN data AND MASK dat a

JUMP REL(address), WHEN Phase AND data

JUWP REL(address), WHEN Phase AND data AND MASK dat a
JUWP REL(address), |IF NOT ATN

JUWP REL(address), |F NOT Phase

Symbios Logic PCI-SCSI Programming Guide 3-25

The SYM53C8XX Instruction Set
JUMP

3-26

JUWP
JUWP
JUWP
JUWP
JUWP
JUWP
JUWP
JUWP
JUWP
JUWP
JUWP
JUWP
JUWP

REL(addr ess),
REL(addr ess),
REL(addr ess) ,
REL(addr ess),
REL(addr ess),
REL(addr ess),
REL(addr ess),
REL(addr ess),
REL(addr ess) ,
REL(addr ess),
REL(addr ess) ,
REL(addr ess),
REL(addr ess),

| F NOT
| F NOT
| F NOT
| F NOT
I F NOT
I F NOT
| F NOT
NOT Phase

NOT CARRY

NOT dat a

NOT data AND MASK dat a

NOT Phase OR data

NOT Phase OR data AND MASK data

VWHEN
VWHEN
WHEN
WHEN
WHEN
VHEN

CARRY

dat a

data AND MASK dat a

ATN OR data

ATN OR data AND MASK dat a
Phase OR data

Phase OR data AND MASK dat a

Symbios Logic PCI-SCSI Programming Guide

The SYM53C8XX Instruction Set

LOAD
LOAD
LOAD regi ster, byte_count, [DSAREL(]source_address[)]
Supported by: SYM53C810A, SYM53C860, SYM53C825A, SYM53C875,
SYM53C876, SYM53C885, SYM53C895
Definition: Load data from memory to an internal register of the SYM53C8XX.
Operands: register is one of the register names in the SYM53C8XX operating

register set.

byte_count is the number of bytes (1-4) to be transferred from the
source_address.

DSAREL indicates that the source_address is an offset and should
be added to the DSA register to obtain the physical address (DSA
relative).

source_address is the physical address or offset from the DSA to
obtain the physical address of the data to be loaded into the register.

Example: LOAD SCRATCHAO, 4, data_buf
LOAD SCRATCHA3, 2, DSAREL (0x02)
Format:
DCMD Register DBC Register DSPS register
31..29 28 27..25 |24 23 [22...16 15....3 |2 031 0
111 X 000 1 0 X.. X 00..00 |XXX XX... XX
Instr type |DSA RES Load/ |RES |Reg RES Byte Source
Relative Store Addr Count Addr/DSA
Offset
Fields: Instruction Type - Load/Store

DSA Relative- indicates source address location

0 - DSPS contains actual address of data to load

1 - DSPS contains a 24-bit offset value that is added to the DSA to
determine the source address.

Load/Store - This field defines whether the instruction will be
executed as a Load or a Store.

0 - Store instruction
1 - Load instruction

Reg Addr- These bits select the register to load within the
SYM53C8XX operating register set.

Byte Count - Indicates the number of bytes to transfer. Valid values
arel, 2, 3, or4.

Source Addr - Actual address (or offset from the DSA) of the data
to load into the SYM53C8XX register.

Symbios Logic PCI-SCSI Programming Guide 3-27

The SYM53C8XX Instruction Set
LOAD

Description: The Load instruction is a more efficient means than the Move
Memory instruction of moving data from a memory location to an
internal register of the SYM53C8XX. It is a two-dword instruction,
compared to three dwords for a Memory Move. This instruction may
be used to move up to 4 bytes. The number of bytes to load is
indicated by the low order bits in the first dword of the instruction.
The maximum number of bytes to load is defined by the Register
Address field, as illustrated in the following table:

DBC Bits 17-16

(Register Address bits A1-A0) Number of Bytes to Load

00 1,2,3,0r4
01 1,2,0or3
10 lor2
11 1
Notes: The register address and memory address must have the same byte

alignment, and the byte count set so that it does not cross dword
boundaries. The memory address may not map back to the
SYM53C8XX operating registers, although it may map back to a
location in the SCRIPTS RAM. If these conditions are violated, a
PCl illegal read/write cycle will occur and the chip will issue an
Interrupt (lllegal Instruction Detected) immediately following,
because the intended operation did not happen.

Legal Forms: LOAD regi ster, byte count, source_address
LOAD regi ster, byte count, DSAREL(source_address)

3-28 Symbios Logic PCI-SCSI Programming Guide

Supported by:
Definition:

Operands:

Example:

Format:

Fields:

The SYM53C8XX Instruction Set
MOVE

MOVE

MOVE {FROM | count,} [PTR] address, {WTH | WHEN} phase

All Symbios Logic PCI-SCSI 1/O Processors

SCSI Block Move

FROM indicates table indirect addressing mode.

Note: FROM and PTR must not be used in the same instruction.
count is a 24-bit number of bytes to transfer across the SCSI bus.
PTR sets the indirect bit if present, it is clear otherwise.

Note: FROM and PTR must not be used in the same instruction

address is the 32-bit starting address of the data in memory.

WITH/WHEN sets the mode for the device; WITH for target mode
and WHEN for initiator mode.

Phase is used to specify the Message, Command/Data, and
Input/Output bit values that identify the SCSI phase in the
instruction. The desired phase value is compared with the actual
values of the SCSI phase lines before the SYM53C8XX performs the
instruction. This field is only valid for initiator mode and should not
be used in target mode.

MOVE FROM dev_1, WTH MSG_IN
MOVE 6, cnd_buf, WHEN CMD

. DB DSP
DCMD Register C. S .S
Register register
31 30 |29 28 27 26 24 23 0|31 0
00 X X X XXX XX... XX XX... XX
Instr type |Indirect |Table Indirect |Op SCSI Phase |Byte Count |Dest Addr
code

Instruction Type - Block Move

Indirect - Indirect Addressing Mode
0 - Use destination field as an address
1 - Use destination field as a pointer to an address

Table Indirect - Table Indirect Addressing Mode
0 - Use Absolute addressing mode
1 - Use destination address as offset from the value of DSA register.

Symbios Logic PCI-SCSI Programming Guide 3-29

The SYM53C8XX Instruction Set
MOVE

Op code - This field defines whether the instruction will be executed
as a Block Move or a Chained Block Move.

Target Initiator
MOVE Op code =0 Opcode =1
CHMOV Op code =1 Opcode=0

SCSI Phase - These bits reflect the actual values of the SCSI phase
lines. The bit values are defined below.

Phase Message Command / Data Input / Output
DATA_OUT 0 0 0

DATA_IN 0 0 1
COMMAND 0 1 0

STATUS 0 1 1

RES4 1 0 0

RES5 1 0 1
MESSAGE_OUT 1 1 0
MESSAGE_IN 1 1 1

* Note: O - False, negated; 1 - True, asserted. For

these phases, SEL is negated and BSY is asserted.

* Res4 and Res5 are reserved SCSI phases. These combinations should not be
used for standard SCSI implementations

Byte Count - 24-bit number indicating the number of bytes to
transfer.

Dest Addr - Address to perform data transfer on.

Description: There are various forms of the Block Move instruction. The
“address” and count” specify the address and byte count fields of
the instruction. If the optional keyword “PTR” is present, then the
Indirect bit will be set. If the optional keyword FROM is present the
Table Indirect bit will be set (For more information on Table Indirect
addressing, refer to Chapter 9). PTR and FROM may not be used in
the same instruction. “Phase” specifies the phase field of the
instruction. WITH or WHEN are used to specify the Block Move
function codes. WITH is used to signal the target role which sets the
phase values, and WHEN is the initiator “test for phase” feature.

The SYM53C8XX waits for a valid phase (initiator) or drives the
phase lines (target). In the initiator role, it performs a comparison
looking for a match between the phase specified in the SCRIPT and
the actual value on the bus. If the phases do not match, a phase
mismatch interrupt occurs. If the phases match, data is transferred in
or out according to the phase lines. After the last byte is transferred
to its final destination, the SYM53C8XX fetches the next SCRIPTS
instruction. If the target changes phase in the middle of a block
move, a phase mismatch interrupt will occur.

3-30 Symbios Logic PCI-SCSI Programming Guide

Notes:

Legal Forms:

The SYM53C8XX Instruction Set
MOVE

In target mode, a MOVE instruction with a byte count of zero can be
used during Command phase. The SYM53C8XX will determine the
number of bytes to move from the command group code in the first
byte of the command.

If the command code is vendor unique, the SYM53C8XX uses the
byte count from the instruction. If this byte count is zero, the chip
issues an lllegal Instruction interrupt.

SYM53C825A, SYM53C875, SYM53C876, SYM53C885,
SYM53C895 Only

If the SCSI group code is either Group 0, 1, 2, or 5 and if the Vendor
Unique Enhancement bit 1 (VUE1) bit (SCNTL2 bit 1) is clear, the
SYMS53C8XX overwrites the DBC register with the length of the
Command Descriptor Block: 6, 10, or 12 bytes. If the Vendor Unique
Enhancement 1 (VUEL) bit (SCNTL2 bit 1) is clear and the SCSI
group code is a vendor unique code, the chip receives the number of
bytes in the count. If the VUEL bit is set, the chip receives the
number of bytes in the byte count regardless of the group code.

MOVE count, address, W TH phase
MOVE count, address, WHEN phase
MOVE count, PTR address, W TH phase
MOVE count, PTR address, WHEN phase
MOVE FROM address, W TH phase

MOVE FROM address, WHEN phase

Symbios Logic PCI-SCSI Programming Guide 3-31

The SYM53C8XX Instruction Set

MOVE MEMORY

3-32

Supported by:

Definition:

Operands:

Example:

Format:

Fields:

MOVE MEMORY

MOVE MEMORY[NO FLUSH] count, sour ce_addr ess, desti nati on_address

All Symbios Logic PCI-SCSI 1/O Processors; No Flush option is
available with SYM53C810A, SYM53C860, SYM53C825A,
SYM53C875, SYM53C876, SYM53C885, and SYM53C895 only.

Memory to Memory Move (DMA)

NO FLUSH allows the SYM53C8XX to perform the Move
Memory without flushing the prefetch buffer.

count is a 24-bit expression which indicates the number of bytes to
transfer.

source_address is the absolute 32-bit starting address of the data in
memory.

destination_address is the absolute 32-bit destination address of
where to move the data.

MOVE MEMORY 1024, Source_Buffer, Dest_ Buffer

DCMD Register DBC Register DSPS register | TEMP Register
31 29 2825 24 23 0 31 0 |31 0
110 0000 X XX... XX XX... XX XX... XX
Inst Type RES No Byte Count Source Addr Dest Addr

Flush

Instruction Type - Memory to Memory Move

No Flush - When this bit is set, the SYM53C8XX performs the
Move Memory without flushing the prefetch buffer. When this bit is
clear, the instruction automatically flushes the prefetch buffer. The
No Flush option should be used if the source and destination are not
within four instructions of the current Move Memory instruction.
Note: this bit has no effect unless instruction Prefetching is enabled,
by setting the Pre-fetch Enable bit in the DCNTL register.

Byte Count - 24-bit number indicating the number of bytes to
transfer.

Source Addr- the absolute 32-bit starting address of the data in
memory.

Dest Addr - the absolute 32-bit destination address of where to
move the data.

Symbios Logic PCI-SCSI Programming Guide

Description

Notes:

Legal Forms:

The SYM53C8XX Instruction Set
MOVE MEMORY

The Move Memory instruction is able to transfer data from one 32-
bit location to another. A 24-bit counter allows large moves to occur
with no intervention required by the processor.

If both addresses are in system memory, then the SYM53C8XX
functions as a high-speed DMA controller, able to move data at
speeds of (up to) 47 MB/s without using the processor or its cache
memory.

If just the destination address is in system memory and the source is
within the SYM53C8XX address space, then the instruction
performs a register store to external memory.

If just the source address is in system memory and the destination is
within the SYM53C8XX address space, then the instruction
performs a register load from external memory.

The Indirect Mode is not allowed for the Move Memory instruction.

If cache line bursting is not enabled, the source and destination
addresses must be on the same byte boundary. If cache line bursting
is enabled and the byte count is larger than 32, the lower four bits of
the source and destination addresses must be identical. If these
conditions are not met, an illegal instruction interrupt is generated.

If the SYM53C8XX is only I/O mapped, it cannot do memory-to-
register or register-to-memory moves.

MOVE MEMORY count, src_address, dest_address

Symbios Logic PCI-SCSI Programming Guide 3-33

The SYM53C8XX Instruction Set

MOVE REGISTER

3-34

Supported by:

Definition:

Operands:

Example:

Format:

MOVE REGISTER

MOVE {register | {data8} | register operator data8} TO
regi ster [WTH CARRY]

All Symbios Logic PCI-SCSI 1/O Processors; additional functionality
supported by SYM53C825A, SYM53C875, SYM53C876,
SYM53C885, SYM53C895.

Register to Register Move

register is one of the registers listed in the SYM53C8XX register set
section in Chapter 6 of this manual. Either the register address or
register name may be used in this instruction.

data8 is an expression or value that evaluates to an 8-bit unsigned
number. In the SYM53C825A/53C875/53C876/53C885/53C895,
SFBR may be substituted for data8 to add two register values. Bit 23
of the first dword of the instruction indicates that the SFBR is to be
used instead of a data8 value.

operator is one of the following operators: '|' (OR), '&' (AND), SHL
(Shift Left), SHR (Shift Right), XOR, '+' (Add), '-' (Subtract). The
enhanced Move Register instruction does not support the SHL or
SHR operators. See the appropriate product data manual for detailed
information on the supported operations.

WITH CARRY adds in the current value of the CARRY bit from
the ALU during a “+” or “-"" operation. It is not allowed for any
other operations.

MOVE OxFF TO SFBR
MOVE SCNTL1 & O0x01 TO SCNTL1

SYMS53C825A, SYM53C875, SYM53C876, SYM53C895, and
SYM53C885 only:

MOVE SCRATCHA + SFBR to SFBR
MOVE SCRATCHA XOR SFBR to SFBR

Subtraction (SFBR - SCRATCHA)
MOVE SCRATCHA XOR OxFF to SCRATCHA
MOVE SCRATCHA + 1 to SCRATCHA
MOVE SCRATCHA + SFBR to SFBR

DCMD Register DBC Register DSF.)S
register
31 30 |29 27 (26 24 |23 22 16 15 8 7 0 |31 0
01 XXX XXX X XXX XXXX X...X 00...0 0 (00...00
Inst Function | Operator |Use Register Address | Immediate RES RES
Type data8/ Data
SFBR

Symbios Logic PCI-SCSI Programming Guide

Fields:

Description:

The SYM53C8XX Instruction Set
MOVE REGISTER

Instruction Type - Read/Write

Function - in either the target or initiator role, the function bits
select the desired register operation.

101 - Move the SCSI First Byte Received register (SFBR) to the
specified destination register.

110 - Move the specified register to the SCSI First Byte Received
register (SFBR).

111 - Read a specified register, modify it, and write the result
back into the same register.

Operator - specifies which logical or arithmetic operation will be
performed.

000 - move, no modification performed

001”- Shift source left one bit, store result in destination

010 - OR immediate data with source, store result in destination
011 - XOR immediate data with source, store result in
destination

100 - AND immediate data with source, store result in
destination

101"- Shift source right one bit, store result in destination

110 - ADD immediate data to source, store result in destination
111 - add in immediate data plus Carry bit to source; store result
in destination

“Data is shifted through the Carry bit and the Carry bit is shifted
into the data byte.

Use data8/SFBR (SYM53C825A/53C875/53C876/53C885/
53C895 only) - When this bit is set, SFBR will be used instead of the
data8 value during a Read/Write instruction. This allows the user to
add two register values.

Register Address - a 7-bit value that specifies which register to use
as the source register for the instruction.

Immediate Data - an 8-bit value that will be used as the second
operand in the logical and arithmetic functions. For the move
function, the specified data is stored in the destination register.

The Move Register instruction allows a register read-modify-write,
or a move to/from a register from/to the SCSI First Byte Received
register (SFBR).

The SYM53C8XX does not provide a true move from any source
register to any destination register. To accomplish this, two register
move instructions must be used. First move the source register to the
SFBR register, then move the SFBR register to the desired
destination register. The two register names in each line must be

Symbios Logic PCI-SCSI Programming Guide 3-35

The SYM53C8XX Instruction Set
MOVE REGISTER

identical, or one must be SFBR. The two registers must be byte-
aligned. If the 32-bit absolute addresses of the source and destination
registers are known, then a register to register move can also be
accomplished by using the memory to memory move instruction.
However, a SCRIPTS instruction written in this manner will be less
portable to other machines than if the previous method is used.

Caution must be exercised when this instruction is used, because
writing to certain registers could have adverse effects on the SCSI
bus or the operation of the chip. When a register is written or read,
side effects may occur; the degree and possibility of these effects
must be clearly understood. The SYM53C8XX data manuals
contain detailed descriptions of individual register and bit operations.

The Add and Subtract operators can be used for loop counters in
SCRIPTS programming. To subtract one value from another, first
XOR the value to subtract (subtrahend) with OXFF, and add 1 to the
resulting value. This creates a 2’s compliment of the subtrahend. The
two values can then be added to obtain the difference.

SYM53C825A, SYM53C875, SYM53C876, SYM53C895, and
SYM53C885 only

These chips allow use of the SFBR register for easier addition,
subtraction, and comparison of two separate values within the chip.
The instruction can perform the specified operation on the specified
register and the SFBR, then store the result back to the specified
register or the SFBR. The SFBR is used in place of the data8 value in
the Read/Write operation. Subtraction cannot be used when the
SFBR is used instead of a data8 value, because the SFBR value is not
known at compile time.

Notes: The mathematical operation is performed by the chip during
execution, not by the assembler when the SCRIPTS routine is being
assembled.

Legal Forms: In the following, where the word register appears twice for an

instruction the register name must be the same name for both the
source and destination, not two different register names.

Move register to register

Move data8 to REGQ STER

Move REQ STER SHL REQ STER

Move REQ STER | data8 to REQ STER
Move REGQ STER XOR data8 to REQ STER
Move REQ STER & data8 to REGQ STER
Move REQ STER SHR REG STER

Move REG STER + data8 to REGQ STER
Move REG STER + data8 to REG STER with Carry
Move REGQ STER - data8 to REQ STER
Move data8 to SFBR

Move REQ STER to SFBR

Move REGQ STER SHL SFBR

Move REG STER | data8 to SFBR

3-36 Symbios Logic PCI-SCSI Programming Guide

Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move

The SYM53C8XX Instruction Set
MOVE REGISTER

REQ STER XOR data8 to SFBR

REQ STER & data8 to SFBR

REQ STER SHR SFBR

REQ STER + data8 to SFBR

REG STER - data8 to SFBR

REG STER + data8 to SFBR with Carry
SFBR SHL REG STER

SFBR | data8 to REG STER

SFBR XOR data8 to REG STER

SFBR & data8 to REQ STER

SFBR SHR REG STER

SFBR + data8 to REGQ STER

SFBR - data8 to REG STER

SFBR + data8 to REG STER with Carry

Additional Forms for SYM53C825A/53C875/53C876/
53C885/53C895

Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move

SFBR t o REG STER

REG STER | SFBR to REGQ STER

REG STER XOR SFBR to REQ STER

REG STER & SFBR to REGQ STER

REG STER + SFBR to REGQ STER

REG STER + SFBR to REG STER with Carry
REG STER | SFBR to SFBR

REG STER XOR SFBR to SFBR

REG STER & SFBR to SFBR

REG STER + SFBR to SFBR

REG STER - SFBR to SFBR

REG STER + SFBR to SFBR with Carry
SFBR t o REG STER

SFBR | SFBR to REG STER

SFBR XOR SFBR to REQ STER

SFBR & SFBR to REG STER

SFBR + SFBR to REG STER

SFBR - SFBR to REG STER

SFBR + SFBR to REG STER with Carry

Symbios Logic PCI-SCSI Programming Guide 3-37

The SYM53C8XX Instruction Set

NOP

Supported by:
Definition:
Operands:

Example:

Format:

Fields:

Description:

Notes:

Legal Forms:

3-38

NOP

NOP
All Symbios Logic PCI-SCSI 1/O Processors

No operation

None

NOP

DCMD Register DBC Register DSPS Register
31 24 23 e 0 31 0
10000000 L0010 R 000 00...00

Op code RES RES

Op code—No Operation

This instruction has no operation assignment and can be used as a
delay function, or to reserve SCSI SCRIPTS patch areas.

Symbios Logic PCI-SCSI Programming Guide

Supported by:
Definition:

Operands:

Example:

Format:

Fields:

Description:

The SYM53C8XX Instruction Set
RESELECT

RESELECT

RESELECT { FROM Address | 1D}, {REL(Address) | Address}
All Symbios Logic PCI-SCSI 1/O Processors

Reselect SCSI initiator device

FROM Address indicates table indirect mode.

ID is ID Number of the SCSI initiator that is to be selected.
REL indicates the use of indirect addressing.

Address is a 32-bit address that represents the address of the next
instruction to fetch when the chip is selected or reselected.

RESELECT host _1, rsel _addr
RESELECT FROM entry_2, REL rsel _addr

DCMD Register DBC Register DSP.S

Register
31 30 29 27 |26 25 24 |23...20 19...16 15.....0 31 0
01 000 0 0 0 00....00 XXXX 00 ..00 X.. ... X
Instr Op Relative | Table RES |RES SCSI'ID |RES Alt Addr
Type code Indirect

Instruction Type - I/O
Op code - Reselect instruction

Relative Mode - Indicates that the 24-bit address is an offset from
the current program counter.

Table Indirect Mode - Indicates that the SCSI ID, synchronous,
and wide parameters should be loaded offset from the Data Structure
Address.

SCSI ID - identifies the SCSI initiator to be reselected. This 4-bit
field specifies the encoded destination ID. This field is part of the
address if table indirect mode is used.

Alternate Address - specifies the memory address to fetch the next
instruction if the SYM53C8XX is selected or reselected.

The chip waits for Bus Free, arbitrates for the SCSI bus, then
performs a reselection. If the chip loses arbitration it will wait again
for Bus Free and continue trying until it is successful, unless there is
a bus initiated interrupt. Once arbitration is won, the SYM53C8XX
will continue to execute instructions until an interrupt or any

Symbios Logic PCI-SCSI Programming Guide 3-39

The SYM53C8XX Instruction Set
RESELECT

Figure 3-2
Reselection Instruction

Notes:

Legal Forms:

3-40

instruction related to the SCSI bus is issued. If arbitration terminates
because of a bus initiated selection or reselection, the chip will use
the 32-bit jump address value to fetch the next instruction and begin
execution at that address. When the instruction completes then the
next sequential instruction is fetched and executed. The Reselection
process is illustrated in Figure 3-2.

START
RESELECT
<—I\\l
Y
or Alternate
Y¢ Reselected? Jump
Arbitrate +
Lost

* Arbitration

Won N ?

Arbitration?
" Y

Execute Perform
SCRIPTS Reselection
Instruction *
| Y

Reselect +—®{ Interrupt
Phase T0? Host
Condition N Processor
Instruction?

+ Y

Continue
Stop SCRIPTS
Execution Execution

The REL keyword, which indicates relative addressing, is unrelated
to the declarative keyword RELATIVE that establishes relative
buffers.

RESELECT scsi _id, address

RESELECT FROM t abl e_entry, address
RESELECT scsi_id, REL(address)
RESELECT FROM t abl e_entry, REL(address)

Symbios Logic PCI-SCSI Programming Guide

Supported by:
Definition:

Operands:

Example:

The SYM53C8XX Instruction Set
RETURN

RETURN

RETURN[, {1 F| WHEN} [NOT] [ATN| Phase] [AND| OR] [data[, AND MASK
data]]]
RETURN [, {IF | WHEN}[NOT] CARRY]

All Symbios Logic PCI-SCSI 1/O Processors
SCSI Transfer Control - Return from a Subroutine

WHEN forces the SCRIPTS engine to wait for a valid SCSI bus
phase before continuing. A valid phase is indicated by assertion of the
SREQ/ signal.

IF causes the SYM53C8XX to check immediately for a valid SCSI
bus phase without waiting. IF should not be used when comparing
for a phase, as this could yield unpredictable results. The only
exception is if aWHEN conditional was used just prior to the IF
conditional, for any given sequence of phase checks.

NOT negates the comparison. It clears the True bit if present,
otherwise the True bit is set.

Phase is used to specify the Message, Command/Data, and
Input/Output bit values that identify the SCSI phase in the
instruction. The desired phase value is compared with the actual
values of the SCSI phase lines before the SYM53C8XX performs the
instruction. This field is only valid for initiator mode and should not
be used in target mode.

ATN indicates that a return should take place based on the state of
the initiator SAT N/ signal. This field is valid only for target mode and
should not be used in initiator mode.

data represents an 8-bit value that is stored in the data field of the
instruction. In addition the Compare Data bit is set.

MASK represents an 8-bit value that is stored in the mask field of the
instruction. Any bit that is set in the mask causes the corresponding
bit in the data byte to be ignored at the time of the comparison.

CARRY indicates that a return should take place based on the value
of the Carry bit in the ALU.

RETURN
RETURN WHEN DATA OUT

Symbios Logic PCI-SCSI Programming Guide 3-41

The SYM53C8XX Instruction Set

RETURN

Format:

DCMD Register DBC Register DSP.S
Register

31 30 29 27|26 24 (23,22 |21 20 (19 18 17 16 |15 8|7 0 (31 O
10 010 |XXX |00 0 0 X X X X [X.X[X..X]0..0
Inst Op SCSI |RES [Carry|RES|True |[Comp|Comp |Wait | Mask | Data |RES
Type |code |Phase Test Data |Phase

Fields: Op code - Transfer Control, Return instruction

SCSI Phase - These bits reflect the actual values of the SCSI phase
lines. The bit values are defined below

Phase Message Command / Data Input / Output
DATA_OUT 0 0 0

DATA_IN 0 0 1
COMMAND 0 1 0

STATUS 0 1 1

RES4 1 0 0

RES5 1 0 1
MESSAGE_OUT 1 1 0
MESSAGE_IN 1 1 1

* Note: O - False, negated; 1 - True, asserted. For

these phases, SEL is negated and BSY is asserted.

* Res4 and Res5 are reserved SCSI phases. These combinations should not be
used for standard SCSI implementations

Carry Test - When this bit is set, true/false comparisons may be
made based on the ALU Carry bit. The Carry test may not be
combined with other types of comparisons.

True - Transfer on TRUE/FALSE condition
0 - Transfer if condition is FALSE
1 - Transfer if condition is TRUE

Compare Data - Compare data byte to the SFBR register.
0 - Do not compare data
1 - Perform comparison

Compare Phase - Compare current SCSI phase to SCSI phase field
or SATNY/. This bit is set whenever the Phase operand is used.

0 - Do not compare phase

1 - Perform comparison

Wait - Wait for valid phase. This bit is set by the WHEN operand in
the instruction, and cleared by the IF operand.

0 - Perform comparison immediately

1 - Wait for valid phase (SREQ/ asserted by target)

Mask - 8-bit field that is used to mask the value in SFBR before the
comparison with the data field in the instruction takes place. As a

3-42 Symbios Logic PCI-SCSI Programming Guide

Description:

Notes:

Legal Forms:

The SYM53C8XX Instruction Set
RETURN

result of this operation, any bits that are set will cause the
corresponding bit in the data byte to be ignored. If this field is not
specified, a mask of 0x00 is used.

Data - 8-bit field that is compared with the incoming data after the
mask operation with the mask byte takes place. Comparison indicates
either an equal or not equal condition. If the Data field is not
specified, the compare data bit is cleared and 0x00 is coded for both
the mask and data bytes.

The SCSI RETURN instruction is a conditional return from a
subroutine to the effective address, stored in the chip's TEMP
register, if the SCSI phase, data, or attention condition compares
true with the condition specified in the instruction.

When the optional data field is used, it is compared to the SFBR.
This contains the most recent byte of any kind of data that has been
moved into the SFBR register. The user's SCSI SCRIPTS program
can determine which routine to execute next based on actual data
values received. Using a series of these comparisons, the algorithm
can process complex sequences with no intervention required by the
external processor.

When the optional MASK keyword and its associated value are
specified the SCRIPTS processor allows selective comparisons of bits
within the data byte. During the comparison, any bits that are set in
the mask byte will cause the corresponding bit in the data byte to be
ignored for the comparison.

If a RETURN instruction is executed without any previous CALL
instruction, then there is no proper return address in the chip's
TEMP register. This may cause the chip to generate an illegal op
code after the return.

RETURN

RETURN, |F ATN

RETURN, | F Phase

RETURN, | F CARRY

RETURN, |F data

RETURN, | F data AND MASK dat a

RETURN, |F ATN AND dat a

RETURN, | F ATN AND data AND MASK dat a
RETURN, | F Phase AND data

RETURN, |F Phase AND data AND MASK dat a
RETURN, WHEN Phase

RETURN, WHEN CARRY

RETURN, WHEN dat a

RETURN, WHEN data AND MASK dat a

RETURN, WHEN Phase AND data

RETURN, WHEN Phase AND data AND MASK dat a
RETURN, | F NOT ATN

Symbios Logic PCI-SCSI Programming Guide 3-43

The SYM53C8XX Instruction Set
RETURN

RETURN, | F NOT Phase

RETURN, | F NOT CARRY

RETURN, | F NOT data

RETURN, | F NOT data AND MASK dat a

RETURN, | F NOT ATN OR data

RETURN, | F NOT ATN OR data AND MASK dat a
RETURN, |F NOT Phase OR data

RETURN, |F NOT Phase OR data AND MASK data
RETURN, WHEN NOT Phase

RETURN, WHEN NOT CARRY

RETURN, WHEN NOT dat a

RETURN, WHEN NOT data AND MASK dat a
RETURN, WHEN NOT Phase OR data

RETURN, WHEN NOT Phase OR data AND MASK dat a

3-44 Symbios Logic PCI-SCSI Programming Guide

Supported by:
Definition:

Operands:

Example:

Format:

Fields:

The SYM53C8XX Instruction Set
SELECT

SELECT

SELECT [ATN] {FROM Address | ID}, {REL(Address) | Address}
All Symbios Logic PCI-SCSI 1/O Processors

Select SCSI target device.

FROM Address indicates table indirect mode.

ID is the ID Number of the SCSI target that is to be selected.
REL indicates the use of relative addressing.

Address - a 32-bit address (or 24-bit offset) that represents the
address of the next instruction to fetch if the chip is selected or
reselected by another device.

SELECT host _1, sel _addr
SELECT FROM entry_2, sel _addr

. . DSPS
DCMD Register DBC Register .
Register
31 30(29 27 26 25 24 23|2o 19 | 16 15.....0 31 | 0
01 [000 0 0 X 0000 | XXXX 00...00 XX... XX
Instr | Op Relative | Table Select RES | SCsI ID RES Dest Addr
Type |code Indirect with
ATN

Instruction Type - I/O
Op code - Select instruction

Relative Mode - Indicates that the 24-bit address is an offset from
the current program counter.

Table Indirect Mode - Indicates that the SCSI ID and synchronous
and wide parameters should be loaded offset from the Data Structure
Address.

Select with ATN - indicates whether or not the SCSI ATN signal
should be asserted.

SCSI ID - identifies the SCSI target to be selected. This 4-bit field
specifies the encoded destination ID. This field is reserved if table
indirect mode is used.

Destination Address - specifies the memory address to fetch the
next instruction if the chip is selected or reselected during the
selection.

Symbios Logic PCI-SCSI Programming Guide 3-45

The SYM53C8XX Instruction Set
SELECT

Description:

Notes:

Legal Forms:

3-46

The chip waits for Bus Free, arbitrates for the SCSI bus, then
performs a selection. If the chip loses arbitration it will wait again for
Bus Free and continue trying until it is successful, unless there is a
bus initiated interrupt. Once arbitration is won, the SYM53C8XX
will continue to execute instructions until an interrupt or any
instruction related to the SCSI bus is issued. If arbitration terminates
because of a bus initiated selection or reselection, the chip will use
the 32-bit jump address value to fetch the next instruction and begin
execution at that address. When the instruction is completed then the
next sequential instruction is fetched and executed.

The REL keyword, which indicates relative addressing, is unrelated
to the declarative keyword RELATIVE that establishes relative
buffers.

SELECT scsi _id, address

SELECT FROM tabl e_entry, address

SELECT ATN scsi _id, address

SELECT ATN FROM tabl e_entry, address
SELECT scsi _id, REL(address)

SELECT FROM tabl e_entry, REL(address)
SELECT ATN scsi _id, REL(address)

SELECT ATN FROM tabl e_entry, REL(address)

Symbios Logic PCI-SCSI Programming Guide

The SYM53C8XX Instruction Set
SET

SET

SET { ACK| ATN| TARGET| CARRY} [and {ACK | ATN | TARGET | CARRY} ...]
Supported by: All Symbios Logic PCI-SCSI 1/O Processors
Definition: Asserts SCSI ACK or ATN, or sets internal flags

Operands: ACK sets the Assert SCSI ACK bit.
ATN sets the Assert SCSI ATN bit.
TARGET sets the Set Target role bit.
CARRY sets the CARRY bit in the ALU.

Example: SET TARGET
SET ACK and TARGET

Format:

DSPS

DCMD Register DBC Register Register

31 30 29 25|24 |23..11|10 9 8 7|6 5 4|3 2 0|31 O

01 01100|0 00..00| X X 000 (X 00 X 000 |00...00

Instr |Op RES |RES | Set Set/ RES | Set/ RES |Set/ RES |RES
Type |code Clear |Clear Clear Clear
Carry | Target SACK/ SATN/
Mode

Fields: Op code - /O, Set instruction

Set/Clear Carry
1 - sets the Carry bit in the ALU
0 - has no effect

Set/Clear Target Mode
1 - places the chip into target mode
0 - has no effect

Assert SCSI ACK
1 - asserts the SCSI acknowledge signal
0 - has no effect

Assert SCSI ATN
1 - asserts the SCSI attention
0 - has no effect

Description: The chip asserts the SCSI bus bits requested in the flags field.
Currently four bits are defined, allowing the SCSI ACK, target role,
and ATN bits to be set, as well as the Carry bit in the ALU. Bit 10 is
for Carry, bit 9 is for target, bit 6 is for Acknowledge, and bit 3 is for
Attention.

Notes:

Symbios Logic PCI-SCSI Programming Guide 3-47

The SYM53C8XX Instruction Set
SET

Legal Forms: SET ACK
SET ATN

SET TARGET

SET CARRY

SET ACK and ATN

SET ACK and TARGET

SET ACK and CARRY

SET ATN and TARGET

SET ATN and CARRY

SET TARGET and CARRY

SET ACK and ATN and TARGET
SET ACK and ATN and CARRY
SET ACK and ATN and TARGET and CARRY

3-48 Symbios Logic PCI-SCSI Programming Guide

The SYM53C8XX Instruction Set
STORE

STORE

STORE [NOFLUSH] register, byte_count,
[DSAREL(] desti nati on_address[)]

Supported by: SYMS53C810A, SYMS53C860, SYMS3C825A, SYMS53C875,
SYM53C876, SYM53C895, SYMS53C885

Definition: Store data from an internal SYM53C8XX register to memory.

NOFLUSH indicates that the prefetch buffer should not be flushed
Operands: when the instruction executes

register is one of the register names in the SYM53C8XX operating
register set.

byte _count is the number of bytes (1-4) to be transferred from the
source_address.

DSAREL indicates that the source_address is an offset and should
be added to the DSA register to obtain the physical address (DSA
relative).

Note: the FROM keyword can still be used to indicate DSA relative
addressing, but it is being phased out in favor of DSAREL.

destination_address is the physical address or offset from the DSA
to obtain the physical address of the destination.

Example: STORE SCRATCHAO, 4, data_buf
STORE SCRATCHA3, 2, DSAREL (0x02)
STORE NOFLUSH SCRATCHAO, 4, data_buf

Format:
DCMD Register DBC Register DSPS register
31..29 28 27, |25 24 23 22...16 15..3 |2 0 (31 0
26

111 X 00 [X 0 0 X.. X 00..00 | XXX XX... XX

Instr type |DSA RES [No Load/ |RES |Reg RES Byte Destination
Relative Flush | Store Addr Count |Addr/DSA

Offset
Fields: Instruction Type - Load/Store

DSA Relative- indicates source address location

0 - DSPS contains actual address of data to load

1 - DSPS contains a 24-bit offset value that is added to the DSA to
determine the source address.

No Flush - When this bit is clear, the prefetch buffer will be flushed
during the Store instruction. When set, the prefetch buffer will not be
flushed automatically on a Store instruction.

Symbios Logic PCI-SCSI Programming Guide 3-49

The SYM53C8XX Instruction Set
STORE

Load/Store - This field defines whether the instruction will be
executed as a Load or a Store.

0 - Store instruction
1 - Load instruction

Reg Addr- These bits select the register to load within the
SYMS53C8XX operating register set.

Byte Count - 3-bit number indicating the number of bytes to
transfer.

Destination Addr - Actual address (or offset from the DSA) of the
destination address.

Description: The Store instruction is a more efficient means than the Move
Memory instruction of moving data from an internal register of the
SYM53C8XX to memory. It is a two-dword instruction. This
instruction may be used to move up to 4 bytes. The number of bytes
to store is indicated by the low order bits in the first dword of the
Notes: instruction, as illustrated in the following table:

DBC Bits 17-16

(Register Address bits A1-A0) Number of Bytes to Store

00 1,2,3,0r4
01 1,2,0r3
10 lor2

11 1

The register address and memory address must have the same byte
alignment, and the byte count set so that it does not cross dword
boundaries. The memory address may not map back to the
SYM53C8XX operating registers, although it may map back to a
location in the SCRIPTS RAM. If these conditions are violated, a
PCl illegal read/write cycle will occur and the chip will issue an
Interrupt (lllegal Instruction Detected) immediately following,
because the intended operation did not happen.

Legal Forms: STORE register, byte_count, destination_address
STORE register, byte_count, DSAREL (destination_address)
STORE NOFLUSH regi ster, byte_count, destination_address

3-50 Symbios Logic PCI-SCSI Programming Guide

Supported by:

Definition:
Operands:

Example:

Format:

Fields:

Description:

Notes:

Legal Forms:

The SYM53C8XX Instruction Set
WAIT DISCONNECT

WAIT DISCONNECT

WAI T DI SCONNECT

All Symbios Logic PCI-SCSI 1/O Processors

Wait for SCSI bus disconnect

None

WAI T DI SCONNECT

DCMD Register DBC Register DSP.S

Register
31 30 29 25 |24 23....... 0 31 0
01 00100 |0 00..00 00...00
Instr |Op RES RES RES
Type |code

Instruction Type - 1/O

Op code - Wait Disconnect

The initiator waits for a disconnect from the SCSI bus. A legal

disconnect is defined as a loss of busy and select for the specified bus
free time, following a DISCONNECT message or a COMMAND
COMPLETE message. If the SCSI Disconnect Unexpected (SDU)
bit (SCNTL2, bit 7)is clear and a disconnect occurs, the next SCSI
SCRIPTS instruction will be executed. If the SDU bit is set and a
disconnect occurs, an Unexpected Disconnect interrupt will occur.

WAI T DI SCONNECT

Symbios Logic PCI-SCSI Programming Guide

3-51

The SYM53C8XX Instruction Set

WAIT RESELECT
WAI T RESELECT {REL(Address) | Address}
Definition: Wait for reselection from target
Supported by: All Symbios Logic PCI-SCSI 1/0 Processors
Operands: REL indicates the use of relative addressing.
Address is a 32-bit address (or 24-bit offset) that represents the
address of the next instruction to fetch if the chip is selected, or if the
SIGP bit in the ISTAT register is set.
Example: WAI T RESELECT al t _addr
WAI T RESELECT REL(alt_addr)
Format:
. : DSPS
DCMD Register DBC Register Register
3130 29 2726 25 24 23 . 0 31 0
01 010 |X 00 0000 XX XX
Inst Op Relative |RES RES Dest Addr
Type |code
Fields: Instruction Type - 1/O

Op code - I/O instruction type, Wait Reselect
Relative Mode - Indicates that the 24-bit address is an offset from
the current program counter.
Dest Addr - Specifies the memory address to fetch the next
instruction if a reselection occurs or the SIGP bit is set by the host
processor.

Description: The initiator waits to be reselected by a previously selected target

device. If the chip is responding to a previous reselection, it will fetch
and execute the next instruction. If the chip has already responded to
reselection, it will immediately fetch the next instruction. If the
operation completes as expected, the next instruction is fetched and
executed by the SYM53C8XX. However, if the chip is selected, then
the alternate jump address should contain the address of an
algorithm for a selection. Include in the address a wait for selection
(target role) instruction. That instruction's alternate address is the
error recovery algorithm (for initiator role—reselect). The chip can
determine exactly what happened and transfer control to the
appropriate SCSI SCRIPTS algorithm. If the SIGP bit in the ISTAT
register is set by the host processor, the chip will also fetch the
instruction at the alternate address. This allows the driver program to

3-52 Symbios Logic PCI-SCSI Programming Guide

The SYM53C8XX Instruction Set
WAIT RESELECT

schedule another 1/O instead of waiting for the reselection to
complete. This driver code activity is illustrated in Figure 3-3.

— WAIT RESELECT, Not_Reselected
:Code to handle RESELECT

L, :Not Reselected
— WAIT SELECT, SIGp_Set
:Code to handle SELECT

L :Sigp_Set
;Code to handle Sigp

Figure 3-3
WAIT RESELECT and the SIGP bit

Notes: With the SYM53C8XX byte compare capability of the transfer
control instruction, the SCSI SCRIPTS algorithm can determine
which target reselected the initiator and can jump to the correct
algorithm for that particular target. The SYM53C8XX checks the
SIGP bit before checking to see whether it has been reselected. SCSI
SCRIPTS can be tuned for the various types of available target
devices and executed with no external processor intervention.

Legal Forms: WAI T RESELECT Address
WAl T RESELECT REL(addr ess)

Symbios Logic PCI-SCSI Programming Guide 3-53

The SYM53C8XX Instruction Set

WAIT SELECT
WAI T SELECT { REL(Address) | Address}
Definition: Wait for selection from initiator
Operands: REL indicates the use of relative addressing.
Address is a 32-bit address (or 24-bit offset) that represents the
address of the next instruction to fetch if the chip is selected, or if the
SIGP bit in the ISTAT register is set.
Example: WAI T SELECT al t _addr
WAI T SELECT REL(al t_addr)
Format:
DCMD Register DBC Register DSPS Register
31 27 26 2524 (23...10 |9 8.0 31 0
01 010 X 00 00..00 1 00...00 X..X
Inst Opcode |Relative |RES |RES Set RES Dest Addr
Type Mode Target
Role
Fields: Instruction Type - 1/O
Op code - Wait Select instruction
Relative Mode - Indicates that the 24-bit address is an offset from
the current program counter.
Set Target Role
1 - places the chip into target mode
0 - places the chip into initiator mode
Destination Address - specifies the memory address to fetch the
next instruction if the device is reselected during the selection
attempt, or if the SIGP bit is set.

Description: The chip waits for a SCSI selection by another device on the SCSI
bus. If the chip is already selected, then the next SCSI SCRIPTS is
fetched and executed. When a bus initiated interrupt or reselect
occurs, the chip changes to the initiator role and fetches the next
instruction from the address pointed to by the 32-bit jump address,
and continues execution. If the SIGP bit in the ISTAT register is set
by the host processor, the chip will also fetch the instruction at the
alternate address. The SYM53C8XX checks the SIGP bit before
checking to see whether it has been reselected.

Notes:
Legal Forms: WAI T SELECT Address

WAI T SELECT REL(address)

3-54 Symbios Logic PCI-SCSI Programming Guide

|
I/0 Instruction Example

The SYM53C8XX Instruction Set
Instruction Examples

Instruction Examples

This section illustrates the operation of the five SCSI instruction
types supported by the SYM53C8XX. In each diagram, the SCSI
SCRIPTS Source Code version shows how the operation would be
expressed in the SCRIPTS language. This high-level textual format is
translated by NASM into a hexadecimal format that is put inside a
“C” language data declaration. After this intermediate form is
compiled, the instruction exists in a binary form that can be loaded
into host memory and fetched and executed by the SCRIPTS
processor.

In this example, the processor is selecting the SCSI device with SCSI
ID 01. The instruction is a Select With Attention, as indicated by the
ATN keyword.

The SELECT instruction and ATN flag generates a value of 41h for
the high order byte of the instruction, translating to a binary 01 for
I/0O Instruction type, 000 for the op code, and a 1 in the ATN flag bit.
The SCSI target identity (01) is encoded in the next byte. The rest of
the bits are reserved and should remain cleared. The alternate

Symbios Logic PCI-SCSI Programming Guide 3-55

The SYM53C8XX Instruction Set
Instruction Examples

address in the original SCRIPTS instruction is loaded into the DSPS
register.

SCSI SCRIPTS

SELECT ATN 01, alt_address
Source Code 1 |1 T |

|

Iy J

]
NASM
Output 411‘1‘0‘1(‘)009 00000000
[[I [.
02/000001,00000001000000000000000)
DCMD Register DBC Register
Binary
Instruction
Format [
1 1 1
IO\dO\OWO\ddO\ogggg\ggggg\O\dO\dddO\O\dOb\dOI

Figure 3-4
I/O Instruction Type

I |n this examiple, the processor is attempting to move eight bytes (as
Memory Move Instruction gefined by conmand_| engt h) from the source address (as defined by
Example command_buf f er) to the destination address relative to the source

(as defined by scrat ch_buf fer).

The MOVE MEMORY instruction generates an op code of CO for
the high order byte of the instruction. The remaining bits of the
DCMD register are reserved and must be set to zero. The DBC
register contains a value of eight as directed by the translation of the
command_length of 0x08. Figure 3-5 shows the original SCRIPTS

3-56 Symbios Logic PCI-SCSI Programming Guide

The SYM53C8XX Instruction Set
Instruction Examples

language form of the instruction, the SCRIPTS compiler output, and
the binary form of the first 32-bit word of the instruction.

SCSI SCRIPTS
Source Code

NASM
Output

Binary
Instruction
Format

Figure 3-5
Memory Move Instruction Part 1

ABSOLUTE command_length=8

RELATIVE rel_buf\

command_buffer=8{??}\

scratch_buffer=8{??}

move memory, command_length, command_buffer, Iscratch_buf‘felr
n 1 11 1

M | o |

C0000008 00000000 00000008

1]

' |
1 1! |] 1) | il | |
11/000000000000000000000000002000)

DCMD Register DBC Register

Symbios Logic PCI-SCSI Programming Guide 3-57

The SYM53C8XX Instruction Set
Instruction Examples

NASM
Output

Binary
Instruction
Format

Binary
Instruction
Format

Figure 3-6 shows the Assembler output and the binary form of the
second and third 32-bit words of the Memory Move instruction.

(commar|1d buffer) (scratchI buffer)

I [I

C0000008 00000000 00000008
I

rjlﬁ
] I HIHIH Il] [\|
00000000000000000000000000000000

DSPS Register

|ddd5Udddddddddd0ddddddd0ddddﬂddo

Temp Register

Figure 3-6
Memory Move Instruction Part 2

Transfer Control
Instruction Example

3-58

In this example, the processor is performing an interrupt with a
vector of OXACB. The first version shows how the operation would be
expressed in the SCRIPTS language. NASM translates the operation
into the hexadecimal format shown. The hexadecimal format is then
compiled producing the instruction in a binary form that can be
loaded into host memory and put inside a “C” language data
declaration. The INT instruction generates a hexadecimal value of
0x98 for the high order byte of the instruction, translating in binary
to 10 for Transfer Control, and 011 for the op code for Interrupt.

Symbios Logic PCI-SCSI Programming Guide

SCSI SCRIPTS
Source Code

NASM
Output

Binary
Instruction
Format

Binary
Instruction
Format

Figure 3-7
Transfer Control Instruction

|
Read/Write Instruction

Example

The SYM53C8XX Instruction Set
Instruction Examples

INT OxACB
L1

—

|
[1 [
9?0('])0000 00000AC

1
B

]

| | 1 | i | |] [nl]] | |
10011000000000000000000000000000|

DCMD Register DBC Register

(OXACB)

1
98000000 00000ACB
|

-

(0000000000000000000 00 L0001

DSPS Register

This example writes 01 into the SCID register. This is illustrated by
the translation of the hexadecimal compiler output into binary
format.

The MOVE instruction is 78 in hexadecimal, translating into 01 for
Read/Write; 111, the op code for the Read/Modify/Write function;
and 00 in the operator field to indicate that the instruction will
operate on the immediate data and write to the destination register.

Symbios Logic PCI-SCSI Programming Guide

3-59

The SYM53C8XX Instruction Set
Instruction Examples

The address of register SCID is 04 in hexadecimal, translating to a
binary format for the Register Address bits of the DBC register.

SCSI SCRIPTS

Source Code M OV? E'_n tlo SCIDl

—
NASM Fr IJ'I
Output 7a|aoz|101oo 00000000
Binary |\ | | 1] | [l | [[l | [\|
Instruction | d4211000000001G000000001100000000)
Format DCMD Register DBC Register

Note: all bits in the DSPS register are reserved, and must remain cleared.

Figure 3-8
Read/Write Instruction

I [N this example, the processor waits for a valid phase (indicated by
Block Move Instruction SREQ/ being asserted) and compares it to CMD phase. If the phase
Example matches, the processor then transfers the command descriptor block

from the address represented by the command_buf f er. In the
hexadecimal version of the first 32-bit word of the instruction, Move
is represented by OA, which translates into binary as an op code of
00, indicating a Block Move instruction type. The 00 indicates that
neither type of indirect addressing bits are on, 1 indicates that the
processing is in the Initiator role, and 010 (Command) is the

3-60 Symbios Logic PCI-SCSI Programming Guide

The SYM53C8XX Instruction Set
Instruction Examples

expected value of the SCSI phase lines. The command length is six
bytes, indicated by 06. This length is loaded into the DBC register.

The bottom portion of the illustration shows the second 32-bit word
of the instruction, defined by command_buf f er , the address from
which the Block Move instruction will start transferring data. It is
loaded into the DSPS register.

SCSI SCRIPTS
Source Code

NASM
Output

Binary
Instruction
Format

NASM
Output

Binary
Instruction
Format

Figure 3-9
Block Move Instruction

MOVE command_length,command_buffer, WHEN CMD
[I'l |

—]

A—
OAOQOOOGl 00000012

1 W 1w 1 el 1 1
100002/0120000000G00000000000000L10]
DCMD Register DBC Register

(comrqand_buffer)

—

0AO000006 000000%2

J

1 W1 fﬂl!_l_\
[00000000000000G000000000000 10010

DSPS Register

|
Load/Store Instruction

Example

In this example, the processor waits for a valid phase (indicated by
SREQ/ being asserted) and compares it to CMD phase. If the phase
matches, the processor then transfers the command descriptor block
from the address represented by the command_buffer. In the
hexadecimal version of the first 32-bit word of the instruction,
STORE with the No Flush option is represented by E2, which
translates into binary as an op code of 111, indicating a Load/Store
instruction type. The 0 indicates that the DSPS value is the actual
address to STORE from, and 0010 indicates that the prefetch buffer
will not be flushed during the STORE, and that the SYM53C8XX is

Symbios Logic PCI-SCSI Programming Guide 3-61

The SYM53C8XX Instruction Set
Instruction Examples

performing a STORE rather than a LOAD instruction. The data will
be stored to the SCRATCHA register; one, two, three, or four bytes
may be stored.

The bottom portion of the illustration shows the second 32-bit word
of the instruction, defined by command_buffer, the address to which
the STORE instruction will start transferring data. It is loaded into
the DSPS register.

SCSI SCRIPTS STORE NoFlush SCRATCHAO.4, OxFFFES4
Source Code * 1 * J

P
T |
RASH E2340004 OOFFFES54
utput ‘ ‘ L
Binary i | — —
Instruction 1‘ 1‘0 0] ‘t‘r dl\l\O\ldOggﬂg\g\ggddddO\O\ﬂdOI
Format
(command_buffer)
NASM 0 OFFFE54
OUtpUt ‘ ‘

Binary |l
instracton 00000000 L AT 0010100
Format DSPS Register

Figure 3-10
Load/Store Instruction

3-62 Symbios Logic PCI-SCSI Programming Guide

Using the Symbios Logic Assembler
Overview

Chapter 4

Using the Symbios Logic Assembler

Overview

The Symbios Logic Assembler (NASM) is a DOS command line-
driven assembler that supports the Symbios Logic SCSI 1/O
Processor family, including the SYM53C8XX. NASM creates a “C”
header file from the SCSI SCRIPTS source file. It assembles SCSI
SCRIPTS for inclusion into SCSI device driver software.

Inputs to the assembler are command line switches, and input and
output file names. The assembler produces comprehensive error
messages, cross referenced list files, and “C” include files. The source
file may be created using any standard text editor that creates an
ASCII file as output.

To assure portability, NASM does not provide support for directory
paths. The resulting output file and the optional listing file will be
placed in the directory where NASM is executed. Since the
assembler is written in “C”, it can easily be ported to any non-DOS-
based development environment that offers a “C” compiler.

Starting NASM

To run the assembler, copy the assembler executable file directly into
the directory from which the assembly will be performed.

The NASM command line recognizes DOS wild card
characters(“*”, “?”) in the file names. Entering NASMon the
command line with no arguments produces a short description of all
the valid switches.

Usage: NASM fi | enane [opti ons]
where:

fil enane is the name of the file to assemble. Files should be
specified in the standard DOS format:[d:] [path] nane.ext The
file name is the root file name of the . ss file unless otherwise
indicated.

Symbios Logic PCI-SCSI Programming Guide 4-1

Using the Symbios Logic Assembler
Starting NASM

[options] - are one or more of the following preceded by the
hyphen (“-’) character

a [arch] Specify SCSI architecture (default is
SYM53C700)

b Generate binary cross reference values

e Save error messages (filename optional)

[filenane[.err]]

I Generate cross reference (filename optional)
[filenanme[.lis]]

o] Generate “C” source output (filename optional)
[filenane[out]]

p Generate partial “C” header (filename optional)
[filenane[.out]]

s Generate .bin format output (filename optional)
[filenane[.bin]]

u Exclude module termination record

% Verbose messages

X List patch offsets in cross reference listing

4-2 Symbios Logic PCI-SCSI Programming Guide

A [arch] - Specify processor
for code generation

B - Binary Cross

Reference Values
|
E - Creates an error listing
file

Using the Symbios Logic Assembler
Command Line Options

Command Line Options

The - Aoption allows the programmer to specify the Symbios Logic
chip for which code will be generated. The currently supported chips
are listed in the table below, along with the corresponding number to
enter to choose the architecture. An ARCH statement at the beginning
of a SCRIPTS source file overrides any options typed in on
command line. If the source file does not have an ARCH statement and
no architecture is specified in the command line, NASM will use the
default architecture (SYM53C700).

Product Name ARCH Command line
entry
SYM53C700 or -A 700
SYM53C700-66
SYM53C710 -A 710
SYM53C720 -A 720
SYM53C770 -A 770
SYM53C810 -A 810
SYM53C810A -A 810A
SYM53C825 -A 825
SYM53C815 -A 815
SYM53C825A (all -A 825A

package variations)

SYMS53C875 (all package - A 875

variations)

SYM53C876 -A 876
SYM53C895 -A 895
SYM53C885 -A 885

The - B option causes the fi | enane. | i s file to generate binary as
well as hexadecimal opcodes in the listing file.

This option allows an error message file to be created if errors occur
during NASM assembly. If no file name is given, the - e option will
create a file with the same root name as the source file, with a . err
extension.

Symbios Logic PCI-SCSI Programming Guide 4-3

Using the Symbios Logic Assembler
Command Line Options

L - Creates a listing file

O - Generate output file

P - Generate Partial “C”
Source

S - Generate .BIN Output

U - Omit Termination
Record

V - Verbose Messages

X - Patch Offsets

4-4

This option creates an assembly listing (. LI S) file. When invoked, the
- L option creates a file with the same root name as the source file and
a . LI S extension, unless otherwise specified.

The - Ooption creates a “C” style output (.OUT) file. When invoked,
the - Ooption creates a file with the same root name as the source file
and a . QUT extension, unless otherwise specified.

This option, which is mutually exclusive with the -0 option, creates a
partial “C” style output file with a . out extension, but no patch
information is listed. If the - 0o and - p options are both specified, the
- p option always takes precedence. The portions of the SCRIPTS
outfile that are eliminated by the - P option are listed below. For more
detail on the SCRIPTS output file, refer to Chapter 5.

« the#define Ext_Count...which is acount of external variables

o thechar *External _Nanes[Ext_Count]...array of external
variable names

o the #define E_buf_nane. .. definition of the external buffer
offset because it will always be zero

o the#define Rel _Count... which isa count of relative buffers

o the ULONG Rel Patches [Rel _Count]... array of relative
patches

« the#define R buf nane... define of the relative buffer offsets

« the #define Abs_Count... which is a count of Absolute
variables

o thechar *Absol ute_Nanes[Abs_Count]... which is an array
of absolute names

o the ULONG A absol ute_Used[]... array of locations where
absolute variables are used

« the termination record is removed (as in the -U option)

instruction count
This option generates a file with a . bi n extension.

This option instructs the assembler to omit the INSTRUCTIONS
and PATCHES information from the output file. It must be used
with the - o or - p option.

This option instructs the assembler to generate more comprehensive
status messages.

Using this option produces an assembly level output file, including a
list of patch addresses for each symbol. These addresses indicate
where to patch each individual symbol value.

Symbios Logic PCI-SCSI Programming Guide

Using the Symbios Logic Assembler
Example Assembler Command Lines

Example Assembler Command Lines

The following command lines are typical examples of how to use the
various options.

1 NASM denoPCl. ss

This command line produces no output files, but allows a quick
syntax check on the SCRIPTS instructions in the file named
DEMORPCI.SS

2 NASM dempPCl .ss -a 875 -1 -0 -e errors.txt

This command line requests that NASM check the syntax and
generate code for the SYM53C875 chip. The listing, error log,
and standard C header will be generated. Since no filenames were
specified for the listing and C header files, they will take the name
of the input file, but with .LIS, and .OUT as the file extensions,
respectively. The error log will be sent to the file named
ERRORS.TXT

How NASM Parses SCRIPTS Files

SCSI SCRIPTS programs contain a series of lines. Blank lines, lines
containing only white space, and anything after a semi-colon on a
line are ignored.

The assembler is token oriented. It reads the source file and splits it
up into tokens. White space and anything from a semicolon to the
end of the line is not part of any token, and is ignored by the first pass
of the assembler.

There are two types of tokens. Any string of consecutive letters,
numbers, dollar signs, and underscores is a token. The second type of
token consists of characters that are not part of other tokens.
Anything that is not a letter, a digit, an underscore, or a dollar sign,
will become a token. For example, the string “xxx = 0x123; assign
value to xxx” contains three tokens. “xxx’ is a token, “=""is a token,
and “0x123” is a token.

Numeric values may be specified in decimal, hexadecimal, octal, or
binary format. Decimal numbers are specified by a string of digits
that does not begin with a zero. Octal numbers are specified by a
string of digits that begins with zero. Hex numbers are specified by a
string consisting of “0x” or “0X” and the hex digits of the number.
Both upper and lower case are allowed. A binary number is similar to
a hex number, except that “Ob” or “OB” is used instead of “0Ox” or
“0X™.

Symbios Logic PCI-SCSI Programming Guide 4-5

Using the Symbios Logic Assembler
Assembler Declarative Keywords

Assembler Declarative Keywords

To do its job efficiently, the assembler needs to recognize a set of
commands that are different from the processor instructions. These
commands, called declarative keywords, control the different aspects
of code generation and are intended for the assembler’s use. In most
cases, the declarative keywords will not produce executable code by
themselves, but must be combined with processor instructions to
generate assembled code.

The declarative keywords are grouped functionally in Table 4-1,
Table 4-2, and Table 4-3. They are listed alphabetically and defined
in the remainder of this section.

Table 4-1 Function Keyword

Data Definition and Storage Keywords
Equates ABSOLUTE
Storage Definition RELATIVE,

EXTERNAL

Table Addressing TABLE

Table 4-2 Function Keyword

Code Generation Keywords
Code Generation ARCH

Table 4-3 Function Keyword

Miscellaneous Keywords

4-6

Module Definition PROC

Code Entry Labels ENTRY

Symbios Logic PCI-SCSI Programming Guide

1
ABSOLUTE

ARCH

Using the Symbios Logic Assembler
Assembler Declarative Keywords

Equate Value with Symbol

Purpose

Syntax
Fields

Example

Description

Notes

Use ABSOLUTE to define the symbol name by assigning it
a numeric value. Once a name has been declared using
ABSOLUTE, NASM will substitute this numeric value in
each instruction where the name is used.

ABSCLUTE nanme = expression

ABSOLUTE bytes = 2048 ; A sector is 2048
byt es

ABSOLUTE sectors = 4 ; Acluster has 4
sectors

ABSOLUTE cl ust er
ABSCLUTE byt ecnt

bytes ; cluster size
bytes ; bytecnt is an indexing
; variable

The ABSOLUTE keyword supplies a list of names, or
labels, solely for the use of the assembler. NASM can refer
to this list when it is actually assembling the program.

Specify Target Architecture

Purpose

Syntax
Fields

Example

Description

Notes

Use ARCH to direct the assembler to generate instructions
that are specific to a chip architecture.

ARCH chi p_nunber

chip_number

ARCH 810A
ARCH 875

If used, this keyword should be placed before any
executable statements so that the assembler knows which
chip to generate code for. The chip architecture may also be
specified on the assembler command line for the assembler
using the - A chi p_nunber option. ARCH takes
precedence over the - A option in the NASM command
line. The chip number entries should use the last three
digits of the product number, as indicated in the example
above.

Symbios Logic PCI-SCSI Programming Guide 4-7

Using the Symbios Logic Assembler
Assembler Declarative Keywords

1
ENTRY

e
EXTERN

Declare External Entry Point

Purpose

Syntax
Fields
Example

Description

Notes

Use the ENTRY keyword to inform the driver program of
the starting location of callable routines contained in a given
SCRIPTS instruction. ENTRY allows the declaration of
variables as entry points into the SCSI SCRIPTS
instruction array. It defines the names and values of the
variables, making them also available to the host
development system.

ENTRY | abel [, label ...]

ENTRY start, Data_Qut_Entry

The ENTRY keyword indicates which SCRIPTS entry
points should be made visible to the driver code. Only those
entry points named in the ENTRY keyword will generate
information in the assembler output file.

All entries must be used as a label somewhere in the
SCRIPTS code, otherwise an error message will be
reported.

Declare External Symbol

Purpose

Syntax

Fields

Example

Description

Use the EXTERN keyword to inform the assembler that a
symbol should be resolved at link time. This keyword allows
the declaration of variables that are defined external to the
SCRIPTS program. EXTERN causes the assembler to
keep an array of offsets into the SCRIPTS array that the
driver can use to patch SCRIPTS instructions into the
driver program.

EXTERN | abel [, label ...] or

EXTERN | abel = data_specifier [, l|abel =
data_specifier...]

a data specifier is
{byte_val [, byte_val]} or count{byte_val | ??}

A count is any valid constant with a value between 0 and
64K

EXTERN buffer; a buffer in the driver
EXTERN buf f er =1024{??}; sane buffer, but now
; the debugger wll have
; informati on about space
requirements

The first form of the EXTERN syntax is only provided for
compatibility with older versions of the SCRIPTS
compiler. The second form (with space requirements
information for the debugger) should be used in all new
programs. Declarative instructions never allocate memory,
but give the debugger or driver code the information
required to allocate the memory.

Symbios Logic PCI-SCSI Programming Guide

PASS

PROC

Using the Symbios Logic Assembler
Assembler Declarative Keywords

Transfer an Element, Unaltered, to the output file

Purpose

Syntax
Fields

Examples

Description

Notes

Allows the programmer to pass a “C” element unaltered to
the SCRIPTS output file and on to the “C” compiler.
Using the Pass option avoids the need for runtime patching
of the addresses of SCRIPTS objects. PASS is typically
used for two types of “C” elements; either an include
statement or a literal string.

PASS(el enent)

Include statement: PASS(i ncl ude” SCRI PTS. h”)
Literal string: Wait Resel ect PASS(&al t _addr)

PASS tells NASM to pass everything between the left and
right parentheses on to the output file, literally. Therefore,
the passed statements can be read by the “C” compiler.

Define an output module

Purpose

Syntax
Fields
Examples

Description

Notes

PROC is used in the SCRIPTS code to build output arrays
with names other than the generic array name SCRI PT that
NASM normally assigns to SCRIPTS opcode arrays. This
is useful when more than one SCRIPTS file is used in a
driver program. It also allows several output arrays to be
created with specific code segments in each one. When
SCRIPTS storage space is limited, code can be divided into
different sections where one section would fit in a limited
space (such as SCRIPTS RAM) and the remaining code
can be stored elsewhere.

PRCC | abel :
| abel is the name assigned to the SCRIPTS output array.
PROC Start:

When a PROC keyword is used, the SCRIPTS output array
in the . out file is given the name specified in | abel ,
overriding the default name SCRI PT. If additional PROC
statements are used in the same SCRIPTS source file,
NASM will create additional output arrays in the . out file
with the name specified in | abel for each PROC
statement.

Symbios Logic PCI-SCSI Programming Guide 4-9

Using the Symbios Logic Assembler
Assembler Declarative Keywords

1
RELATIVE

4-10

Define Contiguous Data Structure

Purpose

Syntax

Fields

Example

Use RELATIVE to begin the definition of a data structure
named basel abel with offsets into the buffer specified by
the labels. Allows the declaration of buffers to be positioned
relative to one another. The expression used will be the offset
from the start of the relative data area where the buffer
variable is located.

RELATI VE | abel = expression [, |abel = expression...]
or
RELATI VE basel abel \

| abel = data_specifier [, |abel = data_specifier...]

a data specifier is:
{byte_val [, byte_val]}
or

count{byte_val |??}

A byte_val is any valid constant with a value between 0 and
255. For example: 0x10 and 16 both represent a byte value of
16. Also, the special data value “??’ can be used to indicate
that a byte should be reserved, but that it should not be
initialized to a specific value. The SCRIPTS program does
not allocate memory; this is done by “C” code in the
SCRIPTS debugger or in the driver code.

A count is any valid constant with a value between 0 and
64K.

This example shows the typical use of the RELATIVE
keyword. NASM syntax requires that no SCRIPTS
statements span more than one line; however, in the case of
the RELATIVE, this would result in a very unreadable
source code file. The following example demonstrates the use
of the logical line continuation character ‘\’. When this
character is used, the assembler appends the next line to the
end of the current line.

