

Symbios Logic
PCI-SCSI I/O Processors

Programming Guide
Version 2.1

J25972I

.

TolerANT
A C T I V E N E G A T I O N T E C H N O L O G Y

I N C R E A S I N G S C S I R E L I A B I L I T Y

®

The products described in this publication are products of Symbios Logic Inc.

SCRIPTS and NASM are trademarks and TolerANT is a registered trademark of
Symbios Logic Inc.

Ultra SCSI is the term used by the SCSI Trade Association to describe Fast-20
SCSI, as documented in the SCSI-3 Fast-20 Parallel Interface standard, X3.277-
199X. Ultra2 SCSI is the term used by the SCSI Trade Association to describe Fast-
40 SCSI, as documented in some versions of the SPI-2 draft standard.

It is the policy of Symbios Logic to improve products as new technology,
components, software, and firmware become available. Symbios Logic, therefore,
reserves the right to change specifications without notice.

The products in this manual are not intended for use in life-support appliances,
devices, or systems. Use of these products in such applications without the written
consent of the appropriate Symbios Logic officer is prohibited.

Copyright ©1995, 1996, 1997
By Symbios Logic Inc.
All Rights Reserved
Printed in U.S.A.

We use comments from our readers to improve Symbios product literature. Please
e-mail any comments regarding technical documentation to pubs@symbios.com.

Symbios Logic PCI-SCSI Programming Guide

Purpose and Audience

Symbios Logic PCI-SCSI Programming Guide i

Purpose and Audience

0

This manual provides basic information on the SYM53C8XX family
of PCI-SCSI I/O Processors to software developers writing device
drivers for SCSI devices that use these products. It describes basic
chip operation and provides detailed information on the SCRIPTS
programming language, a high-level interface for controlling Symbios
Logic SCSI processors. The programming examples and instructions
in this guide assume that the device driver is in “C” language. The
examples are primarily written for PC-based architectures, but
SCRIPTS-based drivers can run on any hardware platform. More
detailed information on SCSI specifications can be found in the
references listed in the section “Additional Information.”

The diskette that accompanies this programming guide contains
several “C” and SCRIPTS sample programs that implement many of
the programming tasks discussed in this book. It also contains the
NASM SCRIPTS assembler and the NVPCI SCRIPTS debugger.
Please consult the “read me” file on the diskette for a list and
description of all sample programs. For the most up-to-date versions
of these and other sample programs, please contact the Symbios
Logic electronic bulletin board.

PCI-SCSI Programming Guide

Additional Information

ii Symbios Logic PCI-SCSI Programming Guide

AT&T -- PROPRIETARY

Use pursuant to Company Instructions

Additional Information

0

ANSI SCSI-2 Standard,
SCSI-3 Parallel Interface
(SPI) Standard

0

The SCSI-2 document is the final, approved standard for SCSI-2.
The SPI document is still in draft. Both of these documents can be
obtained from:

Global Engineering Documents
15 Inverness Way East
Englewood, CO 80112
(800)-854-7179 or (303) 792-2181 (outside U.S.)
Ask for document number X3.131-199X (SCSI-2) or X3.253 (SPI)

SCSI Bench Reference,
SCSI Encyclopedia

0

The SCSI Bench Reference is an applications-oriented guide to the
basics of SCSI. It is intended as a quick reference guide only. The
SCSI Encyclopedia is a multi-volume reference that describes all
SCSI-1 and SCSI-2 commands and protocols. It contains detailed
information on all topics covered. These and other reference
materials can be ordered from:

ENDL Publications
14426 Black Walnut Court
Saratoga, CA 95070
(408) 867-6642

What Is SCSI?
Understanding the Small
Computer System Interface

0

This easy-to-read book contains a high-level overview of how SCSI
works, based on the SCSI-1 standard. It is excellent for anyone with
no exposure to SCSI. It can be obtained from:

Prentice Hall
Englewood Cliffs, NJ 07632
(201) 767-5937
Ask for document number ISBN 0-13-796855-8

Symbios Logic Electronic
Bulletin Board

0

This BBS provides updated information on Symbios Logic SCSI
products, including sample SCRIPTS

.

(719) 533-7235

SCSI Electronic Bulletin
Board

0

Contact this BBS for general information on SCSI, including the
status of SCSI specifications, and electronic copies of draft
standards.
(719) 533-7950

Symbios Logic Internet
Anonymous FTP Site

0

This FTP site has general information similar to that on the
electronic bulletin board. The address is: ftp.symbios.com
(204.131.200.1) \pub\symchips\scsi.

PCI-SCSI Programming Guide

Additional Information

Symbios Logic PCI-SCSI Programming Guide iii

AT&T -- PROPRIETARY

Symbios Logic World Wide
Web Home Page

0

The Symbios Logic home page has general information about our
company and products. The address is http://www.symbios.com.

PCI-SCSI Programming Guide

Revision Record

iv Symbios Logic PCI-SCSI Programming Guide

AT&T -- PROPRIETARY

Use pursuant to Company Instructions

Revision Record

0

Page No. Date Remarks

all 8/96 Version. 2.0

6/97 Version 2.1. Added information on
SYM53C885 and SYM53C876; added chapter
on programming multifunction controllers;
minor typographical corrections.

Table of Contents

Symbios Logic PCI-SCSI Programming Guide v

Contents

Purpose and Audience ...i
Additional Information ...ii
Revision Record... iv
List of Figures ... xiii
List of Tables ... xvii

 Chapter 1

Introduction

What is Covered in This Guide ..1-1
Product Overview ..1-2
Benefits of Ultra SCSI and Ultra2 SCSI1-5
System Overview ...1-6

How SCRIPTS Operations Control the SYM53C8XX..........1-7
Conventions ..1-8

 Chapter 2

Programming the SYM53C8XX With SCRIPTS

The SCRIPTS Processor ...2-1
SCRIPTS and the SCSI Bus Phases ...2-2
Assembling SCSI SCRIPTS...2-3
Using SCSI SCRIPTS ...2-6

SCRIPTS Data Sizes..2-6
SCSI SCRIPTS Language Elements.....................................2-7
SCSI SCRIPTS Expressions...2-7
SCSI SCRIPTS Keywords ...2-8

Description of SCRIPTS Instructions...2-8
I/O Instructions..2-8
Memory Move Instructions ..2-9
Transfer Control Instructions ...2-9
Read/Write Instructions..2-9
Block Move Instructions...2-10
Load and Store Instructions ...2-10

Big and Little Endian Byte Addressing......................................2-10
Order of SCRIPTS Instructions..2-11
Operating Register Access from Firmware2-11
Operating Register Access from SCRIPTS Routines2-11
User Data Byte Ordering..2-11

Table of Contents

vi Symbios Logic PCI-SCSI Programming Guide

 Chapter 3

The SYM53C8XX Instruction Set

Overview .. 3-1
CALL .. 3-2
CHMOV.. 3-7
CLEAR.. 3-10
DISCONNECT ... 3-12
INT ... 3-13
INTFLY .. 3-17
JUMP... 3-22
LOAD.. 3-27
MOVE ... 3-29
MOVE MEMORY ... 3-32
MOVE REGISTER.. 3-34
NOP .. 3-38
RESELECT ... 3-39
RETURN... 3-41
SELECT.. 3-45
SET ... 3-47
STORE .. 3-49
WAIT DISCONNECT .. 3-51
WAIT RESELECT .. 3-52
WAIT SELECT ... 3-54
Instruction Examples .. 3-56

I/O Instruction Example .. 3-56
Memory Move Instruction Example................................... 3-57
Transfer Control Instruction Example................................ 3-59
Read/Write Instruction Example .. 3-60
Block Move Instruction Example 3-61
Load/Store Instruction Example .. 3-62

 Chapter 4

Using the Symbios Logic Assembler

Overview .. 4-1
Starting NASM... 4-1
Command Line Options.. 4-3

A [arch] - Specify processor for code generation 4-3
B - Binary Cross Reference Values 4-3
E - Creates an error listing file.. 4-3
L - Creates a listing file .. 4-4
O - Generate output file... 4-4
P - Generate Partial “C” Source .. 4-4
S - Generate .BIN Output ... 4-4

Table of Contents

Symbios Logic PCI-SCSI Programming Guide vii

U - Omit Termination Record ..4-4
V - Verbose Messages...4-4
X - Patch Offsets..4-4

Example Assembler Command Lines ...4-5
How NASM Parses SCRIPTS Files ...4-5
Assembler Declarative Keywords..4-6

ABSOLUTE..4-7
ARCH...4-7
ENTRY...4-8
EXTERN ..4-8
PASS...4-9
PROC ...4-9
RELATIVE ...4-10
TABLE ...4-11

Conditional Keywords ...4-13
If ...4-13
When...4-13

Logical Keywords ..4-13
NOT ...4-13
AND ...4-13
OR ..4-13

Flag Fields...4-14
ACK..4-14
ATN ...4-14
TARGET ..4-14
CARRY...4-14

Qualifier Keywords ..4-14
DSAREL...4-14
FROM ..4-14
MASK...4-15
MEMORY ..4-15
PTR ..4-15
REG..4-15
REL ..4-15
TO ..4-15
WITH ...4-15
NOFLUSH ...4-15

Other Keywords ..4-16
Action Keywords..4-16
SCSI Phases ..4-16
Register Names ..4-16

Table of Contents

viii Symbios Logic PCI-SCSI Programming Guide

 Chapter 5

The NASM Output File

Overview .. 5-1
NASM Output File Sections ... 5-3

SCRIPTS Array .. 5-3
External .. 5-6
Relative... 5-7
Entry .. 5-9
Label Patches.. 5-9
Absolute ... 5-10
Termination Record .. 5-11

 Chapter 6

Using the Registers to Control Chip Operations

Overview .. 6-1
SCSI Registers.. 6-1
DMA Registers ... 6-4
SCRIPTS Registers... 6-5
Interrupt Registers .. 6-6
Test and Miscellaneous Registers .. 6-7
General Purpose Registers... 6-8
Register Initialization .. 6-8

 Chapter 7

Integrating SCRIPTS Programs Into “C” Language
Drivers

Overview .. 7-1
Initializing the SYM53C8XX... 7-1
Table Indirect Operations.. 7-3

Patching ... 7-7
EXTERN Buffers.. 7-7
RELATIVE Buffers... 7-8
ABSOLUTE Values .. 7-8
Buffer Addresses ... 7-8
Byte Counts .. 7-9
Absolute JUMP/CALL Addresses .. 7-9
Entry Locations... 7-9
Self Modifying SCRIPTS Code ... 7-9

Running a SCRIPTS Program... 7-11

Table of Contents

Symbios Logic PCI-SCSI Programming Guide ix

 Chapter 8

Writing Device Drivers With SCRIPTS

Overview ...8-1
Command Block..8-3
Power Up Example..8-3
 I/O Request Process..8-4
How to Write a Device Driver With SCRIPTS8-6
 Table Indirect Addressing ...8-7

Block Move Instructions...8-7
Select/Reselect Instructions ..8-8
Defining a Table ..8-10

Relative Addressing..8-11

 Chapter 9

SCRIPTS Programming Topics

Overview ...9-1
Scatter/Gather Operations..9-1
Loopback Mode ..9-4

Loopback Example - Selection..9-4
Byte Recovery on Target Disconnect ..9-9

Saving the State of the
SYM53C8XX ..9-9

Updating the SCRIPTS Program..9-12
Cleaning Up ..9-12
Example Byte Recovery Code ...9-12

Synchronous Negotiation and Transfer.....................................9-18
Interrupt Handling ..9-19

Polling and Hardware Interrupts...9-19
Registers ..9-19
Fatal vs. Non-Fatal Interrupts ..9-20
Masking...9-21
Stacked Interrupts..9-22
Halting in an Orderly Fashion ..9-23
Sample Interrupt Service Routine9-23

Migrating Existing Software to Ultra and Ultra2 SCSI9-24
Clock Divider Bits..9-25
Ultra Enable Bit ...9-25
Loading the New Register Values..9-25
Negotiating Synchronous Transfers9-26
Using the SCSI Clock Doubler...9-26
Using the SCSI

Clock Quadrupler ...9-27
Using the SCRIPTS RAM ...9-28

Loading SCRIPTS RAM ...9-28
Programming Techniques when Using SCRIPTS RAM9-30
Patching Internal and External SCRIPTS Programs9-36

Table of Contents

x Symbios Logic PCI-SCSI Programming Guide

 Chapter 10

Multi-Threaded I/O

Overview .. 10-1
Multi-threaded Operations Flow.. 10-2
SCRIPTS Areas .. 10-3
Multi-Threaded SCRIPTS Example 10-3
Using the SIGP bit to Abort an Instruction 10-9
I/O Completion..10-11

 Chapter 11

Programming Multifunction Devices

Using the SYM53C885 Power Management Feature 11-1
Coma Mode.. 11-2
Snooze Mode .. 11-2
Register Bits Used for Power Management 11-2

Programming the SYM53C885 Internal Arbiter....................... 11-3

 Chapter 12

Using the SYM53C8XX in Target Applications

Overview .. 12-1
Registers Used for Target Operation.. 12-3
Using SCRIPTS for Target Operations.................................... 12-4

Sample Target Operation SCRIPTS Program 12-4
Synchronous Negotiation by a Target Device12-17

 Chapter 13

Debugging the SYM53C8XX

Overview .. 13-1
Chip Debugging Guidelines .. 13-3

Common Problems/Things to Check 13-4

 Appendix A

NASM Error Messages

Errors...A-1
Fatal Errors ..A-15
Warnings ..A-16

Table of Contents

Symbios Logic PCI-SCSI Programming Guide xi

 Appendix B

Register Summaries

SYM53C810A Operating Registers ... B-1
SYM53C815 Operating Registers.. B-7
SYM53C825A Operating Registers ... B-12
SYM53C860 Operating Registers.. B-18
SYM53C875 Operating Registers.. B-24
SYM53C876 Operating Registers.. B-30
SYM53C885 SCSI Register Summary B-36
SYM53C895 Operating Registers.. B-42

 Appendix C

Multi-Threaded SCRIPTS Example

Glossary ...Glossary-1
Index ... Index-1

Table of Contents

xii Symbios Logic PCI-SCSI Programming Guide

List of Figures

Symbios Logic PCI-SCSI Programming Guide xiii

List of Figures

Chapter 1

Introduction

Figure 1-1
SYM53C8XX Block Diagram . 1-5

Figure 1-2
Typical SCRIPTS Operation . 1-8

Chapter 2

Programming the SYM53C8XX With SCRIPTS

Figure 2-1
Assembling SCSI SCRIPTS. 2-5

Chapter 3

The SYM53C8XX Instruction Set

Figure 3-1
Use of the Mask Keyword . 3-5

Figure 3-2
Reselection Instruction. 3-40

Figure 3-3
WAIT RESELECT and the SIGP bit. 3-53

Figure 3-4
I/O Instruction Type . 3-57

Figure 3-5
Memory Move Instruction Part 1 . 3-58

Figure 3-6
Memory Move Instruction Part 2 . 3-58

Figure 3-7
Transfer Control Instruction . 3-59

Figure 3-8
Read/Write Instruction. 3-60

Figure 3-9
Block Move Instruction . 3-61

Figure 3-10
Load/Store Instruction . 3-62

List of Figures

xiv Symbios Logic PCI-SCSI Programming Guide

Chapter 5

The NASM Output File

Figure 5-1
Structures in a SCRIPTS Program . 5-2

Chapter 7

Integrating SCRIPTS Programs Into “C” Language
Drivers

Figure 7-1
SCRIPTS Source File . 7-12

Figure 7-2
NASM Output File . 7-16

Chapter 8

Writing Device Drivers With SCRIPTS

Figure 8-1
The Role of the SCSI Device Driver . 8-1

Figure 8-2
SCSI Device Driver Layers . 8-2

Figure 8-3
Power Up Example . 8-4

Figure 8-4
I/O Operation . 8-5

Figure 8-5
Table Indirect Addressing . 8-9

Figure 8-6
Table Definition . 8-10

Chapter 9

SCRIPTS Programming Topics

Figure 9-1
Storing Data Structures in SCRIPTS RAM 9-29

Figure 9-2
External Script (.LIS): . 9-31

Figure 9-3
External Script (.OUT): . 9-32

List of Figures

Symbios Logic PCI-SCSI Programming Guide xv

Figure 9-4
Internal Script (.LIS): . 9-33

Figure 9-5
Internal SCRIPTS Program (.OUT): . 9-34

Chapter 10

Multi-Threaded I/O

Figure 10-1
Multi-threaded System Operation . 10-1

Figure 10-2
Multi-threaded SCRIPTS Operational Flow 10-3

List of Figures

xvi Symbios Logic PCI-SCSI Programming Guide

AT&T -- PROPRIETARY

Use pursuant to Company Instructions

List of Tables

Symbios Logic PCI-SCSI Programming Guide xvii

List of Tables

Chapter 1

Introduction

Table 1-1
Features and Functions of SYM53C8XX Family Chips 1-3

Table 1-2
Conventions Used in This Programming Guide 1-9

Chapter 2

Programming the SYM53C8XX With SCRIPTS

Table 2-1
SCSI Protocol and SCRIPTS instructions 2-2

Table 2-2
Big and Little Endian Byte Addressing 2-10

Chapter 3

The SYM53C8XX Instruction Set

Table 3-1
SCRIPTS Instructions Supported by the SYM53C8XX Family . 3-1

Chapter 4

Using the Symbios Logic Assembler

Table 4-2
Code Generation Keywords . 4-6

Table 4-3
Miscellaneous Keywords . 4-6

Table 4-1
Data Definition and Storage Keywords. 4-6

List of Tables

xviii Symbios Logic PCI-SCSI Programming Guide

AT&T -- PROPRIETARY

Use pursuant to Company Instructions

Chapter 5

The NASM Output File

Table 5-1
Relationship Between Entry and PROC Statements
 and Output File . 5-5

Chapter 6

Using the Registers to Control Chip Operations

Table 6-1
SYM53C8XX SCSI Registers . 6-2

Table 6-2
SYM53C8XX DMA Registers. 6-4

Table 6-3
SYM53C8XX SCRIPTS Registers . 6-5

Table 6-4
SYM53C8XX Interrupt Registers . 6-6

Table 6-5
SYM53C8XX Test Registers. 6-7

Table 6-6
SYM53C8XX General Purpose Registers 6-8

Table 6-7
53C815/53C810A/53C860 Startup Bits. 6-9

Table 6-8
SYM53C825A/875/876/885/895 Startup Bits 6-11

List of Tables

Symbios Logic PCI-SCSI Programming Guide xix

AT&T -- PROPRIETARY

Use pursuant to Company Instructions

Chapter 7

Integrating SCRIPTS Programs Into “C” Language
Drivers

Chapter 8

Writing Device Drivers With SCRIPTS

Chapter 9
SCRIPTS Programming Topics

Chapter 10
Multi-Threaded I/O

Chapter 11
Programming Multifunction Devices

Table 11-1
SYM53C885 Power Management Registers 11-3

Chapter 12
Using the SYM53C8XX in Target Applications

Table 12-1
SCSI Protocol and Target SCRIPTS Instructions 12-1

Table 12-2
Register Bits Used for Target Operation. 12-3

Chapter 13
Debugging the SYM53C8XX

Table 13-1
Registers Useful for Debugging SYM53C8XX 13-1

List of Tables

xx Symbios Logic PCI-SCSI Programming Guide

AT&T -- PROPRIETARY
Use pursuant to Company Instructions

Chapter A
NASM Error Messages

Chapter B
Register Summaries

Chapter C
Multi-Threaded SCRIPTS Example

Introduction
What is Covered in This Guide

Symbios Logic PCI-SCSI Programming Guide 1-1

Chapter 1

Introduction

What is Covered in This Guide 0

This manual provides basic information for writing device drivers
that use the SYM53C810A, SYM53C815, SYM53C825A,
SYM53C860, SYM53C875, and SYM53C895, SYM53C876, and
the SCSI portion of the SYM53C885(this group of products is
referred to as SYM53C8XX).

● This chapter introduces the SYM53C8XX features and
functions, and the parts of the PCI-SCSI system that are involved
in operating the chip.

● Chapter 2 describes the SCRIPTS processor and programming
language in depth, including how SCRIPTS programs are
integrated with “C” code to execute SCSI commands.

● Chapter 3 describes the SYM53C8XX instruction set, with
detailed functional descriptions and usage guidelines for all of the
instructions supported by the SYM53C8XX.

● Chapter 4 and Chapter 5 cover the Symbios Logic Assembler
(NASM), including directives, and the .out file format.

● Chapter 6 contains functional and address information on the
SYM53C8XX register set.

● Chapter 7 illustrates the relationship between the SCRIPTS
program and the “C” language device driver.

● Chapter 8 and Chapter 9 address specific kinds of driver
applications, with code samples for all applications discussed.

● Chapter 10 contains guidelines for writing SCRIPTS for multi-
threaded applications.

● Chapter 11 contains specific information for programming the
Symbios Logic multifunction controllers SYM53CX885 and
SYM53C876.

● Chapter 12 provides guidelines that are specific to using the
SYM53C8XX in a target device.

● Chapter 13 provides information on debugging SCRIPTS
programs.

● The appendixes contain a listing of NASM error messages, a
glossary, a register summary, and a sample multi-threaded
SCRIPTS program.

Introduction
Product Overview

1-2 Symbios Logic PCI-SCSI Programming Guide

This manual is written for users who are familiar with the SCSI and
PCI specifications, and have a working knowledge of computer
architectures and programming. The Preface of this document
identifies sources for obtaining some of this background information,
if needed.

Product Overview 0

The SYM53C8XX PCI-SCSI I/O Processor is based on the
SYM53C7XX SCSI I/O Processor family architecture, with a host
interface to the Peripheral Component Interconnect (PCI) bus.

The SYM53C8XX connects to the PCI bus without glue logic. The
SYM53C810A and SYM53C860 are optimized for motherboard
applications; a complete design can be implemented in less than four
square inches of space on the motherboard. The SYM53C815,
SYM53C825A, SYM53C875, and SYM53C895 are ideal for host
adapter and motherboard applications, because of an added external
memory interface which allows BIOS code to be placed in an
external EEPROM to provide a bootable host adapter. The
SYM53C825A, SYM53C875, and SYM53C895 have 4KB of
onboard RAM for SCRIPTS instruction storage, to minimize PCI
bus overhead by performing SCRIPTS instruction fetches without
using the PCI bus. The SYM53C885 and SYM53C876 are
multifunction controllers that each use only one PCI bus load. The
SYM53C885 includes a SCSI I/O Processor and an Ethernet
controller, and the SYM53C876 contains two independent SCSI
functions.

The Symbios Logic SCSI I/O Processors are the first products to
concentrate the functions of an intelligent SCSI adapter board onto a
single chip. The SYM53C8XX integrates a high-performance SCSI
core, a PCI bus master DMA core, and the SCSI SCRIPTS™
processor to meet the flexibility requirements of SCSI-3 and future
SCSI standards. It executes multi-threaded I/O algorithms with
minimum host processor intervention, reducing the protocol
overhead required for SCSI operations to as little as one interrupt per
SCSI I/O. The SCRIPTS language, a high-level instruction set,
provides complete programmability of I/O operations and supports
the flexibility needed for multi-threaded I/O algorithms. The
SYM53C8XX uses SCRIPTS to provide: phase sequencing without
processor intervention; automatic bus arbitration; data or phase
comparison for independent SCSI algorithm decisions; and DMA
interface control. All SYM53C8XX family chips are also supported
by Symbios Logic software for connecting SCSI devices, including
BIOS support for Symbios Logic SCSI processors and drivers for
most types of SCSI peripherals under the major operating systems.

Introduction
Product Overview

Symbios Logic PCI-SCSI Programming Guide 1-3

All SYM53C8XX chips feature on chip single-ended drivers;
synchronous and asynchronous transfer capabilities; and Symbios
Logic TolerANT® driver and receiver technology, for single-ended
signal integrity in any cabling environment. They support bus
mastering, automatic selection/reselection time-outs, 32-bit memory
addressing, a 32-bit data bus, and PCI bursting. The features and
functions of individual chips in the SYM53C8XX family are
summarized in Table 1-1.

Note: the SCSI portion of the SYM53C885 is functionally
comparable to the SYM53C875. For specific information on the
features and functions of the SYM53C885, refer to the
SYM53C885 Data Manual. For specific information on
programming the Ethernet function of the SYM53C885, refer to
the Symbios Logic PCI-Ethernet Programming Guide.

Note: the SYM53C876 has two SCSI functions, each
comparable to the SYM53C875. For specific information on the
features and functions of the SYM53C876, refer to the
SYM53C876 Data Manual.

Table 1-1
Features and Functions of SYM53C8XX
Family Chips

SYM53C810A SYM53C860 SYM53C815 SYM53C825A,
SYM53C825AJ

SYM53C875,
SYM53C875J,
SYM53C875JB,
SYM53C875N

SYM53C895

Max. Transfer
Rate

5 MB/s async.
10 MB/s sync.

5 MB/s async.
20 MB/s
sync. (w/
Ultra SCSI)

5 MB/s async.
10 MB/s sync.

10 MB/s
async.
20 MB/s sync.

10 MB/s
async.
40 MB/s
sync. (w/
Ultra SCSI)

10 MB/s
async.
80 MB/s
sync. (w/
Ultra2 SCSI)

DMA FIFO Size
(bytes)

80 80 64 88 or 536 88 or 536 112 or 816

Synchronous
Offset (levels)

8 8 8 16 16 31

SCRIPTS RAM no no no yes yes yes

Differential SCSI no no no yes yes LVD and
high voltage
differential

Wide SCSI no no no yes yes yes

External Memory
Interface

no no yes yes yes yes

Introduction
Product Overview

1-4 Symbios Logic PCI-SCSI Programming Guide

Figure 1-1 is a block diagram of the SYM53C8XX, with a map of
SCSI data and control paths through the chips.