RELATI VE dat a_buf fer\
identify_msg_buf =1{??}, \
synch_msgo_buf = {1, 2, 3,4,5},\
synch_msgi _buf = 5{??},\
cnd_buf = 12{??},\

Wend_buf = 12{??},\

stat _buf = 1{??},\

nmsg_i n_buf = 1{?7?},\

di sc_nmsg_i n_buf = 2{?7?},\
read_cap_buf = {1, 2,3, 4,\
5,6,7,8},\

i nquiry_buf = 36{??},\
request _sense_buf = 18{??},\
dat a_buf = 16384{?7?}

Symbios Logic PCI-SCSI Programming Guide

TABLE

Description

Notes

Using the Symbios Logic Assembler
Assembler Declarative Keywords

The RELATIVE keyword defines a template for a collection
of data elements of the same or varying types, each of which
can be accessed by a descriptive name, but no storage is
allocated. It is up to the programmer to use the
RELATIVE information that is placed in the output file to
declare space in the driver program that the RELATIVE
maps to.

The first form of the RELAT IVE syntax example is only
provided for compatibility with older versions of the
SCRIPTS compiler. The second form (with baselabel
definition) should be used for all new programs.

Since the SCRIPTS array will have only offsets from the base
address of the buffer, the SCRIPTS elements containing
references to relative buffers will need to be patched by the
driver program after the buffer space is allocated.

Define Data Structure for Table Indirect Addressing

Purpose

Syntax

Fields

Use TABLE to describe a data structure that will be used with
the table indirect addressing feature of the 53C8XX. The
starting location for the buffer is defined by the data structure
address written to the DSA register. The expression specifies
the offset into the buffer and is added to the starting address of
the buffer (DSA register) to form the absolute address. This
feature allows SCRIPTS to be programmed into a ROM.

TABLE t abl el abel \
| abel = data_specifier \
[, Iabel = data_specifier...]
a data specifier is:
{byte_val [, byte_val]} or
count{byte_val |??} or
| D{ byte_val | ?7?}

A byte val is any valid constant with a value between 0 and
255. For example, 0x10 and 16 both represent a byte value of
16. Also, the special data value “??’ can be used to indicate that
a byte should be reserved, but that it should not be initialized
to a specific value.

A count is any valid constant with a value between 0 and 64K.

Symbios Logic PCI-SCSI Programming Guide 4-11

Using the Symbios Logic Assembler
Assembler Declarative Keywords

4-12

Example

Description

Notes

This example shows the typical use of the TABLE keyword
NASM does not generate any output based on the TABLE
keyword. This example is a template for a data structure that
will be used in the driver program or in the SCRIPTS
debugger. NASM assembler syntax requires SCRIPTS
statements to span no more than one line; however in the case
of the TABLE, this would result in a very unreadable source
code file. The following example demonstrates the use of the
logical line end character (/).When this character is used,
NASM appends the next line to the end of the current line.
TABLE t abl e_i ndi rect\

stat _buf = {??},\ ;stat_buf = 1 byte

meg_i n_buf= {??},\ ;msg_in_buf = 1 byte

data_buf = 512{??},\

R dat a_buf 512{??},\ ; read data buffer

W dat a_buf 512{0xaa},\ ; wite data buffer

Wecnd_buf = {0x0A, 0x00, 0x00, O0x00, O0x01, O0x00}, \
R_cnd_buf = {0x08, 0x00, 0x00, 0x00, 0x01, 0x00}, \

dum buf = 512{??},\

scsi_id = 1D{??},\

select_id = 1 D{0x33, 0x00, 0x00, 0x00}

Table indirect addressing allows a SCRIPTS program to be
placed in ROM and still allows the driver program to
dynamically specify different parameters for the BLOCK
MOVE, SELECT, or RESELECT instructions.

The TABLE keyword defines the table entries, each of which
can be accessed by a descriptive name, but no storage is
allocated. It is up to the programmer to provide the data
definition and allocation for the SCRIPTS table in the driver
program and load the DSA prior to execution of SCRIPTS
routines.

Currently, only one TABLE keyword per SCRIPTS routine is
allowed. An error message will be generated if multiple
TABLES are used.

The ID parameter in the data specifier allows initialization of
the table entries for use with the FROM keyword of the
SELECT and RESELECT instructions on the SYM53C8XX
chips.

Symbios Logic PCI-SCSI Programming Guide

If

When

NOT

AND

OR

Using the Symbios Logic Assembler
Conditional Keywords

Conditional Keywords

Conditional keywords are used to test for conditions such as an
expected phase or data byte.

The IF keyword indicates that a comparison is to be done
immediately.

Example: JUMP address, |F phase

The WHEN keyword causes the chip (as an initiator) to wait for a
phase to become valid. A valid phase is indicated by REQ/ being
asserted on the SCSI bus. Since WHEN waits for the SCSI REQ/
signal when making a comparison, it may not work when comparing
for conditions that are not related to the SCSI bus.

Example: CALL address, WHEN data

Logical Keywords

Logical keywords are used in conjunction with conditional keywords
to add detail or additional comparisons to the conditions being
tested.)

NOT negates (logically inverts) the conditions specified by the
qualifiers that follow. For example, an instruction that reads RETURN
i f NOT dat a compares data to the contents of the SFBR register. If
they are not identical, the operation will execute.

Example: JUMP address, if NOT data

AND is used to compound the condition being tested. All conditions
that are added with the AND keyword must be true for the operation
to execute.

Example: RETURN, WHEN data AND MASK DATA
OR specifies a list of conditions, one of which must be true for the

operation to execute.
Example: CALL REL (address), |F NOT ATN OR data

Symbios Logic PCI-SCSI Programming Guide 4-13

Using the Symbios Logic Assembler
Flag Fields

ACK

P

TARGET

CARRY

DSAREL

FROM

4-14

Flag Fields

The Flag Fields keywords are used to signify that a flag field bit has
been set. The flag field bits are controlled with the SET and CLEAR
instructions

The target checks to see if the SCSI ACK/ signal is asserted.
Example: CLEAR ACK

The target checks to see if the initiator has set the SCSI AT N/ signal.
Example: JUMP address, |F NOT ATN

By setting or clearing this bit, the SYM53C8XX is placed in target or
initiator role. This must be done before the chip can execute target-
or initiator-specific operations, such as reselection.

Example: SET TARGET

This keyword checks the ALU Carry bit in the SYM53C8XX to
determine which SCRIPTS routine to execute next. CARRY is not
valid if phase or data clauses are used in the same instruction.
Register Move (arithmetic) operations also affect the CARRY flag.

Example: JUMP address, |F CARRY

Quialifier Keywords

Quialifier keywords are used in conjunction with action keywords to
add details about the instructions to be performed.

This keyword is only available in the Symbios Logic devices that
support Load and Store instructions. It is used in Load/Store
instructions to indicate that the data to be loaded or stored is relative
to the DSA register. This keyword replaces the RELATIVE keyword,
although NASM still supports RELATIVE as well.

Example: STORE NOFLUSH SCRATCHAO, 4 DSAREL (address)
This signifies that table indirect addressing is used. It can be used

with Block Move or Select operations.
Example: MOVE FROM addr ess, W TH phase

Symbios Logic PCI-SCSI Programming Guide

MASK

MEMORY

PTR

REG

REL

TO

WITH

NOFLUSH

Using the Symbios Logic Assembler
Qualifier Keywords

This keyword allows selective comparison of specified bits with the
SCSI First Byte Received (SFBR) register. Any bits that are set in the
mask byte eliminate the corresponding bits in the SFBR register.

Example: RETURN WHEN data AND MASK DATA

The MEMORY keyword is used in conjunction with an action
keyword to signify a Memory to Memory Move instruction.

Example: MOVE MEMORY 512, data_buf, data_bufl

PTR causes the Indirect bit to be set in a Block Move instruction.

Example: MOVE count, PTR address, W TH phase

This keyword allows access to register by register number instead of
register name. The register number must be in parenthesis.

Example: MOVE REG(10) + 0x01 TO REG 10)

This keyword indicates that relative addressing is used.
Example: SELECT | D, REL(address)

This keyword indicates the destination of a Register Move operation.
Example: MOVE data TO regi ster

The WITH keyword allows the target to drive the phase on the SCSI
bus. This keyword is used for Target Move operations.

Example: CHMOV count, address, W TH phase

This keyword is used in the SYM53C8XX products that support
instruction prefetching, in conjunction with Move Memory and
Store instructions that affect the prefetch buffer. Its purpose is to
preserve the contents of the prefetch buffer when one of these
operations is performed.

Example: STORE NOFLUSH SCRATCHAOQ, 4 DSAREL (addr ess)

Symbios Logic PCI-SCSI Programming Guide 4-15

Using the Symbios Logic Assembler
Other Keywords

Action Keywords

SCSI Phases

Register Names

4-16

Other Keywords

These words are used to execute SCSI SCRIPTS instructions. They
are described in detail in Chapter 3.

These words are used to describe the phases of the SCSI bus. One of
these keywords should be used in place of the word “phase” when it
appears in programming examples in this manual. The SCSI phase
keywords are CMD, COMMAND, DATA_IN, DATA_OUT,
MSG_IN, MSG_OUT, STATUS, RES4, RES5.

All register names are reserved keywords. A full list of register names
and brief descriptions appears in Appendix B.

Symbios Logic PCI-SCSI Programming Guide

The NASM Output File
Overview

Chapter 5

The NASM Output File

Overview

The NASM assembler produces an output file with all the necessary
data structures and information that a programmer writing a driver
program needs to be able to load and run a SCSI SCRIPTS
program. The assembler produces data structures compatible with
ANSI “C”. The file can be included in a “C” program and compiled
without any modifications.

Three command line parameters determine whether certain
structures will be produced in the output file. The - o option will
cause NASM to generate all of the structures described in this
chapter. The - p option will cause only some of the structures to be
generated; please see each section for the effects of the - p option.
Finally, the - u option only affects the Termination Record which is
detailed later in this chapter. The - o and - p options are mutually
exclusive (i.e. only one or the other can be used); if they are used
together in the command line, the - p option takes precedence. The -
u option must be used in conjunction with either the - o or the - p
option.

The example SCRIPTS program in Figure 5-1 shows the various
types of structures produced by the NASM assembler.

Symbios Logic PCI-SCSI Programming Guide 5-1

Using the Symbios Logic Assembler
Overview

Figure 5-1
Structures in a SCRIPTS Program

ARCH 825
ABSOLUTE Got _Sel ect ed= 0xA5
ABSOLUTE Not _Msg_Out = 0x11
ABSCOLUTE Sel ect _I D= 2
ABSOLUTE Conmand_Conpl et e= 0x01
EXTERN ex_buf 1
EXTERN ex_buf 2
RELATI VE rel buffer \
rel _bufl= ??, \
rel _buf2= 6{??}, \
rel _buf3= ??
TABLE tbl _buffer \
tbl _buf1= 2?2, \
tbl _buf2= 2?2, \
t bl _buf 3= ??
ENTRY Start
ENTRY Send_CMD
ENTRY Send_DATA
Start:
SELECT ATN Select I D, REL(Interrupt)
INT Not _Msg_Qut, WHEN NOT MSG OUT
MOVE 1, rel bufl, WHEN MSG OUT
Send_CMD:
MOVE 6, rel_buf2, WHEN CMD
Send_DATA:
MOVE FROM t bl _buf1, WHEN DATA OUT
MOVE FROM tbl _buf2, WHEN DATA OUT
MOVE FROM tbl _buf3, WHEN DATA OUT
MOVE 1, ex_bufl, WHEN STATUS
MOVE 1, ex_bufl, WHEN MSG_IN
MOVE SCNTL2 & Ox7F to SCNTL2
CLEAR ACK
WAI T DI SCONNECT
JUWP Al l _done
I nterrupt:
I NT Got _Sel ect ed
Al'l _done:
I NT Command_Conpl et e

5-2 Symbios Logic PCI-SCSI Programming Guide

SCRIPTS Array

Using the Symbios Logic Assembler
NASM Output File Sections

NASM Output File Sections

The parts of the . out file discussed in this section correspond to the
example SCRIPTS program in Figure 5-1.

The SCRIPTS array is an array of unsigned long values that is the
actual contiguous machine code (opcodes) produced by the
assembler. Each line of the array contains (from left to right) one
instruction, and one or two address fields depending on the
instruction. If a PROC directive is used in the source program, there
may be more than one SCRIPTS array. For each PROC, a new array
will be declared with the name specified with the PROC directive.
For example if the above code started with:

PROC SCS| _READ:

Start:

SELECT ATN Sel ect_ID, REL(Interrupt)

Then the SCRIPTS array would have started:
t ypedef unsigned | ong ULONG
ULONG SCSI _READ[] = {

0x45020000L, 0x00000060L,

The default array name without the PROC statement is SCRIPT.
The SCRIPTS array is not affected by NASM command line
options.
Example of SCRIPTS array:
t ypedef unsigned | ong ULONG
ULONG SCRIPT[] = {

0x45020000L, 0x00000060L,

0x9E030000L, 0x00000011L,

0x0E000001L, 0x00000000L,

0x0A000006L, 0x00000001L,

0x18000000L, 0x00000000L,

0x18000000L, 0x00000008L,

0x18000000L, 0x00000010L,

Symbios Logic PCI-SCSI Programming Guide 5-3

Using the Symbios Logic Assembler

NASM Output File Sections
0x0B000001L, 0x00000000L,
0x0F000001L, 0x00000000L,
0x7C027F00L, 0x00000000L,
0x60000040L, 0x00000000L,
0x48000000L, 0x00000000L,
0x80080000L, 0x00000070L,
0x98080000L, 0xO00000A5L,
0x98080000L, 0x00000001L

5-4 Symbios Logic PCI-SCSI Programming Guide

Entry and PROC

Using the Symbios Logic Assembler
NASM Output File Sections

A PROC label generates separate arrays of SCRIPTS instructions for
each PROC occurrence. An Entry specification generates a “C”
language #define (pronounced “pound define”) equal to the number
of bytes between this entry and the beginning of the first code array.
The #define offset is not relative to the array in which it appears, but
is relative to the first code array created. In the example shown in
Table 5-1, the first SCRIPTS instruction for INC_A is located 40
(hex) bytes after the location of MAIN[].

Table 5-1

Relationship Between Entry and PROC

Statements and Output File

Source Output File
typedef unsigned | ong ULONG
Entry MAIN #defi ne ENT_MAI N 0x00000000L
Entry CLEAR A #defi ne ENT_CLEAR_A 0x00000018L
Entry INC A #define ENT_I NC_A 0x00000040L
PROC MAI N: ULONG MAIN[] = {
call CLEAR_A 0x88080000L, 0x00000018L,
call INCA 0x88080000L, 0x00000040L,
call INC A 0x88080000L, 0x00000040L,
3
PROC CLEAR_A: ULONG CLEAR A[] = {
move SCRATCHAO & 00 to SCRATCHAO 0x7C340000L, 0x00000000L,
nove SCRATCHAL & 00 to SCRATCHAl 0x7C350000L, 0x00000000L,
nove SCRATCHA2 & 00 to SCRATCHA2 0x7C360000L, 0x00000000L,
nove SCRATCHA3 & 00 to SCRATCHA3 0x7C370000L, 0x00000000L,
return; 0x90080000L, 0x00000000L
I NC_A:
nove SCRATCHAO + 1 t o SCRATCHAO 0x7E340100L, 0x00000000L,
return, if NOT Carry; 0x90200000L, 0x00000000L,
nmove SCRATCHAL + 1t o SCRATCHAL 0x7E350100L, 0x00000000L,
return, if NOT Carry; 0x90200000L, 0x00000000L,
nove SCRATCHA2 + 1 to SCRATCHA2 0x7E360100L, 0x00000000L,
return, if NOT Carry; 0x90200000L, 0x00000000L,
nove SCRATCHA3 + 1 t o SCRATCHA3 Ox7E370100L, 0x00000000L,
return; 0x90080000L, 0x00000000L
3

Symbios Logic PCI-SCSI Programming Guide

Using the Symbios Logic Assembler
NASM Output File Sections

|
External

5-6

The External section contains the external variable records, if any
were declared. First, is the External Header Record which contains:

#defi ne Ext _count count

where count is defined to be the number of external variables. Second
is a character array of all external names used:

char *External _Nanes[Ext_Count] = {
“dsa_storage”,

“in_offset”,

“

ut_offset”

};

Third is a list of External Contents Records:
#defi ne E _nanme of f set

where nane is the name of the variable and of f set is defined to be
the byte offset from the beginning of the data area (this is always zero
for externals).

Following this is an array of unsigned longs named by appending

“ Used” to the variable name. This array is a list of dword offsets
from the beginning of the SCRIPTS array where the variable is used
and should be patched.

#define E name_Used of f set

The last two sections (External Contents Record and Offset Array) of
the External record are repeated for every External defined in the
SCRIPT.

Effect of Command Line Switches

If the - o compiler option is used then all items mentioned above are
included in the output file. If the - p (partial ‘C’ output) option is
used then the External Header Record and Character Array are
omitted from the output file. An example of the output generated
using each compiler option is listed below.

Example:

Using - o assembler option:

#define Ext _Count 2

char *External _Names[Ext _Count] = {
“ex_buf 2",
“ex_buf 1"

Symbios Logic PCI-SCSI Programming Guide

|
Relative

Using the Symbios Logic Assembler
NASM Output File Sections

#define E_ex_bufl 0x00000000L

ULONG E_ex_buf1l Used[] = {
0x0000000FL,
0x00000011L

b

Using - p assembler option:

ULONG E_ex_buf1_Used[] = {
0x0000000FL,
0x00000011L

i

The Relative section contains the relative buffer records, if any were
declared. The first part is the Relative Header Record, which
contains:

#define Rel _Count count
where count is a total count of all the uses of all the Relative buffers
in the SCRIPTS program. For example, in the SCRIPTS example
above, rel_bufl and rel_buf2 are each used once so Rel _Count is

#defined to 2, indicating that there were two uses of Relative buffers
in the SCRIPTS code.

The second part of the Relative record is the Relative Patch Array
which contains:
ULONG Rel _Pat ches[Rel _Count] = {
Rel _Offset 1,
Rel O fset?2,
Rel O fset3,

Rel _Off setn
b
where Rel_Offsetx is an offset into the SCRIPTS array where a
Relative buffer is used. This array, along with the Relative Header
Record, can be used to patch all Relative buffers in a SCRIPTS

program. Please see the section on patching SCRIPTS instructions
for more information on how to do this.

The third part of the Relative record is the Relative Buffer Record,
which contains:

#define R nane of fset

Symbios Logic PCI-SCSI Programming Guide 5-7

Using the Symbios Logic Assembler
NASM Output File Sections

5-8

where nane is the name of the Relative buffer (i.e. rel_bufl) and

of f set is the relative offset of this buffer from the beginning of the
entire Relative buffer. For example, in the above SCRIPTS example
rel _buf 2 has an offset of 0x00000001L, indicating that it starts one
byte from the beginning of the Relative buffer.

The final part of the Relative record is the offset array which lists the
dword offsets in the SCRIPTS array where each individual relative
buffer is used. It is the same as the offset array used for External
buffers, except that the array names are of the format R_nanme_Used
where nane is the name of the individual relative buffer.

#define R name_Used of f set

The last two sections (Relative Buffer Record and Offset Array) of
the Relative record are repeated for every Relative defined in the
SCRIPTS program.

Effect of Command Line Switches

If the - o compiler option is used then all items mentioned above are
included in the output file. If the - p (partial ‘C’ output) option is
used, the Relative Header Record and Relative Patch Array are
omitted from the output file. An example of the output generated
using each compiler option is listed below.

Example:

Using - o assembler option:

#define Rel _Count 2

ULONG Rel _Pat ches[Rel _Count] = {
0x00000007L,
0x00000005L

S

#define R.rel_bufl 0x00000000L

ULONG R rel _bufl Used[] = {
0x00000005L

#define R rel _buf2 0x00000001L
ULONG R rel _buf2_Used[] = {
0x00000007L

Symbios Logic PCI-SCSI Programming Guide

Entry

Label Patches

Using the Symbios Logic Assembler
NASM Output File Sections

Using - p assembler option:

#define R rel_bufl 0x00000000L

ULONG R rel _bufl Used[] = {
0x00000005L

b

#define R rel _buf2 0x00000001L

ULONG R rel _buf2_Used[] = {
0x00000007L

The ENTRY section contains the entry records, if any were declared.
An entry record is a #def i ne of the entry name prefixed with Ent _,
defined to be a byte offset into the SCRIPTS array.

Example:

Using - o or - p assembler option:

#define Ent_Send_CMD 0x00000018L
#define Ent _Send_DATA 0x00000020L
#define Ent_Start 0x00000000L

The labels defined as entries are the only ones that will be
available to the driver code. The “C” code examples in Chapter 7
are examples of how the driver can use this information to start
SCRIPTS routines at any location defined as an entry. The
ENTRY section is not affected by NASM command line options.

The Label Patches section contains the label patch records. A label
patch record is an array of locations that are referred to by an
absolute Transfer Control instruction. These locations are the dword
offsets into the SCRIPTS array. The offsets are used to patch in the
physical addresses at run time. Please see the section on patching
SCRIPTS in Chapter 7 for more information on how to patch
absolute jump instructions. The Label Patches section is not affected
by NASM command line options.

Example:

Using - o or - p assembler option:
ULONG LABELPATCHES[] = {
0x00000019L

Symbios Logic PCI-SCSI Programming Guide 5-9

Using the Symbios Logic Assembler
NASM Output File Sections

|
Absolute

5-10

The Absolute section contains the Absolute records, if any were
declared. First is the Absolute Header Record, which contains:

#defi ne Abs_Count count

where count is the number of Absolutes defined in the SCRIPTS
program.

The second section is the Character Array of all ABSOLUTE names
used, it contains:
char *Absol ute_Names[Abs_Count] = {
Abs_Stringl,
Abs_Stringl,

Abs_Stringn
b
where Abs_St ri ngx is the name of the Absolute being defined.

Third is the Absolute Value Definition, which contains:
#define A name val ue

where nane is the name of the Absolute and val ue is the value
assigned to this Absolute in the SCRIPTS program.

The final part of the ABSOLUTE record is the Offset Array, which
lists the offsets in the SCRIPTS array where each ABSOLUTE is
used. It is the same as the offset array used for External buffers,
except that the array names are of the format A nane_Used where
nane is the name of the ABSOLUTE.

The last two sections (Absolute Value Definition and Offset Array) of
the ABSOLUTE record are repeated for every ABSOLUTE defined
in the SCRIPTS program.

Effect of Command Line Switches

If the - o compiler option is used, then all items mentioned above are
included in the output file. If the - p (partial ‘C’ output) option is
used, then the Offset Array is omitted from the output file. An
example of the output generated using each compiler option is listed
below.
Using - o assembler option:
#defi ne Abs_Count 4
char *Absol ute_Nanmes[Abs_Count] = {

“ Command_Conpl et e”,

“Cot _Sel ected”,

“Not _Msg_Qut”,

Symbios Logic PCI-SCSI Programming Guide

|
Termination Record

Using the Symbios Logic Assembler
NASM Output File Sections

“Select_ID
s
#define A _Conmmand_Conpl et e 0x00000001L
ULONG A _Command_Conpl ete_Used[] = {

0x0000001DL
b
#define A Sel ect_I D 0x00000002L
ULONG A _Sel ect _I D Used[] = {
0x00000000L
S

#define A Not_Msg_Qut 0x00000011L

ULONG A Not _Msg_Qut _Used[] = {
0x00000003L

b

#define A Got_Sel ected 0x0O00000A5L

ULONG A Got _Sel ected_Used[] = {
0x0000001BL

b

Using - p assembler option:

#define A _Comrand_Conpl et e 0x00000001L

#define A_Sel ect_I D 0x00000002L

#define A Not Msg Qut 0x00000011L

#define A Got_ Sel ected 0xO000000A5L

The module termination record declares two variables,
INSTRUCTIONS and PATCHES. INSTRUCTIONS is assigned
the number of instructions found in the SCRIPTS program, and
PATCHES is assigned the number of label patches. If the - o
compiler option is used, then all items mentioned above are included
in the output file. If the - p (partial ‘C’ output) option is used, then
the Patches variable is omitted from the output file. If the - u (exclude
module termination record) is used, then both variables are omitted
from the output file. An example of the output generated using each
compiler option is listed below.

Using - o assembler option:
ULONG | NSTRUCTI ONS= 0x0000000EL;
ULONG PATCHES= 0x00000000L;

Using - p assembler option:
ULONG | NSTRUCTI ONS= 0x0000000EL;

Symbios Logic PCI-SCSI Programming Guide 5-11

Using the Symbios Logic Assembler
NASM Output File Sections

5-12 Symbios Logic PCI-SCSI Programming Guide

Using the Registers to Control Chip Operations
Overview

Chapter 6

Using the Registers to Control Chip
Operations

Overview

The SYM53C8XX is initialized by setting and clearing bits in the
operating registers. This chapter lists the SYM53C8XX registers,
grouped by function. The register descriptions provide an overview of
the aspects of chip operation that are controlled in each register.
Appendix B lists all of the operating registers and bits in the
SYMS53C8XX processors by hexadecimal address. The
SYM53C8XX also has a set of PCI Configuration registers, but they
are not described in this document since they are initialized by the
system, not by the SCSI driver program. Full definitions of these
registers, as well as the individual bits in the operating registers, can
be found in the SYM53C8XX data manuals.

SCSI Registers

The SCSI registers are used for the following functions:

« performing SCSI operations by low-level, register-oriented
programming

« Obtaining data for debugging, such as checking the signal status

of the SBCL and SBDL registers to determine exactly what is on
the SCSI bus at the time the registers are read

« Obtaining SCSI interrupt status, which is contained in the SISTO,
and SIST1 registers

« initialization of the SCSI interface, for example, parity generation
and checking on the SCSI bus

« enabling or masking SCSI interrupts in the SIEN registers

Symbios Logic PCI-SCSI Programming Guide 6-1

Using the Registers to Control Chip Operations

SCSI Registers

Table 6-1
SYM53C8XX SCSI Registers

Name

Definition

Functions

SIEN1

SIENO

SDID
SCNTL3

SCNTL2

SCNTL1

SCNTLO
SOCL
SSID

SODL

SXFER

SCID

SBCL
SBDL
SIDL

SFBR

SSTAT?2

SSTAT1

SCSI Interrupt Enable 1

SCSI Interrupt Enable O

SCSI Destination ID
SCSI Control 3

SCSI Control 2

SCSI Control 1

SCSI Control 0

SCSI Output Control Latch

SCSI Selector ID

SCSI Output Data Latch

SCSI Transfer

SCSI Chip ID

SCSI Bus Control Lines
SCSI Bus Data Lines
SCSI Input Data Latch
SCSI First Byte Received

SCSI Status 2

SCSI Status 1

interrupt mask bits for selection/reselection
time-out, general purpose time-out,
handshake to handshake time-out

interrupt mask bits for phase mismatch,
SATNY/, function complete,
selection/reselection, gross error, unexpected
disconnect, SCSI reset, parity error

encoded destination SCSI ID

clock conversion factor bits, enable wide
SCSiI, enable Ultra SCSI or Ultra2 SCSI

wide SCSI control bits, vendor unique
enhancements; DIFFSENS mismatch
indicator (53C895 only)

add an extra clock cycle of setup to each
SCSI data transfer; disable halt on parity
error; Connected bit; parity bits; Immediate
Arbitration bit

arbitration mode bits; enable parity checking
testing SCSI control lines

the ID of the device that selected or
reselected the SYM53C8XX

data flows through this register when sending
data in any mode

define synchronous transfer period and
synchronous offset

enable response to selection/reselection, set
SCSI ID for SYM53C8XX

used to return SCSI control line status
contains SCSI data bus status
contains latched data from the SCSI bus

contains the first byte received in any
asynchronous information transfer phase

reports SIDL, SODR, SODL most
significant byte full; parity detection,
disconnect detection

FIFO flags; latched SCSI parity signal;
latched SCSI phase status bits

6-2

Symbios Logic PCI-SCSI Programming Guide

Table 6-1 (Continued)
SYM53C8XX SCSI Registers

Using the Registers to Control Chip Operations
SCSI Registers

Name Definition Functions

SSTATO SCSI Status 0 SIDL, SODR, SODL least significant byte
full; arbitration reporting bits; status of RST/
and SDPO/ signals

SLPAR SCSI Longitudinal Parity performs a bytewise longitudinal parity check
on all SCSI data

SWIDE SCSI Wide Residue Data contains a residual data byte that was never

(wide SCSI sent across the DMA bus after wide SCSI

products only) operation

STIMEO SCSITimer 0 selects handshake to handshake
time-out period

STIME1 SCSITimer 1 selects general purpose time-out period

RESPIDO Response ID 0 contains I1Ds the SYM53C8XX will respond
to when it is selected or reselected

RESPID1 Response ID 1 contains I1Ds the SYM53C8XX will respond

(wide SCSI to when it is selected or reselected

products only)

STEST4 SCSI Test 4 contains DIFFSENS pin values that indicate

(SYM53C895 the type of SCSI device connected to the bus;

only) frequency lock bit for clock quadrupler

STEST3 SCSI Test 3 active negation enable; SCSI FIFO test
read/write; Halt SCSI clock; Clear SCSI
FIFO

STEST?2 SCSI Test 2 clear synchronous offset; enable differential
mode; wide SCSI; extend SREQ/-SACK/
filtering; low level mode enable

STEST1 SCSI Test 1 disable the external SCLK pin and use the
PCI clock as the internal SCSI clock; enable
the SCSI Clock doubler (SYM53C825A/875/
876/885 only) or SCSI clock quadupler
(SYM53C895 only)

STESTO SCSI Test 0 these bits are used for low level operation and

manufacturer testing, SCSI selected as ID

Symbios Logic PCI-SCSI Programming Guide 6-3

Using the Registers to Control Chip Operations
DMA Registers

DMA Registers

The DMA registers are used for the following functions:

setting up the host interface

obtaining DMA interrupt status information contained in the

DSTAT register

obtaining DMA FIFO information, such as the number of bytes

it contains

enabling or masking DMA interrupts with the DIEN registers

Table 6-2
SYM53C8XX DMA Registers
Name Definition Functions
TEMP Temporary Register stores pointer to next SCRIPTS instruction
to be executed when returning from a
subroutine
DFIFO DMA FIFO may be used to determine the number of
bytes in the DMA FIFO when an interrupt
occurs, when used in conjunction with
DBC
DCMD DMA Command identifies the instruction that the
SYM53C8XX will execute
DBC DMA Byte Counter determines the number of bytes to be
transferred in a Block Move instruction
DNAD DMA Next Address contains the general purpose address
pointer
DSP DMA SCRIPTS contains the address of the next SCRIPTS
Pointer instruction to be fetched. Placing an
address in this register starts SCRIPTS
DSPS DMA SCRIPTS contains the second dword of a SCRIPTS
Pointer Save instruction
DMODE DMA Mode defines burst length; near or far memory
access; enables PCI read line command,;
manual start mode bit to prevent automatic
execution of SCRIPTS
DCNTL DMA Control enable single step mode; SYM53C700
compatibility bit; enable PCI Cache Line
Size register; enable instruction prefetching
DIEN DMA Interrupt contains interrupt mask bits corresponding
Enable to master data parity error, bus fault,
aborted, single step interrupt, SCRIPT
interrupt instruction received, illegal
instruction detected
6-4 Symbios Logic PCI-SCSI Programming Guide

Using the Registers to Control Chip Operations
SCRIPTS Registers

SCRIPTS Registers

The SCRIPTS registers are used to hold the SCRIPTS instruction
information which is fetched from host memory at run time by the

SYM53C8XX.
Table 6-3
SYM53C8XX SCRIPTS Registers
Name Definition Functions
DCMD DMA Command identifies the instruction that the SYM53C8XX will
execute
DBC DMA Byte Counter determines the number of bytes to be transferred in a
Block Move instruction
DNAD DMA Next Address contains the general purpose address pointer
DSP DMA SCRIPTS contains the address of the next SCRIPTS instruction to
Pointer be fetched; placing an address in this register starts
SCRIPTS
DSPS DMA SCRIPTS contains the second dword of a SCRIPTS instruction
Pointer Save
DSA Data Structure contains base address used for all table indirect

Address

calculations

Symbios Logic PCI-SCSI Programming Guide 6-5

Using the Registers to Control Chip Operations
Interrupt Registers

Interrupt Registers

Interrupt registers contain interrupt status information. The DSTAT
contains the DMA interrupt status information. The SISTO and
SIST1 contain SCSI interrupt status bits. The remaining registers
contain interrupt enable bits. The ISTAT register can be polled for
interrupts. It is the only register that can be accessed while SCRIPTS
is running. Refer to Chapter 9 for more information on handling
interrupts.

Table 6-4
SYM53C8XX Interrupt Registers

Name

Definition

Functions

ISTAT

SIEN1

SIENO

SIST1

SISTO

DIEN

DSTAT

Interrupt Status

SCSI Interrupt
Enable 1

SCSI Interrupt
Enable O

SCSI Interrupt
Status 1

SCSI Interrupt
Status 0

DMA Interrupt
Enable

DMA Status

interrupt polling; determine whether a SCSI or
DMA interrupt has occurred; check for stacked
interrupts; abort an operation; software reset;
Signal Process bit; semaphore bit;interrupt on
the fly bit;indicate SCSI interrupt pending
(SYM53CB885 only); SCSI bus mode change
(53C895 only)

interrupt mask bits for selection/reselection
time-out, general purpose time-out, handshake
to handshake time-out; wakeup (SYM53C885
only)SCSI bus mode change (53C895 only)

interrupt mask bits for phase mismatch,
SATNY/, function complete,
selection/reselection, gross error, unexpected
disconnect, SCSI reset, parity error

returns the status of the following interrupt
conditions: selection/reselection time-out,
general purpose timer expired, handshake to
handshake timer expired; wakeup
(SYM53C885 only)

returns the status of the following interrupt
conditions: phase mismatch (SATN/ active),
function complete, selection/reselection, SCSI
gross error, unexpected disconnect, SCSI RST/
received, parity error.

contains interrupt mask bits corresponding to
master data parity error, bus fault, aborted
operation, single step interrupt, SCRIPTS
interrupt instruction received, illegal
instruction detected

reports sources of DMA interrupts: DMA
FIFO empty, Master data parity error, bus
fault, aborted, single step interrupt, SCRIPTS
interrupt instruction received, illegal
instruction detected

6-6

Symbios Logic PCI-SCSI Programming Guide

Using the Registers to Control Chip Operations
Test and Miscellaneous Registers

Test and Miscellaneous Registers

The test registers are used to test the DMA and SCSI FIFOs and
perform other miscellaneous functions. The test registers can be used
to decrement the byte count or increment the address count in the

FIFOs.
Table 6-5
SYM53C8XX Test Registers
Name Definition Functions
CTEST3 ChipTest3 revision level bits, flush/clear DMA FIFO,
CTEST2 ChipTest2 data transfer direction; I/0 or memory
configuration; request/acknowledge status
CTEST1 ChipTest1l DMA FIFO bits full or empty
CTEST6 ChipTest6 writes data to the DMA FIFO
CTEST5 ChipTest5 clock address incrementor; clock byte counter;
DMA direction; control of set or reset pulses
CTEST4 ChipTest4 burst disable; master parity error enable; DMA
FIFO byte control
ADDER Adder Sum Output contains output of internal adder
CTESTO ChipTest0 used to enable power management modes in

SYM53C885

Symbios Logic PCI-SCSI Programming Guide 6-7

Using the Registers to Control Chip Operations

General Purpose Registers

Table 6-6
SYM53C8XX General Purpose
Registers

General Purpose Registers

Name

Definition

GPREG
DWT/SBR
CTESTO
SCRATCHA
SCRATCHB
SCRATCHC-J

GPCNTL
MACNTL

General Purpose

DMA Watchdog Timer/Scratch Byte Register
Chip Test 0

General Purpose Scratchpad A

General Purpose Scratchpad B

General Purpose Scratchpad C-J (SYM53C825A/53C875/53C876/
53C885/53C895 only)

General Purpose Control

Memory Access Control

6-8

Register Initialization

The startup register values are determined by a “C” program, written
by the software developer, that can be loaded automatically by the
device driver. The appropriate startup values for the register bits
depend on the design of the individual system, so a single start-up
algorithm will not support every application. The hardware default
values for each bit are provided in the Register Summary, Appendix
B; these default values are suitable for most applications.

This section lists the important register bits to consider when writing
a startup program for a specific system. Although the startup
program does not have to initialize all bits in the chip if the default
values are acceptable, the bits in these lists affect features that should
be enabled or disabled, or other decisions that should be made, when
initializing the chip. For complete register and bit descriptions, refer
to the SYM53C8XX data manuals. In addition, Chapter 2,
“Functional Description,” in the product data manuals contains a
section on the bits and registers that affect parity checking and
generation. All reserved bits should be left cleared by the startup
program.

Symbios Logic PCI-SCSI Programming Guide

Table 6-7

53C815/53C810A/53C860

Startup Bits

Using the Registers to Control Chip Operations
Register Initialization

Register
Address

Register Name

Bits

Remarks

00

01

03

04

05

10-13

1B

21

2C-2F

SCNTLO

SCNTL1

SCNTL3

SCID

SXFER

DSA

CTEST3

CTEST4

DSP

7-6, 3,1-0

7,5

7-4,2-0

6-5, 2-0

all

all

7,3

all

Bits 7-6: Arbitration Mode

Bit 3: Enable Parity Checking

Bit 1: Assert SATN/ on Parity Error

Bit 0: Target Mode. Bit 0 may be set either at
initialization or during SCRIPTS operation. Set
it at startup if the chip will operate as a target
only. If it will switch between target and initiator
roles, use SCRIPTS to control this bit.

Bit 7: Extra Clock Cycle of Data Setup
Bit 5: Disable Halt on Parity Error or SATN/
(for target mode only)

Bit 7: Ultra Enable (53C860 only)
Bits 6-4: Synchronous Clock Conversion Factor
Bits 2-0: Clock Conversion Factor

Bit 6: Enable Response to Reselection
Bit 5: Enable Response to Selection
Bits 2-0: Encoded Chip SCSI ID

Since the default operation for SCSI is
asynchronous transfers, these bits should
probably not be set until synchronous
parameters are established between the initiator
and target.

Bits 7-5: Synchronous Transfer Period

Bits 3-0: Max SCSI Synchronous Offset

must be initialized if you are using table indirect
mode

Bit 1: Fetch Pin Mode
Bit 0: Write and Invalidate Enable
(53C810A/53C860 only)

Bit 7: Burst Disable
Bit 3: Master Parity Error Enable

At the end of the initialization program, write
the address of the first SCRIPTS instruction to
this register to begin SCRIPTS execution.

Symbios Logic PCI-SCSI Programming Guide 6-9

Using the Registers to Control Chip Operations
Register Initialization

Table 6-7
53C815/53C810A/53C860
Startup Bits (Continued)

Register Register Name

Address

Bits

Remarks

38 DMODE

39 DIEN

3B DCNTL

40 SIENO

41 SIEN1

46 MACNTL

48 STIMEO

49 STIME1

7-2

6-2,0

7,5-3,0

all

2-0

3-0

all

3-0

Bits 7-6: Burst Length

Bit 5: Source I/O-Memory Enable

Bit 4: Destination 1/0-Memory Enable
Bit 3: Enable Read Line

Bit 2: Enable Read Multiple
(53C810A/53C860 only)

Bit 6: Master Data Parity Error

Bit 5: Bus Fault

Bit 4: Aborted

Bit 3: Single Step Interrupt

Bit 2: SCRIPTS Interrupt Instruction Received
Bit 0: lllegal Instruction Detected

Bit 7: Cache Line Size Enable

Bit 5: Pre-fetch Enable (53C810A/53C860
only)

Bit 4: Single-Step Mode

Bit 3: IRQ Mode

Bit 0: SYM53C700 Compatibility

Interrupt mask bits for:

Bit 7: Phase Mismatch or SATN/
Bit 6: Function Complete

Bit 5: Selected

Bit 4: Reselected

Bit 3: SCSI Gross Error

Bit 2: Unexpected Disconnect
Bit 1. SCSI Reset Condition

Bit 0: SCSI Parity Error

Interrupt mask bits for:

Bit 2: Selection or Reselection Time-Out

Bit 1: General Purpose Timer Expired

Bit 0: Handshake to Handshake Timer Expired

Initialize these when using the MAC_TSTOUT
pin. These bits determine local or far access for
the following operations:

Bit 3: Data write

Bit 2: Data read

Bit 1: SCRIPTS pointers

Bit 0: SCRIPTS fetches

Bits 7-4: Handshake to Handshake Timer
Period
Bits 3-0: Selection Time-Out

Bits 3-0: General Purpose Timer Period

6-10 Symbios Logic PCI-SCSI Programming Guide

Using the Registers to Control Chip Operations
Register Initialization

Table 6-7
53C815/53C810A/53C860
Startup Bits (Continued)
Register Register Name Bits Remarks
Address
4A RESPID all
4D STEST1 7 Bit 7: SCLK
4E STEST2 1 Bit 1: Extend SREQ/SACK Filtering
4F STESTS3 7 Bit 7: TolerANT Enable
Table 6-8
SYM53C825A/875/876/885/895
Startup Bits
Register Register Bits Remarks
Address Name
00 SCNTLO 7-6, 3,1-0 Bits 7-6: Arbitration Mode
Bit 3: Enable Parity Checking
Bit 1: Assert SATN/ on Parity Error
Bit 0: Target Mode. Bit 0 may be set either at
initialization or during SCRIPTS operation. Set
it at startup if the chip will operate as a target
only. If it will switch between target and initiator
roles, use SCRIPTS to control this bit.
01 SCNTL1 7,5 Bit 7: Extra Clock Cycle of Data Setup
Bit 5: Disable Halt on Parity Error or SATN/
(for target mode only)
03 SCNTL3 all Bit 7: Ultra Enable (53C875/876/885/895 only)
Bits 6-4: Synchronous Clock Conversion Factor
Bits 2-0: Clock Conversion Factor
04 SCID 6-5, 3-0 Bit 6: Enable Response to Reselection
Bit 5: Enable Response to Selection
Bit 3: Enable Wide SCSI
Bits 2-0: Encoded Chip SCSI ID
05 SXFER all Since the default operation for SCSI is

asynchronous transfers, these bits should
probably not be set until synchronous
parameters are established between the initiator
and target.

Bits 7-5: Synchronous Transfer Period

Bits 3-0: Max SCSI Synchronous Offset

Symbios Logic PCI-SCSI Programming Guide 6-11

Using the Registers to Control Chip Operations
Register Initialization

Table 6-8
SYM53C825A/875/876/885/895
Startup Bits (Continued)

Register Register
Address Name

Bits

Remarks

10-13 DSA

1B CTEST3

21 CTEST4

22 CTEST2

18 CTESTO

2C-2F DSP

38 DMODE

39 DIEN

3B DCNTL

40 SIENO

all

1-0

7,3

2-0

all

7-2

4-2,0

7,5-3,0

all

must be initialized if you are using table indirect
mode

Bit 1: Fetch Pin Mode
Bit 0: Write and Invalidate Enable

Bit 7: Burst Disable
Bit 3: Master Parity Error Enable

SCRATCHA/B operation (when SCRIPTS
RAM is enabled)

Set the priority level for gaining access to the
PCI bus (SYM53C885 only)

At the end of the initialization program, write
the address of the first SCRIPTS instruction to
this register to begin SCRIPTS execution.

Bits 7-6: Burst Length

Bit 5: Source 1/0O-Memory Enable

Bit 4: Destination I/O-Memory Enable
Bit 3: Enable Read Line

Bit 2: Enable Read Multiple

Bit 4: Aborted

Bit 3: Single Step Interrupt

Bit 2: SCRIPTS Interrupt Instruction Received
Bit O: lllegal Instruction Detected

Bit 7: Cache Line Size Enable

Bit 5: Pre-fetch Enable

Bit 4: Single-Step Mode

Bit 3: IRQ Mode

Bit 0: SYM53C700 Compatibility

Interrupt mask bits for:

Bit 7: Phase Mismatch or SATN/
Bit 6: Function Complete

Bit 5: Selected

Bit 4: Reselected

Bit 3: SCSI Gross Error

Bit 2: Unexpected Disconnect
Bit 1: SCSI Reset Condition

Bit 0: SCSI Parity Error

6-12 Symbios Logic PCI-SCSI Programming Guide

Table 6-8
SYM53C825A/875/876/885/895
Startup Bits (Continued)

Using the Registers to Control Chip Operations
Register Initialization

Register Register Bits Remarks
Address Name
41 SIEN1 4,2-0 Interrupt mask bits for:
Bit 4: SCSI Bus Mode Change (53C895 only)
Bit 2: Selection or Reselection Time-Out
Bit 1: General Purpose Timer Expired
Bit 0: Handshake to Handshake Timer Expired
46 MACNTL 3-0 Initialize these when using the
MAC_TESTOUT pin. These bits determine
local or far access for the following operations:
Bit 3: Data write
Bit 2: Data read
Bit 1: SCRIPTS pointers
Bit 0: SCRIPTS fetch
48 STIMEO all Bits 7-4: Handshake to Handshake Timer
Period
Bits 3-0: Selection Time-Out
49 STIME1 3-0 Bits 3-0: General Purpose Timer Period
4A RESPIDO all
4B RESPID1 all
4D STEST1 7,3-2 Bit 7: SCLK
Bits 3-2: SCSI Clock Doubler 1-0 (53C875
only)
4E STEST2 51 Bit 5: SCSI Differential Mode
Bit 1: Extend REQ/ACK Filtering
4F STEST3 7 Bit 7: TolerANT Enable

Symbios Logic PCI-SCSI Programming Guide 6-13

Using the Registers to Control Chip Operations
Register Initialization

6-14 Symbios Logic PCI-SCSI Programming Guide

|
Initializing the
SYM53C8XX

Integrating SCRIPTS Programs Into “C” Language Drivers
Overview

Chapter 7

Integrating SCRIPTS Programs Into
“C” Language Drivers

Overview

This chapter demonstrates how assembled SCRIPTS programs are
included in SCSI device drivers written in “C” language. The chapter
provides examples of the “C” code used to execute many of the types
of algorithms used by SCSI SCRIPTS. The chapter ends with an
entire SCRIPTS source file, gener al . ss, in Figure 7-1. Figure 7-2
is the output file from the Symbios Logic Assembler, called

gener al . out . The relationship between the source file and the
output file is described in more detail in Chapter 5.

The following “C” code example shows how the SYM53C8XX
accesses the operating registers at initialization. The SYM53C8XX
can be memory- or 1/0O-mapped or both. The example functions in
this section access the 1/0O mapped registers of the SYM53C8XX.

/**

Function: | ORead8

Purpose: To read a byte froman io port
Input: 10 address of byte to be read
Qutput: byte read fromio port
Assunptions: That the 10 port actually exists
Restrictions: Although | O Addr is defined as

a ULONG it nust not exceed 16 bits

inlength as this is the maxi mum

1 O address the X86 architecture can produce

O her functions called: inportb to read the io port

**/
UBYTE | ORead8(ULONG | O Addr)

{
return (inportb((U NT) 10O _Addr));

Symbios Logic PCI-SCSI Programming Guide 7-1

Integrating SCRIPTS Programs Into “C” Language Drivers
Overview

/**

Function: IOWite8

Purpose: To wite a byte out to an IO port
Input: Value to be witten and IO port address
Qut put: None
Assunmptions: That the IO port actually exists
Restrictions: Although 1O Addr is defined as a
ULONG it must not exceed 16 bits
inlength as this is the maximum1O
address the X86 architecture can produce
O her functions called: outportb to wite to the io
port

**/
void | ONite8(ULONG | O Addr, UBYTE val ue)

{
outportb((U NT) IO _Addr, val ue);

/**
Function: | ORead32

Pur pose: To read a dword (32 bits) froman io port
Input: 10 address of dword to be read
Qutput: dword read fromio port
Assunptions: That the 10 port actually exists
Restrictions: Although 10 Addr is defined as a
ULONG it must not exceed 16 bits in
length as this is the maxi mum IO
address the X86 architecture can produce
O her functions called: none

**/

ULONG | ORead32(ULONG | O_Addr)
{
ULONG resul t;
asm
{
. 386
nmov dx, [l O_Addr]
in eax, dx
mov [result], eax

}

return(result);

7-2 Symbios Logic PCI-SCSI Programming Guide

|
Table Indirect Operations

Integrating SCRIPTS Programs Into “C” Language Drivers
Overview

/**

Function: |IOWNite32

Purpose: To wite a dword (32 bits) out to an 10O port
Input: Value to be witten and IO port address
Qut put: None
Assunmptions: That the IO port actually exists
Restrictions: Although 10 Addr is defined as a
ULONG it rmust not exceed 16 bits in
length as this is the maxi mum IO
address the X86 architecture can produce
O her functions called: none

**/
void | ONite32(ULONG | O Addr, ULONG val ue)

asm

. 386
nmov dx, [l O_Addr]
nov eax, [val ue]

out dx, eax

}

Resetting The SYM53C8XX

This example shows how to reset the SYM53C8XX by setting, then
clearing, the Software Reset (SRST) bit in the ISTAT register. It
executes a Read-Modify-Write for each register whose default value
will be changed at reset.

* sets SRST(bit 6) */
| OWite8(1 STAT, (I ORead8(ISTAT) | 0x40));/

* clears SRST(bit 6) */
| OWite8(l STAT, (IORead8(|STAT) & OxBF))/

More information on Table Indirect operation and on creating a table
is provided in Chapter 9.

Initializing a Table

The following example is a SCRIPTS declaration of a table.
Although NASM does not actually generate any output based on the
table declaration, it does place offsets into the SCRIPTS array based
on the order of the buffers in the table declaration. The actual byte
values and byte counts in the SCRIPTS instruction are not used at
this stage, because NASM does not generate any output from the
table declaration.

Symbios Logic PCI-SCSI Programming Guide 7-3

Integrating SCRIPTS Programs Into “C” Language Drivers

Overview

TABLE dsa_table \
sendnsg = ?7?, \
rcvmsg = ??, \
cmd_adr = 2?2, \
device = ID{??}, \
status_adr = ??, \
ext _buf = 2?2, \
sync_in = ??, \

data_adr = ??
Create Table Indirect Entry Offsets

The following “C” code example sets up a table that can be used with
the SYM53C8XX table indirect addressing mode. Each entry in the
table is a pair of 32-bit values. These entries reference the same
buffers as the SCRIPTS code examples above. For more illustration
on the relationship between these pieces of code, refer to the Table
Indirect Addressing section in Chapter 8. For this SCRIPTS
program to work correctly, the table must start on a dword boundary
and the offset labels must be in the same order as in the SCRIPTS
table declaration.

/* The following definition sets up a table that can be used
with the SYMB3CB8XX tabl e indirect addressing node. Each entry
inthe table is a pair of 32-bit values. For the SCRI PTS
routinetowork correctly the table MUST start on a word boundary
and the offset | abels nust be in the sane order in the SCRI PTS
tabl e declaration. */

enum of fsets {
SENDMVSG = O,
RCVMSG,
CMD_ADR,
DEVI CE,
STATUS_ADR,
EXT_BUF,
SYNC_I N,
DATA _ADR, /* DATA_ADR must be |ast buffer.

Symbios Logic PCI-SCSI Programming Guide

Integrating SCRIPTS Programs Into “C” Language Drivers
Overview

Defining the Table Structure

The following code defines a data structure with two fields, a count
and an address, which correspond to one element in the DSA table.
A type is then defined and a pointer to a variable of this type is also
defined. This pointer and the enumerated offsets defined above will
then be used to access specific elements of the table. This example
defines the table structure, but no space has been allocated yet in
memory.
Example of data structure and type definition:
struct _table {

uquad count ;

uquad addr ess;
b
typedef struct_table table:
Declaring a Pointer to the Table

extern table *buf fer _tabl e;

Allocating Memory for the Table

int init_table(void)

{
UBYTE *buf _ptr; /[* tenmp ptr to ti tables */
/* allocate space for table */
buf _ptr = (UBYTE far *) mall oc((TABLE_SI ZE
sizeof (ti _entry))+ 4);
/* did we get the nenory */
if (buf_ptr == NULL) return(COMVANDFAI LED);
/* dword align the table buffer, ByteAlignBuffer does
this */
dsa_table = (ti_entry *) ByteAlignBuffer(buf_ptr, 0);
/* This initializes the DSA register to point to the buffer
table that was al |l ocated above*/
| OWite32(PCl Devi cel OBase+DSA, get PhysAddr (dsa_table));
return(GOOD) ;
}

Symbios Logic PCI-SCSI Programming Guide 7-5

Integrating SCRIPTS Programs Into “C” Language Drivers

Overview

7-6

Using a Table

The following example creates two buffers (i denti fy_nsg and
test _unit_ready_cnd). The byte counts and addresses for these
buffers are then loaded into the CVD_ADR and SENDVSG elements of
the DSA t abl e array. These examples define a message and a
command buffer in the desired table, and loads the bytes into the
table. The enumerated types are used in the Test Unit Ready example
to index into the table.

static ubyte identify_nsg[] = {
0xcO /* 0xcO = all ow di sconnect, 0x80 = no

** di sconnect */

s

static ubyte test_unit_ready_cnd[] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0Ox00

s

/* drive is the destination ID for the I/ O/
DSA t abl e[DEVI CE] . count =(ULONG) dri ve<< 16;

DSA tabl e[CMD_ADR] . count = sizeof (test_unit_ready_cnd);
DSA t abl e[CMD_ADR] . addr ess=get PhyAddr (t est _uni t _ready_cnd;

DSA t abl e[SENDMSQF . count = 1;
DSA t abl e[SENDMSQ . addr ess = get PhysAddr (i dentify_nsg);

DSA tabl e[STATUS_ADR] . count = 1;
DSA t abl e[STATUS_ADR] . addr ess = get PhysAddr (st at us);

DSA t abl e[RCVMBGF . count = 1;
DSA t abl e[RCVMSQF . addr ess = get PhysAddr (nmsg_i n);

Symbios Logic PCI-SCSI Programming Guide

|
EXTERN Buffers

Integrating SCRIPTS Programs Into “C” Language Drivers
Patching

Patching

Sometimes it is necessary for the “C” code to modify some elements
of the SCRIPTS array once buffers have been allocated. This is called
patching. Patching is required when relative transfer control
instructions or table indirect addressing are not used. However, most
applications will take advantage of these features, so patching is not
often required. When patching is necessary, the general format of the
patch in “C” is SCRI PT[pat ch_of f set] = pat ch_val ue;

When only part of the 32-bit value in the SCRIPTS array must be
modified, a Read-Modify-Write can be used. The format for this type
of operation is SCRI PT[pat ch_of f set] | = patch_val ue;. Any
arithmetic or logical operator can be used in place of the logical or
() symbol to make the desired modification.

The pat ch_of f set is an index into the SCRIPTS array where the
patch must be made. This value is usually obtained from one of the
sections of the NASM output file. Please see Chapter 5 for more
information on the NASM output file and the patch offsets it
contains.

The pat ch_val ue is usually either a buffer physical address or a byte
count, but could be anything that modifies the part of the SCRIPTS
program.

The remainder of this section contains patching techniques for
various instructions and buffer types that require modification at run
time. Please note that this chapter only describes the most common
types of patches. Other types of patching can generally be used to
modify any part of a SCRIPTS instruction by using the ENTRY
point patching method described in this section.

1 Create a buffer in ‘C’ statically or dynamically if necessary

Example: UCHAR nsgi n_buf [4] ;

2 Patch the SCRIPT wherever this buffer is used, with the patch
array generated by NASM

Example: SCRI PT[E_ex_buf 1_Used[1]] =
VirttoPhys(nsgi n_buf);

See Chapter 5 for more information on the _Used patch array.

Symbios Logic PCI-SCSI Programming Guide 7-7

Integrating SCRIPTS Programs Into “C” Language Drivers

Patching

1
RELATIVE Buffers

1
ABSOLUTE Values

|
Buffer Addresses

RELATIVE buffers are essentially the same as External buffers. The
SCRIPTS output file contains some additional information to aid in
patching the SCRIPTS instructions. The individual relative buffer
offset is encoded into the SCRIPTS instruction

Procedure 1
1 Create a buffer to hold all the individual relative buffers

Example: UCHAR rel _buffer[8]

2 Patch the SCRIPTS array using the Patch array generated by
NASM

Example: SCRI PT[R rel _buf2_Used[0]] +=
VirttoPhys(rel buffer)

Procedure 2
1 Create a buffer to hold all the individual relative buffers

Example: UCHAR rel buffer[8]

2 All buffers can be patched in one loop if the main Patch array is
accessed and the Header record is used. The -0 assembler option
must be used for this procedure to work.

Example: for(i=0; i<Rel_Count; i++) {

SCRI PT[Rel _Patches[i]] += VirttoPhys(rel buffer);
}

See Chapter 5 for more information on the structures created for
patching relative buffers.

ABSOLUTE values are patched exactly like EXTERN buffers. The
-0 compiler option must be used to patch Absolutes. See Chapter 5
for more information on ABSOLUTE values

Buffer addresses are usually patched into Block Move, Memory to
Memory, or Load/Store instructions. They are usually defined as
EXTERNS, RELATIVES, or ABSOLUTES. The general format of
this type of patch is:

SCRI PT[X_buf fernane_Used[n]] = VirttoPhys(c_buffer);

Where X is either E (Extern), R (Relative), or A (Absolute)
depending on the type of buffer used.

n is the nth occurrence of this buffer in the SCRIPTS program
c_buf f er is a buffer/array defined in ‘C’
See Chapter 5 for more information on the _Used array.

Symbios Logic PCI-SCSI Programming Guide

|
Byte Counts

]
Absolute JUMP/CALL

Addresses

|
Entry Locations

|
Self Modifying SCRIPTS

Code

Integrating SCRIPTS Programs Into “C” Language Drivers
Patching

Byte counts are usually patched into Block Move, Memory to
Memory, or Load/Store instructions. Since the byte count is usually
encoded in the first dword along with the opcode, be sure to OR in
the byte count instead of doing a straight assignment. Byte counts to
be patched are usually defined as EXTERNS, RELATIVES, or
ABSOLUTES.The general format of this type of patch is:

SCRI PT[X_byt ecount _Used[n]] |= c_byte count;

Where X is either E, R, or A

n is the nth occurrence of this byte count in the SCRIPTS program
c_byt e_count is a variable/constant byte count value

See Chapter 5 for more information on the _Used array.

Use the LABELPATCHES array to patch in absolute JUMP or
CALL addresses. The absolute offset from the beginning of the
SCRIPTS instruction is encoded in the JUMP instruction at
assembly. All that needs to be added is the base physical address of
the SCRIPTS array. The general format of this type of patch is:

SCRI PT[LABELPATCHES[n]] += Vi rttoPhys(SCRI PT);

Where n is the nth jump instruction to be patched.

This can be automated using a loop and the PATCHES values.

See Chapter 5 for more information on the LABELPATCHES array.

Entry offsets are byte offsets, not dword offsets. Divide the Entry
offset by 4 to get to a SCRIPTS instruction offset. This method can
be used to modify any SCRIPTS instruction that normally does not
need patched, but needs to be modified in a special circumstance.
The general format of this type of patch is:

SCRI PT[Ent _entryl abel /4 + n] = val ue;

Where n is either 0, 1 or 2 depending on the particular dword of the
instruction that needs to be accessed.

If the first dword of an instruction is being accessed, you may need to
do a Read-Modify-Write instruction to maintain the opcode.

See Chapter 5 for more information on the Ent _ of f set s.

It is sometimes necessary to create self modifying SCRIPTS code for
various reasons. When creating self modifying SCRIPTS code it
should be done in such a way that external patching is only necessary
at initialization time. Self modifying code can be accomplished by
using either a Memory to Memory Move instruction or a
combination of LOAD and STORE instructions. The following
SCRIPTS example shows a Memory to Memory Move modifying a

Symbios Logic PCI-SCSI Programming Guide 7-9

Integrating SCRIPTS Programs Into “C” Language Drivers

Patching

7-10

Move Register instruction such that an offset can be added to a base
address for jumping into a table.

ENTRY Pat ch_| abel 1
ENTRY Pat ch_| abel 2

EXTERN SCRATCHAL_addr
EXTERN SCRATCHB_addr

MOVE MEMORY 4, Patch_I| abel 2+4, SCRATCHB addr
MOVE MEMORY 1, SCRATCHALl addr, Patch_I| abel 1+1

Pat ch_| abel 1:

MOVE SCRATCHBO + O to SCRATCHBO

MOVE SCRATCHB1 + 0 to SCRATCHB1 W TH CARRY
MOVE SCRATCHB2 + 0 to SCRATCHB2 W TH CARRY
MOVE SCRATCHB3 + 0 to SCRATCHB3 W TH CARRY

MOVE MEMORY 4, SCRATCHB addr, Patch_| abel 2+4

Pat ch_| abel 2:
JUMP REL(Junp_Tabl e)

Junp_Tabl e:

Patches to the SCRIPTS Instruction

Patch the Labels in the memory to memory move instructions first:
for (i=0; i<PATCHES; i++) {

SCRI PT[LABELPATCHES[i]] += VirttoPhys(SCRI PT);
}

Next patch Scratch register physical addresses:
SCRI PT[E_SCRATCHA1_addr Used[0]] =
VirttoPhys(chip_reg[ScratchA]) + 1;

SCRI PT[E_SCRATCHB_addr _Used[0]] =
VirttoPhys(chip_reg[ScratchB]);

SCRI PT[E_SCRATCHB_addr _Used[1]] =
VirttoPhys(chip_reg[ScratchB]);

These are the only patches required. LOAD and STORE
instructions could be used to replace the Memory to Memory Move
instructions.

Note: SCRATCHAL is used instead of SCRATCHAO due to the
alignment requirements of the Memory to Memory Move
instruction.

Symbios Logic PCI-SCSI Programming Guide

Integrating SCRIPTS Programs Into “C” Language Drivers
Running a SCRIPTS Program

Running a SCRIPTS Program

The SCRIPTS program is ready to run after all Command, Data,
and Message buffers have been set up for the 1/O. Start the
SCRIPTS program by writing the physical address of the program to
the DSP register. The superscript numerals refer to portions of the
sample code in Figure 7-1 and Figure 7-2.

The entry points named in this example are all different points where
SCRIPTS instructions could start.

static uquad start_offset[] = {
Ent_init_siop® Ent_start_up? Ent_switch®
S

This example starts the SCRIPTS program:

| ON it e32(PCl Devi cel OBase+DSP, get PhysAddr (script) +
start_of fset[node]);

In this example, node = 0 begins at i ni t_si op label, rode = 1
begins at st art _up, and node = 2 begins at the swi tch | abel .

Symbios Logic PCI-SCSI Programming Guide 7-11

Integrating SCRIPTS Programs Into “C” Language Drivers

Running a SCRIPTS Program

Figure 7-1
SCRIPTS Source File

7-12

; Single-threaded general purpose SCRIPTS routine

O fset for counts and addresses in the table
TABLE dsa_table \
sendnmsg = ??, \
rcvnmsg = ??, \
cnd_adr = ??, \
device = 1D{??}, \
status_adr = ??, \
ext _buf = 2?22, \
sync_in = 2?2, \

data_adr = ??

; The SCRIPTS routine has finished initializing the SIOP.
Absol ute done_init = 0x01

ABSOLUTE ok = 0x00

ABSCLUTE err1l = 0Ox0ffO01
ABSCLUTE err2 = 0xO0ff02
ABSCLUTE err3 = 0xOf f03
ABSOLUTE err4 = 0OxOf f04
ABSOLUTE err5 = 0xOf f 05
ABSOLUTE err6 = 0xO0ff 06
ABSCLUTE err7 = 0OxOf f07
ABSCLUTE err8 = 0xOf f 08
ABSCLUTE err9 = 0xO0ff09

EXTERN dsa_storage, out_offset, in_offset

; SCSI I/Oentry point. This address must be | oaded into the
; SIOP before initiating a SCSI 1/Q

ENTRY init_siop

ENTRY start_up

ENTRY switch

ENTRY dat ai n

Symbios Logic PCI-SCSI Programming Guide

Integrating SCRIPTS Programs Into “C” Language Drivers

ENTRY dat aout

init_siop:

I NT done_init

start_up:

SELECT ATN FROM devi ce, REL(resel)

Every phase cones back to here.
swi tch:
JUWP REL(nsgin), WHEN MSG I N
JUWP REL(msgout), |F MSG QUT
JUWP REL(command_phase), |IF C\VD
JUWP REL(dataout), |F DATA OUT
JUWP REL(datain), |F DATA IN
JUWP REL(end), |F STATUS

INT errl

nsgi n:
MOVE FROM rcvinsg, WHEN MSG I N
JUWP REL(ext _msg), |F 0x01
JUMP REL(disc), |F 0x04
CLEAR ACK

Running a SCRIPTS Program

JUWP REL(switch), IF 0x02 ; ignore save data pointers

JUWP REL(switch), IF 0x07 ; ignore nessage reject)

JUWP REL(switch), IF Ox03 ; ignore restore data pointers

INT err2

ext _msg:
CLEAR ACK
MOVE FROM ext _buf, WHEN MBG I N
JUWP REL(sync_nsg), |F 0x03

INT err3

Symbios Logic PCI-SCSI Programming Guide

7-13

Integrating SCRIPTS Programs Into “C” Language Drivers

Running a SCRIPTS Program

7-14

sync_nsg:

CLEAR ACK

MOVE FROM sync_in, WHEN MSG_ I N
CLEAR ACK

JUMP REL(switch)

di sc:

MOVE SCNTL2 & Ox7f to SCNTL2 ; expect di sconnect
CLEAR ACK

WAI T DI SCONNECT

WAI T RESELECT REL(sel ect_adr)

INT err4, WHEN NOT MSG_ I N
MOVE FROM rcvinsg, WHEN MSG I N
CLEAR ACK

INT err9

JUWP REL(switch)

nmsgout :

MOVE FROM sendnsg, WHEN MSG_OUT
JUWP REL(sw tch)

comand_phase:

MOVE FROM cnd_adr, WHEN CMVD
JUVP REL(swi tch)

After every data transfer add 8 to data_adr. This allows
scatter/gather operations when the list of addresses to

read or wite is appended to the end of the buffer_table.