Instruction
Prefetch

yes yes no yes yes yes

Load/Store
Instructions

yes yes no yes yes yes

Enhanced Move
Register
Capability

no no no yes yes yes

SCSI Selected
As ID Bits

yes yes no yes yes yes

Number of 32-bit
SCRATCH
Registers

2 2 2 10 10 10

PCI Caching yes yes no yes yes yes

Selectable IRQ
Disable

yes yes no yes yes yes

Big/Little Endian
support

Little Endian Little Endian Big or Little
Endian

Big or Little
Endian
(except
53C825AJ)

Big or Little
Endian
(except
53C875J,
53C875JB)

Big or Little
Endian

Package
100 PQFP 100 PQFP 128 PQFP 160 PQFP 160 PQFP,

169 BGA,
208 PQFP

208 PQFP

Table 1-1 (Continued)
Features and Functions of SYM53C8XX
Family Chips

SYM53C810A SYM53C860 SYM53C815 SYM53C825A,
SYM53C825AJ

SYM53C875,
SYM53C875J,
SYM53C875JB,
SYM53C875N

SYM53C895

Introduction
Benefits of Ultra SCSI and Ultra2 SCSI

Symbios Logic PCI-SCSI Programming Guide 1-5

Benefits of Ultra SCSI and Ultra2
SCSI 0

Ultra SCSI is an extension of the SCSI-3 standard that expands the
bandwidth of the SCSI bus and allows faster synchronous SCSI
transfer rates. When enabled, Ultra SCSI performs 20 megatransfers
per second, which results in approximately doubling the synchronous
transfer rates of fast SCSI-2. The SYM53C860 and SYM53C875
can perform 8-bit or 16-bit Ultra SCSI synchronous transfers as fast
as 20 MB/s or 40 MB/s.

Figure 1-1
SYM53C8XX Block Diagram

PCI

Bus

External Oscillator or

Optional

Internal Connection

 to PCI Bus Clock

SYM53C8XX

CPU Baseboard

Vdd Vss

CPU Box

SCSI Bus

Bulkhead

SCSI Term ConnectionSCSI Connection

SCLK Peripheral
External Memory

 (when supported)

Introduction
System Overview

1-6 Symbios Logic PCI-SCSI Programming Guide

Ultra2 SCSI extends SCSI performance beyond Ultra SCSI rates, up
to 40 megatransfers per second. It also defines a new physical
interface, Low Voltage Differential SCSI (LVD), that retains the
reliability of high voltage differential SCSI while allowing a longer
cable and more devices on the bus than Ultra SCSI. The
SYM53C895 can perform 16-bit, Ultra2 SCSI synchronous
transfers as fast as 80 MB/s.

The advantages of Ultra SCSI and Ultra2 SCSI are most noticeable
in heavily loaded systems, or large-block size applications such as
video on-demand and image processing. One advantage of Ultra
SCSI and Ultra2 SCSI are that they significantly improve SCSI
bandwidth while preserving existing hardware and software
investments. Symbios Logic Ultra SCSI and Ultra2 SCSI chips are
all compatible with Fast-SCSI software; the only changes required
are to enable the chip to negotiate for the faster synchronous transfer
rates. The SYM53C860 and SYM53C875 can use the same board
socket as an SYM53C810A and SYM53C825A, respectively, with
the addition of an 80MHz SCLK. The SYM53C875 contains an
internal SCSI clock doubler, allowing it to transfer data at Ultra
SCSI rates with a 40MHz clock. The SYM53C895 contains an
internal SCSI clock quadrupler, allowing it to transfer data at Ultra2
SCSI rates with a 40 MHz clock.

Some changes to existing cabling or system designs may be needed to
maintain signal integrity at Ultra SCSI synchronous transfer rates.
These design issues are discussed in the Ultra SCSI and Ultra2 SCSI
chip data manuals.

System Overview 0

To execute SCSI SCRIPTS programs, the SYM53C8XX requires
only a SCSI SCRIPTS starting address; all subsequent instructions
are fetched from external memory or internal SCRIPTS RAM (when
supported). The SYM53C8XX fetches up to eight dwords at a time
across the DMA interface and loads them into the internal chip
registers. When the chip is operating at its highest frequency,
instruction fetching and decoding takes as little as 500 nanoseconds
(ns).The chip fetches instructions until a SCRIPTS interrupt occurs
or until an external, unexpected event (such as a hardware error)
causes an interrupt. The full set of SCSI features in the instruction
set allows re-entry to the algorithm at any point. This high level
interface can be used for both normal operation and exception
conditions.

Introduction
System Overview

Symbios Logic PCI-SCSI Programming Guide 1-7

How SCRIPTS Operations
Control the SYM53C8XX 0

A typical SCRIPTS operation is illustrated in Figure 1-2. Before
SCRIPTS operation begins, the host processor writes the Data
Structure Address (DSA, 10-13h) register value to initialize the
pointer for table indirect operations. To begin SCRIPTS operation,
the host processor writes the starting address of the SCRIPTS
instructions into the DMA SCRIPTS Pointer Register (DSP, 2C-
2Fh) register of the SYM53C8XX. Once it receives this address, the
SYM53C8XX becomes a bus master and fetches the first SCRIPTS
instruction. The SYM53C8XX executes all steps of the instruction,
moving through the appropriate bus phases and interrupting only
when the SCRIPTS operation is completed or the SYM53C8XX
requires service from the external processor. This leaves the host
processor free for other tasks. The SYM53C8XX fetches the next
instruction, and the process begins again.

Software developers can develop SCSI SCRIPTS source code in any
text editor. The Symbios Assembler (NASM) assembles SCRIPTS
code into an array of assembled SCRIPTS instructions that can be
included in the main “C” language program and linked together to

Introduction
Conventions

1-8 Symbios Logic PCI-SCSI Programming Guide

create an executable driver. When compiled, these programs control
the operation of the SYM53C8XX.

Conventions 0

The following types of notation are used in this programming guide
to represent screen displays, command line entries, and variables in
the code examples:

Figure 1-2
Typical SCRIPTS Operation

Host System SYM53C8XX

Processor
S

Y

S

T

E

M

B

U

S

System Memory

Operating

Registers

SCRIPTS

Processor

SCRIPTS RAM

(when supported)

Data Structure

Message Buffer

Command Buffer

Data Buffer

Status Buffer

Write DSP

S

C

S

I

B

U

SFetch instruction from

internal or external

memory

Interrupt when

done

(Expanded view)

Introduction
Conventions

Symbios Logic PCI-SCSI Programming Guide 1-9

Table 1-2
Conventions Used in This
Programming Guide

Item Definition Example

square
braces
[]

optional items in
instruction examples

CALL [REL] Address, [{IF |
WHEN} [NOT] CARRY]

courier
font

used for code samples,
filenames, command
line information,
prompts, etc. that
appear in body text

program.exe

All Caps Keywords JUMP [REL] Address, [{IF |
WHEN} [NOT] CARRY]

Curly
braces
{}

choose between items
enclosed in curly braces

SELECT [ATN] {FROM Address
| ID}, [REL] Address

{} “...” the item enclosed in
the curly braces can be
repeated as often as
desired

SET
{ACK|ATN|TARGET|CARRY}
[and
{ACK|ATN|TARGET|CARRY}...
]

| OR, select one item
from a list

INTFLY int_value, [{IF |
WHEN} [NOT] CARRY]

\ line continuation RELATIVE baselabel \

Introduction
Conventions

1-10 Symbios Logic PCI-SCSI Programming Guide

Programming the SYM53C8XX With SCRIPTS
The SCRIPTS Processor

Symbios Logic PCI-SCSI Programming Guide 2-1

Chapter 2

Programming the SYM53C8XX With
SCRIPTS

The SCRIPTS Processor 0

The advantages of SCSI SCRIPTS and the SCRIPTS processor can
be utilized only with the SYM53C7XX and SYM53C8XX families
of SCSI processors. The SCRIPTS processor is a specially designed
processor, located in the SYM53C8XX, that permits instructions to
be fetched from internal or external memory. Algorithms written in
the SCSI SCRIPTS language are assembled to control the SCSI and
DMA modules. Complex SCSI bus sequences, including multiple
SCRIPTS instructions, execute independently of the host processor.

SCSI SCRIPTS reside in host computer memory or internal
SCRIPTS RAM during system operation, allowing for fast
execution. If instructions reside in external memory, the
SYM53C8XX chip fetches SCRIPTS programs from memory using
bus master DMA transfers. If instructions reside in SCRIPTS RAM,
they are fetched directly from RAM without generating PCI bus
traffic. The SCRIPTS processor allows users to fine tune SCSI
operations such as adjusting to new device types, adapting to changes
in SCSI logical definitions, or quickly incorporating new options
(such as vendor unique commands or new SCSI specifications). The
SCRIPTS processor fetches SCRIPTS instructions from system
memory to control operation of the SYM53C8XX. The SCRIPTS
processor does not compile code; SCRIPTS programs must be
assembled for execution by the NASM assembler and then compiled
with a standard “C” compiler as part of a “C” program. Third
generation SCSI devices can be programmed with SCRIPTS using
only a few hundred lines of SCRIPTS code. SCRIPTS are
independent of the CPU, operating system, or system bus being
used, so they are portable across platforms.

Programming the SYM53C8XX With SCRIPTS
SCRIPTS and the SCSI Bus Phases

2-2 Symbios Logic PCI-SCSI Programming Guide

SCRIPTS and the SCSI Bus Phases 0

One important advantage of SCSI SCRIPTS is that the SCRIPTS
language corresponds directly to SCSI protocol. In conjunction with
the high level language syntax, it provides an excellent vehicle to
master the complexity of SCSI. The one-to-one relationship between
protocol phases and SCRIPTS instructions means that SCRIPTS
can be customized to specific operations on the SCSI bus, and that
SCSI software development is simplified by using SCRIPTS. SCSI
uses the bus phases in the order shown in Table 2-1. This table also
shows the SCSI SCRIPTS instructions that correspond to the SCSI
bus phases for initiator and target roles.

Table 2-1
SCSI Protocol and SCRIPTS
instructions

Bus Phase Definition
SCRIPTS
instruction
(initiator role)

SCRIPTS
instruction
(target role)

Bus Free This phase indicates that the SCSI
bus is available.

Arbitration This phase allows the initiator to gain
control of the SCSI bus.

SELECT ATN RESELECT

Selection During this phase, the initiator
selects a target device to perform the
desired function. The Attention
option notifies the target that upon
successful selection the initiator
desires to send further messages.

SELECT ATN WAIT SELECT

Reselection The target reselects with the initiator
during this phase

WAIT
RESELECT

RESELECT

Message Out During this phase, the initiator may
send messages to the target, such as
queuing information and error
recovery information.

MOVE WHEN
MSG_OUT

MOVE WITH
MSG_OUT

Command During this phase, the initiator may
send a command in the form of a
command descriptor block (CDB) to
the target buffer.

MOVE WHEN
CMD

MOVE WITH
CMD

Programming the SYM53C8XX With SCRIPTS
Assembling SCSI SCRIPTS

Symbios Logic PCI-SCSI Programming Guide 2-3

Assembling SCSI SCRIPTS 0

SCRIPTS are assembled with the Symbios Logic Assembler
(NASM™), a DOS command line-driven assembler that supports
Symbios Logic SCSI processors (SYM53C7XX and SYM53C8XX).
NASM assembles SCSI SCRIPTS for inclusion in SCSI device
driver software programs. NASM is described in detail in Chapter 4.

SCSI SCRIPTS programs can be created with any text editor that
generates ASCII files. These source files must be transformed from
their text form into the SCRIPTS processor's instruction language
before they can be executed by the SYM53C8XX. This is

Data In/Out Data In and Data Out phases are
used to send data to the initiator or
to the target and are used dependent
on the information transferred
during the Command phase. This
phase is optional. For example, a Test
Unit Ready command does not
require a data transfer.

MOVE MOVE

Status During this phase, the initiator will
receive status information from the
target about the previously executed
CDB.

MOVE WHEN
STATUS

MOVE WITH
STATUS

Message In During this phase, the initiator will
receive messages from the target.
These messages can acknowledge or
reject previously sent initiator
messages. They also can provide
other information like queuing,
disconnect, or parity errors.

MOVE WHEN
MSG_IN

MOVE WITH
MSG_IN

Disconnect This phase is used to end the
initiator's connection with the bus.

WAIT
DISCONNECT

DISCONNECT

After successful completion of an I/O
operation and a request for
disconnect, the bus returns to the
Bus Free state, indicating that it is
now available.

WAIT
DISCONNECT

DISCONNECT

Table 2-1
SCSI Protocol and SCRIPTS
instructions (Continued)

Bus Phase Definition
SCRIPTS
instruction
(initiator role)

SCRIPTS
instruction
(target role)

Programming the SYM53C8XX With SCRIPTS
Assembling SCSI SCRIPTS

2-4 Symbios Logic PCI-SCSI Programming Guide

accomplished by running NASM. NASM generates an output file
(.out) that is compatible with all standard “C” compilers, as well as
a cross-reference list (.lis) file that includes the source instruction
and the assembled output on the same line. The .lis file is useful for
debugging code. All instructions and data are represented as
hexadecimal numbers in C-style array declarations. The .out file can
be included in the “C” program and linked together with other
system support object files to form the final executable code.

When the executable is run, areas of host memory are reserved for
SCSI data transfer buffers and the SCRIPTS instructions. The
instructions, which look like 32-bit integer arrays to the “C”
program, are loaded into the appropriate area of memory by the “C”
code. The driver program loads the address of the first instruction
into the SYM53C8XX to begin SCRIPTS execution.

Programming the SYM53C8XX With SCRIPTS
Assembling SCSI SCRIPTS

Symbios Logic PCI-SCSI Programming Guide 2-5

Figure 2-1
Assembling SCSI SCRIPTS

SCRIPTS

Source Code

Symbios Logic

 Assembler

scripts.lis

cross reference file

program.c

"C" source code

scripts.out

"C" compatible

support.c

C Compiler

Host Linker

program.obj support.obj

program.exe

SCSI driver

1.

2.

3.

4.

5.

6.

7.

include

scripts .ss

1. Write SCSI SCRIPTS source code

2. Assemble the source code using the Symbios Logic
Assembler

3. Write “C” language source code and include
assembled SCRIPTS code

4. Compile all code using a “C” compiler

5. The result is object (.obj) code

6. Link all object modules together

7. The result is an executable program

Programming the SYM53C8XX With SCRIPTS
Using SCSI SCRIPTS

2-6 Symbios Logic PCI-SCSI Programming Guide

Using SCSI SCRIPTS 0

SCRIPTS Data Sizes 0

Address a 32-bit number

Value a 32-bit number

Count a 24-bit number

Data an 8-bit number

ID a 4-bit encoded SCSI ID

Programming the SYM53C8XX With SCRIPTS
Using SCSI SCRIPTS

Symbios Logic PCI-SCSI Programming Guide 2-7

SCSI SCRIPTS Language
Elements 0

SCSI SCRIPTS
Expressions 0

Arithmetic Operators 0

Bitwise Operators 0

The value of all expressions is automatically extended to 32 bits.
When expressions are used in a context where the evaluated value is

name A name is a string of one or more consecutive characters.
It may consist of letters, numbers, underscores, and dollar
signs, but must begin with an alphabetic character. When
used for labels, externals, and variables in the relative data
area, names are passed on to the host development system
and are subject to the host's syntactic restrictions. Names
cannot be reserved words in the host language. For
example, Turbo C, which is used as the host development
system for NASM, does not allow names to begin with a
digit or to contain a dollar sign ($). Therefore, the SCSI
SCRIPTS writer for DOS and Turbo C should avoid
names of this form.

label A label is a name followed by a colon. Labels are symbolic
addresses that can be used as transfer control destination
points (such as jump or call destinations). Labels are case-
sensitive.

comment Comments are used to notate the SCRIPTS. They are
optional and are ignored by the compiler. Comments
begin with a semi-colon and continue to the end of a line.

Symbol Meaning

+ addition

- subtraction

Symbol Meaning

& Logical AND

| Logical OR

XOR Exclusive OR

SHL Shift left

SHR Shift right

Programming the SYM53C8XX With SCRIPTS
Description of SCRIPTS Instructions

2-8 Symbios Logic PCI-SCSI Programming Guide

less than 32 bits, the least significant bits will be used. For example, if
an expression is used to represent a count, normally 24 bits, for a
Move instruction, the evaluated value will be truncated to 24 bits.
The user will be notified if the expression has been truncated and if
the value of the expression is changed during truncation. The
symbols for the bitwise operators are used only for register
manipulations. Any other instruction using comparison must spell
out AND or OR.

SCSI SCRIPTS Keywords 0

The SCSI SCRIPTS keywords have eight types: Declarative,
Conditional, Logical, Flag Field, Qualifier, Action, SCSI Phase, and
Register Name. Keywords are written in all capital letters for clarity,
but are not case-sensitive. Refer to Chapter 4 for detailed
descriptions of individual keywords.

Description of SCRIPTS Instructions0

This section contains an overview of the types of instructions
supported by SCRIPTS. Each instruction, including all legal forms,
is described in detail in Chapter 3.

I/O Instructions 0

The I/O Instruction type is selected when the two high order bits of
the DCMD register are 01, with op code bit values of 000-100. I/O
Instructions perform SCSI operations such as Selection and
Reselection. Each function is a direct command to the SCSI portion
of the SYM53C8XX. The I/O operations, chosen with the op code
bits in the DCMD register, are:

Op Code Target Initiator

000 RESELECT SELECT, SELECT WITH ATN

001 DISCONNECT WAIT FOR DISCONNECT

010 WAIT FOR SELECT WAIT FOR RESELECT

011 SET SET

100 CLEAR CLEAR

Programming the SYM53C8XX With SCRIPTS
Description of SCRIPTS Instructions

Symbios Logic PCI-SCSI Programming Guide 2-9

Memory Move Instructions0

The Memory Move Instruction type is selected when the two high
order bits of the DCMD register are 11.The Memory Move
instruction allows you to transfer data from one 32-bit memory
location to another. The source or the destination may be a chip
register. A 24-bit byte counter allows large moves to occur with no
intervention from the host processor. If both addresses are in system
memory, the SYM53C8XX functions as a high-speed DMA
controller, able to move data at sustained speeds up to 47 megabytes
per second (MB/s) without using the host processor or its cache
memory. Data is moved from the source address into the chip's DMA
FIFO and then out to the destination address. This instruction type
does not allow indirect addressing, so the physical 32-bit address
must be in the SCRIPTS instruction.

In chips that support instruction prefetching, the NOFLUSH
qualifier can be used to prevent the prefetch buffer from being
flushed when the chip performs a Memory to Memory Move
instruction.

Transfer Control
Instructions 0

The Transfer Control instruction type is selected when the two high
order bits of the DCMD register are 10. Transfer Control
Instructions perform SCRIPTS operations such as JUMP, CALL,
RETURN, and INTERRUPT. These instructions allow comparisons
of current phase values on the SCSI bus or the first byte of data on
any asynchronous incoming bytes, and transfer control to another
address depending on the results of the comparison test. These
operations may conduct a test of the ALU carry bit, and may enable
interrupt on the fly, so that the interrupt instruction will not halt the
SCRIPTS processor.

Read/Write Instructions 0

Read/Write Instructions perform the following register operations:

The Read/Write Instruction type is selected when the two high order
bits of the DCMD register are 01, with the op code bit values from
101-111. Read/Write Instructions perform various register
operations, depending on the value of the operator bits as shown on
page 3- 35.

Move from SFBR
Moves the SCSI First Byte Received (SFBR) register
(08h) to a specified register address

Move to SFBR Moves a specified register value to the SFBR register

Read/Modify/Write
Reads a specified register, modifies it, and writes the
result back into the same register

Programming the SYM53C8XX With SCRIPTS
Big and Little Endian Byte Addressing

2-10 Symbios Logic PCI-SCSI Programming Guide

Block Move Instructions 0

The Block Move instruction type is selected when the two high order
bits of the DCMD register are 00. The Block Move instruction
transfers data (user data or SCSI information) to or from user
memory from or to the SCSI bus. The data may come from any
memory address, so scatter/gather operations for user data are
transparent to the chip and the external processor. A separate Block
Move instruction is written for each piece of data to be moved. This
instruction allows indirect and table indirect addressing.

Load and Store
Instructions 0

Load and Store instructions are available only in the
SYM53C810A/53C860/53C825A/53C875. They are a more
efficient way than the Memory Move instruction to move data
directly to/from memory from/to an internal register because they
have two dwords instead of three and require one PCI bus ownership
instead of two. These instructions will move a maximum of four
bytes. The Load/Store instruction type is selected when the three
high order bits of the DCMD register are 111. The memory address
may map to external memory space or to the SCRIPTS RAM.

Big and Little Endian Byte
Addressing 0

The guidelines in this section will help assure proper byte lane
ordering in Big or Little Endian designs. Please check the features list
for each chip to determine which products support Big and/or Little
Endian addressing.

Big Endian addressing is used primarily in designs based on
Motorola processors. The SYM53C8XX treats D(31-24) as the
lowest physical memory address. Little Endian is used primarily in
designs based on Intel processors. This mode treats D(7-0) as the
lowest physical memory address.

Table 2-2
Big and Little Endian
Byte Addressing

System data
bus

(31-24) (23-16) (15-8) (7-0)

53C8XX pins 31-24 23-16 15-8 7-0

Register SCNTL3 SCNTL2 SCNTL1 SCNTL0

Little Endian
addr

03h 02h 01h 00h

Big Endian
addr

00h 01h 02h 03h

Programming the SYM53C8XX With SCRIPTS
Big and Little Endian Byte Addressing

Symbios Logic PCI-SCSI Programming Guide 2-11

Order of SCRIPTS
Instructions 0

To ensure that SCSI SCRIPTS instructions are in the correct order,
each SCRIPTS routine must be compiled in the target architecture.
The “C” output (.OUT) file lists arrays of dword (32-bit) values,
which are stored in the memory by the processor and in the correct
order for the subsequent execution. For a Little Endian SCRIPTS
instruction to execute on a Big Endian machine, the bytes will need
to be reversed before execution. A PROM cannot be moved from one
environment to another without re-ordering bytes within each word.
The best way to guarantee correct byte ordering is to make sure the
SCRIPTS are placed in memory with the op code byte on the same
byte lane as the DCMD register in the SYM53C8XX.

Operating Register Access
from Firmware 0

To develop code that works in either mode, use equates for the
register names with an endian switch specified at compile time to
include the appropriate set of address values. Note that the change is
only for byte access. If 32 bits are accessed, there is no address
change from Big to Little Endian.

Operating Register Access
from SCRIPTS Routines 0

NASM uses logical names to access registers. Names do not change
when the mode changes, nor does the binary code required to access
a register.

User Data Byte Ordering 0

Data transfers to or from system memory from or to the SCSI bus
always start at the beginning address and continue until the last byte
is sent. No internal re-ordering of the data for either mode occurs. A
serial stream of data is assumed, and the first byte on the SCSI bus is
associated with the lowest address in system memory, regardless of
Big or Little Endian.

Programming the SYM53C8XX With SCRIPTS
Big and Little Endian Byte Addressing

2-12 Symbios Logic PCI-SCSI Programming Guide

The SYM53C8XX Instruction Set
Overview

Symbios Logic PCI-SCSI Programming Guide 3-1

Chapter 3

The SYM53C8XX Instruction Set

Overview 0

This section describes the SYM53C8XX SCSI I/O Processor
instruction set. Additional information may be found in the
SYM53C8XX product data manuals. The first section of this chapter
contains an alphabetical list of all SCSI instructions. Each instruction
is presented with a detailed description and usage guidelines. The
second section of the chapter presents illustrations of how all of the
instruction types are expressed in SCSI SCRIPTS language, NASM
output, and the binary form that is executed by the SCSI processor.
The SYM53C8XX Family supports the following SCRIPTS
instructions, grouped by instruction type. The individual instruction
entries list the SYM53C8XX family members that support each
instruction.

Table 3-1
SCRIPTS Instructions Supported by the
SYM53C8XX Family

Instruction Type Commands

I/O RESELECT, SELECT, SELECT WITH ATN, DISCONNECT, WAIT
DISCONNECT, WAIT SELECT, WAIT RESELECT, SET, CLEAR

Memory Move MOVE MEMORY

Transfer Control JUMP, CALL, RETURN, INTERRUPT, INTFLY

Read/Write MOVE REGISTER

Block Move MOVE, CHMOV

Load/Store LOAD, STORE

The SYM53C8XX Instruction Set
CALL

3-2 Symbios Logic PCI-SCSI Programming Guide

CALL 0

CALL {REL(Address) | Address} [, {IF | WHEN}[NOT][ATN | Phase] [AND
| OR] [data[AND MASK data]]]

CALL {REL(Address) | Address} [, {IF | WHEN}[NOT][Carry]

All Symbios Logic PCI-SCSI I/O Processors

SCSI Transfer Control, Call subroutine

REL indicates the use of relative addressing by setting the high order
bit in the DBC register.

Address is the location to which execution will be transferred if the
subroutine is called. This address is stored in the second dword of the
instruction.

WHEN forces the SCRIPTS engine to wait for a valid SCSI bus
phase before continuing. A valid phase is indicated by assertion of the
SREQ/ signal.

IF causes the SYM53C8XX to check immediately for a valid SCSI
bus phase without waiting. IF should not be used when comparing
for a phase, as this could yield unpredictable results. The only
exception is if a WHEN conditional was used just prior to the IF
conditional, for any given sequence of phase checks.

NOT negates the comparison. It clears the True bit if present,
otherwise the True bit is set.