1 dataout:

MOVE FROM data_adr, WHEN DATA OUT
MOVE MEMORY 4, out_offset, scratch_adr
CALL REL(addscratch)

MOVE MEMORY 4, scratch_adr, out_offset
JUMP REL(switch)

Symbios Logic PCI-SCSI Programming Guide

Integrating SCRIPTS Programs Into “C” Language Drivers
Running a SCRIPTS Program
2 datain:
MOVE FROM data_adr, WHEN DATA IN
MOVE MEMORY 4, in_offset, scratch_adr
CALL REL(addscratch)
MOVE MEMORY 4, scratch_adr, in_offset
JUWP REL(swi tch)

addscratch:
MOVE SCRATCHAO + 8 to SCRATCHAO
MOVE SCRATCHAO to SFBR
JUWP REL(ck_carry), |IF 0x00
RETURN

ck_carry:
MOVE SCRATCHAL + 1 to SCRATCHAL
RETURN

end:
MOVE FROM st atus_adr, WHEN STATUS
I NT err5, WHEN NOT MSG I N
MOVE FROM rcvinsg, WHEN MSG I N
MOVE SCNTL2 & Ox7f to SCNTL2 ; expect di sconnect
CLEAR ACK
WAI T DI SCONNECT
I NT ok

resel :

INT err6

sel ect _adr:

INT err?7

Symbios Logic PCI-SCSI Programming Guide 7-15

Integrating SCRIPTS Programs Into “C” Language Drivers
Running a SCRIPTS Program

Figure 7-2
NASM Output File

t ypedef unsigned | ong ULONG

ULONG SCRIPT[] = {
0x98080000L, 0x00000001L,
0x47000018L, 0x000001ESL,
0x878B0000L, 0x00000030L,
0x868A0000L, 0x000000FOL,
0x828A0000L, 0x000000F8L,
0x808A0000L, 0x00000100L,
0x818A0000L, 0x00000128L,
0x838A0000L, 0x00000180L,
0x98080000L, 0XO000FFO1L,
0x1F000000L, 0x00000008L,
0x808C0001L, 0x00000030L,
0x808C0004L, 0x00000068L,
0x60000040L, 0x00000000L,
0x808C0002L, OXFFFFFFAOL,
0x808C0007L, OXFFFFFFI8L,
0x808C0003L, OXFFFFFFI0L,
0x98080000L, 0Xx0000FFO2L,
0x60000040L, 0x00000000L,
0x1F000000L, 0x00000028L,
0x808C0003L, 0x00000008L,
0x98080000L, 0Xx0000FFO3L,
0x60000040L, 0x00000000L,
0x1F000000L, 0x00000030L,
0x60000040L, 0x00000000L,
0x80880000L, OXFFFFFF48L,
0x7C027F00L, 0x00000000L,
0x60000040L, 0x00000000L,
0x48000000L, 0x00000000L,
0x54000000L, 0x00000118L,
0x9F030000L, 0Xx0000FFO4L,
0x1F000000L, 0x00000008L,
0x60000040L, 0x00000000L,

7-16 Symbios Logic PCI-SCSI Programming Guide

Integrating SCRIPTS Programs Into “C” Language Drivers
Running a SCRIPTS Program
0x98080000L, 0OxO000FFO9L,
0x80880000L, OxFFFFFFOOL,
0x1EO000000L, 0x00000000L,
0x80880000L, OXFFFFFEFOL,
0x1A000000L, 0x00000010L,
0x80880000L, OxFFFFFEEOL,
0x18000000L, 0x00000038L,
0xC0000004L, 0x00000000L, OXxOOODFE34L,
0x88880000L, 0x00000044L,
0xC0000004L, OxO00DFE34L, 0x00000000L,
0x80880000L, OxFFFFFEBOL,
0x19000000L, 0x00000038L,
0xC0000004L, 0x00000000L, OxOO0ODFE34L,
0x88880000L, 0x00000014L,
0xC0000004L, OxO00DFE34L, 0x00000000L,
0x80880000L, OxFFFFFESOL,
0Ox7E340800L, 0x00000000L,
0x72340000L, 0x00000000L,
0x808C0000L, 0x00000008L,
0x90080000L, 0x00000000L,
0x7E350100L, 0x00000000L,
0x90080000L, 0x00000000L,
0x1B000000L, 0x00000020L,
O0x9F030000L, OxO0000FFO5L,
0Ox1F000000L, 0x00000008L,
0x7C027F00L, 0x00000000L,
0x60000040L, 0x00000000L,
0x48000000L, 0x00000000L,
0x98080000L, 0x00000000L,
0x98080000L, OxO000FFO6L,
0x98080000L, OXxO0000FFO7L

3
3 #define Ext_Count
char *External _Names[Ext _Count] = {
“dsa_storage”,

“in_offset”,

Symbios Logic PCI-SCSI Programming Guide 7-17

Integrating SCRIPTS Programs Into “C” Language Drivers
Running a SCRIPTS Program

“out _of fset”

}s

#define E_in_offset 0x00000000L
ULONG E_i n_offset_Used[] = {
0x0000005BL,
0x00000061L

}s

#define E out_offset 0x00000000L
ULONG E_out _of fset _Used[] = {
0x0000004FL,
0x00000055L

}s

#define Abs_Count 11
char *Absol ut e_Names[Abs_Count] = {
“done_init”,
“err2”,
“errl”,
“err3”,
“err4”,
“err5”,
“erre”,
“err7”,
“err9”,
“ok”,

“scratch_adr”

#define A ok 0x00000000L
ULONG A ok_Used[] = {
0x0000007DL

#define A _done_init 0x00000001L

ULONG A done_init_Used[] = {
0x00000001L

b

7-18 Symbios Logic PCI-SCSI Programming Guide

Integrating SCRIPTS Programs Into “C” Language Drivers

#define A errl OxO0000FFO1L
ULONG A errl_Used[] = {
0x00000011L

}s

#define A _err2 0x0000FFO2L
ULONG A err2_Used[] = {
0x00000021L

#define A_err3 Ox0000FFO3L
ULONG A err3_Used[] = {
0x00000029L

}s

#define A_err4 OxO000FFO4L
ULONG A err4_Used[] = {
0x0000003BL

}s

#define A _err5 0x0000FFO5L
ULONG A err5_Used[] = {
0x00000073L

}s

#define A err6 OxO0000FFO6L
ULONG A err6_Used[] = {
0x0000007FL

}s

#define A err7 OxO0000FFO7L
ULONG A err7_Used[] = {
0x00000081L

Symbios Logic PCI-SCSI Programming Guide

Running a SCRIPTS Program

7-19

Integrating SCRIPTS Programs Into “C” Language Drivers

Running a SCRIPTS Program

7-20

a b W L DN

#define A _err9 Ox0000FFO9L
ULONG A err9 Used[] = {
0x00000041L

#define A scratch_adr OxO0O0DFE34L

ULONG A scratch_adr_Used[] = {
0x00000050L,
0x00000054L,
0x0000005CL,
0x00000060L
b

#define Ent_datain 0x00000160L
#defi ne Ent _dataout 0x00000130L
#define Ent_init_siop 0x00000000L
#define Ent_start_up 0x00000008L
#define Ent_swi tch 0x00000010L

ULONG | NSTRUCTI ONS= 0x0000003FL;
ULONG PATCHES= 0x00000000L;

Symbios Logic PCI-SCSI Programming Guide

Writing Device Drivers With SCRIPTS
Overview

Chapter 8

Writing Device Drivers With
SCRIPTS

Overview

The architecture of a SCSI system may be viewed in layers, with each
layer providing data to the layers immediately above and below. The
device driver interfaces between the host operating system and the
SYMB53C8XX hardware and firmware. The device driver, host
operating system, and all applications reside in the host computer's
main memory. The SYM53C8XX is a separate hardware
component, but has direct access to host memory. Figure 8-1 shows
the relationship of the device driver to other parts of the SCSI

system.
Application Application Application
Host Operating System
Device Driver
SYM53C8XX
SCSI Device SCSI Device SCSI Device

Figure 8-1
The Role of the SCSI Device Driver

Symbios Logic PCI-SCSI Programming Guide 8-1

Writing Device Drivers With SCRIPTS
Overview

Figure 8-2
SCSI Device Driver Layers

8-2

The device driver itself contains two layers, illustrated in Figure 8-2.
The top layer is the operating system interface. It accepts and
interprets 1/O requests from the host operating system. These
requests may vary, depending on the type and vendor of the SCSI
device. The formatted requests are passed to the hardware interface,
or lower layer of the driver. The operating system interface must also
schedule SCSI bus accesses when more than one device is active. It
schedules the 1/O requests, and tracks the completed and
outstanding 1/Os, based on status passed back from the hardware
interface. The SCRIPTS program is compiled with the driver
program, and is loaded into host memory when the device driver
program starts.

Operating System Interface Layer

Device Type Driver
1/0 Scheduler
Vendor Specific Driver

Hardware Interface Layer

SCSI Hardware Specific Driver
(Host adapter, motherboard)

SCSI SCRIPTS Sequences

Main Device Scheduler Reselected
SCRIPT SCRIPT SCRIPT

The hardware interface layer interprets the operating system
interface's formatted requests and prepares the SYM53C8XX by
initializing the DMA, SCSI, and Interrupt registers and by loading
the appropriate SCRIPTS into host memory. It then reserves
memory for any data buffers that will be used by the SCRIPTS
program. The hardware interface layer initializes data buffer
addresses, byte counts, and SCSI IDs embedded in the SCRIPTS
code. It then starts the execution of the SCRIPTS routine by loading
the DSP register (2C-2Fh) with the address of the first SCRIPTS
instruction. It waits for an interrupt to signal that the 1/O is complete,
then passes 1/O status information back to the operating system
interface.

Symbios Logic PCI-SCSI Programming Guide

Writing Device Drivers With SCRIPTS
Command Block

Command Block

When the operating system interface layer of the SCSI device driver
receives an 1/O request, it creates a data structure in host memory.
This data structure contains the information required by the
hardware interface for that specific request. This information
generally includes:

« the length of the array

« the SCSI ID for the target device
« the logical unit number (LUN)

« the length of the command block

« the SCSI command containing the beginning block and the
number of blocks to be transferred

« a place for the hardware interface to write its completion status.
The operating system interface reads the completion status and
uses it to update the scheduler information.

Power Up Example

The hardware interface initializes the chip whenever the system is
powered up or reset. In the DOS example in Figure 8-3, the system
BIOS scans host memory for a ROM, signified by a 55AA code. It
reads the third byte of the ROM, which contains a jump address. The
following SYM53C8XX initialization information is located at that
address:

« diagnostics to be run
e« SCRIPTS to be loaded
« data buffer areas to be reserved

After performing these tasks, the hardware interface then scans for
the hard disk and loads the operating system from it. The operating

Symbios Logic PCI-SCSI Programming Guide 8-3

Writing Device Drivers With SCRIPTS
I/0 Request Process

system cannot be loaded from disk until the SCSI driver is active.
This power on sequence of activities is illustrated in Figure 8-3.

Host Memory

55AA - Jump €000

/ C2000

POWER UP — System BIOS Scan VGA Graphics BIOS

55AA - Jump D800

/

SCSI Driver Initialization
-diagnostics
-load SCRIPTS instruction
-initialize SCRIPTS instruction
-reserve data buffer area
-scan for hard disk
-load operating system from disk

Figure 8-3
Power Up Example

I/O Request Process

Figure 8-4 illustrates a typical SCSI 1/O operation. The 1/0O begins
when the user application makes a request to the host operating
system to access data on a SCSI device. The request is passed to the
SCSI device driver's operating system interface where it is
interpreted, scheduled, and formatted for the hardware interface.
The operating system interface creates a data structure in host
memory, which it passes to the hardware interface layer for
execution. The hardware interface uses the information in the
command block to determine which SCRIPTS routine to run, as
well as where to place the data in memory.

The hardware interface sets up the data areas for the command and
data, buffers (initialized table areas and buffers that are needed for
the SCRIPTS to execute), and loads the SCRIPTS starting address
into the DSP register of the SYM53C8XX chip. The SYM53C8XX
executes the subroutine, accessing the drive with the SCSI device ID
specified. When the 1/O is complete, the hardware interface receives
an interrupt and notifies the operating system interface. The
operating system interface reads the completion status and uses it to

8-4 Symbios Logic PCI-SCSI Programming Guide

Writing Device Drivers With SCRIPTS
1/0 Request Process

update the scheduler information. For more information on the
scheduler, refer to Chapter 10.

Host Memory

User Application

1/0 Request

Operating System

1/0 Request DOS 1/0 Request

Operating System
Interface

Device

Driver Command Block

Control
Information

Hardware Interface

SCRIPTS Address;
Control Information

Data Buffers

DAY

SYMS53C8XX

SCSI Control Data SCSI SCRIPTS

Buffers

/

SCSI Device

Figure 8-4
I/0 Operation

Symbios Logic PCI-SCSI Programming Guide 8-5

Writing Device Drivers With SCRIPTS

How to Write a Device Driver With SCRIPTS

8-6

How to Write a Device Driver With
SCRIPTS

To develop an executable SCSI SCRIPTS program, first define the
SCSI functions required. Identify which functions will be executed in
SCRIPTS code and which ones must be contained in other parts of
the driver code. Then, design the specific algorithms for the functions
that will be executed in the SCSI SCRIPTS portion of the SCSI
driver. A SCSI SCRIPTS program contains two areas: the definition
area and the SCRIPTS area. The definition area contains variable
and absolute values. These values may describe a variable location,
variable byte count, or a fixed status byte value. The SCRIPTS area
contains the SCSI instructions.

Use the SCRIPTS language to write instructions, then assemble
them to create the SCRIPTS output file. The assembler output is a
“C” include file that includes relocation information required to load
the SCRIPTS object module into main memory, if any relocation is
required. It can be directly included in firmware written in the “C”
language.

When the SCRIPTS starting address is loaded, the SCRIPTS
absolute jump addresses must be resolved. It is necessary to patch in
the correct buffer addresses, byte counts, destination 1D, and so
forth, if table indirect addressing is not used.

Writing a logical 1/O driver for the SYM53C8XX is easier than
previous generation solutions. Because SCSI sequences are so simple
to implement when written in SCSI SCRIPTS, you can rapidly
prototype SCSI sequences for proof of concept and build on them to
create more complete driver programs.

Symbios Logic PCI-SCSI Programming Guide

|
Block Move Instructions

Writing Device Drivers With SCRIPTS
Table Indirect Addressing

Table Indirect Addressing

Table indirect addressing simplifies SCRIPTS by separating
addresses and device information from control information in Block
Move and Select/Reselect instructions. One of the major advantages
of table indirect addressing is that SCRIPTS can directly load
operating system 1/O data from the tables, which increases program
efficiency and simplifies program structure. These tables eliminate
the need for patching SCRIPTS at the beginning of an 1/O. The table
can begin on any dword boundary and can cross system segment
boundaries. There are three restrictions on the placement of tables in
memory:

1 The I/O data structure must lie within 8 MB above or below the
base address.

2 An I/O table entry must have all 8 bytes contiguous in system
memory.

3 The table must be a contiguous data structure of 8-byte entries.

Prior to the start of an 1/O, the DSA register must be loaded with the
base address of the table indirect data structure. The address must be
on a dword boundary. At the start of a table indirect instruction, the
DSA is added to the 24-bit signed offset value from the op code to
generate the address of the table entry. Both positive and negative
offsets are allowed. With table indirect addressing, it is not necessary
to initialize the SCSI ID, byte counts, clock dividers, synchronous
parameters, or data buffers within the SCRIPTS instruction.
Instead, only the table in memory needs to be updated.

To use table indirect addressing, set up tables in memory similar to
the one shown in Figure 8-5. These tables contain device IDs,
synchronous period information, byte counts, and data addresses.
The data in the table entry is fetched into the appropriate instruction,
depending on whether it is a Block Move or a Select/Reselect.

When table indirect mode is selected by using the FROM operator in
a SCRIPTS Block Move instruction, the 32-bit start address is
treated as a 24-bit signed value. After the instruction is moved into
the SYM53C8XX, the 24 bits are added to the DSA register to form
a 32-bit physical address. From this new address, the byte count (24
bits of count plus 8 bits of high-order zeros) and the data buffer
address (32 bits) are fetched.

There are several programming implications of table indirect
addressing. First, a standard SCSI data structure can be designed

Symbios Logic PCI-SCSI Programming Guide 8-7

Writing Device Drivers With SCRIPTS
Table Indirect Addressing

|
Select/Reselect Instructions

8-8

with values at predefined offsets. The Block Move instruction does
not require the actual 32-bit address or 24-bit count to be in the
instruction itself. At the start of an 1/O, once the actual data structure
is built, no more firmware intervention is required except loading the
data table base address into the DSA register. Second, the SCRIPTS
instructions may be placed in a PROM because no dynamic
alteration is required at the start of an 1/O. Finally, only one copy of
the main SCSI SCRIPTS program is needed for all 1/O operations,
with a fast context switch used to change to another 1/0. Only the
data structure is unique to each 1/O, and the SCRIPTS instructions
are reusable.

Byte Byte Byte Byte
Dword 0 Lane 3 Lane 2 Lane 1 Lane 0
Byte Count
Byte Byte Byte Byte
Dword 1 Lane 3 Lane 2 Lane 1 Lane 0
Address

During a Select/Reselect, when FROM is used to indicate table
indirect addressing, the 24-bit signed value in the DBC register is an
offset relative to the value of the DSA register. The table indirect
feature allows the Synchronous Clock Conversion, Enable Wide
SCSiI, Clock Conversion Factor, SCSI Device 1D, Synchronous
Offset, and Synchronous Period bit values to be fetched from an 1/O
data structure that is built at the start of an 1/0. Thus, an 1/O can
begin with no requirement to write the values into the chip or into
the actual SCRIPTS instruction in memory. In the I/O data
structure, the user must have written the following 8-byte value:

Byte Byte Byte Byte
Lane 3 Lane 2 Lane 1 Lane 0
Dword 0
. . Period & Offset
Config (SCNTL3) | Device ID (SDID) (SXFER) Res
Byte Byte Byte Byte
Dword 1 Lane 3 Lane 2 Lane 1 Lane 0
Res Res Res Res

The configuration information in byte lane 3 is mapped into the
SCNTL3 register (03h). This includes the Synchronous Clock
Conversion Factor, Enable Wide SCSI, Enable Ultra SCSI, and
Clock Conversion Factor. The Encoded SCSI destination ID in byte
lane 2 is mapped into the SDID register (06h), and the period and

Symbios Logic PCI-SCSI Programming Guide

Writing Device Drivers With SCRIPTS
Table Indirect Addressing

offset information in byte lane 1 is mapped into the SXFER register
(05h). The data must begin on a 4-byte boundary and must be
located at the 24-bit signed offset from the address contained in the
DSA register.

Host Memory (table_0)

DSA > Select/Reselect

config ‘ ID | period & offset ‘ 0
0
(DSA + command_offset:) 0 ‘ cmd_byte_count Block Move
command_address

SYMS53C8XX

DBC Register

d |
>

DSPS Register

SCNTL3 Register

SDID Register

SXFER Register

Figure 8-5
Table Indirect Addressing

Symbios Logic PCI-SCSI Programming Guide 8-9

Writing Device Drivers With SCRIPTS
Table Indirect Addressing

— The first step in defining a table is to describe it in SCRIPTS code in
Defining a Table

terms of the order and size of table entries, or buffers. An example is
shown in Figure 8-6.

; Table definition and use in SCRI PTS

Tabl e dsa_table \

SCSI _I D = I D{0x33, 0x00, 0x00, 0x00}
Dat a_buf = 512{??} , \
ID msg = {0x80} , \
CVD_buf = {0x08, 0x00, 0x00, 0x00, O0x01, 0x00}

ENTRY t abl e_use

SCRIPTS Code Output File Memory Definition
table_use: ULONG SCRIPT []={
Cmd (Ox47)‘ Table Offset (0x00)
SELECT ATN FROM SCSI_ID, REL (resel) 0x47000000 0x00000020, »
Alternate Jump Address (0x20)
Cmd (OxlE)‘ Not Used
MOVE FROM ID_msg, WHEN MSG_OUT 0x1E000000 0x00000010, ™
Table Offset (0x10)
Cmd (OxlA)‘ Not Used
MOVE FROM CMD_buf, WHEN CMD 0x1A000000 0x00000018,
Table Offset (0x18)
Cmd (Oxlg)‘ Not Used
MOVE FROM Data_buf, WHEN DATA_IN 0x19000000 0x00000008 >
Table Offset (0x08)
INT Ox0A 0x98080000 0x0000000A,
resel:
int 0x0B 0x98080000 0x0900000B
#define ENT_table_use 0x00000000
ULONG INSTRUCTIONS = 0x00000006;
ULONG PATCHES = 0x00000000;

Figure 8-6
Table Definition

8-10 Symbios Logic PCI-SCSI Programming Guide

Writing Device Drivers With SCRIPTS
Relative Addressing

Relative Addressing

In relative addressing mode, the 24-bit signed value in the DSPS
register is used as a relative displacement from the current DMA
SCRIPTS Pointer (DSP) register. Using this mode, the 32-bit
physical address is formed at execution time, and there is no need to
patch a SCRIPTS instruction at run time. Relative addressing may
be used for jumps or calls, and requires no initialization of jump and
call addresses. This feature may also be used with the alternate
address field of Select, Reselect, Wait Select, and Wait Reselect
instructions.

Note: use the REL qualifier keyword in SCRIPTS instructions to
specify relative addressing. RELATIVE is a declarative keyword,
used by the SCRIPTS assembler, to establish relative buffers.
These relative buffers are not used in connection with relative
addressing.

Symbios Logic PCI-SCSI Programming Guide 8-11

Writing Device Drivers With SCRIPTS
Relative Addressing

8-12 Symbios Logic PCI-SCSI Programming Guide

SCRIPTS Programming Topics
Overview

Chapter 9

SCRIPTS Programming Topics

Overview

This chapter presents general information for some of the
programming tasks that are often performed by SCRIPTS programs.
For the most up-to-date example code for many of these operations,
please contact the Symbios Logic electronic bulletin board.

Scatter/Gather Operations

Scatter/gather is used when data that is scattered throughout memory
must be transferred across the SCSI bus together. Memory
management units keep track of physical locations of user data that
cannot be stored contiguously. During an 1/O request for a SCSI
device to fetch data, the memory management unit builds a gather
table that provides the addresses of all of the desired data. There may
be several entries, or pages, of data associated with a single transfer.
Without scatter gather each entry is treated as an individual transfer,
requiring a processor interrupt and DMA setup.

With SCSI SCRIPTS, it is possible to set up multiple data buffer
areas and then fill them rapidly without interrupting the host
processor. This allows faster and more efficient scatter/gather
operations. Block move data may come from any memory address, so
scatter/gather operations for user data are transparent to the chip and
the host processor. With the technique illustrated below, a number of
data buffers (pages, or gather table entries) are defined in advance
and each is associated with a Block Move instruction. Any number of
Block Moves can be hard-coded into the buffers. If the scatter/gather
list requested has more entries than have been defined for the buffer,
then an interrupt after the last entry in the series can inform the
firmware it needs to set up the remaining scatter gather entries after
the first group is complete.

Symbios Logic PCI-SCSI Programming Guide 9-1

SCRIPTS Programming Topics
Scatter/Gather Operations

RW O f set _pat ch_do:
;Relative offset will be changed so that we junp into the
;proper place in the scatter gather |ist

JUWP REL(Data_CQut_xfer); Data_OQut_xfer:
CHMOV FROM dat a_buf 1, WHEN DATA OUT CHMOV FROM dat a_buf 2, WHEN

; 16 noves to support Scatter Gather
DATA_QUT

CHMOV FROM dat a_buf 3, WHEN DATA OUT
CHMOV FROM dat a_buf 4, WHEN DATA OUT
CHVOV FROM dat a_buf 5, WHEN DATA_OUT
CHMOV FROM dat a_buf 6, WHEN DATA_OUT
CHMOV FROM dat a_buf 7, WHEN DATA_OUT
CHMOV FROM dat a_buf 8, WHEN DATA OUT
CHVMOV FROM dat a_buf 9, WHEN DATA OUT
CHMOV FROM dat a_buf 10, WHEN DATA_OUT
CHMOV FROM dat a_buf 11, WHEN DATA QUT
CHMOV FROM dat a_buf 12, WHEN DATA_OUT
CHMOV FROM dat a_buf 13, WHEN DATA_ OUT
CHMOV FROM dat a_buf 14, WHEN DATA_ OUT
CHMOV FROM dat a_buf 15, WHEN DATA_OUT
CHMOV FROM dat a_buf 16, WHEN DATA_OUT

; Check to see if we need nore SGlist entries
MOVE DWI & RW NEED MORE_SG ENTRI ES to SFBR
INT RWNeed More SG, if not O

: If we are here then all the data was transferred
; so we set a flag to indicate that
MOVE SBR | RWALL_DATA TRANSFERRED to DWI

JUMP REL(RW Handl e_Phase)

*** Script nmove data ENTRY
RW O fset_patch_di:

;Relative offset will be changed so that we junp into the
;proper place in the scatter gather |ist

JUMP REL(Data_l n_xfer); Data_ln_xfer:

CHMOV FROM rw_dat a_buf 1, WHEN DATA | N CHMOV FROM r w_dat a_buf 2,
VWHEN DATA I N

; 16 noves to support Scatter Gather
CHMOV FROM rw_dat a_buf3, WHEN DATA I N
CHMOV FROM rw_dat a_buf 4, WHEN DATA I N
CHVOV FROM rw_dat a_buf5, WHEN DATA_I N
CHVOV FROM rw_dat a_buf 6, WHEN DATA_I N
CHVOV FROM rw_dat a_buf 7, WHEN DATA_I N
CHVOV FROM rw_dat a_buf 8, WHEN DATA_I N
CHMOV FROM rw_dat a_buf9, WHEN DATA I N
CHVMOV FROM rw_dat a_buf 10, WHEN DATA_ I N
CHVOV FROM rw_dat a_buf 11, WHEN DATA_I N
CHMOV FROM rw_dat a_buf 12, WHEN DATA_ I N
CHMOV FROM rw_dat a_buf 13, WHEN DATA_ I N
CHMOV FROM rw_dat a_buf 14, WHEN DATA I N
CHMOV FROM rw_dat a_buf 15, WHEN DATA | N
CHMOV FROM rw_dat a_buf 16, WHEN DATA I N

9-2 Symbios Logic PCI-SCSI Programming Guide

SCRIPTS Programming Topics
Scatter/Gather Operations

; Check to see if we need nore SGlist entries
MOVE SBR & RW NEED MORE SG ENTRIES to SFBR
INT RW Need More SG, if not O

If we are here then all the data was transferred
; so we set a flag to indicate that
MOVE SBR | RWALL_DATA TRANSFERRED to DWI

The following example shows an alternative method for doing
scatter/gather operations in SCRIPTS. This mechanism uses a
looping strategy to execute each scatter/gather entry. On each loop
the DSA value is incremented by 8, effectively moving to the next
scatter/gather entry in the scatter/gather list. Generally, when this
strategy is used, the scatter/gather list is located at the end of the table
indirect entries or is located separately from the other table indirect
entries that handle (re)select, message, command and status phases.
The DSA value is then restored after the scatter gather operations are
complete or the target changes phase. This method of doing
scatter/gather operations requires that table indirect addressing be
used.

Move_Dat a:

MOVE MEMORY 4, DSA addr, ScratchB_addr ; save DSA
addr ess

JUWP REL(Data_l n_Loop), WHEN DATA IN

Dat a_Qut _Loop:

MOVE FROM i o_dat a_buf, WHEN DATA OUT

MOVE DSAO + 8 to DSAO ; Update DSA for scatter gather
JUMP REL(Skip_Carry_Adds_DO), |F NOT CARRY; operations
MOVE DSALl + 0 to DSA1 W TH CARRY

MOVE DSA2 + 0 to DSA2 W TH CARRY

MOVE DSA3 + 0 to DSA3 W TH CARRY

Ski p_Carry_Adds_DGC

JUWP REL(Data_CQut_Loop), WHEN DATA COUT

MOVE MEMORY 4, ScratchB_addr, DSA addr ; restore DSA
; addr ess

JUWMP REL(Get_Status), WHEN STATUS

JUWP REL(Handl e_Message), WHEN MSG I N

I NT Unexpect ed_Phase

Symbios Logic PCI-SCSI Programming Guide 9-3

SCRIPTS Programming Topics
Loopback Mode

|
Loopback Example -

Selection

9-4

Loopback Mode

The SYM53C8XX provides advanced diagnostic and testing
capabilities. Loopback mode allows the SYM53C8XX to control all
signals, regardless of whether it is in initiator or target role. This mode
provides the ability to check the functionality of the part, insuring
proper SCRIPTS instruction fetches, checking bad parity
procedures, and insuring all data paths work properly. The
SYM53C8XX loopback mode allows testing of both initiator and
target operations. In this mode, the SYM53C8XX allows control of
all SCSI signals, and actually talks to itself. The SYM53C8XX
usually executes initiator instructions through the SCRIPTS
program and the host CPU implements the target role by asserting
and polling the appropriate SCSI signals in the SOCL, SODL,
SBCL, and SBDL registers. The initiator role is accomplished using
SCSI SCRIPTS and the target role is implemented using “C” code
to access the 53C8XX registers. The roles could be switched to test
target role applications of the SYM53C8XX.

To run loopback mode correctly, the following registers must be
initialized to the proper values.

« STEST2. Bits 3 and 4 should be set to turn on loopback mode
and hi-z the SCSI pins, so that signals are not asserted onto the
SCSI bus. STEST 2 bits 7-6 and 0 do not affect loopback
operation, but should remain clear. The values of bits 5 and 2-1
will not affect the running of loopback mode

« DCNTL. Bit 4 should be set to turn on single step mode. This
allows the target program to monitor when an initiator SCRIPTS
instruction has completed. Bits 3-2 should be clear, and the
remaining bit values will not affect the running of loopback
mode.

. DIEN. Bit 3 should be set to enable single step interrupts. This
bit works in conjunction with the single step mode bit to allow for
monitoring of SCRIPTS instruction completion. The remaining
bit values in this register will not affect the running of loopback
mode.

The following example shows how to perform selection in the SCSI
Loopback mode. It provides all the general code required to
implement any of the various SCSI sequences in loopback mode.
This example assumes that the SYM53C8XX was initialized as
described above. The initiator instructions are implemented using the
SYM53C8XX and SCRIPTS. The target instructions are
implemented using the CPU and a “C” program.

Symbios Logic PCI-SCSI Programming Guide

SCRIPTS Programming Topics
Loopback Mode

When a SCRIPTS routine is executing, a waiting period is required
to fetch the SCRIPTS instructions; this fetch time must be taken into
account when writing loopback code. To insure proper operation, a
delay should be inserted directly after SCRIPTS instructions have
started executing. After the DSP register (2C-2Fh) is initialized with
a SCRIPTS instruction address, the chip registers cannot be
accessed until the instruction has been fetched and begins executing.
This delay time must include:

« host arbitration
e« SCRIPTS instruction fetch
« SCRIPTS instruction execution or internal bus moves

These delay times are system-dependent because of host arbitration
times, host bus width, and chip clock speed.

/*Load DSP with address of Select w ATN i nstruction*/
/* SELECT ATN tar_id, REL(This_wont_occur) */

wite | ongreg (DSP, SCRI PTS sel _inst);

/* Delay to allow instruction to be fetched by SIOP */
delay(1); /* 1 ns delay, varies with systenr/

/* TARGET, wait for SEL to go high and BSY to go | ow */
while ((siop_reg[SBCL] & 0x30) != 0x10;

/*TARGET, check ID, but really don't care what it is */

printf(“Initiator: Selecting target ID
o\ n", siop_reg[SBDL]);

/ * TARGET, assert BSY*/

siop_reg[SOCL] = 0x20;

/*TARCGET, wait for SEL to drop */
while ((siop_reg[SBCL] & 0x10) !=0);

In this section of code, the Initiator Select SCRIPTS routine is
started by writing the address of the Select instruction to the DSP. A
delay is inserted to insure that the SIOP has time to fetch the
instruction. Polling the SBCL register determines when SEL/ is
active and selecting itself.

The variable si op_r eg should be defined as a volatile pointer to the
registers of the SYM53C8XX. This insures that the registers will not
be shadowed internally by the CPU. Polling the SBDL register
determines which SCSI ID bits are being driven. This is not a vital
step in the loopback selection process, since the SYM53C8XX is
selecting itself. However, SBDL should be checked to make sure the

Symbios Logic PCI-SCSI Programming Guide 9-5

SCRIPTS Programming Topics
Loopback Mode

9-6

correct bits are driven on the SCSI data bus during normal selection.
The BSY/ bit is set in the SOCL register. This is a target operation
performed by the CPU. Polling the SEL/ bit of the SBCL register
determines when SEL/ is inactive. This indicates the “initiator” is
properly responding to BSY/ being asserted by the “target.”

/ *TARGET, check for ATN+/
if (siop_reg[SBCL] & 0x08) {

[*TARGET, assert BSY, and MSG OUT*/
siop_reg[SOCL] = 0x26;
/*Sel f-Selection with ATN is now conpl ete. */
/* Wait for single step interrupt*/
while ((siop_reg[lSTAT] & 0x03) ==0);

/*Clear all interrupts*/

junk = siop_reg[Sl STO];

j unk siop_reg[Sl ST1]

junk = siop_reg[DSTAT];

/*Start Script Block Mwve instruction*/

/*to send Identify Message to “Target” */

/*MOVE 1, identify_buf, WHEN MESSAGE OUT*/

si op_reg[DCNTL] | = 0x04;

/*Wait for SCRIPTS routine to finish using host bus*/
del ay(1);

The program checks the SBCL register to determine if the selection
is with or without SATN/. This will effect the next phase that is
asserted by the “target.” The desired phase is asserted by setting the
MSG/, C_D/, and I/O bits in the SOCL register while maintaining
BSY/. This would be Message Out if SATN/ was sampled asserted or
Command if SATN/ was sampled deasserted in the SBCL register.
At this point, selection with ATN/ is now complete. The SIP and DIP
bits in the ISTAT register are polled for a single step interrupt and
any others that may have occurred. These interrupts are cleared by
reading the SISTO, SIST1 and DSTAT registers. Note that the single
step interrupt will be cleared by reading the DSTAT register. Other
interrupts may occur, depending on the particular settings in the
SIEN and DIEN registers. It is a safe procedure to make sure all
interrupts are cleared, as any pending interrupts would inhibit the
execution of further SCRIPTS instructions. This example uses a

Symbios Logic PCI-SCSI Programming Guide

SCRIPTS Programming Topics
Loopback Mode

polled interrupt procedure. If hardware interrupts are used, then this
would be handled in an interrupt service routine.

The Start DMA operation bit of the DCNTL register is set so that
the Block Move SCRIPTS instruction will begin execution. This
Block Move instruction is used to transfer the identify message
associated with Selection with AT N/ to the target. A delay is inserted
to ensure that the SYM53C8XX has time to fetch the instruction.

The next section of code shows how to transfer bytes using loopback
mode. Although this is shown in line with the rest of the sample code,
it can be moved out into a separate function and used for any generic
data transfer between the initiator and the target, whenever the
SYM53C8XX is executing a Block Move instruction. The assertion
of the SREQ/ signal is the first thing that is done in this code.The
SREQ/ signal is asserted by keeping the phase bits the same and
setting the SREQ/ bit in the SOCL register. This is an acceptable
action for a data transfer from the “Initiator” to the “Target” (DATA
OUT, MESSAGE OUT, or COMMAND phase). For a transfer
from the “target” to the “initiator” (DATA IN, MESSAGE IN, or
STATUS phase) the data should be placed into the SODL register
before SREQ/ is asserted. Because the SYM53C8XX clocks
asynchronous data in on the rising edge of SACK/, data will be
corrupted if this procedure is not followed. If SREQ/ is asserted, the
SYMB53C8XX will immediately assert ACK/ and clock in whatever
data is in the SOCL register, if the data has not been placed into the
SOCL register, then incorrect data will be clocked in.

After asserting the SREQ/ signal, the SBCL register is polled for
assertion of the SACK/ signal by the “initiator.” Data is then read by
the “target” from the SBDL register. SREQ/ is deasserted by the
“target” using the SOCL register, and the “target” polls the SBCL
register for deassertion of SACK/ by the “initiator.” The byte received
by the “target™ is verified with the byte sent by the “initiator.”

/*TARGET, Get Message Byte */

/*TARGET, assert REQ nmintain all other SCSI signal s*/
si op_reg[SOCL] | =0x80;

/*TARGET, wait for ACK*/

while ((siop_reg[SBCL] & 0x40) !=0)

nsg_out _buf = siop_reg[SBDL]; /*read the data bus*/
siop_reg[SOCL] &=0x7f; /*deassert REQ/

while ((siop_reg[SBCL] & 0x40) !=0) /* wait for ACK*/
/* verify message byte */

if (msg_out_buf !'=identify_buf) {

loop_err = 1;

}

Symbios Logic PCI-SCSI Programming Guide 9-7

SCRIPTS Programming Topics
Loopback Mode

9-8

The following section of code shows the final step of the selection
procedure in Loopback mode. This selection procedure could be
placed into a function, as could procedures that implement
command, status, message in, and data transfer phases. Upon doing
this, full SCSI sequences could be implemented in loopback mode by
various function calls in the proper order.

If the selection was without AT N/, then nothing else needs to be
done other than assert the next phase and wait for a single step
interrupt. The MSG/, C_D/, and 1I_O/ signals are set to command
phase via the SOCL register. BSY/ is also kept asserted. The SIP and
DIP bits in the ISTAT register are polled for a single step interrupt
along with any other interrupts that may have occurred. These
interrupts are cleared by reading the SIST1, SISTO, and DSTAT
registers. Note that the single step interrupt will be cleared by
reading the DSTAT register, but depending on the particular settings
in the SIEN and DIEN registers, other interrupts may occur. It is a
safe procedure to make sure all interrupts are cleared, as any pending
interrupts would inhibit the execution of remaining SCRIPTS
instructions. This example uses a polled interrupt procedure. If
hardware interrupts are used then this would be handled in an
interrupt service routine. The chip is now in a state to transfer
command bytes. This can be accomplished by using the generic byte
transfer code given earlier in this example.

el se{ /*select w thout ATN+/
printf(“lInitiator: Selecting wi thout ATN.../n);
}
/*assert BSY and Conmand phase*/
siop_reg[SOCL} = 0x22;
/*wait for single step int.*/
while ((siop_reg[l STAT] & 0x03) == 0);

/* clear all interrupts */

j unk si op_reg[SI STO] ;

junk = siop_reg[SIST1];

junk = siop_reg[DSTAT];
[* SELECTI ON COWVPLETE*/

Symbios Logic PCI-SCSI Programming Guide

|
Saving the State of the

SYMS53C8XX

SCRIPTS Programming Topics
Byte Recovery on Target Disconnect

Byte Recovery on Target Disconnect

There are three cases where a disconnect may occur. The first is
during a Data Read, when a SCSI device may disconnect while it is
seeking the data that was requested. This is very common, such as
when a SCSI disk drive must perform a seek operation. Seeks often
take many milliseconds to accomplish, and it is inefficient for the disk
drive to stay active on the bus when it has nothing to transfer. A
second case is after a SCSI device completes a write operation, and
disconnects to empty its buffers before returning its status and
command complete messages.

The third type of disconnect may occur at any time. It occurs when
data is being written to a SCSI device and its internal buffers become
full. The device will disconnect before the data transfer is complete to
empty its buffers and avoid an overflow condition. When it does, the
SCSI bus is in a different phase from that expected by the initiator,
creating a phase mismatch. When this happens, the SYM53C8XX
must interrupt and the CPU must perform byte recovery. When a
disconnect occurs, data may be in transition; it is important to
determine how much and where it is. In addition, it is crucial to
know where in the SCRIPTS program the transfer was interrupted
so that it can be resumed at a later time. To save the state of the chip
at the time of the disconnect, get the address of the current
SCRIPTS instruction and calculate the number of bytes of active
data remaining to be transferred. After saving the state of the chip,
update the SCRIPTS program and flush or clear the FIFO.

The first step in saving the state of the SYM53C8XX is to write the
address of the current SCRIPTS instruction from the DSP register
to a special table that is indexed by SCSI ID. The instruction at that
address can be restored later to resume processing. The DSP is
incremented as the current instruction is fetched, so it will always
point to the next instruction. Therefore, the DSP will need to be
decremented by 8 or 12, depending on whether the instruction was a
regular SCRIPTS instruction or a Memory to Memory Move. This
can be determined by reading the DCMD register. Typically, the
instruction will be a Block Move. If table indirect addressing is used,
it may only be necessary to update the table and not the SCRIPTS
code.

Target disconnect may create a need to recover bytes in the chip’s
data paths. The location of the data is dependent on whether data is
being moved into or out of the chip, and whether SCSI data is being
transferred asynchronously or synchronously. The following steps will
determine if any bytes remain in the data path when the chip halts an
operation. Please consult the appropriate product data manual for

Symbios Logic PCI-SCSI Programming Guide 9-9

SCRIPTS Programming Topics
Byte Recovery on Target Disconnect

exact information on the default and extended (when supported)
DMA FIFO sizes in each SYM53C8XX PCI-SCSI 1/O Processor.

Asynchronous SCSI Send

1

If the DMA FIFO size is set to the default size, Look at the
DFIFO and DBC registers and calculate if there are bytes left in
the DMA FIFO. To make this calculation, subtract the seven least
significant bits of the DBC register from the 7-bit value of the
DFIFO register. AND the result with 7Fh for a byte count
between zero and the FIFO size.

If the DMA FIFO size is set to the extended size, subtract the 10
least significant bits of the DBC register from the 10-bit value of
the DMA FIFO Byte Offset Counter, which consists of bits 1-0
in the CTESTS register and bits 7-0 of the DMA FIFO register.
AND the result with 3FFh for a byte count between 0 and the
extended FIFO size.

Read bit 5 in the SSTATO and SSTAT2 registers to determine if
any bytes are left in the SODL register. If bit 5 is set in the
SSTATO or SSTAT?2 then the least significant byte or the most
significant byte in the SODL register is full, respectively.
Checking this bit also reveals bytes left in the SODL register from
a Chained Move operation with an odd byte count.

Synchronous SCSI Send

1

If the DMA FIFO size is set to the default size, look at the
DFIFO and DBC registers and calculate if there are bytes left in
the DMA FIFO. To make this calculation, subtract the seven least
significant bits of the DBC register from the 7-bit value of the
DFIFO register. AND the result with 7Fh for a byte count
between zero and the FIFO size.

If the DMA FIFO size is set to the extended size, subtract the 10
least significant bits of the DBC register from the 10-bit value of
the DMA FIFO Byte Offset Counter, which consists of bits 1-0
in the CTESTS register and bits 7-0 of the DMA FIFO register.
AND the result with 3FFh for a byte count between 0 and the
FIFO size.

Read bit 5 in the SSTATO and SSTAT 2 registers to determine if
any bytes are left in the SODL register. If bit 5 is set in the
SSTATO or SSTAT?2 then the least significant byte or the most
significant byte in the SODL register is full, respectively.
Checking this bit also reveals bytes left in the SODL register from
a Chained Move operation with an odd byte count.

9-10 Symbios Logic PCI-SCSI Programming Guide

3

SCRIPTS Programming Topics
Byte Recovery on Target Disconnect

Read bit 6 in the SSTATO and SSTAT 2 registers to determine if
any bytes are left in the SODR register. If bit 6 is set in the
SSTATO or SSTAT?2 then the least significant byte or the most
significant byte in the SODR register is full, respectively.

Asynchronous SCSI Receive

1

If the DMA FIFO size is set to the default size, Look at the
DFIFO and DBC registers and calculate if there are bytes left in
the DMA FIFO. To make this calculation, subtract the seven least
significant bits of the DBC register from the 7-bit value of the
DFIFO register. AND the result with 7Fh for a byte count
between 0 and the FIFO size.

If the DMA FIFO size is set to the extended size, subtract the 10
least significant bits of the DBC register from the 10-bit value of
the DMA FIFO Byte Offset Counter, which consists of bits 1-0
in the CTESTS register and bits 7-0 of the DMA FIFO register.
AND the result with 3FFh for a byte count between 0 and the
FIFO size.

Read bit 7 in the SSTATO and SSTAT2 register to determine if
any bytes are left in the SIDL register. If bit 7 is set in the
SSTATO or SSTAT?2 then the least significant byte or the most
significant byte is full, respectively.

If any wide transfers have been performed using the Chained
Move instruction, read the Wide SCSI Receive bit (SCNTLZ2, bit
0) to determine whether a byte is left in the SWIDE register.

Synchronous SCSI Receive

1

If the DMA FIFO size is set to the default size, subtract the seven
least significant bits of the DBC register from the 7-bit value of
the DFIFO register. AND the result with 7Fh for a byte count
between 0 and the FIFO size.

If the DMA FIFO size is set to the extended size, subtract the 10
least significant bits of the DBC register from the 10-bit value of
the DMA FIFO Byte Offset Counter, which consists of bits 1-0
in the CTESTS5 register and bits 7-0 of the DMA FIFO register.
AND the result with 3FFh for a byte count between 0 and the
FIFO size.

Read the SSTAT1 register (and bit 4 of the SSTAT?2 register for
extended FIFO size), the binary representation of the number of
valid bytes in the SCSI FIFO, to determine if any bytes are left in
the SCSI FIFO.

Symbios Logic PCI-SCSI Programming Guide 9-11

SCRIPTS Programming Topics
Byte Recovery on Target Disconnect

|
Updating the SCRIPTS

Program

|
Cleaning Up

|
Example Byte Recovery

Code

9-12

If any wide transfers have been performed using the Chained
Move instruction, read the Wide SCSI Receive bit (SCNTLZ2, bit
0) to determine whether a byte is left in the SWIDE register.

Once the number of bytes in transition has been calculated, the
SCRIPTS instruction must be updated so that the correct number of
bytes will be transferred when the target reselects. This is done by
updating the byte count and address in the SCRIPTS program at
whatever the current instruction was at the time of disconnect. The
SCRIPT is stored in the host's main memory, so it may be modified
at any time. This manipulation must be performed on the binary
version of the instruction in host memory unless table indirect
addressing is used. If table indirect mode is used, the byte count and
address would be modified in the data structure instead of the binary
version of the instruction.

Bytes that are already in transition must be processed. Depending on
the direction of transfer and how the user writes the code, any data
left in the chip must be flushed to memory (SCSI Receive only) or
cleared and discarded. The Flush DMA FIFO bit in the CTEST3
register flushes the DMA FIFO data to memory. The Clear DMA
FIFO bit in CTEST3 discards the data in the DMA FIFO. The Clear
SCSI FIFO bit in STEST3 clears the data out of the Synchronous
SCSI Receive FIFO and clears data in any other intermediate
registers.

In a normal disconnect situation, when a Phase Mismatch interrupt
occurs during a SCSI receive, no data should be left in the chip
except in the SWIDE register.

Note: The Wide SCSI Send and Wide SCSI Receive bits are
cleared by any non-wide send or receive action, such as moving
message bytes. Examine these bit values first during byte
recovery.

Byte recovery must be done when the SYM53C8XX receives a phase
mismatch interrupt either during Data In or Data Out phase. Below
are two example functions which handle these situations.

These examples use the following SCRIPTS sequence to move data:
Move_Dat a:
JUWP REL(RW O f set _patch_di), WHEN DATA_IN

;During a wite conmand, sone devices disconnect after all the
;data has been sent and reselect with Status and nsg_in. The
;following instructions prevents phase m smatch when this

; happens.

JUMP REL(RW Handl e_Phase) WHEN NOT DATA OUT

Symbios Logic PCI-SCSI Programming Guide

SCRIPTS Programming Topics
Byte Recovery on Target Disconnect

*** Script nove data out ENTRY
RW O f set _pat ch_do:

;Relative offset will be changed so that we junp
;into the proper place in the scatter gather |ist
JUMP REL(Data_OQut_xfer); Data_CQut_xfer:

CHVOV FROM dat a_buf 1, WHEN DATA OUT CHVOV FROM dat a_buf 2, WHEN
DATA_OUT

; 16 noves to support Scatter Gather
CHMOV FROM dat a_buf 3, WHEN DATA_OUT
CHMOV FROM dat a_buf 4, WHEN DATA_OUT
CHMOV FROM dat a_buf5, WHEN DATA _OUT
CHMOV FROM dat a_buf 6, WHEN DATA_ OUT
CHMOV FROM dat a_buf 7, WHEN DATA_ OUT
CHVOV FROM dat a_buf 8, WHEN DATA OUT
CHMOV FROM dat a_buf9, WHEN DATA_OUT
CHMOV FROM dat a_buf 10, WHEN DATA OUT
CHMOV FROM dat a_buf 11, WHEN DATA_OUT
CHMOV FROM dat a_buf 12, WHEN DATA_OUT
CHMOV FROM dat a_buf 13, WHEN DATA_OUT
CHMOV FROM dat a_buf 14, WHEN DATA_OUT
CHMOV FROM dat a_buf 15, WHEN DATA OUT
CHMOV FROM dat a_buf 16, WHEN DATA OUT

; Check to see if we need nore SGlist entries
;1n ol der SYMb3C8XX chi ps, SBR = DWI

MOVE SBR & RW NEED MORE _SG ENTRIES to SFBR
INT RW Need More SG, if not O

; If we are here then all the data was transferred
; so we set a flag to indicate that
MOVE SBR | RWALL_DATA TRANSFERRED to DWI

JUWP REL(RW Handl e_Phase)

*** Script nove data ENTRY
RW O fset_patch_di:

;Relative offset will be changed so that we junp into the
;proper place in the scatter gather |ist

JUWP REL(Data_l n_xfer); Data_Iln_xfer:

CHMOV FROMrw_dat a_buf 1, WHEN DATA | N CHMOV FROMrw_dat a_buf 2,
VWHEN DATA | N

; 16 noves to support Scatter Gather
CHVOV FROM rw_dat a_buf 3, WHEN DATA_I N
CHMOV FROM rw_dat a_buf4, WHEN DATA I N
CHVOV FROM rw_dat a_buf5, WHEN DATA I N
CHVOV FROM rw_dat a_buf 6, WHEN DATA I N
CHVOV FROM rw_dat a_buf 7, WHEN DATA_I N
CHVOV FROM rw_dat a_buf8, WHEN DATA I N
CHVOV FROM rw_dat a_buf9, WHEN DATA_I N
CHVMOV FROM rw_dat a_buf 10, WHEN DATA I N
CHVOV FROM rw_dat a_buf 11, WHEN DATA I N
CHMOV FROM rw_dat a_buf 12, WHEN DATA I N
CHMOV FROM rw_dat a_buf 13, WHEN DATA I N
CHMOV FROM rw_dat a_buf 14, WHEN DATA I N
CHVMOV FROM rw_dat a_buf 15, WHEN DATA_I N

Symbios Logic PCI-SCSI Programming Guide 9-13

SCRIPTS Programming Topics
Byte Recovery on Target Disconnect

CHVOV FROM rw_dat a_buf 16, WHEN DATA I N

: Check to see if we need nore SGlist entries
MOVE SBR & RW NEED MORE_SG ENTRIES to SFBR
INT RW Need_Mre_SG if not O

; If we are here then all the data was transferred
; SO we set a flag to indicate that
MOVE SBR | RWALL_DATA TRANSFERRED to DWI

JUWP REL(RW Handl e_Phase)

*** Script nove SWDE byte ENTRY
RW Mbve_swi de_byt e:
CHVOV 1, RW Last_di _byte_buf, WHEN DATA I N
I NT RW SW DE byte noved

Example Function for handling DATA IN Phase
Mismatch interrupts

/*-k***********-k***

Functi on: Handl eDat al nPM

Purpose : To handl e clean up after a Phase Msmatch (PM
during Data In phase

Input: The 10O Base address of the 8XX chip
A pointer to a variable which will indicate the
Scatter Gather entry that was executing when the
PM occurred, this is needed by the upper function
if there was a byte in the SWDE register.

Qutput: Current_SG Entry is filled in with the SG
entry that was being serviced.
Assunptions: That a phase mi smatch has actually
occurred during data in.
Restrictions: None
O her functions called: |ORead32 to read chip info
iowite32 to start the script
G obal Vari abl es Used: First Dl Move_paddr is the
physi cal address of the first Data In
bl ock nove in the scatter/gather
list. This is needed to get the
| ocation of the scatter/gather entry
t hat was bei ng serviced when the
phase nmi smatch occurred.
dsa_table is the table indirect table
that is being used for this IO
script is the actual script that was
bei ng executed when the phase
m smat ch occurred.
DATA BUF1 is the offset into the Table
Indirect entries for the first Data
In table entry.

9-14 Symbios Logic PCI-SCSI Programming Guide

SCRIPTS Programming Topics
Byte Recovery on Target Disconnect

**/

static void Handl eDat al nPM ULONG PCl Devi cel OBase, | NT\
*Current _SG Entry)

{

ULONG Current _DSP; /* Holds current DSP val ue */

/* where am| in the SGlist? */

Current _DSP = | CRead32(PCl Devi cel OBase+DSP) - 8;

*Current _SG Entry=(VINT) (Current_DSP-\ Fi r st DI Move_paddr) /
8;

/* On Data In phase mismatch interrupts the part is
automatically flushed so there is no need to check for residual
data in the part, except for data in the SWDE byte*/

/* now updat e the address and count */

dsa_t abl e[DATA BUF1 + *Current _SG Entry].address +=
dsa_t abl e[DATA BUF1 + *Current _SG Entry].count -
(1 ORead32(PCl Devi cel OBase+DBC) & OxOOFFFFFFI);

dsa_t abl e[DATA BUF1 + *Current _SG Entry].count =
| ORead32(PCl Devi cel OBase+DBC) & OxOOFFFFFFI ;

/* update the junp offset into the SGlist */
script[(INT) (Ent_RWOfset_patch_di/4) + 1] =
(ULONG *Current _SG Entry * 8;

/* nmove the byte in SWDE if necessary */
i f (I ORead8(PCl Devi cel OBase+SCNTL2) & 0x01)

{

/* patch nmove to get byte out of chip */
script[(INT) E_RWLast _di_byte buf_Used[0]] =
buf f er _t abl e[DATA_BUF1 +
*Current _SG Entry]. address;

/* start script to nove byte */

i owite32(PCl Devi cel OBase+DSP,
get PhysAddr (rw_script) +
Ent _RW Move_swi de_byte);

}
el se /* nothing in swide so start the di sconnect
[*script */
i owite32(PCl Devi cel OBase+DSP,
get PhysAddr (rw_script) + Ent_RW Handl e_Phase);

Symbios Logic PCI-SCSI Programming Guide 9-15

SCRIPTS Programming Topics
Byte Recovery on Target Disconnect

Example Function for handling DATA OUT Phase
Mismatch interrupts:

/***

Function: Handl eDat aCut PM

Purpose: To handl e clean up after a Phase M smatch (PMduring
Data Qut phase
Input: A pointer the pcidev_record.
Qut put: None
Assunptions: That a phase nismatch has actually
occurred during data out.
Restrictions: None
O her functions called: | ORead32/8 to read chip info
RMMN to set bits in chip registers
iowite32 to start the script
d obal Variabl es Used: Fi rst DOVbve_paddr is the
physi cal address of the first Data
Qut bl ock nove in the scatter/gather
list. This is needed to get the
| ocation of the scatter/gather entry
that was bei ng serviced when the
phase m smatch occurred.
dsa_table is the table indirect table that
is being used for this IO
script is the actual script that was being
execut ed when the phase m snatch
occurr ed.
DATA BUF1 is the offset into the Table
Indirect entries for the first Data
In table entry.

**/

static void Handl eDat aCut PM pci dev_record *PCl Devi ce)

{

ULONG Current _DSP;/* holds current dsp value */

INT Current _SG Entry;/* Used to calc. Current SG
entry */

U NT DFI FO val ; /* Hol ds chip DFI FO val ue */

U NT Bytes_renmining;/* Used to accout for other
bytes in chip */

/* where am| in the SGlist? */
Current _DSP = | CRead32(PCl Devi cel OBase+DSP) - 8;
Current _SG Entry = (INT) (Current_DSP -

Fi r st DOVbve_paddr) / 8;

/* now update the address and count */
buf fer _t abl e[DATA BUF1 + Current _SG Entry]. address +=
buf f er _t abl e[DATA_ BUF1 + Current _SG Entry].count -
(1 ORead32(PCl Devi cel OBase+DBC) & OxO0FFFFFFI) ;
buf f er _tabl e[DATA_ BUF1 + Current_SG Entry].count =
| ORead32(PCl Devi cel OBase+DBC) & OxOOFFFFFFI ;

/* Update count and address to reflect any data left in the
chip */

9-16 Symbios Logic PCI-SCSI Programming Guide

SCRIPTS Programming Topics
Byte Recovery on Target Disconnect

/* First check for data in the DVA FI FO */

/* The variable DFIFO val is a conbination of bits

/*1-0 of CTEST5 and bits 7-0 of the DFIFO register

/*this will take care of both the extended FIFO
devi ces

/*and all others */

DFI FO val = ((1 ORead8(PCl Devi cel OBase+CTEST5) &
0x03) << 8) |

(1 ORead8(PCl Devi cel OBase+DFI FO)) ;

i f (I ORead8(PCl Devi cel OBase+CTEST5) & 0x20)/* big
fifo */
Byt es_renmai ning = (DFI FO_val - (U NT)
| ORead32(PCl Devi ce- >base_addr 2+DBC) & Ox3FF) &
Ox3FF;

el se/* default FIFO size*/
Byt es_remai ning = (DFI FO val - (Ul NT)
| ORead32(PCl Devi ce- >base_addr 2+DBC) & Ox7F) &
OX7F;

/* now check the other regs that nmay contain data*/

/* SODL LSB Full ?*/
i f (1 ORead8(PCl Devi ce->base_addr 2+SSTAT0) & 0x20)
Byt es_r emai ni ng++;

/* SCDL MSB Ful | ?2*/
if (1ORead8(PCl Devi ce->base_addr 2+SSTAT2) & 0x20
) Bytes_remai ni ng++;

/* SODR LSB Ful |l ?*/
i f (I ORead8(PCl Devi ce->base_addr 2+SSTAT0) & 0x40)
Byt es_r emai ni ng++;

/* SODR MSB Ful | 2%/
i f (1 ORead8(PCl Devi ce->base_addr 2+SSTAT2) & 0x40)
Byt es_renai ni ng++;

/* Now update the Tl entry */

rw_buffer_tabl ef] RW DATA BUF1 +

Current _SG Entry].address -= Bytes_renmining;
rw_buffer_tabl ef] RW DATA BUF1 +

Current _SG Entry].count += Bytes_renaining;

/* update the junp offset into the SG1list */
rw script[(INT) (Ent_RWOfset _patch_do/4) + 1] =
(ULONG Current _SG Entry * 8;

/*clear the dma fifo to get any | eft over data out */
RMMN(PCl Devi ce- >base_addr 2+CTEST3, 0x04);

/* start the disconnect script */
i owite32(PClDevicel OBase, getPhysAddr(rw script) +
Ent _RW Handl e_Phase) ;

Symbios Logic PCI-SCSI Programming Guide 9-17

SCRIPTS Programming Topics
Synchronous Negotiation and Transfer

Synchronous Negotiation and
Transfer

The SYM53C8XX must negotiate a set of synchronous parameters
for each synchronous device on the SCSI bus. The parameters for
each SCSI device are saved in memory, and reloaded into the
registers before communications resume between the set of devices.
A sample synchronous negotiation SCRIPTS program is supplied in
Appendix D. Once the synchronous parameters acceptable to the
target are received in the Message In phase, an interrupt returns
control to the interrupt service routine, which could program the
clock dividers and the synchronous parameters in the SCTNL3 and
SXFER registers. The parameters would then be saved for this
synchronous device.

When this device is selected again, the SELECT FROM command
could be used to indicate table indirect addressing. If table indirect
addressing is used, the SCNTL3, SDID, and SXFER registers would
be loaded from the table entry. If the device reselects the initiator,
these parameters need to be reloaded into the registers before the
data transfer begins. One method for loading them is to use a table
indirect Select instruction with the alternate address jump
programmed to the next instruction. This instruction must be
executed after determining the ITLQ nexus and loading the DSA to
point to the proper 1/O data structure.

; 1 TLQ nexus conpl ete and DSA | oaded prior to performnng
;this Sel ect
SELECT FROM SCSI | D, REL(Next_lnstr)

Next _Instr:
;begin 1/0

The negotiated transfer information is stored in a table for use in
later connections to a particular target. This information can be
stored in the DSA table for use with table indirect Select and
Reselect SCRIPTS instructions. The I/0O command structure must
have all four bytes contiguous in system memory, as shown below.

SCNTL3 SDID SXFER (00)

9-18 Symbios Logic PCI-SCSI Programming Guide

|
Polling and

Hardware Interrupts

|
Registers

SCRIPTS Programming Topics
Interrupt Handling

Interrupt Handling

The SCRIPTS processor in the SYM53C8XX performs most
functions independently of the host microprocessor. However,
certain interrupt situations must be handled by the external
microprocessor. This section explains all aspects of interrupts as they
apply to the SYM53C8XX.

The external microprocessor can be informed of an interrupt
condition by polling or hardware interrupts. Polling means that the
microprocessor must continually loop and read a register until it
detects a bit set that indicates an interrupt. This method is the fastest,
but it wastes CPU time that could be used for other system tasks. The
preferred method of detecting interrupts in most systems is hardware
interrupts. In this case, the SYM53C8XX will assert the Interrupt
Request (IRQY/) line that will interrupt the microprocessor when an
interrupt condition occurs, causing the microprocessor to execute an
interrupt service routine. A hybrid approach can also be used that
would use hardware interrupts for long waits, and polling for short
waits.

The registers in the SYM53C8XX that are used for detecting or
defining interrupts are the ISTAT, SISTO, SIST1, DSTAT, SIENO,
SIEN1, and DIEN.

ISTAT

The ISTAT is the only register that can be accessed as a slave during
SCRIPTS operation, therefore it is the register that is polled when
polled interrupts are used. It is also the first register that should be
read when the IRQ/ pin has been asserted in response to a hardware
interrupt. The INTF (Interrupt on the Fly) bit should be the first
interrupt serviced. It must be written to one to be cleared. This
interrupt must be cleared before servicing any other interrupts. If the
SIP bit in the ISTAT register is set, then a SCSI-type interrupt has
occurred and the SISTO and SIST1 registers should be read. If the
DIP bit in the ISTAT register is set, then a DMA-type interrupt has
occurred and the DSTAT register should be read. SCSI-type and
DMA-type interrupts may occur simultaneously, so in some cases
both SIP and DIP may be set.

SISTO and SIST1

The SISTO and SIST1 registers contain the SCSI-type interrupt bits.
Reading these registers will determine which condition or conditions
caused the SCSI-type interrupt, and will clear that SCSI interrupt
condition. If the SYM53C8XX is receiving data from the SCSI bus

Symbios Logic PCI-SCSI Programming Guide 9-19

SCRIPTS Programming Topics
Interrupt Handling

|
Fatal vs. Non-Fatal

Interrupts

9-20

and a fatal interrupt condition occurs, the SYM53C8XX will
attempt to send the contents of the DMA FIFO to memory before
generating the interrupt. If the SYM53C8XX is sending data to the
SCSI bus and a fatal SCSI interrupt condition occurs, data could be
left in the DMA FIFO. Because of this, the DMA FIFO Empty
(DFE) bit in DSTAT should be checked. If this bit is clear, set the
CLF (Clear DMA FIFO) and CSF (Clear SCSI FIFO) bits before
continuing. The CLF bit is bit 2 in CTEST3. The FLF bit is bit 3 in
CTEST3.The CSF bitis bit 1 in STESTS3.

DSTAT

The DSTAT register contains the DMA-type interrupt bits. Reading
this register will determine which condition or conditions caused the
DMA-type interrupt, and will clear that DMA interrupt condition.
Bit 7 in DSTAT, DFE (DMA FIFO Empty), is purely a status bit; it
will not generate an interrupt under any circumstances and will not
be cleared when read. DMA interrupts will flush neither the DMA
nor SCSI FIFOs before generating the interrupt, so the DFE bit in
the DSTAT register should be checked after any DMA interrupt. If
the DFE bit is clear, then the FIFOs must be cleared by setting the
CLF (Clear DMA FIFO) and CSF (Clear SCSI FIFO) bits, or
flushed by setting the FLF (Flush DMA FIFO) bit.

SIENO and SIEN1

The SIENO and SIENL1 registers are the interrupt enable registers for
the SCSI interrupts in SISTO and SIST1.

DIEN

The DIEN register is the interrupt enable register for DMA
interrupts in DSTAT.

DCNTL (SYM53C825A, 53C875, 53C876, 53C885, 53C895
only)

When bit 1 in this register is set, the IRQ/ pin will not be asserted
when an interrupt condition occurs. The interrupt is not lost or
ignored, but merely masked at the pin. Clearing this bit when an
interrupt is pending will immediately cause the IRQ/ pin to assert. As
with any register other than ISTAT, this register cannot be accessed
except by a SCRIPTS instruction during SCRIPTS execution.

A fatal interrupt, as the name implies, always causes SCRIPTS to
stop running. All non-fatal interrupts become fatal when they are
enabled by setting the appropriate interrupt enable bit. Interrupt
masking will be discussed later in this section. All DMA interrupts
(indicated by the DIP bit in ISTAT and one or more bits in DSTAT
being set) are fatal.

Symbios Logic PCI-SCSI Programming Guide

|
Masking

SCRIPTS Programming Topics
Interrupt Handling

Some SCSI interrupts (indicated by the SIP bit in the ISTAT and
one or more bits in SISTO or SIST1 being set) are non-fatal. When
the SYM53C8XX is operating in Initiator mode, only the Function
Complete (CMP), Selected (SEL), Reselected (RSL), General
Purpose Timer Expired (GEN), and Handshake to Handshake Timer
Expired (HTH) interrupts are non-fatal. When operating in Target
mode CMP, SEL, RSL, Target mode: SATNY/ active (M/A), GEN,
and HTH are non-fatal. Refer to the description for the Disable Halt
on a Parity Error or SATN/ active (Target Mode Only) (DHP) bit in
the SCNTLZ1 register to configure the chip’s behavior when the
SATN/ interrupt is enabled during Target mode operation. The
Interrupt on the Fly interrupt is also non-fatal, since SCRIPTS can
continue when it occurs.