Phase is used to specify the Message, Command/Data, and
Input/Output bit values that identify the SCSI phase in the
instruction. The desired phase value is compared with the actual
values of the SCSI phase lines before the SYM53C8XX performs the
instruction. This field is only valid for initiator mode and should not
be used in target mode.

ATN is used to indicate that a jump should take place based on an
initiator SATN/ signal. This field is valid only for target mode and
should not be used in initiator mode.

data when this field is present it represents an 8-bit value that is
stored in the data field of the instruction. In addition the Compare
Data bit is set.

MASK when this field is present it represents an 8-bit value that is
stored in the mask field of the instruction. Any bit that is set in the
mask causes the corresponding bit in the data byte to be ignored at
the time of the comparison.

Supported by:

Definition:

Operands:

The SYM53C8XX Instruction Set
CALL

Symbios Logic PCI-SCSI Programming Guide 3-3

CARRY is used to indicate that a jump should take place based on
the value of the carry bit in the ALU. Carry comparisons cannot take
place at the same time as data and phase comparisons.

CALL REL (Address), WHEN DATA_OUT

Op code - Transfer Control Instruction, Call subroutine

SCSI Phase - These bits reflect the actual values of the SCSI phase
lines. The bit values are defined below.

Relative Addr Mode - Relative Addressing Mode indicates that the
24-bit value in DSPS is to be used as an offset from DSP

Carry Test - When this bit is set, True/False comparisons may be
made based on the ALU Carry bit

True - Transfer on TRUE/FALSE condition
0 - Transfer if condition is FALSE
1 - Transfer if condition is TRUE

Compare Data - Compare data byte to first byte of the received
data
0 - Do not compare data
1 - Perform comparison

Compare Phase - Compare current SCSI phase to SCSI phase field
or SATN/. This bit is set whenever the Phase operand is used.
0 - Do not compare phase
1 - Perform comparison

Phase Message Command / Data Input / Output

DATA_OUT 0 0 0

DATA_IN 0 0 1

COMMAND 0 1 0

STATUS 0 1 1

RES4 1 0 0

RES5 1 0 1

MESSAGE_OUT 1 1 0

MESSAGE_IN 1 1 1

* Note: 0 - False, negated; 1 - True, asserted, For
these phases, SEL is negated and BSY is asserted.

* Res4 and Res5 are reserved SCSI phases. These combinations should not be
used for standard SCSI implementations

Example:

Format:

DCMD Register DBC Register DSPS Register

26 2431 30 29 27 23 22 21 20 19 18 17 16 15 8 7 0

10 001 XXX X 0 0 0 X X X X X...X X..X

Instr Type Op code SCSI

Phase

Rel

Addr

Mode

RES True Comp

Data

Comp

Phase

Wait Mask Data

31 0

Call Address

Call Address

or offset

RESCarry

Test

Fields:

The SYM53C8XX Instruction Set
CALL

3-4 Symbios Logic PCI-SCSI Programming Guide

Wait - Wait for valid phase. This bit is set by the WHEN operand in
the instruction, and cleared by the IF operand.
0 - Perform comparison immediately
1 - Wait for valid phase (SREQ/ asserted by target)

Mask - 8-bit field that is used to mask the value in SFBR before the
comparison with the data field in the instruction takes place. As a
result of this operation, any bits that are set will cause the
corresponding bit in the data byte to be ignored. If this field is not
specified, a mask of 0x00 is used.

Data - 8-bit field that is compared with the incoming data in SFBR
after the mask operation with the mask byte takes place. Comparison
indicates either an equal or not equal condition. If the Data field is
not specified, the compare data bit is cleared and 0x00 is coded for
both the mask and data bytes.

Call Addr - a 32-bit address (or 24-bit offset, if relative addressing is
used) where execution will continue if the subroutine is called.

The SCSI CALL instruction is a conditional subroutine call that
causes the next SCRIPTS instruction to be fetched from memory at
the 32-bit call address (or 24- bit offset). It is invoked if all conditions
in the instruction or data are met. If the comparison is false, the
SCRIPTS processor will not branch to the destination but will
instead fetch the next in-line instruction and continue execution. If
the subroutine is called, the next in-line instruction address is stored
in the chip's TEMP register, and will be restored to the DSP register
in response to a RETURN instruction following the CALL.

When the optional data field is used, it is compared to the first byte of
the most recent asynchronous data, message, command, or status
byte received. The user's SCSI SCRIPTS program can determine
which routine to execute next based on actual data values received.
Using a series of these compares, the algorithm can process complex
sequences with no intervention required by the external processor.

When the optional MASK keyword and its associated value are
specified, the SCRIPTS processor allows selective comparisons of
bits within the data byte. This comparison is illustrated in Figure 3-1.
During the comparison, any bits that are set in the mask data will
cause the corresponding bit in the data byte to be ignored for the
comparison.

Description:

The SYM53C8XX Instruction Set
CALL

Symbios Logic PCI-SCSI Programming Guide 3-5

 SCRIPTS does not directly support nested CALLs. If two CALL
instructions are issued without any intervening RETURN
instruction, then the first return address in the chip's TEMP register
is overwritten by the second CALL and lost.

The REL keyword, which indicates relative addressing, is unrelated
to the declarative keyword RELATIVE that establishes relative
buffers.

CALL address

CALL address, IF ATN

CALL address, IF Phase

CALL address, IF CARRY

CALL address, IF data

CALL address, IF data AND MASK data

CALL address, IF ATN AND data

CALL address, IF ATN AND data AND MASK data

CALL address, IF Phase AND data

CALL address, IF Phase AND data AND MASK data

CALL address, WHEN Phase

CALL address, WHEN CARRY

CALL address, WHEN data

CALL address, WHEN data AND MASK data

CALL address, WHEN Phase AND data

CALL address, WHEN Phase AND data AND MASK data

CALL address, IF NOT ATN

CALL address, IF NOT Phase

CALL address, IF NOT CARRY

CALL address, IF NOT data

CALL address, IF NOT data AND MASK data

Figure 3-1
Use of the Mask Keyword

SFBR Mask
Value

Masked
SFBR Data

Compare

Notes:

Legal Forms:

The SYM53C8XX Instruction Set
CALL

3-6 Symbios Logic PCI-SCSI Programming Guide

CALL address, IF NOT ATN OR data

CALL address, IF NOT ATN OR data AND MASK data

CALL address, IF NOT Phase OR data

CALL address, IF NOT Phase OR data AND MASK data

CALL address, WHEN NOT Phase

CALL address, WHEN NOT CARRY

CALL address, WHEN NOT data

CALL address, WHEN NOT data AND MASK data

CALL address, WHEN NOT Phase OR data

CALL address, WHEN NOT Phase OR data AND MASK data

CALL REL(address)

CALL REL(address), IF ATN

CALL REL(address), IF Phase

CALL REL(address), IF CARRY

CALL REL(address), IF data

CALL REL(address), IF data AND MASK data

CALL REL(address), IF ATN AND data

CALL REL(address), IF ATN AND data AND MASK data

CALL REL(address), IF Phase AND data

CALL REL(address), IF Phase AND data AND MASK data

CALL REL(address), WHEN Phase

CALL REL(address), WHEN CARRY

CALL REL(address), WHEN data

CALL REL(address), WHEN data AND MASK data

CALL REL(address), WHEN Phase AND data

CALL REL(address), WHEN Phase AND data AND MASK data

CALL REL(address), IF NOT ATN

CALL REL(address), IF NOT Phase

CALL REL(address), IF NOT CARRY

CALL REL(address), IF NOT data

CALL REL(address), IF NOT data AND MASK data

CALL REL(address), IF NOT ATN OR data

CALL REL(address), IF NOT ATN OR data AND MASK data

CALL REL(address), IF NOT Phase OR data

CALL REL(address), IF NOT Phase OR data AND MASK data

CALL REL(address), WHEN NOT Phase

CALL REL(address), WHEN NOT CARRY

CALL REL(address), WHEN NOT data

CALL REL(address), WHEN NOT data AND MASK data

CALL REL(address), WHEN NOT Phase OR data

CALL REL(address), WHEN NOT Phase OR data AND MASK data

The SYM53C8XX Instruction Set
CHMOV

Symbios Logic PCI-SCSI Programming Guide 3-7

CHMOV 0

CHMOV {FROM | count,} [PTR] address,{WITH | WHEN} phase

SYM53C825A, SYM53C875, SYM53C885, SYM53C876,
SYM53C895

Wide SCSI Block Move

FROM indicates table indirect addressing mode

Note: FROM and PTR must not be used in the same instruction.

count is the number of bytes to transfer across the SCSI bus.

PTR sets the indirect bit if present, it is clear otherwise.

Note: FROM and PTR must not be used in the same instruction.

address is the 32-bit starting address of the data in memory, unless
PTR is present. If PTR is present, address represents the location of
the starting address.

WITH/WHEN set the mode for the device; WITH for target mode
and WHEN for initiator mode.

Phase is used to specify the Message, Command/Data, and
Input/Output bit values that identify the SCSI phase in the
instruction. The desired phase value is compared with the actual
values of the SCSI phase lines before the SYM53C8XX performs the
instruction. This field is only valid for initiator mode and should not
be used in target mode.

CHMOV FROM dev_1 WITH Data_In

CHMOV 6, data_buf, WHEN Data_Out

Instruction type - 00 = Block Move

Indirect - Indirect Addressing Mode
0 - Use destination field as an address
1 - Use destination field as an address to an address

Table Indirect - Table Indirect Addressing Mode
0 - Use Absolute addressing mode
1 - Use destination address as offset from the value of DSA register.

DCMD Register DBC Register DSPS register

31 30 29 28 27 26 24 23 0 31 0

00 X X X XXX XX... XX XX... XX

Instruction
type

Indirect Table
Indirect

Op code SCSI
Phase

Byte Count Dest Addr

Supported by:

Definition:

Operands:

Example:

Format:

Fields:

The SYM53C8XX Instruction Set
CHMOV

3-8 Symbios Logic PCI-SCSI Programming Guide

Op code- Defines whether the instruction will be executed as a
Block Move or a Chained Block Move. This bit value has different
meanings, depending on whether the chip is operating in target or
initiator role.

SCSI Phase - These bits reflect the actual values of the SCSI phase
lines. The bit values are defined below.

Byte Count - 24-bit number indicating the number of bytes to
transfer.

Dest Addr - Address to perform data transfer on, or offset from the
DSA to fetch table indirect information.

There are various forms of the Chained Block Move instruction. The
“address” and “count” specify the address and byte count fields of
the instruction. If the optional keyword “PTR” is present, then the
indirect bit will be set. If PTR is present, the address specified in the
instruction is the address of the pointer to the data in memory.
“Phase” specifies the phase field of the instruction. WITH or WHEN
are used to specify the Block Move function codes. WITH is used to
signal the target role which sets the phase values, and WHEN is the
initiator “test for phase” feature.

The 53C8XX waits for a valid phase (initiator) or drives the phase
lines (target). In the initiator role, it performs a comparison looking
for a match between the phase specified in the SCRIPTS instruction
and the actual value on the bus. If the phases do not match, an
external interrupt occurs. A test prior to the Move instruction could
be used to avoid this interrupt. If the phase does match, data is then
transferred in or out according to the phase lines. When the count

Target Initiator

MOVE Op code = 0 Op code = 1

CHMOV Op code = 1 Op code = 0

Phase Message Command / Data Input / Output

DATA_OUT 0 0 0

DATA_IN 0 0 1

COMMAND 0 1 0

STATUS 0 1 1

RES4 1 0 0

RES5 1 0 1

MESSAGE_OUT 1 1 0

MESSAGE_IN 1 1 1

* Note: 0 - False, negated; 1 - True, asserted. For
these phases, SEL is negated and BSY is asserted.

* Res4 and Res5 are reserved SCSI phases. These combinations should not be
used for standard SCSI implementations

Description:

The SYM53C8XX Instruction Set
CHMOV

Symbios Logic PCI-SCSI Programming Guide 3-9

goes to zero, the SYM53C8XX fetches the next sequential SCRIPTS
instruction.

The Chained Move instruction transfers data to and from memory
locations. Data may come from any data location, so scatter/gather
operations are transparent to the chip and external processor.

When the SYM53C8XX executes several CHMOV instructions and
the ends are on an odd byte boundary, the chip temporarily stores
the residual byte in the SODL register (send operations) or SWIDE
register (receive operations). The SYM53C8XX takes the first byte
from the subsequent CHMOV or MOVE instruction and lines it up
with the residual byte in order to complete a wide transfer and
maintain a continuous wide data flow on the SCSI bus.

For more information on Chained Block Move Instructions, please
see the appropriate SYM53C8XX data manual.

CHMOV count, address, WITH phase

CHMOV count, address, WHEN phase

CHMOV count, PTR address, WITH phase

CHMOV count, PTR address, WHEN phase

CHMOV FROM address, WITH phase

CHMOV FROM address, WHEN phase

Notes:

Legal Forms:

The SYM53C8XX Instruction Set
CLEAR

3-10 Symbios Logic PCI-SCSI Programming Guide

CLEAR 0

CLEAR {ACK | ATN | TARGET | CARRY} [and{ACK | ATN | TARGET | CARRY}
...]

All Symbios Logic PCI-SCSI I/O Processors

Deasserts SCSI ACK or ATN, or clears internal flags

ACK - clears the Assert SCSI ACK bit
ATN - clears the Assert SCSI ATN bit
TARGET - clears the Set Target role bit
CARRY - clears the CARRY bit in the ALU

CLEAR TARGET

CLEAR ACK and TARGET

Instruction Type - I/O

Op code - Clear instruction

Set/Clear Carry
1 - clears the Carry bit in the ALU
0 - has no effect

Set /Clear Target Mode
1 - places the chip into initiator mode
0 - has no effect

Set/Clear SCSI ACK
1 - deasserts the SCSI acknowledge signal
0 - has no effect

Set/Clear SCSI ATN
1 - deasserts the SCSI attention signal
0 - has no effect

The chip deasserts the signals indicated in the instruction. Currently
four bits are defined, allowing the SCSI SACK, target role, and
SATN bits to be cleared as well as the CARRY bit in the ALU. Bit 10
is for CARRY, bit 9 is for target, bit 6 is for Acknowledge, and bit 3 is
for Attention.

DCMD Register DBC Register DSPS
Register

31 30 29 27 26 24 23 11 10 9 8 7 6 5 4 3 2 0 31 0

01 100 000 0. 0 X X 0 0 X 00 X 000 00...00

Instr
Type

Op
code

RES RES Set/
Clear
Carry

Set/
Clear
Target

RES Assert
SCSI
ACK

RES Assert
SCSI
ATN

RES RES

Supported by:

Definition:

Operands:

Examples:

Format:

Fields:

Description:

The SYM53C8XX Instruction Set
CLEAR

Symbios Logic PCI-SCSI Programming Guide 3-11

CLEAR ACK

CLEAR ATN

CLEAR TARGET

CLEAR CARRY

CLEAR ACK and ATN

CLEAR ACK and TARGET

CLEAR ACK and CARRY

CLEAR ATN and TARGET

CLEAR ATN and CARRY

CLEAR TARGET and CARRY

CLEAR ACK and ATN and TARGET

CLEAR ACK and ATN and CARRY

CLEAR ACK and ATN and TARGET and CARRY

Notes:

Legal Forms:

The SYM53C8XX Instruction Set
DISCONNECT

3-12 Symbios Logic PCI-SCSI Programming Guide

DISCONNECT 0

DISCONNECT

All Symbios Logic PCI-SCSI I/O Processors

Perform disconnect

None

DISCONNECT

Instruction Type - I/O

Op Code—Disconnect instruction

The DISCONNECT instruction causes the chip (when in target
role) to physically disconnect from the bus.

This instruction has no effect on the initiator if it is issued by a target.
To disconnect from the SCSI bus, use the SET TARGET instruction
before this instruction.

DISCONNECT

DCMD Register DBC Register DSPS Register

31 30 29 25 24 230 31 0

01 00100 0 0000...........................000 00..............00

Instr Type Op Code RES Reserved Reserved

Supported by:

Definition:

Operands:

Example:

Format:

Fields:

Description:

Notes:

Legal Forms:

The SYM53C8XX Instruction Set
INT

Symbios Logic PCI-SCSI Programming Guide 3-13

INT 0

INT int_value [, {IF | WHEN}[NOT][ATN | Phase][AND | OR] [data[AN
MASK data]]]

INT int_value [, {IF | WHEN}[NOT] CARRY]

All Symbios Logic PCI-SCSI I/O Processors

SCSI Transfer Control - Generate Interrupt and halt SCRIPTS
operation

int_value is a user defined 32-bit value that will be available in the
DSPS register at the time of the interrupt.

WHEN forces the SCRIPTS engine to wait for a valid SCSI bus
phase before continuing. A valid phase is indicated by assertion of the
SREQ/ signal.

IF causes the SYM53C8XX to check immediately for a valid SCSI
bus phase without waiting. IF should not be used when comparing
for a phase, as this could yield unpredictable results. The only
exception is if a WHEN conditional was used just prior to the IF
conditional, for any given sequence of phase checks.

NOT negates the comparison. It clears the True bit if present,
otherwise the True bit is set.

Phase is used to specify the Message, Command/Data, and
Input/Output bit values that identify the SCSI phase in the
instruction. The desired phase value is compared with the actual
values of the SCSI phase lines before the SYM53C8XX performs the
instruction. This field is only valid for initiator mode and should not
be used in target mode.

ATN indicates that an interrupt should take place based on an
initiator SATN/ signal. This field is valid only for target mode and
should not be used in initiator mode.

data represents an 8-bit value that is stored in the data field of the
instruction. In addition the Compare Data bit is set.

MASK represents an 8-bit value that is stored in the mask field of the
instruction. Any bit that is set in the mask causes the corresponding
bit in the data byte to be ignored at the time of the comparison.

CARRY indicates that an interrupt should take place based on the
value of the carry bit in the ALU. Carry comparisons cannot take
place at the same time as data and phase comparisons.

INT 0x00000001, WHEN NOT COMMAND

INT 0x200010F7, IF 0xF8 AND MASK 0x07

Supported by:

Definition:

Operands:

Example:

The SYM53C8XX Instruction Set
INT

3-14 Symbios Logic PCI-SCSI Programming Guide

Instruction Type - Transfer Control.

Op code - Interrupt Instruction.

SCSI Phase - These bits reflect the actual values of the SCSI phase
lines. The bit values are defined below.

Carry Test - When this bit is set, true/false comparisons may be
made based on the ALU Carry bit. Carry comparisons cannot be
made at the same time as data and phase comparisons.

True - Transfer on TRUE/FALSE condition
0 - Transfer if condition is FALSE
1 - Transfer if condition is TRUE

Compare Data - Compare data byte to first byte of the received
data.
0 - Do not compare data
1 - Perform comparison

Compare Phase - Compare current SCSI phase to SCSI phase field
or SATN/. This bit is set whenever the Phase operand is used.
0 - Do not compare phase
1 - Perform comparison

Wait - Wait for valid phase. This bit is set by the WHEN operand in
the instruction, and cleared by the IF operand.
0 - Perform comparison immediately
1 - Wait for valid phase (SREQ/ asserted by target)

DCMD Register DBC Register DSPS
Register

31 30 29 27 26 24 23 22 21 20 19 18 17 16 15 8 7 0 31 0

10 011 XXX 0 0 0 0 X X X X X...X X..X X...X

Instr
Type

Op
code

SCSI
Phase

RES Carry
Test

RES True Comp
 Data

Comp
Phase

Wait Mask Data int_value

Phase Message Command / Data Input / Output

DATA_OUT 0 0 0

DATA_IN 0 0 1

COMMAND 0 1 0

STATUS 0 1 1

RES4 1 0 0

RES5 1 0 1

MESSAGE_OUT 1 1 0

MESSAGE_IN 1 1 1

* Note: 0 - False, negated; 1 - True, asserted. For
these phases, SEL is negated and BSY is asserted.

* Res4 and Res5 are reserved SCSI phases. These combinations should not be
used for standard SCSI implementations

Format:

Fields:

The SYM53C8XX Instruction Set
INT

Symbios Logic PCI-SCSI Programming Guide 3-15

Mask - 8-bit field that is used to mask the value in SFBR before the
comparison with the data field in the instruction takes place. As a
result of this operation, any bits that are set will cause the
corresponding bit in the data byte to be ignored. If this field is not
specified, a mask of 0x00 is used.

Data - 8-bit field that is compared with the incoming data after the
mask operation with the mask byte takes place. Comparison indicates
either an equal or not equal condition. If the Data field is not
specified, the compare data bit is cleared and 0x00 is coded for both
the mask and data bytes.

Int_Value - a 32-bit user defined value that is available to the
external processor to identify the cause of the interrupt. If the
interrupt conditions are met, the int_value will be available in the
DSPS register for the processor to use to determine the cause of the
interrupt.

The SCSI Interrupt instruction causes the chip to conditionally halt
execution and post an interrupt request to the external processor. It
is used if the SCSI phase, data, or attention condition compares true
with the phase, data, or attention condition described in the
instruction. The NOT qualifier is used for the comparison to
determine a boolean true/false outcome of the comparison. If the
comparison is false, the SCRIPTS processor will not post the
interrupt but will instead fetch the next in-line instruction and
continue execution.

When the optional data field is used, it is compared to the first byte of
the SFBR. This contains the most recent byte of any kind of data that
has been moved into the SFBR register. The user's SCSI SCRIPTS
program can determine which routine to execute next based on
actual data values received. Using a series of these compares, the
algorithm can process complex sequences with no intervention
required by the external processor.

When the optional MASK keyword and its associated value are
specified the SCRIPTS processor allows selective comparisons of bits
within the data byte. This comparison is illustrated in Figure 3-1.
During the comparison, any bits that are set in the mask byte will
cause the corresponding bit in the data byte to be ignored for the
comparison.

Description:

Notes:

The SYM53C8XX Instruction Set
INT

3-16 Symbios Logic PCI-SCSI Programming Guide

INT int_value
INT int_value, IF ATN
INT int_value, IF Phase
INT int_value, IF CARRY
INT int_value, IF data
INT int_value, IF data AND MASK data
INT int_value, IF ATN AND data
INT int_value, IF ATN AND data AND MASK data
INT int_value, IF Phase AND data
INT int_value, IF Phase AND data AND MASK data
INT int_value, WHEN Phase
INT int_value, WHEN CARRY
INT int_value, WHEN data
INT int_value, WHEN data AND MASK data
INT int_value, WHEN Phase AND data
INT int_value, WHEN Phase AND data AND MASK data
INT int_value, IF NOT ATN
INT int_value, IF NOT Phase
INT int_value, IF NOT CARRY
INT int_value, IF NOT data
INT int_value, IF NOT data AND MASK data
INT int_value, IF NOT ATN OR data
INT int_value, IF NOT ATN OR data AND MASK data
INT int_value, IF NOT Phase OR data
INT int_value, IF NOT Phase OR data AND MASK data
INT int_value, WHEN NOT Phase
INT int_value, WHEN NOT CARRY
INT int_value, WHEN NOT data
INT int_value, WHEN NOT data AND MASK data
INT int_value, WHEN NOT Phase OR data
INT int_value, WHEN NOT Phase OR data AND MASK data

Legal Forms:

The SYM53C8XX Instruction Set
INTFLY

Symbios Logic PCI-SCSI Programming Guide 3-17

INTFLY 0

INTFLY [int_value] [, {IF | WHEN}[NOT][ATN | Phase] [AND | OR]
[data[AND MASK data]]]
INTFLY [int_value] [, {IF | WHEN}[NOT] CARRY]

All SYM53C8XX PCI-SCSI I/O Processors

Generate Interrupt and Continue SCRIPTS Execution

int_value is a user defined 32-bit value that is written to the DSPS
register at the time of the interrupt. However, as stated in the Note
below, since the processor continues to execute, the value is
immediately overwritten with the next instruction fetch. Refer to the
Note at the end of this section for more information.

WHEN forces the SCRIPTS engine to wait for a valid SCSI bus
phase before continuing. A valid phase is indicated by assertion of the
SREQ/ signal.

IF causes the SYM53C8XX to check immediately for a valid SCSI
bus phase without waiting. IF should not be used when comparing
for a phase, as this could yield unpredictable results. The only
exception is if a WHEN conditional was used just prior to the IF
conditional, for any given sequence of phase checks.

NOT negates the comparison. It clears the True bit if present,
otherwise the True bit is set.

Phase is used to specify the Message, Command/Data, and
Input/Output bit values that identify the SCSI phase in the
instruction. The desired phase value is compared with the actual
values of the SCSI phase lines before the SYM53C8XX performs the
instruction. This field is only valid for initiator mode and should not
be used in target mode.

ATN indicates that an interrupt should take place based on the state
of the initiator SATN/ signal. This field is valid only for target mode
and should not be used in initiator mode.

data represents an 8-bit value that is stored in the data field of the
instruction. In addition the Compare Data bit is set.

MASK represents an 8-bit value that is stored in the mask field of the
instruction. Any bit that is set in the mask causes the corresponding
bit in the data byte to be ignored at the time of the comparison.

CARRY indicates that a jump should take place based on the value
of the carry bit in the ALU. Carry comparisons cannot be made in
the same instruction as data or phase comparisons.

Supported by:

Definition:

Operands:

The SYM53C8XX Instruction Set
INTFLY

3-18 Symbios Logic PCI-SCSI Programming Guide

INTFLY 0x00000001, WHEN NOT COMMAND

INTFLY 0x200010F7, IF 0xF8 AND MASK 0x07

Instruction Type - Transfer Control

Op code - Interrupt on the Fly Instruction

SCSI Phase - These bits reflect the actual values of the SCSI phase
lines. The bit values are defined below.

Carry Test- When this bit is set, true/false comparisons may be
made based on the ALU Carry bit. Carry comparisons cannot be
made in the same instruction as data or phase comparisons.

Int on Fly - When this bit is set, the Interrupt instruction will not
halt the SCRIPTS processor.

True - Transfer on TRUE/FALSE condition
0 - Transfer if condition is FALSE
1 - Transfer if condition is TRUE

Compare Data - Compare data byte to first byte of the received
data.
0 - Do not compare data
1 - Perform comparison

Compare Phase - Compare current SCSI phase to SCSI phase field
or SATN. This bit is set whenever the Phase operand is used.
0 - Do not compare phase
1 - Perform comparison

DCMD Register DBC Register DSPS
Register

31 30 29 27 26 24 23 22 21 20 19 18 17 16 15 8 7 0 31 0

10 011 XXX 0 0 0 1 X X X X X...X X..X X...X

Instr
Type

Op
code

SCSI
Phase

RES RES Carry
 Test

Int
on
Fly

True Comp
Data

Comp
Phase

Wait Mask Data Int_
Value

Phase Message Command / Data Input / Output

DATA_OUT 0 0 0

DATA_IN 0 0 1

COMMAND 0 1 0

STATUS 0 1 1

RES4 1 0 0

RES5 1 0 1

MESSAGE_OUT 1 1 0

MESSAGE_IN 1 1 1

* Note: 0 - False, negated; 1 - True, asserted. For
these phases, SEL is negated and BSY is asserted.

* Res4 and Res5 are reserved SCSI phases. These combinations should not be
used for standard SCSI implementations

Example:

Format:

Fields:

The SYM53C8XX Instruction Set
INTFLY

Symbios Logic PCI-SCSI Programming Guide 3-19

Wait - Wait for valid phase. This bit is set by the WHEN operand in
the instruction, and cleared by the IF operand.
0 - Perform comparison immediately
1 - Wait for valid phase (SREQ/ asserted by target)

Mask - 8-bit field that is used to mask the value in SFBR before the
comparison with the data field in the instruction takes place. As a
result of this operation, any bits that are set will cause the
corresponding bit in the data byte to be ignored. If this field is not
specified, a mask of 0x00 is used.

Data - 8-bit field that is compared with the incoming data after the
mask operation with the mask byte takes place. Comparison indicates
either an equal or not equal condition. If the Data field is not
specified, the compare data bit is cleared and 0x00 is coded for both
the mask and data bytes.

Int_Value - a 32-bit user defined value that identifies the cause of the
interrupt. Even though the int_value is stored, since the processor
continues to execute, it is immediately overwritten with the next
instruction fetch. Refer to the Note at the end of this section for more
information.

The SCSI Interrupt on-the-Fly instruction causes the chip to
conditionally set the INTFLY bit in the ISTAT register and post an
interrupt request to the external processor. It is invoked if the SCSI
phase, data, or attention condition compares true with the phase,
data, or attention condition described in the instruction.

The NOT qualifier is used to indicate a boolean true/false desired
outcome of the comparison. If the comparison is false, the SCRIPTS
processor will not post the interrupt but will instead fetch the next
instruction and continue SCRIPTS execution.

When the optional data field is used, it is compared to the first byte of
the SFBR. This contains the most recent byte of any kind of data that
has been moved into the SFBR register. The user's SCSI SCRIPTS
program can determine which routine to execute next based on
actual data values received. Using a series of these compares, the
algorithm can process complex sequences with no intervention
required by the external processor.

When the optional MASK keyword and its associated value are
specified the SCRIPTS processor allows selective comparisons of bits
within the data byte. This comparison is illustrated in Figure 3-1.
During the comparison, any bits that are set in the mask field will
cause the corresponding bit in the data byte to be ignored for the
comparison.

Unlike the INT instruction, the INTFLY does not allow a driver
program to make an inquiry to the chip for the int_value. Even
though the int_value is stored, since the processor continues to

Description:

Notes:

The SYM53C8XX Instruction Set
INTFLY

3-20 Symbios Logic PCI-SCSI Programming Guide

execute, it is immediately overwritten with the next instruction fetch.
Users who want an accessible interrupt value can use the move
memory instruction to store a user defined value to a known memory
location before executing the INTFLY instruction.

INTFLY

INTFLY, IF ATN

INTFLY, IF Phase

INTFLY, IF CARRY

INTFLY, IF data

INTFLY, IF data AND MASK data

INTFLY, IF ATN AND data

INTFLY, IF ATN AND data AND MASK data

INTFLY, IF Phase AND data

INTFLY, IF Phase AND data AND MASK data

INTFLY, WHEN Phase

INTFLY, WHEN CARRY

INTFLY, WHEN data

INTFLY, WHEN data AND MASK data

INTFLY, WHEN Phase AND data

INTFLY, WHEN Phase AND data AND MASK data

INTFLY, IF NOT ATN

INTFLY, IF NOT Phase

INTFLY, IF NOT CARRY

INTFLY, IF NOT data

INTFLY, IF NOT data AND MASK data

INTFLY, IF NOT ATN OR data

INTFLY, IF NOT ATN OR data AND MASK data

INTFLY, IF NOT Phase OR data

INTFLY, IF NOT Phase OR data AND MASK data

INTFLY, WHEN NOT Phase

INTFLY, WHEN NOT CARRY

INTFLY, WHEN NOT data

INTFLY, WHEN NOT data AND MASK data

INTFLY, WHEN NOT Phase OR data

INTFLY, WHEN NOT Phase OR data AND MASK data

INTFLY int_value

INTFLY int_value, IF ATN

INTFLY int_value, IF Phase

INTFLY int_value, IF CARRY

INTFLY int_value, IF data

INTFLY int_value, IF data AND MASK data

INTFLY int_value, IF ATN AND data

INTFLY int_value, IF ATN AND data AND MASK data

INTFLY int_value, IF Phase AND data

INTFLY int_value, IF Phase AND data AND MASK data

INTFLY int_value, WHEN Phase

INTFLY int_value, WHEN CARRY

INTFLY int_value, WHEN data

Legal Forms:

The SYM53C8XX Instruction Set
INTFLY

Symbios Logic PCI-SCSI Programming Guide 3-21

INTFLY int_value, WHEN data AND MASK data

INTFLY int_value, WHEN Phase AND data

INTFLY int_value, WHEN Phase AND data AND MASK data

INTFLY int_value, IF NOT ATN

INTFLY int_value, IF NOT Phase

INTFLY int_value, IF NOT CARRY

INTFLY int_value, IF NOT data

INTFLY int_value, IF NOT data AND MASK data

INTFLY int_value, IF NOT ATN OR data

INTFLY int_value, IF NOT ATN OR data AND MASK data

INTFLY int_value, IF NOT Phase OR data

INTFLY int_value, IF NOT Phase OR data AND MASK data

INTFLY int_value, WHEN NOT Phase

INTFLY int_value, WHEN NOT CARRY

INTFLY int_value, WHEN NOT data

INTFLY int_value, WHEN NOT data AND MASK data

INTFLY int_value, WHEN NOT Phase OR data

INTFLY int_value, WHEN NOT Phase OR data AND MASK data

The SYM53C8XX Instruction Set
JUMP

3-22 Symbios Logic PCI-SCSI Programming Guide

JUMP 0

JUMP {REL(Address) | Address} [,{IF | WHEN}[NOT][ATN | Phase] AND |
OR] [data[AND MASK data]]]
JUMP {[REL] (Address) | Address} [, {IF | WHEN}[NOT] CARRY]

All Symbios Logic PCI-SCSI I/O Processors

SCSI Transfer Control - Jump

REL indicates the use of relative addressing.

Address is the location to which execution will be transferred if the
subroutine is called. If REL is used, Address is the offset from the
current DSP value.

WHEN forces the SCRIPTS engine to wait for a valid SCSI bus
phase before continuing. A valid phase is indicated by assertion of the
SREQ/ signal.

IF causes the SYM53C8XX to check immediately for a valid SCSI
bus phase without waiting. IF should not be used when comparing
for a phase, as this could yield unpredictable results. The only
exception is if a WHEN conditional was used just prior to the IF
conditional, for any given sequence of phase checks.

NOT negates the comparison. It clears the True bit if present,
otherwise the True bit is set.

Phase is used to specify the Message, Command/Data, and
Input/Output bit values that identify the SCSI phase in the
instruction. The desired phase value is compared with the actual
values of the SCSI phase lines before the SYM53C8XX performs the
instruction. This field is only valid for initiator mode and should not
be used in target mode.

ATN is used to indicate that a jump should take place based on the
state of the initiator SATN signal. This field is valid only for target
mode and should not be used in initiator mode.

data represents an 8-bit value that is stored in the data field of the
instruction. In addition, this keyword indicates that the Compare
Data bit is set.

MASK represents an 8-bit value that is stored in the mask field of the
instruction. Any bit that is set in the mask causes the corresponding
bit in the data byte to be ignored at the time of the comparison.

CARRY indicates that a jump should take place based on the value
of the carry bit in the ALU.

Supported by:

Definition:

Operands:

The SYM53C8XX Instruction Set
JUMP

Symbios Logic PCI-SCSI Programming Guide 3-23

JUMP Do_Next_Command WHEN COMMAND
JUMP Data_Check, IF DATA_IN AND 0x80 MASK 0x7F

Instruction Type - Transfer Control

Op code - Jump instruction

SCSI Phase - These bits reflect the actual values of the SCSI phase
lines. The bit values are defined below.

Relative Addr - Relative Addressing Mode indicates that the 24-bit
address value in the instruction is to be used as an offset from the
current DSP address (which is pointing to the next instruction, not
the one currently executing).

Carry Test - When this bit is set, true/false comparisons may be
made based on the ALU Carry bit. Comparisons to the state of the
Carry flag may not be made in conjunction with other comparisons.

True - Transfer on TRUE/FALSE condition
0 - Transfer if condition is FALSE
1 - Transfer if condition is TRUE

Compare Data - Compare data byte to first byte of the received
data.
0 - Do not compare data
1 - Perform comparison

Compare Phase - Compare current SCSI phase to SCSI phase field
or SATN/. This bit is set whenever the Phase operand is used.
0 - Do not compare phase
1 - Perform comparison

DCMD Register DBC Register DSPS
Register

31 30 29 27 26 24 23 22 21 20 19 18 17 16 15 8 7 0 31 0

10 000 XXX X 0 0 0 X X X X X...X X...X X...X

Instr
Type

Opcode SCSI
Phase

Rel
Addr

RES Carry
Test

RES True Comp
Data

Comp
Phase

Wait Mask Data Dest
Addr

Phase Message Command / Data Input / Output

DATA_OUT 0 0 0

DATA_IN 0 0 1

COMMAND 0 1 0

STATUS 0 1 1

RES4 1 0 0

RES5 1 0 1

MESSAGE_OUT 1 1 0

MESSAGE_IN 1 1 1

* Note: 0 - False, negated; 1 - True, asserted. For
these phases, SEL is negated and BSY is asserted.

* Res4 and Res5 are reserved SCSI phases. These combinations should not be
used for standard SCSI implementations

Example:

Format:

Fields:

The SYM53C8XX Instruction Set
JUMP

3-24 Symbios Logic PCI-SCSI Programming Guide

Wait - Wait for valid phase. This bit is set by the WHEN operand in
the instruction, and cleared by the IF operand.
0 - Perform comparison immediately
1 - Wait for valid phase (SREQ/ asserted by target)

Mask - 8-bit field that is used to mask the value in SFBR before the
comparison with the data field in the instruction takes place. As a
result of this operation, any bits that are set will cause the
corresponding bit in the data byte to be ignored. If this field is not
specified, a mask of 0x00 is used.

Data - 8-bit field that is compared with the incoming data after the
mask operation with the mask byte takes place. Comparison indicates
either an equal or not equal condition. If the Data field is not
specified, the Compare Data bit is cleared and 0x00 is coded for both
the mask and data bytes.

Dest Addr - a 32-bit address (or 24-bit offset) where execution will
continue if the jump is executed.

The SCSI Jump instruction is a conditional jump to the destination
address, if the SCSI phase, data, or attention condition compares
true with the phase, data, or attention condition described in the
instruction. If the comparison is false, the SCRIPTS processor will
not branch to the destination but will instead fetch the next
instruction and continue execution.

When the optional data field is used, it is compared to the SFBR.
This contains the most recent byte of any kind of data that has been
moved into the SFBR register. The user's SCSI SCRIPTS program
can determine which routine to execute next based on actual data
values received. Using a series of these compares, the algorithm can
process complex sequences with no intervention required by the
external processor.

When the optional MASK keyword and its associated value are
specified, the SCRIPTS processor allows selective comparisons of
bits within the data byte. During the compare, any mask bits that are
set will cause the corresponding bit in the data byte to be ignored for
the comparison.

Jump instructions are used to control the flow of the SCRIPTS
routines. They are used to avoid phase mismatch interrupts in
situations where multiple phase sequences are possible.

The REL keyword, which indicates relative addressing, is unrelated
to the declarative keyword RELATIVE that establishes relative
buffers.

Description:

Notes:

The SYM53C8XX Instruction Set
JUMP

Symbios Logic PCI-SCSI Programming Guide 3-25

JUMP address

JUMP address, IF ATN

JUMP address, IF Phase

JUMP address, IF CARRY

JUMP address, IF data

JUMP address, IF data AND MASK data

JUMP address, IF ATN AND data

JUMP address, IF ATN AND data AND MASK data

JUMP address, IF Phase AND data

JUMP address, IF Phase AND data AND MASK data

JUMP address, WHEN Phase

JUMP address, WHEN CARRY

JUMP address, WHEN data

JUMP address, WHEN data AND MASK data

JUMP address, WHEN Phase AND data

JUMP address, WHEN Phase AND data AND MASK data

JUMP address, IF NOT ATN

JUMP address, IF NOT Phase

JUMP address, IF NOT CARRY

JUMP address, IF NOT data

JUMP address, IF NOT data AND MASK data

JUMP address, IF NOT ATN OR data

JUMP address, IF NOT ATN OR data AND MASK data

JUMP address, IF NOT Phase OR data

JUMP address, IF NOT Phase OR data AND MASK data

JUMP address, WHEN NOT Phase

JUMP address, WHEN NOT CARRY

JUMP address, WHEN NOT data

JUMP address, WHEN NOT data AND MASK data

JUMP address, WHEN NOT Phase OR data

JUMP address, WHEN NOT Phase OR data AND MASK data

JUMP REL(address)

JUMP REL(address), IF ATN

JUMP REL(address), IF Phase

JUMP REL(address), IF CARRY

JUMP REL(address), IF data

JUMP REL(address), IF data AND MASK data

JUMP REL(address), IF ATN AND data

JUMP REL(address), IF ATN AND data AND MASK data

JUMP REL(address), IF Phase AND data

JUMP REL(address), IF Phase AND data AND MASK data

JUMP REL(address), WHEN Phase

JUMP REL(address), WHEN CARRY

JUMP REL(address), WHEN data

JUMP REL(address), WHEN data AND MASK data

JUMP REL(address), WHEN Phase AND data

JUMP REL(address), WHEN Phase AND data AND MASK data

JUMP REL(address), IF NOT ATN

JUMP REL(address), IF NOT Phase

Legal Forms:

The SYM53C8XX Instruction Set
JUMP

3-26 Symbios Logic PCI-SCSI Programming Guide

JUMP REL(address), IF NOT CARRY

JUMP REL(address), IF NOT data

JUMP REL(address), IF NOT data AND MASK data

JUMP REL(address), IF NOT ATN OR data

JUMP REL(address), IF NOT ATN OR data AND MASK data

JUMP REL(address), IF NOT Phase OR data

JUMP REL(address), IF NOT Phase OR data AND MASK data

JUMP REL(address), WHEN NOT Phase

JUMP REL(address), WHEN NOT CARRY

JUMP REL(address), WHEN NOT data

JUMP REL(address), WHEN NOT data AND MASK data

JUMP REL(address), WHEN NOT Phase OR data

JUMP REL(address), WHEN NOT Phase OR data AND MASK data

The SYM53C8XX Instruction Set
LOAD

Symbios Logic PCI-SCSI Programming Guide 3-27

LOAD 0

LOAD register, byte_count, [DSAREL(]source_address[)]

SYM53C810A, SYM53C860, SYM53C825A, SYM53C875,
SYM53C876, SYM53C885, SYM53C895

Load data from memory to an internal register of the SYM53C8XX.

register is one of the register names in the SYM53C8XX operating
register set.

byte_count is the number of bytes (1-4) to be transferred from the
source_address.

DSAREL indicates that the source_address is an offset and should
be added to the DSA register to obtain the physical address (DSA
relative).

source_address is the physical address or offset from the DSA to
obtain the physical address of the data to be loaded into the register.

LOAD SCRATCHA0, 4, data_buf

LOAD SCRATCHA3, 2, DSAREL (0x02)

Instruction Type - Load/Store

DSA Relative- indicates source address location
0 - DSPS contains actual address of data to load
1 - DSPS contains a 24-bit offset value that is added to the DSA to
determine the source address.

Load/Store - This field defines whether the instruction will be
executed as a Load or a Store.

0 - Store instruction
1 - Load instruction

Reg Addr- These bits select the register to load within the
SYM53C8XX operating register set.

Byte Count - Indicates the number of bytes to transfer. Valid values
are 1, 2, 3, or 4.

Source Addr - Actual address (or offset from the DSA) of the data
to load into the SYM53C8XX register.

DCMD Register DBC Register DSPS register

31 ...29 28 27....25 24 23 22....16 15......3 2 0 31 0

111 X 000 1 0 X.. X 00..00 XXX XX... XX

Instr type DSA
Relative

RES Load/
Store

RES Reg
Addr

RES Byte
Count

Source
Addr/DSA
Offset

Supported by:

Definition:

Operands:

Example:

Format:

Fields:

The SYM53C8XX Instruction Set
LOAD

3-28 Symbios Logic PCI-SCSI Programming Guide

The Load instruction is a more efficient means than the Move
Memory instruction of moving data from a memory location to an
internal register of the SYM53C8XX. It is a two-dword instruction,
compared to three dwords for a Memory Move. This instruction may
be used to move up to 4 bytes. The number of bytes to load is
indicated by the low order bits in the first dword of the instruction.
The maximum number of bytes to load is defined by the Register
Address field, as illustrated in the following table:

The register address and memory address must have the same byte
alignment, and the byte count set so that it does not cross dword
boundaries. The memory address may not map back to the
SYM53C8XX operating registers, although it may map back to a
location in the SCRIPTS RAM. If these conditions are violated, a
PCI illegal read/write cycle will occur and the chip will issue an
Interrupt (Illegal Instruction Detected) immediately following,
because the intended operation did not happen.

LOAD register, byte_count, source_address

LOAD register, byte_count, DSAREL(source_address)

DBC Bits 17-16
(Register Address bits A1-A0) Number of Bytes to Load

00 1, 2, 3, or 4

01 1, 2, or 3

10 1 or 2

11 1

Description:

Notes:

Legal Forms:

The SYM53C8XX Instruction Set
MOVE

Symbios Logic PCI-SCSI Programming Guide 3-29

MOVE 0

MOVE {FROM | count,} [PTR] address, {WITH | WHEN}phase

All Symbios Logic PCI-SCSI I/O Processors

SCSI Block Move

FROM indicates table indirect addressing mode.

Note: FROM and PTR must not be used in the same instruction.

count is a 24-bit number of bytes to transfer across the SCSI bus.

PTR sets the indirect bit if present, it is clear otherwise.

Note: FROM and PTR must not be used in the same instruction

address is the 32-bit starting address of the data in memory.

WITH/WHEN sets the mode for the device; WITH for target mode
and WHEN for initiator mode.

Phase is used to specify the Message, Command/Data, and
Input/Output bit values that identify the SCSI phase in the
instruction. The desired phase value is compared with the actual
values of the SCSI phase lines before the SYM53C8XX performs the
instruction. This field is only valid for initiator mode and should not
be used in target mode.

MOVE FROM dev_1, WITH MSG_IN

MOVE 6, cmd_buf, WHEN CMD

Instruction Type - Block Move

Indirect - Indirect Addressing Mode
0 - Use destination field as an address
1 - Use destination field as a pointer to an address

Table Indirect - Table Indirect Addressing Mode
0 - Use Absolute addressing mode
1 - Use destination address as offset from the value of DSA register.

DCMD Register DBC
Register

DSPS
register

31 30 29 28 27 26 24 23 0 31 0

00 X X X XXX XX... XX XX... XX

Instr type Indirect Table Indirect Op
code

SCSI Phase Byte Count Dest Addr

Supported by:

Definition:

Operands:

Example:

Format:

Fields:

The SYM53C8XX Instruction Set
MOVE

3-30 Symbios Logic PCI-SCSI Programming Guide

Op code - This field defines whether the instruction will be executed
as a Block Move or a Chained Block Move.

SCSI Phase - These bits reflect the actual values of the SCSI phase
lines. The bit values are defined below.

Byte Count - 24-bit number indicating the number of bytes to
transfer.

Dest Addr - Address to perform data transfer on.

There are various forms of the Block Move instruction. The
“address” and ”count” specify the address and byte count fields of
the instruction. If the optional keyword “PTR” is present, then the
Indirect bit will be set. If the optional keyword FROM is present the
Table Indirect bit will be set (For more information on Table Indirect
addressing, refer to Chapter 9). PTR and FROM may not be used in
the same instruction. “Phase” specifies the phase field of the
instruction. WITH or WHEN are used to specify the Block Move
function codes. WITH is used to signal the target role which sets the
phase values, and WHEN is the initiator “test for phase” feature.

The SYM53C8XX waits for a valid phase (initiator) or drives the
phase lines (target). In the initiator role, it performs a comparison
looking for a match between the phase specified in the SCRIPT and
the actual value on the bus. If the phases do not match, a phase
mismatch interrupt occurs. If the phases match, data is transferred in
or out according to the phase lines. After the last byte is transferred
to its final destination, the SYM53C8XX fetches the next SCRIPTS
instruction. If the target changes phase in the middle of a block
move, a phase mismatch interrupt will occur.

Target Initiator

MOVE Op code = 0 Op code = 1

CHMOV Op code = 1 Op code = 0

Phase Message Command / Data Input / Output

DATA_OUT 0 0 0

DATA_IN 0 0 1

COMMAND 0 1 0

STATUS 0 1 1

RES4 1 0 0

RES5 1 0 1

MESSAGE_OUT 1 1 0

MESSAGE_IN 1 1 1

* Note: 0 - False, negated; 1 - True, asserted. For
these phases, SEL is negated and BSY is asserted.

* Res4 and Res5 are reserved SCSI phases. These combinations should not be
used for standard SCSI implementations

Description:

The SYM53C8XX Instruction Set
MOVE

Symbios Logic PCI-SCSI Programming Guide 3-31

In target mode, a MOVE instruction with a byte count of zero can be
used during Command phase. The SYM53C8XX will determine the
number of bytes to move from the command group code in the first
byte of the command.

If the command code is vendor unique, the SYM53C8XX uses the
byte count from the instruction. If this byte count is zero, the chip
issues an Illegal Instruction interrupt.

SYM53C825A, SYM53C875, SYM53C876, SYM53C885,
SYM53C895 Only
If the SCSI group code is either Group 0, 1, 2, or 5 and if the Vendor
Unique Enhancement bit 1 (VUE1) bit (SCNTL2 bit 1) is clear, the
SYM53C8XX overwrites the DBC register with the length of the
Command Descriptor Block: 6, 10, or 12 bytes. If the Vendor Unique
Enhancement 1 (VUE1) bit (SCNTL2 bit 1) is clear and the SCSI
group code is a vendor unique code, the chip receives the number of
bytes in the count. If the VUE1 bit is set, the chip receives the
number of bytes in the byte count regardless of the group code.

MOVE count, address, WITH phase

MOVE count, address, WHEN phase

MOVE count, PTR address, WITH phase

MOVE count, PTR address, WHEN phase

MOVE FROM address, WITH phase

MOVE FROM address, WHEN phase

Notes:

Legal Forms:

The SYM53C8XX Instruction Set
MOVE MEMORY

3-32 Symbios Logic PCI-SCSI Programming Guide

MOVE MEMORY 0

MOVE MEMORY[NO FLUSH]count, source_address, destination_address

All Symbios Logic PCI-SCSI I/O Processors; No Flush option is
available with SYM53C810A, SYM53C860, SYM53C825A,
SYM53C875, SYM53C876, SYM53C885, and SYM53C895 only.

Memory to Memory Move (DMA)

NO FLUSH allows the SYM53C8XX to perform the Move
Memory without flushing the prefetch buffer.

count is a 24-bit expression which indicates the number of bytes to
transfer.

source_address is the absolute 32-bit starting address of the data in
memory.

destination_address is the absolute 32-bit destination address of
where to move the data.

MOVE MEMORY 1024, Source_Buffer, Dest_Buffer

Instruction Type - Memory to Memory Move

No Flush - When this bit is set, the SYM53C8XX performs the
Move Memory without flushing the prefetch buffer. When this bit is
clear, the instruction automatically flushes the prefetch buffer. The
No Flush option should be used if the source and destination are not
within four instructions of the current Move Memory instruction.
Note: this bit has no effect unless instruction Prefetching is enabled,
by setting the Pre-fetch Enable bit in the DCNTL register.

Byte Count - 24-bit number indicating the number of bytes to
transfer.

Source Addr- the absolute 32-bit starting address of the data in
memory.

Dest Addr - the absolute 32-bit destination address of where to
move the data.

DCMD Register DBC Register DSPS register TEMP Register

31 29 28 25 24 23 0 31 0 31 0

11 0 0000 X XX... XX XX...XX XX...XX

Inst Type RES No
Flush

Byte Count Source Addr Dest Addr

Supported by:

Definition:

Operands:

Example:

Format:

Fields:

The SYM53C8XX Instruction Set
MOVE MEMORY

Symbios Logic PCI-SCSI Programming Guide 3-33

The Move Memory instruction is able to transfer data from one 32-
bit location to another. A 24-bit counter allows large moves to occur
with no intervention required by the processor.