The reason for non-fatal interrupts is to prevent SCRIPTS from
stopping when an interrupt occurs that does not require service from
the CPU. This prevents an interrupt when arbitration is complete
(CMP set), when the SYM53C8XX has been selected or reselected
(SEL or RSL set), when the initiator has asserted SATN/ (target
mode: SATN/ active), or when the General Purpose or Handshake to
Handshake timers expire. These interrupts are not needed for events
that occur during high-level SCRIPTS operation.

Masking an interrupt means disabling or ignoring that interrupt.
Interrupts can be masked by clearing bits in the SIENO and SIEN1
(for SCSI interrupts) interrupt enable registers or the DIEN (for
DMA interrupts) interrupt enable register. How the chip will
respond to masked interrupts depends on: whether polling or
hardware interrupts are being used; whether the interrupt is fatal or
non-fatal; and whether the chip is operating in initiator or target
mode.

If a non-fatal interrupt is masked and that condition occurs,
SCRIPTS will not stop, the appropriate bit in the SISTO or SIST1
will still be set, the SIP bit in the ISTAT will not be set, and the IRQ/
pin will not be asserted. See the section on non-fatal vs. fatal
interrupts for a list of the non-fatal interrupts.

If a fatal interrupt is masked and that condition occurs, then
SCRIPTS will still stop, the appropriate bit in the DSTAT, SISTO, or
SIST1 register will be set, and the SIP or DIP bits in the ISTAT will
be set, but the IRQ/ pin will not be asserted.

When the chip is initialized, enable all fatal interrupts if you are using
hardware interrupts. If a fatal interrupt is disabled and that interrupt
condition occurs, SCRIPTS will halt and the system will never know
it unless it times out and checks the ISTAT after a certain period of
inactivity.

Symbios Logic PCI-SCSI Programming Guide 9-21

SCRIPTS Programming Topics
Interrupt Handling

|
Stacked Interrupts

9-22

If you are polling the ISTAT instead of using hardware interrupts,
then masking a fatal interrupt will make no difference since the SIP
and DIP bits in the ISTAT inform the system of interrupts, not the
IRQ/ pin.

Masking an interrupt after IRQ/ is asserted will not cause IRQ/ to be
deasserted.

The SYM53C8XX has the ability to stack interrupts if they occur
one after the other. If the SIP or DIP bits in the ISTAT register are
set (first level), then there is already at least one pending interrupt
and any future interrupts will be stacked in extra registers behind the
SISTO, SIST1, and DSTAT registers (second level). When two
interrupts have occurred and the two levels of the stack are full, any
further interrupts will set additional bits in the extra registers behind
SISTO, SIST1, and DSTAT. When the first level of interrupts is
cleared, all the interrupts that came in afterward will move into the
SISTO, SIST1, and DSTAT. After the first interrupt is cleared by
reading the appropriate register, the IRQ/ pin will be deasserted for a
minimum of three CLKSs; the stacked interrupt(s) will move into the
SISTO, SIST1, or DSTAT; and the IRQ/ pin will be asserted once
again.

Since a masked non-fatal interrupt will not set the SIP or DIP bits,
interrupt stacking will not occur as a result of a masked, non-fatal
interrupt. A masked, non-fatal interrupt will still post the interrupt in
SISTO, but will not assert the IRQ/ pin. Since no interrupt is
generated, future interrupts will move right into the SISTO or SIST1
instead of being stacked behind another interrupt. When another
condition occurs that generates an interrupt, the bit corresponding to
the earlier masked non-fatal interrupt will still be set.

A related situation to interrupt stacking is when two interrupts occur
simultaneously. Since stacking does not occur until the SIP or DIP
bits are set, there is a small timing window in which multiple
interrupts can occur but will not be stacked. These could be multiple
SCSI interrupts (SIP set), multiple DMA interrupts (DIP set), or
multiple SCSI and multiple DMA interrupts (both SIP and DIP set).

As previously mentioned, DMA interrupts will not attempt to flush
the FIFOs before generating the interrupt. It is important to set
either the Clear DMA FIFO (CLF) and Clear SCSI FIFO (CSF)
bits if a DMA interrupt occurs and the DMA FIFO Empty (DFE)
bit is not set. This is because any future SCSI interrupts will not be
posted until the DMA FIFO is clear of data. These ‘locked out’ SCSI
interrupts will be posted as soon as the DMA FIFO is empty.

Symbios Logic PCI-SCSI Programming Guide

|
Halting in an
Orderly Fashion

|
Sample Interrupt

Service Routine

SCRIPTS Programming Topics
Interrupt Handling

When an interrupt occurs, the SYM53C8XX will attempt to halt in
an orderly fashion.

« Ifin the middle of an instruction fetch, the fetch will be
completed, except in the case of a Bus Fault. Execution will not
begin, but the DSP will point to the next instruction since it is
updated when the current instruction is fetched.

« If the DMA direction is a write to memory and a SCSI interrupt
occurs, the SYM53C8XX will attempt to flush the DMA FIFO
to memory before halting. Under any other circumstances only
the current cycle will be completed before halting, so the DFE bit
in DSTAT should be checked to see if any data remains in the
DMA FIFO.

« SCSI SREQ/SACK handshakes that have begun will be
completed before halting.

o The SYM53C8XX will attempt to clean up any outstanding
synchronous offset before halting.

« In the case of Transfer Control Instructions, once instruction
execution begins it will continue to completion before halting.

« Iftheinstruction is a JUMP/CALLWHEN/IF <phase>, the DSP
will be updated to the transfer address before halting.

« All other instructions may halt before completion.

The following is a sample of an interrupt service routine for the
SYM53C8XX. It can be repeated if polling is used, or should be
called when the IRQ/ pin is asserted if hardware interrupts are used.

1 Read ISTAT.

2 If the INTF bit is set, it must be written to a one to clear this
status.

3 Ifonly the SIP bit is set, read SISTO and SIST1 to clear the SCSI
interrupt condition and get the SCSI interrupt status. The bits in
the SISTO and SIST1 tell which SCSI interrupt(s) occurred and
determine what action is required to service the interrupt(s).

4 If only the DIP bit is set, read the DSTAT to clear the interrupt
condition and get the DMA interrupt status. The bits in the
DSTAT will tell which DMA interrupt(s) occurred and
determine what action is required to service the interrupt(s).

5 If both the SIP and DIP bits are set, read SISTO, SIST1, and
DSTAT to clear the SCSI and DMA interrupt condition and get
the interrupt status. If using 8-bit reads of the SISTO, SIST1,
and DSTAT registers to clear interrupts, insert a
12 CLK delay between the consecutive reads to ensure that the

Symbios Logic PCI-SCSI Programming Guide 9-23

SCRIPTS Programming Topics

Migrating Existing Software to Ultra and Ultra2 SCSI

9-24

interrupts clear properly. Both the SCSI and DMA interrupt
conditions should be handled before leaving the ISR. It is
recommended that the DMA interrupt be serviced before the
SCSI interrupt, because a serious DMA interrupt condition
could influence how the SCSI interrupt is acted upon.

When using polled interrupts, go back to step 1 before leaving the
interrupt service routine, in case any stacked interrupts moved in
when the first interrupt was cleared. When using hardware
interrupts, the IRQ/ pin will be asserted again if there are any
stacked interrupts. This should cause the system to re-enter the
interrupt service routine. The example program in Appendix F
contains an interrupt service routine for an initiator; Appendix G
is a sample interrupt service routine that is more typical for a
target device.

Migrating Existing Software to Ultra
and Ultra2 SCSI

Ultra SCSI and Ultra2 SCSI extend the Fast SCSI-2 specification to
allow synchronous transfer periods to be negotiated down as low as
50 ns (Ultra SCSI) or 25 ns (Ultra2 SCSI). This allows a maximum
transfer rate of 20 MB/s on an 8-bit SCSI bus or 40 MB/s on a wide
SCSI bus for Ultra SCSI, and 40 MB/s on an 8-bit bus or 80 MB/s
on a wide SCSI bus for Ultra2 SCSI. Refer to Chapter 1 to
determine which members of the SYM53C8XX family support Ultra
SCSI and Ultra2 SCSI.

To achieve Ultra SCSI or Ultra2 SCSI transfer rates, existing
software programs must be updated to reflect changes in the
following areas of the SYM53C8XX (additional minor changes may
be needed to migrate existing software to support all the features in
the new device):

1 SCNTL3 Register CCF bits - adjust the bit values to reflect the
desired clock divider

2 SCNTL3 Register SCF bits - adjust the bit values to reflect the
SCLK frequency, doubled or quadrupled if applicable

3 SXFER Register XFERP bits - adjust the bit values to reflect the
desired divider values for the synchronous period

4 Adjust the Clock input as required for the SCSI processor being

used
« With the SYM53C860, add an external 80MHz SCSI clock

Symbios Logic PCI-SCSI Programming Guide

Clock Divider Bits

Ultra Enable Bit

|
Loading the New Register

Values

SCRIPTS Programming Topics
Migrating Existing Software to Ultra and Ultra2 SCSI

o With the SYM53C875, use an 80 MHz external SCSI clock
or use an external 40 MHz clock and enable the SCSI clock
doubler

o With the SYM53C895, use an 80MHz clock for Ultra SCSI
or use an external 40 MHz clock with the clock quadrupler
for Ultra2 SCSI

Note: the SYM53C885 and SYM53C876 require a 40MHz
clock and use of the clock doubler.

5 Ultra Enable bit, SCNTLS3 register - set this bit to enable Ultra
SCSI or Ultra2 SCSI transfers

Two registers are used to divide down the clock. The first is the
SCNTL3 register. The CCF bits in this register determine the SCSI
core speed used for asynchronous transfers and any other timings
(such as selection time-out). These bits are set based on the input
clock frequency and do not change. The SCF bits are used to
determine the timings for synchronous transfers and can be changed
whenever the SYM53C8XX connects to a different device on the
SCSI bus.

The SCF bits in the SCNTL3 register are used in conjunction with
the XFERP bits in the SXFER register to determine the synchronous
period. To get a transfer rate of 10 MB/s with a 40 MHz clock,
program the SCF bits to 001 for a divide by one factor and then
program the XFERP bits for 000 for a divide by 4 factor. 40 MHz
divided by 1 and then divided by 4 is 10 MB/s. Other combinations
of these two sets of bits can be used to select a variety of synchronous
transfer rates. For more information on the bit combinations that are
supported, see the clock divider bit descriptions in the chip data
manuals.

The Ultra Enable bit (also known as the Fast-20 Enable bit) adjusts
the chip’s timings to be compliant with the Fast-20 proposed
standard. It should be set when the synchronous transfer period is
less than 100 ns and cleared when it is greater than or equal to 100
ns.

Since the Ultra Enable bit and the clock dividers are in the SCNTL3
and SXFER registers, these registers can be automatically loaded
during a selection or reselection by using Table Indirect Addressing.
This allows the chips to transparently talk with a combination of
Ultra SCSI, Ultra2 SCSI, and Fast SCSI devices on the same SCSI
bus.

Symbios Logic PCI-SCSI Programming Guide 9-25

SCRIPTS Programming Topics

Migrating Existing Software to Ultra and Ultra2 SCSI

|
Negotiating Synchronous

Transfers

|
Using the SCSI Clock

Doubler

9-26

The easiest way to calculate the synchronous transfer period is by
multiplying the clock period by the clock divider values. For example,
a 40 MHz clock is a 25 ns period. (25 ns)*(1)*(4)=100ns, which is
the Fast SCSI-2 synchronous transfer period.

If you are running an 80 MHz clock (12.5 ns period) and only
negotiated for Fast SCSI-2 rather than Ultra SCSI, the SCF bits
would need to be programmed for SCLK/2 and the XFERP bits for
4 which would be (12.5ns)*(2)*(4)=100ns.

The SCSI-2 specification states that synchronous transfer rates must
be a multiple of 4 ns. However with an 80 MHz clock, the period
must be a multiple of 12.5 ns. Ultra SCSI is defined to be a 20 mega-
transfer per second maximum, which would be a 50 ns period. Since
50 ns is not a multiple of 4, most SCSI devices cannot negotiate for
this exact rate. Unless future revisions of the standard make a
different recommendation, most devices will probably negotiate for a
48 ns period. The SYM53C8XX cannot be programmed for a 48 ns
period since it is not a multiple of 12.5 ns, so driver programs should
specify a 50 ns period and the chip should negotiate for a 48 ns
period. This is acceptable because the SCSI-2 specification allows
you to transfer data at a slower rate than what you negotiated for, but
not faster.

To program the chip for a full Ultra SCSI transfer rate of 50 ns using
the required 80 MHz clock, program the SCF bits for SCLK/1 and
select an XFERP of 4. This comes out to (12.5ns)*(1)*(4)=50 ns.

The SYM53C875, SYM53C876, and SYM53C885 can double the
frequency of a 40-50 MHz SCSI clock, allowing the system to
perform Ultra SCSI transfers in systems that do not have 80 MHz
clock input. This option is user-selectable with bit settings in the
STEST1, STESTS3, and SCNTL3 registers. At power-on or reset,
the doubler is disabled and powered down. Follow these steps to use
the clock doubler:

1 Set the SCLK Doubler Enable bit (STEST1, bit 3)
2 Wait 20 us

3 Halt the SCSI clock by setting the Halt SCSI Clock bit (STEST3
bit 5)

4 Set the clock conversion factor using the SCF and CCF fields in
the SCNTL3 register

5 Set the SCLK Doubler Select bit (STEST1, bit 2)

6 Clear the Halt SCSI Clock bit

Symbios Logic PCI-SCSI Programming Guide

|
Using the SCSI

Clock Quadrupler

SCRIPTS Programming Topics
Migrating Existing Software to Ultra and Ultra2 SCSI

The SYM53C895 can quadruple the frequency of a 40 MHz SCSI
clock, allowing the system to perform Ultra2 SCSI transfers. This
option is user-selectable with bit settings in the STEST1, STEST3,
and SCNTL3 registers. At power-on or reset, the quadrupler is
disabled and powered down. Follow these steps to use the clock
quadrupler:

1

Set the SCLK Quadrupler Enable bit (STESTL, bit 3)

Poll bit 5 of the STEST4 register. The SYM53C895 sets this bit
as soon as it locks in the 160 MHz frequency. The frequency
lockup takes approximately 100 microseconds.

Halt the SCSI clock by setting the Halt SCSI Clock bit (STESTS3
bit 5)

Set the clock conversion factor using the SCF and CCF fields in
the SCNTL3 register

Set the SCLK Quadrupler Select bit (STEST1, bit 2)

Clear the Halt SCSI Clock bit

Symbios Logic PCI-SCSI Programming Guide 9-27

SCRIPTS Programming Topics
Using the SCRIPTS RAM

Loading SCRIPTS RAM

9-28

Using the SCRIPTS RAM

The SYM53C825A, SYM53C875, SYM53C876, SYM53C885,
and SYMb53C895 have 4k bytes (1k x 32 bit) of internal, general
purpose RAM. The RAM is designed to store SCRIPTS instructions
and 1/O data structure information, but is not limited to this type of
information. When the chip fetches SCRIPTS instructions or Table
Indirect information from the internal RAM, these fetches remain
internal to the chip and do not use the PCI bus. Other types of access
to the RAM by the SYM53C825A/53C875/53C876/53C885/
53C895 use the PCI bus, as if they were external accesses. This
section discusses loading of SCRIPTS and Table Indirect
information into the SCRIPTS RAM, and programming techniques
when using the RAM.

The RAM can be relocated by the PCI system BIOS anywhere in 32-
bit address space. The RAM Base Address register, located in the
chip’s PCI configuration space, contains the base address of the
internal RAM. This register is similar to the ROM Base Address
register in the PCI Configuration register set. To simplify loading of
SCRIPTS instructions, the base address of the RAM will appear in
the SCRATCHB register when bit 3 of the CTEST2 register is set.
The RAM is byte-accessible from the PCI bus and will be visible to
any bus mastering device on the bus. Accesses made externally (i.e.
by the CPU) follow the same timing sequence as a standard slave
register access, except that the target wait states required will drop
from 5 to 3.

SCRIPTS instructions can be loaded into the internal RAM in one
of two ways. The first way is to simply copy the instructions into the
RAM with the CPU. Another method is to use a MOVE MEMORY
instruction, which copies the SCRIPTS instructions from their initial
location in host memory to the SCRIPTS RAM. This method is
especially useful in the Intel processor real mode of operation,
because the SCRIPTS RAM is generally mapped by PCI system
BIOS outside the region where the processor can access it. The
syntax of the move instruction is as follows:

MOVEMEMScri pt _I nst_Bytes, SRC_Phys_Addr,\ Scri pt _RAM Phys_Addr

Where Scri pt _I nst _Byt es is the number of bytes of instructions to
copy, SRC_Phys_Addr is the physical starting address of the static
SCRIPTS array to be copied into SCRIPTS RAM, and

Scri pt _RAM Phys_Addr is the physical base address of the
SCRIPTS RAM itself (found in the SCRATCHB register). To create
data structures such as table indirect tables, create a pointer to the

Symbios Logic PCI-SCSI Programming Guide

Figure 9-1
Storing Data Structures in SCRIPTS
RAM

SCRIPTS Programming Topics
Using the SCRIPTS RAM

location in SCRIPTS RAM that will be used to store the data. An
example of this is in Figure 9-1.

struct _table {/* Table indirect entry */
uquad count;
uquad address;

b

typedef struct table;

#def i ne SCRAM TABLE_OFFSET 0xCO00; /* Locate tableinfoat bottom
1K of SCRI PTS

RAM /
void main() {
table *buffer_table; /* pointer to table indirect entries */
ul ong SCRAM Phys_Addr;
ul ong Tabl e_Phys_Addr;
/* Get RAM physical address */
out pw(Chi pl OBase+CTEST2, 0x08);/* Set bit 3 */
/* Get RAM Base in ScratchB */
SCRAM Phys_Addr = (ulong) ((ulong) (inpw ChipBasel O+
SCRATCHB2) << 16) | i npw Chi pl OBase+SCRATCHB)); /* Read Reg*/
out pw(Chi pl OBase+CTEST2, 0x00);/* Cear bit 3 */
/* Create pointer to RAM for Table */
Tabl e_Phys_Addr = SCRAM Phys_Addr + SCRAM Tabl e_Of set;
buffer_table = PhystoVirt(Tabl e_Phys_Addr);
}

The routine “PhystoVirt” should convert the physical address of the
table location in the SCRIPT RAM to a virtual address that can be
used as a pointer in “C”.

Symbios Logic PCI-SCSI Programming Guide 9-29

SCRIPTS Programming Topics
Using the SCRIPTS RAM

|
Programming Techniques

when Using SCRIPTS
RAM

9-30

SCRIPTS programs may be stored on the chip, outside the chip, or
both internally and externally. When SCRIPTS code is located both
internally and externally, the following techniques will allow the
internal SCRIPTS to successfully communicate with the external
SCRIPTS and vice versa.

1 Two source (. SS) files should be created, one with the SCRIPTS
programs that are to be located externally and the other with the
SCRIPTS programs that are to be located internally.

2 The internal and external SCRIPTS programs must be given
unique array identifiers by using the PROC statement at the
beginning of each, so that both can be linked into a driver. This
causes the compiler to generate SCRIPTS arrays without the
default SCRIPTS name.

3 Both source files should be compiled with the - p option instead
of the - o option. This prevents the generation of data structures
which share common names between the two files, causing a ‘C’
compile time conflict with both files being linked into a driver.

4 All jumps between the internal and external SCRIPTS routines
should be absolute and should use EXTERNS as the destination
address variable. This allows the proper jump address to be
patched once the base addresses of both SCRIPTS programs
have been established at run time.

5 Any labels that are to be jumped to from the opposite SCRIPTS
program should be defined as entry points with the ENTRY
declarative. This causes the compiler to provide the proper offset
information in the compiled output file so that physical addresses
can be resolved at runtime.

6 All labels, externs, and relative buffers should have unique names
in each SCRIPTS program to prevent ‘C’ compile time conflicts.

7 All jumps which move within the same SCRIPTS program
should use the REL modifier.

8 The file that contains the internal SCRIPTS program should be
processed by the RAMFIX utility to eliminate any other conflicts
between the two files. The RAMFIX utility is included on the
diskette enclosed in this programming guide, or it can be
downloaded from the Symbios Logic BBS.

Figure 9-2 through Figure 9-5 are the internal and external

SCRI PTS. LI Sand . oUT files, and illustrate the interactions between
the two. Certain parts of the program text appear in bold type to
highlight the coding differences when both internal and external
RAM are used for SCRIPTS program storage. The numbered notes
at the end of each example program reference numbered items in the
far left column of the program text.

Symbios Logic PCI-SCSI Programming Guide

Figure 9-2
External Script (.LIS):

SCRIPTS Programming Topics
Using the SCRIPTS RAM

1 ARCH 825A

2

3 ABSCLUTE done=0xf f
4

1: 5 EXTERN Int_Start

6 EXTERN | nt _dat aout
7

2: 8 ENTRY Ext_Start

9 ENTRY Ext _done

10
3:11 00000000: PROC Ext_Script:
12 00000000: Ext_Start:

13 00000000: 78344500 00000000 MOVE 0x45 to SCRATCHAO
14 00000008: 78354600 00000000 MOVE 0x46 to SCRATCHAL
15 00000010: 80880000 00000018 JUWMP REL(Entry_point)

16 00000018: 78364700 00000000 MOVE 0x47 to SCRATCHA2
17 00000020: 78374800 00000000 MOVE 0x48 to SCRATCHA3

4:18 00000028: 80080000 00000000 JUWP Int_Start

19

20 00000030: Entry_point:

21 00000030: 6A360000 00000000 MOVE SFBR t o SCRATCHA2
22 00000038: 785C0000 00000000 MOVE 0x00 to SCRATCHBO
23 00000040: 785D0100 00000000 MOVE 0x01 to SCRATCHB1
24 00000048: 785F0200 00000000 MOVE 0x02 to SCRATCHB3

5:25 00000050: 80080000 00000000 JUWP I nt_dataout

26
27 00000058: Ext _done:
28 00000058: 98080000 00000OFF I NT done
29
30

NOTES:

1: Jump labels that are located in the internal SCRIPTS program are defined as EXTERNSs
to facilitate patching at driver runtime.

2: Labels that will be jumped to from the internal SCRIPTS program are defined as
ENTRYs to facilitate patching at driver run time.

3: PROC directive used to override the default SCRIPTS array name and replace it with
Ext_Script

4: Thisis ajump to a location in the internal SCRIPTS program and should be patched at
driver init time.

5: Thisisajump to a location in the internal SCRIPTS program and should be patched at

driver init time.

Symbios Logic PCI-SCSI Programming Guide 9-31

SCRIPTS Programming Topics
Using the SCRIPTS RAM

Figure 9-3
External Script (.OUT):

t ypedef unsigned | ong ULONG

1: ULONGExt _Script[] = {
0x78344500L, 0x00000000L,
0x78354600L, 0x00000000L,
0x80880000L, 0x00000018L,
0x78364700L, 0x00000000L,
0x78374800L, 0x00000000L,
0x80080000L, 0x00000000L,
0x6A360000L, 0x00000000L,
0x785C0000L, 0x00000000L,
0x785D0100L, 0x00000000L,
0x785F0200L, 0x00000000L,
0x80080000L, 0x00000000L,
0x98080000L, 0OxO00000FFL

b

2: ULONG E_Int _dataout _Used[] = {
0x00000015L

b

ULONG E_Int_Start_Used[] = {
0x0000000BL

b

#define A _doneOxO000000OFFL

3: #defi ne Ent _Ext _done 0x00000058L

#define Ent _Ext_Start 0x00000000L

NOTES:

1: The use of the PROC statement has forced the array to be named Ext_Script instead of
SCRIPT so that a compile time conflict is avoided.

2: The offsets in these data structures indicate where the internal SCRIPTS jump address
should be patched.

3: These are the offsets into the Ext_Script array of the entry points that are being jumped to
from the internal SCRIPTS program. They are used to calculate the internal to external
jump physical addresses to be patched into the internal SCRIPTS program.

9-32 Symbios Logic PCI-SCSI Programming Guide

Figure 9-4
Internal Script (.LIS):

© 00 N oo g A~ W N P

=
o

11

ARCH 825A

ABSCOLUTE scsi _i d=0x00
ABSOLUTE r esel =0x01

EXTERN i dentify_buf={0x80}
EXTERN crd_buf =6{ ??}
EXTERN dat a_buf =512{ ??}
EXTERN st at _buf =1{??}
EXTERN nsgi n_buf =1{??}

1:12 EXTERN Ext_Start

14

2:15 ENTRY Int_Start

16 ENTRY I nt_dat aout

17
3: 18 00000000:
19 00000000:

20 00000000:
REL(resel ect ed)

21 00000008:

22 00000008:
NOT MSG_OUT

23 00000010:
MSG_OUT

24 00000018:
25 00000018:
4:26 00000020:
27 00000028:

28 00000028:
DATA_OUT

29 00000030:

30 00000030:
STATUS

31 00000038:

32 00000038:
MSG | N

33

Symbios Logic PCI-SCSI Programming Guide

PRCC I nt_Script:
Int_Start:

45000000 00000058

86830000 00000008

0OE000001 00000000

0A000006 00000000
80080000 00000000

08000200 00000000

0B000001 00000000

0F000001 00000000

SCRIPTS Programming Topics
Using the SCRIPTS RAM

SELECT ATN scsi _id,

ident:

JUWP REL(send_cnd), WHEN

MOVE 1, identify_buf, WHEN

send_cnd:

MOVE 6, cnd_buf, WHEN CVD
JUWP Ext_Start
I nt _dat aout:

MOVE 512, data_buf, WHEN

stat:

MOVE 1, stat_buf, WHEN

negin:

MOVE 1, nsgi n_buf, WHEN

9-33

SCRIPTS Programming Topics
Using the SCRIPTS RAM

34 00000040: conpl et e:
35 00000040: 7C027F00 00000000 MOVE SCNTL2 & Ox7F to SCNTL2
36 00000048: 60000040 00000000 CLEAR ACK
37 00000050: 48000000 00000000 WAI T DI SCONNECT
5:38 00000058: 80080000 00000000 JUWP Ext _done
39
40 00000060: resel ected:
41 00000060: 98080000 00000001 I NT resel

42

NOTES:

1: Jump labels that are located in the external SCRIPTS program are defined as EXTERNSs
to facilitate patching at driver run time.

2: Labels that will be jumped to from the external SCRIPTS program are defined as
ENTRYs to facilitate patching at driver run time.

3: PROC directive used to override the default SCRIPTS array name and replace it with
Int_Script

4: Thisis ajump to a location in the external SCRIPTS program and should be patched at
driver init time.

5: Thisis ajump to a location in the external SCRIPTS program and should be patched at
driver init time.

Figure 9-5
Internal SCRIPTS Program (.OUT):

t ypedef unsigned | ong ULONG

1: UUONGA nt _Script[] = {
0x45000000L, 0x00000058L,
0x86830000L, 0x00000008L,
OxO0EO000001L, 0x00000000L,
0x0A000006L, 0x00000000L,
0x80080000L, 0x00000000L,
0x08000200L, 0x00000000L,
0x0B000001L, 0x00000000L,
0x0FO000001L, 0x00000000L,
0x7C027F0O0L, 0x00000000L,
0x60000040L, 0x00000000L,
0x48000000L, 0x00000000L,
0x80080000L, 0x00000000L,
0x98080000L, 0x00000001L

b

ULONG E_cnd_buf _Used[] = {

9-34 Symbios Logic PCI-SCSI Programming Guide

SCRIPTS Programming Topics
Using the SCRIPTS RAM

0x00000007L

b

ULONG E_data_buf_Used[] = {
0x0000000BL

b

2: ULONG E_Ext _Start_Used[] = {
0x00000009L

b

ULONG E_Ext _done_Used[] = {
0x00000017L

b

ULONG E_identify_buf_Used[] = {
0x00000005L

b

ULONG E_msgi n_buf _Used[] = {
0x0000000FL

b

ULONG E_stat_buf_Used[] = {
0x0000000DL

b

#define A _scsi_i dOx00000000L

#define A _resel 0x00000001L

3:

#define Ent _| nt _dat aout 0x00000028L
#define Ent _Int_Start 0x00000000L
NOTES:

1: The use of the PROC statement has forced the array to be named Int_Script instead of
SCRIPT so that a compile time conflict is avoided.

2: The offsets in these data structures indicate where the internal SCRIPTS jump address
should be patched.

3: These are the offsets into the Int_Script array of the entry points that are being jumped to
from the external SCRIPTS program. They are used to calculate the external to internal
jump physical addresses to be patched into the external SCRIPTS program.

Symbios Logic PCI-SCSI Programming Guide 9-35

SCRIPTS Programming Topics
Using the SCRIPTS RAM

|
Patching Internal and

External SCRIPTS
Programs

9-36

The following routine will patch the correct values into the above two
SCRIPTS programs so that they can interact properly. The following
assumptions are made in this routine:

1 The Int_Script array was copied into the SCRIPTS RAM at the
starting location of the RAM.

2 The Ext_Script is already 32-bit aligned.

3 The variable ChiplOBase contains the 10 base address of the
chips register set.

4 VirttoPhys is a routine that will convert a virtual pointer to a
physical address.

void main() {
ul ong Int_Script_Phys_Addr;
ul ong Ext_Scri pt_Phys_Addr;

/* Get RAM physical address, which is assuned to be */
/* the internal SCRIPTS physical address */

out pw(Chi pl OBase+CTEST2, regval | 0x08);/* Set bit 3 to get
RAM Base in ScratchB*/

Int_Script_Phys_Addr = (ulong) ((ulong) (inpwChipBasel O+
SCRATCHB2) << 16) | i npw(Chi pl OBase+SCRATCHB)); /* Read Reg*/
out pw(Chi pl OBase+CTEST5, 0x00);/* Cear bit 3 */

Ext _Scri pt _Phys_Addr = (ulong) VirttoPhys(Ext_Script);

/* Patch External Script entries */

Ext _Script[E_Int_dataout_Used[0]] = Int_Script_Phys_ Addr +

Ent _| nt _dat aout ;

Ext _Script[E_Int_Start_Used[0]] = Int_Script_Phys_Addr +
Ent _Int_Start;

/* Patch Internal SCRIPTS entries */

/* The cnd_buf, data_buf, identify_buf, stat_buf */

/* and nsgi n_buf should al so be done but they will not be */

/* shown in this exanple as they are not pertinent */

Int_Script[E_Ext_done_Used[0]] = Ext_Script_Phys_Addr +

Ent _Ext _done;

Int_Script[E_Ext_Start_Used[0]] = Ext_Script_Phys_Addr +

Ent _Ext_Start;

}

Symbios Logic PCI-SCSI Programming Guide

Multi-Threaded 1/0
Overview

Chapter 10

Multi-Threaded 1/O

Overview

The SYM53C8XX allows multi-threaded 1/O operations with
minimal external processor intervention, in systems that support
multi-tasking. Multi-threaded algorithms must be used any time
more than one task is active in the system. Figure 10-1 shows a
typical situation where multiple tasks are accessing multiple devices
simultaneously. The path between Task 1 and Disk 2 is highlighted to
show how information might be transferred. The device driver must
schedule and control the 1/O requests based on such considerations
as what devices are available, and the relative priorities of the
requests.

Task 1

Task 2 Task 3

—

Figure 10-1
Multi-threaded System Operation

Disk 1

Operating System

v

Device Driver Disk 2

v

SYMS53C8XX 4+

SCSI Bus

Symbios Logic PCI-SCSI Programming Guide 10-1

Multi-Threaded 1/0
Overview

|
Multi-threaded Operations

Flow

10-2

Multi-threaded algorithms are similar to single threaded algorithms
with disconnects, but a new element, called the scheduler, is added.
The scheduler keeps track of SCSI bus operations when more than
one task is active at a time. SCRIPTS code must be stored in RAM
to allow multi-threaded operation, because SCRIPTS and the CPU
must modify SCRIPTS dynamically. A multi-threaded SCRIPTS
algorithm contains three parts: the main SCRIPTS, the scheduler
SCRIPTS, and the reselect SCRIPTS. These areas are described in
detail after the overview of the steps that occur in a multi-threaded
1/0. This example shows how to implement a scheduler in SCRIPTS.
This is only one method of implementing a scheduler. Many users
choose to schedule 1/0s in an upper layer, such as in the “C” driver
code.

Figure 10-2 demonstrates the sequential flow of steps in a multi-
threaded operation. The heavy lines in the figure represent the initial
flow of information for a new operation. The lighter weight lines
represent the flow as the chip finishes pending steps of a multi-
threaded operation.

To begin a multi-threaded operation, the user application determines
that an 1/O is needed, and makes an 1/O request of the operating
system. The operating system then sets up and starts the appropriate
device driver. The main driver program modifies the SCSI scheduler
routine to call the appropriate I/0 SCRIPTS instructions. At that
point, normal processing continues as the SYM53C8XX executes
the instructions of the SCRIPTS routine.

When the CPU issues a request for service, it writes a JUMP to the
scheduler to start the 1/0. The SYM53C8XX selects the SCRIPT
needed to perform the requested action. That SCRIPTS instruction
then writes a NOP to the scheduler to prevent the same 1/O from
being re-started. The number of entries (JUMPSs) in the scheduler at
any one time will be the number of scheduled but not started. The
chip then executes the SCRIPTS subroutine and interrupts at
completion.

When the SYM53C8XX has no more instructions to execute, it
jumps to the scheduler SCRIPTS area. If no new I/Os are scheduled,
the SYM53C8XX jumps to aWAIT RESELECT instruction. If a
new I/O is scheduled, the chip will then execute the JUMP
instruction in the scheduler entry that corresponds to the SCSI ID of
the target device, to go to the main SCRIPTS area.

If the chip’s operation must halt until another peripheral device
retrieves data, aWait RESELECT SCRIPT is executed. When the
chip is reselected by the target, it resumes execution of the main 1/0O
routine While the chip waits to be reselected by the target device, the
CPU may call the chip by setting the SIGP bit. The SYM53C8XX
schedules a new 1/O and repeats the cycle described above.

Symbios Logic PCI-SCSI Programming Guide

Multi-Threaded 1/0
Overview

'Nothlng to do.). Y

' Reselection ’

Processor
Service
Routine

Write Jump to
Scheduler to
start new 1/0

A
Wait R
Instr!

Figure 10-2
Multi-threaded SCRIPTS Operational
Flow

SCRIPTS Areas

Multi-Threaded SCRIPTS
Example

v
eselect
uction

Select Instruction

Disconnect
or
1/0 Complete

Write NOP to
Scheduler

Main I/0
SCRIPTS
Routine

The main SCRIPTS area contains the SCRIPTS to perform the
standard operations associated with a SCSI command, such as
transferring messages, commands, and data. The scheduler
SCRIPTS area contains a three-SCRIPTS entry for each job the
CPU schedules. The scheduler is modified at run time. When the
operating system interface receives an 1/O request, it creates an area
in host memory for the scheduler information for that request. It
tracks each request it receives. New requests are classified
outstanding as they are processed and performed. Upon completion
of the 1/O request, the hardware interface returns a completed status
to the operating system interface which then updates the status of the
request. The reselect SCRIPTS area is the portion of SCRIPTS code
that is used after the target disconnects and the SYM53C8XX is
waiting to be reselected.

An example SCRIPTS operation for the SYM53C8XX is illustrated
below. This example is for multi-threaded 1/0O where only one
command is sent to each target at a time. To send more than one
command to any target, tagged command queueing must be used.
For more complex situations such as this, it may be preferable to use

Symbios Logic PCI-SCSI Programming Guide 10-3

Multi-Threaded 1/0
Overview

CPU———JUMP ——— > io_request0: JUMP

“C” code for scheduling 1/0s. The SCRIPTS program must be
modified to look at the queue tag messages, and there must be a DSA
table entry for each possible outstanding tagged command per target
ID, instead of just one per target ID as in this example. This program
appears in its entirety in Appendix C.

Any item in the code examples that is preceded by “PATCH_" needs
to be patched by the driver. Patching only occurs once, when the
driver is initially loaded. After initialization, all required addresses are
in the SCRIPTS array. For more information on instruction
patching, refer to Chapter 7.

Both dashed and solid lines are used in some of the program
illustrations. The dashed lines indicate pointers, and the solid lines
indicate data movement in the direction indicated by the arrows.

1 The first step occurs when the CPU writes a JUMP into the
io_requestX scheduler slot

rel (multi_thread)

2 Next, the CPU may need to set the SIGP bit in the
SYM53C8XX to indicate that an 1/O needs to be processed. As
soon as this happens, the SIOP will JUMP to the scheduler. The
first instruction in the scheduler will set up the DSA to point to
the correct table in the example.

; Schedul er SCRI PT code

schedul er:

entryO:

MOVE MEMORY 4, PATCH_ addr_of _tabl eO_ptr, PATCH chi p_physaddr +DSA

Host Memory

t abl eO_ptr

10-4

‘ SYMS53C8XX

Host Memory

SCNTLB‘ device id synch period 0
o]

0 ‘ cmd_byte_count

command_address

Symbios Logic PCI-SCSI Programming Guide

Multi-Threaded 1/0
Overview

3 TableO has the nexus information about any previously
negotiated synchronous transfer period and offset. It also
contains the SCSI ID of the target device. Clock divider
information for the SCNTL3 register would also be included in
this table. Also, the operating system will build the command and
other buffer information into this table prior to starting this 1/O.

Next, the SCRIPTS instruction will move the address of the
10_requestX into the schedule_nop SCRIPTS destination
address field. This will allow the multi-threaded SCRIPTs
instruction to write a NOP into the io_requestX location in the
scheduler to indicate that the 1/O has been started.

Before:

MOVE 4

schedule_nop: MEM

nop_physaddr

(Source Address)

place_hold_addr

(Destination Address)

MOVE MEMORY 4, PATCH_SCRI PTphysaddr +i o_r equest 0,

PATCH_SCRI PTphysaddr +schedul e_NOP+8

After:

MOVE 4

schedule_nop: | e

nop_physaddr

(Source Address)

io_request0

(Destination Address)

Symbios Logic PCI-SCSI Programming Guide 10-5

Multi-Threaded 1/0
Overview

4 The final task of the scheduler is to jump to the multi-thread
SCRIPTS subroutine.

5 io_requestO:
JUWP rel (multi _thread)

6 The main SCRIPTS routine will execute a Select With Attention
instruction to connect to the appropriate SCSI device.

; Mai n SCRI PT code
mul ti _thread:

SELECT ATN FROM SCSI _id, REL (wait_for_resel ect)

7 Once the two devices are connected, the SCRIPTS instruction
must write the NOP into the scheduler routine to avoid trying to
start the 1/0O again. This is accomplished using a Memory to
Memory Move command. The source address will be the address
of a NOP SCRIPTS instruction. The destination address is the
io_requestX location that was patched into place_hold_addr in
the scheduler.

schedul e_nop:
MOVE MEMORY 4, PATCH nop_physaddr, PATCH pl ace_hol d_addr

nop_physaddr:| NOP io_requestO: | yjump
NOP —>»

rel (multi_thread)

8 Next, the will continue just as in single-threaded mode until a
disconnect occurs.

JUMP REL (to_decisions), WHEN NOT MSG QUT
id _nmsg_out:
MOVE FROM i dentify_msg_buf, WHEN MSG_QUT

10-6 Symbios Logic PCI-SCSI Programming Guide

Multi-Threaded 1/0
Overview

9 Upon disconnection, the initiator will jump to the
wait_for_reselect SCRIPT. It will then wait for any device that
had previously disconnected to reconnect. If a reselect occurs,
the code will continue. If the device gets selected or the processor
issues a SIGP, the SCRIPTS will continue at the alternate jump
address. Setting the SIGP bit allows the processor to start a new
1/0, instead of just waiting for a previous 1/O to reconnect.

; Resel ected SCRI PT code

wait_for_reselect:

WAl T RESELECT REL (CPU_set Sl GP)

10 Once the initiator is reselected it is necessary to determine which
SCSI ID has reselected it. In the SYM53C8XX, the ID of the
device that reselected the SYM53C8XX is in the SSID register.

SCSI _id_junp_table:

MOVE SSID to SFBR

JUWP REL (id_0), IF 0x00
JUWP REL (id_1), IF 0x01
JUWP REL (id_2), IF 0x02
I NT reselect _id error

11 Next, the DSA will need to be written to the address of the
correct table, depending on which SCSI ID has reselected the

initiator.
i do:
MOVE MEMORY 4, PATCH_ addr _of _tabl eO_ptr, PATCH_chi p_physaddr +DSA

Host Memory \ ‘ | SYM53C8XX
tableO_ptr] 777

,,, DSA_ .

Host Memory
ffffff >
table0: 0 ‘ device id synch period 0
0
0 ‘ cmd_byte_count

command_address

Symbios Logic PCI-SCSI Programming Guide 10-7

Multi-Threaded 1/0
Overview

10-8

12 Upon reselection, it is not necessary to re-negotiate for
synchronous data transfer parameters. These can be restored to
the SXFER register and the SCNTL3 register from the
information stored in the table.

i do:
MOVE MEMORY 1, PATCH addr_of _table0 + 2, PATCH_chi p_physaddr +SXFER
SYM53C8XX
4 lSXFER‘
Host Memory
‘ ‘

tableO: 0 device id synch period ‘ 0

0 cmd_byte_count

command_address

13 Once the DSA is pointing to the correct table, table indirect
SCRIPTS can be used to receive the identify message.

MOVE FROM i dentify_msg buf, WHEN MSG I N
CLEAR ACK

14 Finally, the SCRIPT will continue with a normal 1/O until it has
completed.

JUMP REL (to_decisions)

id 1:

MOVE MEMORY 4, PATCH addr_of _tablel ptr,

PATCH_chi p_physaddr +DSA

MOVE MEMORY 1, PATCH addr_of table 1+2,
PATCH chi p_physaddr +SXFER

MOVE FROM i dentify _nsg_buf, WHEN MSG IN
CLEAR ACK

JUMP REL (to_decisions)

id_2:

MOVE MEMORY 4, PATCH addr_of _table 2 _ptr,
PATCH_chi p_physaddr +DSA

MOVE MEMORY 1, PATCH addr_of table 2+2,
PATCH chi p_physaddr +SXFER

MOVE FROM identify_msg_buf, WHEN MSG_ I N
CLEAR ACK
JUMP REL (to_decisions)

Symbios Logic PCI-SCSI Programming Guide

Using the SIGP bit to
Abort an Instruction

Multi-Threaded 1/0
Overview

The SIGP (Signal Process) bit in the ISTAT register is used to pass a
flag to a running SCRIPTS instruction. The SIGP bit is used to
signal that an 1/O is ready for execution and has already been
scheduled by the host processor. The only SCRIPTS instructions
directly affected by this bit are Wait Select and Wait Reselect. Setting
the SIGP bit causes the instruction to jump immediately to the
alternate address. For more information on this bit, refer to the
SYM53C8XX data manuals. The following SCRIPTS code is an
example of how to use the SIGP bit when attempting to abort a Wait
Reselect or Wait Select instruction, assuming that the device is in the
initiator role.

R O R O I R R R
1

resel ect_entry:
WAI T RESELECT alt_sig_p
; if here, got reselected

handl e_resel :
*

*

*

BRI O R O I Rk kO b A O O
)

sel ected_entry:

WAI T SELECT alt_sig_p

; if here, got selected
handl e_sel :

*
*

*

ckkkkkkhkhkhkhkhkhkhkhkhkhk Ak hkhkhkhkhkhk Ak Ak hkhkhkhkkhkk kK
1

alt_sig_p:
We assune that the sig_p bit was set,
; and a resel ection needs to be perforned.
;| f here because of a sel ection or
;. reselection or if a selection or
; reselection occurred during the junp after
; sig_p bit was set, the alternate address
"sel _resel' will be taken.
: Setup relevant information for this IO
RESELECT FROM scsi _id, sel _resel
; if here, sig_p was set and there was no
;. selection or reselection

MOVE CTEST2 TO SFBR
clear sig_p bit

MOVE FROM i dent _nsg, WTH MSG_IN
; fromthis point a reselection is perforned

Symbios Logic PCI-SCSI Programming Guide 10-9

Multi-Threaded 1/0
Overview

10-10

;as normal by noving through the SCSI phases
*

*

*

BRI O R O S
)

sel _resel
; if here, we have been selected or resel ected
; and sig_p may or may not have been set.
MOVE SI STO & 0x20 TO SFBR
; get selected bit

JUWP sel, |IF 0x20
; if we got selected

MOVE SI STO & 0x10 TO SFBR
; get reselected bit

JUWP resel, |F 0x10
; if we got reselected

I NT sel _resel _error
; big error, should have been sel ected
;. or resel ected

ckkkkkkhkkhkkhkk kK
1

sel :

; if here, selection occurred and sig_p may or

; may not have been set. But process selection
;' no matter what.

JUWP handl e_sel

ckkkkhkkhkhkhkhkhkhkhkhkhk kA hkhkdkhkhkhk kA Kk Ak hkhkhkhkkhkk kK
1

resel:

; if here, reselection occurred and sig_p nmay or

; may not have been set. But process reselection
7 no matter what.

JUWP handl e_resel:

Symbios Logic PCI-SCSI Programming Guide

I/0 Completion

Multi-Threaded 1/0
Overview

When the SYM53C8XX completes an 1/O, it must inform the host
system. Upon completion of an I/O, the programmer may want to
signal the system processor in one of several ways:

« Write to an address to generate an external interrupt. This allows
completely interrupt-driven software.

« Write to memory to signal the 1/O driver. The driver would then
poll the memory location, or, optionally, a general purpose
output pin could be used to tell the processor the location
contains information. For example, the st at us_buf or
meg_i n_buf would be polled for good status or command
complete to signal an 1/0O had completed.

Example:

MOVE 1, status_buf, WHEN STATUS

MOVE 1, nsg_i n_buf, WHEN MSG_I N

INT error_not_cnd_conplete, IF NOT O
CLEAR ACK

VWAI T DI SCONNECT

MOVE MEMORY 1, | O DONE_BUF, DONE_YET_BUF
JUMP schedul er

o Execute a SCRIPTS INT instruction. This is the simplest
method. It causes the SCSI SCRIPTS to stop processing.

Example: I NT i o_conpl ete

« Execute a Memory to Memory Move to a predetermined
location. Then execute an INTFLY instruction to indicate to the
processor to look at the predetermined location to determine
which 1/O has completed.

Symbios Logic PCI-SCSI Programming Guide 10-11

Multi-Threaded 1/0
Overview

10-12 Symbios Logic PCI-SCSI Programming Guide

Programming Multifunction Devices
Using the SYM53C885 Power Management Feature

Chapter 11
Programming Multifunction Devices

The SYM53C876 and SYM53C885 are multifunction devices, with
SCSI functions that are similar to the SYM53C875. This chapter
provides instructions for enabling and using features that are unique
to these products.

The SYM53CB885 is wide, single-ended SCSI/Fast Ethernet
multifunction controller. The SCSI portion of the SYM53C885 is
functionally identical to the SYM53C875, with the addition of power
management features and programmable PCI bus arbitration
priority. The SYM53C876 is a dual-port SCSI controller based on
the SYM53C875. For more detailed information on the
SYM53C885 and SYM53C876 devices, please refer to the specific
product data manual.

Using the SYM53C885 Power
Management Feature

The SYM53C885 supports two power management modes: Coma
Mode and Snooze Mode. Before it can enter one of these modes, the
chip must be in the following condition:

1 No master cycles occurring (No SCSI SCRIPTS are running).
2 No SCSI transactions occurring.

3 InTarget mode with select turned off.

4 No pending interrupts.

5 All interrupts are disabled except Wakeup interrupt (W1). This
will ensure W1 is the only interrupt in the queue and minimize
hang-up conditions that may be caused by interrupts generated in
the disabled circuitry.

Symbios Logic PCI-SCSI Programming Guide 11-1

Introduction

Using the SYM53C885 Power Management Feature

|
Coma Mode

|
Snooze Mode

|
Register Bits Used for

Power Management

11-2

Coma mode is the lowest-power mode available on the chip. All
functions are powered down except for those necessary to cause the
chip to exit coma mode. Coma mode in the SCSI function
deactivates the following circuits:

« Entire SCSI core, except for register accesses
« SCSI Transceivers

To put the SCSI function into coma mode, set the CM bit in the
CTESTO register. To take the SCSI function out of coma mode,

reset the CM bit in the CTESTO register (PCI slave access is still
operational in coma mode).

Snooze mode deactivates all circuits except those that detect a
predetermined activity on the associated interface. These
predetermined activities are: a SCSI bus reset in the SCSI function;
or the reception of a Magic Packet in the Ethernet function. When
this activity is detected, the chip generates a “wakeup” interrupt. The
interrupt service routine should then take the appropriate function
out of snooze mode.

To put the SCSI function into snooze mode:

1 Set the WI bit in the SIEN1 register.

2 Set the SM bit in the CTESTO register
In snooze mode, all data transmission circuitry is inoperative.

Upon reception of a SCSI bus reset, the chip generates an interrupt.
The SIP bit in the ISTAT register and the W1 bit in the SIEN1
register will be set.

To take the SCSI function out of snooze mode:

1 Reset the SM bit in the CTESTO register.

2 Reset the WI bit in the SIEN1 register.

The ISTAT, SIEN1, SIST1 and CTESTO registers are used for the
SCSI implementation of the power management feature. The table
below shows the register and corresponding bits used by the power
management feature:

Symbios Logic PCI-SCSI Programming Guide

Table 11-1
SYM53C885 Power Management

Registers

Introduction
Programming the SYM53C885 Internal Arbiter

Register Bit Bit Name

CTESTO 4 Coma Mode Enable (CM)
CTESTO 3 Snooze Mode Enable (SM)
SIEN1 3 Wakeup Interrupt Enable (WIE)
SIST1 Wakeup Interrupt (WI)

ISTAT 1 SCSI Interrupt pending (SIP)

Programming the SYM53C885
Internal Arbiter

There are three independent bus-mastering functions inside the
SYMb53C885: the SCSI controller, the Ethernet transmit channel,
and the Ethernet receive channel. Each channel has a register which
allows programming of a three-bit arbitration priority level. Zero is
the lowest priority, and seven is the highest priority.

For example, if the Ethernet receive channel has an arbitration
priority level of 3, and the SCSI channel has an arbitration priority
level of 1, then the SCSI channel is allowed to transmit or receive one
burst of data over the PCI bus for every three bursts of data that the
Ethernet receive channel transmits (Enet arbitration level - SCSI
arbitration level + 1). If the SCSI channel’s arbitration priority level
was changed to two, then the SCSI channel would be allowed to
transmit or receive one burst of data over the PCI bus for every two
bursts of data that the Ethernet receive channel transmits. If
arbitration priority levels for all bus mastering functions are set to the
same value, then the arbitration algorithm defaults to a round-robin
arbitration scheme.

To program the SCSI function’s internal arbitration priority, set the
SCSI function’s three bit priority field (AP2-APO) to the desired
binary arbitration level. The SCSI arbitration priority bits are
CTESTO bits 2-0. To program the Ethernet function’s internal
arbitration priority, refer to the Symbios Logic Ethernet Programming
Guide.

Symbios Logic PCI-SCSI Programming Guide 11-3

Introduction
Programming the SYM53C885 Internal Arbiter

11-4 Symbios Logic PCI-SCSI Programming Guide

Table 12-1
SCSI Protocol and Target SCRIPTS
Instructions

Using the SYM53C8XX in Target Applications
Overview

Chapter 12

Using the SYM53C8XX in Target
Applications

Overview

The SYM53C8XX family of PCI-SCSI 1/O Processors can run on
target as well as host devices. Target operation is very similar to host
operation, except that the SYM53C8XX responds to SCSI
commands from the host rather than initiating the commands. The
basic structure of all target operations is:

1 The SYM53C8XX issues a Wait Select instruction
2 The SCSI bus goes into Message Out phase

3 The SYM53C8XX performs a series of Block Moves
corresponding to the next four SCSI bus phases, as illustrated in
Table 12-1

4 The SYM53C8XX issues a Disconnect instruction to disconnect
the target device from the bus.

Bus Phase

SCRIPTS

Definition . :
instruction

Bus Free

Arbitration

Selection

Message Out

This phase indicates that the SCSI NA
bus is available.

This phase allows the initiator to gain NA
control of the SCSI bus.

During this phase, the target WAIT SELECT
responds to the initiator’s selection.

During this phase, the target may MOVEWITH
receive messages from the initiator, MESSAGE OUT
such as queuing and error recovery

information.

Symbios Logic PCI-SCSI Programming Guide 12-1

Introduction
Overview

Table 12-1

SCSI Protocol and Target SCRIPTS
Instructions (Continued)

12-2

Bus Phase

Definition

SCRIPTS
instruction

Command

Data In/Out

Status

Message In

Disconnect

Bus Free

During this phase, the target may
receive commands in the form of a
command descriptor block (CDB) to
the target buffer.

Data In and Data Out phases are
used to send data to the initiator or
to the target and are used dependent
on the information transferred
during the Command phase. This
phase is optional. For example, a Test
Unit Ready command does not
require a data transfer.

During this phase, the target sends
status information to the initiator
about the previously executed CDB.

During this phase, the target sends
messages to the initiator. These
messages can acknowledge or reject
previously sent initiator messages.
They also can provide other
information like queuing,
disconnect, or parity errors.

This phase is used to end the target
device's connection with the bus.

After successful completion of an I/O
operation and a request for
disconnect, the bus returns to the
Bus Free state, indicating that it is
now available.

MOVE

MOVE

MOVE

MOVE

DISCONNECT

DISCONNECT

Symbios Logic PCI-SCSI Programming Guide

Introduction
Registers Used for Target Operation

Registers Used for Target Operation

For target operation, only a few of the operating register values are
different from initiator operation. Table 12-2 summarizes the register
bit operations that are of particular interest for target operation.

Table 12-2
Register Bits Used for Target Operation

Register Name Bits Description

RESPID1, RESPIDO all Setting multiple bits in these
registers allows the
SYM53C8XX to respond to
multiple SCSI IDs

SCNTLO 0 Set this bit to make the
SYM53C8XX a target
device by default

SCID 5 Set this bit to allow the
SYM53C8XX to respond to
bus-initiated selection at the
chip ID in the RESPID1-0
registers

SCNTL1 5 When this bit is clear, the
SYM53C8XX halts the data
transfer when a parity error
is detected or when the
SATN/ signal is asserted.

Symbios Logic PCI-SCSI Programming Guide 12-3

Introduction
Using SCRIPTS for Target Operations

|
Sample Target Operation

SCRIPTS Program

12-4

Using SCRIPTS for Target
Operations

SCRIPTS instructions operate identically in target or initiator mode,
except for certain forms that are valid in only one mode; these
exceptions are all noted in the individual instruction descriptions in
Chapter 3. When the target device is moving data to the SCSI bus
and is halted for any reason, the residual data in the FIFO must be
cleaned up before the transfer can resume. It is most common to
empty the FIFOs, send a Restore Pointers message and start the
transfer again.

Most interrupts to the target operation are expected. The floppy disk
provided with this programming guide contains a sample interrupt
service routine for a target device.

This section uses a sample SCRIPTS program to illustrate
programming techniques for the SYM53C8XX chips when operating
in target mode. This program is used for testing and development of
Symbios Logic products. The full text of the SCRIPTS source file
and accompanying code for target operation may be downloaded
from the Symbios Logic BBS or from the floppy disk included with
this programming guide.

8xxt arg. ss Revi sion 2.2 2/12/96

; This software was witten by Synmbios Logic Inc. to

; devel op and test new products. Synbios Logic assumes
; no liability for its use. This software is rel eased
; to the public domain to illustrate certain

; programm ng techni ques for the SYMb3C8xx chips in

; target node.

The ABSOLUTE declarations in this program are the types of
interrupts that the target will generate. The SYM53C8XX issues
interrupts to notify the host of completed actions or to find out what
action to take next.

; ABSOLUTE DECLARATI ONS

ABSCOLUTE read_access_nedi um= 0x00
ABSOLUTE write access_medi une 0x01
ABSOLUTE | ast_write_di sconnect= 0x02
ABSOLUTE seek_conmand= 0x03

Symbios Logic PCI-SCSI Programming Guide

ABSOLUTE
ABSOLUTE
ABSCLUTE
ABSCLUTE
ABSCLUTE
ABSCLUTE
ABSOLUTE
ABSOLUTE
ABSCLUTE
ABSCLUTE
ABSCLUTE
ABSCLUTE
ABSOLUTE
ABSOLUTE
ABSCLUTE
ABSCLUTE
ABSCLUTE

Introduction
Using SCRIPTS for Target Operations

set _up_synch_neg= 0x04
set _up_w de_neg= 0x05
non_handl ed_mnsg = 0x06
bad_ext ended_nsg= 0x07
message_sent = 0x08
request _sense_conmand= 0x09

i nqui ry_comand= 0x0a
read_capacity_comrand= 0xO0b
start_stop_comand= 0xO0c
format _unit= 0x0d

send_di agnosti c= 0x0e
conmand_abort ed= 0xOf

illegal _cnd= 0x10

got _SIGP = Ox11
done_wi t h_copy= 0x12

got _sel ected= 0x13

done_wi t h_busy command= 0x14

The EXTERN:S in this program are variables used for Memory-to-
Memory Move operations, such as moving SCRIPTS from program
memory into RAM or moving data from one memory location to

another.

EXTERN count

EXTERN sour ce_addr ess
EXTERN desti nati on_address

This section defines the table format and layout. Each entry in the
table represents a two-dword entry in a data structure. Each entry
contains a byte count and an address that points to a buffer that is
used for Block Move instructions. The buffer must be declared in the
driver code.

Note: the declared values and sizes are only for the SCRIPTS
debugger, NVPCI. The assembler does not use these and the
information is not included in the “C” code. The buffers must be
set up in the driver program.

TABLE table_indirect \

Symbios Logic PCI-SCSI Programming Guide

12-5

Introduction
Using SCRIPTS for Target Operations

nmsg_out _buf = 1{??}, \

cmd_buf= 12{?7?}, \

synch_neg_nsg_out = 2{?7?}, \

wi de_neg_nsg out = 1{??}, \

neg msg_in = {0x01, Ox03, 0x01, 0x19, 0x08}, \

stat _buf = {0x02}, \

identify nsg_in_buf = {0x80},\

meg_i n_buf = 1{??}, \

data_buf = 512{?7?}, \

save_pointers = {0x02}, \

di sconnect _msg = {0x02, 0x04}, \

sel ector_id = 1 D{0x33, 0x07, 0x00, 0x00}, \

sense_dat a_buf = {0x00, 0x00, 0x06, 0x00, 0x00, 0x00, \
0x00, Ox0a, 0x00, 0x00, 0x00, 0Ox00, \
0x29, 0x00, 0x00, 0x00, 0x00, 0x00}, \

i nqui ry_data_buf = {0x00, 0x00, 0x02, 0x00, Ox1f, Ox00, \
0x00, 0x10, 0x20, 0x20, 0x20, 0x20, \
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, \
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, \
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, \
0x20, 0x20, 0x20, 0x20, 0x20, 0x20}, \

capacity _data_buf = {0x00, 0x80, 0x02, 0x00}

IR R I R I O I I R R R I R I S
’

The ENTRY declarations are starting points in the SCRIPTS
program that will be referred to in “C” code. See the output file
explanation for more information on how these are assembled and
used in the driver code.