If both addresses are in system memory, then the SYM53C8XX
functions as a high-speed DMA controller, able to move data at
speeds of (up to) 47 MB/s without using the processor or its cache
memory.

If just the destination address is in system memory and the source is
within the SYM53C8XX address space, then the instruction
performs a register store to external memory.

If just the source address is in system memory and the destination is
within the SYM53C8XX address space, then the instruction
performs a register load from external memory.

The Indirect Mode is not allowed for the Move Memory instruction.

If cache line bursting is not enabled, the source and destination
addresses must be on the same byte boundary. If cache line bursting
is enabled and the byte count is larger than 32, the lower four bits of
the source and destination addresses must be identical. If these
conditions are not met, an illegal instruction interrupt is generated.

If the SYM53C8XX is only I/O mapped, it cannot do memory-to-
register or register-to-memory moves.

MOVE MEMORY count, src_address, dest_address

Description

Notes:

Legal Forms:

The SYM53C8XX Instruction Set
MOVE REGISTER

3-34 Symbios Logic PCI-SCSI Programming Guide

MOVE REGISTER 0

MOVE {register | {data8} | register operator data8} TO
register [WITH CARRY]

All Symbios Logic PCI-SCSI I/O Processors; additional functionality
supported by SYM53C825A, SYM53C875, SYM53C876,
SYM53C885, SYM53C895.

Register to Register Move

register is one of the registers listed in the SYM53C8XX register set
section in Chapter 6 of this manual. Either the register address or
register name may be used in this instruction.

data8 is an expression or value that evaluates to an 8-bit unsigned
number. In the SYM53C825A/53C875/53C876/53C885/53C895,
SFBR may be substituted for data8 to add two register values. Bit 23
of the first dword of the instruction indicates that the SFBR is to be
used instead of a data8 value.

operator is one of the following operators: '|' (OR), '&' (AND), SHL
(Shift Left), SHR (Shift Right), XOR, '+' (Add), '-' (Subtract). The
enhanced Move Register instruction does not support the SHL or
SHR operators. See the appropriate product data manual for detailed
information on the supported operations.

WITH CARRY adds in the current value of the CARRY bit from
the ALU during a “+” or “-”' operation. It is not allowed for any
other operations.

MOVE 0xFF TO SFBR

MOVE SCNTL1 & 0x01 TO SCNTL1

SYM53C825A, SYM53C875, SYM53C876, SYM53C895, and
SYM53C885 only:

MOVE SCRATCHA + SFBR to SFBR
MOVE SCRATCHA XOR SFBR to SFBR

Subtraction (SFBR - SCRATCHA)
MOVE SCRATCHA XOR 0xFF to SCRATCHA

MOVE SCRATCHA + 1 to SCRATCHA

MOVE SCRATCHA + SFBR to SFBR

DCMD Register DBC Register DSPS
register

31 30 29 27 26 24 23 22 16 15 8 7 0 31 0

01 XXX XXX X XXXXXXX X...X 00...0 0 00...00

Inst
Type

Function Operator Use
data8/
SFBR

Register Address Immediate
Data

RES RES

Supported by:

Definition:

Operands:

Example:

Format:

The SYM53C8XX Instruction Set
MOVE REGISTER

Symbios Logic PCI-SCSI Programming Guide 3-35

Instruction Type - Read/Write

Function - in either the target or initiator role, the function bits
select the desired register operation.

101 - Move the SCSI First Byte Received register (SFBR) to the
specified destination register.

110 - Move the specified register to the SCSI First Byte Received
register (SFBR).

111 - Read a specified register, modify it, and write the result
back into the same register.

Operator - specifies which logical or arithmetic operation will be
performed.

000 - move, no modification performed
001*- Shift source left one bit, store result in destination
010 - OR immediate data with source, store result in destination
011 - XOR immediate data with source, store result in
destination
100 - AND immediate data with source, store result in
destination
101*- Shift source right one bit, store result in destination
110 - ADD immediate data to source, store result in destination
111 - add in immediate data plus Carry bit to source; store result
in destination
*Data is shifted through the Carry bit and the Carry bit is shifted
into the data byte.

Use data8/SFBR (SYM53C825A/53C875/53C876/53C885/
53C895 only) - When this bit is set, SFBR will be used instead of the
data8 value during a Read/Write instruction. This allows the user to
add two register values.

Register Address - a 7-bit value that specifies which register to use
as the source register for the instruction.

Immediate Data - an 8-bit value that will be used as the second
operand in the logical and arithmetic functions. For the move
function, the specified data is stored in the destination register.

The Move Register instruction allows a register read-modify-write,
or a move to/from a register from/to the SCSI First Byte Received
register (SFBR).

The SYM53C8XX does not provide a true move from any source
register to any destination register. To accomplish this, two register
move instructions must be used. First move the source register to the
SFBR register, then move the SFBR register to the desired
destination register. The two register names in each line must be

Fields:

Description:

The SYM53C8XX Instruction Set
MOVE REGISTER

3-36 Symbios Logic PCI-SCSI Programming Guide

identical, or one must be SFBR. The two registers must be byte-
aligned. If the 32-bit absolute addresses of the source and destination
registers are known, then a register to register move can also be
accomplished by using the memory to memory move instruction.
However, a SCRIPTS instruction written in this manner will be less
portable to other machines than if the previous method is used.

Caution must be exercised when this instruction is used, because
writing to certain registers could have adverse effects on the SCSI
bus or the operation of the chip. When a register is written or read,
side effects may occur; the degree and possibility of these effects
must be clearly understood. The SYM53C8XX data manuals
contain detailed descriptions of individual register and bit operations.

The Add and Subtract operators can be used for loop counters in
SCRIPTS programming. To subtract one value from another, first
XOR the value to subtract (subtrahend) with 0XFF, and add 1 to the
resulting value. This creates a 2’s compliment of the subtrahend. The
two values can then be added to obtain the difference.

SYM53C825A, SYM53C875, SYM53C876, SYM53C895, and
SYM53C885 only
These chips allow use of the SFBR register for easier addition,
subtraction, and comparison of two separate values within the chip.
The instruction can perform the specified operation on the specified
register and the SFBR, then store the result back to the specified
register or the SFBR. The SFBR is used in place of the data8 value in
the Read/Write operation. Subtraction cannot be used when the
SFBR is used instead of a data8 value, because the SFBR value is not
known at compile time.

The mathematical operation is performed by the chip during
execution, not by the assembler when the SCRIPTS routine is being
assembled.

In the following, where the word register appears twice for an
instruction the register name must be the same name for both the
source and destination, not two different register names.

Move register to register
Move data8 to REGISTER
Move REGISTER SHL REGISTER
Move REGISTER | data8 to REGISTER
Move REGISTER XOR data8 to REGISTER
Move REGISTER & data8 to REGISTER
Move REGISTER SHR REGISTER
Move REGISTER + data8 to REGISTER
Move REGISTER + data8 to REGISTER with Carry
Move REGISTER - data8 to REGISTER
Move data8 to SFBR
Move REGISTER to SFBR
Move REGISTER SHL SFBR
Move REGISTER | data8 to SFBR

Notes:

Legal Forms:

The SYM53C8XX Instruction Set
MOVE REGISTER

Symbios Logic PCI-SCSI Programming Guide 3-37

Move REGISTER XOR data8 to SFBR
Move REGISTER & data8 to SFBR
Move REGISTER SHR SFBR
Move REGISTER + data8 to SFBR
Move REGISTER - data8 to SFBR
Move REGISTER + data8 to SFBR with Carry
Move SFBR SHL REGISTER
Move SFBR | data8 to REGISTER
Move SFBR XOR data8 to REGISTER
Move SFBR & data8 to REGISTER
Move SFBR SHR REGISTER
Move SFBR + data8 to REGISTER
Move SFBR - data8 to REGISTER
Move SFBR + data8 to REGISTER with Carry

Additional Forms for SYM53C825A/53C875/53C876/
53C885/53C895 0

Move SFBR to REGISTER
Move REGISTER | SFBR to REGISTER
Move REGISTER XOR SFBR to REGISTER
Move REGISTER & SFBR to REGISTER
Move REGISTER + SFBR to REGISTER
Move REGISTER + SFBR to REGISTER with Carry
Move REGISTER | SFBR to SFBR
Move REGISTER XOR SFBR to SFBR
Move REGISTER & SFBR to SFBR
Move REGISTER + SFBR to SFBR
Move REGISTER - SFBR to SFBR
Move REGISTER + SFBR to SFBR with Carry
Move SFBR to REGISTER
Move SFBR | SFBR to REGISTER
Move SFBR XOR SFBR to REGISTER
Move SFBR & SFBR to REGISTER
Move SFBR + SFBR to REGISTER
Move SFBR - SFBR to REGISTER
Move SFBR + SFBR to REGISTER with Carry

The SYM53C8XX Instruction Set
NOP

3-38 Symbios Logic PCI-SCSI Programming Guide

NOP 0

NOP

All Symbios Logic PCI-SCSI I/O Processors

No operation

None

NOP

Op code—No Operation

This instruction has no operation assignment and can be used as a
delay function, or to reserve SCSI SCRIPTS patch areas.

NOP

DCMD Register DBC Register DSPS Register

31 24 230 31 0

10000000 000000 00...00

Op code RES RES

Supported by:

Definition:

Operands:

Example:

Format:

Fields:

Description:

Notes:

Legal Forms:

The SYM53C8XX Instruction Set
RESELECT

Symbios Logic PCI-SCSI Programming Guide 3-39

RESELECT 0

RESELECT {FROM Address | ID}, {REL(Address) | Address}

All Symbios Logic PCI-SCSI I/O Processors

Reselect SCSI initiator device

FROM Address indicates table indirect mode.

ID is ID Number of the SCSI initiator that is to be selected.

REL indicates the use of indirect addressing.

Address is a 32-bit address that represents the address of the next
instruction to fetch when the chip is selected or reselected.

RESELECT host_1, rsel_addr

RESELECT FROM entry_2, REL rsel_addr

Instruction Type - I/O

Op code - Reselect instruction

Relative Mode - Indicates that the 24-bit address is an offset from
the current program counter.

Table Indirect Mode - Indicates that the SCSI ID, synchronous,
and wide parameters should be loaded offset from the Data Structure
Address.

SCSI ID - identifies the SCSI initiator to be reselected. This 4-bit
field specifies the encoded destination ID. This field is part of the
address if table indirect mode is used.

Alternate Address - specifies the memory address to fetch the next
instruction if the SYM53C8XX is selected or reselected.

The chip waits for Bus Free, arbitrates for the SCSI bus, then
performs a reselection. If the chip loses arbitration it will wait again
for Bus Free and continue trying until it is successful, unless there is
a bus initiated interrupt. Once arbitration is won, the SYM53C8XX
will continue to execute instructions until an interrupt or any

DCMD Register DBC Register DSPS
Register

31 30 29 27 26 25 24 2320 1916 15..... 0 31 0

01 000 0 0 0 00....00 XXXX 00 ..00 X..X

Instr
Type

Op
code

Relative Table
Indirect

RES RES SCSI ID RES Alt Addr

Supported by:

Definition:

Operands:

Example:

Format:

Fields:

Description:

The SYM53C8XX Instruction Set
RESELECT

3-40 Symbios Logic PCI-SCSI Programming Guide

instruction related to the SCSI bus is issued. If arbitration terminates
because of a bus initiated selection or reselection, the chip will use
the 32-bit jump address value to fetch the next instruction and begin
execution at that address. When the instruction completes then the
next sequential instruction is fetched and executed. The Reselection
process is illustrated in Figure 3-2.

The REL keyword, which indicates relative addressing, is unrelated
to the declarative keyword RELATIVE that establishes relative
buffers.

RESELECT scsi_id, address

RESELECT FROM table_entry, address

RESELECT scsi_id, REL(address)

RESELECT FROM table_entry, REL(address)

Figure 3-2
Reselection Instruction

RESELECT

Bus Free? Selected
 or
Reselected?

Take

Jump

Arbitrate
Lost
Arbitration

Won
Arbitration?

Execute
SCRIPTS
Instruction

Perform
Reselection

Phase
Condition
Instruction?

Reselect
To?

Interrupt

Stop
Execution

Continue
SCRIPTS
Execution

Alternate

START

Host
Processor

Y

N

N

Y

Y

N

N

Y

Y

N

Notes:

Legal Forms:

The SYM53C8XX Instruction Set
RETURN

Symbios Logic PCI-SCSI Programming Guide 3-41

RETURN 0

RETURN [, {IF | WHEN}[NOT][ATN | Phase] [AND | OR] [data[, AND MASK
data]]]
RETURN [, {IF | WHEN}[NOT] CARRY]

All Symbios Logic PCI-SCSI I/O Processors

SCSI Transfer Control - Return from a Subroutine

WHEN forces the SCRIPTS engine to wait for a valid SCSI bus
phase before continuing. A valid phase is indicated by assertion of the
SREQ/ signal.

IF causes the SYM53C8XX to check immediately for a valid SCSI
bus phase without waiting. IF should not be used when comparing
for a phase, as this could yield unpredictable results. The only
exception is if a WHEN conditional was used just prior to the IF
conditional, for any given sequence of phase checks.

NOT negates the comparison. It clears the True bit if present,
otherwise the True bit is set.

Phase is used to specify the Message, Command/Data, and
Input/Output bit values that identify the SCSI phase in the
instruction. The desired phase value is compared with the actual
values of the SCSI phase lines before the SYM53C8XX performs the
instruction. This field is only valid for initiator mode and should not
be used in target mode.

ATN indicates that a return should take place based on the state of
the initiator SATN/ signal. This field is valid only for target mode and
should not be used in initiator mode.

data represents an 8-bit value that is stored in the data field of the
instruction. In addition the Compare Data bit is set.

MASK represents an 8-bit value that is stored in the mask field of the
instruction. Any bit that is set in the mask causes the corresponding
bit in the data byte to be ignored at the time of the comparison.

CARRY indicates that a return should take place based on the value
of the Carry bit in the ALU.

RETURN

RETURN WHEN DATA_OUT

Supported by:

Definition:

Operands:

Example:

The SYM53C8XX Instruction Set
RETURN

3-42 Symbios Logic PCI-SCSI Programming Guide

Op code - Transfer Control, Return instruction

SCSI Phase - These bits reflect the actual values of the SCSI phase
lines. The bit values are defined below

Carry Test - When this bit is set, true/false comparisons may be
made based on the ALU Carry bit. The Carry test may not be
combined with other types of comparisons.

True - Transfer on TRUE/FALSE condition
0 - Transfer if condition is FALSE
1 - Transfer if condition is TRUE

Compare Data - Compare data byte to the SFBR register.
0 - Do not compare data
1 - Perform comparison

Compare Phase - Compare current SCSI phase to SCSI phase field
or SATN/. This bit is set whenever the Phase operand is used.
0 - Do not compare phase
1 - Perform comparison

Wait - Wait for valid phase. This bit is set by the WHEN operand in
the instruction, and cleared by the IF operand.
0 - Perform comparison immediately
1 - Wait for valid phase (SREQ/ asserted by target)

Mask - 8-bit field that is used to mask the value in SFBR before the
comparison with the data field in the instruction takes place. As a

DCMD Register DBC Register DSPS
Register

31 30 29 27 26 24 23,22 21 20 19 18 17 16 15 8 7 0 31 0

10 010 XXX 00 0 0 X X X X X...X X...X 0...0

Inst
Type

Op
code

SCSI
Phase

RES Carry
 Test

RES True Comp
Data

Comp
Phase

Wait Mask Data RES

Phase Message Command / Data Input / Output

DATA_OUT 0 0 0

DATA_IN 0 0 1

COMMAND 0 1 0

STATUS 0 1 1

RES4 1 0 0

RES5 1 0 1

MESSAGE_OUT 1 1 0

MESSAGE_IN 1 1 1

* Note: 0 - False, negated; 1 - True, asserted. For
these phases, SEL is negated and BSY is asserted.

* Res4 and Res5 are reserved SCSI phases. These combinations should not be
used for standard SCSI implementations

Format:

Fields:

The SYM53C8XX Instruction Set
RETURN

Symbios Logic PCI-SCSI Programming Guide 3-43

result of this operation, any bits that are set will cause the
corresponding bit in the data byte to be ignored. If this field is not
specified, a mask of 0x00 is used.

Data - 8-bit field that is compared with the incoming data after the
mask operation with the mask byte takes place. Comparison indicates
either an equal or not equal condition. If the Data field is not
specified, the compare data bit is cleared and 0x00 is coded for both
the mask and data bytes.

The SCSI RETURN instruction is a conditional return from a
subroutine to the effective address, stored in the chip's TEMP
register, if the SCSI phase, data, or attention condition compares
true with the condition specified in the instruction.

When the optional data field is used, it is compared to the SFBR.
This contains the most recent byte of any kind of data that has been
moved into the SFBR register. The user's SCSI SCRIPTS program
can determine which routine to execute next based on actual data
values received. Using a series of these comparisons, the algorithm
can process complex sequences with no intervention required by the
external processor.

When the optional MASK keyword and its associated value are
specified the SCRIPTS processor allows selective comparisons of bits
within the data byte. During the comparison, any bits that are set in
the mask byte will cause the corresponding bit in the data byte to be
ignored for the comparison.

If a RETURN instruction is executed without any previous CALL
instruction, then there is no proper return address in the chip's
TEMP register. This may cause the chip to generate an illegal op
code after the return.

RETURN

RETURN, IF ATN

RETURN, IF Phase

RETURN, IF CARRY

RETURN, IF data

RETURN, IF data AND MASK data

RETURN, IF ATN AND data

RETURN, IF ATN AND data AND MASK data

RETURN, IF Phase AND data

RETURN, IF Phase AND data AND MASK data

RETURN, WHEN Phase

RETURN, WHEN CARRY

RETURN, WHEN data

RETURN, WHEN data AND MASK data

RETURN, WHEN Phase AND data

RETURN, WHEN Phase AND data AND MASK data

RETURN, IF NOT ATN

Description:

Notes:

Legal Forms:

The SYM53C8XX Instruction Set
RETURN

3-44 Symbios Logic PCI-SCSI Programming Guide

RETURN, IF NOT Phase

RETURN, IF NOT CARRY

RETURN, IF NOT data

RETURN, IF NOT data AND MASK data

RETURN, IF NOT ATN OR data

RETURN, IF NOT ATN OR data AND MASK data

RETURN, IF NOT Phase OR data

RETURN, IF NOT Phase OR data AND MASK data

RETURN, WHEN NOT Phase

RETURN, WHEN NOT CARRY

RETURN, WHEN NOT data

RETURN, WHEN NOT data AND MASK data

RETURN, WHEN NOT Phase OR data

RETURN, WHEN NOT Phase OR data AND MASK data

The SYM53C8XX Instruction Set
SELECT

Symbios Logic PCI-SCSI Programming Guide 3-45

SELECT 0

SELECT [ATN] {FROM Address | ID}, {REL(Address) | Address}

All Symbios Logic PCI-SCSI I/O Processors

Select SCSI target device.

FROM Address indicates table indirect mode.

ID is the ID Number of the SCSI target that is to be selected.

REL indicates the use of relative addressing.

Address - a 32-bit address (or 24-bit offset) that represents the
address of the next instruction to fetch if the chip is selected or
reselected by another device.

SELECT host_1, sel_addr

SELECT FROM entry_2, sel_addr

Instruction Type - I/O

Op code - Select instruction

Relative Mode - Indicates that the 24-bit address is an offset from
the current program counter.

Table Indirect Mode - Indicates that the SCSI ID and synchronous
and wide parameters should be loaded offset from the Data Structure
Address.

Select with ATN - indicates whether or not the SCSI ATN signal
should be asserted.

SCSI ID - identifies the SCSI target to be selected. This 4-bit field
specifies the encoded destination ID. This field is reserved if table
indirect mode is used.

Destination Address - specifies the memory address to fetch the
next instruction if the chip is selected or reselected during the
selection.

DCMD Register DBC Register DSPS
Register

31 30 29 27 26 25 24 23 20 19 16 15 0 31 0

01 000 0 0 X 0000 XXXX 00...00 XX...XX

Instr
Type

Op

code

Relative Table
Indirect

Select
with
ATN

RES SCSI ID RES Dest Addr

Supported by:

Definition:

Operands:

Example:

Format:

Fields:

The SYM53C8XX Instruction Set
SELECT

3-46 Symbios Logic PCI-SCSI Programming Guide

The chip waits for Bus Free, arbitrates for the SCSI bus, then
performs a selection. If the chip loses arbitration it will wait again for
Bus Free and continue trying until it is successful, unless there is a
bus initiated interrupt. Once arbitration is won, the SYM53C8XX
will continue to execute instructions until an interrupt or any
instruction related to the SCSI bus is issued. If arbitration terminates
because of a bus initiated selection or reselection, the chip will use
the 32-bit jump address value to fetch the next instruction and begin
execution at that address. When the instruction is completed then the
next sequential instruction is fetched and executed.

The REL keyword, which indicates relative addressing, is unrelated
to the declarative keyword RELATIVE that establishes relative
buffers.

SELECT scsi_id, address

SELECT FROM table_entry, address

SELECT ATN scsi_id, address

SELECT ATN FROM table_entry, address

SELECT scsi_id, REL(address)

SELECT FROM table_entry, REL(address)

SELECT ATN scsi_id, REL(address)

SELECT ATN FROM table_entry, REL(address)

Description:

Notes:

Legal Forms:

The SYM53C8XX Instruction Set
SET

Symbios Logic PCI-SCSI Programming Guide 3-47

SET 0

SET {ACK|ATN|TARGET|CARRY}[and {ACK | ATN | TARGET | CARRY} ...]

All Symbios Logic PCI-SCSI I/O Processors

Asserts SCSI ACK or ATN, or sets internal flags

ACK sets the Assert SCSI ACK bit.
ATN sets the Assert SCSI ATN bit.
TARGET sets the Set Target role bit.
CARRY sets the CARRY bit in the ALU.

SET TARGET

SET ACK and TARGET

Op code - I/O, Set instruction

Set/Clear Carry
1 - sets the Carry bit in the ALU
0 - has no effect

Set/Clear Target Mode
1 - places the chip into target mode
0 - has no effect

Assert SCSI ACK
1 - asserts the SCSI acknowledge signal
0 - has no effect

Assert SCSI ATN
1 - asserts the SCSI attention
0 - has no effect

The chip asserts the SCSI bus bits requested in the flags field.
Currently four bits are defined, allowing the SCSI ACK, target role,
and ATN bits to be set, as well as the Carry bit in the ALU. Bit 10 is
for Carry, bit 9 is for target, bit 6 is for Acknowledge, and bit 3 is for
Attention.

DCMD Register DBC Register DSPS
Register

31 30 29 25 24 23 ..11 10 9 8 7 6 5 4 3 2 0 31 0

01 01100 0 00 ..00 X X 000 X 00 X 000 00...00

Instr
Type

Op
code

RES RES Set
Clear
Carry

Set/
Clear
Target
Mode

RES Set/
Clear
SACK/

RES Set/
Clear
SATN/

RES RES

Supported by:

Definition:

Operands:

Example:

Format:

Fields:

Description:

Notes:

The SYM53C8XX Instruction Set
SET

3-48 Symbios Logic PCI-SCSI Programming Guide

SET ACK

SET ATN

SET TARGET

SET CARRY

SET ACK and ATN

SET ACK and TARGET

SET ACK and CARRY

SET ATN and TARGET

SET ATN and CARRY

SET TARGET and CARRY

SET ACK and ATN and TARGET

SET ACK and ATN and CARRY

SET ACK and ATN and TARGET and CARRY

Legal Forms:

The SYM53C8XX Instruction Set
STORE

Symbios Logic PCI-SCSI Programming Guide 3-49

STORE 0

STORE [NOFLUSH] register, byte_count,
[DSAREL(]destination_address[)]

SYM53C810A, SYM53C860, SYM53C825A, SYM53C875,
SYM53C876, SYM53C895, SYM53C885

Store data from an internal SYM53C8XX register to memory.

NOFLUSH indicates that the prefetch buffer should not be flushed
when the instruction executes

register is one of the register names in the SYM53C8XX operating
register set.

byte_count is the number of bytes (1-4) to be transferred from the
source_address.

DSAREL indicates that the source_address is an offset and should
be added to the DSA register to obtain the physical address (DSA
relative).

Note: the FROM keyword can still be used to indicate DSA relative
addressing, but it is being phased out in favor of DSAREL.

destination_address is the physical address or offset from the DSA
to obtain the physical address of the destination.

STORE SCRATCHA0, 4, data_buf

STORE SCRATCHA3, 2, DSAREL (0x02)

STORE NOFLUSH SCRATCHA0, 4, data_buf

Instruction Type - Load/Store

DSA Relative- indicates source address location
0 - DSPS contains actual address of data to load
1 - DSPS contains a 24-bit offset value that is added to the DSA to
determine the source address.

No Flush - When this bit is clear, the prefetch buffer will be flushed
during the Store instruction. When set, the prefetch buffer will not be
flushed automatically on a Store instruction.

DCMD Register DBC Register DSPS register

31 ...29 28 27,
26

25 24 23 22....16 15....3 2 0 31 0

111 X 00 X 0 0 X.. X 00..00 XXX XX... XX

Instr type DSA
Relative

RES No
Flush

Load/
Store

RES Reg
Addr

RES Byte
Count

Destination
Addr/DSA
Offset

Supported by:

Definition:

Operands:

Example:

Format:

Fields:

The SYM53C8XX Instruction Set
STORE

3-50 Symbios Logic PCI-SCSI Programming Guide

Load/Store - This field defines whether the instruction will be
executed as a Load or a Store.

0 - Store instruction
1 - Load instruction

Reg Addr- These bits select the register to load within the
SYM53C8XX operating register set.

Byte Count - 3-bit number indicating the number of bytes to
transfer.

Destination Addr - Actual address (or offset from the DSA) of the
destination address.

The Store instruction is a more efficient means than the Move
Memory instruction of moving data from an internal register of the
SYM53C8XX to memory. It is a two-dword instruction. This
instruction may be used to move up to 4 bytes. The number of bytes
to store is indicated by the low order bits in the first dword of the
instruction, as illustrated in the following table:

The register address and memory address must have the same byte
alignment, and the byte count set so that it does not cross dword
boundaries. The memory address may not map back to the
SYM53C8XX operating registers, although it may map back to a
location in the SCRIPTS RAM. If these conditions are violated, a
PCI illegal read/write cycle will occur and the chip will issue an
Interrupt (Illegal Instruction Detected) immediately following,
because the intended operation did not happen.

STORE register, byte_count, destination_address

STORE register, byte_count, DSAREL (destination_address)

STORE NOFLUSH register, byte_count, destination_address

DBC Bits 17-16
(Register Address bits A1-A0) Number of Bytes to Store

00 1, 2, 3, or 4

01 1, 2, or 3

10 1 or 2

11 1

Description:

Notes:

Legal Forms:

The SYM53C8XX Instruction Set
WAIT DISCONNECT

Symbios Logic PCI-SCSI Programming Guide 3-51

WAIT DISCONNECT 0

WAIT DISCONNECT

All Symbios Logic PCI-SCSI I/O Processors

Wait for SCSI bus disconnect

None

WAIT DISCONNECT

Instruction Type - I/O

Op code - Wait Disconnect

The initiator waits for a disconnect from the SCSI bus. A legal
disconnect is defined as a loss of busy and select for the specified bus
free time, following a DISCONNECT message or a COMMAND
COMPLETE message. If the SCSI Disconnect Unexpected (SDU)
bit (SCNTL2, bit 7)is clear and a disconnect occurs, the next SCSI
SCRIPTS instruction will be executed. If the SDU bit is set and a
disconnect occurs, an Unexpected Disconnect interrupt will occur.

WAIT DISCONNECT

DCMD Register DBC Register DSPS
Register

31 30 29 25 24 23.......0 31 0

01 00100 0 00 .. 00 00...00

Instr
Type

Op
code

RES RES RES

Supported by:

Definition:

Operands:

Example:

Format:

Fields:

Description:

Notes:

Legal Forms:

The SYM53C8XX Instruction Set
WAIT RESELECT

3-52 Symbios Logic PCI-SCSI Programming Guide

WAIT RESELECT 0

WAIT RESELECT {REL(Address) | Address}

Wait for reselection from target

All Symbios Logic PCI-SCSI I/O Processors

REL indicates the use of relative addressing.

Address is a 32-bit address (or 24-bit offset) that represents the
address of the next instruction to fetch if the chip is selected, or if the
SIGP bit in the ISTAT register is set.

WAIT RESELECT alt_addr

WAIT RESELECT REL(alt_addr)

Instruction Type - I/O

Op code - I/O instruction type, Wait Reselect

Relative Mode - Indicates that the 24-bit address is an offset from
the current program counter.

Dest Addr - Specifies the memory address to fetch the next
instruction if a reselection occurs or the SIGP bit is set by the host
processor.

The initiator waits to be reselected by a previously selected target
device. If the chip is responding to a previous reselection, it will fetch
and execute the next instruction. If the chip has already responded to
reselection, it will immediately fetch the next instruction. If the
operation completes as expected, the next instruction is fetched and
executed by the SYM53C8XX. However, if the chip is selected, then
the alternate jump address should contain the address of an
algorithm for a selection. Include in the address a wait for selection
(target role) instruction. That instruction's alternate address is the
error recovery algorithm (for initiator role—reselect). The chip can
determine exactly what happened and transfer control to the
appropriate SCSI SCRIPTS algorithm. If the SIGP bit in the ISTAT
register is set by the host processor, the chip will also fetch the
instruction at the alternate address. This allows the driver program to

DCMD Register DBC Register DSPS
Register

31 30 29 27 26 25 24 230 31 0

01 010 X 00 0000 XX...XX

Inst
Type

Op
code

Relative RES RES Dest Addr

Definition:

Supported by:

Operands:

Example:

Format:

Fields:

Description:

The SYM53C8XX Instruction Set
WAIT RESELECT

Symbios Logic PCI-SCSI Programming Guide 3-53

schedule another I/O instead of waiting for the reselection to
complete.This driver code activity is illustrated in Figure 3-3.

With the SYM53C8XX byte compare capability of the transfer
control instruction, the SCSI SCRIPTS algorithm can determine
which target reselected the initiator and can jump to the correct
algorithm for that particular target. The SYM53C8XX checks the
SIGP bit before checking to see whether it has been reselected. SCSI
SCRIPTS can be tuned for the various types of available target
devices and executed with no external processor intervention.

WAIT RESELECT Address

WAIT RESELECT REL(address)

Figure 3-3
WAIT RESELECT and the SIGP bit

WAIT RESELECT, Not_Reselected

;Code to handle RESELECT

•

•

•

:Not_Reselected

WAIT SELECT, SIGp_Set

;Code to handle SELECT

•

•

•

:Sigp_Set

;Code to handle Sigp

Notes:

Legal Forms:

The SYM53C8XX Instruction Set
WAIT SELECT

3-54 Symbios Logic PCI-SCSI Programming Guide

WAIT SELECT 0

WAIT SELECT {REL(Address) | Address}

Wait for selection from initiator

REL indicates the use of relative addressing.

Address is a 32-bit address (or 24-bit offset) that represents the
address of the next instruction to fetch if the chip is selected, or if the
SIGP bit in the ISTAT register is set.

WAIT SELECT alt_addr

WAIT SELECT REL(alt_addr)

Instruction Type - I/O

Op code - Wait Select instruction

Relative Mode - Indicates that the 24-bit address is an offset from
the current program counter.

Set Target Role
1 - places the chip into target mode
0 - places the chip into initiator mode

Destination Address - specifies the memory address to fetch the
next instruction if the device is reselected during the selection
attempt, or if the SIGP bit is set.

The chip waits for a SCSI selection by another device on the SCSI
bus. If the chip is already selected, then the next SCSI SCRIPTS is
fetched and executed. When a bus initiated interrupt or reselect
occurs, the chip changes to the initiator role and fetches the next
instruction from the address pointed to by the 32-bit jump address,
and continues execution. If the SIGP bit in the ISTAT register is set
by the host processor, the chip will also fetch the instruction at the
alternate address. The SYM53C8XX checks the SIGP bit before
checking to see whether it has been reselected.

WAIT SELECT Address

WAIT SELECT REL(address)

DCMD Register DBC Register DSPS Register

31 27 26 25 24 2310 9 80 31 0

01 010 X 00 00..00 1 00...00 X...X

Inst
Type

Opcode Relative
Mode

RES RES Set
Target
Role

RES Dest Addr

Definition:

Operands:

Example:

Format:

Fields:

Description:

Notes:

Legal Forms:

The SYM53C8XX Instruction Set
Instruction Examples

Symbios Logic PCI-SCSI Programming Guide 3-55

Instruction Examples 0

This section illustrates the operation of the five SCSI instruction
types supported by the SYM53C8XX. In each diagram, the SCSI
SCRIPTS Source Code version shows how the operation would be
expressed in the SCRIPTS language. This high-level textual format is
translated by NASM into a hexadecimal format that is put inside a
“C” language data declaration. After this intermediate form is
compiled, the instruction exists in a binary form that can be loaded
into host memory and fetched and executed by the SCRIPTS
processor.

I/O Instruction Example 0

In this example, the processor is selecting the SCSI device with SCSI
ID 01. The instruction is a Select With Attention, as indicated by the
ATN keyword.

The SELECT instruction and ATN flag generates a value of 41h for
the high order byte of the instruction, translating to a binary 01 for
I/O Instruction type, 000 for the op code, and a 1 in the ATN flag bit.
The SCSI target identity (01) is encoded in the next byte. The rest of
the bits are reserved and should remain cleared. The alternate

The SYM53C8XX Instruction Set
Instruction Examples

3-56 Symbios Logic PCI-SCSI Programming Guide

address in the original SCRIPTS instruction is loaded into the DSPS
register.

Memory Move Instruction
Example 0

In this example, the processor is attempting to move eight bytes (as
defined by command_length) from the source address (as defined by
command_buffer) to the destination address relative to the source
(as defined by scratch_buffer).

The MOVE MEMORY instruction generates an op code of C0 for
the high order byte of the instruction. The remaining bits of the
DCMD register are reserved and must be set to zero. The DBC
register contains a value of eight as directed by the translation of the
command_length of 0x08. Figure 3-5 shows the original SCRIPTS

Figure 3-4
I/O Instruction Type

SELECT ATN 01, alt_address

41010000 00000000

DCMD Register DBC Register

SCSI SCRIPTS

Source Code

NASM

Output

Binary

Instruction

Format

01000001000000010000000000000000

 DSPS Register
00000000000000000000000000000000

The SYM53C8XX Instruction Set
Instruction Examples

Symbios Logic PCI-SCSI Programming Guide 3-57

language form of the instruction, the SCRIPTS compiler output, and
the binary form of the first 32-bit word of the instruction.

Figure 3-5
Memory Move Instruction Part 1

ABSOLUTE command_length=8

RELATIVE rel_buf\

command_buffer=8{??}\

scratch_buffer=8{??}

move memory, command_length, command_buffer, scratch_buffer

C0000008 00000000 00000008

DCMD Register DBC Register

SCSI SCRIPTS

Source Code

NASM

Output

Binary

Instruction

Format

11000000000000000000000000001000

The SYM53C8XX Instruction Set
Instruction Examples

3-58 Symbios Logic PCI-SCSI Programming Guide

Figure 3-6 shows the Assembler output and the binary form of the
second and third 32-bit words of the Memory Move instruction.

Transfer Control
Instruction Example 0

In this example, the processor is performing an interrupt with a
vector of 0xACB. The first version shows how the operation would be
expressed in the SCRIPTS language. NASM translates the operation
into the hexadecimal format shown. The hexadecimal format is then
compiled producing the instruction in a binary form that can be
loaded into host memory and put inside a “C” language data
declaration. The INT instruction generates a hexadecimal value of
0x98 for the high order byte of the instruction, translating in binary
to 10 for Transfer Control, and 011 for the op code for Interrupt.

Figure 3-6
Memory Move Instruction Part 2

C0000008 00000000 00000008

DSPS Register

NASM

Output

Binary

Instruction

Format

00000000000000000000000000000000

(command_buffer) (scratch_buffer)

00000000000000000000000000001000

Temp Register

Binary

Instruction

Format

The SYM53C8XX Instruction Set
Instruction Examples

Symbios Logic PCI-SCSI Programming Guide 3-59

Read/Write Instruction
Example 0

This example writes 01 into the SCID register. This is illustrated by
the translation of the hexadecimal compiler output into binary
format.

The MOVE instruction is 78 in hexadecimal, translating into 01 for
Read/Write; 111, the op code for the Read/Modify/Write function;
and 00 in the operator field to indicate that the instruction will
operate on the immediate data and write to the destination register.

Figure 3-7
Transfer Control Instruction

INT 0xACB

98000000 00000ACB

SCSI SCRIPTS

Source Code

NASM

Output

Binary

Instruction

Format
DCMD Register DBC Register
10011000000000000000000000000000

98000000 00000ACB

Binary

Instruction

Format DSPS Register

00000000000000000000101011001011

(0xACB)

The SYM53C8XX Instruction Set
Instruction Examples

3-60 Symbios Logic PCI-SCSI Programming Guide

The address of register SCID is 04 in hexadecimal, translating to a
binary format for the Register Address bits of the DBC register.

Block Move Instruction
Example 0

In this example, the processor waits for a valid phase (indicated by
SREQ/ being asserted) and compares it to CMD phase. If the phase
matches, the processor then transfers the command descriptor block
from the address represented by the command_buffer. In the
hexadecimal version of the first 32-bit word of the instruction, Move
is represented by 0A, which translates into binary as an op code of
00, indicating a Block Move instruction type. The 00 indicates that
neither type of indirect addressing bits are on, 1 indicates that the
processing is in the Initiator role, and 010 (Command) is the

Figure 3-8
Read/Write Instruction

Move 1 to SCID

78040100 00000000

SCSI SCRIPTS

Source Code

NASM

Output

Binary

Instruction

Format
DCMD Register DBC Register
01111000000001000000000100000000

Note: all bits in the DSPS register are reserved, and must remain cleared.

The SYM53C8XX Instruction Set
Instruction Examples

Symbios Logic PCI-SCSI Programming Guide 3-61

expected value of the SCSI phase lines. The command length is six
bytes, indicated by 06. This length is loaded into the DBC register.

The bottom portion of the illustration shows the second 32-bit word
of the instruction, defined by command_buffer, the address from
which the Block Move instruction will start transferring data. It is
loaded into the DSPS register.

Load/Store Instruction
Example 0

In this example, the processor waits for a valid phase (indicated by
SREQ/ being asserted) and compares it to CMD phase. If the phase
matches, the processor then transfers the command descriptor block
from the address represented by the command_buffer. In the
hexadecimal version of the first 32-bit word of the instruction,
STORE with the No Flush option is represented by E2, which
translates into binary as an op code of 111, indicating a Load/Store
instruction type. The 0 indicates that the DSPS value is the actual
address to STORE from, and 0010 indicates that the prefetch buffer
will not be flushed during the STORE, and that the SYM53C8XX is

Figure 3-9
Block Move Instruction

MOVE command_length,command_buffer,WHEN CMD

0A000006 00000012

DCMD Register DBC Register

SCSI SCRIPTS

Source Code

NASM

Output

Binary

Instruction

Format

00001010000000000000000000000110

0A000006 00000012

 DSPS Register

NASM

Output

Binary

Instruction

Format

00000000000000000000000000010010

(command_buffer)

The SYM53C8XX Instruction Set
Instruction Examples

3-62 Symbios Logic PCI-SCSI Programming Guide

performing a STORE rather than a LOAD instruction. The data will
be stored to the SCRATCHA register; one, two, three, or four bytes
may be stored.

The bottom portion of the illustration shows the second 32-bit word
of the instruction, defined by command_buffer, the address to which
the STORE instruction will start transferring data. It is loaded into
the DSPS register.

Figure 3-10
Load/Store Instruction

STORE NoFlush SCRATCHA0,4, 0xFFFE54

E2340004 00FFFE54

DCMD Register DBC Register

SCSI SCRIPTS

Source Code

NASM

Output

Binary

Instruction

Format

11100010001101000000000000000100

 0 0FFFE54

 DSPS Register

NASM

Output

Binary

Instruction

Format

00000000111111111111111001010100

(command_buffer)

Using the Symbios Logic Assembler
Overview

Symbios Logic PCI-SCSI Programming Guide 4-1

Chapter 4

Using the Symbios Logic Assembler

Overview 0

The Symbios Logic Assembler (NASM) is a DOS command line-
driven assembler that supports the Symbios Logic SCSI I/O
Processor family, including the SYM53C8XX. NASM creates a “C”
header file from the SCSI SCRIPTS source file. It assembles SCSI
SCRIPTS for inclusion into SCSI device driver software.

Inputs to the assembler are command line switches, and input and
output file names. The assembler produces comprehensive error
messages, cross referenced list files, and “C” include files. The source
file may be created using any standard text editor that creates an
ASCII file as output.

To assure portability, NASM does not provide support for directory
paths. The resulting output file and the optional listing file will be
placed in the directory where NASM is executed. Since the
assembler is written in “C”, it can easily be ported to any non-DOS-
based development environment that offers a “C” compiler.

Starting NASM 0

To run the assembler, copy the assembler executable file directly into
the directory from which the assembly will be performed.

The NASM command line recognizes DOS wild card
characters(“*”, “?”) in the file names. Entering NASM on the
command line with no arguments produces a short description of all
the valid switches.

Usage: NASM filename [options]

where:

filename is the name of the file to assemble. Files should be
specified in the standard DOS format:[d:] [path] name.ext The
file name is the root file name of the .ss file unless otherwise
indicated.

Using the Symbios Logic Assembler
Starting NASM

4-2 Symbios Logic PCI-SCSI Programming Guide

[options] - are one or more of the following preceded by the
hyphen (“-”) character

a [arch] Specify SCSI architecture (default is
SYM53C700)

b Generate binary cross reference values

e
[filename[.err]]

Save error messages (filename optional)

l
[filename[.lis]]

Generate cross reference (filename optional)

o
[filename[out]]

Generate “C” source output (filename optional)

p
[filename[.out]]

Generate partial “C” header (filename optional)

s
[filename[.bin]]

Generate .bin format output (filename optional)

u Exclude module termination record

v Verbose messages

x List patch offsets in cross reference listing

Using the Symbios Logic Assembler
Command Line Options

Symbios Logic PCI-SCSI Programming Guide 4-3

Command Line Options 0

A [arch] - Specify processor
for code generation 0

The -A option allows the programmer to specify the Symbios Logic
chip for which code will be generated. The currently supported chips
are listed in the table below, along with the corresponding number to
enter to choose the architecture. An ARCH statement at the beginning
of a SCRIPTS source file overrides any options typed in on
command line. If the source file does not have an ARCH statement and
no architecture is specified in the command line, NASM will use the
default architecture (SYM53C700).

B - Binary Cross
Reference Values 0

The -B option causes the filename.lis file to generate binary as
well as hexadecimal opcodes in the listing file.

E - Creates an error listing
file 0

This option allows an error message file to be created if errors occur
during NASM assembly. If no file name is given, the -e option will
create a file with the same root name as the source file, with a .err
extension.

Product Name ARCH Command line
entry

SYM53C700 or
SYM53C700-66

-A 700

SYM53C710 -A 710

SYM53C720 -A 720

SYM53C770 -A 770

SYM53C810 -A 810

SYM53C810A -A 810A

SYM53C825 -A 825

SYM53C815 -A 815

SYM53C825A (all
package variations)

-A 825A

SYM53C875 (all package
variations)

-A 875

SYM53C876 -A 876

SYM53C895 -A 895

SYM53C885 -A 885

Using the Symbios Logic Assembler
Command Line Options

4-4 Symbios Logic PCI-SCSI Programming Guide

L - Creates a listing file 0

This option creates an assembly listing (.LIS) file. When invoked, the
-L option creates a file with the same root name as the source file and
a .LIS extension, unless otherwise specified.

O - Generate output file 0

The -O option creates a “C” style output (.OUT) file. When invoked,
the -O option creates a file with the same root name as the source file
and a .OUT extension, unless otherwise specified.

P - Generate Partial “C”
Source 0

This option, which is mutually exclusive with the -o option, creates a
partial “C” style output file with a .out extension, but no patch
information is listed. If the -o and -p options are both specified, the
-p option always takes precedence. The portions of the SCRIPTS
outfile that are eliminated by the -P option are listed below. For more
detail on the SCRIPTS output file, refer to Chapter 5.

● the #define Ext_Count... which is a count of external variables

● the char *External_Names[Ext_Count]... array of external
variable names

● the #define E_buf_name... definition of the external buffer
offset because it will always be zero

● the #define Rel_Count... which is a count of relative buffers

● the ULONG Rel Patches [Rel_Count]... array of relative
patches

● the #define R_buf_name... define of the relative buffer offsets

● the #define Abs_Count... which is a count of Absolute
variables

● the char *Absolute_Names[Abs_Count]... which is an array
of absolute names

● the ULONG A_absolute_Used[]... array of locations where
absolute variables are used

● the termination record is removed (as in the -U option)

● a #define instruction 0x???????? is added, which is the
instruction count

S - Generate .BIN Output 0

This option generates a file with a .bin extension.

U - Omit Termination
Record 0

This option instructs the assembler to omit the INSTRUCTIONS
and PATCHES information from the output file. It must be used
with the -o or -p option.

V - Verbose Messages 0

This option instructs the assembler to generate more comprehensive
status messages.

X - Patch Offsets 0

Using this option produces an assembly level output file, including a
list of patch addresses for each symbol. These addresses indicate
where to patch each individual symbol value.

Using the Symbios Logic Assembler
Example Assembler Command Lines

Symbios Logic PCI-SCSI Programming Guide 4-5

Example Assembler Command Lines 0

The following command lines are typical examples of how to use the
various options.

1 NASM demoPCI.ss

This command line produces no output files, but allows a quick
syntax check on the SCRIPTS instructions in the file named
DEMOPCI.SS

2 NASM demoPCI.ss -a 875 -l -o -e errors.txt

This command line requests that NASM check the syntax and
generate code for the SYM53C875 chip. The listing, error log,
and standard C header will be generated. Since no filenames were
specified for the listing and C header files, they will take the name
of the input file, but with .LIS, and .OUT as the file extensions,
respectively. The error log will be sent to the file named
ERRORS.TXT

How NASM Parses SCRIPTS Files 0

SCSI SCRIPTS programs contain a series of lines. Blank lines, lines
containing only white space, and anything after a semi-colon on a
line are ignored.

The assembler is token oriented. It reads the source file and splits it
up into tokens. White space and anything from a semicolon to the
end of the line is not part of any token, and is ignored by the first pass
of the assembler.

There are two types of tokens. Any string of consecutive letters,
numbers, dollar signs, and underscores is a token. The second type of
token consists of characters that are not part of other tokens.
Anything that is not a letter, a digit, an underscore, or a dollar sign,
will become a token. For example, the string “xxx = 0x123; assign
value to xxx” contains three tokens. “xxx” is a token, “=” is a token,
and “0x123” is a token.

Numeric values may be specified in decimal, hexadecimal, octal, or
binary format. Decimal numbers are specified by a string of digits
that does not begin with a zero. Octal numbers are specified by a
string of digits that begins with zero. Hex numbers are specified by a
string consisting of “0x” or “0X” and the hex digits of the number.
Both upper and lower case are allowed. A binary number is similar to
a hex number, except that “0b” or “0B” is used instead of “0x” or
“0X”.

Using the Symbios Logic Assembler
Assembler Declarative Keywords

4-6 Symbios Logic PCI-SCSI Programming Guide

Assembler Declarative Keywords 0

To do its job efficiently, the assembler needs to recognize a set of
commands that are different from the processor instructions. These
commands, called declarative keywords, control the different aspects
of code generation and are intended for the assembler’s use. In most
cases, the declarative keywords will not produce executable code by
themselves, but must be combined with processor instructions to
generate assembled code.

The declarative keywords are grouped functionally in Table 4-1,
Table 4-2, and Table 4-3. They are listed alphabetically and defined
in the remainder of this section.

Table 4-2
Code Generation Keywords

Table 4-3
Miscellaneous Keywords

Table 4-1
Data Definition and Storage Keywords

Function Keyword

Equates ABSOLUTE

Storage Definition RELATIVE,
EXTERNAL

Table Addressing TABLE

Function Keyword

Code Generation ARCH

Function Keyword

Module Definition PROC

Code Entry Labels ENTRY

Using the Symbios Logic Assembler
Assembler Declarative Keywords

Symbios Logic PCI-SCSI Programming Guide 4-7

ABSOLUTE 0

Equate Value with Symbol

ARCH 0

Specify Target Architecture

Purpose Use ABSOLUTE to define the symbol name by assigning it
a numeric value. Once a name has been declared using
ABSOLUTE, NASM will substitute this numeric value in
each instruction where the name is used.

Syntax ABSOLUTE name = expression

Fields

Example ABSOLUTE bytes = 2048 ; A sector is 2048
bytes

ABSOLUTE sectors = 4 ; A cluster has 4
sectors

ABSOLUTE cluster = bytes ; cluster size
ABSOLUTE bytecnt = bytes ; bytecnt is an indexing

; variable

Description The ABSOLUTE keyword supplies a list of names, or
labels, solely for the use of the assembler. NASM can refer
to this list when it is actually assembling the program.

Notes

Purpose Use ARCH to direct the assembler to generate instructions
that are specific to a chip architecture.

Syntax ARCH chip_number

Fields chip_number

Example ARCH 810A

ARCH 875

Description

Notes If used, this keyword should be placed before any
executable statements so that the assembler knows which
chip to generate code for. The chip architecture may also be
specified on the assembler command line for the assembler
using the -A chip_number option. ARCH takes
precedence over the -A option in the NASM command
line. The chip number entries should use the last three
digits of the product number, as indicated in the example
above.

Using the Symbios Logic Assembler
Assembler Declarative Keywords

4-8 Symbios Logic PCI-SCSI Programming Guide

ENTRY 0

Declare External Entry Point

EXTERN 0

Declare External Symbol

Purpose Use the ENTRY keyword to inform the driver program of
the starting location of callable routines contained in a given
SCRIPTS instruction. ENTRY allows the declaration of
variables as entry points into the SCSI SCRIPTS
instruction array. It defines the names and values of the
variables, making them also available to the host
development system.

Syntax ENTRY label [, label ...]

Fields

Example ENTRY start, Data_Out_Entry

Description The ENTRY keyword indicates which SCRIPTS entry
points should be made visible to the driver code. Only those
entry points named in the ENTRY keyword will generate
information in the assembler output file.

Notes All entries must be used as a label somewhere in the
SCRIPTS code, otherwise an error message will be
reported.

Purpose Use the EXTERN keyword to inform the assembler that a
symbol should be resolved at link time. This keyword allows
the declaration of variables that are defined external to the
SCRIPTS program. EXTERN causes the assembler to
keep an array of offsets into the SCRIPTS array that the
driver can use to patch SCRIPTS instructions into the
driver program.