ENTRY decl arati ons
ENTRY wait _sel ect
ENTRY nmsg_out phase
ENTRY tur
ENTRY st opped_busy_tur
ENTRY request _sense

12-6 Symbios Logic PCI-SCSI Programming Guide

Introduction
Using SCRIPTS for Target Operations
ENTRY read_return
ENTRY read_reconnect
ENTRY wite_return
ENTRY write_reconnect
ENTRY synch_wi de_neg_return
ENTRY nsg_i n_phase
ENTRY i nquiry
ENTRY read_capacity
ENTRY st opped_busy_ wait_sel ect
ENTRY copy_dat a

The wai t _sel ect label is the generic starting point for target
operations. The SYM53C8XX waits here until it is selected. It jumps
to Command phase if ATN is not set, or performs one of the other
commands described in the comments below. It will jump to an
alternate label if the SIGP bit is set.

wait _sel ect:
wait select rel (SIGP_set) ;wait to be selected
junp rel (command_phase), if not atn ; SCSI-1
;initiator
; support

nove from nsg_out buf, with nsg_out ;get nessage
; byt e

nove sfbr to scratchbO ;save the identify nessage

call rel (nsg_out _phase), if atn ;stay in nessage if
;atn still active

If the SYM53C8XX is selected without ATN, it goes directly to
Command phase to support SCSI-1 initiators. The chip receives the
command descriptor block and performs various functions,
described in the program comments, depending on the contents of
the command.

comuand_phase:
nove fromcnd_buf, with cnd ;get SCSI comand

move scntll & Oxdf to scntll1l ;turns on the halt on
;parity error or atn

junp rel (read), if 0x08 ;junmp to set up read
; (6-byte read)

Symbios Logic PCI-SCSI Programming Guide 12-7

Introduction
Using SCRIPTS for Target Operations

12-8

nt wite_access_nmedium if OxOa ;interrupt to set
;up write
; (6-byte wite)

nt seek_conmand, if OxOb ;interrupt to perform seek

nt seek_conmand, if Ox2b ;interrupt to perform seek

ump rel (read), if 0x28 ;junp to set up read
; (10-byte read)

—

nt wite access_nmedium if Ox2a ;interrupt to set
;up wite
; (10-byte wite)

ump rel (tur), if Ox00 ;junp to test unit ready

—

nt request_sense_conmand,if 0x03 ;interrupt to set
; up request sense
; command

nt inquiry_conmmand, if Ox12 ;interrupt to set up
;i nquiry command

nt read_capacity_command,if 0x25 ;interrupt to set
;up read capacity
; conmand

nt start_stop_conmand, if Ox1lb ;interrupt to set
;up start/stop unit
; command

junmp rel (tur), if Ox2f ;verify command, go to tur

jump rel (reserve_unit), if O0x16 ;junp to reserve
;uni t

junp rel (release_unit), if Ox17 ;junp to rel ease
yunit

int send_diagnostic, if Ox1ld ;interrupt to set up
; send di aghostic

int format_unit, if Ox04 ;interrupt to set up
;format unit

int illegal _cnd ;interrupt on any other comrand

In Message Out phase, the initiator moves in other types of messages,
such as wide or synchronous negotiation, or NOPs.

nsg_out phase:

return, if not atn ;return if atn gone

move from msg_out _buf, with nsg_out ;get nmessage
; byte

Symbios Logic PCI-SCSI Programming Guide

Introduction
Using SCRIPTS for Target Operations

jump rel (extended_nsg), if Ox01 ;junp if extended
; message

junp rel (abort), if Ox06 ;junp if abort nessage

junp rel (msg_out _phase), if 0x08;junmp back if nop
; nessage

int non_handled_nsg ;interrupt if can't handle
; nmessage

If the chip receives a byte in the message phase indicating an
extended message, then it jumps to these commands.

ext ended_nsg:

i nt bad_extended nsg, if not atn;if atn gone,
; ext ended nessage
;was bad

nove from nsg_out buf, with nsg_out; get next
; message byte

int bad_extended_nsg, if not atn ;if atn gone,
; extended nessage
;was bad

nmove from nsg_out_buf, with nsg_out;this byte shows
;type of message

jump rel (synch_neg), if 0x01 ;0x01 is a synchronous
;negoti ati on nessage

jump rel (wide_neg), if 0x03 ;0x03 is a w de
; hegot i ati on nessage

i nt bad_extended _nmsg ;interrupt on any other type

In these commands, the SYM53C8XX moves synchronous period
and offset data from the synchronous negotiation message and
interrupts to set up the synchronous operation and return message.

synch_neg:
move from synch_neg_msg_out, with nsg_out; nove in
;the period
;and of f set

int set_up_synch_neg ;interrupt to set up
; synchr onous and nessage

If the extended message is for wide negotiation, the SYM53C8XX
expects one more byte with SCSI bus width information, then
interrupts to set up the answer

wi de_neg:

Symbios Logic PCI-SCSI Programming Guide 12-9

Introduction
Using SCRIPTS for Target Operations

12-10

move fromw de_neg nsg out, with nmsg_out ;nobve in
;the width

int set_up_wide_neg ;interrupt to set up answer

After the interrupt service routine executes, the SYM53C8XX sends
its return negotiation message.

synch_wi de_neg_return:

nove fromneg_nsg_in, with nmsg_in ;nmove out our
;answer to the
;negoti ation

junp rel (command_phase), if not atn;jump to
; conmmand_phase
;i f atn gone

junp rel (msg_out _phase);junp to nsg _out _phse if atn
;still active

If the target device goes into Message In phase, an exception
condition has occurred that requires the target device to send some
kind of recovery message to the initiator. With these commands, the
SYMB53C8XX sends the message and interrupts to determine what
to do next. Some of the messages that the target might need to send
are Message Reject, Restore Data Pointers, or some other error
message.

nsg_i n_phase:

nove fromnsg_in_buf, with nmsg_in ;nove a nessage
; to the initiator

i nt message_sent ;interrupt to determ ne what to
; do next

This is the final sequence of commands for any 1/0. The
SYMb53C8XX sends a status message, disconnects from the SCSI
bus, executes an interrupt on the fly, and goes back to the

wai t _sel ect label to get ready for next command

tur: ; (Test Unit Ready)

move fromstat buf, with status ;send out status
; byt e

nove fromnsg_in_buf, with nmsg_in ;send out nessage
; byt e

nove 0x20 to scntll ;turns off the halt on parity
;error or atn

di sconnect ;di sconnect fromthe SCSI bus

Symbios Logic PCI-SCSI Programming Guide

Introduction
Using SCRIPTS for Target Operations

intfly ;interrupt to signal end of process

junp rel (wait_sel ect)

This series of commands is the same as the Test Unit Ready label ,
but the SYM53C8XX has been selected while processing another
command or has been issued a Stop command. The device stops and
sends back a Status of busy if the command is one the target device
does not have to accept when busy or stopped.

st opped_busy_tur:

move fromstat buf, with status ;send out status
; byt e

nove fromnsg_in_buf, with nmsg_in ;send out nessage
; byt e

nove 0x20 to scntll ;turns off the halt on parity
;error or atn

di sconnect ;di sconnect fromthe SCSI bus
nove scratchal to sfbr ;get the busy flag

int done_with_busy conmmand, if O0x01 ;if busy,
;interrupt to
;conti nue

intfly ;interrupt to signal end of process

junp rel (stopped_busy wait_sel ect)

These labels send the sense, inquiry, or capacity data requested by
the initiator. The SYM53C8XX moves the data and checks to see
which Test Unit Ready command to use next

request _sense:

nove from sense_data buf, with data in ;nove the
; sense data
;fromthe
; buf fer

nove scratcha2 to sfbr ;get the stopped/busy flag

junmp rel (tur) if Ox00 ;go to the appropriate status\
; and nmessage phases

junp rel (stopped_busy_ tur)
i nquiry:

nove frominquiry_data_buf, with data_in ;nmove out
;inquiry data

nove scratcha2 to sfbr ;get the stopped/busy flag

Symbios Logic PCI-SCSI Programming Guide 12-11

Introduction
Using SCRIPTS for Target Operations

12-12

jump rel (tur) if Ox00 ;go to the appropriate status
; and nmessage phases

junp rel (stopped_busy_ tur)
read_capacity:

nove from capacity_data buf, with data_ in;nove out
; read
;capacity data

nove scratcha2 to sfbr ;get the stopped/busy flag

junp rel (tur) if Ox00 ;go to the appropriate status
;and nessage phases

junmp rel (stopped_busy_tur)

The r ead label is the starting point for all read commands. If
disconnects are allowed, the chip jumps to the r ead_di sconnect
label. Read return is used after read information is set up in the data
buffer. A series of commands determine if the transfer is finished. If
s0, then the SYM53C8XX goes to Test Unit Ready or tries to
disconnect again.

read:
nove scratchbO to sfbr ;get identify nmessage

jump rel (read_di sconnect) if 0x40 and nask Oxbf
;junmp di sconnect if
; di sconnects are all owed

int read_access_nedium ;interrupt to read data
; from medi um

read_return

nove fromdata buf, with data_in;nove the data out
;fromthe buffer

nove scratchbl to sfbr ;get the 'finished flag

jump rel (tur) if Ox00 ;junmp to status and nessage
;i f transfer done

nmove scratchbO to sfbr ;get identify nmessage

junp rel (read_di sconnect) if 0x40 and mask Oxbf
;junp to disconnect if
; di sconnects are all owed

nove from save_pointers, with nsg_in ;nove out the
;save pointers message

call rel (nmsg_out _phase) if atn ;junp to nmessage out
;if atn active

Symbios Logic PCI-SCSI Programming Guide

Introduction
Using SCRIPTS for Target Operations

int read_access_medium ;interrupt to access nedi um

The read_di sconnect label disconnects the device from the bus,
and sets the Semaphore bit to tell the ISR it is disconnected.

read_di sconnect :

nmove from di sconnect_nsg, with nsg_in ;nove out the
; di sconnect nessage

call rel (nmsg_out_phase) if atn ;junmp to nmessage out
;i f atn active

nove 0x20 to scntll ;turns off the halt on parity
;error or atn

di sconnect ;di sconnect fromthe bus

nove 0x10 to istat ;set the semaphore bit to say we
; are di sconnect ed

int read_access_mnedium ;interrupt to read data from
; medi um

The read_r econnect label performs reselection, moves the identify
message from the message in buffer, and jumps to send the data.

read_reconnect:

reselect fromselector_id, rel(alt_got_sel ected)
;reselect the initiator

nove scntl1l & Oxdf to scntll ;turns on the halt on
parity error or atn

nove fromidentify nmsg in_buf, with nsg_in ;nove in
identify nmessage

junp rel (read_return) ;junmp to send data

On a write, the SYM53C8XX interrupts immediately to set up
counts for moving data. It takes data from the initiator, then begins
the write. When writing is done, control jumps to the Test Unit Ready
label.

write return

move fromdata buf, with data_out ;nove the data
;into the buffer

nove scratchbO to sfbr ;get identify nmessage

junp rel (wite_disconnect) if 0x40 and nask Oxbf
;junp to disconnect if
; di sconnects al |l owed

Symbios Logic PCI-SCSI Programming Guide 12-13

Introduction
Using SCRIPTS for Target Operations

12-14

move scratchbl to sfbr ;get the 'finished flag

junp rel (tur) if Ox10 ;junmp to status and
;message if transfer done

nove from save_pointers, with nmsg_in ;nmove out the
; save pointers
; message

call rel (nmsg_out _phase) if atn ;junp to nessage out
;i f atn active

int wite_access_nmediuminterrupt to read data
; from medi um

Thewite_disconnect label does all same things as the read_

di sconnect . It sets the semaphore bit and issues one of two
interrupts, depending on whether or not this is the last write of the
transfer.

write_di sconnect:

nmove from di sconnect_nsg, with nsg_in ;nove out the
; di sconnect nessage

call rel (nmsg_out _phase) if atn ;junp to message out
;i f atn active

nove 0x20 to scntll ;turns off the halt on parity
;error or atn

di sconnect ;di sconnect fromthe bus

nove 0x10 to istat ;set the semaphore bit to say
;we are di sconnected

move scratchbl to sfbr ;get the 'finished flag

int last_wite_disconnect if 0x10;special interrupt
;after |ast data
; phase

int wite_access_mediuminterrupt to read data
; from nedi um

Thewite_reconnect label operates the same as
read_reconnect.

write_reconnect:

reselect fromselector_id, rel(alt_got_sel ected)
;reselect the initiator

move scntll & Oxdf to scntll1l ;turns on the halt on
;parity error or atn

Symbios Logic PCI-SCSI Programming Guide

Introduction
Using SCRIPTS for Target Operations

move fromidentify nmsg in_buf, with nsg_in ;nove in
;identify nmessage
nove scratchbl to sfbr ;get the 'finished flag

junp rel (tur) if Ox00 ;junmp to status and nessage
;i1 f transfer done

junp rel (wite return) ;junp to get data

The reserve_uni t label sets a reservation flag, gets the ID of the
initiator who sent the command, and jumps to Test Unit Ready to
complete command.

reserve_unit:

nmove 0x01 to scratchb2 ;set 'reserved' in
;reservation flag

move ssid & Ox7f to sfbr ;get the ID of who
;reserved us

nove sfbr to scratchb3 ;nmove ID into storage buffer

junp rel (tur) ;go to status and nessage

The rel ease_unit command clears the reserved flag and goes to
Test Unit Ready.

rel ease_unit:

nmove 0x00 to scratchb2 ;set 'not reserved in
;reservation flag

junp rel (tur) ;go to status and nessage

The abort label turns off the halt on parity or ATN bit, and
disconnects from the bus. The chip executes this command when it
receives an Abort message for the command in process. The interrupt
service routine then cleans up the job.

abort:

nmove 0x20 to scntll ;turns off the halt on parity
;error or atn

di sconnect ;go to bus free

int command_aborted ;int to notify driver that
; command was abort ed

Symbios Logic PCI-SCSI Programming Guide 12-15

Introduction
Using SCRIPTS for Target Operations

The SYM53C8XX only performs this routine if it is selected while it
is stopped or busy working on another command. The Request
Sense, Test Unit Ready, Inquiry, and Read Capacity commands are
valid while the target device is busy or stopped and the chip must
respond to them. If the chip is stopped, it will only respond to one of
these commands or the Start command.

st opped_busy_wait_sel ect:
wait select rel (SIGP_set) ;wait to be selected

nove from nsg_out buf, with nsg_out ;get nessage
; byt e

call rel (nsg_out phase), if atn ;stay in nessage\
;if atn still active

nove fromcnd_buf, with cnd ;get SCSI comand

nmove scntl1l & Oxdf to scntll ;turns on the halt on
;parity error or atn

junp rel (stopped_busy tur), if O0x00 ;junp to test
;unit ready

int request_sense_conmand, if O0x03;interrupt to set
;up request sense command

int inquiry _command, if Ox12 ;interrupt to set up
;i nquiry comrand

int read _capacity _command, if O0x25 ;interrupt to
;set up read
; capacity comand

nmove sfbr to scratcha3 ;save the first byte of the
; command

nove scratchal to sfbr ;get the busy flag

junp rel (stopped_busy tur), if 0x01 ;if busy, go
;right to status
; and nessage

nove scratcha3 to sfbr ;restore the first byte of
; the command

int start_stop_command, if Oxlb ;interrupt to set
;up start/stop unit
; command

12-16 Symbios Logic PCI-SCSI Programming Guide

Introduction
Synchronous Negotiation by a Target Device

junmp rel (stopped_busy tur) ;go to status and
; message for any other
conmand

alt_got _sel ect ed:

int got_selected ;interrupt because got sel ected
;during resel ect attenpt

SI GP_set:
int got _SIGP ; taking interrupt because got SIGP

copy_dat a:

nove nenory count, source_address,
destinati on_address ;nmenory nove to wite
; SCRI PTS RAM and to
;transfer data to and
; from upper nenory

int done_with copy ;signal conpletion of nenory nove

Synchronous Negotiation by a Target
Device

For target operation, negotiating occurs when a synchronous
negotiation message is received from the initiator. Once this message
is received, a SCRIPTS Interrupt instruction would be executed to
determine the necessary response. Once the synchronous parameters
for a particular initiator have been established, they should be saved
in a table for later reconnects to the same device. If reselecting an
initiator, the RESELECT FROM command can be used to indicate
table indirect addressing. The SXFER, SCNTL3, and SDID register
values would then be loaded from the table entry. When selected by
an initiator that has previously negotiated for synchronous transfers,
these registers would need to be reloaded from memory before the
target goes to the data transfer phase.

Symbios Logic PCI-SCSI Programming Guide 12-17

Introduction
Synchronous Negotiation by a Target Device

12-18 Symbios Logic PCI-SCSI Programming Guide

Debugging the SYM53C8XX
Overview

Chapter 13

Debugging the SYM53C8XX

Overview

The SCRIPTS registers and the SCSI registers contain information
that may be helpful in debugging the chip. Table 13-1 shows the
information contained in the registers:

Table 13-1
Registers Useful for Debugging
SYM53C8XX
Information Register Remarks
Information regarding the ISTAT Check this register first, since its

most recent interrupt

Current SCRIPTS instruction

Next SCRIPTS Instruction
address

SCSI Bus Control Lines

SCSI Bus Data Lines

DCMD and DBC
(first 32 bits);
DNAD or DSPS
(second 32 bits)

DSP

SBCL

SBDL

contents may be affected by reading or
writing other registers.

The DCMD and DBC always contain
the op code of the most recently
executed SCRIPTS instruction. Use
the cross reference file created from
the SCRIPTS source by NASM to
interpret the contents. The DSPS or
DNAD contains the second 32-bit
field of the SCRIPTS instruction
fetched.

Contains the address of the next
instruction to be fetched. This is
analogous to the program counter of a
microprocessor. Instruction addresses
are on 8-byte boundaries (except
Memory Move, which is on a 12-byte
boundary) and so the value in the DSP
should be eight past the address of the
current instruction.

Contains the current state of SCSI
control lines.

Contains the current status of SCSI
data lines.

Symbios Logic PCI-SCSI Programming Guide 13-1

Debugging the SYM53C8XX

Overview

Table 13-1

Registers Useful for Debugging
SYM53C8XX (Continued)

Information Register Remarks

Last SCSI Phase serviced SOCL Contains the phase to match (initiator)
or the phase driven (target) from the
last SCRIPTS instruction executed.

Last SCSI data byte sent SODL Contains the last byte transferred to
the SCSI bus.

Last SCSI data byte received SIDL Contains the last byte transferred in
from the SCSI bus.

First byte received from Block SFBR Contains the first byte of a block move

Move instruction executed transferred in from SCSI. It also
contains SCSI identities after a
reselection, if using 53C700
compatibility mode and if the IDs are
in the 0-7 range.

53C8XX SCSI ID SCID Contains the SCSI ID of the
SYM53C8XX chip.

Destination SCSI ID SDID Contains the identity of the target for
the last select or reselect instruction
executed.

Response 1D RESPIDO, Contains the IDs that the chip

RESPID1 (wide
SCSI devices only)

responds to on the SCSI bus. The chip
can respond to multiple IDs , so more
than one bit can be set in these
registers.

13-2 Symbios Logic PCI-SCSI Programming Guide

Debugging the SYM53C8XX
Chip Debugging Guidelines

Chip Debugging Guidelines

a Check the register initialization routine. Several registers
should be checked in this step. The most important registers
to verify are listed in Chapter 6.

b Save and print out the data values in all SYM53C8XX
registers at the time the problem occurs. Record the value of
the ISTAT register first, since further register accesses may
trigger interrupts that were not caused by the initial problem.
If there is not an interrupt, abort the SCRIPTS operation by
writing to the ABRT bit in the ISTAT register. This will cause
a DMA abort interrupt. Reset this bit before reading the
DSTAT register to prevent further interrupts from being
generated. Clear the interrupt(s) following the method
suggested in Chapter 6.

Once the interrupts have been cleared, the registers listed in
Table 13-1 contain most of the critical information. If there is
no indication of what is causing the problem, it might be
helpful to look at the rest of the registers.

2 Use the DSP, DSPS, DCMD, and DBC registers to determine
where SCRIPTS execution was stopped. The . LI S file generated
by NASM using the -1 option can be very helpful in this step.
Compare the listings to the debugging register values to
determine what might be causing the problem.

3 If the problem has not yet been discovered, examine logic
analyzer traces of both the host bus and the SCSI bus to verify
that SCRIPTS fetches are occurring correctly. They can also be
used to compare data transferred between the two interfaces.

4 Perform timing verification using a logic analyzer. Signal quality
issues and clock problems may require the use of an oscilloscope.

After this information has been gathered and examined, if no
problem has been revealed, this information along with your code
can enable an Symbios Logic system engineer to assist with your
debugging efforts.

Symbios Logic PCI-SCSI Programming Guide 13-3

Debugging the SYM53C8XX
Chip Debugging Guidelines

|
Common Problems/

Things to Check

13-4

The CPU is accessing registers other than ISTAT while
SCRIPTS are running. ISTAT is the only register that can be
accessed during SCRIPTS operation.

The RESPID register(s) are not initialized. This would keep the
chip from responding to any selection/reselection. Make sure
these registers are initialized correctly.

Verify signal connectivity. (Make sure that the chip pins are all
connected to board traces.) Verify power and ground connection
to the chip. Verify that decoupling capacitors are connected as
recommended in the chip data manual to avoid noise problems.

Make sure that the Enable Response to Selection/Reselection bits
are set correctly.

Symbios Logic PCI-SCSI Programming Guide

Glossary

Glossary

Address A specific location in memory, designated either
numerically or by a symbolic name.

Address Range A contiguous block of memory, designated by a
starting address and an ending address.

Common Command Block (CCB) Contains the information required by
the hardware interface of the device driver for a specific request.

Declarative Keywords Words in the SCRIPTS programming language
used to control the different aspects of code generation

Patching Modifying some elements of the SCRIPTS array after
buffers have been allocated.

PCI (Peripheral Component Interconnect) A high-performance interface
for personal computers and workstations.

Label A symbol representing a specific location in the section of
memory used for code.

Loopback Mode A diagnostic mode that allows the SYM53C8XX to
control all signals, to test both initiator and target operations of the
chip.

NASM A DOS command line assembler that supports Symbios
Logic SCSI processors.

SCSI Small Computer System Interface

SCSI SCRIPTS A high level instruction set for programming the
SYM53C8XX family of PCI-SCSI I/O Processors.

Symbol An identifier used to represent a location in memory. The
identifier may be any combination of alphanumeric characters
allowed by the lexical rules of the programming language being used.

Symbios Logic PCI-SCSI Programming Guide Glossary-1

Glossary

Glossary-2 Symbios Logic PCI-SCSI Programming Guide

NASM Error Messages
Errors

Appendix A

NASM Error Messages

Errors

24 bit value expected

The value specified is not within the range of a 24-bit unsigned
integer. The value must be between 0 and 4M.

Something other than a value was found.

8 bit value expected

The value specified is not within the range of a 8-bit unsigned
integer. The value must be between 0 and 255.

Something other than a value was found.

ACK, ATN, TARGET or CARRY expected string
String was found instead of ACK, ATN, TARGET or CARRY.
AND or OR expected string

String was found instead of AND or OR.

ATN specified multiple times

The ATN field may only be specified once per instruction
Cannot compare CARRY and Data

The command is requesting that both a comparison of the SFBR
register to the specified data and a test of the carry bit take place, but
only one test is allowed.

Cannot compare PHASE and Data

The command is requesting that both a comparison of the SCSI bus
phase and a comparison of the SFBR register to the specified data
take place, but only one test is allowed.

Cannot specify PHASE when using ATN
The use of PHASE and ATN are mutually exclusive.

Symbios Logic PCI-SCSI Programming Guide A-1

NASM Error Messages
Errors

A-2

Cannot use MASK without compare Data

Valid Data must be present when using the MASK field.

Cannot use Pass for count address

The PASS feature cannot be used in a count field. The current
format of the output file does not support this.

Carry operations not available on 53c700 architectures

The Carry feature is only available on the 53C710 or higher
architectures.

CARRY specified multiple times

CARRY may only be specified once per instruction.

CHMOV 53c¢720, 53c770, 53¢c82X, 53¢c875, 53¢876, 53c885,
and 53c895 architectures only

The CHMOV instruction is only available on the chips that support
wide SCSI.

Comma expected string
String was found instead of a comma.
CTEST7 53c700 and 53c710 architectures only

The CTESTT7 register is only available on the 53C700/710
architectures.

CTEST8 53c¢700 and 53c710 architectures only

The CTESTS register is only available on the 53C700/710
architectures.

Data list expected string

String was found instead of a list of initialized data.

Data specified multiple times

The Data field may only be specified once for a given instruction.

Data specifier expected string

String was found instead of a Data specifier. A Data specifier is used
to specify the size of a data area and to initialize that data area.

Declaration expected string

String was found when a declaration was expected. A declaration is
an assignment of a variable to some value or data specifier.

Symbios Logic PCI-SCSI Programming Guide

NASM Error Messages
Errors

Divide or mod by zero

DSAREL: 53c810A, 53c825A, 53C860, 53c875, and 53c895
architectures only

The DSAREL keyword is only supported by the chips that support
Load and Store instructions.

Entry identifier expected name

Name was found instead of an identifier. An identifier is a symbol
that has not previously been declared.

Expression must evaluate to a constant string

A label, relative, external, or an undeclared identifier, string, does
not evaluate to a known value. The value must be known at assembly
time.

Expression or External expected

GPCNTL 53C720, 53C770, and 53C8XX only

The GPCNTL register is available only on the 53C720 and higher
architectures

GPREG 53c¢720,53C770, and 53C8XX architectures only

The GPREG register is only available on the 53C720 and higher
architecture

ID specifier only valid for table entries
IF or WHEN expected string
String was found instead of one of IF or WHEN.

INTFLY:53c720, 53C770, and 53C8XX architecture only

The INTFLY instruction is only available on the 53C720 and higher
architectures.

Invalid Address string

String was found instead of a valid address. A valid address is an
expression, external, relative, table, or an absolute.

Symbios Logic PCI-SCSI Programming Guide A-3

NASM Error Messages
Errors

A-4

Invalid assignment
Invalid character/s
Invalid constant type

Invalid destination address string

String was found instead of a valid destination address. A valid
destination address is an expression, external, relative, table or an
absolute.

Invalid register operator string

String was instead of a valid operator. Valid operators are '+','-', '|',
'&'.

Invalid register value

Value must be in the range 0-3Fh for the 53¢700/710 and 0-5Ch for
the 53c720.

Invalid SCSI id

Value must have only one bit set (bits 0-7) for the 53C700/710/810
and must be in the range of 0-15 for the 53¢720/820/825.

Invalid syntax string
String was found and not expected causing an unknown syntax error.
Invalid test condition string

String was found instead of a valid test condition. The valid test
conditions are CARRY, a PHASE, an 8 bit value, or a MASK.

LCRC 53c710 architectures only
The LCRC register is only available on the 53C710 architecture
Left parenthesis expected string

String was found instead of a left parentheses.

LOAD: 53c810A, 53c825A, 53¢860, 53c875, 53¢c876, 53c885,
and 53c895 architectures

The LOAD instruction is only supported by the 53C810A and
higher architectures

LOAD: Count must not exceed 4 bytes
Four bytes is the maximum byte count to LOAD.

Symbios Logic PCI-SCSI Programming Guide

NASM Error Messages
Errors

Logical end of line "\" expected string

A logical line separator is needed before continuing the directive on a
new line.

MACNTL 53c720, 53c770, and 53c8XX architectures only

The MACNTL register is available only on the 53C720 and higher
architectures

MASK specified multiple times
MASK may only be specified once per instruction.

Memory Move operations not available on 53c700
architectures

The Memory Move instruction is only available on the 53C710 and
higher architectures.

Memory Move Noflush only available on 53c810A,
53c825A, 53¢860, 53¢875, 53¢c876, 53c885, and 53c895
architectures.

The No Flush option is only available in the 53c810A and higher
architectures.

Old EXTERNAL directive, use new EXTERNAL
directive string

When the Debug switch is on, the operand string must be declared
with the new EXTERNAL directive syntax. The new syntax informs
the debugger of the size of the external variable.

Old RELATIVE directive, use new RELATIVE directive
string

When the Debug switch is on, the operand string must be declared
with the new RELATIVE directive syntax. The new syntax informs
the debugger of the size of the relative data area.

One register must be SFBR or both the same.

Register move instruction requires either the source or destination
register be the SFBR register, or both the source and destination be
the same register.

Only use CARRY with Addition or Subtraction.

The CARRY bit can only be checked when either an addition or
subtraction operation is used.

Symbios Logic PCI-SCSI Programming Guide A-5

NASM Error Messages
Errors

A-6

Operand must be a TABLE entry string

When the Debug switch is on, the operand where string resides must
be of type TABLE entry. This is used for table indirect addressing
and to inform the debugger about the size of the table.

Parenthesis must match when PASS is used as an
argument

When a PASS variable is used as an argument the parentheses must
match.

PHASE expected string
String was found instead of a PHASE.

PHASE specified multiple times

Redeclaration of Label string

The string has previously been declared as a label or some other type
of identifier other than an ENTRY.

Redeclaration of TABLE identifier

The string has previously been declared as a TABLE name or some
other type of identifier. Only one TABLE declaration per source file
is allowed.

Register or Data24 value expected string

String was found instead of a register or a 24 bit value.

Register right of operand must be SFBR

In a Move to SFBR operation, SFBR must be to the right of the
operand.

Relative addressing not available on 53c700 architecture
Relative addressing is not supported by the 53c700 architecture.
RESPID 53c81X architecture only

The RESPID register is only one byte in the 53C810.

RESPIDO0 53c¢720, 53c770, 53c82X, 53C875, 53c876,
53c885, and 53c895 architectures only

The RESPIDO register is only available in devices that support Wide
SCsSI.

Symbios Logic PCI-SCSI Programming Guide

NASM Error Messages
Errors

RESPID1 53c720, 53c770, 53¢82X, 53C875, 53c876,
53c¢885, and 53c895 architectures only

The RESPID1 register is only available in devices that support Wide
SCSI.

Right parenthesis expected string

String was found instead of a right parentheses.

SBDL 53c700, 53c710, and 53c81X architectures only

The SBDL register is only one byte in the 53C700, 53C710, and
53C81X architectures.

SBDLO0 53c720, 53c770, 53c82X, 53C875, 53c876, 53c885,
and 53C895 architectures only

The SBDL register is two bytes in the devices that support Wide
SCsSI.

SBDL1 53c720, 53c770, 53c82X, 53C875, 53c876, 53c885,
and 53C895 architectures only

The SBDL register is two bytes in the devices that support Wlde
SCsSI.

SCNTL2 53c¢720,53c770, and 53c8XX architectures only.

The SCNTL2 register is only available on the 53C720 and higher
architectures.

SCNTL3 53¢720, 53c770, and 53c8XX architectures only

The SCNTL3 register is only available on the 53C720 and higher
architectures.

Scratch0 53c710 architectures only

The SCRATCHO register is only available on the 53C710
architecture.

Scratchl 53c710 architectures only

The SCRATCHa1 register is only available on the 53C710
architecture.

Scratch2 53c710 architectures only.

The SCRATCH2 register is only available on the 53C710
architecture.

Symbios Logic PCI-SCSI Programming Guide A-7

NASM Error Messages
Errors

A-8

Scratch3 53c710 architectures only

The SCRATCHS3 register is only available on the 53C710
architecture.

Scratcha0 53c720, 53c770, and 53c8XX architectures only

The SCRATCHAQO register is only available on the 53C720 and
higher architectures.

Scratchal 53c¢720, 53c770, and 53c8XX architectures
only

The SCRATCHAL register is only available on the 53C720 and
higher architectures.

Scratcha253c720, 53c770, and 53c8XX architectures only

The SCRATCHAZ register is only available on the 53C720 and
higher architectures.

Scratcha3 53c¢720, 53¢c770, and 53c8XX architectures
only

The SCRATCHAGS register is only available on the 53C720 and
higher architectures.

Scratchb0 53c720, 53c770, and 53c8XX architectures
only

The SCRATCHBO register is only available on the 53C720 and
higher architectures.

Scratchbl 53c720, 53c770, and 53c8XX architectures
only

The SCRATCHBL register is only available on the 53C720 and
higher architectures.

Scratchb?2 53c720, 53c770, and 53c8XX architectures
only

The SCRATCHB2 register is only available on the 53C720 and
higher architectures.

Scratchb3 53c720, 53c770, and 53c8XX architectures
only

The SCRATCHBS3 register is only available on the 53C720 and
higher architectures.

Symbios Logic PCI-SCSI Programming Guide

NASM Error Messages
Errors

Scratchc0 53c770, 53c825A, 53C875, 53¢876, 53¢c885, and
53c895 architectures only

The SCRATCHC-J registers are only available on the 53C770,
53C825A, 53C875, and 53C895 architectures.

Scratchcl 53c770, 53c825A, 53C875, 53¢876, 53¢c885, and
53c895 architectures only

The SCRATCHC-J registers are only available on the 53C770,
53C825A, 53C875, and 53C895 architectures.

Scratchc2 53c770, 53c825A, 53C875, 53¢876, 53¢c885, and
53c895 architectures only

The SCRATCHC-J registers are only available on the 53C770,
53C825A, 53C875, and 53C895 architectures.

Scratchc3 53c770, 53c825A, 53C875, 53¢876, 53¢c885, and
53c895 architectures only

The SCRATCHC-J registers are only available on the 53C770,
53C825A, 53C875, and 53C895 architectures.

Scratchd0 53c770, 53c825A, 53C875, 53¢876, 53¢885, and
53c895 architectures only

The SCRATCHC-J registers are only available on the 53C770,
53C825A, 53C875, and 53C895 architectures.

Scratchdl 53c770, 53c825A, 53C875, 53¢876, 53¢885, and
53c895 architectures only

The SCRATCHC-J registers are only available on the 53C770,
53C825A, 53C875, and 53C895 architectures.

Scratchd?2 53c770, 53c825A, 53C875, 53¢876, 53¢885, and
53c895 architectures only

The SCRATCHC-J registers are only available on the 53C770,
53C825A, 53C875, and 53C895 architectures.

Scratchd3 53c770, 53c825A, 53C875,53¢c876, 53¢885, and
53c895 architectures only

The SCRATCHC-J registers are only available on the 53C770,
53C825A, 53C875, and 53C895 architectures.

Scratche0 53c770, 53c825A, 53C875, 53¢876, 53¢c885, and
53c895 architectures only

The SCRATCHC-J registers are only available on the 53C770,
53C825A, 53C875, and 53C895 architectures.

Symbios Logic PCI-SCSI Programming Guide A-9

NASM Error Messages
Errors

A-10

Scratchel 53c770, 53c825A, 53C875, 53¢876, 53c885, and
53c895 architectures only

The SCRATCHC-J registers are only available on the 53C770,
53C825A, 53C875, and 53C895 architectures.

Scratche2 53c770, 53c825A, 53C875, 53¢876, 53¢c885, and
53c895 architectures only

The SCRATCHC-J registers are only available on the 53C770,
53C825A, 53C875, and 53C895 architectures.

Scratche3 53c770, 53c825A, 53C875, 53¢876, 53¢c885, and
53c895 architectures only

The SCRATCHC-J registers are only available on the 53C770,
53C825A, 53C875, and 53C895 architectures.

Scratchf0 53c770, 53¢c825A, 53C875, 53¢876, 53¢885, and
53c895 architectures only

The SCRATCHC-J registers are only available on the 53C770,
53C825A, 53C875, and 53C895 architectures.

Scratchfl 53c770, 53¢c825A, 53C875, 53¢876, 53¢c885, and
53c895 architectures only

The SCRATCHC-J registers are only available on the 53C770,
53C825A, 53C875, and 53C895 architectures.

Scratchf2 53c770, 53¢c825A, 53C875, 53¢876, 53¢885, and
53c895 architectures only

The SCRATCHC-J registers are only available on the 53C770,
53C825A, 53C875, and 53C895 architectures.

Scratchf3 53c770, 53¢c825A, 53C875, 53¢876, 53¢885, and
53c895 architectures only

The SCRATCHC-J registers are only available on the 53C770,
53C825A, 53C875, and 53C895 architectures.

Scratchg0 53c770, 53c825A, 53C875,53¢876, 53¢c885, and
53c895 architectures only

The SCRATCHC-J registers are only available on the 53C770,
53C825A, 53C875, and 53C895 architectures.

Scratchgl 53c770, 53c825A, 53C875, 53c876, 53¢885, and
53c895 architectures only

The SCRATCHC-J registers are only available on the 53C770,
53C825A, 53C875, and 53C895 architectures.

Symbios Logic PCI-SCSI Programming Guide

NASM Error Messages
Errors

Scratchg?2 53c770, 53c825A, 53C875, 53c876, 53¢885, and
53c895 architectures only

The SCRATCHC-J registers are only available on the 53C770,
53C825A, 53C875, and 53C895 architectures.

Scratchg3 53c770, 53c825A, 53C875, 53¢c876, 53¢885, and
53c895 architectures only

The SCRATCHC-J registers are only available on the 53C770,
53C825A, 53C875, and 53C895 architectures.

Scratchh0 53c770, 53¢c825A, 53C875, 53¢876, 53¢885, and
53c895 architectures only

The SCRATCHC-J registers are only available on the 53C770,
53C825A, 53C875, and 53C895 architectures.

Scratchhl 53c770, 53¢c825A, 53C875, 53¢876, 53¢885, and
53c895 architectures only

The SCRATCHC-J registers are only available on the 53C770,
53C825A, 53C875, and 53C895 architectures.

Scratchh2 53c770, 53¢c825A, 53C875, 53¢876, 53¢885, and
53c895 architectures only

The SCRATCHC-J registers are only available on the 53C770,
53C825A, 53C875, and 53C895 architectures.

Scratchh3 53c770, 53¢c825A, 53C875, 53¢876, 53¢885, and
53c895 architectures only

The SCRATCHC-J registers are only available on the 53C770,
53C825A, 53C875, and 53C895 architectures.

Scratchi0 53c770, 53c825A, 53C875, 53¢876, 53¢c885, and
53c895 architectures only

The SCRATCHC-J registers are only available on the 53C770,
53C825A, 53C875, and 53C895 architectures.

Scratchil 53c770, 53c825A, 53C875, 53¢876, 53c885, and
53c895 architectures only

The SCRATCHC-J registers are only available on the 53C770,
53C825A, 53C875, and 53C895 architectures.

Scratchi2 53c770, 53c825A, 53C875, 53¢876, 53c885, and
53c895 architectures only

The SCRATCHC-J registers are only available on the 53C770,
53C825A, 53C875, and 53C895 architectures.

Symbios Logic PCI-SCSI Programming Guide A-11

NASM Error Messages
Errors

A-12

Scratchi3 53c770, 53c825A, 53C875, 53¢876, 53¢c885, and
53c895 architectures only

The SCRATCHC-J registers are only available on the 53C770,
53C825A, 53C875, and 53C895 architectures.

Scratchj0 53c¢770, 53c825A, 53C875, 53¢876, 53¢885, and
53c895 architectures only

The SCRATCHC-J registers are only available on the 53C770,
53C825A, 53C875, and 53C895 architectures.

Scratchjl 53c¢770, 53c825A, 53C875, 53¢876, 53¢c885, and
53c895 architectures only

The SCRATCHC-J registers are only available on the 53C770,
53C825A, 53C875, and 53C895 architectures.

Scratchj2 53c770, 53c825A, 53C875, 53¢876, 53¢885, and
53c895 architectures only

The SCRATCHC-J registers are only available on the 53C770,
53C825A, 53C875, and 53C895 architectures.

Scratchj3 53c¢770, 53c825A, 53C875, 53¢876, 53¢885, and
53c895 architectures only

The SCRATCHC-J registers are only available on the 53C770,
53C825A, 53C875, and 53C895 architectures.

SELIDO: 53¢720, 535¢770, and 53c8XX architectures only
SELID1: 53¢720, 53c770, and 53c8XX architectures only

Separator expected ', or "\\'

A comma or a logical line separator is needed to delimit declarations.

SIDL 53c700, 53C710, and 53c81X architectures only

The SIDL register is only one byte on the 53C700, 53C710, and
53C81X chips.

SIDLO0 53c720, 53c770, 53C82X, 53c875, 53c876, 53c885,
and 53c895 architectures only

The SIDL register is two bytes on the chips that support Wide SCSI.

SIDL1 53c720, 53c770, 53c82X, 53C875, 53c876, 53c885,
and 53C895 architectures only

The SIDL register is two bytes on the chips that support Wide SCSI.

Symbios Logic PCI-SCSI Programming Guide

NASM Error Messages
Errors

SHL 53c720, 53c770, and 53c8XX architectures only

The shift left instruction is only supported on 53C720 and higher
architectures.

SHR 53c¢720, 53c770, and 53c8XX architectures only

The shift right instruction is only supported on 53C720 and higher
architectures.

SIEN 53c700 and 53c710 architectures only
The SIEN register is only available on the 53C700/710 architectures.

SIENO 53c720, 53c770, and 53c8XX architectures only

The SIENO register is only available on the 53C720 and higher
architectures.

SIEN1 53c¢720, 53c770, and 53c8XX architectures only

The SIENL1 register is only available on the 53C720 and higher
architectures.

SISTO0 53c720, 53c770, and 53c8XX architectures only

The SISTO register is only available on the 53C720 and higher
architectures.

SIST1 53¢720, 53c770, and 53c8XX architectures only

The SIST1 register is only available on the 53C720 and higher
architectures.

SLPAR 53c720, 53c770, and 53c8XX architectures only

The SLPAR register is only available on the 53C720 and higher
architectures.

SODL 53c700, 53c710, and 53C81X architectures only

The SODL register is one byte only on the 53C700, 53C710, and
53C81X chips.

SODLO0 53c720, 53c770, 53c82X, 53c875, 53¢c876, 53¢885,
and 53c895 architectures only

The SODL register is two bytes on the chips that support Wide
SCSI.

Symbios Logic PCI-SCSI Programming Guide A-13

NASM Error Messages
Errors

A-14

SODL1 53c720, 53c770, 53c82X, 53c875, 53¢876, 53¢885,
and 53C895 architectures only

The SODL register is two bytes on the chips that support Wide
SCSI.

SSID 53c720, 53c770, and 53c8XX architectures only

The SSID register is only available on the 53C720 and higher
architectures.

STESTO0 53c720, 53c770, and 53c8XX architectures only

The STESTO register is only available on the 53C720 and higher
architectures.

STEST1 53c720, 53c770, and 53c8XX architectures only

The STEST1 register is only available on the 53C720 and higher
architectures.

STEST2 53c720, 53c770, and 53c8XX architectures only

The STEST2 register is only available on the 53C720 and higher
architectures.

STEST3 53c720, 53¢770, and 53c8XXarchitectures only

The STEST3 register is only available on the 53C720 and higher
architectures.

STEST4 53c895 architecture only
The STEST4 register is only available on the53C895.
STIMEO 53c720, 53c770, and 53c8XX architectures only

The STIMEDO register is only available on the 53C720 and higher
architecture.

STIMEL1 53c720, 53c770, and 53c8XX architectures only

The STIMEL register is only available on the 53C720 and higher
architectures.

STORE: 53c810A, 53c825A, 53¢c860, 53¢c875, 53¢c876,
53¢885, and 53¢895 architectures

The STORE instruction is only supported by the 53C810A and
higher architectures

STORE: Count must not exceed 4 bytes
Four bytes is the maximum byte count to STORE.

Symbios Logic PCI-SCSI Programming Guide

NASM Error Messages
Fatal Errors

SWIDE 53c720, 53c82X, 53c875, 53c876, 53c885, and
53c895 architectures only

The SWIDE register is only available on the Symbios Logic SCSI
processors that support wide SCSI.

TABLE directive not available on 53c700 architecture
Table indirect operations are not supported by the 53C700.

Table indirect operations not available on 53¢700
architecture

Table indirect addressing is not supported by the 53¢700
architecture.

Table name expected string

The directive TABLE was found without a table name declaration.
Unexpected EOF

End of file was found when not expected.

Unresolved Label or Identifier string

String was used but never declared as a label, external, relative,
absolute or table.

WITH or WHEN expected

XOR 53¢720, 53¢810, and 53c825 only

XOR operations are only supported on 53C720 and higher
architectures

Fatal Errors

Fatal Error allocating input file buffer(s)
Fatal File Not found
The file named filename was not found in the path specified.

Fatal Memory allocation error

Not enough dynamic memory available to complete assembly of the
file. Try dividing up file or freeing memory.

Fatal No source file specified.

A source file to assemble must be specified on the command line. Try
specifying source files first before options.

Symbios Logic PCI-SCSI Programming Guide A-15

NASM Error Messages
Warnings

Fatal Opening file
The filename specified can not be opened for some unknown reason.

Fatal read permission denied for file

The filename specified can not be opened with read access.

Warnings

ACK specified multiple times.

The ACK bit can only be specified once per instruction.
ATN specified multiple times.

The ATN bit can only be specified once per instruction.
Cannot extract pass information correctly

The pass variable is poorly formatted and may not have been
correctly interpreted.

CARRY specified multiple times.
The CARRY bit can only be specified once per instruction.
Initializer value truncated to byte value

Initialization of data by byte offset only.

Debug record contains old format EXTERNAL
statement, data size unknown

Use the new style EXTERNAL directive where data specifiers are
used.

Debug record contains old format RELATIVE
statement, Data size unknown

Use the new style RELATIVE directive where data specifiers are
used.

Initializer value truncated to byte

Possible truncation of constant value

The value of the constant may have been truncated. This is caused by
the ASCII conversion of the value.

A-16 Symbios Logic PCI-SCSI Programming Guide

NASM Error Messages
Warnings

Relative offset value truncated

Source and.bin file have same the name

The binary file has the same name as the source. The binary file will
be renamed or not created.

Source and Error file have same the name

The error file has the same name as the source. The error file will be
renamed or not created.

Source and listing file have the same name

The listing file has the same name as the source. The listing file will
be renamed or not created.

Source and Object file the same name

The object file and source file have the same name. The object file
will be renamed or not created

Source and Out file have the same name

The output file and source file have the same name. The output file
will be renamed or not created.

TARGET specified multiple times.
The TARGET bit can only be specified once per instruction

Symbios Logic PCI-SCSI Programming Guide A-17

NASM Error Messages
Warnings

A-18 Symbios Logic PCI-SCSI Programming Guide

Register Summaries
SYM53C810A Operating Registers

Appendix B
Register Summaries

SYM53C810A Operating
Registers

Register 00 (80)
SCSI Control Zero (SCNTLO)

Read/Write
ARBL | ARBO | START | WATN EPC RES AAP TRG
7 6 5 4 3 2 1 0
Default>>>
1 1 0 0 0 X 0 0
Bit 7 ARBL1 (Arbitration mode bit 1)

Bit 6 ARBO (Arbitration mode bit 0)

Bit5 START (Start sequence)

Bit 4 WATN (Select with SATN/ on a start sequence)
Bit 3 EPC (Enable parity checking)

Bit 2 Reserved

Bit 1 AAP (Assert SATN/ on parity error)

Bit0 TRG (Target role)

Register 01 (81)
SCSI Control One (SCNTL1)

Register 02 (82)
SCSI Control Two (SCNTL2)

Read/Write
EXC ADB DHP CON RST AESP IARB SST
7 6 5 4 3 2 1 0
Default>>>
0 0 0 0 0 0 0 0
Bit7 EXC (Extra clock cycle of data setup)

Bit 6 ADB (Assert SCSI data bus)

Bit5 DHP (Disable Halt on Parity Error or ATN)
(Target Only)

Bit 4 CON (Connected)

Bit 3 RST (Assert SCSI RST/ signal)

Bit 2 AESP (Assert even SCSI parity (force bad parity))

Bit 1 IARB (Immediate Arbitration)

Bit 0 SST (Start SCSI Transfer)

Symbios Logic PCI-SCSI Programming Guide

Read/Write
SDU RES RES RES RES RES RES RES
7 6 5 4 3 2 1 0
Default>>>
0 X X X X X X X
Bit 7 SDU (SCsSI Disconnect Unexpected)
Bits 6-0 Reserved
Register 03 (83)
SCSI Control Three (SCNTL3)
Read/Write
RES SCF2 SCF1 SCFO RES CCF2 CCF1 CCFO
7 6 5 4 3 2 1 0
Default>>>
X 0 0 0 X 0 0 0
Bit 7 Reserved
Bits 6-4 SCF2-0 (Synchronous Clock
Bit 3 Reserved
Bits 2-0 CCF2-0 (Clock Conversion Factor)
Register 04 (84)
SCSI Chip ID (SCID)
Read/Write
RES RRE SRE RES RES ENC2 ENC1 ENCO
7 6 5 4 3 2 1 0
Default>>>
X 0 0 X X 0 0 0
Bit 7 Reserved
Bit 6 RRE (Enable Response to
Reselection)
Bit5 SRE (Enable Response to Selection)
Bit 4-3 Reserved
Bits 2-0 Encoded Chip SCSI ID, bits 2-0
B-1

Register Summaries
SYM53C810A Operating Registers

Register 05 (85) Register 09 (89)
SCSI Transfer (SXFER) SCSI Output Control Latch (SOCL)
Read/Write Read /Write
TP2 TP1 TPO RES MO3 MO2 MO1 MO0 REQ ACK BSY SEL ATN MSG /D 1/0
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
Default>>> Default>>>
0 0 0 X 0 0 0 0 0 0 0 0 0 0 0 0
Bits 7-5 TP2-0 (SCSI Synchronous Transfer Period) Bit 7 REQ(Assert SCSI REQ/ signal)
Bit 4 Reserved Bit 6 ACK(Assert SCSI ACK/ signal)
Bits 3-0 MO3-MOO0 (Max SCSI synchronous offset) Bit5 BSY(Assert SCSI BSY/ signal)
. Bit 4 SEL(Assert SCSI SEL/ signal)
Register 06 (86) Bit 3 ATN(Assert SCSI ATN/ signal)
SCSI Destination ID (SDID) Bit 2 MSG(Assert SCSI MSG/ signal)
Read/Write Bit1 C/D(Assert SCSI C_D/ signal)
RES RES RES RES RES | ENC2 | ENCI | ENCO Bit0 I/O(Assert SCSI 1_O/ signal)
7 6 5 4 8 2 . 0 Register 0A (8A)
Default>>> SCSI Selector ID (SSID)
X X X X X 0 0 0 Read Only
Bits 7-3 Reserved VAL RES RES RES RES [ENID2 [ENID1 | ENIDO
Bits 2-0 Encoded destination SCSI ID 7 6 5 4 3 2 1 0
Register 07 (87) Default>>>
General Purpose (GPREG) 0 X X X X 0 0 0
Read/Write Bit 7 VAL (SCSI Valid Bit)

Bits 6-3 Reserved
Bits 2-0 Encoded Destination SCSI ID

RES RES RES RES RES RES GPIO1 | GPIOO

7 6 5 4 3 2 1 0
Default>>> Register OB (8B)
X X X X X X 0 0 SCSI Bus Control Lines (SBCL)
Bits 7-2 Reserved Read Only
Bits 1-0 GPI101-GPIO0 (General Purpose) REQ ACK BSY SEL ATN MSG c/D 110
7 6 5 4 3 2 1 0
Register 08 (88) _ Default>>>
SCSI First Byte Received (SFBR) X X X X X X X X
Read/Write Bit 7 REQ (SREQ/ status)
187 | 186 | 185 | 184 | 183 | 182 | 1BL | 18O g!: S ggYK ((SSBASC\:(// itituj)
| status
7 6 5 4 3 2 1 0
TS Bit 4 SEL (SSEL/ status)
etau Bit 3 ATN SATN/ status)
0 0 0 0 0 0 0 0 Bit 2 MSG (SMSG/ status)
Bit1 C/D (SC_D/ status)
Bit 0 1/0O (SI_O/ status)

B-2 Symbios Logic PCI-SCSI Programming Guide

Register 0C (8C)
DMA Status (DSTAT)
Read Only

Register Summaries
SYM53C810A Operating Registers

Registers 10-13 (90-93)
Data Structure Address (DSA)
Read/Write

Register 14 (94)
Interrupt Status (ISTAT)

DFE MDPE BF ABRT ssI SIR RES 1D
7 6 5 4 3 2 1 0
Default>>>
1 0 0 0 0 0 X 0
Bit 7 DFE (DMA FIFO empty)
Bit 6 MDPE (Master Data Parity Error)
Bit5 BF (Bus fault)
Bit 4 ABRT (Aborted)
Bit 3 SSI (Single step interrupt)
Bit 2 SIR (SCRIPTS interrupt
instruction received)
Bit 1 Reserved
Bit 0 11D (lllegal instruction detected)
Register OD (8D)
SCSI Status Zero (SSTATO)
Read Only
ILF ORF OLF AIP LOA WOA RST SDPO/
7 6 5 4 3 2 1 0
Default>>>
0 0 0 0 0 0 0 0
Bit 7 ILF (SIDL full)
Bit 6 ORF (SODR full)
Bit5 OLF (SODL full)
Bit 4 AIP (Arbitration in progress)
Bit 3 LOA (Lost arbitration)
Bit 2 WOA (Won arbitration)
Bit 1 RST/ (SCSI RST/ signal)
Bit 0 SDP/ (SCSI SDP/ parity signal)
Register OE (8E)
SCSI Status One (SSTAT1)
Read Only
FF3 FF2 FF1 FFO SDPOL | MSG c/D 110
7 6 5 4 3 2 1 0
Default>>>
0 0 0 0 X X X X
Bits 7-4 FF3-FF0 (FIFO flags)
Bit 3 SDPL (Latched SCSI parity)
Bit 2 MSG (SCSI MSG/ signal)
Bit 1 C/D (SCsI C_D/ signal)
Bit 0 1/0O (SCSI 1_O/ signal)
Register OF (8F)
SCSI Status Two (SSTAT2)
(Read Only)
RES RES RES RES RES RES LDSC RES
7 6 5 4 3 2 1 0
Default>>>
X X X X X X 1 X
Bits 7-2 Reserved
Bit 1 LDSC (Last Disconnect)
Bit0 Reserved

Symbios Logic PCI-SCSI Programming Guide

(Read/Write)
ABRT | SRST SIGP SEM CON INTF SIP DIP
7 6 5 4 3 2 1 0
Default>>>
0 0 0 0 0 0 0 0
Bit 7 ABRT (Abort operation)
Bit 6 SRST (Software reset)
Bit5 SIGP (Signal process)
Bit 4 SEM (Semaphore)
Bit 3 CON (Connected)
Bit 2 INTF (Interrupt on the Fly)
Bit1 SIP (SCSI interrupt pending)
Bit 0 DIP (DMA interrupt pending)
Register 18 (98)
Chip Test Zero (CTESTO)
Read/Write
Register 19 (99)
Chip Test One (CTEST1)
Read Only
FMT3 | FMT2 | FMTL | FMTO FFL3 FFL2 FFL1 FFLO
7 6 5 4 3 2 1 0
Default>>>
1 1 1 1 0 0 0 0
Bits 7-4 FMT3-0 (Byte empty in DMA FIFO)
Bits 3-0 FFL3-0 (Byte full in DMA FIFO)
Register 1A (9A)
Chip Test Two (CTEST?2)
Read Only
DDIR SIGP clo cM RES TEOP | DREQ | DACK
7 6 5 4 3 2 1 0
Default>>>
0 0 X X 0 0 0 1
Bit 7 DDIR (Data transfer direction)
Bit 6 SIGP (Signal process)
Bit5 CIlO (Configured as 1/0)
Bit 4 CM (Configured as memory)
Bit 3 Reserved
Bit 2 TEOP (SCSI true end of process)
Bit 1 DREQ (Data request status)
Bit 0 DACK (Data acknowledge status)
B-3

Register Summaries
SYM53C810A Operating Registers

Register 1B (9B)
Chip Test Three (CTEST3)

Register 23 (A3)
Chip Test Six (CTEST6)

Read/Write Read/Write
V3 V2 V1 VO FLF CLF FM WRIE DF7 DF6 DF5 DF4 DF3 DF2 DF1 DFO
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
Default>>> Default>>>
X X X X 0 0 0 0 0 0 0 0 0 0 0 0
Bits 7-4 V3-VO0 (Chip revision level) Bits 7-0 DF7-DF0 (DMA FIFO)
Bit 3 FLF (Flush DMA FIFO) .
Bit 2 CLF (Clear DMA FIFO) Registers 24-26 (A4-A6)
Bit 1 FM (Fetch pin mode) DMA Byte Counter (DBC)
Bit 0 WRIE (Write and Invalidate Enable) Read/Write
: } . Register 27 (A7)
Registers 1C_1F (9C-9F) DMA Command (DCMD)
porary (TEMP) .
Read/Write Read/Write
. Registers 28-2B (A8-AB)
DA EIF o (DEIFO) DMA Next Address (DNAD)
Read/Write Read/Write
Registers 2C-2F (AC-AF)
ol ol el el el i B B DMA SCRIPTS Pointer (DSP)
Read/Write
Default>>>
X 0 0 0 0 0 0 0 Registers 30-33 (B0-B3)
. DMA SCRIPTS Pointer Save (DSPS)
Bit7 Reserved Read/Write
Bits 6-0 BO6-BOO0 (Byte offset counter)
. Registers 34-37 (B4-B7)
Register 21 (Al) Scratch Register A (SCRATCH A)
Chip Test Four (CTEST4) Read/Write
Read/Write .
Register 38 (B8)
BDIS | zmMOD | ZzSD SRTM | MPEE | FBL2 FBL1 FBLO DMA Mode (DMODE)
7 6 5 4 3 2 1 0 Read/Write
Default>>>
0 0 0 0 0 0 0 0 BLL BLO SIOM | DIOM ERL ERMP BOF MAN
7 6 5 4 3 2 1 0
Bit7 BDIS (Burst Disable) Default>>>
Bit 6 ZMOD (High impedance mode) 0 0 0 0 0 0 0 0
Bit5 ZSD (SCsSI Data High Impedance)
Bit 4 SRTM (Shadow Register Test Mode) Bit 7-6 BL1-BLO (Burst length)
Bit 3 MPEE (Master Parity Error Enable) Bit5 SIOM (Source I/0-Memory Enable)
Bits 2-0 FBL2-FBLO (FIFO byte control) Bit 4 DIOM (Destination I/O-Memory Enable)
Bit 3 ERL (Enable Read Line)
Register 22 (A2) Bit 2 ERMP (Enable Read Multiple)
Chip Test Five (CTESTD5) Bit 1 BOF (Burst Op Code Fetch Enable)
Read/Write Bit 0 MAN (Manual Start Mode)
ADCK | BBCK RES MASR | DDIR RES RES RES Register 39 (B9)
7 6 5 4 3 2 1 0 DMA Interrupt Enable (DIEN)
Default>>> Read/Write
0 0 X 0 0 X X X RES MDPE BF ABRT Ssl SIR RES 1D
Bit7 ADCK (Clock address incrementor) 7 6 5 4 3 2 1 0
Bit 6 BBCK (Clock byte counter) Default>>>
Bit 5 Reserved X 0 0 0 0 0 X 0
Bit 4 MASR (Master control for set or reset pulses)
Bit 3 DDIR (DMA direction) Bit7 Reserved
Bits 2-0 Reserved Bit 6 MDPE (Master Data Parity Error)
Bit 5 BF (Bus fault)
Bit 4 ABRT (Aborted)
Bit 3 SSI (Single step interrupt)
Bit 2 SIR (SCRIPTS interrupt
instruction received
Bit 1 Reserved
Bit 0 11D (lllegal instruction detected)
B-4 Symbios Logic PCI-SCSI Programming Guide

Register 3A (BA)
Scratch Byte Register (SBR)
Read/Write

Register 3B (BB)
DMA Control (DCNTL)

Register Summaries
SYM53C810A Operating Registers

Register 42 (C2)
SCSI Interrupt Status Zero (SISTO)

Read/Write
CLSE PFF PFEN SSM IRQM STD IRQD COM
7 6 5 4 3 2 1 0
Default>>>
0 0 0 0 0 0 0 0
Bit 7 CLSE (Cache Line Size Enable)
Bit 6 PFF (Pre-Fetch Flush)
Bit5 PFEN (Pre-fetch Enable)
Bit 4 SSM (Single-step mode)
Bit 3 IRQM (IRQ Mode)
Bit 2 STD (Start DMA operation)
Bit 1 IRQD (IRQ Disable)
Bit 0 COM (53C700 compatibility)

Register 3C-3F (BC-BF)
Adder Sum Output (ADDER)
Read Only

Register 40 (C0)
SCSI Interrupt Enable Zero (SIENO)

Read Only
M/A CMP SEL RSL SGE uDc RST PAR
7 6 5 4 3 2 1 0
Default>>>
0 0 0 0 0 0 0 0
Bit 7 M/A (Initiator Mode: Phase Mismatch; Target
Mode: SATN/ Active)
Bit 6 CMP (Function Complete)
Bit5 SEL (Selected)
Bit 4 RSL (Reselected)
Bit 3 SGE (SCSI Gross Error)
Bit 2 UDC (Unexpected Disconnect)
Bit1 RST (SCSI RST/ Received)
Bit 0 PAR (Parity Error)

Register 43 (C3)
SCSI Interrupt Status One (SIST1)

Read/Write
M/A CMP SEL RSL SGE ubc RST PAR
7 6 5 4 3 2 1 0
Default>>>
0 0 0 0 0 0 0 0
Bit7 M/A (SCSI Phase Mismatch -

Initiator Mode; SCSI ATN
Condition - Target Mode)

Bit 6 CMP (Function Complete)
Bit5 SEL (Selected)

Bit 4 RSL (Reselected)

Bit 3 SGE (SCSI Gross Error)

Bit 2 UDC (Unexpected Disconnect)
Bit 1 RST (SCSI Reset Condition)
Bit 0 PAR (SCSI Parity Error)

Register 41 (C1)
SCSI Interrupt Enable One (SIEN1)

Read Only
RES RES RES RES RES STO GEN HTH
7 6 5 4 3 2 1 0
Default>>>
X X X X X 0 0 0
Bits 7-3 Reserved
Bit 2 STO (Selection or Reselection Time-out)
Bit 1 GEN (General Purpose Timer Expired)
Bit 0 HTH (Handshake-to-Handshake Timer Expired)

Register 44 (C4)
SCSI Longitudinal Parity (SLPAR)
Read/Write

Register 46 (C6)
Memory Access Control (MACNTL)

Read/Write
RES RES RES RES RES STO GEN HTH
7 6 5 4 3 2 1 0
Default>>>
X X X X X 0 0 0
Bits 7-3 Reserved
Bit 2 STO (Selection or Reselection Time-out)
Bit 1 GEN (General Purpose Timer Expired)
Bit 0 HTH (Handshake to Handshake timer Expired)

Symbios Logic PCI-SCSI Programming Guide

Read/Write
TYP3 TYP2 TYP1 TYPO DWR DRD PSCPT | SCPTS

7 6 5 4 3 2 1 0
Default>>>
0 1 0 1 0 0 0 0

Bits 7-4 TYP3-0 (Chip Type)

Bit 3 DWR (DataWR)

Bit 2 DRD (DataRD)

Bit 1l PSCPT (Pointer SCRIPTS)

Bit 0 SCPTS (SCRIPTS)

Register 47 (C7)
General Purpose Pin Control (GPCNTL)
Read/Write

ME FE RES RES RES RES GPIO1 | GPIOO
7 6 5 4 3 2 1 0
Default>>>
0 0 X 0 1 1 1 1
Bit7 Master Enable
Bit 6 Fetch Enable
Bit5 -2 Reserved
Bits 1-0 GPIO1_EN- GPIOO0_EN (GPIO Enable)

Register Summaries
SYM53C810A Operating Registers

Register 48 (C8)

SCSI Timer Zero (STIMEO)

Register 4E (CE)
SCSI Test Two (STEST?2)

Read /Write Read/Write
HTH HTH HTH HRH SEL SEL SEL SEL SCE ROF RES SLB SZM RES EXT Low
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
Default>>> Default>>>
0 0 0 0 0 0 0 0 0 0 X 0 0 X 0 0
Bits 7-4 HTH (Handshake-to-Handshake Timer Period) Bit 7 SCE (SCSI Control Enable)
Bits 3-0 SEL (Selection Time-Out) Bit 6 ROF (Reset SCSI Offset)
] Bit5 Reserved
Register 49 (C9) Bit 4 SLB (SCSI Loopback Mode)
SCSI Timer One (STIMEL) Bit 3 SZM (SCSI High-Impedance Mode)
Read/Write Bit 2 Reserved
RES | RES | RES | RES | GEN3 | GEN2 | GENL | GENO Bit1l E::;(n's;te”d SREQ/SACK
ilteri
! 6 > 4 3 2 ! 0 Bit 0 LOW (SCSI Low level Mode)
Default>>>
X X X X 0 0 0 0 Register 4F (CF)
Bits 7-4 Reserved gCSdI/J\(;S_ttThree (STEST3)
Bits 3-0 GENB3-0 (General Purpose Timer Period) ea rte
Register 4A (CA) TE STR HSC DSI RES ™ CSF STW
Response 1D (RESPID) ! 6 5 4 3 2 ! 0
Read/Write Default>>>
0 0 0 0 X 0 0 0
Register 4C (CC) .
SCSI Test Zero (STESTO) B!t 7 TE (TolerANT Enable)
Read Only Bit 6 STR (SCSI FIFO Test Read)
Bit5 HSC (Halt SCSI Clock)
RES | SSAID2 | SSAID1 | SSAIDO | SLT ART S0z SOM Bit 4 DSI (Disable Single Initiator Response)
7 6 5 4 3 2 1 0 Bit 3 Reserved
Default>>> Bit 2 TTM (Timer Test Mode)
X X X X 0 X 1 1 Bit 1l CSF (Clear SCSI F“:O)
Bit 0 STW (SCSI FIFO Test Write)
Bit 7 Reserved
Bits 6-4 SSAID (SCSI Selected As 1D) Register 50 (D0)
Bit 3 SLT (Selection response logic test) SCSI Input Data Latch (SIDL)
Bit 2 ART (Arbitration Priority Encoder Test) Read Only
Bit 1 SOZ (SCSI Synchronous Offset Zero) .
Bit 0 SOM (SCsSI Synchronous Offset Maximum) Registers 54 (D4)

Register 4D (CD)
SCSI Test One (STEST1)

Read/Write
SCLK SISO RES RES RES RES RES RES
7 6 5 4 3 2 1 0
Default>>>
0 0 X X X X X X
Bit7 SCLK
Bit 6 SISO (SCsI Isolation Mode)
Bits 5-0 Reserved
B-6

SCSI Output Data Latch (SODL)
Read/Write

Registers 58 (D8)
SCSI Bus Data Lines (SBDL)
Read Only

Registers 5C-5F (DC-DF)
Scratch Register B (SCRATCHB)
(Read/Write)

Symbios Logic PCI-SCSI Programming Guide

SYM53C815 Operating
Registers

Register 00 (80)
SCSI Control Zero (SCNTLO)

Register Summaries
SYM53C815 Operating Registers

Register 03 (83)
SCSI Control Three (SCNTL3)

Read/Write
ARB1 ARBO START | WATN EPC RES AAP TRG

7 6 5 4 3 2 1 0
Default>>>
1 1 0 0 0 X 0 0

Bit 7 ARBL1 (Arbitration mode bit 1)

Bit 6 ARBO (Arbitration mode bit 0)

Bit 5 START (Start sequence)

Bit 4 WATN (Select with SATN/ on a start sequence)

Bit 3 EPC (Enable parity checking)

Bit 2 Reserved

Bit 1 AAP (Assert SATN/ on parity error)

Bit 0 TRG (Target role)

Register 01 (81)
SCSI Control One (SCNTL1)

Read/Write
RES SCF2 SCF1 SCFO RES CCF2 CCF1 CCFO
7 6 5 4 3 2 1 0
Default>>>
X 0 0 0 X 0 0 0
Bit 7 Reserved
Bits 6-4 SCF2-0 (Synchronous Clock
Bit 3 Reserved
Bits 2-0 CCF2-0 (Clock Conversion Factor)

Register 04 (84)
SCSI Chip ID (SCID)

Read/Write
EXC ADB DHP CON RST AESP IARB SST
7 6 5 4 3 2 1 0
Default>>>
0 0 0 0 0 0 0 0
Bit 7 EXC (Extra clock cycle of data setup)
Bit 6 ADB (Assert SCSI data bus)
Bit 5 DHP (Disable Halt on Parity Error or ATN) (Tar-
get Only)
Bit 4 CON (Connected)
Bit 3 RST (Assert SCSI RST/ signal)
Bit 2 AESP (Assert even SCSI parity (force bad parity))
Bit 1 IARB (Immediate Arbitration)
Bit 0 SST (Start SCSI Transfer)

Register 02 (82)
SCSI Control Two (SCNTL2)

Read/Write
RES RRE SRE RES RES ENC2 ENC1 ENCO
7 6 5 4 3 2 1 0
Default>>>
X 0 0 X X 0 0 0
Bit7 Reserved
Bit 6 RRE (Enable Response to
Reselection)
Bit5 SRE (Enable Response to Selection)
Bit 4-3 Reserved
Bits 2-0 Encoded Chip SCSI ID, bits 2-0

Register 05 (85)
SCSI Transfer (SXFER)

Read/Write
P2 TP1 TPO RES MO3 MO2 MO1 MO0
7 6 5 4 3 2 1 0
Default>>>
0 0 0 X 0 0 0 0
Bits 7-5 TP2-0 (SCSI Synchronous Transfer Period)

Bit 4 Reserved
Bits 3-0 MO3-MOO0 (Max SCSI synchronous offset)

Register 06 (86)
SCSI Destination ID (SDID)

Read/Write
Sbu RES RES RES RES RES RES RES
7 6 5 4 3 2 1 0
Default>>>
0 X X X X X X X
Bit 7 SDU (SCsSI Disconnect Unexpected)
Bits 6-0 Reserved

Symbios Logic PCI-SCSI Programming Guide

Read/Write
RES RES RES RES RES ENC2 ENC1 ENCO
7 6 5 4 3 2 1 0
Default>>>
X X X X X 0 0 0
Bits 7-3 Reserved
Bits 2-0 Encoded destination SCSI ID

Register Summaries
SYM53C815 Operating Registers

Register 07 (87)
General Purpose (GPREG)

Register OB (8B)
SCSI Bus Control Lines (SBCL)

Read/Write Read Only
RES RES RES | GPIO4 | GPIO3 | GPIO2 | GPIO1 | GPIOO REQ ACK BSY SEL ATN MSG c/iD 110
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
Default>>> Default>>>
X X X X X X 0 0 X X X X X X X X
Bits 7-2 Reserved Bit7 REQ (SREQ/ status)
Bits 1-0 GPI101-GPIOO0 (General Purpose) Bit 6 ACK (SACK/ status)
. Bit5 BSY (SBSY/ status)
Register 08 (88)) Bit 4 SEL (SSEL/ status)
SCSI First Byte Received (SFBR) Bit 3 ATN SATN/ status)
Read/Write Bit 2 MSG (SMSG/ status)
187 | 186 | 185 | 1B4 | 183 | 1B2 | 1BL | 18O Bit 1 C/D (SC_D/ status)
. 6 5 4 3 2 1 0 Bit 0 1/0O (SI_O/ status)
Default>>> Register 0C (8C)
0 0 0 0 0 0 0 0 DMA Status (DSTAT)
Register 09 (89) Read Only
SCSI Output Control Latch (SOCL) DFE | MDPE BF ABRT | sl SIR RES D
Read /Write 7 6 5 4 3 2 1 0
REQ ACK BSY SEL ATN MSG ciD 110 Default>>>
7 6 5 4 3 2 1 0 1 0 0 0 0 0 X 0
Default>>> Bit 7 DFE (DMA FIFO empty)
0 0 0 0 0 0 0 0 Bit 6 MDPE (Master Data Parity Error)
i i Bit5 BF (Bus fault)
B!t 7 REQ(Assert SCSI REQ/ s_lgnal) Bit 4 ABRT (Aborted)
B!t 6 ACK(Assert SCSI ACK/ s_lgnal) Bit 3 SSI (Single step interrupt)
B!t 5 BSY(Assert SCSI BSY/ s_lgnal) Bit 2 SIR (SCRIPTS interrupt
B!t 4 SEL (Assert SCSI SEL/ S|_gnal) instruction received)
B!t 3 ATN(Assert SCSI ATN/ S|gnal) Bit 1 Reserved
B!t 2 MSG(Assert SCSI MSG/_mgnaI) Bit 0 11D (lllegal instruction detected)
Bit 1 C/D(Assert SCSI C_D/ signal)
Bit 0 1/O(Assert SCSI I_O/ signal) Register oD (8D)
Register OA (8A) ggasdl gﬁ@J s Zero (SSTATO)
SCSI Selector ID (SSID)
Read Only ILF ORF OLF AlP LOA | WOA | RST | SDPO/
VAL RES RES RES RES ENID2 | ENIDL | ENIDO ! 6 5 4 3 2 ! 0
Default>>>
7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 0
Default>>>
0 X X X X 0 0 0 Bit 7 ILF (SIDL full)
. N Bit6 ORF (SODR full)
Bit 7 VAL (SCSI Valid Bit) Bit 5 OLF (SODL full)
B!ts 6-3 Reserved . Bit 4 AIP (Arbitration in progress)
Bits 2-0 Encoded Destination SCSI ID Bit 3 LOA (Lost arbitration)
Bit 2 WOA (Won arbitration)
Bit1 RST/ (SCSI RST/ signal)
Bit 0 SDP/ (SCSI SDP/ parity signal)

Symbios Logic PCI-SCSI Programming Guide

Register OE (8E)
SCSI Status One (SSTAT1)

Register Summaries
SYM53C815 Operating Registers

Register 1A (9A)
Chip Test Two (CTEST?2)