Syntax EXTERN label [, label ...] or

EXTERN label = data_specifier [, label =
data_specifier...]

a data specifier is:

{byte_val[, byte_val]} or count{byte_val | ??}

Fields A count is any valid constant with a value between 0 and
64K

Example EXTERN buffer; a buffer in the driver

EXTERN buffer=1024{??}; same buffer, but now

; the debugger will have

; information about space

; requirements

Description The first form of the EXTERN syntax is only provided for
compatibility with older versions of the SCRIPTS
compiler. The second form (with space requirements
information for the debugger) should be used in all new
programs. Declarative instructions never allocate memory,
but give the debugger or driver code the information
required to allocate the memory.

Using the Symbios Logic Assembler
Assembler Declarative Keywords

Symbios Logic PCI-SCSI Programming Guide 4-9

PASS 0

Transfer an Element, Unaltered, to the output file

PROC 0

Define an output module

Purpose Allows the programmer to pass a “C” element unaltered to
the SCRIPTS output file and on to the “C” compiler.
Using the Pass option avoids the need for runtime patching
of the addresses of SCRIPTS objects. PASS is typically
used for two types of “C” elements; either an include
statement or a literal string.

Syntax PASS(element)

Fields

Examples Include statement: PASS(include”SCRIPTS.h”)

Literal string: Wait Reselect PASS(&alt_addr)

Description PASS tells NASM to pass everything between the left and
right parentheses on to the output file, literally. Therefore,
the passed statements can be read by the “C” compiler.

Notes

Purpose PROC is used in the SCRIPTS code to build output arrays
with names other than the generic array name SCRIPT that
NASM normally assigns to SCRIPTS opcode arrays. This
is useful when more than one SCRIPTS file is used in a
driver program. It also allows several output arrays to be
created with specific code segments in each one. When
SCRIPTS storage space is limited, code can be divided into
different sections where one section would fit in a limited
space (such as SCRIPTS RAM) and the remaining code
can be stored elsewhere.

Syntax PROC label:

Fields label is the name assigned to the SCRIPTS output array.

Examples PROC Start:

Description When a PROC keyword is used, the SCRIPTS output array
in the .out file is given the name specified in label,
overriding the default name SCRIPT. If additional PROC
statements are used in the same SCRIPTS source file,
NASM will create additional output arrays in the .out file
with the name specified in label for each PROC
statement.

Notes

Using the Symbios Logic Assembler
Assembler Declarative Keywords

4-10 Symbios Logic PCI-SCSI Programming Guide

RELATIVE 0

Define Contiguous Data Structure

Purpose Use RELATIVE to begin the definition of a data structure
named baselabel with offsets into the buffer specified by
the labels. Allows the declaration of buffers to be positioned
relative to one another. The expression used will be the offset
from the start of the relative data area where the buffer
variable is located.

Syntax RELATIVE label = expression [, label = expression...]
or
RELATIVE baselabel \

label = data_specifier [, label = data_specifier...]

a data specifier is:
{byte_val [, byte_val]}
or
count{byte_val |??}

Fields A byte_val is any valid constant with a value between 0 and
255. For example: 0x10 and 16 both represent a byte value of
16. Also, the special data value ‘??’ can be used to indicate
that a byte should be reserved, but that it should not be
initialized to a specific value. The SCRIPTS program does
not allocate memory; this is done by “C” code in the
SCRIPTS debugger or in the driver code.
A count is any valid constant with a value between 0 and
64K.

Example This example shows the typical use of the RELATIVE
keyword. NASM syntax requires that no SCRIPTS
statements span more than one line; however, in the case of
the RELATIVE, this would result in a very unreadable
source code file. The following example demonstrates the use
of the logical line continuation character ‘\’. When this
character is used, the assembler appends the next line to the
end of the current line.

RELATIVE data_buffer\
identify_msg_buf =1{??}, \
synch_msgo_buf = {1,2,3,4,5},\
synch_msgi_buf = 5{??},\
cmd_buf = 12{??},\
W_cmd_buf = 12{??},\
stat_buf = 1{??},\
msg_in_buf = 1{??},\
disc_msg_in_buf = 2{??},\
read_cap_buf = {1,2,3,4,\
5,6,7,8},\
inquiry_buf = 36{??},\
request_sense_buf = 18{??},\
data_buf = 16384{??}

Using the Symbios Logic Assembler
Assembler Declarative Keywords

Symbios Logic PCI-SCSI Programming Guide 4-11

TABLE 0

Define Data Structure for Table Indirect Addressing

Description The RELATIVE keyword defines a template for a collection
of data elements of the same or varying types, each of which
can be accessed by a descriptive name, but no storage is
allocated. It is up to the programmer to use the
RELATIVE information that is placed in the output file to
declare space in the driver program that the RELATIVE
maps to.

Notes The first form of the RELATIVE syntax example is only
provided for compatibility with older versions of the
SCRIPTS compiler. The second form (with baselabel
definition) should be used for all new programs.
Since the SCRIPTS array will have only offsets from the base
address of the buffer, the SCRIPTS elements containing
references to relative buffers will need to be patched by the
driver program after the buffer space is allocated.

Purpose Use TABLE to describe a data structure that will be used with
the table indirect addressing feature of the 53C8XX. The
starting location for the buffer is defined by the data structure
address written to the DSA register. The expression specifies
the offset into the buffer and is added to the starting address of
the buffer (DSA register) to form the absolute address. This
feature allows SCRIPTS to be programmed into a ROM.

Syntax TABLE tablelabel \

label = data_specifier \

[, label = data_specifier...]

a data specifier is:

{byte_val [, byte_val]} or

count{byte_val |??} or

ID{byte_val | ??}

Fields A byte_val is any valid constant with a value between 0 and
255. For example, 0x10 and 16 both represent a byte value of
16. Also, the special data value ‘??’ can be used to indicate that
a byte should be reserved, but that it should not be initialized
to a specific value.
A count is any valid constant with a value between 0 and 64K.

Using the Symbios Logic Assembler
Assembler Declarative Keywords

4-12 Symbios Logic PCI-SCSI Programming Guide

Example This example shows the typical use of the TABLE keyword
NASM does not generate any output based on the TABLE
keyword. This example is a template for a data structure that
will be used in the driver program or in the SCRIPTS
debugger. NASM assembler syntax requires SCRIPTS
statements to span no more than one line; however in the case
of the TABLE, this would result in a very unreadable source
code file. The following example demonstrates the use of the
logical line end character (/).When this character is used,
NASM appends the next line to the end of the current line.
TABLE table_indirect\
stat_buf = {??},\ ;stat_buf = 1 byte
msg_in_buf= {??},\ ;msg_in_buf = 1 byte
data_buf = 512{??},\
R_data_buf = 512{??},\ ; read data buffer
W_data_buf = 512{0xaa},\ ; write data buffer
W_cmd_buf = {0x0A, 0x00, 0x00, 0x00, 0x01, 0x00}, \
R_cmd_buf= {0x08, 0x00, 0x00, 0x00, 0x01, 0x00}, \
dum_buf = 512{??},\
scsi_id = ID{??},\
select_id = ID{0x33, 0x00, 0x00, 0x00}

Description Table indirect addressing allows a SCRIPTS program to be
placed in ROM and still allows the driver program to
dynamically specify different parameters for the BLOCK
MOVE, SELECT, or RESELECT instructions.

Notes The TABLE keyword defines the table entries, each of which
can be accessed by a descriptive name, but no storage is
allocated. It is up to the programmer to provide the data
definition and allocation for the SCRIPTS table in the driver
program and load the DSA prior to execution of SCRIPTS
routines.
Currently, only one TABLE keyword per SCRIPTS routine is
allowed. An error message will be generated if multiple
TABLEs are used.
The ID parameter in the data specifier allows initialization of
the table entries for use with the FROM keyword of the
SELECT and RESELECT instructions on the SYM53C8XX
chips.

Using the Symbios Logic Assembler
Conditional Keywords

Symbios Logic PCI-SCSI Programming Guide 4-13

Conditional Keywords 0

Conditional keywords are used to test for conditions such as an
expected phase or data byte.

If 0

The IF keyword indicates that a comparison is to be done
immediately.

Example: JUMP address, IF phase

When 0

The WHEN keyword causes the chip (as an initiator) to wait for a
phase to become valid. A valid phase is indicated by REQ/ being
asserted on the SCSI bus. Since WHEN waits for the SCSI REQ/
signal when making a comparison, it may not work when comparing
for conditions that are not related to the SCSI bus.

Example: CALL address, WHEN data

Logical Keywords 0

Logical keywords are used in conjunction with conditional keywords
to add detail or additional comparisons to the conditions being
tested.)

NOT 0

NOT negates (logically inverts) the conditions specified by the
qualifiers that follow. For example, an instruction that reads RETURN
if NOT data compares data to the contents of the SFBR register. If
they are not identical, the operation will execute.

Example: JUMP address, if NOT data

AND 0

AND is used to compound the condition being tested. All conditions
that are added with the AND keyword must be true for the operation
to execute.

Example: RETURN, WHEN data AND MASK DATA

OR 0

OR specifies a list of conditions, one of which must be true for the
operation to execute.

Example: CALL REL (address), IF NOT ATN OR data

Using the Symbios Logic Assembler
Flag Fields

4-14 Symbios Logic PCI-SCSI Programming Guide

Flag Fields 0

The Flag Fields keywords are used to signify that a flag field bit has
been set. The flag field bits are controlled with the SET and CLEAR
instructions

ACK 0

The target checks to see if the SCSI ACK/ signal is asserted.

Example: CLEAR ACK

ATN 0

The target checks to see if the initiator has set the SCSI ATN/ signal.
Example: JUMP address, IF NOT ATN

TARGET 0

By setting or clearing this bit, the SYM53C8XX is placed in target or
initiator role.This must be done before the chip can execute target-
or initiator-specific operations, such as reselection.

Example: SET TARGET

CARRY 0

This keyword checks the ALU Carry bit in the SYM53C8XX to
determine which SCRIPTS routine to execute next. CARRY is not
valid if phase or data clauses are used in the same instruction.
Register Move (arithmetic) operations also affect the CARRY flag.

Example: JUMP address, IF CARRY

Qualifier Keywords 0

Qualifier keywords are used in conjunction with action keywords to
add details about the instructions to be performed.

DSAREL 0

This keyword is only available in the Symbios Logic devices that
support Load and Store instructions. It is used in Load/Store
instructions to indicate that the data to be loaded or stored is relative
to the DSA register. This keyword replaces the RELATIVE keyword,
although NASM still supports RELATIVE as well.

Example: STORE NOFLUSH SCRATCHA0, 4 DSAREL (address)

FROM 0

This signifies that table indirect addressing is used. It can be used
with Block Move or Select operations.

Example: MOVE FROM address, WITH phase

Using the Symbios Logic Assembler
Qualifier Keywords

Symbios Logic PCI-SCSI Programming Guide 4-15

MASK 0

This keyword allows selective comparison of specified bits with the
SCSI First Byte Received (SFBR) register. Any bits that are set in the
mask byte eliminate the corresponding bits in the SFBR register.

Example: RETURN WHEN data AND MASK DATA

MEMORY 0

The MEMORY keyword is used in conjunction with an action
keyword to signify a Memory to Memory Move instruction.

Example: MOVE MEMORY 512, data_buf, data_buf1

PTR 0

PTR causes the Indirect bit to be set in a Block Move instruction.

Example: MOVE count, PTR address, WITH phase

REG 0

This keyword allows access to register by register number instead of
register name. The register number must be in parenthesis.

Example: MOVE REG(10) + 0x01 TO REG(10)

REL 0

This keyword indicates that relative addressing is used.

Example: SELECT ID, REL(address)

TO 0

This keyword indicates the destination of a Register Move operation.

Example: MOVE data TO register

WITH 0

The WITH keyword allows the target to drive the phase on the SCSI
bus. This keyword is used for Target Move operations.

Example: CHMOV count, address, WITH phase

NOFLUSH 0

This keyword is used in the SYM53C8XX products that support
instruction prefetching, in conjunction with Move Memory and
Store instructions that affect the prefetch buffer. Its purpose is to
preserve the contents of the prefetch buffer when one of these
operations is performed.

Example: STORE NOFLUSH SCRATCHA0,4 DSAREL (address)

Using the Symbios Logic Assembler
Other Keywords

4-16 Symbios Logic PCI-SCSI Programming Guide

Other Keywords 0

Action Keywords 0

These words are used to execute SCSI SCRIPTS instructions. They
are described in detail in Chapter 3.

SCSI Phases 0

These words are used to describe the phases of the SCSI bus. One of
these keywords should be used in place of the word “phase” when it
appears in programming examples in this manual. The SCSI phase
keywords are CMD, COMMAND, DATA_IN, DATA_OUT,
MSG_IN, MSG_OUT, STATUS, RES4, RES5.

Register Names 0

All register names are reserved keywords. A full list of register names
and brief descriptions appears in Appendix B.

The NASM Output File
Overview

Symbios Logic PCI-SCSI Programming Guide 5-1

Chapter 5

The NASM Output File

Overview 0

The NASM assembler produces an output file with all the necessary
data structures and information that a programmer writing a driver
program needs to be able to load and run a SCSI SCRIPTS
program. The assembler produces data structures compatible with
ANSI “C”. The file can be included in a “C” program and compiled
without any modifications.

Three command line parameters determine whether certain
structures will be produced in the output file. The -o option will
cause NASM to generate all of the structures described in this
chapter. The -p option will cause only some of the structures to be
generated; please see each section for the effects of the -p option.
Finally, the -u option only affects the Termination Record which is
detailed later in this chapter. The -o and -p options are mutually
exclusive (i.e. only one or the other can be used); if they are used
together in the command line, the -p option takes precedence. The -
u option must be used in conjunction with either the -o or the -p
option.

The example SCRIPTS program in Figure 5-1 shows the various
types of structures produced by the NASM assembler.

Using the Symbios Logic Assembler
Overview

5-2 Symbios Logic PCI-SCSI Programming Guide

Figure 5-1
Structures in a SCRIPTS Program

ARCH 825

ABSOLUTE Got_Selected= 0xA5

ABSOLUTE Not_Msg_Out= 0x11

ABSOLUTE Select_ID= 2

ABSOLUTE Command_Complete= 0x01

EXTERN ex_buf1

EXTERN ex_buf2

RELATIVE rel_buffer \

 rel_buf1= ??, \

 rel_buf2= 6{??}, \

 rel_buf3= ??

TABLE tbl_buffer \

 tbl_buf1= ??, \

 tbl_buf2= ??, \

 tbl_buf3= ??

ENTRY Start

ENTRY Send_CMD

ENTRY Send_DATA

Start:

 SELECT ATN Select_ID, REL(Interrupt)

 INT Not_Msg_Out, WHEN NOT MSG_OUT

 MOVE 1, rel_buf1, WHEN MSG_OUT

Send_CMD:

 MOVE 6, rel_buf2, WHEN CMD

Send_DATA:

 MOVE FROM tbl_buf1, WHEN DATA_OUT

 MOVE FROM tbl_buf2, WHEN DATA_OUT

 MOVE FROM tbl_buf3, WHEN DATA_OUT

 MOVE 1, ex_buf1, WHEN STATUS

 MOVE 1, ex_buf1, WHEN MSG_IN

 MOVE SCNTL2 & 0x7F to SCNTL2

 CLEAR ACK

 WAIT DISCONNECT

 JUMP All_done

Interrupt:

 INT Got_Selected

All_done:

 INT Command_Complete

Using the Symbios Logic Assembler
NASM Output File Sections

Symbios Logic PCI-SCSI Programming Guide 5-3

NASM Output File Sections 0

The parts of the .out file discussed in this section correspond to the
example SCRIPTS program in Figure 5-1.

SCRIPTS Array 0

The SCRIPTS array is an array of unsigned long values that is the
actual contiguous machine code (opcodes) produced by the
assembler. Each line of the array contains (from left to right) one
instruction, and one or two address fields depending on the
instruction. If a PROC directive is used in the source program, there
may be more than one SCRIPTS array. For each PROC, a new array
will be declared with the name specified with the PROC directive.

For example if the above code started with:

PROC SCSI_READ:

Start:

 SELECT ATN Select_ID, REL(Interrupt)

.

.

.

Then the SCRIPTS array would have started:

typedef unsigned long ULONG;

ULONG SCSI_READ[] = {

0x45020000L, 0x00000060L,

The default array name without the PROC statement is SCRIPT.
The SCRIPTS array is not affected by NASM command line
options.

Example of SCRIPTS array:

typedef unsigned long ULONG;

ULONG SCRIPT[] = {

0x45020000L,0x00000060L,

0x9E030000L,0x00000011L,

0x0E000001L,0x00000000L,

0x0A000006L,0x00000001L,

0x18000000L,0x00000000L,

0x18000000L,0x00000008L,

0x18000000L,0x00000010L,

Using the Symbios Logic Assembler
NASM Output File Sections

5-4 Symbios Logic PCI-SCSI Programming Guide

0x0B000001L,0x00000000L,

0x0F000001L,0x00000000L,

0x7C027F00L,0x00000000L,

0x60000040L,0x00000000L,

0x48000000L,0x00000000L,

0x80080000L,0x00000070L,

0x98080000L,0x000000A5L,

0x98080000L,0x00000001L

};

Using the Symbios Logic Assembler
NASM Output File Sections

Symbios Logic PCI-SCSI Programming Guide 5-5

Entry and PROC 0

A PROC label generates separate arrays of SCRIPTS instructions for
each PROC occurrence. An Entry specification generates a “C”
language #define (pronounced “pound define”) equal to the number
of bytes between this entry and the beginning of the first code array.
The #define offset is not relative to the array in which it appears, but
is relative to the first code array created. In the example shown in
Table 5-1, the first SCRIPTS instruction for INC_A is located 40
(hex) bytes after the location of MAIN[].

Table 5-1
Relationship Between Entry and PROC
Statements and Output File

Source Output File

typedef unsigned long ULONG;

Entry MAIN #define ENT_MAIN 0x00000000L

Entry CLEAR_A #define ENT_CLEAR_A 0x00000018L

Entry INC_A #define ENT_INC_A 0x00000040L

PROC MAIN: ULONG MAIN[] = {

 call CLEAR_A 0x88080000L, 0x00000018L,

 call INC_A 0x88080000L, 0x00000040L,

 call INC_A 0x88080000L, 0x00000040L,

 };

PROC CLEAR_A: ULONG CLEAR_A[] = {

 move SCRATCHA0 & 00 to SCRATCHA0 0x7C340000L, 0x00000000L,

 move SCRATCHA1 & 00 to SCRATCHA1 0x7C350000L, 0x00000000L,

 move SCRATCHA2 & 00 to SCRATCHA2 0x7C360000L, 0x00000000L,

 move SCRATCHA3 & 00 to SCRATCHA3 0x7C370000L, 0x00000000L,

return; 0x90080000L, 0x00000000L

INC_A:

 move SCRATCHA0 + 1 to SCRATCHA0 0x7E340100L, 0x00000000L,

 return, if NOT Carry; 0x90200000L, 0x00000000L,

 move SCRATCHA1 + 1to SCRATCHA1 0x7E350100L, 0x00000000L,

 return, if NOT Carry; 0x90200000L, 0x00000000L,

 move SCRATCHA2 + 1 to SCRATCHA2 0x7E360100L, 0x00000000L,

 return, if NOT Carry; 0x90200000L, 0x00000000L,

 move SCRATCHA3 + 1 to SCRATCHA3 0x7E370100L, 0x00000000L,

return; 0x90080000L, 0x00000000L

 };

Using the Symbios Logic Assembler
NASM Output File Sections

5-6 Symbios Logic PCI-SCSI Programming Guide

External 0

The External section contains the external variable records, if any
were declared. First, is the External Header Record which contains:

#define Ext_count count

where count is defined to be the number of external variables. Second
is a character array of all external names used:

char *External_Names[Ext_Count] = {

“dsa_storage”,

“in_offset”,

“out_offset”
};

Third is a list of External Contents Records:

#define E_name offset

where name is the name of the variable and offset is defined to be
the byte offset from the beginning of the data area (this is always zero
for externals).

Following this is an array of unsigned longs named by appending
“_Used” to the variable name. This array is a list of dword offsets
from the beginning of the SCRIPTS array where the variable is used
and should be patched.

#define E_name_Used offset

The last two sections (External Contents Record and Offset Array) of
the External record are repeated for every External defined in the
SCRIPT.

Effect of Command Line Switches 0

If the -o compiler option is used then all items mentioned above are
included in the output file. If the -p (partial ‘C’ output) option is
used then the External Header Record and Character Array are
omitted from the output file. An example of the output generated
using each compiler option is listed below.

Example:

Using -o assembler option:

#define Ext_Count 2

char *External_Names[Ext_Count] = {

“ex_buf2”,

“ex_buf1”

};

Using the Symbios Logic Assembler
NASM Output File Sections

Symbios Logic PCI-SCSI Programming Guide 5-7

#define E_ex_buf1 0x00000000L

ULONG E_ex_buf1_Used[] = {

0x0000000FL,

0x00000011L

};

Using -p assembler option:

ULONG E_ex_buf1_Used[] = {

0x0000000FL,

0x00000011L

};

Relative 0

The Relative section contains the relative buffer records, if any were
declared. The first part is the Relative Header Record, which
contains:

#define Rel_Count count

where count is a total count of all the uses of all the Relative buffers
in the SCRIPTS program. For example, in the SCRIPTS example
above, rel_buf1 and rel_buf2 are each used once so Rel_Count is
#defined to 2, indicating that there were two uses of Relative buffers
in the SCRIPTS code.

The second part of the Relative record is the Relative Patch Array
which contains:

ULONG Rel_Patches[Rel_Count] = {

Rel_Offset1,

Rel_Offset2,

Rel_Offset3,

.

.

Rel_Offsetn

};

where Rel_Offsetx is an offset into the SCRIPTS array where a
Relative buffer is used. This array, along with the Relative Header
Record, can be used to patch all Relative buffers in a SCRIPTS
program. Please see the section on patching SCRIPTS instructions
for more information on how to do this.

The third part of the Relative record is the Relative Buffer Record,
which contains:

#define R_name offset

Using the Symbios Logic Assembler
NASM Output File Sections

5-8 Symbios Logic PCI-SCSI Programming Guide

where name is the name of the Relative buffer (i.e. rel_buf1) and
offset is the relative offset of this buffer from the beginning of the
entire Relative buffer. For example, in the above SCRIPTS example
rel_buf2 has an offset of 0x00000001L, indicating that it starts one
byte from the beginning of the Relative buffer.

The final part of the Relative record is the offset array which lists the
dword offsets in the SCRIPTS array where each individual relative
buffer is used. It is the same as the offset array used for External
buffers, except that the array names are of the format R_name_Used
where name is the name of the individual relative buffer.

#define R_name_Used offset

The last two sections (Relative Buffer Record and Offset Array) of
the Relative record are repeated for every Relative defined in the
SCRIPTS program.

Effect of Command Line Switches 0

If the -o compiler option is used then all items mentioned above are
included in the output file. If the -p (partial ‘C’ output) option is
used, the Relative Header Record and Relative Patch Array are
omitted from the output file. An example of the output generated
using each compiler option is listed below.

Example:

Using -o assembler option:

#define Rel_Count 2

ULONG Rel_Patches[Rel_Count] = {

0x00000007L,

0x00000005L

};

#define R_rel_buf1 0x00000000L

ULONG R_rel_buf1_Used[] = {

0x00000005L

};

#define R_rel_buf2 0x00000001L

ULONG R_rel_buf2_Used[] = {

0x00000007L

};

Using the Symbios Logic Assembler
NASM Output File Sections

Symbios Logic PCI-SCSI Programming Guide 5-9

Using -p assembler option:

#define R_rel_buf1 0x00000000L

ULONG R_rel_buf1_Used[] = {

0x00000005L

};

#define R_rel_buf2 0x00000001L

ULONG R_rel_buf2_Used[] = {

0x00000007L

};

Entry 0

The ENTRY section contains the entry records, if any were declared.
An entry record is a #define of the entry name prefixed with Ent_,
defined to be a byte offset into the SCRIPTS array.

Example:

Using -o or -p assembler option:

#define Ent_Send_CMD 0x00000018L

#define Ent_Send_DATA 0x00000020L

#define Ent_Start 0x00000000L

The labels defined as entries are the only ones that will be
available to the driver code. The “C” code examples in Chapter 7
are examples of how the driver can use this information to start
SCRIPTS routines at any location defined as an entry. The
ENTRY section is not affected by NASM command line options.

Label Patches 0

The Label Patches section contains the label patch records. A label
patch record is an array of locations that are referred to by an
absolute Transfer Control instruction. These locations are the dword
offsets into the SCRIPTS array. The offsets are used to patch in the
physical addresses at run time. Please see the section on patching
SCRIPTS in Chapter 7 for more information on how to patch
absolute jump instructions. The Label Patches section is not affected
by NASM command line options.

Example:

Using -o or -p assembler option:

ULONG LABELPATCHES[] = {

0x00000019L

 };

Using the Symbios Logic Assembler
NASM Output File Sections

5-10 Symbios Logic PCI-SCSI Programming Guide

Absolute 0

The Absolute section contains the Absolute records, if any were
declared. First is the Absolute Header Record, which contains:

#define Abs_Count count

where count is the number of Absolutes defined in the SCRIPTS
program.

The second section is the Character Array of all ABSOLUTE names
used, it contains:

char *Absolute_Names[Abs_Count] = {

Abs_String1,

Abs_String1,

.

.

Abs_Stringn

};

where Abs_Stringx is the name of the Absolute being defined.

Third is the Absolute Value Definition, which contains:

#define A_name value

where name is the name of the Absolute and value is the value
assigned to this Absolute in the SCRIPTS program.