Read Only Read Only
FF3 FF2 FF1 FFO SDPOL | MSG c/D 110 DDIR SIGP clo CM RES TEOP | DREQ | DACK
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
Default>>> Default>>>
0 0 0 0 X X X X 0 0 X X 0 0 0 1
Bits 7-4 FF3-FF0 (FIFO flags) Bit 7 DDIR (Data transfer direction)
Bit 3 SDPL (Latched SCSI parity) Bit 6 SIGP (Signal process)
Bit 2 MSG (SCSI MSG/ signal) Bit5 CIlO (Configured as 1/0)
Bit 1 C/D (SCsI C_D/ signal) Bit 4 CM (Configured as memory)
Bit 0 1/0 (SCSI 1_O/ signal) Bit 3 Reserved
. Bit 2 TEOP (SCSI true end of process)
Register OF (8F) Bit1 DREQ (Data request status)
SCSI Status Two (SSTAT?2) Bit 0 DACK (Data acknowledge status)
(Read Only) i
Register 1B (9B)
RES RES RES RES RES RES LDSC RES Chip Test Three (CTEST3)
7 6 5 4 8 2 . 0 Read/Write
Default>>>
X X X X X X 1 X V3 V2 V1) FLF CLF M RES
7 6 5 4 3 2 1 0
Bits 7-2 Reserved Defauloos
Bit 1 LDSC (Last Disconnect) X X X X 0 0 0 0
Bit 0 Reserved
. Bits 7-4 V3-V0 (Chip revision level)
Registers 10-13 (90-93) Bit 3 FLF (Flush DMA FIFO)
Data Structure Address (DSA) Bit 2 CLF (Clear DMA FIFO)
Read/Write Bit 1 FM (Fetch pin mode)
Register 14 (94) Bit 0 Reserved
Interrupt _Status (lSTAT) Registers 1C-1F (gc_gF)
(Read/Write) Temporary (TEMP)
ABRT | SRST | SIGP | SEM | CON | INTF | SP | DIP Read/Write
7 6 5 4 8 2 L 0 Register 20 (A0)
Default>>> DMA FIFO (DFIFO)
0 0 0 0 0 0 0 0 Read/Write
Bit7 ABRT (Abort operation) RES BO6 BO5 BO4 Bo3 BO2 BO1 BOO
Bit 6 SRST (Software reset) 7 6 5 4 3 2 1 0
Bit5 SIGP (Signal process) Defauloo>
Bit 4 SEM (Semaphore)
X 0 0 0 0 0 0 0
Bit 3 CON (Connected)
Bit 2 INTF (Interrupt on the Fly) Bit 7 Reserved
Bit 1 SIP (SCSI interrupt pending) Bits 6-0 BO6-BOO0 (Byte offset counter)
Bit 0 DIP (DMA interrupt pending) .
) Register 21 (Al)
Register 18 (98) Chip Test Four (CTEST4)
Chip Test Zero (CTESTO) Read/Write
Read/Write
) BDIS | zmMOD | ZzSD SRTM | MPEE | FBL2 FBL1 FBLO
Register 19 (99) 7 6 5 4 3 2 1 0
Chip Test One (CTEST1) Defauloos
Read Only 0 0 0 0 0 0 0 0
FMT3 | FMT2 | FMTL | FMTO FFL3 FFL2 FFLL FFLO Bit 7 BDIS (Burst Disable)
7 6 5 4 3 2 1 0 Bit 6 ZMOD (High impedance mode)
Default>>> Bit5 ZSD (SCsSI Data High Impedance)
1 1 1 1 0 0 0 0 Bit 4 SRTM (Shadow Register Test Mode)
i i Bit 3 MPEE (Master Parity Error Enable)
Bits7-4 FMT3-0 (Byte empty in DMA FIFO) Bits2-0 FBL2-FBLO (FIFO byte control)
Bits 3-0 FFL3-0 (Byte full in DMA FIFO)
Symbios Logic PCI-SCSI Programming Guide B-9

Register Summaries
SYM53C815 Operating Registers

Register 22 (A2)
Chip Test Five (CTESTD5)

Register 39 (B9)
DMA Interrupt Enable (DIEN)

Read/Write Read/Write
ADCK | BBCK RES | MASR | DDIR RES RES RES RES | MDPE BF ABRT Ssl SIR RES 1D
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
Default>>> Default>>>
0 0 X 0 0 X X X X 0 0 0 0 0 X 0
Bit 7 ADCK (Clock address incrementor) Bit 7 Reserved
Bit 6 BBCK (Clock byte counter) Bit 6 MDPE (Master Data Parity Error)
Bit5 Reserved Bit5 BF (Bus fault)
Bit 4 MASR (Master control for set or reset pulses) Bit 4 ABRT (Aborted)
Bit 3 DDIR (DMA direction) Bit 3 SSI (Single step interrupt)
Bits 2-0 Reserved Bit 2 SIR (SCRIPTS interrupt
] instruction received
Register 23 (A3) Bit 1 Reserved
Chip Test Six (CTEST6) Bit 0 11D (lllegal instruction detected)
Read/Write
Register 3A (BA)
DF7 DF6 DFS DF4 DF3 DF2 DF1 DFO DMA Watchdog Timer (DWT)
7 6 5 4 s 2 . 0 Read/Write
pefl>> Register 3B (BB)
¢ o e e e e 0o DMA Control (DCNTL)
Bits 7-0 DF7-DF0 (DMA FIFO) Read/Write
Registers 24-26 (A4-Ab) RES RES RES | SSM | IRQM | STD RES | COM
DMA Byte Counter (DBC) 7 6 5 4 3 2 1 0
Read/Write Defauloss
Register 27 (A7) 0 0 0 0 0 0 0 0
DMA Command (DCMD) Bits 7-5 Reserved
Read/Write Bit 4 SSM (Single-step mode)
Registers 28-2B (A8-AB) Bit 3 IRQM (IRQ Mode)
DMA Next Address (DNAD) B!t 2 STD (Start DMA operation)
Read/Write Bit1 Reserved
Bit 0 COM (53C700 compatibility)
Registers 2C-2F (AC-AF) .
DMA SCRIPTS Pointer (DSP) Register 3C-3F (BC-BF)
Read/Write Adder Sum Output (ADDER)
] Read Only
Registers 30-33 (B0-B3) .
DMA SCRIPTS Pointer Save (DSPS) Register 40 (CO)
Read/Write SCSI Interrupt Enable Zero (SIENO)
] Read/Write
Registers 34-37 (B4-B7)
Scratch Register A (SCRATCH A) M/A CMP SEL RSL SGE ubC RST PAR
Read/Write 7 6 5 4 3 2 1 0
Register 38 (B8) 0Default>>>O } } } } : }
DMA Mode (DMODE)
Read/Write Bit 7 M/A (SCSI Phase Mismatch -
BL1 BLO SIOM [DIOM RES RES BOF MAN Initiator Mode; SCSI ATN
Condition - Target Mode)
I 6 5 4 s 2 L 0 Bit 6 CMP (Function Complete)
Default>>> Bit5 SEL (Selected)
0 0 0 0 0 0 0 0 Bit4 RSL (Reselected)
Bit 7-6 BL1-BLO (Burst length) Bit 3 SGE (SCSI Gross Error)
Bit 5 SIOM (Source I/0O-Memory Enable) B!t 2 UDC (Unexpected Dlsc_o_nnect)
Bit 4 DIOM (Destination 1/0-Memory Enable) Bit 1 RST (SCSI Reset Condition)
Bit 3 ERL (Enable Read Line) Bit0 PAR (SCSI Parity Error)
Bit 2 Reserved
Bit 2 Reserved
Bit 1 BOF (Burst Op Code Fetch Enable)
Bit 0 MAN (Manual Start Mode)
B-10 Symbios Logic PCI-SCSI Programming Guide

Register 41 (C1)
SCSI Interrupt Enable One (SIEN1)

Register Summaries
SYM53C815 Operating Registers

Register 47 (C7)
General Purpose Pin Control (GPCNTL)

Read/Write Read/Write
RES RES RES RES RES STO GEN HTH ME FE RES GPIO4 | GPIO3 | GPIO2 | GPIO1 | GPIOO
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
Default>>> Default>>>
X X X X X 0 0 0 0 0 X 0 1 1 1 1
Bits 7-3 Reserved Bit7 Master Enable
Bit 2 STO (Selection or Reselection Time-out) Bit 6 Fetch Enable
Bit 1 GEN (General Purpose Timer Expired) Bit5 Reserved
Bit 0 HTH (Handshake to Handshake timer Expired) Bits 4-2 GPI104_EN-GPIO2_EN (GPIO Enable)

Register 42 (C2)
SCSI Interrupt Status Zero (SISTO)

Bits 1-0

Register 48 (C8)
SCSI Timer Zero (STIMEOQ)

GPIO1_EN- GPIO0_EN (GPIO Enable)

Read Only
M/A CMP SEL RSL SGE uDcC RST PAR
7 6 5 4 3 2 1 0
Default>>>
0 0 0 0 0 0 0 0
Bit 7 M/A (Initiator Mode: Phase Mismatch; Target
Mode: SATN/ Active)
Bit 6 CMP (Function Complete)
Bit 5 SEL (Selected)
Bit 4 RSL (Reselected)
Bit 3 SGE (SCsSI Gross Error)
Bit 2 UDC (Unexpected Disconnect)
Bit 1 RST (SCSI RST/ Received)
Bit 0 PAR (Parity Error)

Register 43 (C3)
SCSI Interrupt Status One (SIST1)

Read /Write
HTH HTH HTH HRH SEL SEL SEL SEL
7 6 5 4 3 2 1 0
Default>>>
0 0 0 0 0 0 0 0
Bits 7-4 HTH (Handshake-to-Handshake Timer Period)

Bits 3-0 SEL (Selection Time-Out)

Register 49 (C9)
SCSI Timer One (STIME1)

Read Only
RES RES RES RES RES STO GEN HTH
7 6 5 4 3 2 1 0
Default>>>
X X X X X 0 0 0
Bits 7-3 Reserved
Bit 2 STO (Selection or Reselection Time-out)
Bit 1 GEN (General Purpose Timer Expired)
Bit 0 HTH (Handshake-to-Handshake Timer Expired)

Register 44 (C4)
SCSI Longitudinal Parity (SLPAR)
Read/Write

Register 46 (C6)
Memory Access Control (MACNTL)

Read/Write
RES RES RES RES GEN3 | GEN2 | GEN1 | GENO
7 6 5 4 3 2 1 0
Default>>>
X X X X 0 0 0 0
Bits 7-4 Reserved
Bits 3-0 GEN3-0 (General Purpose Timer Period)

Register 4A (CA)
Response ID (RESPID)
Read/Write

Register 4C (CC)
SCSI Test Zero (STESTO)

Read/Write
TYP3 TYP2 TYP1 TYPO DWR DRD PSCPT | SCPTS
7 6 5 4 3 2 1 0
Default>>>
00 11 00 10 0 0 0 0
Bits 7-4 TYP3-0 (Chip Type)
Bit 3 DWR (DataWR)
Bit 2 DRD (DataRD)
Bit 1l PSCPT (Pointer SCRIPTS)
Bit0 SCPTS (SCRIPTS)

Symbios Logic PCI-SCSI Programming Guide

Read Only
RES RES RES RES SLT ART S0z SOM
7 6 5 4 3 2 1 0
Default>>>
X X X X 0 X 1 1
Bits 7-4 Reserved
Bit 3 SLT (Selection response logic test)
Bit 2 ART (Arbitration Priority Encoder Test)
Bit1 SOZ (SCSI Synchronous Offset Zero)
Bit 0 SOM (SCsSI Synchronous Offset Maximum)

B-11

Register Summaries
SYM53C825A Operating Registers

Register 4D (CD)
SCSI Test One (STEST1)

SYM53C825A Operating
Registers

Register 00 (80)
SCSI Control Zero (SCNTLDO)

Read/Write
ARB1 ARBO START | WATN EPC RES AAP TRG

7 6 5 4 3 2 1 0
Default>>>
1 1 0 0 0 X 0 0

Bit 7 ARBL1 (Arbitration Mode bit 1)

Bit 6 ARBO (Arbitration Mode bit 0)

Bit5 START (Start Sequence)

Bit 4 WATN (Select with SATN/ on a Start Sequence)

Bit 3 EPC (Enable Parity Checking)

Bit 2 Reserved

Bit 1 AAP (Assert SATN/ on Parity Error)

Bit 0 TRG (Target Mode)

Register 01 (81)
SCSI Control One (SCNTL1)

Read/Write
SCLK RES RES RES RES RES RES RES
7 6 5 4 3 2 1 0
Default>>>
0 0 X X X X X X
Bit 7 SCLK
Bits 5-0 Reserved
Register 4E (CE)
SCSI Test Two (STEST?2)
Read/Write
SCE ROF RES SLB SZM RES EXT LowW
7 6 5 4 3 2 1 0
Default>>>
0 0 X 0 0 X 0 0
Bit 7 SCE (SCSI Control Enable)
Bit 6 ROF (Reset SCSI Offset)
Bit 5 Reserved
Bit 4 SLB (SCSI Loopback Mode)
Bit 3 SZM (SCSI High-Impedance Mode)
Bit 2 Reserved
Bit 1 EXT(Extend SREQ/SACK
filtering)
Bit 0 LOW (SCSI Low level Mode)
Register 4F (CF)
SCSI Test Three (STEST?3)
Read/Write
TE STR HSC DSI RES ™ CSF STW
7 6 5 4 3 2 1 0
Default>>>
0 0 0 0 X 0 0 0
Bit 7 TE (TolerANT Enable)
Bit 6 STR (SCSI FIFO Test Read)
Bit 5 HSC (Halt SCSI Clock)
Bit 4 DSI (Disable Single Initiator Response)
Bit 3 Reserved
Bit 2 TTM (Timer Test Mode)
Bit 1 CSF (Clear SCSI FIFO)
Bit 0 STW (SCSI FIFO Test Write)

Register 50 (DO0)
SCSI Input Data Latch (SIDL)
Read Only

Registers 54 (D4)
SCSI Output Data Latch (SODL)
Read/Write

Registers 58 (D8)
SCSI Bus Data Lines (SBDL)
Read Only

Registers 5C-5F (DC-DF)
Scratch Register B (SCRATCHB)
(Read/Write)

B-12

Read/Write
EXC ADB DHP CON RST AESP IARB SST
7 6 5 4 3 2 1 0
Default>>>
0 0 0 0 0 0 0 0
Bit 7 EXC (Extra Clock Cycle of Data Setup)
Bit 6 ADB (Assert SCSI Data Bus)
Bit5 DHP (Disable Halt on Parity Error or ATN) (Tar-
get Only)
Bit 4 CON (Connected)
Bit 3 RST (Assert SCSI RST/ Signal)
Bit 2 AESP (Assert Even SCSI Parity (force bad par-
ity))
Bit 1 IARB (Immediate Arbitration)
Bit 0 SST (Start SCSI Transfer)

Register 02 (82)
SCSI Control Two (SCNTL2)
Read/Write

Sbu CHM SLPMD | SLPHBEN WSS VUEO VUE1 WSR

7 6 5 4 3 2 1 0
Default>>>
0 0 X0 X0 0 0X 0X 0
Bit 7 SDU (SCSI Disconnect Unexpected)
Bit 6 CHM (Chained Mode)
Bit5 SLPMD (SLPAR Mode Bit)
Bit4 SLPHBEN (SLPAR High Byte Enable)
Bit 3 WSS (Wide SCSI Send)
Bit 2 VUEDO (Vendor Unique Enhancements bit 0)
Bit 1 VUEL1 (Vendor Unique Enhancements bit 1)
Bit 0 WSR (Wide SCSI Receive)

Symbios Logic PCI-SCSI Programming Guide

Register Summaries
SYM53C825A Operating Registers

Register 03 (83) Register 08 (88)
SCSI Control Three (SCNTL3) SCSI First Byte Received (SFBR)
Read/Write Read/Write
RES SCF2 | SCFL | SCFO EWS CCF2 | CCFL [cCFO 1B7 1B6 1B5 1B4 1B3 1B2 1B1 1B0
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
Default>>> Default>>>
X0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Bit 7 Reserved Register 09 (89)
Bits6-4 SCF2-0 (Synchronous Clock SCSI Output Control Latch (SOCL)
Conversion Factor) Read /Write
Bit 3 EWS (Enable Wide SCSI)
Bits2-0 CCF2-0 (Clock Conversion Factor) REQ | ACK | BSY | SEL | AN | MSG | C/D o
7 6 5 4 3 2 1 0
Nl 34()50 D) el
p
Read/Write ° ° ° ° ° ° ° °
Bit 7 REQ(Assert SCSI REQ/ Signal)
RES RRE SRE RES ENC3 | ENC2 | ENC1 | ENCO Bit 6 ACK(Assert SCSI ACK/ Signal)
7 6 5 4 3 2 1 0 Bit5 BSY(Assert SCSI BSY/ Signal)
Default>>> Bit 4 SEL(Assert SCSI SEL/ Signal)
X 0 0 X 0 0 0 0 Bit 3 ATN(Assert SCSI ATN/ Signal)
i Bit 2 MSG(Assert SCSI MSG/ Signal)
Bit7 Reserved Bit 1 CID(Assert SCSI C_DJ/ Signal)
Bit6 RRE (Er?able Response to Bit 0 1/O(Assert SCSI 1_O/ Signal)
Reselection)
Bit5 SRE (Enable Response to Selection) Register 0A (09)
Bit4 Reserved SCSI Selector ID (SSID)
Bits 3-0 Encoded Chip SCSI ID, bits 3-0 Read Only
Register 05 (85) VAL RES RES RES | ENID3 | ENID2 | ENIDI | ENIDO
SCSI Transfer (SXFER) 7 6 5 4 3 2 1 0
Read/Write Default>>>
P2 P1 TPO | MO4 | MO3 | MO2 | MOI | MO0 0 X X X 0 0 0 0
7 6 5 4 3 2 1 0 Bit 7 VAL (SCSI Valid)
Default>>> Bits 6-4 Reserved
0 0 0 X0 0 0 0 0 Bits 3-0 Encoded Destination SCSI ID
Bits 7-5 TP2-0 (SCSI Transfer Period) Register (0] 2] (SB)
Bits 4-0 MO4-MOO0 (Max SCSI Synchronous Offset) SCSI Bus Control Lines (SBCL)
Register 06 (86) Read Only
SCSI Destination ID (SDID) REQ | ACK BSY SEL ATN MSG c/D /0
Read/Write 7 6 5 4 3 2 1 0
RES RES RES RES | ENC3 | ENC2Z | ENCL | ENCO Default>>>
7 6 5 4 3 2 1 0 X X X X X X X X
Default>>> Bit 7 REQ (SREQ/ Status)
X X X X 0 0 0 0 Bit 6 ACK (SACK!/ Status)
. Bit5 BSY (SBSY/ Status)
Bits7-4 Reserved Bit 4 SEL (SSEL/ Status)
Bits 3-0 Encoded Destination SCSI ID Bit 3 ATN (SATN/ Status)
Register 07 (87) B!t 2 MSG (SMSG/ Status)
General Purpose (GPREG) Bit 1 C/D (SC_D/ Status)
Read/Write Bit 0 1/0 (S1_O/ Status)
RES RES RES | GPIO4 | GPIO3 | GPIO2 | GPIOL | GPIOO
7 6 5 4 3 2 1 0
Default>>>
X X X 0 X X X X

Bits 7-5 Reserved
Bits 4-0 GP104-GPI0O0 (General Purpose)

Symbios Logic PCI-SCSI Programming Guide B-13

Register Summaries
SYM53C825A Operating Registers

Register 0C (8C)
DMA Status (DSTAT)

Register OF (8F)
SCSI Status Two (SSTAT?2)

Read Only (Read Only)
DFE MDPE BF ABRT Ssl SIR RES 1D ILF1 ORF1 | OLF1 FF4 SPL1 RES LDSC | sbpi
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
Default>>> Default>>>
1 0 0 0 0 0 X 0 0 0 0 0 X X 1 X
Bit 7 DFE (DMA FIFO Empty) Bit 7 ILF1 (SIDL Most Significant Byte Full)
Bit 6 MDPE (Master Data Parity Error) Bit 6 ORF1 (SODR Most Significant Byte Full)
Bit5 BF (Bus Fault) Bit5 OLF1 (SODL Most Significant Byte Full)
Bit 4 ABRT (Aborted) Bit 4 FF4 (FIFO Flags bit 4)
Bit 3 SSI (Single Step Interrupt) Bit 3 SPL1(Latched SCSI parity for SD15-8)
Bit 2 SIR (SCRIPTS Interrupt Bit 2 DIFFSENSE SENSE
Instruction Received) Bit1 LDSC (Last Disconnect)
Bit 1 Reserved Bit 0 SDP1 (SCSI SDP1 Signal)
Bit 0 11D (lllegal Instruction Detected) .
Registers 10-13 (90-93)
Register OD (8D) Data Structure Address (DSA)
SCSI Status Zero (SSTATO) Read/Write
Read Only Register 14 (94)
ILF ORF OLF AP LOA | WOA | RST | SDPO/ Interrupt Status (ISTAT)
7 6 5 4 3 2 1 0 (Read/Write)
Default>>> ABRT | SRST | SIGP | SEM | CON | INTF SIP DIP
0 0 0 0 0 0 0 0 7 6 5 4 3 2 1 0
Bit 7 ILF (SIDL Least Significant Byte Full) Default>>>
Bit 6 ORF (SODR Least Significant Byte Full) 0 0 0 0 0 0 0 0
Bit5 OLF (SODL Least Significant Byte Full) . .
Bit 4 AIP (Arbitration in Progress) B!t 7 ABRT (Abort Operation)
Bit 3 LOA (Lost Arbitration) B!t 6 SRST (S_oftware Reset)
Bit 2 WOA (Won Arbitration) B!t 5 SIGP (Signal Process)
Bit 1 RST/ (SCSI RST/ Signal) Bit4 SEM (Semaphore)
Bit 0 SDPO/ (SCSI SDPO/ Parity Signal) Bit 3 CON (Connected)
Bit 2 INTF (Interrupt on the Fly)
Register OE (8E) Bit 1 SIP (SCSI Interrupt Pending)
SCSI Status One (SSTATl) Bit 0 DIP (DMA Interrupt Pending)
Read Only Register 18 (98)
FF3 FF2 FFL FFO | SDPOL | MSG /D 10 Chip Test Zero (CTESTO)
7 6 5 4 3 2 1 0 Read/Write
Default>>> Register 19 (99)
0 0 0 0 X X X X Chip Test One (CTEST1)
Bits7-4 FF3-FF0 (FIFO Flags Read Only
Bit3 SDPOL (Latched SCSI Parity) FMT3 | FMT2 | FMTL | FMTO | FFL3 | FFL2 | FFLL | FFLO
Bit 2 MSG (SCSI MSG/ Signal) ; s 5 . 2) X 0
Bit 1 C/D (SCsSI C_D/ Signal) SIS
Bit 0 1/0 (SCSI 1_O/ Signal)
1 1 1 1 0 0 0 0
Bits 7-4 FMT3-0 (Byte Empty in DMA FIFO)
Bits 3-0 FFL3-0 (Byte Full in DMA FIFO)
B-14 Symbios Logic PCI-SCSI Programming Guide

Register 1A (9A)
Chip Test Two (CTEST?2)

Register Summaries
SYM53C825A Operating Registers

Register 22 (A2)
Chip Test Five (CTEST5)

Read/Write Read/Write
DDIR SIGP clo ™ SRTCH | TEOP | DREQ | DACK ADCK | BBCK DFS MASR | DDIR BL2 BO9 BO8
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
Default>>> Default>>>
0 0 X X 0 0 0 1 0 0 0x 0 0 X X X
Bit 7 DDIR (Data Transfer Direction) Bit 7 ADCK (Clock Address Incrementor)
Bit 6 SIGP (Signal Process) Bit 6 BBCK (Clock Byte Counter)
Bit5 CI1O (Configured as 1/0) Bit5 DFS (DMA FIFO Size)
Bit 4 CM (Configured as Memory) Bit 4 MASR (Master Control for Set or Reset Pulses)
Bit 3 SRTCH (SCRATCHA/B Operation) Bit 3 DDIR (DMA Direction)
Bit 2 TEOP (SCSI True End of Process) Bit 2 BL2 (Burst Length bit 2)
Bit 1 DREQ (Data Request Status) Bits 1-0 BO9-8
Bit 0 DACK (Data Acknowledge Status) .
Register 23 (A3)
Register 1B (9B) Chip Test Six (CTEST®6)
Chip Test Three (CTEST3) Read/Write
Read/Write
DF7 DF6 DF5 DF4 DF3 DF2 DF1 DFO
V3 V2 vi Vo FLF CLF M R';SIEW' ! 6 5 4 8 2 ! 0
Default>>>
7 6 5 4 3 2 1 0 0 0 0 0 0 0 0 0
Default>>> .
N « < « 0 0 0 X0 Bits7-0 DF7-DF0 (DMA FIFO)
Bits 7-4 V3-VO (Chip revision level) Registers 24-26 (A4-A6)
Bit 3 FLF (Flush DMA FIFO) DMA Byte Counter (DBC)
Bit 2 CLF (Clear DMA FIFO) Read/Write
Bit 1 FM (Fetch Pin Mode) :
Bit 0 ReservedWRIE (Write and Invalidate Enable) Register 27 (A7)

Registers 1C-1F (9C-9F)
Temporary (TEMP)
Read/Write

Register 20 (A0)
DMA FIFO (DFIFO)

DMA Command (DCMD)
Read/Write

Registers 28-2B (A8-AB)
DMA Next Address (DNAD)
Read/Write

Registers 2C-2F (AC-AF)
DMA SCRIPTS Pointer (DSP)
Read/Write

Registers 30-33 (B0-B3)
DMA SCRIPTS Pointer Save (DSPS)
Read/Write

Registers 34-37 (B4-B7)
Scratch Register A (SCRATCH A)
Read/Write

Register 38 (B8)
DMA Mode (DMODE)

Read/Write
BO7 BO6 BO5 BO4 Bo3 B0O2 BO1 BOO
7 6 5 4 3 2 1 0
Default>>>
X 0 0 0 0 0 0 0
Bits 7-0 BO76BO0 (Byte offset counter)
Register 21 (A1)
Chip Test Four (CTEST4)
Read/Write
BDIS | ZMOD ZsD SRTM | MPEE FBL2 FBL1 FBLO
7 6 5 4 3 2 1 0
Default>>>
0 0 0 0 0 0 0 0
Bit 7 BDIS (Burst Disable)
Bit 6 ZMOD (High Impedance Mode)
Bit 5 ZSD (SCSI Data High Impedance)
Bit 4 SRTM (Shadow Register Test Mode)
Bit 3 MPEE (Master Parity Error Enable)
Bits 2-0 FBL2-FBLO (FIFO Byte Control)

Symbios Logic PCI-SCSI Programming Guide

Read/Write
BL1 BLO SIOM | DIOM ER ERMP BOF MAN
7 6 5 4 3 2 1 0
Default>>>
0 0 0 0 0 X0 0 0
Bit 7-6 BL1-BLO (Burst Length)
Bit5 SIOM (Source I/O-Memory Enable)
Bit 4 DIOM (Destination I/O-Memory Enable)
Bit 3 ERL (Enable Read Line)
Bit 2 ERMP (Enable Read Multiple)
Bit 1 BOF (Burst Op Code Fetch Enable)
Bit 0 MAN (Manual Start Mode)
B-15

Register Summaries
SYM53C825A Operating Registers

Register 39 (B9)
DMA Interrupt Enable (DIEN)

Register 41 (C1)
SCSI Interrupt Enable One (SIEN1)

Read/Write Read/Write
RES MDPE BF ABRT Ssl SIR RES 1D RES RES RES RES RES STO GEN HTH
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
Default>>> Default>>>
X 0 0 0 0 0 X 0 X X X X X 0 0 0
Bit7 Reserved Bits 7-3 Reserved
Bit 6 MDPE (Master Data Parity Error) Bit 2 STO (Selection or Reselection Time-out)
Bit5 BF (Bus Fault) Bit 1 GEN (General Purpose Timer Expired)
Bit 4 ABRT (Aborted) Bit 0 HTH (Handshake-to-Handshake Timer Expired)
Bit 3 SSI (Single -step Interrupt) .
Bit 2 SIR (SCRIPTS Interrupt Register 42 (C2)
Instruction Received SCSI Interrupt Status Zero (SISTO)
Bit 1 Reserved Read Only
Bit 0 11D (lllegal Instruction Detected) WA CMP SEL RSL SGE UDc RST PAR
Register 3A (BA) ! 6 5 4 8 2 ! 0
Scratch Byte Register (SBR) Default>>>
Read/Write 0 0 0 0 0 0 0 0
Register 3B (BB) Bit7 MI/A (Initiator Mode: Phase Mismatch; Target
DMA Control (DCNTL) Mode: SATN/ Active)
Read/Write Bit 6 CMP (Function Complete)
Bit5 SEL (Selected)
CLSE PFF PFEN SSM IRQM STD IRQD COM Bit 4 RSL (Reselected)
7 6 5 4 3 2 1 0 Bit 3 SGE (SCSI Gross Error)
Default>>> Bit 2 UDC (Unexpected Disconnect)
X0 X0 X0 0 0 0 X0 0 Bit1 RST (SCSI RST/ Received)
i . . Bit 0 PAR (Parity Error)
Bit 7 CLSE (Cache Line Size Enable)
Bit 6 PFF (Pre-fetch Flush) Register 43 (C3)
Bit5 PFEN (Pre-fetch Enable) SCSI Interrupt Status One (SIST1)
Bit4 SSM (Single-step Mode) Read Only
Bit 3 IRQM (IRQ Mode)
Bit 2 STD (Start DMA Operation) RES RES RES RES RES STO GEN HTH
Bit 1 IRQD (IRQ Disable) 7 6 5 4 3 2 1 0
Bit 0 COM (53C700 Compatibility) Default>>>
Register 3C-3F (BC-BF) O
Adder Sum Output (ADDER) Bits 7-3 Reserved
Read Only Bit 2 STO (Selection or Reselection Time-out)
Bit 1 GEN (General Purpose Timer Expired)
Bit 0 HTH (Handshake-to-Handshake Timer Expired)
Register 40 (C0) Reqi
gister 44 (C4)
SCS) Interrupt Enable Zero (SIENO) SCSI Longitudinal Parity (SLPAR)
Read/Write
M/A CMP SEL RSL SGE uDC RST PAR Register 45 (C5)
7 6 5 4 3 2 1 0 SCSI Wide Residue (SWIDE)
Default>>> Read/Write
0 0 0 0 0 0 0 0
Bit 7 M/A (SCSI Phase Mismatch -

Initiator Mode; SCSI ATN
Condition - Target Mode)

Bit 6 CMP (Function Complete)
Bit5 SEL (Selected)

Bit 4 RSL (Reselected)

Bit 3 SGE (SCsSI Gross Error)

Bit 2 UDC (Unexpected Disconnect)
Bit 1l RST (SCSI Reset Condition)
Bit 0 PAR (SCSI Parity Error)

B-16

Symbios Logic PCI-SCSI Programming Guide

Register 46 (C6)
Memory Access Control (MACNTL)

Register Summaries
SYM53C825A Operating Registers

Register 4C (CC)
SCSI Test Zero (STESTO)

Read/Write Read Only
TYP3 TYP2 TYP1 TYPO DWR DRD | PSCPT | SCPTS SSAID3 | SSAID2 | SSAID1 | SSAIDO | SLT ART S0z SOM
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
Default>>> Default>>>
0 01 1 10 0 0 0 0 0X 0X 0X 0X 0 X 1 1
Bits 7-4 TYP3-0 (Chip Type) Bits 7-4 SSAID (SCSI Selected As ID)
Bit 3 DWR (DataWR) Bit 3 SLT (Selection Response Logic Test)
Bit 2 DRD (DataRD) Bit 2 ART (Arbitration Priority Encoder Test)
Bit 1 PSCPT (Pointer SCRIPTS) Bit1 SOZ (SCSI Synchronous Offset Zero)
Bit 0 SCPTS (SCRIPTS) Bit 0 SOM (SCsSI Synchronous Offset Maximum)

Register 47 (C7)
General Purpose Pin Control (GPCNTL)

Register 4D (CD)
SCSI Test One (STEST1)

Read/Write Read/Write
ME FE RES GPIO4 | GPIO3 | GPIO2 | GPIO1 | GPIOO SCLK SISO RES RES RES RES RES RES
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
Default>>> Default>>>
0 0 X 0 1 1 1 1 0 X0 X X X X X X
Bit7 Master Enable Bit7 SCLK
Bit 6 Fetch Enable Bit 6 SISO (SCSI Isolation Mode)
Bit5 Reserved Bits 5-0 Reserved
Bits 4-2 GPI0O4_EN-GPIO2_EN (GPIO Enable)

Bits1-0 GPIO1_EN- GPIOO0_EN (GPIO Enable)

Register 48 (C8)
SCSI Timer Zero (STIMEO)

Register 4E (CE)
SCSI Test Two (STEST?2)

Read /Write
HTH HTH HTH HRH SEL SEL SEL SEL
7 6 5 4 3 2 1 0
Default>>>
0 0 0 0 0 0 0 0
Bits 7-4 HTH (Handshake-to-Handshake Timer Period)

Bits 3-0 SEL (Selection Time-Out)

Register 49 (C9)
SCSI Timer One (STIME1)

Read/Write
RES | HTHBA | GENSF | HTHSF | GEN3 | GEN2 | GEN1 | GENO
7 6 5 4 3 2 1 0
Default>>>
X OX 0X 0X 0 0 0 0
Bit7 Reserved
Bit 6 HTHBA (Handshake-to-Handshake Timer Bus
Activity Enable)
Bit 5 GENSF (General Purpose Timer Scale Factor)
Bit 4 HTHSF (Handshake to Handshake Timer Scale
Factor)
Bits 3-0 GENB3-0 (General Purpose Timer Period)

Register 4A (CA)
Response ID Zero (RESPIDO0)
Read/Write

Register 4B (CB)
Response ID One(RESPID1)
Read/Write

Symbios Logic PCI-SCSI Programming Guide

Read/Write
SCE ROF DIF SLB SZM AWS EXT LOW
7 6 5 4 3 2 1 0
Default>>>
0 0 0 0 0 0 0 0
Bit 7 SCE (SCSI Control Enable)
Bit 6 ROF (Reset SCSI Offset)
Bit5 DIF (SCSI Differential Mode)
Bit 4 SLB (SCSI Loopback Mode)
Bit 3 SZM (SCSI High-Ilmpedance Mode)
Bit 1 EXT (Extend SREQ/SACK Filtering)
Bit 0 LOW (SCSI Low level Mode)

Register 4F (CF)
SCSI Test Three (STEST3)

Read/Write
TE STR HSC DSl S16 TT™ CSF STW
7 6 5 4 3 2 1 0
Default>>>
0 0 0 0 0 0 0 0
Bit 7 TE (TolerANT Enable)
Bit 6 STR (SCSI FIFO Test Read)
Bit 5 HSC (Halt SCSI Clock)
Bit 4 DSI (Disable Single Initiator Response)
Bit3 S16 (16-bit System)
Bit 2 TTM (Timer Test Mode)
Bit1 CSF (Clear SCSI FIFO)
Bit 0 STW (SCSI FIFO Test Write)

Register 50-51 (D0-D1)
SCSI Input Data Latch (SIDL)
Read Only

B-17

Register Summaries
SYM53C860 Operating Registers

Registers 54-55 (D4-D5)
SCSI Output Data Latch (SODL)
Read/Write

Registers 58-59 (D8-D9)
SCSI Bus Data Lines (SBDL)
Read Only

Registers 5C-5F (DC-DF)
Scratch Register B (SCRATCHB)
(Read/Write)

Registers 60h-7Fh (EOh-FFh)
Scratch Registers C-J
(SCRATCHC-SCRATCHJ))
Read/Write

B-18

SYM53C860 Operating
Registers

Register 00 (80)
SCSI Control Zero (SCNTLO)

Read/Write
ARB1 ARBO START WATN EPC RES AAP TRG

7 6 5 4 3 2 1 0
Default>>>
1 1 0 0 0 X 0 0

Bit 7 ARBL1 (Arbitration mode bit 1)

Bit 6 ARBO (Arbitration mode bit 0)

Bit5 START (Start sequence)

Bit 4 WATN (Select with SATN/ on a start sequence)

Bit 3 EPC (Enable parity checking)

Bit 2 Reserved

Bit 1 AAP (Assert SATN/ on parity error)

Bit 0 TRG (Target role)

Register 01 (81)
SCSI Control One (SCNTL1)

Read/Write
EXC ADB DHP CON RST AESP IARB SST
7 6 5 4 3 2 1 0
Default>>>
0 0 0 0 0 0 0 0
Bit 7 EXC (Extra clock cycle of data setup)
Bit 6 ADB (Assert SCSI data bus)
Bit5 DHP (Disable Halt on Parity Error or ATN) (Tar-
get Only)
Bit 4 CON (Connected)
Bit 3 RST (Assert SCSI RST/ signal)
Bit 2 AESP (Assert even SCSI parity (force bad parity))
Bit1 IARB (Immediate Arbitration)
Bit 0 SST (Start SCSI Transfer)

Register 02 (82)
SCSI Control Two (SCNTL2)

Read/Write
SDU RES RES RES RES RES RES RES
7 6 5 4 3 2 1 0
Default>>>
0 X X X X X X X
Bit 7 SDU (SCSI Disconnect Unexpected)

Bits 6-0 Reserved

Symbios Logic PCI-SCSI Programming Guide

Register 03 (83)
SCSI Control Three (SCNTL3)

Register Summaries
SYM53C860 Operating Registers

Register 07 (87)
General Purpose (GPREG)

Read/Write Read/Write
ULTRA | SCF2 SCF1 SCFO RES CCF2 CCF1 CCFO RES RES RES RES RES RES GPIO1 | GPIOO
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
Default>>> Default>>>
X 0 0 0 X 0 0 0 X X X X X X 0 0
Bit 7 ULTRA (Ultra Enable) Bits 7-2 Reserved
Bits 6-4 SCF2-0 (Synchronous Clock Bits 1-0 GPI101-GPIOO0 (General Purpose)
Bit 3 Reserved .
Bits 2-0 CCF2-0 (Clock Conversion Factor) Reg'Ster 08 (88) .
SCSI First Byte Received (SFBR)
Read/Write
Register 04 (84)
SCSI Chlp ID (SCID) 1B7 1B6 1B5 1B4 1B3 1B2 1B1 1B0
Read/Write ! 6 5 4 3 2 L 0
Default>>>
RES RRE SRE RES RES ENC2 | ENC1 ENCO 0 0 0 0 0 0 0 0
7 6 5 4 3 2 1 0
Default>>> RegiSter 09 (89)
X 0 0 X X 0 0 0 SCSI Output Control Latch (SOCL)
Read /Write
Bit 7 Reserved
Bit 6 RRE (Enable Response to REQ ACK BSY SEL ATN MSG C/D 1/0
Reselection) 7 6 5 4 3 2 1 0
Bit 5 SRE (Enable Response to Selection) Default>>>
Bit 4-3 Reserved 0 0 0 0 0 0 0 0
Bits 2-0 Encoded Chip SCSI ID, bits 2-0 . .
Bit 7 REQ(Assert SCSI REQ/ signal)
Register 05 (85) Bit 6 ACK(Assert SCSI ACK/ signal)
SCSI Transfer (SXFER) Bit5 BSY (Assert SCSI BSY/ signal)
Read/Write Bit 4 SEL(Assert SCSI SEL/ signal)
Bit 3 ATN(Assert SCSI ATN/ signal)
P2 TP1 PO RES | MO3 | MOz | MOl | MOO Bit 2 MSG(Assert SCSI MSG/ signal)
7 6 5 4 3 2 1 0 Bit 1 C/D(Assert SCSI C_D/ signal)
Default>>> Bit 0 1/O(Assert SCSI I_O/ signal)
° ° ° X ° ° ° ° Register OA (8A)
Bits 7-5 TP2-0 (SCSI Synchronous Transfer Period) SCSI Selector ID (SSlD)
Bit 4 Reserved Read Only
Bits 3-0 MO3-MOO0 (Max SCSI synchronous offset)
VAL RES RES RES RES ENID2 | ENID1 | ENIDO
Register 06 (86) 7 6 5 4 3 2 1 0
SCSI Destination ID (SDID) Defauloos
Read/Write 0 X X X X 0 0 0
RES RES RES RES RES ENC2 ENC1 ENCO Bit 7 VAL (SCS' Valid Bit)
7 6 5 4 3 2 1 0 Bits 6-3 Reserved
Default>>> Bits 2-0 Encoded Destination SCSI ID
X X X X X 0 0 0
Bits 7-3 Reserved
Bits 2-0 Encoded destination SCSI ID
Symbios Logic PCI-SCSI Programming Guide B-19

Register Summaries
SYM53C860 Operating Registers

Register OB (8B)
SCSI Bus Control Lines (SBCL)

Register OE (8E)
SCSI Status One (SSTAT1)

Read Only Read Only
REQ ACK BSY SEL ATN MSG c/D 110 FF3 FF2 FF1 FFO SDPOL | MSG c/D 110
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
Default>>> Default>>>
X X X X X X X X 0 0 0 0 X X X X
Bit 7 REQ (SREQ/ status) Bits 7-4 FF3-FF0 (FIFO flags)
Bit 6 ACK (SACK!/ status) Bit 3 SDPL (Latched SCSI parity)
Bit 5 BSY (SBSY/ status) Bit 2 MSG (SCSI MSG/ signal)
Bit 4 SEL (SSEL/ status) Bit1 C/D (SCsSI C_D/ signal)
Bit 3 ATN SATN/ status) Bit 0 1/0 (SCSI 1_O/ signal)
Bit 2 MSG (SMSG/ status) .
Bit 1 CID (SC_D/ status) Register OF (8F)
Bit 0 1/0 (SI_O/ status) SCSI Status Two (SSTAT?2)
(Read Only)
Register 0C (8C)
DMA Status (DSTAT) RES RES RES RES RES RES LDSC RES
Read Only 7 6 5 4 3 2 1 0
Default>>>
DFE MDPE BF ABRT Ssl SIR RES 1D X X X X X X 1 X
7 6 5 4 3 2 1 0
Defauloss Bits 7-2 Reserved)
1 0 0 0 0 0 X 0 B!t 1 LDSC (Last Disconnect)
Bit0 Reserved
Bit7 DFE (DMA FIFO empty) .
Bit 6 MDPE (Master Data Parity Error) Registers 10-13 (90-93)
Bit 5 BF (Bus fault) Data Structure Address (DSA)
Bit 4 ABRT (Aborted) Read/Write
Bit 3 SSI (Single step interrupt) Register 14 (94)
Bit 2 SIR (SCRIPTS interrupt Interrupt Status (ISTAT)
instruction received) (Read/Write)
Bit 1 Reserved
Bit 0 11D (lllegal instruction detected) ABRT | SRST SIGP SEM CON INTF SIP DIP
. 7 6 5 4 3 2 1 0
Register OD (8D) SIS
SCSI Status Zero (SSTATO)
Read Only 0 0 0 0 0 0 0 0
Bit7 ABRT (Abort operation)
ILF ORF OLF AIP LOA WOA RST | SDPO/ Bit 6 SRST (Software reset)
7 6 5 4 8 2 L 0 Bit5 SIGP (Signal process)
Default>>> Bit 4 SEM (Semaphore)
0 0 0 0 0 0 0 0 Bit 3 CON (Connected)
Bit 7 ILF (SIDL full) B!t 2 INTF (Inte_rrupt on the Fly)
Bit 6 ORF (SODR full) B!t 1 SIP (SCsSI |n_terrupt pendm_g)
Bit5 OLF (SODL full) Bit 0 DIP (DMA interrupt pending)
Bit 4 AIP (Arbitration in progress) Register 18 (98)
Bit 3 LOA (Lost arbitration) Chip Test Zero (CTESTO)
Bit 2 WOA (Won arbitration) Read/Write
Bit 1 RST/ (SCSI RST/ signal)
Bit 0 SDP/ (SCSI SDP/ parity signal) Register 19 (99)
Chip Test One (CTEST1)
Read Only
FMT3 | FMT2 | FMTL [FMTO FFL3 FFL2 FFL1 FFLO
7 6 5 4 3 2 1 0
Default>>>
1 1 1 1 0 0 0 0
Bits 7-4 FMT3-0 (Byte empty in DMA FIFO)
Bits 3-0 FFL3-0 (Byte full in DMA FIFO)
B-20 Symbios Logic PCI-SCSI Programming Guide

Register 1A (9A)
Chip Test Two (CTEST?2)

Register Summaries
SYM53C860 Operating Registers

Register 22 (A2)
Chip Test Five (CTEST5)

Read Only Read/Write
DDIR | SIGP clo ™ RES TEOP | DREQ | DACK ADCK | BBCK RES | MASR | DDIR RES RES RES
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
Default>>> Default>>>
0 0 X X 0 0 0 1 0 0 X 0 0 X X X
Bit 7 DDIR (Data transfer direction) Bit 7 ADCK (Clock address incrementor)
Bit 6 SIGP (Signal process) Bit 6 BBCK (Clock byte counter)
Bit5 CI1O (Configured as 1/0) Bit5 Reserved
Bit 4 CM (Configured as memory) Bit 4 MASR (Master control for set or reset pulses)
Bit 3 Reserved Bit 3 DDIR (DMA direction)
Bit 2 TEORP (SCsI true end of process) Bits 2-0 Reserved
Bit 1 DREQ (Data request status) .
Bit0 DACK (Data acknowledge status) Register 23 (A3)
Chip Test Six (CTEST6)
Register 1B (9B) Read/Write
Chip Test Three (CTEST3)
Read/Write DF7 DF6 DF5 DF4 DF3 DF2 DF1 DFO
7 6 5 4 3 2 1 0
V3 V2 V1 VO FLF CLF FM WRIE Defaulos>
7 6 5 4 3 2 1 0 0 0 0 0 0 0 0 0
Default>>>
X X X X 0 0 0 0 Bits 7-0 DF7-DF0 (DMA FIFO)
Bits 7-4 V3-VO0 (Chip revision level) Registers 24-26 (A4-A6)
Bit 3 FLF (Flush DMA FIFO) DMA Byte Counter (DBC)
Bit 2 CLF (Clear DMA FIFO) Read/Write
Bit 1 FM (Fetch pin mode) Register 27 (A7)
Bit 0 WRIE (Write and Invalidate Enable) DMA Command (DCMD)
Registers 1C-1F (9C-9F) Read/Write
Temporary (TEMP) Registers 28-2B (A8-AB)
Read/Write DMA Next Address (DNAD)
Register 20 (A0) Read/Write
DMA FIFO (DFIFO) Registers 2C-2F (AC-AF)
Read/Write DMA SCRIPTS Pointer (DSP)
RES BO6 BO5 BO4 Bo3 BO2 BO1 BOO Read/Write
7 6 5 4 3 2 1 0 Registers 30-33 (B0-B3)
Default>>> DMA SCRIPTS Pointer Save (DSPS)
X 0 0 0 0 0 0 0 Read/Write
Bit7 Reserved Registers 34-37 (B4-B7)
Bits 6-0 BO6-BOO (Byte offset counter) Scratch Register A (SCRATCH A)
. Read/Write
Register 21 (A1) .
Chip Test Four (CTESTA4) Register 38 (B8)
Read/Write DMA Mode (DMODE)
Read/Write
BDIS | ZzMOD | zSD | SRTM | MPEE | FBL2 FBL1 FBLO
7 6 5 4 3 2 1 0 BL1 BLO SIOM | DIOM REfER RiASPER BOF MAN
Default>>>
0 0 0 0 0 0 0 0 7 6 5 4 3 2 1 0
Default>>>
Bit7 BDIS (Burst Disable) 0 0 0 0 0 0 0 0
Bit 6 ZMOD (High impedance mode) .
Bit5 ZSD (SCSI Data High Impedance) Bit 7-6 BL1-BLO (Burst length)
Bit 4 SRTM (Shadow Register Test Mode) Bit5 SIOM (Source 1/0-Memory Enable)
Bit 3 MPEE (Master Parity Error Enable) B!t 4 DIOM (Destination I_/O—Memory Enable)
Bits2-0 FBL2-FBLO (FIFO byte control) Bit 3 ERL (Enable Read Line)
Bit 2 ERMP (Enable Read Multiple)
Bit 1 BOF (Burst Op Code Fetch Enable)
Bit 0 MAN (Manual Start Mode)

Symbios Logic PCI-SCSI Programming Guide

B-21

Register Summaries
SYM53C860 Operating Registers

Register 39 (B9)
DMA Interrupt Enable (DIEN)

Register 41 (C1)
SCSI Interrupt Enable One (SIEN1)

Read/Write Read/Write
RES MDPE BF ABRT Ssl SIR RES 1D RES RES RES RES RES STO GEN HTH
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
Default>>> Default>>>
X 0 0 0 0 0 X 0 X X X X X 0 0 0
Bit 7 Reserved Bits 7-3 Reserved
Bit 6 MDPE (Master Data Parity Error) Bit 2 STO (Selection or Reselection Time-out)
Bit5 BF (Bus fault) Bit 1 GEN (General Purpose Timer Expired)
Bit 4 ABRT (Aborted) Bit 0 HTH (Handshake to Handshake timer Expired)
Bit 3 SSI (Single step interrupt) .
Bit 2 SIR (SCRIPTS interrupt Register 42 (C2)
instruction received SCSI Interrupt Status Zero (SISTO)
Bit 1 Reserved Read Only
Bit 0 11D (lllegal instruction detected) WA CMP SEL RSL SGE UDc RST PAR
Register 3A (BA) ! 6 5 4 8 2 ! 0
Scratch Byte Register (SBR) Default>>>
Read/Write 0 0 0 0 0 0 0 0
Register 3B (BB) Bit7 M/A (Initiator Mode: Phase Mismatch; Target
DMA Control (DCNTL) Mode: SATN/ Active)
Read/Write Bit 6 CMP (Function Complete)
Bit5 SEL (Selected)
CLSE PFF PFEN SSM IRQM STD IRQD COM Bit 4 RSL (Reselected)
7 6 5 4 3 2 1 0 Bit 3 SGE (SCSI Gross Error)
Default>>> Bit 2 UDC (Unexpected Disconnect)
0 0 0 0 0 0 0 0 Bit1 RST (SCSI RST/ Received)
i . . Bit 0 PAR (Parity Error)
Bit 7 CLSE (Cache Line Size Enable)
Bit 6 PFF (Pre-Fetch Flush) Register 43 (C3)
Bit 5 PFEN (Pre-fetch Enable) SCSI Interrupt Status One (SIST1)
Bit4 SSM (Single-step mode) Read Only
Bit 3 IRQM (IRQ Mode)
Bit 2 STD (Start DMA operation) RES RES RES RES RES STO GEN HTH
Bit 1 IRQD (IRQ Disable) 7 6 5 4 3 2 1 0
Bit 0 COM (53C700 compatibility) Default>>>
Register 3C-3F (BC-BF) O
Adder Sum Output (ADDER) Bits 7-3 Reserved
Read Only Bit 2 STO (Selection or Reselection Time-out)

. Bit 1 GEN (General Purpose Timer Expired)
Register 40 (CO) Bit 0 HTH (Handshake-to-Handshake Timer Expired)
SCSI Interrupt Enable Zero (SIENO)

Read/Write Register 44 (C4)
SCSI Longitudinal Parity (SLPAR)
M/A CMP SEL RSL SGE uDcC RST PAR Read/Write
7 6 5 4 3 2 1 0)
Defauloos Register 46 (C6)
0 0 0 0 0 0 0 0 Memory Access Control (MACNTL)
Read/Write
Bit 7 M/A (SCSI Phase Mismatch -
Initiator Mode; SCSI ATN TYP3 | TYP2 | TYPL | TYPO DWR DRD | PSCPT [SCPTS
Condition - Target Mode) 7 6 5 4 3 2 1 0
Bit 6 CMP (Function Complete) Default>>>
Bit5 SEL (Selected) 0 1 0 1 0 0 0 0
Bit 4 RSL (Reselected) . .
Bit 3 SGE (SCSI Gross Error) B!ts -4 TYP3-0 (Chip Type)
Bit 2 UDC (Unexpected Disconnect) B!t 3 DWR (DataWR)
Bit 1 RST (SCSI Reset Condition) Bit2 DRD (DataRD)
Bit 0 PAR (SCSI Parity Error) B!t 1 PSCPT (Pointer SCRIPTS)
Bit 0 SCPTS (SCRIPTS)
B-22 Symbios Logic PCI-SCSI Programming Guide

Register 47 (C7)
General Purpose Pin Control (GPCNTL)

Register Summaries
SYM53C860 Operating Registers

Register 4D (CD)
SCSI Test One (STEST1)

Read/Write Read/Write
ME FE RES RES RES RES | GPIO1 | GPIOO SCLK [SISO RES RES RES RES RES RES
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
Default>>> Default>>>
0 0 X 0 1 1 1 1 0 0 X X X X X X
Bit 7 Master Enable Bit 7 SCLK
Bit 6 Fetch Enable Bit 6 SISO (SCSiI Isolation Mode)
Bit5 -2 Reserved Bits 5-0 Reserved
Bits 1-0 GPIO1_EN- GPIO0_EN (GPIO Enable) .
Register 4E (CE)
Register 48 (C8) SCSI Test Two (STEST?2)
SCSI Timer Zero (STIMEO) Read/Write
Read /Write
SCE ROF RES SLB SZM RES EXT LOW
HTH HTH HTH HRH SEL SEL SEL SEL 7 6 5 4 3 2 1 0
7 6 5 4 3 2 1 0 Default>>>
Default>>> 0 0 X 0 0 X 0 0
0 0 0 0 0 0 0 0 Bit 7 SCE (SCSI Control Enable)
Bits 7-4 HTH (Handshake-to-Handshake Timer Period) Bit 6 ROF (Reset SCSI Offset)
Bits 3-0 SEL (Selection Time-Out) Bit 5 Reserved
. Bit 4 SLB (SCSI Loopback Mode)
Register 49 (C9) Bit 3 SZM (SCSI High-Impedance Mode)
SCSI Timer One (STIMEL) Bit 2 Reserved
Read/Write Bit 1 EXT(Extend SREQ/SACK
RES RES RES RES | GEN3 | GEN2 | GENL | GENO) filtering)
7 6 5 4 3 2 1 0 Bit 0 LOW (SCSI Low level Mode)
Default>>> Register 4F (CF)
X X X X 0 0 0 0 SCSI Test Three (STEST3)
Bits 7-4 Reserved Read/Write
Bits 3-0 GENB3-0 (General Purpose Timer Period) TE STR HSC DSI RES ™ CSE STW
Register 4A (CA) ! 6 > 4 3 2 ! 0
Response 1D (RESPID) Default>>>
Read/Write 0 0 0 0 X 0 0 0
Register AC (CC) Bit 7 TE (TolerANT Enable)
SCSI Test Zero (STESTO) Bit 6 STR (SCSI FIFO Test Read)
Read Only Bit5 HSC (Halt SCSI Clock)
Bit 4 DSI (Disable Single Initiator Response)
RES [SSAID2 | SSAID1 [SSAIDO | SLT ART S0z SOM Bit 3 Reserved
7 6 5 4 3 2 1 0 Bit 2 TTM (Timer Test Mode)
Default>>> Bit1 CSF (Clear SCSI FIFO)
X X X X 0 X 1 1 Bit 0 STW (SCS' FIFO TestWrite)
Bit 7 Reserved Register 50 (DO0)
Bits 6-4 SSAID (SCSI Selected As ID) SCSI Input Data Latch (SIDL)
Bit 3 SLT (Selection response logic test) Read Only
Bit 2 ART (Arbitration Priority Encoder Test) Redi
; egisters 54 (D4)
g::é ggf/l(?sccsslISg;::k:’:onnooujs%f;fssettzl\?lgzimum) SCsl Ou-t put Data Latch (SODL)
Read/Write
Registers 58 (D8)
SCSI Bus Data Lines (SBDL)
Read Only
Registers 5C-5F (DC-DF)
Scratch Register B (SCRATCHB)
(Read/Write)
Symbios Logic PCI-SCSI Programming Guide B-23

Register Summaries
SYM53C875 Operating Registers

SYM53C875 Operating
Registers

Register 00 (80)
SCSI Control Zero (SCNTLO)

Register 03 (83)
SCSI Control Three (SCNTL3)

Read/Write
ARB1 ARBO START | WATN EPC RES AAP TRG

7 6 5 4 3 2 1 0
Default>>>
1 1 0 0 0 X 0 0

Bit 7 ARBL1 (Arbitration Mode bit 1)

Bit 6 ARBO (Arbitration Mode bit 0)

Bit 5 START (Start Sequence)

Bit 4 WATN (Select with SATN/ on a Start Sequence)

Bit 3 EPC (Enable Parity Checking)

Bit 2 Reserved

Bit 1 AAP (Assert SATN/ on Parity Error)

Bit 0 TRG (Target Mode)

Register 01 (81)
SCSI Control One (SCNTL1)

Read/Write
EXC ADB DHP CON RST AESP IARB SST
7 6 5 4 3 2 1 0
Default>>>
0 0 0 0 0 0 0 0
Bit 7 EXC (Extra Clock Cycle of Data Setup)
Bit 6 ADB (Assert SCSI Data Bus)
Bit 5 DHP (Disable Halt on Parity Error or ATN) (Tar-
get Only)
Bit 4 CON (Connected)
Bit 3 RST (Assert SCSI RST/ Signal)
Bit 2 AESP (Assert Even SCSI Parity (force bad par-
ity))
Bit 1 IARB (Immediate Arbitration)
Bit 0 SST (Start SCSI Transfer)

Register 02 (82)
SCSI Control Two (SCNTL2)

Read/Write
F20 SCF2 SCF1 SCFO EWS CCF2 CCF1 CCFO
7 6 5 4 3 2 1 0
Default>>>
X0 0 0 0 0 0 0 0
Bit 7 F20 (Fast-20 Enable)
Bits 6-4 SCF2-0 (Synchronous Clock
Conversion Factor)
Bit 3 EWS (Enable Wide SCSI)
Bits 2-0 CCF2-0 (Clock Conversion Factor)
Register 04 (84)
SCSI Chip ID (SCID)
Read/Write
RES RRE SRE RES ENC3 ENC2 ENC1 ENCO
7 6 5 4 3 2 1 0
Default>>>
X 0 0 X 0 0 0 0
Bit 7 Reserved
Bit 6 RRE (Enable Response to
Reselection)
Bit5 SRE (Enable Response to Selection)
Bit 4 Reserved
Bits 3-0 Encoded Chip SCSI ID, bits 3-0
Register 05 (85)
SCSI Transfer (SXFER)
Read/Write
P2 TP1 TPO MO4 MO3 MO2 MO1 MO0
7 6 5 4 3 2 1 0
Default>>>
0 0 0 X0 0 0 0 0
Bits 7-5 TP2-0 (SCSI Synchronous Transfer Period)

Bits 3-0 MO3-MOO0 (Max SCSI Synchronous Offset)

Register 06 (86)
SCSI Destination ID (SDID)

Read/Write
SDbU CHM | SLPMD | SLPHBEN | WSS | VUEO | VUEL | WSR
7 6 5 4 3 2 1 0
Default>>>
0 0 X0 X0 0 0X 0X 0
Bit 7 SDU (SCsI Disconnect Unexpected)
Bit 6 CHM (Chained Mode)
Bit 5 SLPMD (SLPAR Mode Bit)
Bit4 SLPHBEN (SLPAR High Byte Enable)
Bit 3 WSS (Wide SCSI Send)
Bit 2 VUEO (Vendor Unique Enhancements bit 0)
Bit 1 VUEL1 (Vendor Unique Enhancements bit 1)
Bit 0 WSR (Wide SCSI Receive)
B-24

Read/Write
RES RES RES RES ENC3 ENC2 ENC1 ENCO
7 6 5 4 3 2 1 0
Default>>>
X X X X 0 0 0 0
Bits 7-4 Reserved
Bits 3-0 Encoded Destination SCSI ID
Register 07 (87)
General Purpose (GPREG)
Read/Write
RES RES RES GPIO4 | GPIO3 | GPIO2 | GPIO1 | GPIOO
7 6 5 4 3 2 1 0
Default>>>
X X X 0 X X X X
Bits 7-5 Reserved
Bits 4-0 GP104-GPI100 (General Purpose)

Symbios Logic PCI-SCSI Programming Guide

Register 08 (88)
SCSI First Byte Received (SFBR)

Register Summaries
SYM53C875 Operating Registers

Register 0C (8C)
DMA Status (DSTAT)

Read/Write Read Only
1B7 1B6 1B5 1B4 1B3 1B2 1B1 1B0 DFE MDPE BF ABRT SsI SIR EBPI 1D
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
Default>>> Default>>>
0 0 0 0 0 0 0 0 1 0 0 0 0 0 X 0
Register 09 (89) Bit7 DFE (DMA FIFO Empty)
SCSI Output Control Latch (SOCL) Bit 6 MDPE (Master Data Parity Error)
Read /Write Bit5 BF (Bus Fault)
Bit 4 ABRT (Aborted)
REQ ACK BSY SEL ATN MSG C/D 1/0 Bit 3 SSI (Single Step Interrupt)
7 6 5 4 3 2 1 0 Bit 2 SIR (SCRIPTS Interrupt
Default>>> Instruction Received)
0 0 0 0 0 0 0 0 Bit 1 EBPI (Extended Byte Parity Error Interrupt)
i . (53C875N only)
B!t 7 REQ(Assert SCSI REQ/ S_lgnal) Bit 0 11D (lllegal Instruction Detected)
Bit 6 ACK(Assert SCSI ACK!/ Signal)
Bit 5 BSY(Assert SCSI BSY/ Signal) Register 0D (8D)
Bit 4 SEL(Assert SCSI SEL/ Signal) SCSI Status Zero (SSTATO)
Bit 3 ATN(Assert SCSI ATN/ Signal) Read Only
Bit 2 MSG(Assert SCSI MSG/ Signal)
Bit 1 C/D(Assert SCSI C_D/ Signal) ILF ORF OLF AlP LOA WOA RST SDPO/
Bit0 1/0(Assert SCSI 1_O/ Signal) 7 6 5 4 3 2 1 0
Register OA (09) efaule>>
SCSI Selector 1D (SSID) e e e e e 0o
Read Only Bit 7 ILF (SIDL Least Significant Byte Full)
Bit 6 ORF (SODR Least Significant Byte Full)
VAL RES RES RES | ENID3 | ENIDZ | ENID1 | ENIDO Bit5 OLF (SODL Least Significant Byte Full)
7 6 5 4 3 2 1 0 Bit4 AIP (Arbitration in Progress)
Default>>> Bit 3 LOA (Lost Arbitration)
0 X X X 0 0 0 0 Bit 2 WOA (Won Arbitration)
. . Bit 1 RST/ (SCSI RST/ Signal)
Bit7 VAL (SCSI Valid) Bit 0 SDPO/ (SCSI SDPO/ Parity Signal)
Bits 6-4 Reserved
Bits 3-0 Encoded Destination SCSI ID Register OE (8E)
Register 0B (8B) ggasdl (S)tﬁv s One (SSTATL)
SCSI Bus Control Lines (SBCL)
Read Only FF3 FF2 FF1 FFO | SDPOL | MSG c/D 1/0
REQ ACK BSY SEL ATN MSG C/D 1/0 ! 6 ° 4 3 2 ! 0
Default>>>
7 6 5 4 3 2 1 0
0 0 0 0 X X X X
Default>>>
X X X X X X X X Bits 7-4 FF3-FF0 (FIFO Flags
i Bit 3 SDPOL (Latched SCSI Parity)
Bit7 REQ (SREQ/ Status) Bit 2 MSG (SCSI MSG/ Signal)
Bit6 ACK (SACK/ Status) Bit 1 C/D (SCSI C_D/ Signal)
Bit5 BSY (SBSY/ Status) Bit 0 1/0 (SCSI 1_O/ Signal)
Bit 4 SEL (SSEL/ Status) -
Bit 3 ATN (SATN/ Status)
Bit 2 MSG (SMSG/ Status)
Bit 1 C/D (SC_D/ Status)
Bit 0 1/0 (S1_O/ Status)
Symbios Logic PCI-SCSI Programming Guide B-25

Register Summaries
SYM53C875 Operating Registers

Register OF (8F)
SCSI Status Two (SSTAT?2)

Register 1A (9A)
Chip Test Two (CTEST?2)

(Read Only) Read/Write
ILF1 ORFL | OLFL FF4 SPL1 RES LDSC | sbpP1 DDIR | SIGP CIo CM | SRTCH | TEOP | DREQ | DACK
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
Default>>> Default>>>
0 0 0 0 X X 1 X 0 0 X X 0 0 0 1
Bit 7 ILF1 (SIDL Most Significant Byte Full) Bit 7 DDIR (Data Transfer Direction)
Bit 6 ORF1 (SODR Most Significant Byte Full) Bit 6 SIGP (Signal Process)
Bit5 OLF1 (SODL Most Significant Byte Full) Bit5 CIlO (Configured as 1/0)
Bit 4 FF4 (FIFO Flags bit 4) Bit 4 CM (Configured as Memory)
Bit 3 SPL1(Latched SCSI parity for SD15-8) Bit 3 SRTCH (SCRATCHA/B Operation)
Bit 2 DIFFSENSE SENSE Bit 2 TEOP (SCSI True End of Process)
Bit 1 LDSC (Last Disconnect) Bit1 DREQ (Data Request Status)
Bit 0 SDP1 (SCSI SDP1 Signal) Bit 0 DACK (Data Acknowledge Status)
Registers 10-13 (90-93) Register 1B (9B)
Data Structure Address (DSA) Chip Test Three (CTEST3)
Read/Write Read/Write
Register 14 (94) V3 V2 V1 V0 FLF CLF M WRIE
Interrupt Status (ISTAT) 7 6 5 4 3 2 1 0
(Read/Write) Default>>>
ABRT | SRST | SIGP | SEM | CON | INTF SIP DIP X X X X 0 0 0 X0
7 6 5 4 3 2 1 0 Bits 7-4 V3-V0 (Chip revision level)
Default>>> Bit 3 FLF (Flush DMA FIFO)
0 0 0 0 0 0 0 0 Bit 2 CLF (Clear DMA FIFO)
. . Bit1 FM (Fetch Pin Mode)
B!t 7 ABRT (Abort Operation) Bit 0 WRIE (Write and Invalidate Enable)
Bit 6 SRST (Software Reset)
Bit5 SIGP (Signal Process) Registers 1C-1F (9C-9F)
Bit 4 SEM (Semaphore) Temporary (TEMP)
Bit 3 CON (Connected) Read/Write
Bit 2 INTF (Interrupt on the Fly) .
Bit 1 SIP (SCSI Interrupt Pending) Register 20 (A0)
Bit 0 DIP (DMA Interrupt Pending) DMA FIFO (DFIFO)
_ Read/Write
Register 18 (98)
Chip Test Zero (CTESTO) BO7 BO6 BO5 BO4 Bo3 BO2 BO1 BOO
Read/Write ! 6 5 4 3 2 ! 0
Register 19 (99) Default>>>
egister X 0 0 0 0 0 0 0
Chip Test One (CTEST1)
Read Only Bits 7-0 BO7-BOO0 (Byte offset counter)
FMT3 | FMT2 | FMTL | FMTO | FFL3 | FFL2 | FFLL | FFLO Register 21 (A1)
7 6 5 4 3 2 1 0 Chip Test Four (CTEST4)
Defauloos Read/Write
1 1 1 1 0 0 0 0 BDIS | ZMOD | ZSD | SRTM | MPEE | FBLZ | FBLL | FBLO
Bits 7-4 FMT3-0 (Byte Empty in DMA FIFO) 7 6 5 4 3 2 1 0
Bits 3-0 FFL3-0 (Byte Full in DMA FIFO) Default>>>
0 0 0 0 0 0 0 0
Bit 7 BDIS (Burst Disable)
Bit 6 ZMOD (High Impedance Mode)
Bit5 ZSD (SCSI Data High Impedance)
Bit 4 SRTM (Shadow Register Test Mode)
Bit 3 MPEE (Master Parity Error Enable)
Bits 2-0 FBL2-FBLO (FIFO Byte Control)
B-26 Symbios Logic PCI-SCSI Programming Guide

Register 22 (A2)
Chip Test Five (CTESTD5)
Read/Write

Register 39 (B9)
DMA Interrupt Enable (DIEN)
Read/Write

Register Summaries
SYM53C875 Operating Registers

ADCK | BBCK DFS MASR | DDIR BL2 BO9 BO8 RES MDPE BF ABRT Ssl SIR EBPE 1D
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
Default>>> Default>>>
0 0 0X 0 0 X X X X 0 0 0 0 0 X 0
Bit 7 ADCK (Clock Address Incrementor) Bit 7 Reserved
Bit 6 BBCK (Clock Byte Counter) Bit 6 MDPE (Master Data Parity Error)
Bit5 DFS (DMA FIFO Size) Bit5 BF (Bus Fault)
Bit 4 MASR (Master Control for Set or Reset Pulses) Bit 4 ABRT (Aborted)
Bit 3 DDIR (DMA Direction) Bit 3 SSI (Single -step Interrupt)
Bit 2 BL2 (Burst Length bit 2) Bit 2 SIR (SCRIPTS Interrupt
Bits 1-0 BO9-8 Instruction Received
. Bit 1 EBPE (Extended Byte Parity Enable)
Register 23 (A3) (SYMS3C875N only)
Chip Test Six (CTEST6) Bit0 11D (lllegal Instruction Detected)
Read/Write
Register 3A (BA)
DF7 DF6 DFS DF4 DF3 DF2 DF1 DFO Scratch Byte Register (SBR)
7 6 5 4 8 2 L 0 Read/Write
pefaul>> Register 3B (BB)
¢ e e e e e 0o DMA Control (DCNTL)
Bits 7-0 DF7-DF0 (DMA FIFO) Read/Write
Registers 24-26 (A4-A6) CLSE PFF PFEN | SSM | IRQM | STD | IRQD | COM
DMA Byte Counter (DBC) 7 6 5 4 3 2 1 0
Read/Write Default>>>
DMA Co.mmand (DCMD) Bit7 CLSE (Cache Line Size Enable)
Read/Write Bit 6 PFF (Pre-fetch Flush)
Registers 28-2B (A8-AB) Bit5 PFEN (Pre-fetch Enable)
DMA Next Address (DNAD) Bit4 SSM (Single-step Mode)
Read/Write Bit 3 IRQM (IRQ Mode)
Bit 2 STD (Start DMA Operation)
Registers 2C-2F (AC-AF) Bit 1 IRQD (IRQ Disable)
DMA SCRIPTS Pointer (DSP) Bit 0 COM (53C700 Compatibility)
Read/Write .
. Register 3C-3F (BC-BF)
Registers 30-33 (B0-B3) Adder Sum Output (ADDER)
DMA SCRIPTS Pointer Save (DSPS) Read Only
Read/Write
Registers 34-37 (B4-B7) .
Scratch Register A (SCRATCH A) Register 40 (CO)
Read/Write SCSI Interrupt Enable Zero (SIENO)
] Read/Write
Register 38 (B8)
DMA Mode (DMODE) M/A CMP SEL RSL SGE ubnC RST PAR
Read/Write 7 6 5 4 3 2 1 0
Default>>>
BL1 BLO SIOM | DIOM ER ERMP BOF MAN 0 0 0 0 0 0 0 0
7 6 5 4 3 2 1 0
Defaul>>> Bit 7 M/A (SCSI Phase Mismatch -
0 0 0 0 0 X0 0 0 Initiator Mode; SCSI ATN
Condition - Target Mode)
Bit 7-6 BL1-BLO (Burst Length) Bit 6 CMP (Function Complete)
Bit5 SIOM (Source I/O-Memory Enable) Bit5 SEL (Selected)
Bit4 DIOM (Destination 1/O-Memory Enable) Bit 4 RSL (Reselected)
Bit 3 ERL (Enable Read Line) Bit 3 SGE (SCSI Gross Error)
Bit 2 ERMP (Enable Read Multiple) Bit 2 UDC (Unexpected Disconnect)
Bit 1 BOF (Burst Op Code Fetch Enable) Bit 1 RST (SCSI Reset Condition)
Bit0 MAN (Manual Start Mode) Bit0 PAR (SCSI Parity Error)
Symbios Logic PCI-SCSI Programming Guide B-27

Register Summaries
SYM53C875 Operating Registers

Register 41 (C1)
SCSI Interrupt Enable One (SIEN1)

Register 47 (C7)
General Purpose Pin Control (GPCNTL)

Read/Write Read/Write
RES RES RES RES RES STO GEN HTH ME FE RES GPIO4 | GPIO3 | GPIO2 | GPIO1 | GPIOO
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
Default>>> Default>>>
X X X X X 0 0 0 0 0 X 0 1 1 1 1
Bits 7-3 Reserved Bit7 Master Enable
Bit 2 STO (Selection or Reselection Time-out) Bit 6 Fetch Enable
Bit 1 GEN (General Purpose Timer Expired) Bit5 Reserved
Bit 0 HTH (Handshake-to-Handshake Timer Expired) Bits 4-2 GPI104_EN-GPIO2_EN (GPIO Enable)
Bits 1-0 GPIO1_EN- GPIO0_EN (GPIO Enable)

Register 42 (C2)
SCSI Interrupt Status Zero (SISTO)

Register 48 (C8)
SCSI Timer Zero (STIMEOQ)

Read Only
M/A CMP SEL RSL SGE uDcC RST PAR
7 6 5 4 3 2 1 0
Default>>>
0 0 0 0 0 0 0 0
Bit 7 M/A (Initiator Mode: Phase Mismatch; Target
Mode: SATN/ Active)
Bit 6 CMP (Function Complete)
Bit 5 SEL (Selected)
Bit 4 RSL (Reselected)
Bit 3 SGE (SCsSI Gross Error)
Bit 2 UDC (Unexpected Disconnect)
Bit 1 RST (SCSI RST/ Received)
Bit 0 PAR (Parity Error)

Register 43 (C3)
SCSI Interrupt Status One (SIST1)

Read /Write
HTH HTH HTH HRH SEL SEL SEL SEL
7 6 5 4 3 2 1 0
Default>>>
0 0 0 0 0 0 0 0
Bits 7-4 HTH (Handshake-to-Handshake Timer Period)

Bits 3-0 SEL (Selection Time-Out)

Register 49 (C9)
SCSI Timer One (STIME1)

Read Only
RES RES RES RES RES STO GEN HTH
7 6 5 4 3 2 1 0
Default>>>
X X X X X 0 0 0
Bits 7-3 Reserved
Bit 2 STO (Selection or Reselection Time-out)
Bit 1 GEN (General Purpose Timer Expired)
Bit 0 HTH (Handshake-to-Handshake Timer Expired)

Register 44 (C4)
SCSI Longitudinal Parity (SLPAR)
Read/Write

Register 45 (C5)
SCSI Wide Residue (SWIDE)
Read/Write

Register 46 (C6)
Memory Access Control (MACNTL)

Read/Write
RES | HTHBA | GENSF | HTHSF | GEN3 | GEN2 | GEN1 [GENO
7 6 5 4 3 2 1 0
Default>>>
X 0x 0X 0x 0 0 0 0
Bit 7 Reserved
Bit 6 HTHBA (Handshake-to-Handshake Timer Bus
Activity Enable)
Bit5 GENSF (General Purpose Timer Scale Factor)
Bit 4 HTHSF (Handshake to Handshake Timer Scale
Factor)
Bits 3-0 GEN3-0 (General Purpose Timer Period)

Register 4A (CA)
Response ID Zero (RESPIDO)
Read/Write

Register 4B (CB)
Response ID One(RESPID1)
Read/Write

Register 4C (CC)
SCSI Test Zero (STESTO)

Read/Write
TYP3 TYP2 TYP1 TYPO DWR DRD PSCPT | SCPTS
7 6 5 4 3 2 1 0
Default>>>
0 01 1 10 0 0 0 0
Bits 7-4 TYP3-0 (Chip Type)
Bit 3 DWR (DataWR)
Bit 2 DRD (DataRD)
Bit 1l PSCPT (Pointer SCRIPTS)
Bit0 SCPTS (SCRIPTS)
B-28

Read Only
SSAID3 | SSAID2 | SSAID1 | SSAIDO | SLT ART S0z SOM
7 6 5 4 3 2 1 0
Default>>>

0X 0x 0X 0x 0 X 1 1

Bits 7-4 SSAID (SCSI Selected As ID)

Bit 3 SLT (Selection Response Logic Test)

Bit 2 ART (Arbitration Priority Encoder Test)

Bit 1 SOZ (SCSI Synchronous Offset Zero)

Bit 0 SOM (SCSI Synchronous Offset Maximum)

Symbios Logic PCI-SCSI Programming Guide

Register 4D (CD)
SCSI Test One (STEST1)

Read/Write
SCLK SISO RES RES RES RES RES RES
7 6 5 4 3 2 1 0
Default>>>
0 X0 X X X X X X
Bit7 SCLK
Bit 6 SISO (SCSI Isolation Mode)
Bits 5-4 Reserved
Bit3 SCLK Doubler Enable (DBLEN)
Bit 2 SCLK Doubler Select (DBLSEL)
Bits1-0 Reserved
Register 4E (CE)
SCSI Test Two (STEST?2)
Read/Write
SCE ROF DIF SLB SZM AWS EXT LowW
7 6 5 4 3 2 1 0
Default>>>
0 0 0 0 0 0 0 0
Bit 7 SCE (SCSI Control Enable)
Bit 6 ROF (Reset SCSI Offset)
Bit 5 DIF (SCSI Differential Mode)
Bit 4 SLB (SCSI Loopback Mode)
Bit 3 SZM (SCSI High-Impedance Mode)
Bit 1 EXT (Extend SREQ/SACK Filtering)
Bit 0 LOW (SCSI Low level Mode)
Register 4F (CF)
SCSI Test Three (STEST?3)
Read/Write
TE STR HSC DSI S16 ™ CSF STW
7 6 5 4 3 2 1 0
Default>>>
0 0 0 0 0 0 0 0
Bit 7 TE (TolerANT Enable)
Bit 6 STR (SCSI FIFO Test Read)
Bit 5 HSC (Halt SCSI Clock)
Bit 4 DSl (Disable Single Initiator Response)
Bit 3 S16 (16-bit System)
Bit 2 TTM (Timer Test Mode)
Bit 1 CSF (Clear SCSI FIFO)
Bit 0 STW (SCSI FIFO Test Write)

Register 50-51 (D0-D1)
SCSI Input Data Latch (SIDL)
Read Only

Registers 54-55 (D4-D5)
SCSI Output Data Latch (SODL)
Read/Write

Registers 58-59 (D8-D9)
SCSI Bus Data Lines (SBDL)
Read Only

Symbios Logic PCI-SCSI Programming Guide

Register Summaries
SYM53C875 Operating Registers

Registers 5C-5F (DC-DF)
Scratch Register B (SCRATCHB)
(Read/Write)

Registers 60h-7Fh (EOh-FFh)
Scratch Registers C-J
(SCRATCHC-SCRATCHY)J)
Read/Write

B-29

Register Summaries
SYM53C876 Operating Registers

SYM53C876 Operating
Registers

Register 00h
SCSI Control Zero (SCNTLO)

Register 03h
SCSI Control Three (SCNTL3)

Read/Write
ARB1 ARBO START | WATN EPC RES AAP TRG
7 6 5 4 3 2 1 0
Default >>>
1 1 0 0 0 X 0 0
Bit 7 ARBL1 (Arbitration Mode bit 1)
Bit 6 ARBO (Arbitration Mode bit 0)
Bit 5 START (Start Sequence)
Bit 4 WATN (Select with SATN/ on a Start Sequence)
Bit 3 EPC (Enable Parity Checking)
Bit 2 Reserved
Bit 1 AAP (Assert SATN/ on Parity Error)
Bit 0 TRG (Target Mode)

Register 01h
SCSI Control One (SCNTL1)

Read/Write
EXC ADB DHP CON RST AESP IARB SST
7 6 5 4 3 2 1 0
Default >>>
0 0 0 0 0 0 0 0
Bit 7 EXC (Extra Clock Cycle of Data Setup)
Bit 6 ADB (Assert SCSI Data Bus)
Bit 5 DHP (Disable Halt on Parity Error or ATN) (Tar-
get Only)
Bit 4 CON (Connected)
Bit 3 RST (Assert SCSI RST/ Signal)
Bit 2 AESP (Assert Even SCSI Parity (force bad par-
ity))
Bit 1 IARB (Immediate Arbitration)
Bit 0 SST (Start SCSI Transfer)

Register 02h
SCSI Control Two (SCNTL2)

Read/Write
USE SCF2 SCF1 SCFO EWS CCF2 CCF1 CCFO
7 6 5 4 3 2 1 0
Default >>>
0 0 0 0 0 0 0 0
Bit 7 USE (Ultra SCSI Enable)
Bits 6-4 SCF2-0 (Synchronous Clock
Conversion Factor)
Bit 3 EWS (Enable Wide SCSI)
Bits 2-0 CCF2-0 (Clock Conversion Factor)
Register 04h
SCSI Chip ID (SCID)
Read/Write
RES RRE SRE RES ENC3 ENC2 ENC1 ENCO
7 6 5 4 3 2 1 0
Default >>>
X 0 0 X 0 0 0 0
Bit 7 Reserved
Bit 6 RRE (Enable Response to
Reselection)
Bit5 SRE (Enable Response to Selection)
Bit 4 Reserved
Bits 3-0 Encoded Chip SCSI ID, bits 3-0
Register 05h
SCSI Transfer (SXFER)
Read/Write
P2 TP1 TPO MO4 MO3 MO2 MO1 MO0
7 6 5 4 3 2 1 0
Default >>>
0 0 0 X 0 0 0 0
Bits 7-5 TP2-0 (SCSI Synchronous Transfer Period)

Bits 4-0

Register 06h
SCSI Destination ID (SDID)

MO4-MOO0 (Max SCSI Synchronous Offset)

Read/Write
SDU CHM | SLPMD Ség;' WSS | VUEO | VUELl | WSR
7 6 5 4 3 2 1 0
Default >>>
0 0 0 0 0 0 X 0
Bit7 SDU (SCsSI Disconnect Unexpected)
Bit 6 CHM (Chained Mode)
Bit5 SLPMD (SLPAR Mode Bit)
Bit 4 SLPHBEN (SLPAR High Byte Enable)
Bit 3 WSS (Wide SCSI Send)
Bit 2 VUEO (Vendor Unique Enhancement bit 0)
Bit 1l VUEL1 (Vendor Unique Enhancement bit 1)
Bit 0 WSR (Wide SCSI Receive)
B-30

Read/Write
RES RES RES RES ENC3 ENC2 ENC1 ENCO
7 6 5) 4 3 2 1 0
Default >>>
X X X X 0 0 0 0
Bits 7-4 Reserved
Bits 3-0 Encoded Destination SCSI ID
Register 07h
General Purpose (GPREG)
Read/Write
RES RES RES GPIO4 | GPIO3 | GPIO2 | GPIO1 | GPIOO
7 6 5 4 3 2 1 0
Default >>>
X X X 0 X X X X
Bits 7-5,3 Reserved
Bits 4,2-0 GPIO4-GPIO0 (General Purpose)

Symbios Logic PCI-SCSI Programming

Guide

Register 08h
SCSI First Byte Received (SFBR)

Register Summaries
SYM53C876 Operating Registers

Register 0Ch
DMA Status (DSTAT)

Read/Write Read Only
1B7 1B6 1B5 1B4 1B3 1B2 1B1 1B0 DFE MDPE BF ABRT SsI SIR RES 1ID
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
Default >>> Default >>>
0 0 0 0 0 0 0 0 1 0 0 0 0 0 X 0
Register 09h Bit7 DFE (DMA FIFO Empty)
SCSI Output Control Latch (SOCL) Bit 6 MDPE (Master Data Parity Error)
Read/Write Bit5 BF (Bus Fault)
Bit 4 ABRT (Aborted)
REQ ACK BSY SEL ATN MSG C/D 1/0 Bit 3 SSI (Single Step Interrupt)
7 6 5 4 3 2 1 0 Bit 2 SIR (SCRIPTS Interrupt
Default >>> Instruction Received)
0 0 0 0 0 0 0 0 Bit1 Reserved
. . Bit 0 11D (lllegal Instruction Detected)
Bit 7 REQ(Assert SCSI REQ/ Signal)
Bit 6 ACK(Assert SCSI ACK!/ Signal) Register oDh
Bit5 BSY (Assert SCSI BSY/ Signal) SCSI Status Zero (SSTATO)
Bit4 SEL (Assert SCSI SEL/ Signal) Read Only
Bit 3 ATN(Assert SCSI ATN/ Signal)
Bit 2 MSG(Assert SCSI MSG/ Signal) ILF ORF OLF AIP LOA WOA RST/ SDPO/
Bit 1l C/D(Assert SCSI C_D/ Signal) 7 6 5 4 3 2 1 0
Bit 0 I/O(Assert SCSI I_O/ Signal) Default >>>
Register OAh ‘ ° ° ° ° ° ° °
SCSI Selector ID (SSlD) Bit7 ILF (SIDL Least Significant Byte Full)
Read Only Bit 6 ORF (SODR Least Significant Byte Full)
Bit5 OLF (SODL Least Significant Byte Full)
VAL RES RES RES ENID3 | ENID2 | ENID1 | ENIDO Bit 4 AIP (Arbitration in Progress)
7 6 5 4 3 2 1 0 Bit 3 LOA (Lost Arbitration)
Default >>> Bit 2 WOA (Won Arbitration)
0 X X X 0 0 0 0 Bit 1 RST/ (SCSI RST/ Signal)
. . Bit0 SDPO0/ (SCSI SDP0/ Parity Signal)
Bit 7 VAL (SCSI Valid)
Bits 6-4 Reserved Register OEh
Bits 3-0 Encoded Destination SCSI ID SCSI Status One (SSTAT]_)
Register 0Bh Read Only
SCSI Bus Control Lines (SBCL) FF3 FF2 FF1 FFO | SDPOL | MSG cib 110
Read Only 7 6 5 4 3 2 1 0
REQ ACK BSY SEL ATN MSG ciD 170 Default >>>
7 6 5 4 3 2 1 0 0 0 0 0 X X X X
Default >>> Bits 7-4 FF3-FFO (FIFO Flags)
X X X X X X X X Bit 3 SDPOL (Latched SCSI Parity)
. Bit 2 MSG (SCSI MSG/ Signal)
Bit7 REQ (SREQ/ Status) Bit 1 C/D (SCSI C_DJ Signal)
Bit 6 ACK (SACK/ Status) Bit 0 1/0 (SCSI 1_O/ Signal)
Bit5 BSY (SBSY/ Status)
Bit 4 SEL (SSEL/ Status)
Bit 3 ATN (SATN/ Status)
Bit 2 MSG (SMSG/ Status)
Bit 1 C/D (SC_D/ Status)
Bit 0 1/0 (S1_O/ Status)

Symbios Logic PCI-SCSI Programming Guide

B-31

Register Summaries
SYM53C876 Operating Registers

Register OFh Register 1Ah
SCSI Status Two (SSTAT?2) Chip Test Two (CTEST?2)
Read Only Read Only
ILF1 ORF1 OLF1 FF4 SPL1 DIFF LDSC | spP1 DDIR SIGP clo CM SRTCH | TEOP | DREQ | DACK
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
Default >>> Default >>>
0 0 0 0 X X 1 X 0 0 X X 0 0 0 1
Bit 7 ILF1 (SIDL Most Significant Byte Full) Bit 7 DDIR (Data Transfer Direction)
Bit 6 ORF1 (SODR Most Significant Byte Full) Bit 6 SIGP (Signal Process)
Bit5 OLF1 (SODL Most Significant Byte Full) Bit5 CIlO (Configured as 1/0)
Bit 4 FF4 (FIFO Flags bit 4) Bit 4 CM (Configured as Memory)
Bit 3 SPL1(Latched SCSI parity for SD15-8) Bit 3 SRTCH (SCRATCHA/B Operation)
Bit 2 DIFFSENSE Sense Bit 2 TEOP (SCSI True End of Process)
Bit 1 LDSC (Last Disconnect) Bit1 DREQ (Data Request Status)
Bit 0 SDP1 (SCSI SDP1 Signal) Bit 0 DACK (Data Acknowledge Status)
Registers 10h-13h Register 1Bh
Data Structure Address (DSA) Chip Test Three (CTEST3)
Read/Write Read/Write
Register 14h V3 V2 V1 V0 FLF CLF M WRIE
Interrupt Status (ISTAT) 7 6 5 4 3 2 1 0
Read/Write Defauli 555
ABRT | SRST | SIGP | SEM | CON | INTF | SIP DIP X X X X 0 0 0 0
7 6 5 4 3 2 1 0 Bits 7-4 V3-VO0 (Chip Revision Level)
Default >>> Bit 3 FLF (Flush DMA FIFO)
0 0 0 0 0 0 0 0 Bit 2 CLF (Clear DMA FIFO)
. . Bit1 FM (Fetch Pin Mode)
B!t 7 ABRT (Abort Operation) Bit 0 WRIE (Write and Invalidate Enable)
Bit 6 SRST (Software Reset)
Bit 5 SIGP (Signal Process)
Bit 4 SEM (Semaphore)
Bit 3 CON (Connected)
Bit 2 INTF (Interrupt on the Fly)
Bit 1 SIP (SCSI Interrupt Pending)
Bit 0 DIP (DMA Interrupt Pending)

Register 19h
Chip Test One (CTEST1)

Registers 1Ch-1Fh
Temporary (TEMP)

Read Only
FMT3 FMT2 FMT1 FMTO FFL3 FFL2 FFL1 FFLO
7 6 5 4 3 2 1 0
Default >>>
1 1 1 1 0 0 0 0
Bits 7-4 FMT3-0 (Byte Empty in DMA FIFO)
Bits 3-0 FFL3-0 (Byte Full in DMA FIFO)
B-32

Read/Write
Register 20h
DMA FIFO (DFIFO)
Read/Write
BO7 BO6 BO5 BO4 BO3 BO2 BO1 BOO
7 6 5 4 3 2 1 0
Default >>>
0 0 0 0 0 0 0 0
Bits 7-0 BO7-BO0 (Byte offset counter)
Register 21h
Chip Test Four (CTEST4)
Read/Write
BDIS | ZMOD ZSD SRTM | MPEE | FBL2 FBL1 FBLO
7 6 5 4 3 2 1 0
Default >>>
0 0 0 0 0 0 0 0
Bit 7 BDIS (Burst Disable)
Bit 6 ZMOD (High Impedance Mode)
Bit 5 ZSD (SCSI Data High Impedance)
Bit 4 SRTM (Shadow Register Test Mode)
Bit 3 MPEE (Master Parity Error Enable)
Bits 2-0 FBL2-FBLO (FIFO Byte Control)

Symbios Logic PCI-SCSI Programming Guide

Register Summaries
SYM53C876 Operating Registers

Register 22h Register 38h
Chip Test Five (CTESTD5) DMA Mode (DMODE)
Read/Write Read/Write
ADCK | BBCK DFS MASR | DDIR BL2 BO9 BO8 BL1 BLO SIoM | DIOM ER ERMP BOF MAN
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
Default >>> Default >>>
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Bit 7 ADCK (Clock Address Incrementor) Bit 7-6 BL1-BLO (Burst Length)
Bit 6 BBCK (Clock Byte Counter) Bit5 SIOM (Source I/O-Memory Enable)
Bit5 DFS (DMA FIFO Size) Bit 4 DIOM (Destination I/O-Memory Enable)
Bit 4 MASR (Master Control for Set or Reset Pulses) Bit 3 ERL (Enable Read Line)
Bit 3 DDIR (DMA Direction) Bit 2 ERMP (Enable Read Multiple)
Bit 2 BL2 (Burst Length bit 2) Bit 1 BOF (Burst Op Code Fetch Enable)
Bits 1-0 B0O9-BO8 (DMA FIFO Byte Offset Counter, bits Bit 0 MAN (Manual Start Mode)
+8) Register 39h
Register 23h DMA Interrupt Enable (DIEN)
Chip Test Six (CTEST®6) Read/Write
Read/Write
RES MDPE BF ABRT Ssl SIR RES 1D
DF7 DF6 DF5 DF4 DF3 DF2 DF1 DFO 7 6 5 4 3 2 1 0
7 6 5 4 3 2 1 0 Default >>>
Default >>> X 0 0 0 0 0 X 0
0 0 0 0 0 0 0 0 .
Bit 7 Reserved
Bits 7-0 DF7-DFO0 (DMA FIFO) Bit 6 MDPE (Master Data Parity Error)
] Bit5 BF (Bus Fault)
Registers 24h-26h Bit 4 ABRT (Aborted)
DMA Byte Counter (DBC) Bit 3 SSI (Single -step Interrupt)
Read/Write Bit 2 SIR (SCRIPTS Interrupt
Register 27h Instruction Received
DMA Command (DCMD) Bit 1 Reserved _
Read/Write Bit 0 11D (lllegal Instruction Detected)
Registers 28h-2Bh Register 3Ah
DMA Next Address (DNAD) Scratch Byte Register (SBR)
Read/Write Read/Write
Registers 2Ch-2Fh Register 3Bh
DMA SCRIPTS Pointer (DSP) DMA Control (DCNTL)
Read/Write Read/Write
Registers 30h-33h CLSE PFF PFEN SSM INTM STD INTD COM
DMA SCRIPTS Pointer Save (DSPS) 7 6 5 4 3 2 1 0
Read/Write Default >>>
Registers 34h 0 0 0 0 0 0 0 0
Scratch Register A (SCRATCHA) Bit 7 CLSE (Cache Line Size Enable)
Read/Write Bit 6 PFF (Pre-fetch Flush)
Bit5 PFEN (Pre-fetch Enable)
Bit 4 SSM (Single-step Mode)
Bit 3 INTM (INTA Mode)
Bit 1 IRQD (INTA, INTB Disable)
Bit 0 COM (53C700 Compatibility)
Register 3Ch-3Fh
Adder Sum Output (ADDER)
Read Only
Symbios Logic PCI-SCSI Programming Guide B-33

Register Summaries
SYM53C876 Operating Registers

Register 40h
SCSI Interrupt Enable Zero (SIENO)

Register 43h
SCSI Interrupt Status One (SIST1)

Read/Write Read Only
M/A CMP SEL RSL SGE uDcC RST PAR RES RES RES RES RES STO GEN HTH
7 6 5 4 3 2 1 0 7 6 5) 4 3 2 1 0
Default >>> Default >>>
0 0 0 0 0 0 0 0 X X X X 0 0 0 0
Bit 7 M/A (SCSI Phase Mismatch - Bits 7-4 Reserved
Initiator Mode; SCSI ATN Bit 2 STO (Selection or Reselection Time-out)
Condition - Target Mode) Bit 1 GEN (General Purpose Timer Expired)
Bit 6 CMP (Function Complete) Bit 0 HTH (Handshake-to-Handshake Timer Expired)
Bit5 SEL (Selected) .
Bit 4 RSL (Reselected) Register 44h)
Bit 3 SGE (SCSI Gross Error) SCSI Longitudinal Parity (SLPAR)
Bit 2 UDC (Unexpected Disconnect) Read/Write
B?t 1 RST (SCsI ReS(_at Condition) Register 45h
Bit 0 PAR (SCSI Parity Error)

Register 41h
SCSI Interrupt Enable One (SIEN1)

SCSI Wide Residue (SWIDE)
Read/Write

Register 46h
Memory Access Control (MACNTL)

Read/Write
RES RES RES RES RES STO GEN HTH
7 6 5 4 3 2 1 0
Default >>>
X X X X X 0 0 0
Bits 7-3 Reserved
Bit 2 STO (Selection or Reselection Time-out)
Bit 1 GEN (General Purpose Timer Expired)
Bit 0 HTH (Handshake-to-Handshake Timer Expired)

Register 42h
SCSI Interrupt Status Zero (SISTO)

Read/Write
TYP3 TYP2 TYP1 TYPO RES RES RES RES
7 6 5 4 & 2 1 0
Default >>>
0 1 1 1 X X X X
Bits 7-4 TYP3-0 (Chip Type)

Bit 3-0 Reserved

Register 47h

General Purpose Pin Control (GPCNTL)
Read/Write

Read Only
M/A CMP SEL RSL SGE uDcC RST PAR
7 6 5 4 3 2 1 0
Default >>>
0 0 0 0 0 0 0 0
Bit 7 M/A (Initiator Mode: Phase Mismatch; Target
Mode: SATN/ Active)
Bit 6 CMP (Function Complete)
Bit 5 SEL (Selected)
Bit 4 RSL (Reselected)
Bit 3 SGE (SCsSI Gross Error)
Bit 2 UDC (Unexpected Disconnect)
Bit 1 RST (SCSI RST/ Received)
Bit 0 PAR (Parity Error)
B-34

ME FE RES GPIO4 GPIO3 GPIO2 GPIO1 GPIOO
7 6 5 4 3 2 1 0
Default >>>
0 0 X 0 1 1 1 1
Bit7 Master Enable
Bit 6 Fetch Enable
Bits 5 Reserved
Bits 4, 2 GPI104_EN-GPIO2_EN (GPIO Enable)

Bits 1-0 GPIO1_EN-GPIO0_EN (GPIO Enable)

Register 48h
SCSI Timer Zero (STIMEO)

Read/Write
HTH7 HTH6 HTH5 | HRH4 SEL SEL SEL SEL
7 6 5 4 3 2 1 0
Default >>>
0 0 0 0 0 0 0 0
Bits 7-4 HTH (Handshake-to-Handshake Timer Period)

Bits 3-0 SEL (Selection Time-Out)

Symbios Logic PCI-SCSI Programming Guide

Register 49h
SCSI Timer One (STIME1)

Register Summaries
SYM53C876 Operating Registers

Register 4Eh
SCSI Test Two (STEST?2)

Read/Write Read/Write
RES | HTHBA| GENSF| HTHSF| GEN3 | GEN2 | GENL1 | GENO SCE ROF DIF SLB SZM AWS EXT LOW
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
Default >>> Default >>>
X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Bit 7 Reserved Bit 7 SCE (SCSI Control Enable)
Bit 6 HTHBA (Handshake-to-Handshake Timer Bus Bit 6 ROF (Reset SCSI Offset)
Activity Enable) Bit5 DIF
Bit 5 GENSF (General Purpose Timer Scale Factor) Bit 4 SLB (SCSI Loopback Mode)
Bit 4 HTHSF (Handshake to Handshake Timer Scale Bit 3 SZM (SCSI High-Ilmpedance Mode)
Factor) Bit 2 AWS (Always Wide SCSI)
Bits 3-0 GEN3-0 (General Purpose Timer Period) Bit1 EXT (Extend SREQ/SACK
) Filtering)
Register 4Ah Bit 0 LOW (SCSI Low level Mode)

Response ID Zero (RESPIDO0)

Read/Write
ID ID ID ID ID ID ID ID
7 6 5 4 3 2 1 0
Default >>>
X X X X X X X X

Register 4Bh
Response ID One (RESPID1)

Read/Write
ID ID ID ID ID ID ID ID
15 14 13 12 11 10 9 8
Default >>>
X X X X X X X X

Register 4Ch
SCSI Test Zero (STESTO)

Read Only
SSAID3 | SSAID2 | SSAID1 | SSAIDO | SLT ART S0z SOM
7 6 5 4 3 2 1 0
Default >>>
0 0 0 0 0 X 1 1
Bits 7-4 SSAID3-0 (SCSI Selected As ID)
Bit 3 SLT (Selection Response Logic Test)
Bit 2 ART (Arbitration Priority Encoder Test)
Bit 1 SOZ (SCSI Synchronous Offset Zero)
Bit 0 SOM (SCsSI Synchronous Offset Maximum)

Register 4Dh
SCSI Test One (STEST1)

Read/Write
SCLK 1SO RES RES DBLEN DBLSEL RES | RES
7 6 5 4 3 2 1 0
Default >>>
0 0 X X 0 0 X X
Bit7 SCLK
Bit 6 I1ISO_MODE (SCSI Isolation Mode)
Bit5 Reserved
Bit4 Reserved
Bit 3 DBLEN (SCLK Doubler Enable)
Bit 2 DBLSEL (SCLK Doubler Select)
Bits 1-0 Reserved

Symbios Logic PCI-SCSI Programming Guide

Register 4Fh
SCSI Test Three (STEST3)

Read/Write
TE STR HSC DSI CHECKHT TT™ CSF STW
i I Ml il I O O
etault >>>
0 0 0 0 X 0 0 0
Bit 7 TE (TolerANT Enable)
Bit 6 STR (SCSI FIFO Test Read)
Bit5 HSC (Halt SCSI Clock)
Bit 4 DSI (Disable Single Initiator Response)
Bit 3 CHECKHI (Check High Parity)
Bit 2 TTM (Timer Test Mode)
Bit 1 CSF (Clear SCSI FIFO)
Bit 0 STW (SCSI FIFO Test Write)

Register 50h-51h
SCSI Input Data Latch (SIDL)
Read Only

Registers 54h-55h
SCSI Output Data Latch (SODL)
Read/Write

Registers 58h-59h
SCSI Bus Data Lines (SBDL)
Read Only

Registers 5Ch-5Fh
Scratch Register B (SCRATCHB)
Read/Write

Registers 60h-7Fh

Scratch Registers C-J
(SCRATCHC-SCRATCHJ))
Read/Write

B-35

Register Summaries
SYM53C885 SCSI Register Summary

SYM53C885 SCSI
Register Summary

Register 00h
SCSI Control Zero (SCNTLO)

Register 03h
SCSI Control Three (SCNTL3)

Read/Write
ARB1 ARBO START | WATN EPC RES AAP TRG
7 6 5 4 3 2 1 0
Default >>>
1 1 0 0 0 X 0 0
Bit 7 ARBL1 (Arbitration Mode bit 1)
Bit 6 ARBO (Arbitration Mode bit 0)
Bit 5 START (Start Sequence)
Bit 4 WATN (Select with SATN/ on a Start Sequence)
Bit 3 EPC (Enable Parity Checking)
Bit 2 Reserved
Bit 1 AAP (Assert SATN/ on Parity Error)
Bit 0 TRG (Target Mode)

Register 01h
SCSI Control One (SCNTL1)

Read/Write
EXC ADB DHP CON RST AESP IARB SST
7 6 5 4 3 2 1 0
Default >>>
0 0 0 0 0 0 0 0
Bit 7 EXC (Extra Clock Cycle of Data Setup)
Bit 6 ADB (Assert SCSI Data Bus)
Bit 5 DHP (Disable Halt on Parity Error or ATN) (Tar-
get Only)
Bit 4 CON (Connected)
Bit 3 RST (Assert SCSI RST/ Signal)
Bit 2 AESP (Assert Even SCSI Parity (force bad par-
ity))
Bit 1 IARB (Immediate Arbitration)
Bit 0 SST (Start SCSI Transfer)

Register 02h
SCSI Control Two (SCNTL2)

Read/Write
USE SCF2 SCF1 SCFO EWS CCF2 CCF1 CCFO
7 6 5 4 3 2 1 0
Default >>>
0 0 0 0 0 0 0 0
Bit 7 USE (Ultra SCSI Enable)
Bits 6-4 SCF2-0 (Synchronous Clock
Conversion Factor)
Bit 3 EWS (Enable Wide SCSI)
Bits 2-0 CCF2-0 (Clock Conversion Factor)
Register 04h
SCSI Chip ID (SCID)
Read/Write
RES RRE SRE RES ENC3 ENC2 ENC1 ENCO
7 6 5 4 3 2 1 0
Default >>>
X 0 0 X 0 0 0 0
Bit 7 Reserved
Bit 6 RRE (Enable Response to
Reselection)
Bit5 SRE (Enable Response to Selection)
Bit 4 Reserved
Bits 3-0 Encoded Chip SCSI ID
bits 3-0
Register 05h
SCSI Transfer (SXFER)
Read/Write
P2 TP1 TPO MO4 MO3 MO2 MO1 MO0
7 6 5 4 3 2 1 0
Default >>>
0 0 0 X 0 0 0 0
Bits 7-5 TP2-0 (SCSI Synchronous Transfer Period)

Bits 4-0 MO4-MOO0 (Max SCSI Synchronous Offset)

Register 06h
SCSI Destination ID (SDID)

Read/Write
SDU CHM | SLPMD Ség;' WSS | VUEO | VUELl | WSR
7 6 5 4 3 2 1 0
Default >>>
0 0 0 0 0 0 X 0
Bit7 SDU (SCsSI Disconnect Unexpected)
Bit 6 CHM (Chained Mode)
Bit5 SLPMD (SLPAR Mode Bit)
Bit 4 SLPHBEN (SLPAR High Byte Enable)
Bit 3 WSS (Wide SCSI Send)
Bit 2 VUEO (Vendor Unique Enhancement bit 0)
Bit 1l VUEL1 (Vendor Unique Enhancement bit 1)
Bit 0 WSR (Wide SCSI Receive)
B-36

Read/Write
RES RES RES RES ENC3 ENC2 ENC1 ENCO
7 6 5 4 3 2 1 0
Default >>>
X X X X 0 0 0 0
Bits 7-4 Reserved
Bits 3-0 Encoded Destination SCSI ID
Register 07h
General Purpose (GPREG)
Read/Write
RES RES RES GPIO4 RES GPIO2 | GPIO1 | GPIOO
7 6 5 4 3 2 1 0
Default >>>
X X X 0 X X X X
Bits 7-3 Reserved
Bits 2-0 GP104-GPI0O0 (General Purpose)

Symbios Logic PCI-SCSI Programming Guide

Register 08h
SCSI First Byte Received (SFBR)

Register Summaries
SYM53C885 SCSI Register Summary

Register 0Ch
DMA Status (DSTAT)

Read/Write Read Only
1B7 1B6 1B5 1B4 1B3 1B2 1B1 1B0 DFE MDPE BF ABRT SsI SIR RES 1ID
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
Default >>> Default >>>
0 0 0 0 0 0 0 0 1 0 0 0 0 0 X 0
Register 09h Bit7 DFE (DMA FIFO Empty)
SCSI Output Control Latch (SOCL) Bit 6 MDPE (Master Data Parity Error)
Read/Write Bit5 BF (Bus Fault)
Bit 4 ABRT (Aborted)
REQ ACK BSY SEL ATN MSG C/D 1/0 Bit 3 SSI (Single Step Interrupt)
7 6 5 4 3 2 1 0 Bit 2 SIR (SCRIPTS Interrupt
Default >>> Instruction Received)
0 0 0 0 0 0 0 0 Bit1 Reserved
i . Bit 0 11D (lllegal Instruction Detected)
Bit 7 REQ(Assert SCSI REQ/ Signal)
Bit 6 ACK(Assert SCSI ACK!/ Signal) Register oDh
Bit5 BSY(Assert SCSI BSY/ Signal) SCSI Status Zero (SSTATO0)
Bit4 SEL (Assert SCSI SEL/ Signal) Read Only
Bit 3 ATN(Assert SCSI ATN/ Signal)
Bit 2 MSG(Assert SCSI MSG/ Signal) ILF ORF OLF AIP LOA WOA RST/ SDPO/
Bit 1l C/D(Assert SCSI C_D/ Signal) 7 6 5 4 3 2 1 0
Bit 0 I/O(Assert SCSI 1_O/ Signal) Default >>>
Register OAh ‘ ° ° ° ° ° ° °
SCSI Selector ID (SSlD) Bit7 ILF (SIDL Least Significant Byte Full)
Read Only Bit 6 ORF (SODR Least Significant Byte Full)
Bit5 OLF (SODL Least Significant Byte Full)
VAL RES RES RES ENID3 | ENID2 | ENID1 | ENIDO Bit 4 AIP (Arbitration in Progress)
7 6 5 4 3 2 1 0 Bit 3 LOA (Lost Arbitration)
Default >>> Bit 2 WOA (Won Arbitration)
0 X X X 0 0 0 0 Bit 1 RST/ (SCSI RST/ Signal)
. . Bit0 SDPO0/ (SCSI SDP0/ Parity Signal)
Bit 7 VAL (SCSI Valid)
Bits 6-4 Reserved Register OEh
Bits 3-0 Encoded Destination SCSI ID SCSI Status One (SSTAT]_)
Register OBh Read Only
SCSI Bus Control Lines (SBCL) FF3 FF2 FF1 FFO | SDPOL | MSG cib 110
Read Only 7 6 5 4 3 2 1 0
REQ ACK BSY SEL ATN MSG ciD 170 Default >>>
7 6 5 4 3 2 1 0 0 0 0 0 X X X X
Default >>> Bits 7-4 FF3-FF0 (FIFO Flags)
X X X X X X X X Bit 3 SDPOL (Latched SCSI Parity)
. Bit 2 MSG (SCSI MSG/ Signal)
Bit7 REQ (SREQ/ Status) Bit 1 C/D (SCSI C_DJ Signal)
Bit 6 ACK (SACK/ Status) Bit 0 1/0 (SCSI 1_O/ Signal)
Bit5 BSY (SBSY/ Status)
Bit4 SEL (SSEL/ Status) Register OFh
Bit 3 ATN (SATN/ Status) SCSI Status Two (SSTAT?2)
Bit 2 MSG (SMSG/ Status) Read Only
Bit 1 C/D (SC_D/ Status)
Bit0 1/0 (S1_O/ Status) ILF1 ORF1 OLF1 FF4 SPL1 RES LDSC SDP1
7 6 5 4 3 2 1 0
Default >>>
0 0 0 0 X X 1 X
Bit 7 ILF1 (SIDL Most Significant Byte Full)
Bit 6 ORF1 (SODR Most Significant Byte Full)
Bit5 OLF1 (SODL Most Significant Byte Full)
Bit 4 FF4 (FIFO Flags bit 4)
Bit 3 SPL1(Latched SCSI parity for SD15-8)
Bit 2 Reserved
Bit 1 LDSC (Last Disconnect)
Bit 0 SDP1 (SCSI SDP1 Signal)
Symbios Logic PCI-SCSI Programming Guide B-37

Register Summaries
SYM53C885 SCSI Register Summary

Registers 10h-13h
Data Structure Address (DSA)
Read/Write

Register 14h
Interrupt Status (ISTAT)

Read/Write
ABRT | SRST SIGP SEM CON INTF SIP DIP
7 6 5 4 3 2 1 0
Default >>>
0 0 0 0 0 0 0 0
Bit 7 ABRT (Abort Operation)
Bit 6 SRST (Software Reset)
Bit5 SIGP (Signal Process)
Bit 4 SEM (Semaphore)
Bit 3 CON (Connected)
Bit 2 INTF (Interrupt on the Fly)
Bit 1 SIP (SCSI Interrupt Pending)
Bit 0 DIP (DMA Interrupt Pending)
Register 18h
Chip Test Zero (CTESTO)
Read/Write
RES RES RES C™M SM AP2 AP1 APO
7 6 5 4 3 2 1 0
Default >>>
X X X 0 0 0 0 0
Bits 7-5 Reserved
Bit 4 CM (Coma Mode)
Bit 3 SM (Snooze Mode)
Bits 2-0 AP2-0 (Arbitration Priority 2-0)
Register 19h
Chip Test One (CTEST1)
Read Only
FMT3 [FMT2 | FMTL [FMTO FFL3 FFL2 FFLL FFLO
7 6 5 4 3 2 1 0
Default >>>
1 1 1 1 0 0 0 0
Bits 7-4 FMT3-0 (Byte Empty in DMA FIFO)
Bits 3-0 FFL3-0 (Byte Full in DMA FIFO)
Register 1Ah
Chip Test Two (CTEST2)
Read Only
DDIR SIGP clo cM SRTCH | TEOP | DREQ | DACK
7 6 5 4 3 2 1 0
Default >>>
0 0 X X 0 0 0 1
Bit 7 DDIR (Data Transfer Direction)
Bit 6 SIGP (Signal Process)
Bit5 CI1O (Configured as 1/0)
Bit 4 CM (Configured as Memory)
Bit 3 SRTCH (SCRATCHA/B Operation)
Bit 2 TEOP (SCSI True End of Process)
Bit 1 DREQ (Data Request Status)
Bit 0 DACK (Data Acknowledge Status)
B-38

Register 1Bh
Chip Test Three (CTEST3)
Read/Write
V3 V2 V1 VO FLF CLF FM WRIE
7 6 5 4 3 2 1 0
Default >>>
X X X X 0 0 0 0
Bits 7-4 V3-V0 (Chip revision level)
Bit 3 FLF (Flush DMA FIFO)
Bit 2 CLF (Clear DMA FIFO)
Bit1 FM (Fetch Pin Mode)
Bit 0 WRIE (Write and Invalidate Enable)
Registers 1Ch-1Fh
Temporary (TEMP)
Read/Write
Register 20h
DMA FIFO (DFIFO)
Read/Write
BO7 BO6 BO5 BO4 BO3 BO2 BO1 BOO
7 6 5 4 3 2 1 0
Default >>>
0 0 0 0 0 0 0 0
Bits 7-0 BO7-BO0 (Byte offset counter)
Register 21h
Chip Test Four (CTEST4)
Read/Write
BDIS | ZMOD ZsD SRTM | MPEE | FBL2 FBLL FBLO
7 6 5 4 3 2 1 0
Default >>>
0 0 0 0 0 0 0 0
Bit 7 BDIS (Burst Disable)
Bit 6 ZMOD (High Impedance Mode)
Bit5 ZSD (SCSI Data High Impedance)
Bit 4 SRTM (Shadow Register Test Mode)
Bit 3 MPEE (Master Parity Error Enable)
Bits 2-0 FBL2-FBLO (FIFO Byte Control)
Register 22h
Chip Test Five (CTESTD5)
Read/Write
ADCK | BBCK DFS MASR | DDIR BL2 BO9 BO8
7 6 5 4 3 2 1 0
Default >>>
0 0 0 0 0 0 0 0
Bit 7 ADCK (Clock Address Incrementor)
Bit 6 BBCK (Clock Byte Counter)
Bit5 DFS (DMA FIFO Size)
Bit 4 MASR (Master Control for Set or Reset Pulses)
Bit 3 DDIR (DMA Direction)
Bit 2 BL2 (Burst Length bit 2)
Bits 1-0 BO9-BO8 (DMA FIFO Byte Offset Counter

bits 9-8)

Symbios Logic PCI-SCSI Programming Guide

Register 23h
Chip Test Six (CTEST®6)

Register Summaries
SYM53C885 SCSI Register Summary

Register 39h
DMA Interrupt Enable (DIEN)

Read/Write Read/Write
DF7 DF6 DF5 DF4 DF3 DF2 DF1 DFO RES MDPE BF ABRT SsI SIR RES 1ID
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
Default >>> Default >>>
0 0 0 0 0 0 0 0 X 0 0 0 0 0 X 0
Bits 7-0 DF7-DF0 (DMA FIFO) Bit 7 Reserved
. Bit 6 MDPE (Master Data Parity Error)
Registers 24h-26h Bit5 BF (Bus Fault)
DMA Byte Counter (DBC) Bit 4 ABRT (Aborted)
Read/Write Bit 3 SSI (Single -Step Interrupt)
Register 27h Bit 2 SIR (SCI_?IPTS In_terrupt
DMA Command (DCI\/I D) _ Instruction Received
Read/Write B!t 1 Reserved)
Bit 0 11D (lllegal Instruction Detected)
Registers 28h-2Bh .
DMA Next Address (DNAD) Register 3Ah
Read/Write Scratch Byte Register (SBR)
. Read/Write
Registers 2Ch-2Fh]
DMA SCRIPTS Pointer (DSP) Register 3Bh
Read/Write DMA Control (DCNTL)
. Read/Write
Registers 30h-33h
DMA SCRIPTS Pointer Save (DSPS) CLSE PFF PFEN SSM INTM STD INTD coM
Read/Write 7 6 5 4 3 2 1 0
Registers 34h Default>>>
Scratch Register A (SCRATCHA) 0 0 0 0 0 0 0 0
Read/Write Bit 7 CLSE (Cache Line Size Enable)
. Bit 6 PFF (Pre-fetch Flush)
IT:()ER/IIS;\GRA:Sfdhe (DMODE) :It 5 PFEN (!Dre—fetch Enable)
Read/Write !t 4 SSM (Single-step Mode)
Bit 3 INTM (INTA Mode)
BLL BLO | SIOM | DIOM ER ERMP | BOF MAN Bit 2 STD (Start DMA Operation)
7 6 5 4 3 2 1 0 Bit 1l INTD (lNTA Disable)
Default 555 Bit 0 COM (53C700 Compatibility)
0 0 0 0 0 0 0 0 Register 3Ch-3Fh
Bit 7-6 BL1-BLO (Burst Length) Adder Sum Output (ADDER)
Bit5 SIOM (Source 1/0-Memory Enable) Read Only
Bit 4 DIOM (Destination 1/O-Memory Enable) Register 40h
Bit 3 ERL (Enable Read Line) SCSI Interrupt Enable Zero (SIENO)
Bit 2 ERMP (Enable Read Multiple) Read/Write
Bit 1 BOF (Burst Op Code Fetch Enable)
Bit0 MAN (Manual Start Mode) M/A CMP SEL RSL SGE uDcC RST PAR
7 6 5 4 3 2 1 0
Default >>>
0 0 0 0 0 0 0 0
Bit 7 M/A (SCSI Phase Mismatch -
Initiator Mode; SCSI ATN
Condition - Target Mode)
Bit 6 CMP (Function Complete)
Bit5 SEL (Selected)
Bit 4 RSL (Reselected)
Bit 3 SGE (SCsSI Gross Error)
Bit 2 UDC (Unexpected Disconnect)
Bit 1 RST (SCSI Reset Condition)
Bit 0 PAR (SCSI Parity Error)
Symbios Logic PCI-SCSI Programming Guide B-39

Register Summaries
SYM53C885 SCSI Register Summary

Register 41h
SCSI Interrupt Enable One (SIEN1)

Register 46h
Memory Access Control (MACNTL)

Read/Write Read/Write
RES RES RES RES wi STO GEN HTH TYP3 TYP2 TYP1 TYPO DWR DRD | PSCPT | SCPTS
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
Default >>> Default >>>
X X X X 0 0 0 0 1 0 1 0 0 0 0 0
Bits 7-4 Reserved Bits 7-4 TYP3-0 (Chip Type)
Bit 3 WI (Wakeup) Bit 3 DWR (DataWR)
Bit 2 STO (Selection or Reselection Time-out) Bit 2 DRD (DataRD)
Bit 1 GEN (General Purpose Timer Expired) Bit1 PSCPT (Pointer SCRIPTS)
Bit 0 HTH (Handshake-to-Handshake Timer Expired) Bit 0 SCPTS (SCRIPTS)

Register 42h
SCSI Interrupt Status Zero (SISTO)

Register 47h
General Purpose Pin Control (GPCNTL)

Read Only Read/Write
M/A CMP SEL RSL SGE ubc RST PAR ME FE RES GPI104 RES GPIO2 | GPIO1 GPIO0
7 6 5 4 3 2 1 0 7 6 5) 4 8 2 1 0
Default >>> Default >>>

0 0 0 0 0 0 0 0 0 0 X 0 1 1 1 1

Bit 7 M/A (Initiator Mode: Phase Mismatch; Target Bit 7 Master Enable
Mode: SATN/ Active) Bit 6 Fetch Enable

Bit 6 CMP (Function Complete) Bits 5
Bit 5 SEL (Selected) 3Reserved
Bit 4 RSL (Reselected) Bits 4
Bit 3 SGE (SCSI Gross Error) 2GP104_EN/GPIO2_EN (GPIO Enable)
Bit 2 UDC (Unexpected Disconnect) Bits 1-0 GPIO1_EN- GPIOO0_EN (GPIO Enable)
Bit 1 RST (SCSI RST/ Received) .
Bit 0 PAR (Parity Error) Register 48h

Register 43h
SCSI Interrupt Status One (SIST1)

SCSI Timer Zero (STIMEO)

Read Only
RES RES RES RES wi STO GEN HTH
7 6 5 4 3 2 1 0
Default >>>
X X X X 0 0 0 0
Bits 7-4 Reserved
Bit 3 W1 (Wakeup)
Bit 2 STO (Selection or Reselection Time-out)
Bit 1 GEN (General Purpose Timer Expired)
Bit 0 HTH (Handshake-to-Handshake Timer Expired)

Register 45h
SCSI Wide Residue (SWIDE)
Read/Write

B-40

Read/Write
HTH7 | HTH6 | HTH5 | HRH4 SEL SEL SEL SEL
7 6 5 4 3 2 1 0
Default >>>
0 0 0 0 0 0 0 0
Bits 7-4 HTH (Handshake-to-Handshake Timer Period)

Bits 3-0 SEL (Selection Time-Out)

Register 49h
SCSI Timer One (STIMEL)

Read/Write
RES | HTHBA | GENSF | HTHSF | GEN3 | GEN2 | GEN1 [GENO
7 6 5 4 3 2 1 0
Default >>>
X 0 0 0 0 0 0 0
Bit 7 Reserved
Bit 6 HTHBA (Handshake-to-Handshake Timer Bus
Activity Enable)
Bit5 GENSF (General Purpose Timer Scale Factor)
Bit 4 HTHSF (Handshake to Handshake Timer Scale
Factor)
Bits 3-0 GENB3-0 (General Purpose Timer Period)

Symbios Logic PCI-SCSI Programming Guide

Register 4Ah
Response ID Zero (RESPIDO0)

Register Summaries
SYM53C885 SCSI Register Summary

Register 4Eh
SCSI Test Two (STEST?2)

Read/Write Read/Write
ID ID ID ID D ID ID ID SCE ROF RES SLB SZM AWS EXT Low
7 6 5 4 3 2 1 0 7 6 5) 4 3 2 1 0
Default >>> Default >>>
X X X X X X X X 0 0 0 0 0 0 0 0
Register 4B Bit 7 SCE (SCSI Control Enable)
Response ID One(RESPID1) Bit 6 ROF (Reset SCSI Offset)
Read/Write Bit 5 Reserved
Bit 4 SLB (SCSI Loopback Mode)
ID ID ID ID 1D ID ID ID Bit 3 SZM (SCSI High-lmpedance Mode)
15 14 13 12 1 10 9 8 Bit 2 AWS (Always Wide SCSI)
Default >>> Bit 1 EXT (Extend SREQ/SACK
X X X X X X X X Filtering)
. Bit 0 LOW (SCSI Low level Mode)
Register 4Ch
SCSI Test Zero (STESTO) Register 4Fh
Read Only SCSI Test Three (STEST3)
Read/Write
SSAID3 | SSAID2 | SSAID1 | SSAIDO | SLT ART S0z SOM
7 6 5 4 3 2 1 0 TE STR HSC DSl RES ™ CSF STW
Default >>> 7 6 5 4 8] 2 1 0
0 0 0 0 0 X 1 1 Default >>>
Bits 7-4 SSAID3-0 (SCSI Selected As ID) 0 0 0 0 X 0 0 0
Bit 3 SLT (Selection Response Logic Test) Bit 7 TE (TolerANT Enable)
Bit 2 ART (Arbitration Priority Encoder Test) Bit 6 STR (SCSI FIFO Test Read)
Bit 1 SOZ (SCSI Synchronous Offset Zero) Bit5 HSC (Halt SCSI Clock)
Bit 0 SOM (SCsSI Synchronous Offset Maximum) Bit 4 DSI (Disable Single Initiator Response)
] Bit 3 Reserved
Register 4Dh Bit 2 TTM (Timer Test Mode)
SCSI Test One (STEST1) Bit 1 CSF (Clear SCSI FIFO)
Read/Write Bit 0 STW (SCSI FIFO Test Write)
RES SISO | RES RES DBLEN DBLSEL RES | RES Register 50h-51h
7 6 5 4 3 2 i 0 SCSI Input Data Latch (SIDL)
Default >>> Read On|y
° ° X X ° ° X X Registers 54h-55h
Bit7 Reserved SCSI Output Data Latch (SODL)
Bit 6 SISO (SCSI Isolation Mode) Read/Write
Bits 5-4 Reserved .
Bit 3 DBLEN (SCLK Doubler Enable) Registers 58h-59h

Bit 2
Bits 1-0

DBLSEL (SCLK Doubler Select)
Reserved

Symbios Logic PCI-SCSI Programming Guide

SCSI Bus Data Lines (SBDL)
Read Only

Registers 5Ch-5Fh
Scratch Register B
(SCRATCHB)
Read/Write

Registers 60h-7Fh

Scratch Registers C-J
(SCRATCHC-SCRATCHJ))
Read/Write

B-41

Register Summaries
SYM53C895 Operating Registers

SYM53C895 Operating
Registers

Register 00 (80)
SCSI Control Zero (SCNTLO)

Register 03 (83)
SCSI Control Three (SCNTL3)

Read/Write
ARB1 ARBO START | WATN EPC RES AAP TRG

7 6 5 4 3 2 1 0
Default>>>
1 1 0 0 0 X 0 0

Bit 7 ARBL1 (Arbitration Mode bit 1)

Bit 6 ARBO (Arbitration Mode bit 0)

Bit 5 START (Start Sequence)

Bit 4 WATN (Select with SATN/ on a Start Sequence)

Bit 3 EPC (Enable Parity Checking)

Bit 2 Reserved

Bit 1 AAP (Assert SATN/ on Parity Error)

Bit 0 TRG (Target Mode)

Register 01 (81)
SCSI Control One (SCNTL1)

Read/Write
EXC ADB DHP CON RST AESP IARB SST
7 6 5 4 3 2 1 0
Default>>>
0 0 0 0 0 0 0 0
Bit 7 EXC (Extra Clock Cycle of Data Setup)
Bit 6 ADB (Assert SCSI Data Bus)
Bit 5 DHP (Disable Halt on Parity Error or ATN) (
Target Only)
Bit 4 CON (Connected)
Bit 3 RST (Assert SCSI RST/ Signal)
Bit 2 AESP (Assert Even SCSI Parity (force bad
parity))
Bit 1 IARB (Immediate Arbitration)
Bit 0 SST (Start SCSI Transfer)

Register 02 (82)
SCSI Control Two (SCNTL2)

Read/Write
SDbU CHM | SLPMD | SLPHBEN | WSS | VUEO | VUEL | WSR
7 6 5 4 3 2 1 0
Default>>>
0 0 0 0 0 0 0 0
Bit 7 SDU (SCsI Disconnect Unexpected)
Bit 6 CHM (Chained Mode)
Bit 5 SLPMD (SLPAR Mode Bit)
Bit4 SLPHBEN (SLPAR High Byte Enable)
Bit 3 WSS (Wide SCSI Send)
Bit 2 VUEO (Vendor Unique Enhancements bit 0)
Bit 1 VUEL1 (Vendor Unique Enhancements bit 1)
Bit 0 WSR (Wide SCSI Receive)
B-42

Read/Write
ULTRA SCF2 SCF1 SCFO EWS CCF2 CCF1 CCF0
7 6 5 4 3 2 1 0
Default>>>
0 0 0 0 0 0 0 0
Bit 7 ULTRA (Ultra Enable)
Bits 6-4 SCF2-0 (Synchronous Clock
Conversion Factor))
Bit 3 EWS (Enable Wide SCSI)
Bits 2-0 CCF2-0 (Clock Conversion Factor)
Register 04 (84)
SCSI Chip ID (SCID)
Read/Write
RES RRE SRE RES ENC3 | ENC2 ENC1 | ENCO
7 6 5 4 3 2 1 0
Default>>>
X 0 0 X 0 0 0 0
Bit 7 Reserved
Bit 6 RRE (Enable Response to
Reselection)
Bit5 SRE (Enable Response to Selection)
Bit 4 Reserved
Bits 3-0 Encoded Chip SCSI ID, bits 3-0
Register 05 (85)
SCSI Transfer (SXFER)
Read/Write
TP2 TP1 TPO MO4 MO3 MO02 MO1 MO0
7 6 5 4 3 2 1 0
Default>>>
0 0 0 0 0 0 0 0
Bits 7-5 TP2-0 (SCSI Synchronous Transfer Period)
Bits 4-0 MO4-MOO0 (Max SCSI Synchronous Offset)
Register 06 (86)
SCSI Destination ID (SDID)
Read/Write
RES RES RES RES ENC3 | ENC2 ENC1 | ENCO
7 6 5 4 3 2 1 0
Default>>>
X X X X 0 0 0 0
Bits 7-4 Reserved
Bits 3-0 Encoded Destination SCSI ID
Rexgister 07 (87)
General Purpose (GPREG)
Read/Write
RES RES RES GPIO4 | GPIO3 | GPIO2 | GPIOL | GPIOO
7 6 5 4 3 2 1 0
Default>>>
X X X 0 X X X X
Bits 7-5 Reserved
Bits 4-0 GP104-GPI100 (General Purpose)

Symbios Logic PCI-SCSI Programming Guide

Register 08 (88)
SCSI First Byte Received (SFBR)

Register Summaries
SYM53C895 Operating Registers

Register 0C (8C)
DMA Status (DSTAT)

Read/Write Read Only
1B7 1B6 1B5 1B4 1B3 1B2 1B1 1B0 DFE MDPE BF ABRT SsI SIR RES 1D
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
Default>>> Default>>>
0 0 0 0 0 0 0 0 1 0 0 0 0 0 X 0
Register 09 (89) Bit7 DFE (DMA FIFO Empty)
SCSI Output Control Latch (SOCL) Bit 6 MDPE (Master Data Parity Error)
Read /Write Bit5 BF (Bus Fault)
Bit 4 ABRT (Aborted)
REQ ACK BSY SEL ATN MSG C/D 1/0 Bit 3 SSI (Single Step Interrupt)
7 6 5 4 3 2 1 0 Bit 2 SIR (SCRIPTS Interrupt
Default>>> Instruction Received)
0 0 0 0 0 0 0 0 Bit1 Reserved
i . Bit 0 11D (lllegal Instruction Detected)
Bit 7 REQ(Assert SCSI REQ/ Signal)
Bit 6 ACK(Assert SCSI ACK!/ Signal) Register oD (8D)
Bit5 BSY (Assert SCSI BSY/ Signal) SCSI Status Zero (SSTATO)
Bit4 SEL (Assert SCSI SEL/ Signal) Read Only
Bit 3 ATN(Assert SCSI ATN/ Signal)
Bit 2 MSG(Assert SCSI MSG/ Signal) ILF ORF OLF AIP LOA WOA RST SDPO/
Bit1l C/D(Assert SCSI C_D/ Signal) 7 6 5 4 3 2 1 0
Bit 0 I/O(Assert SCSI 1_O/ Signal) Default>>>
Register OA (8A) ‘ ° ° ° ° ° ° °
SCSI Selector ID (SSlD) Bit7 ILF (SIDL Least Significant Byte Full)
Read Only Bit 6 ORF (SODR Least Significant Byte Full)
Bit5 OLF (SODL Least Significant Byte Full)
VAL RES RES RES ENID3 | ENID2 | ENID1 | ENIDO Bit 4 AIP (Arbitration in Progress)
7 6 5 4 3 2 1 0 Bit 3 LOA (Lost Arbitration)
Default>>> Bit 2 WOA (Won Arbitration)
0 X X X 0 0 0 0 Bit 1 RST/ (SCSI RST/ Signal)
. . Bit0 SDPO0/ (SCSI SDP0/ Parity Signal)
Bit 7 VAL (SCSI Valid)
Bits 6-4 Reserved Register OE (8E)
Bits 3-0 Encoded Destination SCSI ID SCSI Status One (SSTAT]_)
Register 0B (8B) Read Only
SCSI Bus Control Lines (SBCL) FF3 FF2 FF1 FFO | SDPOL | MSG op) 110
Read Only 7 6 5 4 3 2 1 0
REQ ACK BSY SEL ATN MSG D 10 Default>>>
7 6 5 4 3 2 1 0 0 0 0 0 X X X X
Default>>> Bits 7-4 FF3-FF0 (FIFO Flags)
X X X X X X X X Bit 3 SDPOL (Latched SCSI Parity)
. Bit 2 MSG (SCSI MSG/ Signal)
Bit7 REQ (SREQ/ Status) Bit 1 C/D (SCSI C_DJ Signal)
Bit6 ACK (SACK/ Status) Bit 0 1/0 (SCSI 1O/ Signal)
Bit5 BSY (SBSY/ Status)
Bit 4 SEL (SSEL/ Status)
Bit 3 ATN (SATN/ Status)
Bit 2 MSG (SMSG/ Status)
Bit 1 C/D (SC_D/ Status)
Bit 0 1/0 (S1_O/ Status)
Symbios Logic PCI-SCSI Programming Guide B-43

Register Summaries
SYM53C895 Operating Registers

Register OF (8F)
SCSI Status Two (SSTAT?2)

Register 1A (9A)
Chip Test Two (CTEST?2)

(Read Only) Read/Write
ILF1 ORF1 OLF1 FF4 SPL1 DM LDSC | Sbri DDIR SIGP clo CM SRTCH | TEOP | DREQ | DACK
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
Default>>> Default>>>
0 0 0 0 X X 1 X 0 0 X X 0 0 0 1
Bit 7 ILF1 (SIDL Most Significant Byte Full) Bit 7 DDIR (Data Transfer Direction)
Bit 6 ORF1 (SODR Most Significant Byte Full) Bit 6 SIGP (Signal Process)
Bit5 OLF1 (SODL Most Significant Byte Full) Bit5 CIlO (Configured as 1/0)
Bit 4 FF4 (FIFO Flags bit 4) Bit 4 CM (Configured as Memory)
Bit 3 SPL1(Latched SCSI parity for SD15-8) Bit 3 SRTCH (SCRATCHA/B Operation)
Bit 2 DM (DIFFSENS Mismatch) Bit 2 TEOP (SCSI True End of Process)
Bit 1 LDSC (Last Disconnect) Bit1 DREQ (Data Request Status)
Bit 0 SDP1 (SCSI SDP1 Signal) Bit 0 DACK (Data Acknowledge Status)
Registers 10-13 (90-93) Register 1B (9B)
Data Structure Address (DSA) Chip Test Three (CTEST3)
Read/Write Read/Write
Register 14 (94) V3 V2 V1 V0 FLF CLF M WRIE
Interrupt Status (ISTAT) 7 6 5 4 3 2 1 0
(Read/Write) Default>>>
ABRT | SRST | SIGP | SEM | CON | INTF SIP DIP X X X X 0 0 0 0
7 6 5 4 3 2 1 0 Bits 7-4 V3-V0 (Chip revision level)
Default>>> Bit 3 FLF (Flush DMA FIFO)
0 0 0 0 0 0 0 0 Bit 2 CLF (Clear DMA FIFO)
. . Bit1 FM (Fetch Pin Mode)
B!t 7 ABRT (Abort Operation) Bit 0 WRIE (Write and Invalidate Enable)
Bit 6 SRST (Software Reset)
Bit5 SIGP (Signal Process) Registers 1C-1F (9C-9F)
Bit 4 SEM (Semaphore) Temporary (TEMP)
Bit 3 CON (Connected) Read/Write
Bit 2 INTF (Interrupt on the Fly) .
Bit 1 SIP (SCSI Interrupt Pending) Register 20 (A0)
Bit 0 DIP (DMA Interrupt Pending) DMA FIFO (DFIFO)
Read/Write
Register 18 (98)
Chip Test Zero (CTESTO) BO7 BO6 BOS BO4 Bo3 BO2 BO1 BOO
Read/Write ! 6 5 4 8 2 ! 0
Default>>>
Register 19 (99) X 0 0 0 0 0 0 0

Chip Test One (CTEST1)

Read Only
FMT3 [FMT2 | FMTL [FMTO FFL3 FFL2 FFL1 FFLO
7 6 5 4 3 2 1 0
Default>>>
1 1 1 1 0 0 0 0
Bits 7-4 FMT3-0 (Byte Empty in DMA FIFO)
Bits 3-0 FFL3-0 (Byte Full in DMA FIFO)
B-44

Bits 7-0 BO7-BO0 (Byte offset counter)

Register 21 (A1)
Chip Test Four (CTEST4)

Read/Write
BDIS | zZMOD ZSD SRTM | MPEE FBL2 FBL1 FBLO
7 6 5 4 3 2 1 0
Default>>>
0 0 0 0 0 0 0 0
Bit 7 BDIS (Burst Disable)
Bit 6 ZMOD (High Impedance Mode)
Bit5 ZSD (SCsSI Data High Impedance)
Bit4 SRTM (Shadow Register Test Mode)
Bit 3 MPEE (Master Parity Error Enable)
Bits 2-0 FBL2-FBLO (FIFO Byte Control

Symbios Logic PCI-SCSI Programming Guide

Register 22 (A2)
Chip Test Five (CTESTD5)

Register Summaries
SYM53C895 Operating Registers

Register 38 (B8)
DMA Mode (DMODE)

Read/Write Read/Write
ADCK | BBCK DFS MASR | DDIR BL2 BO9 BO8 BLL BLO SIOM | DIOM ER ERMP BOF MAN
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
Default>>> Default>>>
0 0 0 0 0 X X X 0 0 0 0 0 0 0 0
Bit 7 ADCK (Clock Address Incrementor) Bit 7-6 BL1-BLO (Burst Length)
Bit 6 BBCK (Clock Byte Counter) Bit5 SIOM (Source I/O-Memory Enable)
Bit5 DFS (DMA FIFO Size) Bit 4 DIOM (Destination I/O-Memory Enable)
Bit 4 MASR (Master Control for Set or Reset Pulses) Bit 3 ERL (Enable Read Line)
Bit 3 DDIR (DMA Direction) Bit 2 ERMP (Enable Read Multiple)
Bit 2 BL2 (Burst Length bit 2) Bit 1 BOF (Burst Op Code Fetch Enable)
Bits 1-0 BO9-8 Bit 0 MAN (Manual Start Mode)
Register 23 (A3) Register 39 (B9)
Chip Test Six (CTEST®6) DMA Interrupt Enable (DIEN)
Read/Write Read/Write
DF7 DF6 DF5 DF4 DF3 DF2 DF1 DFO RES MDPE BF ABRT SsI SIR RES 1D
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
Default>>> Default>>>
0 0 0 0 0 0 0 0 X 0 0 0 0 0 X 0
Bits 7-0 DF7-DF0 (DMA FIFO) Bit 7 Reserved
. Bit 6 MDPE (Master Data Parity Error)
Registers 24-26 (A4-A6) Bit5 BF (Bus Fault)
DMA Byte Counter (DBC) Bit 4 ABRT (Aborted)
Read/Write Bit 3 SSI (Single -step Interrupt)
Register 27 (A7) Bit 2 SIR (SCRIPTS Interrupt
DMA Command (DCMD) Instruction Received
Read/Write Bitl RES)
Bit 0 11D (lllegal Instruction Detected)
Registers 28-2B (A8-AB) .
DMA Next Address (DNAD) Register 3A (BA)
Read/Write Scratch Byte Register (SBR)
. Read/Write
Registers 2C-2F (AC-AF) .
DMA SCRIPTS Pointer (DSP) Register 3B (BB)
Read/Write DMA Control (DCNTL)
. Read/Write
Registers 30-33 (B0-B3)
DMA SCRIPTS Pointer Save (DSPS) CLSE | PFF | PFEN | SSM | IRQM | STD | IRQD | COM
Read/Write 7 6 5 4 3 2 1 0
Registers 34-37 (B4-B7) efault>>>
Scratch Register A (SCRATCH A) 0 0 0 0 0 0 0 0
Read/Write Bit 7 CLSE (Cache Line Size Enable)
Bit 6 PFF (Pre-fetch Flush)
Bit5 PFEN (Pre-fetch Enable)
Bit 4 SSM (Single-step Mode)
Bit 3 IRQM (IRQ Mode)
Bit 2 STD (Start DMA Operation)
Bit 1 IRQD (IRQ Disable)
Bit 0 COM (53C700 Compatibility)
Register 3C-3F (BC-BF)
Adder Sum Output (ADDER)
Read Only
Symbios Logic PCI-SCSI Programming Guide B-45

Register Summaries
SYM53C895 Operating Registers

Register 40 (CO0)
SCSI Interrupt Enable Zero (SIENO)
Read/Write

Register 43 (C3)
SCSI Interrupt Status One (SIST1)
Read Only

M/A CMP SEL RSL SGE uDcC RST PAR RES RES RES SBMC RES STO GEN HTH
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
Default>>> Default>>>
0 0 0 0 0 0 0 0 X X X 0 X 0 0 0
Bit 7 M/A (SCSI Phase Mismatch - Bits 7-5 Reserved
Initiator Mode; SCSI ATN Bit 4 SBMC (SCSI Bus Mode Change)
Condition - Target Mode) Bit 3 Reserved
Bit 6 CMP (Function Complete) Bit 2 STO (Selection or Reselection Time-out)
Bit5 SEL (Selected) Bit 1 GEN (General Purpose Timer Expired)
Bit 4 RSL (Reselected) Bit 0 HTH (Handshake-to-Handshake Timer Expired)
Bit 3 SGE (SCSI Gross Error) .
Bit 2 UDC (Unexpected Disconnect) Register 44 (C4))
Bit 1 RST (SCSI Reset Condition) SCSI Longitudinal Parity (SLPAR)
Bit 0 PAR (SCSI Parity Error) Read/Write
; Register 45 (C5)
Register 41 (C1 .)
SCgSI Interrl(th)Enable One (SIEN1) SCSI Wide Residue (SWIDE)
Read/Write Read/Write
Register 46 (C6)
RSS RES RES SBLV'C RES S;O GEN H;H Memory Access Control (MACNTL)
Read/Write
Default>>>
X X X 0 X 0 0 0 TYP3 | TYP2 | TYP1 | TYPO DWR DRD | PSCPT | SCPTS
] 7 6 5 4 3 2 1 0
Bits 7-5 Reserved
Bit 4 SBMC (SCSI Bus Mode Change) Default>>>
Bit 3 Reserved ! 1 0 ! 0 0 0 0
Bit 2 STO (Selection or Reselection Time-out) Bits 7-4 TYP3-0 (Chip Type)
Bit 1 GEN (General Purpose Timer Expired) Bit 3 DWR (DataWR)
Bit 0 HTH (Handshake-to-Handshake Timer Expired) Bit 2 DRD (DataRD)
Regiser 42 (C2) L TRy (o seRiPr)
SCSI Interrupt Status Zero (SISTO)
Read Only Register 47 (C7)
M/A CMP SEL RSL SGE uDC RST PAR gen((;/w F_’turpose Pin Control (GPCNTL)
7 6 5 4 3 2 1 0 ea rite
Default>>> ME FE RES GPIO4 | GPIO3 | GPIO2 | GPIOL | GPIOO
0 0 0 0 0 0 0 0 7 6 5 4 3 2 1 0
Bit 7 M/A (Initiator Mode: Phase Mismatch; Target Default>>>
Mode: SATN/ Active) 0 0 X 0 1 1 1 1
Bit 6 CMP (Function Complete) Bit7 Master Enable
Bit5 SEL (Selected) Bit 6 Fetch Enable
Bit 4 RSL (Reselected) Bit5 Reserved
Bit 3 SGE (SCSI Gross Error) Bits 4-2 GP104_EN-GPIO2_EN (GPIO Enable)
Bit 2 UDC (Unexpected Disconnect) Bits1-0 GPIO1_EN- GPIO0_EN (GPIO Enable)
Bit 1 RST (SCSI RST/ Received)
Bit0 PAR (Parity Error) Register 48 (C8)
SCSI Timer Zero (STIMEO)
Read /Write
HTH HTH HTH HRH SEL SEL SEL SEL
7 6 5 4 3 2 1 0
Default>>>
0 0 0 0 0 0 0 0
Bits 7-4 HTH (Handshake-to-Handshake Timer Period)
Bits 3-0 SEL (Selection Time-Out)
B-46 Symbios Logic PCI-SCSI Programming Guide

Register 49 (C9)
SCSI Timer One (STIME1)

Register 4E (CE)

SCSI Test Two (STEST?2)

Register Summaries
SYM53C895 Operating Registers

Read/Write Read/Write
RES | HTHBA | GENSF | HTHSF | GEN3 | GEN2 | GENL | GENO SCE ROF DIF SLB SZM AWS EXT LOW
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
Default>>> Default>>>
X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Bit 7 Reserved Bit 7 SCE (SCSI Control Enable)
Bit 6 HTHBA (Handshake-to-Handshake Timer Bus Bit 6 ROF (Reset SCSI Offset)
Activity Enable) Bit5 DIF (SCSI Differential Mode)
Bit 5 GENSF (General Purpose Timer Scale Factor) Bit 4 SLB (SCSI Loopback Mode)
Bit 4 HTHSF (Handshake to Handshake Timer Scale Bit 3 SZM (SCSI High-Ilmpedance Mode)
Factor) Bit 2 AWS (Always Wide SCSI)
Bits 3-0 GENB3-0 (General Purpose Timer Period) Bit1 EXT (Extend SREQ/SACK Filtering)
. Bit 0 LOW (SCSI Low level Mode)
Register 4A (CA)
Response ID Zero (RESPIDO0) Register 4F (CF)
Read/Write SCSI Test Three (STEST3)
Register 4B (CB) Read/Write
Response ID One(RESPID1) TE STR HSC DS S16 TT™ CSF STW
Read/Write 7 6 5 4 3 2 1 0
.Register 4C (CC) Default>>>
SCSI Test Zero (STESTO) 0 0 0 0 0 0 0 0
Read Only Bit 7 TE (TolerANT Enable)
SSAID3 | SSAID2 | SSAIDI | SSAIDO | SLT | ART | SOz | SoMm Bit6 STR (SCSI FIFO Test Read)
7 6 5 4 3 9 1 0 Bit5 HSC (Halt SCSI Clock)
Sefaul Bit 4 DSI (Disable Single Initiator Response)
efaule>> Bit 3 S16 (16-bit System)
0 0 0 0 0 X 1 1 Bit 2 TTM (Timer Test Mode)
Bits 7-4 SSAID (SCSI Selected As ID) Bit 1 CSF (Clear SCSI FIFO)
Bit 3 SLT (Selection Response Logic Test) Bit0 STW (SCSI FIFO Test Write)
Bit 2 ART (Arbitration Priority Encoder Test) . _ _
Bit 1 SOZ (SCSI Synchronous Offset Zero) gg:gslftle; 5L?t ?)1at(a|?|?at?:%)(8| DL)
Bit 0 SOM (SCsSI Synchronous Offset Maximum) Read Onply
Register 4D (CD) Reai
egister 52 (D2
SCS| Test One (STESTI) SCSI Test 4((ST)EST4)
Read/Write Read Only
SCLK | sIso RES RES QEN QSEL RES RES SHIODE T S =S =S =S =S
7 6 5 4 3 2 1 0 . 6 5 4 3 9 1 0
Default>>> Defauloo>
0 0 X X 0 0 X X X X 0 X X X X X
B?t ! SCLK . Bit 7-6 SMODE (SCSI Mode)
Bit 6 SISO (SCsI Isolation Mode) Bit 5 LOCK (Frequency Lock)
Bits 5-4 Reserved Bits 4-0 Reserved
Bit 3 QEN (SCLK Quadrupler Enable)
Bit 2 QSEL (SCLK Quadrupler Select) Registers 54-55 (D4-D5)
Bits1-0 Reserved SCSI Output Data Latch (SODL)
Read/Write
Registers 58-59 (D8-D9)
SCSI Bus Data Lines (SBDL)
Read Only
Registers 5C-5F (DC-DF)
Scratch Register B (SCRATCHB)
(Read/Write)
Registers 60h-7Fh (EOh-FFh)
Scratch Registers C-J
(SCRATCHC-SCRATCHJ))
Read/Write
Symbios Logic PCI-SCSI Programming Guide B-47

Register Summaries
SYM53C895 Operating Registers

B-48 Symbios Logic PCI-SCSI Programming Guide

Multi-Threaded SCRIPTS Example

Appendix C

Multi-Threaded SCRIPTS Example

kkhkkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkhkkhkhkhkhkkhkkhkkhkhkhkhkkhkhkhkhkhkhkkhkkhkhkkhkkhkkhkkhkkhkkhkkhkkkkkkhkkkkkkkkkkkkkkkkkkkkk*x*%x

53C810 MULTI THREAD EXAMPLE

chkkkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkkhkhkhkhkhkhkhkkhkkhkhkhkhkhkkhkkhkkhkhkkhkkhkkhkkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkkkkkk*%x
’

; ABSOLUTE decl arati ons

ABSOLUTE SCSI _i d =0
ABSOLUTE MATCH_SCSI _I D = 0x81

; Messages

ABSOLUTE CMD_COWPLETE_ = 0x00

ABSOLUTE EXTEND MSG_ = 0x01

ABSOLUTE SAVE_DATAPTR = 0x02

ABSOLUTE DI SCONNECT _ = 0x04
ABSOLUTE MG REJECT_ = 0x07

; Interrupt codes

ABSOLUTE error_not_cnd_phase = 0x01

ABSOLUTE error_not_data_i n_phase = 0x02

ABSOLUTE error_not_data_out _phase = 0x03
ABSOLUTE error_not_nsg_i n_phase = 0x04

ABSOLUTE error_not_nsg_out _phase = 0x05
ABSOLUTE error_not_status_phase = 0x06
ABSOLUTE error_unexpect ed_phase = 0x07
ABSOLUTE error_junp_not _taken = 0x10
ABSOLUTE error_not_cnd_conpl ete = 0x20
ABSOLUTE error_not _extended_nsg = 0x21
ABSOLUTE io_conplete = Ox0A
ABSOLUTE set up_SXFER = 0x888
ABSOLUTE resel ect_id_error = 0x999
ABSOLUTE sel ect _error = Oxfff

B R R R R X
’

; TABLE decl arations for Table Indirect offsets in bytes
Tabl e Tabl e_I ndirect \
SCSI _I D=1 D{ 0x00, 0x00, 0x00, 0x00}, \

identify_msg_buf = {0xcO0}, \
synch_mnsgi _buf = 5{?7?}, \
cnd_buf =12{?7?}, \
status_buf = 1{?7?}, \
msg_i n_buf = 1{?7?}, \
dat a_buf = 512{?7?}

B R R R R X
’

; ENTRY decl arati ons
ENTRY nul ti _thread
ENTRY t o_deci si ons

Symbios Logic PCI-SCSI Programming Guide C-1

Multi-Threaded SCRIPTS Example

C-2

ENTRY i d_nsg_out
ENTRY nsg_i n_phase
ENTRY cnd_phase
ENTRY data_i n_phase
ENTRY dat a_out _phase
ENTRY st at us_phase
ENTRY di sconnect ed
ENTRY entry0
ENTRY entryl
ENTRY entry2
ENTRY i o_requestO
ENTRY i o_requestl
ENTRY i o_request 2
ENTRY schedul e_NOP

;. Schedul er SCRI PT code
schedul er:

entry0:

;lnitialize DSA register with table base address for using table
;indirect addressing

MOVE MEMORY 4, PATCH addr_of _tabl e0_ptr, PATCH chi p_physaddr +DSA
;lnitilize address for changing junp to nop after starting new I/O
;(after SELECT instruction in nmain SCRI PT code)

MOVE MEMORY 4,
PATCH_SCRI PTphysaddr +i o_r equest 0, PATCH_SCRI PTphysaddr +schedul e_NOP+8

i o_requestO:
JUWMP REL(nul ti_thread)

entryl:
MOVE MEMORY 4, PATCH addr_of _tablel_ptr, PATCH chi p_physaddr +DSA

MOVE MEMORY 4,
PATCH_SCRI PTphysaddr +i o_r equest 1, PATCH_SCRI PTphysaddr +schedul e_NOP+8

i o_request 1:
JUWP REL(mul ti_thread)

entry2:
MOVE MEMORY 4, PATCH addr _of _tabl e2_ptr, PATCH chi p_physaddr +DSA

MOVE MEMORY 4,
PATCH_SCRI PTphysaddr +i o_r equest 2, PATCH_SCRI PTphysaddr +schedul e_NOP+8

i 0_request 2:
JUMP REL(nulti_thread)

JUWMP REL(wait_for_resel ect)

ckkkkkhkhkhkhkhkhkhkhkhkhkhhkhkhkhkhhkhkhkhkhkhkkhkhkhkkhkhkkhkhkhkhkkhkhkkhkkhkkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkk*x*x
’

; main SCRI PT code
mul ti _thread:
SELECT ATN FROM SCSI _id, REL(wait_for_reselect)

; Change junmp to nop in scheduler after starting new /O
;the destination address is initialized from schedul er SCRI PT

Symbios Logic PCI-SCSI Programming Guide

Multi-Threaded SCRIPTS Example

schedul e_NOP:
MOVE MEMORY 4, PATCH nop_physaddr, PATCH pl ace_hol d_addr

JUWP REL(to_decisions), WHEN NOT MSG _QUT

id_nsg_out:
MOVE FROM i dentify_nsg_buf, WHEN MSG OUT
JUWP REL(to_decisions), WHEN NOT CMVD

cnd_phase:

CLEAR ATN

MOVE FROM cnd_buf, WHEN CMD

JUWP REL(to_decisions), WHEN NOT DATA I N

dat a_i n_phase:

MOVE FROM dat a_buf, WHEN DATA I N
JUWMP REL(status_phase), WHEN STATUS
JUMP REL(to_deci sions)

dat a_out _phase:
MOVE FROM dat a_buf, WHEN DATA OUT
JUMP REL(to_decisions), WHEN NOT STATUS

st at us_phase:

MOVE FROM st at us_buf, WHEN STATUS

JUWP REL(to_decisions), WHEN NOT MSG_ | N
nsg_i n_phase:

MOVE FROM nsg_i n_buf, WHEN MSG_IN

JUWP REL(disconnected), |F DI SCONNECT_

JUWP REL(msg_i n_phase), WHEN SAVE DATAPTR_ ; conpare data, wait for

phase

INT error_not _cnd_conplete, | F NOT 0x00
CLEAR ACK

MOVE SCNTL2 & Ox7F TO SCNTL2

WAI T DI SCONNECT

INT io_conplete

di sconnect ed:

MOVE SCNTL2 & Ox7F TO SCNTL2

WAI T DI SCONNECT

JUWMP REL(wait_for_reselect)

t o_deci si ons:

JUWMP REL(nsg_i n_phase), WHEN MSG_ I N
JUWMP REL(cnd_phase), I F C\VMD
JUWMP REL(data_in_phase), | F DATA_IN
JUWMP REL(data_out _phase), | F DATA_OUT
JUWMP REL(status_phase), | F STATUS

I NT error_unexpect ed_phase

; Resel ect SCRI PT code
wait_for_reselect:

Symbios Logic PCI-SCSI Programming Guide

C-3

Multi-Threaded SCRIPTS Example

WAl T RESELECT REL(CPU set_SI GP)

SCSI _id_junp_table:

MOVE SSI D TO SFBR

JUWMP REL(id_0), IF 0x00 ;
JUMP REL(id_1), IF 0x01
JUMP REL(id_2), IF 0x02
INT resel ect_id_error

id_O:

MOVE MEMORY 4, PATCH addr_of _tabl e0_ptr, PATCH chi p_physaddr +DSA
;initialize SXFER for synchronous transfers fromtable

MOVE MEMORY 1, PATCH addr _of _t abl e0+2, PATCH chi p_physaddr +SXFER

MOVE MEMORY 1, PATCH addr _of _t abl e0, PATCH chi p_physaddr +SCNTL3

; This will set up the clock dividers as defined in the SCNTL3 regi ster
MOVE FROM identify_nsg_buf, WHEN MSG_IN

CLEAR ACK

JUWP REL(to_deci sions)

id_1:

MOVE MEMORY 4, PATCH addr_of _tabl el ptr, PATCH chi p_physaddr +DSA
;initialize SXFER for synchronous transfers fromtable

MOVE MEMORY 1, PATCH addr _of _tabl e1+2, PATCH chi p_physaddr +SXFER
MOVE MEMORY 1, PATCH addr _of _tabl el, PATCH chi p_physaddr +SCNTL3

; This will set up the clock dividers as defined in the SCNTL3 regi ster
MOVE FROM identify_nsg_buf, WHEN MSG_IN

CLEAR ACK

JUWP REL(to_deci sions)

id_2:

MOVE MEMORY 4, PATCH addr_of _tabl e2_ptr, PATCH chi p_physaddr +DSA
;initialize SXFER for synchronous transfers fromtable

MOVE MEMORY 1, PATCH addr _of _t abl e2+2, PATCH_chi p_physaddr +SXFER

MOVE MEMORY 1, PATCH addr _of _t abl e2, PATCH chi p_physaddr +SCNTL3

; This will set up the clock dividers as defined in the SCNTL3 regi ster
MOVE FROM identify_nsg_buf, WHEN MSG_IN

CLEAR ACK

JUWP REL(to_deci sions)

CPU_set _SI G~:
JUMP schedul er

C-4 Symbios Logic PCI-SCSI Programming Guide

Index

Symbols block diagram 1-5
"' line continuation character 4-12 Block Move instruction 3-29, 3-33
"C" code forms 3-30
compiling SCRIPTS 2-4 in scatter/gather operations 9-1
examples byte addressing 2-10
allocating table buffer 7-4 byte ordering 2-10

alr:pcqti_rtl_g It_abl_e me7mfry 7-5 byte recovery 9-9

chip initialization 7-

patching 7-7 byte count 3-27, 3-49
pointing to table 7-5 C

running SCRIPTS 7-11

storing data structures in SCRIPTS RAM

cache line burst mode 3-33

9-29 CALL instruction 3-2
table definition 7-5 CARRY 3-10, 3-13, 3-17, 3-22, 3-34, 3-41,
table initialization 7-3 3-47
using a table 7-6 chained block moves 3-7
A chip initialization
ABSOLUTE 4-7 example 7-1
CHMOV 3-7

ACK 3-47

ADDER register 6-7

address 3-7, 3-22, 3-29, 3-39, 3-45, 3-52
destination address 3-32
source address 3-32

CLEAR instruction 3-10
clock doubler 9-26

clock quadrupler 9-27
command block 8-3

arbitration priority (SYM53C885) 11-3 command line 4-1

ARCH 4-7 compiler, see NASM

arithmetic operators 2-7 conditional keywords 4-13

Assembler, see NASM conventions 1-8

ATN (Attention) 3-10, 3-13, 3-17, 3-22, 3-41, ~ count3-7,3-29, 3-32
3-47 definition 4-10

CTESTO register 6-8
CTEST1 register 6-7
CTEST2 register 6-7

B
Big Endian byte addressing 2-10
bitwise operators 2-7

Symbios Logic PCI-SCSI Programming Guide Index-1

CTESTS register 6-7
CTEST4 register 6-7
CTESTS5 register 6-7
CTESTS6 register 6-7

D
data 3-13, 3-17, 3-22, 3-41
data8 3-34
DBC register 6-4, 6-5
DCMD register 6-4, 6-5
DCNTL register 6-4
destination_address 3-32
device driver 8-4

how to write 8-6

layers 8-2
hardware interface 8-2, 8-4
operating system interface 8-2

DFIFO register 6-4
diagnostics

loopback mode 9-4
DIEN register 6-4, 6-6
directives, see declarative keywords
disconnect 3-51

byte recovery 9-9

causes 9-9

illegal 9-9

legal 9-9

phase mismatch 9-9
DISCONNECT instruction 3-12
DMA Registers 6-4
DMODE register 6-4
DNAD register 6-4, 6-5
DSA register 6-5
DSAREL 3-27, 3-49
DSAREL keyword 4-14
DSP register 6-4, 6-5

Index-2

DSPS register 6-4, 6-5
DSTAT register 6-6
DWT register 6-8

E

ENTRY 4-8

error messages A-1-A-17
EXTERN 4-8

F

fast-20. See Ultra SCSI
fast-40 See Ultra 2 SCSI>
flag fields 4-14

FROM 3-29, 3-39, 3-45

G

General Purpose Registers 6-8
GPCNTL register 6-8
GPREG register 6-8

I
110
completion 10-11
request flow 8-4
1/0 (Input/Output)
ID 3-39, 3-45
IF 3-13, 3-17, 3-22, 3-41
immediate data 3-35
initialization 7-1
instruction fields
Assert SCSI ACK 3-10
Assert SCSI ATN 3-10
Byte Count 3-8
Carry 3-10
Compare Data 3-3
Compare Phase 3-3
Data 3-4
Dest Addr 3-4

Symbios Logic PCI-SCSI Programming Guide

function 3-35

Immediate Data 3-35

Indirect 3-7

Mask 3-4

Op code 3-3

Operator 3-35

Relative Addr 3-23

Relative Addr Mode 3-3

Table Indirect 3-7

True 3-3

Wait 3-4
instruction operands

ACK 3-10

Address 3-2

ATN 3-2

CARRY 3-3

count 3-7

data 3-2

data8 3-34

FROM 3-7

IF 3-2

int_value 3-13

MASK 3-2

NOT 3-2

operator 3-34

Phase 3-2, 3-7, 3-13, 3-17, 3-22, 3-29, 3-41

PTR 3-7

register 3-34

REL 3-2

TARGET 3-10

WHEN 3-2

WITH CARRY 3-34

WITH/WHEN 3-7
instruction patching 7-7
instruction prefetching

no flush option 3-32
instruction types

block move

Symbios Logic PCI-SCSI Programming Guide

Chained Move 3-7
description 2-10
example 3-61
MOVE 3-29

examples 3-56—-3-62

1/0 (Input/Output)
Clear 3-10
description 2-8
Disconnect 3-12
example 3-56
RESELECT 3-39
SELECT 3-45
SET 3-47
WAIT DISCONNECT 3-51
WAIT RESELECT 3-52
WAIT SELECT 3-54

Load and Store
description 2-10
DSAREL 4-14
example 3-62
STORE 3-49
Store 3-27

memory move
description 2-9
example 3-57
MOVE MEMORY 3-32

read/write
description 2-9
example 3-60
MOVE REGISTER 3-34

Register to Register Move 3-34

transfer control
CALL 3-2
description 2-9
example 3-59
Interrupt 3-13

INTFLY (Interrupt on the Fly) 3-17

JUMP 3-22
RETURN 3-41

instructions

CALL 3-2
CHMOV 3-7

Index-3

CLEAR 3-10

DISCONNECT 3-12
examples 3-56-3-62

INT (Interrupt) 3-13

INTFLY (Interrupt on the Fly) 3-17
JUMP 3-22

LOAD 3-27

MOVE 3-29

MOVE MEMORY 3-32
MOVE REGISTER 3-34

No Operation 3-38

NOP 3-38

Register to Register Move 3-34
RESELECT 3-39

RETURN 3-41

SELECT 3-45

SET 3-47

STORE 3-49

transfer control
CALL 3-2

WAIT DISCONNECT 3-51
WAIT RESELECT 3-52
WAIT SELECT 3-54
INT, see Interrupt instruction
int_value (interrupt value) 3-13, 3-17
internal arbiter (SYM53C885) 11-3
interrupt handling 9-19-9-24
Interrupt instruction 3-13
Interrupt on the Fly instruction 3-17
Interrupt Registers 6-6
interrupts
fatal vs. non-fatal interrupts 9-20
IRQ Disable bit 9-20
masking 9-21
sample interrupt service routine 9-23
stacked interrupts 9-22
INTFLY, see Interrupt on the Fly Instruction
ISTAT register 6-6

Index-4

J
JUMP instruction 3-22

K

keywords
conditional 4-13
flag fields 4-14
logical 4-13
other 4-16
qualifier 4-14

L
language elements 2-7
legal disconnect 3-51
Little Endian byte addressing 2-10
LOAD instruction 3-27
rules for using 3-28
logical keywords 4-13
loopback mode 9-4-9-8

M
MACNTL register 6-8
MASK 3-13, 3-17, 3-22, 3-41
Memory to Memory Move 3-32
MOVE instruction 3-29
MOVE MEMORY instruction 3-32
no flush option 3-32
MOVE REGISTER instruction 3-34
multi-threaded 1/0 10-1-10-10
example 10-3-10-8
main and scheduler SCRIPTS 10-3
operations flow 10-2
SCRIPTS example C-1
use of the SIGP bit 10-9

N

NASM

command line
ARCH option 4-3
binary cross reference option 4-3
error listing option 4-3
Symbios Logic PCI-SCSI Programming Guide

generate .bin output option 4-4
generate partial "C" source option 4-4
listing file option 4-4

omit termination record option 4-4
options 4-3-4-4

output file option 4-4

patch offsets option 4-4

verbose messages option 4-4

declarative keywords
ABSOLUTE 4-7
ARCH 4-7
ENTRY 4-8
EXTERN 4-8
PASS 4-9
RELATIVE 4-10
TABLE 4-11

description 4-1
directives, see declarative keywords
installation 4-1

keywords
conditional 4-13

NASM command line 4-1
example 4-5
NASM keywords
flag fields 4-14
logical 4-13
other 4-16
qualifier 4-14
NASM output file
example 5-2
sections 5-3-5-11
no flush option
and STORE instructions 3-49
in MOVE MEMORY instructions 3-32
No Operation command 3-38
NOFLUSH keyword 4-15
NOP 3-38
NOT 3-13, 3-17, 3-22, 3-41

Symbios Logic PCI-SCSI Programming Guide

0
operating system interface 8-4
operator 3-34
output file
example 7-16

sections 5-3
absolute 5-10
entry 5-9
external 5-6
label patches 5-9
module termination 5-11
relative 5-7
SCRIPTS array 5-3

output file example 5-2

P

PASS 4-9

patching 7-7

phase 3-7

power management (SYM53C885) 11-1
register bits 11-2

power up 8-3

product overview 1-2
product features 1-3

PTR (pointer) 3-7, 3-29

Q
qualifier keywords 4-14

R
RAM, see SCRIPTS RAM
register 3-27, 3-34, 3-49
register bits
default values 6-8
register initialization
default values 6-8
Register to Register Move
immediate data 3-35
procedure 3-35

Index-5

SFBR register 3-35
shift left 3-35
shift right 3-35

Register to Register Move instruction 3-34
register writes, cautions 3-36
registers

ADDER (Adder Sum Output) 6-7
CTESTO (Chip Test 0) 6-8
CTEST1 (Chip Test 1) 6-7
CTEST2 (Chip Test 2) 6-7
CTEST3 (Chip Test 3) 6-7
CTEST4 (Chip Test 4) 6-7
CTESTS5 (Chip Test 5) 6-7
CTEST®6 (Chip Test 6) 6-7
DBC (DMA Byte Command) 6-4
DBC (DMA Byte Counter) 6-5
DCMD (DMA Command) 6-4, 6-5
DCNTL (DMA Control) 6-4
DFIFO (DMA FIFO) 6-4
DIEN (DMA Interrupt Enable) 6-4, 6-6
DMA registers 6-4
DMODE (DMA Mode) 6-4
DNAD (DMA Next Address) 6-4, 6-5
DSA (Data Structure Address) 6-5
DSP (DMA SCRIPTS Pointer) 6-4, 6-5
DSPS (DMA SCRIPTS Pointer Save) 6-4, 6-5
DSTAT (DMA Status) 6-6
DWT (DMA Watchdog Timer) 6-8
general purpose registers 6-8
GPCNTL (General Purpose Control) 6-8
GPREG (General Purpose) 6-8
initialization 6-8—6-13

default values 6-8
interrupt registers 6-6
ISTAT (Interrupt Status) 6-6
MACNTL (Memory Access Control) 6-8
RESPIDO (Response ID 0) 6-3
RESPID1 (Response ID 1) 6-3

SBCL (SCSI Bus Control Lines) 6-2
SBDL (SCSI Bus Data Lines) 6-2

SCID (SCSI Chip ID) 6-2

SCNTLO (SCSI Control 0) 6-2

SCNTL1 (SCSI Control 1) 6-2

SCNTL2 (SCSI Control 2) 6-2

SCNTL3 (SCSI Control 3) 6-2
SCRATCHA (General Purpose Scratchpad A)
6-8

SCRATCHB (General Purpose Scratchpad B)
6-8

SCRIPTS registers 6-5

SCSiI registers 6-1-6-3

SDID (SCSI Destination ID) 6-2

SFBR (SCSI First Byte Received) 6-2
SIDL (SCSI Input Data Latch) 6-2
SIENO (SCSI Interrupt Enable 0) 6-2, 6-6
SIEN1 (SCSI Interrupt Enable 1) 6-2, 6-6
SISTO (SCSI Interrupt Status 0) 6-6
SIST1 (SCSI Interrupt Status 1) 6-6
SLPAR (SCSI Longitudinal Parity) 6-3
SOCL (SCSI Output Control Latch) 6-2
SODL 6-2

SSID 6-2

SSTATO (SCSI Status 0) 6-3

SSTAT1 (SCSI Status 1) 6-2

SSTAT?2 (SCSI Status 2) 6-2

STESTO (SCSI Test 0) 6-3

STEST1 (SCSI Test 1) 6-3

STEST2 (SCSI Test 2) 6-3

STEST3 (SCSI Test 3) 6-3

STEST4 6-3

STIMEO (SCSI Timer 0) 6-3

STIMEL (SCSI Timer 1) 6-3

SWIDE (SCSI Wide Residue Data) 6-3
SXFER (SCSI Transfer) 6-2

TEMP (Temporary) 6-4

test registers 6-7

REL (Relative) 3-22, 3-39, 3-45, 3-52, 4-10

Index-6 Symbios Logic PCI-SCSI Programming Guide

relative addressing 8-11
REL keyword 4-15
relative buffer 4-10
relative buffers
in the output file 5-7
RELATIVEkeyword
output 5-7
RESELECT Instruction 3-39
reselection 3-52
in multi-threaded 110 10-2, 10-8
RESELECT instruction 3-39
RESPIDO register 6-3
RESPID1 register 6-3
RETURN Instruction 3-41

S
SBCL register 6-2
SBDL register 6-2
scatter/gather operations 9-1
Block Move instruction 9-1
scheduler 8-5
SCID register 6-2
SCNTLO register 6-2
SCNTLL1 register 6-2
SCNTL2 register 6-2
SCNTL3 register 6-2
SCRATCHA register 6-8
SCRATCHB register 6-8
SCRIPTS
and "C" language program 2-4—2-5
compiler, see NASM
control of SYM53C8XX 1-7
correspondence with SCSI bus phases 2-2—2-
3,12-1-12-2
data sizes 2-6
expressions 2-7
features 1-6
for target operation 12-4

Symbios Logic PCI-SCSI Programming Guide

how NASM parses 4-5

inclusion in "C" program 7-1—7-11
instructions described 2-8-2-10
keywords 2-8

language elements
comment 2-7
label 2-7
name 2-7

numeric values 4-5
operation 1-8
operational overview 1-8
operators
arithmetic 2-7
bitwise 2-7
output file example 7-16
processor 2-1
running a program 7-11
source code example 7-12
system overview 1-6
SCRIPTS examples
multi-threaded 1/0 C-1
output file 7-16
source code 7-12
SCRIPTS language elements 2-7
SCRIPTS RAM
loading 9-28
parts that support 1-3
patching internal and external programs 9-36
programming techniques 9-30
size 9-28
use 9-28
SCRIPTS Registers 6-5
SCsSI
bus phases 2-2, 12-1
1/0 process 8-4
SCSI Clock Doubler
using 9-26
SCSI clock quadrupler 9-27

Index-7

SCSI Registers 6-1-6-3
SCSI SCRIPTS, see SCRIPTS
SDID register 6-2
SELECT instruction 3-45
selection

SELECT instruction 3-45
SET instruction 3-47
SFBR register 6-2
shift left 3-35
shift right 3-35
SIDL register 6-2
SIENO register 6-2, 6-6
SIENL1 register 6-2, 6-6
SIGP bit 10-9

use in multi-threaded 1/0 10-2
SISTO register 6-6
SIST1 register 6-6
SLPAR register 6-3
SOCL register 6-2
SODL register 6-2
source_address 3-27, 3-32, 3-49
SSID register 6-2
SSTATO register 6-3
SSTATL register 6-2
SSTAT2 register 6-2
starting NASM 4-1
STESTO register 6-3
STEST1 register 6-3
STEST2 register 6-3
STESTS3 register 6-3
STEST4 register 6-3
STIMEDQO register 6-3
STIMEL1 register 6-3
STORE instruction 3-49

no flush option 3-49

rules for using 3-50
SWIDE register 6-3

Index-8

SXFER register 6-2
SYM53C885

programmable features 11-1
SYM53C8XX

list of product features 1-3
Symbios Logic Assembler, see NASM
synchronous negotiation 9-18
system architecture 8-1
system overview 1-6

T
TABLE 4-11
table indirect addressing
Block Move instructions 8-7
defining a table 8-10
Select/Reselect instructions 8-8
table indirect operation
addressing 4-11, 8-7
allocating buffer space 7-4
allocating memory for the table 7-5
defining the table structure 7-5
initializing a table 7-3
pointing to the table 7-5
purpose 4-12
using a table 7-6
TARGET 3-10, 3-47
target disconnect 9-9
target operation
basic structure 12-1
registers used 12-3
sample SCRIPTS 12-4
technical support 13-3
TEMP register 6-4
Test Registers 6-7
token 4-5

Symbios Logic PCI-SCSI Programming Guide

U
Ultra SCSI
benefits 1-5
migrating from existing software 9-24
parts that support 1-3
register bits 9-25
using the SCSI clock doubler 9-26
Ultra2 SCSI
benefits 1-5
migrating from existing software 9-24
SCSI clock quadrupler 9-27

W

WAIT DISCONNECT instruction 3-51
WAIT RESELECT instruction 3-52
WAIT SELECT instruction 3-54
WHEN 3-13, 3-17, 3-22, 3-41

WITH CARRY, see CARRY
WITH/WHEN 3-7, 3-29

Symbios Logic PCI-SCSI Programming Guide

Index-9

Index-10 Symbios Logic PCI-SCSI Programming Guide

Symbios Logic
Sales Locations

. _____________ _______ |

For literature on any Symbios Logic product or service,
call our hotline toll-free

1-800-856-3093

North American Sales Locations International Sales Locations
Western Sales Area European Sales Headquarters
1731 Technology Drive, Suite 610 Westendstrasse 193\I11
San Jose, CA 95110 80686 Muenchen
(408) 441-1080 Germany

011-49-89-547470-0

3300 Irvine Avenue, Suite 255

Newport Beach, CA 92660 Asia/Pacific Sales Headquarters
(714) 474-7095 Marina Square, #02-256

No. 6 Raffles Boulevard
Singapore, 0103

Eastern Sales Area 011-65-3376323

8000 Townline Avenue, Suite 209
Bloomington, MN 55438-1000
(612) 941-7075

12377 Merit Dr., Suite 400
Dallas, TX 75251
(972) 503-3205

92 Montvale Avenue, Suite 3500
Stoneham, MA 02180-3623
(617) 438-0043

30 Mansell Court, Suite 220
Roswell, GA 30076
(404) 641-8001

A
[

SYMBIOS

L o G I C

™

© Symbios Logic Inc.
Printed in the U.S.A.
J259721

0897-3MH

53C8XX PCI-SCSI SCSI 1/0O Processors Programming Guide Version 2.1 Symbios Logic

	The products described in this publication are pro...
	SCRIPTS and NASM are trademarks and TolerANT is a ...
	Ultra SCSI is the term used by the SCSI Trade Asso...
	It is the policy of Symbios Logic to improve produ...
	The products in this manual are not intended for u...
	Copyright ©1995, 1996, 1997 By Symbios Logic Inc. ...
	We use comments from our readers to improve Symbio...
	Purpose and Audience
	Additional Information
	ANSI SCSI-2 Standard, SCSI-3 Parallel Interface (S...
	SCSI Bench Reference, SCSI Encyclopedia
	What Is SCSI? Understanding the Small Computer Sys...
	Symbios Logic Electronic Bulletin Board
	SCSI Electronic Bulletin Board
	Symbios Logic Internet Anonymous FTP Site
	Symbios Logic World Wide Web Home Page

	Revision Record
	List of Figures
	Introduction
	Programming the SYM53C8XX With SCRIPTS
	The SYM53C8XX Instruction Set
	The NASM Output File
	Integrating SCRIPTS Programs Into “C” Language Dri...
	Writing Device Drivers With SCRIPTS
	SCRIPTS Programming Topics
	Multi-Threaded I/O

	List of Tables
	Introduction
	Programming the SYM53C8XX With SCRIPTS
	The SYM53C8XX Instruction Set
	Using the Symbios Logic Assembler
	The NASM Output File
	Using the Registers to Control Chip Operations
	Integrating SCRIPTS Programs Into “C” Language Dri...
	Writing Device Drivers With SCRIPTS
	SCRIPTS Programming Topics
	Multi-Threaded I/O
	Programming Multifunction Devices
	Using the SYM53C8XX in Target Applications
	Debugging the SYM53C8XX
	NASM Error Messages
	Register Summaries
	Multi-Threaded SCRIPTS Example
	Introduction

	What is Covered in This Guide
	Product Overview
	Table 1-1 (Continued)
	Figure 1-1

	Benefits of Ultra SCSI and Ultra2 SCSI
	System Overview
	How SCRIPTS Operations Control the SYM53C8XX
	Figure 1-2

	Conventions
	Chapter 2
	Programming the SYM53C8XX With SCRIPTS

	The SCRIPTS Processor
	SCRIPTS and the SCSI Bus Phases
	Table 2-1

	Assembling SCSI SCRIPTS
	Using SCSI SCRIPTS
	SCRIPTS Data Sizes
	SCSI SCRIPTS Language Elements
	SCSI SCRIPTS Expressions
	Arithmetic Operators
	Bitwise Operators

	SCSI SCRIPTS Keywords

	Description of SCRIPTS Instructions
	I/O Instructions
	Memory Move Instructions
	Transfer Control Instructions
	Read/Write Instructions
	Block Move Instructions
	Load and Store Instructions

	Big and Little Endian Byte Addressing
	Order of SCRIPTS Instructions
	Operating Register Access from Firmware
	Operating Register Access from SCRIPTS Routines
	User Data Byte Ordering
	Chapter 3
	The SYM53C8XX Instruction Set

	Overview
	CALL
	Figure 3-1

	CHMOV
	CLEAR
	DISCONNECT
	INT
	INTFLY
	JUMP
	LOAD
	MOVE
	MOVE MEMORY
	MOVE REGISTER
	Additional Forms for SYM53C825A/53C875/53C876/ 53C...

	NOP
	RESELECT
	XXXX
	SCSI ID
	Figure 3-2

	RETURN
	SELECT
	31��30
	29���27
	26
	25
	24
	23
	20
	19
	16
	15 0
	31
	0
	01
	0
	0
	X
	0000
	XXXX
	00...00
	XX...XX
	Instr
	Type
	Relative
	Table
	Indirect
	Select with ATN
	RES
	SCSI ID
	RES
	Dest Addr

	SET
	STORE
	WAIT DISCONNECT
	WAIT RESELECT
	Figure 3-3

	WAIT SELECT
	Instruction Examples
	I/O Instruction Example
	Memory Move Instruction Example
	Figure 3-5
	Figure 3-6

	Transfer Control Instruction Example
	Read/Write Instruction Example
	Block Move Instruction Example
	Load/Store Instruction Example
	Chapter 4
	Using the Symbios Logic Assembler

	Overview
	Starting NASM
	Command Line Options
	A [arch] - Specify processor for code generation
	B - Binary Cross Reference Values
	E - Creates an error listing file
	L - Creates a listing file
	O - Generate output file
	P - Generate Partial “C” Source
	S - Generate .BIN Output
	U - Omit Termination Record
	V - Verbose Messages
	X - Patch Offsets

	Example Assembler Command Lines
	1 NASM demoPCI.ss
	2 NASM demoPCI.ss -a 875 -l -o -e errors.txt

	How NASM Parses SCRIPTS Files
	Assembler Declarative Keywords
	Table 4-1
	Table 4-2
	Table 4-3
	ABSOLUTE
	ARCH
	ENTRY
	EXTERN
	PASS
	PROC
	RELATIVE
	TABLE

	Conditional Keywords
	If
	When

	Logical Keywords
	NOT
	AND
	OR

	Flag Fields
	ACK
	ATN
	TARGET
	CARRY

	Qualifier Keywords
	DSAREL
	FROM
	MASK
	MEMORY
	PTR
	REG
	REL
	TO
	WITH
	NOFLUSH

	Other Keywords
	Action Keywords
	SCSI Phases
	Register Names
	Chapter 5
	The NASM Output File

	Overview
	Figure 5-1

	NASM Output File Sections
	SCRIPTS Array
	Entry and PROC
	Table 5-1 ��

	External
	Effect of Command Line Switches

	Relative
	Effect of Command Line Switches

	Entry
	Label Patches
	Absolute
	Effect of Command Line Switches

	Termination Record
	Chapter 6
	Using the Registers to Control Chip Operations

	Overview
	SCSI Registers
	Table 6-1 (Continued)

	DMA Registers
	SCRIPTS Registers
	Interrupt Registers
	Test and Miscellaneous Registers
	General Purpose Registers
	Register Initialization
	Chapter 7
	Integrating SCRIPTS Programs Into “C” Language Dri...

	Overview
	Initializing the SYM53C8XX
	Resetting The SYM53C8XX

	Table Indirect Operations
	Initializing a Table
	Create Table Indirect Entry Offsets
	Defining the Table Structure
	Declaring a Pointer to the Table
	Allocating Memory for the Table
	Using a Table

	Patching
	EXTERN Buffers
	1 Create a buffer in ‘C’ statically or dynamically...
	2 Patch the SCRIPT wherever this buffer is used, w...

	RELATIVE Buffers
	Procedure 1
	1 Create a buffer to hold all the individual relat...
	2 Patch the SCRIPTS array using the Patch array ge...

	Procedure 2
	1 Create a buffer to hold all the individual relat...
	2 All buffers can be patched in one loop if the ma...

	ABSOLUTE Values
	Buffer Addresses
	Byte Counts
	Absolute JUMP/CALL Addresses
	Entry Locations
	Self Modifying SCRIPTS Code
	Patch_label2: JUMP REL(Jump_Table) . . Jump_Table:...
	Patches to the SCRIPTS Instruction

	Running a SCRIPTS Program
	Figure 7-1
	Figure 7-2
	Chapter 8
	Writing Device Drivers With SCRIPTS

	Overview
	Figure 8-1
	Figure 8-2

	Command Block
	Power Up Example
	Figure 8-3

	I/O Request Process
	Figure 8-4

	How to Write a Device Driver With SCRIPTS
	Table Indirect Addressing
	1 The I/O data structure must lie within 8 MB abov...
	2 An I/O table entry must have all 8 bytes contigu...
	3 The table must be a contiguous data structure of...
	Block Move Instructions
	Select/Reselect Instructions
	Figure 8-5

	Defining a Table
	Figure 8-6

	Relative Addressing
	Chapter 9
	SCRIPTS Programming Topics

	Overview
	Scatter/Gather Operations
	Loopback Mode
	Loopback Example - Selection

	Byte Recovery on Target Disconnect
	Saving the State of the SYM53C8XX
	Asynchronous SCSI Send
	1 If the DMA FIFO size is set to the default size,...
	2 Read bit 5 in the SSTAT0 and SSTAT2 registers to...

	Synchronous SCSI Send
	1 If the DMA FIFO size is set to the default size,...
	2 Read bit 5 in the SSTAT0 and SSTAT2 registers to...
	3 Read bit 6 in the SSTAT0 and SSTAT2 registers to...

	Asynchronous SCSI Receive
	1 If the DMA FIFO size is set to the default size,...
	2 Read bit 7 in the SSTAT0 and SSTAT2 register to ...
	3 If any wide transfers have been performed using ...

	Synchronous SCSI Receive
	1 If the DMA FIFO size is set to the default size,...
	2 Read the SSTAT1 register (and bit 4 of the SSTAT...

	Updating the SCRIPTS Program
	Cleaning Up
	Example Byte Recovery Code
	Example Function for handling DATA IN Phase Mismat...
	Example Function for handling DATA OUT Phase Misma...

	Synchronous Negotiation and Transfer
	Interrupt Handling
	Polling and Hardware Interrupts
	Registers
	ISTAT
	SIST0 and SIST1
	DSTAT
	SIEN0 and SIEN1
	DIEN
	DCNTL (SYM53C825A, 53C875, 53C876, 53C885, 53C895 ...

	Fatal vs. Non-Fatal Interrupts
	Masking
	Stacked Interrupts
	Halting in an Orderly Fashion
	Sample Interrupt Service Routine
	1 Read ISTAT.
	2 If the INTF bit is set, it must be written to a ...
	3 If only the SIP bit is set, read SIST0 and SIST1...
	4 If only the DIP bit is set, read the DSTAT to cl...
	5 If both the SIP and DIP bits are set, read SIST0...

	Migrating Existing Software to Ultra and Ultra2 SC...
	1 SCNTL3 Register CCF bits - adjust the bit values...
	2 SCNTL3 Register SCF bits - adjust the bit values...
	3 SXFER Register XFERP bits - adjust the bit value...
	4 Adjust the Clock input as required for the SCSI ...
	5 Ultra Enable bit, SCNTL3 register - set this bit...
	Clock Divider Bits
	Ultra Enable Bit
	Loading the New Register Values
	Negotiating Synchronous Transfers
	Using the SCSI Clock Doubler
	1 Set the SCLK Doubler Enable bit (STEST1, bit 3)
	2 Wait 20 ms
	3 Halt the SCSI clock by setting the Halt SCSI Clo...
	4 Set the clock conversion factor using the SCF an...
	5 Set the SCLK Doubler Select bit (STEST1, bit 2)
	6 Clear the Halt SCSI Clock bit

	Using the SCSI Clock Quadrupler
	1 Set the SCLK Quadrupler Enable bit (STEST1, bit ...
	2 Poll bit 5 of the STEST4 register. The SYM53C895...
	3 Halt the SCSI clock by setting the Halt SCSI Clo...
	4 Set the clock conversion factor using the SCF an...
	5 Set the SCLK Quadrupler Select bit (STEST1, bit ...
	6 Clear the Halt SCSI Clock bit

	Using the SCRIPTS RAM
	Loading SCRIPTS RAM
	Figure 9-1

	Programming Techniques when Using SCRIPTS RAM
	1 Two source (.SS) files should be created, one wi...
	2 The internal and external SCRIPTS programs must ...
	3 Both source files should be compiled with the -p...
	4 All jumps between the internal and external SCRI...
	5 Any labels that are to be jumped to from the opp...
	6 All labels, externs, and relative buffers should...
	7 All jumps which move within the same SCRIPTS pro...
	8 The file that contains the internal SCRIPTS prog...
	Figure 9-2
	Figure 9-3
	Figure 9-5

	Patching Internal and External SCRIPTS Programs
	1 The Int_Script array was copied into the SCRIPTS...
	2 The Ext_Script is already 32-bit aligned.
	3 The variable ChipIOBase contains the IO base add...
	4 VirttoPhys is a routine that will convert a virt...
	Chapter 10
	Multi-Threaded I/O

	Overview
	Figure 10-1
	Multi-threaded Operations Flow
	Figure 10-2

	SCRIPTS Areas
	Multi-Threaded SCRIPTS Example
	1 The first step occurs when the CPU writes a JUMP...
	2 Next, the CPU may need to set the SIGP bit in th...
	3 Table0 has the nexus information about any previ...
	4 The final task of the scheduler is to jump to th...
	5 io_request0: 5 JUMP rel (multi_thread)
	6 The main SCRIPTS routine will execute a Select W...
	7 Once the two devices are connected, the SCRIPTS ...
	8 Next, the will continue just as in single-thread...
	9 Upon disconnection, the initiator will jump to t...
	10 Once the initiator is reselected it is necessar...
	11 Next, the DSA will need to be written to the ad...
	12 Upon reselection, it is not necessary to re-neg...
	13 Once the DSA is pointing to the correct table, ...
	14 Finally, the SCRIPT will continue with a normal...

	Using the SIGP bit to Abort an Instruction
	I/O Completion
	Programming Multifunction Devices

	Using the SYM53C885 Power Management Feature
	1 No master cycles occurring (No SCSI SCRIPTS are ...
	2 No SCSI transactions occurring.
	3 In Target mode with select turned off.
	4 No pending interrupts.
	5 All interrupts are disabled except Wakeup interr...
	Coma Mode
	Snooze Mode
	1 Set the WI bit in the SIEN1 register.
	2 Set the SM bit in the CTEST0 register
	1 Reset the SM bit in the CTEST0 register.
	2 Reset the WI bit in the SIEN1 register.

	Register Bits Used for Power Management

	Programming the SYM53C885 Internal Arbiter
	Using the SYM53C8XX in Target Applications

	Overview
	1 The SYM53C8XX issues a Wait Select instruction
	2 The SCSI bus goes into Message Out phase
	3 The SYM53C8XX performs a series of Block Moves 3...
	4 The SYM53C8XX issues a Disconnect instruction to...
	Table 12-1

	Registers Used for Target Operation
	Table 12-2

	Using SCRIPTS for Target Operations
	Sample Target Operation SCRIPTS Program

	Synchronous Negotiation by a Target Device
	Chapter 13
	Debugging the SYM53C8XX
	Overview
	Table 13-1

	Chip Debugging Guidelines
	a Check the register initialization routine. Sever...
	b Save and print out the data values in all SYM53C...
	2 Use the DSP, DSPS, DCMD, and DBC registers to de...
	3 If the problem has not yet been discovered, exam...
	4 Perform timing verification using a logic analyz...
	Common Problems/ Things to Check
	1 The CPU is accessing registers other than ISTAT ...
	2 The RESPID register(s) are not initialized. This...
	3 Verify signal connectivity. (Make sure that the ...
	4 Make sure that the Enable Response to Selection/...

	Glossary
	NASM Error Messages
	Errors
	24 bit value expected
	8 bit value expected
	ACK, ATN,TARGET or CARRY expected string
	AND or OR expected string
	ATN specified multiple times
	Cannot compare CARRY and Data
	Cannot compare PHASE and Data
	Cannot specify PHASE when using ATN
	Cannot use MASK without compare Data
	Cannot use Pass for count address
	Carry operations not available on 53c700 architect...
	CARRY specified multiple times
	CHMOV 53c720, 53c770, 53c82X, 53c875, 53c876, 53c8...
	Comma expected string
	CTEST7 53c700 and 53c710 architectures only
	CTEST8 53c700 and 53c710 architectures only
	Data list expected string
	Data specified multiple times
	Data specifier expected string
	Declaration expected string
	Divide or mod by zero
	DSAREL: 53c810A, 53c825A, 53C860, 53c875, and 53c8...
	Entry identifier expected name
	Expression must evaluate to a constant string
	Expression or External expected
	GPCNTL 53C720, 53C770, and 53C8XX only
	GPREG 53c720,53C770, and 53C8XX architectures only...
	ID specifier only valid for table entries
	IF or WHEN expected string
	INTFLY:53c720, 53C770, and 53C8XX architecture onl...
	Invalid Address string
	Invalid assignment
	Invalid character/s
	Invalid constant type
	Invalid destination address string
	Invalid register operator string
	Invalid register value
	Invalid SCSI id
	Invalid syntax string
	Invalid test condition string
	LCRC 53c710 architectures only
	Left parenthesis expected string
	LOAD: 53c810A, 53c825A, 53c860, 53c875, 53c876, 53...
	LOAD: Count must not exceed 4 bytes
	Logical end of line '\' expected string
	MACNTL 53c720, 53c770, and 53c8XX architectures on...
	MASK specified multiple times
	Memory Move operations not available on 53c700 arc...
	Memory Move Noflush only available on 53c810A, 53c...
	Old EXTERNAL directive, use new EXTERNAL directive...
	Old RELATIVE directive, use new RELATIVE directive...
	One register must be SFBR or both the same.
	Only use CARRY with Addition or Subtraction.
	Operand must be a TABLE entry string
	Parenthesis must match when PASS is used as an arg...
	PHASE expected string
	PHASE specified multiple times
	Redeclaration of Label string
	Redeclaration of TABLE identifier
	Register or Data24 value expected string
	Register right of operand must be SFBR
	Relative addressing not available on 53c700 archit...
	RESPID 53c81X architecture only
	RESPID0 53c720, 53c770, 53c82X, 53C875, 53c876, 53...
	RESPID1 53c720, 53c770, 53c82X, 53C875, 53c876, 53...
	Right parenthesis expected string
	SBDL 53c700, 53c710, and 53c81X architectures only...
	SBDL0 53c720, 53c770, 53c82X, 53C875, 53c876, 53c8...
	SBDL1 53c720, 53c770, 53c82X, 53C875, 53c876, 53c8...
	SCNTL2 53c720,53c770, and 53c8XX architectures onl...
	SCNTL3 53c720, 53c770, and 53c8XX architectures on...
	Scratch0 53c710 architectures only
	Scratch1 53c710 architectures only
	Scratch2 53c710 architectures only.
	Scratch3 53c710 architectures only
	Scratcha0 53c720, 53c770, and 53c8XX architectures...
	Scratcha1 53c720, 53c770, and 53c8XX architectures...
	Scratcha253c720, 53c770, and 53c8XX architectures ...
	Scratcha3 53c720, 53c770, and 53c8XX architectures...
	Scratchb0 53c720, 53c770, and 53c8XX architectures...
	Scratchb1 53c720, 53c770, and 53c8XX architectures...
	Scratchb2 53c720, 53c770, and 53c8XX architectures...
	Scratchb3 53c720, 53c770, and 53c8XX architectures...
	Scratchc0 53c770, 53c825A, 53C875, 53c876, 53c885,...
	Scratchc1 53c770, 53c825A, 53C875, 53c876, 53c885,...
	Scratchc2 53c770, 53c825A, 53C875, 53c876, 53c885,...
	Scratchc3 53c770, 53c825A, 53C875, 53c876, 53c885,...
	Scratchd0 53c770, 53c825A, 53C875, 53c876, 53c885,...
	Scratchd1 53c770, 53c825A, 53C875, 53c876, 53c885,...
	Scratchd2 53c770, 53c825A, 53C875, 53c876, 53c885,...
	Scratchd3 53c770, 53c825A, 53C875,53c876, 53c885, ...
	Scratche0 53c770, 53c825A, 53C875, 53c876, 53c885,...
	Scratche1 53c770, 53c825A, 53C875, 53c876, 53c885,...
	Scratche2 53c770, 53c825A, 53C875, 53c876, 53c885,...
	Scratche3 53c770, 53c825A, 53C875, 53c876, 53c885,...
	Scratchf0 53c770, 53c825A, 53C875, 53c876, 53c885,...
	Scratchf1 53c770, 53c825A, 53C875, 53c876, 53c885,...
	Scratchf2 53c770, 53c825A, 53C875, 53c876, 53c885,...
	Scratchf3 53c770, 53c825A, 53C875, 53c876, 53c885,...
	Scratchg0 53c770, 53c825A, 53C875,53c876, 53c885, ...
	Scratchg1 53c770, 53c825A, 53C875, 53c876, 53c885,...
	Scratchg2 53c770, 53c825A, 53C875, 53c876, 53c885,...
	Scratchg3 53c770, 53c825A, 53C875, 53c876, 53c885,...
	Scratchh0 53c770, 53c825A, 53C875, 53c876, 53c885,...
	Scratchh1 53c770, 53c825A, 53C875, 53c876, 53c885,...
	Scratchh2 53c770, 53c825A, 53C875, 53c876, 53c885,...
	Scratchh3 53c770, 53c825A, 53C875, 53c876, 53c885,...
	Scratchi0 53c770, 53c825A, 53C875, 53c876, 53c885,...
	Scratchi1 53c770, 53c825A, 53C875, 53c876, 53c885,...
	Scratchi2 53c770, 53c825A, 53C875, 53c876, 53c885,...
	Scratchi3 53c770, 53c825A, 53C875, 53c876, 53c885,...
	Scratchj0 53c770, 53c825A, 53C875, 53c876, 53c885,...
	Scratchj1 53c770, 53c825A, 53C875, 53c876, 53c885,...
	Scratchj2 53c770, 53c825A, 53C875, 53c876, 53c885,...
	Scratchj3 53c770, 53c825A, 53C875, 53c876, 53c885,...
	SELID0: 53c720, 535c770, and 53c8XX architectures ...
	SELID1: 53c720, 53c770, and 53c8XX architectures o...
	Separator expected ',' or '\\'
	SIDL 53c700, 53C710, and 53c81X architectures only...
	SIDL0 53c720, 53c770, 53C82X, 53c875, 53c876, 53c8...
	SIDL1 53c720, 53c770, 53c82X, 53C875, 53c876, 53c8...
	SHL 53c720, 53c770, and 53c8XX architectures only
	SHR 53c720, 53c770, and 53c8XX architectures only
	SIEN 53c700 and 53c710 architectures only
	SIEN0 53c720, 53c770, and 53c8XX architectures onl...
	SIEN1 53c720, 53c770, and 53c8XX architectures onl...
	SIST0 53c720, 53c770, and 53c8XX architectures onl...
	SIST1 53c720, 53c770, and 53c8XX architectures onl...
	SLPAR 53c720, 53c770, and 53c8XX architectures onl...
	SODL 53c700, 53c710, and 53C81X architectures only...
	SODL0 53c720, 53c770, 53c82X, 53c875, 53c876, 53c8...
	SODL1 53c720, 53c770, 53c82X, 53c875, 53c876, 53c8...
	SSID 53c720, 53c770, and 53c8XX architectures only...
	STEST0 53c720, 53c770, and 53c8XX architectures on...
	STEST1 53c720, 53c770, and 53c8XX architectures on...
	STEST2 53c720, 53c770, and 53c8XX architectures on...
	STEST3 53c720, 53c770, and 53c8XXarchitectures onl...
	STEST4 53c895 architecture only
	STIME0 53c720, 53c770, and 53c8XX architectures on...
	STIME1 53c720, 53c770, and 53c8XX architectures on...
	STORE: 53c810A, 53c825A, 53c860, 53c875, 53c876, 5...
	STORE: Count must not exceed 4 bytes
	SWIDE 53c720, 53c82X, 53c875, 53c876, 53c885, and ...
	TABLE directive not available on 53c700 architectu...
	Table indirect operations not available on 53c700 ...
	Table name expected string
	Unexpected EOF
	Unresolved Label or Identifier string
	WITH or WHEN expected
	XOR 53c720, 53c810, and 53c825 only

	Fatal Errors
	Fatal Error allocating input file buffer(s)
	Fatal File Not found
	Fatal Memory allocation error
	Fatal No source file specified.
	Fatal Opening file
	Fatal read permission denied for file

	Warnings
	ACK specified multiple times.
	ATN specified multiple times.
	Cannot extract pass information correctly
	CARRY specified multiple times.
	Initializer value truncated to byte value
	Debug record contains old format EXTERNAL statemen...
	Debug record contains old format RELATIVE statemen...
	Initializer value truncated to byte
	Possible truncation of constant value
	Relative offset value truncated
	Source and.bin file have same the name
	Source and Error file have same the name
	Source and listing file have the same name
	Source and Object file the same name
	Source and Out file have the same name
	TARGET specified multiple times.
	Appendix B
	Register Summaries

	SYM53C810A Operating Registers
	SYM53C815 Operating Registers
	SYM53C825A Operating Registers
	SYM53C860 Operating Registers
	SYM53C875 Operating Registers
	SYM53C876 Operating Registers
	SYM53C885 SCSI Register Summary
	SYM53C895 Operating Registers
	Appendix C
	Multi-Threaded SCRIPTS Example
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	W

	Symbios Logic Sales Locations
	For literature on any Symbios Logic product or ser...
	North American Sales Locations
	International Sales Locations