The final part of the ABSOLUTE record is the Offset Array, which
lists the offsets in the SCRIPTS array where each ABSOLUTE is
used. It is the same as the offset array used for External buffers,
except that the array names are of the format A_name_Used where
name is the name of the ABSOLUTE.

The last two sections (Absolute Value Definition and Offset Array) of
the ABSOLUTE record are repeated for every ABSOLUTE defined
in the SCRIPTS program.

Effect of Command Line Switches 0

If the -o compiler option is used, then all items mentioned above are
included in the output file. If the -p (partial ‘C’ output) option is
used, then the Offset Array is omitted from the output file. An
example of the output generated using each compiler option is listed
below.

Using -o assembler option:

#define Abs_Count 4

char *Absolute_Names[Abs_Count] = {

“Command_Complete”,

“Got_Selected”,

“Not_Msg_Out”,

Using the Symbios Logic Assembler
NASM Output File Sections

Symbios Logic PCI-SCSI Programming Guide 5-11

“Select_ID”

};

#define A_Command_Complete 0x00000001L

ULONG A_Command_Complete_Used[] = {

0x0000001DL

};

#define A_Select_ID 0x00000002L

ULONG A_Select_ID_Used[] = {

0x00000000L

};

#define A_Not_Msg_Out 0x00000011L

ULONG A_Not_Msg_Out_Used[] = {

0x00000003L

};

#define A_Got_Selected 0x000000A5L

ULONG A_Got_Selected_Used[] = {

0x0000001BL

};

Using -p assembler option:

#define A_Command_Complete 0x00000001L

#define A_Select_ID 0x00000002L

#define A_Not_Msg_Out 0x00000011L

#define A_Got_Selected 0x000000A5L

Termination Record 0

The module termination record declares two variables,
INSTRUCTIONS and PATCHES. INSTRUCTIONS is assigned
the number of instructions found in the SCRIPTS program, and
PATCHES is assigned the number of label patches. If the -o
compiler option is used, then all items mentioned above are included
in the output file. If the -p (partial ‘C’ output) option is used, then
the Patches variable is omitted from the output file. If the -u (exclude
module termination record) is used, then both variables are omitted
from the output file. An example of the output generated using each
compiler option is listed below.

Using -o assembler option:

ULONG INSTRUCTIONS= 0x0000000EL;

ULONG PATCHES= 0x00000000L;

Using -p assembler option:

ULONG INSTRUCTIONS= 0x0000000EL;

Using the Symbios Logic Assembler
NASM Output File Sections

5-12 Symbios Logic PCI-SCSI Programming Guide

Using the Registers to Control Chip Operations
Overview

Symbios Logic PCI-SCSI Programming Guide 6-1

Chapter 6

Using the Registers to Control Chip
Operations

Overview 0

The SYM53C8XX is initialized by setting and clearing bits in the
operating registers. This chapter lists the SYM53C8XX registers,
grouped by function. The register descriptions provide an overview of
the aspects of chip operation that are controlled in each register.
Appendix B lists all of the operating registers and bits in the
SYM53C8XX processors by hexadecimal address. The
SYM53C8XX also has a set of PCI Configuration registers, but they
are not described in this document since they are initialized by the
system, not by the SCSI driver program. Full definitions of these
registers, as well as the individual bits in the operating registers, can
be found in the SYM53C8XX data manuals.

SCSI Registers 0

The SCSI registers are used for the following functions:

● performing SCSI operations by low-level, register-oriented
programming

● obtaining data for debugging, such as checking the signal status
of the SBCL and SBDL registers to determine exactly what is on
the SCSI bus at the time the registers are read

● obtaining SCSI interrupt status, which is contained in the SIST0,
and SIST1 registers

● initialization of the SCSI interface, for example, parity generation
and checking on the SCSI bus

● enabling or masking SCSI interrupts in the SIEN registers

Using the Registers to Control Chip Operations
SCSI Registers

6-2 Symbios Logic PCI-SCSI Programming Guide

Table 6-1
SYM53C8XX SCSI Registers

Name Definition Functions

SIEN1 SCSI Interrupt Enable 1 interrupt mask bits for selection/reselection
time-out, general purpose time-out,
handshake to handshake time-out

SIEN0 SCSI Interrupt Enable 0 interrupt mask bits for phase mismatch,
SATN/, function complete,
selection/reselection, gross error, unexpected
disconnect, SCSI reset, parity error

SDID SCSI Destination ID encoded destination SCSI ID

SCNTL3 SCSI Control 3 clock conversion factor bits, enable wide
SCSI, enable Ultra SCSI or Ultra2 SCSI

SCNTL2 SCSI Control 2 wide SCSI control bits, vendor unique
enhancements; DIFFSENS mismatch
indicator (53C895 only)

SCNTL1 SCSI Control 1 add an extra clock cycle of setup to each
SCSI data transfer; disable halt on parity
error; Connected bit; parity bits; Immediate
Arbitration bit

SCNTL0 SCSI Control 0 arbitration mode bits; enable parity checking

SOCL SCSI Output Control Latch testing SCSI control lines

SSID SCSI Selector ID the ID of the device that selected or
reselected the SYM53C8XX

SODL SCSI Output Data Latch data flows through this register when sending
data in any mode

SXFER SCSI Transfer define synchronous transfer period and
synchronous offset

SCID SCSI Chip ID enable response to selection/reselection, set
SCSI ID for SYM53C8XX

SBCL SCSI Bus Control Lines used to return SCSI control line status

SBDL SCSI Bus Data Lines contains SCSI data bus status

SIDL SCSI Input Data Latch contains latched data from the SCSI bus

SFBR SCSI First Byte Received contains the first byte received in any
asynchronous information transfer phase

SSTAT2 SCSI Status 2 reports SIDL, SODR, SODL most
significant byte full; parity detection,
disconnect detection

SSTAT1 SCSI Status 1 FIFO flags; latched SCSI parity signal;
latched SCSI phase status bits

Using the Registers to Control Chip Operations
SCSI Registers

Symbios Logic PCI-SCSI Programming Guide 6-3

SSTAT0 SCSI Status 0 SIDL, SODR, SODL least significant byte
full; arbitration reporting bits; status of RST/
and SDP0/ signals

SLPAR SCSI Longitudinal Parity performs a bytewise longitudinal parity check
on all SCSI data

SWIDE
(wide SCSI
products only)

SCSI Wide Residue Data contains a residual data byte that was never
sent across the DMA bus after wide SCSI
operation

STIME0 SCSI Timer 0 selects handshake to handshake
time-out period

STIME1 SCSI Timer 1 selects general purpose time-out period

RESPID0 Response ID 0 contains IDs the SYM53C8XX will respond
to when it is selected or reselected

RESPID1
(wide SCSI
products only)

Response ID 1 contains IDs the SYM53C8XX will respond
to when it is selected or reselected

STEST4
(SYM53C895
only)

SCSI Test 4 contains DIFFSENS pin values that indicate
the type of SCSI device connected to the bus;
frequency lock bit for clock quadrupler

STEST3 SCSI Test 3 active negation enable; SCSI FIFO test
read/write; Halt SCSI clock; Clear SCSI
FIFO

STEST2 SCSI Test 2 clear synchronous offset; enable differential
mode; wide SCSI; extend SREQ/-SACK/
filtering; low level mode enable

STEST1 SCSI Test 1 disable the external SCLK pin and use the
PCI clock as the internal SCSI clock; enable
the SCSI Clock doubler (SYM53C825A/875/
876/885 only) or SCSI clock quadupler
(SYM53C895 only)

STEST0 SCSI Test 0 these bits are used for low level operation and
manufacturer testing, SCSI selected as ID

Table 6-1 (Continued)
SYM53C8XX SCSI Registers

Name Definition Functions

Using the Registers to Control Chip Operations
DMA Registers

6-4 Symbios Logic PCI-SCSI Programming Guide

DMA Registers 0

The DMA registers are used for the following functions:

● setting up the host interface

● obtaining DMA interrupt status information contained in the
DSTAT register

● obtaining DMA FIFO information, such as the number of bytes
it contains

● enabling or masking DMA interrupts with the DIEN registers

Table 6-2
SYM53C8XX DMA Registers

Name Definition Functions

TEMP Temporary Register stores pointer to next SCRIPTS instruction
to be executed when returning from a
subroutine

DFIFO DMA FIFO may be used to determine the number of
bytes in the DMA FIFO when an interrupt
occurs, when used in conjunction with
DBC

DCMD DMA Command identifies the instruction that the
SYM53C8XX will execute

DBC DMA Byte Counter determines the number of bytes to be
transferred in a Block Move instruction

DNAD DMA Next Address contains the general purpose address
pointer

DSP DMA SCRIPTS
Pointer

contains the address of the next SCRIPTS
instruction to be fetched. Placing an
address in this register starts SCRIPTS

DSPS DMA SCRIPTS
Pointer Save

contains the second dword of a SCRIPTS
instruction

DMODE DMA Mode defines burst length; near or far memory
access; enables PCI read line command;
manual start mode bit to prevent automatic
execution of SCRIPTS

DCNTL DMA Control enable single step mode; SYM53C700
compatibility bit; enable PCI Cache Line
Size register; enable instruction prefetching

DIEN DMA Interrupt
Enable

contains interrupt mask bits corresponding
to master data parity error, bus fault,
aborted, single step interrupt, SCRIPT
interrupt instruction received, illegal
instruction detected

Using the Registers to Control Chip Operations
SCRIPTS Registers

Symbios Logic PCI-SCSI Programming Guide 6-5

SCRIPTS Registers 0

The SCRIPTS registers are used to hold the SCRIPTS instruction
information which is fetched from host memory at run time by the
SYM53C8XX.

Table 6-3
SYM53C8XX SCRIPTS Registers

Name Definition Functions

DCMD DMA Command identifies the instruction that the SYM53C8XX will
execute

DBC DMA Byte Counter determines the number of bytes to be transferred in a
Block Move instruction

DNAD DMA Next Address contains the general purpose address pointer

DSP DMA SCRIPTS
Pointer

contains the address of the next SCRIPTS instruction to
be fetched; placing an address in this register starts
SCRIPTS

DSPS DMA SCRIPTS
Pointer Save

contains the second dword of a SCRIPTS instruction

DSA Data Structure
Address

contains base address used for all table indirect
calculations

Using the Registers to Control Chip Operations
Interrupt Registers

6-6 Symbios Logic PCI-SCSI Programming Guide

Interrupt Registers 0

Interrupt registers contain interrupt status information. The DSTAT
contains the DMA interrupt status information. The SIST0 and
SIST1 contain SCSI interrupt status bits. The remaining registers
contain interrupt enable bits. The ISTAT register can be polled for
interrupts. It is the only register that can be accessed while SCRIPTS
is running. Refer to Chapter 9 for more information on handling
interrupts.

Table 6-4
SYM53C8XX Interrupt Registers

Name Definition Functions

ISTAT Interrupt Status interrupt polling; determine whether a SCSI or
DMA interrupt has occurred; check for stacked
interrupts; abort an operation; software reset;
Signal Process bit; semaphore bit;interrupt on
the fly bit;indicate SCSI interrupt pending
(SYM53C885 only); SCSI bus mode change
(53C895 only)

SIEN1 SCSI Interrupt
Enable 1

interrupt mask bits for selection/reselection
time-out, general purpose time-out, handshake
to handshake time-out; wakeup (SYM53C885
only)SCSI bus mode change (53C895 only)

SIEN0 SCSI Interrupt
Enable 0

interrupt mask bits for phase mismatch,
SATN/, function complete,
selection/reselection, gross error, unexpected
disconnect, SCSI reset, parity error

SIST1 SCSI Interrupt
Status 1

returns the status of the following interrupt
conditions: selection/reselection time-out,
general purpose timer expired, handshake to
handshake timer expired; wakeup
(SYM53C885 only)

SIST0 SCSI Interrupt
Status 0

returns the status of the following interrupt
conditions: phase mismatch (SATN/ active),
function complete, selection/reselection, SCSI
gross error, unexpected disconnect, SCSI RST/
received, parity error.

DIEN DMA Interrupt
Enable

contains interrupt mask bits corresponding to
master data parity error, bus fault, aborted
operation, single step interrupt, SCRIPTS
interrupt instruction received, illegal
instruction detected

DSTAT DMA Status reports sources of DMA interrupts: DMA
FIFO empty, Master data parity error, bus
fault, aborted, single step interrupt, SCRIPTS
interrupt instruction received, illegal
instruction detected

Using the Registers to Control Chip Operations
Test and Miscellaneous Registers

Symbios Logic PCI-SCSI Programming Guide 6-7

Test and Miscellaneous Registers 0

The test registers are used to test the DMA and SCSI FIFOs and
perform other miscellaneous functions. The test registers can be used
to decrement the byte count or increment the address count in the
FIFOs.

Table 6-5
SYM53C8XX Test Registers

Name Definition Functions

CTEST3 Chip Test 3 revision level bits, flush/clear DMA FIFO,

CTEST2 Chip Test 2 data transfer direction; I/O or memory
configuration; request/acknowledge status

CTEST1 Chip Test 1 DMA FIFO bits full or empty

CTEST6 Chip Test 6 writes data to the DMA FIFO

CTEST5 Chip Test 5 clock address incrementor; clock byte counter;
DMA direction; control of set or reset pulses

CTEST4 Chip Test 4 burst disable; master parity error enable; DMA
FIFO byte control

ADDER Adder Sum Output contains output of internal adder

CTEST0 Chip Test 0 used to enable power management modes in
SYM53C885

Using the Registers to Control Chip Operations
General Purpose Registers

6-8 Symbios Logic PCI-SCSI Programming Guide

General Purpose Registers 0

Register Initialization 0

The startup register values are determined by a “C” program, written
by the software developer, that can be loaded automatically by the
device driver. The appropriate startup values for the register bits
depend on the design of the individual system, so a single start-up
algorithm will not support every application. The hardware default
values for each bit are provided in the Register Summary, Appendix
B; these default values are suitable for most applications.

This section lists the important register bits to consider when writing
a startup program for a specific system. Although the startup
program does not have to initialize all bits in the chip if the default
values are acceptable, the bits in these lists affect features that should
be enabled or disabled, or other decisions that should be made, when
initializing the chip. For complete register and bit descriptions, refer
to the SYM53C8XX data manuals. In addition, Chapter 2,
“Functional Description,” in the product data manuals contains a
section on the bits and registers that affect parity checking and
generation. All reserved bits should be left cleared by the startup
program.

Table 6-6
SYM53C8XX General Purpose
Registers

Name Definition

GPREG General Purpose

DWT/SBR DMA Watchdog Timer/Scratch Byte Register

CTEST0 Chip Test 0

SCRATCHA General Purpose Scratchpad A

SCRATCHB General Purpose Scratchpad B

SCRATCHC-J General Purpose Scratchpad C-J (SYM53C825A/53C875/53C876/
53C885/53C895 only)

GPCNTL General Purpose Control

MACNTL Memory Access Control

Using the Registers to Control Chip Operations
Register Initialization

Symbios Logic PCI-SCSI Programming Guide 6-9

Table 6-7
53C815/53C810A/53C860
Startup Bits

Register
Address

Register Name Bits Remarks

00 SCNTL0 7-6, 3, 1-0 Bits 7-6: Arbitration Mode
Bit 3: Enable Parity Checking
Bit 1: Assert SATN/ on Parity Error
Bit 0: Target Mode. Bit 0 may be set either at
initialization or during SCRIPTS operation. Set
it at startup if the chip will operate as a target
only. If it will switch between target and initiator
roles, use SCRIPTS to control this bit.

01 SCNTL1 7, 5 Bit 7: Extra Clock Cycle of Data Setup
Bit 5: Disable Halt on Parity Error or SATN/
(for target mode only)

03 SCNTL3 7-4, 2-0 Bit 7: Ultra Enable (53C860 only)
Bits 6-4: Synchronous Clock Conversion Factor
Bits 2-0: Clock Conversion Factor

04 SCID 6-5, 2-0 Bit 6: Enable Response to Reselection
Bit 5: Enable Response to Selection
Bits 2-0: Encoded Chip SCSI ID

05 SXFER all Since the default operation for SCSI is
asynchronous transfers, these bits should
probably not be set until synchronous
parameters are established between the initiator
and target.
Bits 7-5: Synchronous Transfer Period
Bits 3-0: Max SCSI Synchronous Offset

10-13 DSA all must be initialized if you are using table indirect
mode

1B CTEST3 1-0 Bit 1: Fetch Pin Mode
Bit 0: Write and Invalidate Enable
(53C810A/53C860 only)

21 CTEST4 7, 3 Bit 7: Burst Disable
Bit 3: Master Parity Error Enable

2C-2F DSP all At the end of the initialization program, write
the address of the first SCRIPTS instruction to
this register to begin SCRIPTS execution.

Using the Registers to Control Chip Operations
Register Initialization

6-10 Symbios Logic PCI-SCSI Programming Guide

38 DMODE 7-2 Bits 7-6: Burst Length
Bit 5: Source I/O-Memory Enable
Bit 4: Destination I/O-Memory Enable
Bit 3: Enable Read Line
Bit 2: Enable Read Multiple
(53C810A/53C860 only)

39 DIEN 6-2, 0 Bit 6: Master Data Parity Error
Bit 5: Bus Fault
Bit 4: Aborted
Bit 3: Single Step Interrupt
Bit 2: SCRIPTS Interrupt Instruction Received
Bit 0: Illegal Instruction Detected

3B DCNTL 7, 5-3, 0 Bit 7: Cache Line Size Enable
Bit 5: Pre-fetch Enable (53C810A/53C860
only)
Bit 4: Single-Step Mode
Bit 3: IRQ Mode
Bit 0: SYM53C700 Compatibility

40 SIEN0 all Interrupt mask bits for:
Bit 7: Phase Mismatch or SATN/
Bit 6: Function Complete
Bit 5: Selected
Bit 4: Reselected
Bit 3: SCSI Gross Error
Bit 2: Unexpected Disconnect
Bit 1: SCSI Reset Condition
Bit 0: SCSI Parity Error

41 SIEN1 2-0 Interrupt mask bits for:
Bit 2: Selection or Reselection Time-Out
Bit 1: General Purpose Timer Expired
Bit 0: Handshake to Handshake Timer Expired

46 MACNTL 3-0 Initialize these when using the MAC_TSTOUT
pin. These bits determine local or far access for
the following operations:
Bit 3: Data write
Bit 2: Data read
Bit 1: SCRIPTS pointers
Bit 0: SCRIPTS fetches

48 STIME0 all Bits 7-4: Handshake to Handshake Timer
Period
Bits 3-0: Selection Time-Out

49 STIME1 3-0 Bits 3-0: General Purpose Timer Period

Table 6-7
53C815/53C810A/53C860
Startup Bits (Continued)

Register
Address

Register Name Bits Remarks

Using the Registers to Control Chip Operations
Register Initialization

Symbios Logic PCI-SCSI Programming Guide 6-11

4A RESPID all

4D STEST1 7 Bit 7: SCLK

4E STEST2 1 Bit 1: Extend SREQ/SACK Filtering

4F STEST3 7 Bit 7: TolerANT Enable

Table 6-8
SYM53C825A/875/876/885/895
Startup Bits

Register
Address

Register
Name

Bits Remarks

00 SCNTL0 7-6, 3, 1-0 Bits 7-6: Arbitration Mode
Bit 3: Enable Parity Checking
Bit 1: Assert SATN/ on Parity Error
Bit 0: Target Mode. Bit 0 may be set either at
initialization or during SCRIPTS operation. Set
it at startup if the chip will operate as a target
only. If it will switch between target and initiator
roles, use SCRIPTS to control this bit.

01 SCNTL1 7, 5 Bit 7: Extra Clock Cycle of Data Setup
Bit 5: Disable Halt on Parity Error or SATN/
(for target mode only)

03 SCNTL3 all Bit 7: Ultra Enable (53C875/876/885/895 only)
Bits 6-4: Synchronous Clock Conversion Factor
Bits 2-0: Clock Conversion Factor

04 SCID 6-5, 3-0 Bit 6: Enable Response to Reselection
Bit 5: Enable Response to Selection
Bit 3: Enable Wide SCSI
Bits 2-0: Encoded Chip SCSI ID

05 SXFER all Since the default operation for SCSI is
asynchronous transfers, these bits should
probably not be set until synchronous
parameters are established between the initiator
and target.
Bits 7-5: Synchronous Transfer Period
Bits 3-0: Max SCSI Synchronous Offset

Table 6-7
53C815/53C810A/53C860
Startup Bits (Continued)

Register
Address

Register Name Bits Remarks

Using the Registers to Control Chip Operations
Register Initialization

6-12 Symbios Logic PCI-SCSI Programming Guide

10-13 DSA all must be initialized if you are using table indirect
mode

1B CTEST3 1-0 Bit 1: Fetch Pin Mode
Bit 0: Write and Invalidate Enable

21 CTEST4 7, 3 Bit 7: Burst Disable
Bit 3: Master Parity Error Enable

22 CTEST2 3 SCRATCHA/B operation (when SCRIPTS
RAM is enabled)

18 CTEST0 2-0 Set the priority level for gaining access to the
PCI bus (SYM53C885 only)

2C-2F DSP all At the end of the initialization program, write
the address of the first SCRIPTS instruction to
this register to begin SCRIPTS execution.

38 DMODE 7-2 Bits 7-6: Burst Length
Bit 5: Source I/O-Memory Enable
Bit 4: Destination I/O-Memory Enable
Bit 3: Enable Read Line
Bit 2: Enable Read Multiple

39 DIEN 4-2, 0 Bit 4: Aborted
Bit 3: Single Step Interrupt
Bit 2: SCRIPTS Interrupt Instruction Received
Bit 0: Illegal Instruction Detected

3B DCNTL 7, 5-3, 0 Bit 7: Cache Line Size Enable
Bit 5: Pre-fetch Enable
Bit 4: Single-Step Mode
Bit 3: IRQ Mode
Bit 0: SYM53C700 Compatibility

40 SIEN0 all Interrupt mask bits for:
Bit 7: Phase Mismatch or SATN/
Bit 6: Function Complete
Bit 5: Selected
Bit 4: Reselected
Bit 3: SCSI Gross Error
Bit 2: Unexpected Disconnect
Bit 1: SCSI Reset Condition
Bit 0: SCSI Parity Error

Table 6-8
SYM53C825A/875/876/885/895
Startup Bits (Continued)

Register
Address

Register
Name

Bits Remarks

Using the Registers to Control Chip Operations
Register Initialization

Symbios Logic PCI-SCSI Programming Guide 6-13

41 SIEN1 4,2-0 Interrupt mask bits for:
Bit 4: SCSI Bus Mode Change (53C895 only)
Bit 2: Selection or Reselection Time-Out
Bit 1: General Purpose Timer Expired
Bit 0: Handshake to Handshake Timer Expired

46 MACNTL 3-0 Initialize these when using the
MAC_TESTOUT pin. These bits determine
local or far access for the following operations:
Bit 3: Data write
Bit 2: Data read
Bit 1: SCRIPTS pointers
Bit 0: SCRIPTS fetch

48 STIME0 all Bits 7-4: Handshake to Handshake Timer
Period
Bits 3-0: Selection Time-Out

49 STIME1 3-0 Bits 3-0: General Purpose Timer Period

4A RESPID0 all

4B RESPID1 all

4D STEST1 7, 3-2 Bit 7: SCLK
Bits 3-2: SCSI Clock Doubler 1-0 (53C875
only)

4E STEST2 5, 1 Bit 5: SCSI Differential Mode
Bit 1: Extend REQ/ACK Filtering

4F STEST3 7 Bit 7: TolerANT Enable

Table 6-8
SYM53C825A/875/876/885/895
Startup Bits (Continued)

Register
Address

Register
Name

Bits Remarks

Using the Registers to Control Chip Operations
Register Initialization

6-14 Symbios Logic PCI-SCSI Programming Guide

Integrating SCRIPTS Programs Into “C” Language Drivers
Overview

Symbios Logic PCI-SCSI Programming Guide 7-1

Chapter 7

Integrating SCRIPTS Programs Into
“C” Language Drivers

Overview 0

This chapter demonstrates how assembled SCRIPTS programs are
included in SCSI device drivers written in “C” language. The chapter
provides examples of the “C” code used to execute many of the types
of algorithms used by SCSI SCRIPTS. The chapter ends with an
entire SCRIPTS source file, general.ss, in Figure 7-1. Figure 7-2
is the output file from the Symbios Logic Assembler, called
general.out. The relationship between the source file and the
output file is described in more detail in Chapter 5.

Initializing the
SYM53C8XX 0

The following “C” code example shows how the SYM53C8XX
accesses the operating registers at initialization. The SYM53C8XX
can be memory- or I/O-mapped or both. The example functions in
this section access the I/O mapped registers of the SYM53C8XX.
/**

 Function: IORead8

Purpose: To read a byte from an io port
Input: IO address of byte to be read
Output: byte read from io port
Assumptions: That the IO port actually exists
Restrictions: Although IO_Addr is defined as

a ULONG it must not exceed 16 bits
 in length as this is the maximum

 IO address the X86 architecture can produce
Other functions called: inportb to read the io port

**/

UBYTE IORead8(ULONG IO_Addr)

{

return (inportb((UINT) IO_Addr));

}

Integrating SCRIPTS Programs Into “C” Language Drivers
Overview

7-2 Symbios Logic PCI-SCSI Programming Guide

/**

 Function: IOWrite8

Purpose: To write a byte out to an IO port
Input: Value to be written and IO port address
Output: None
Assumptions: That the IO port actually exists
Restrictions: Although IO_Addr is defined as a

ULONG it must not exceed 16 bits
in length as this is the maximum IO

address the X86 architecture can produce
Other functions called: outportb to write to the io

port

**/

void IOWrite8(ULONG IO_Addr, UBYTE value)

{

outportb((UINT) IO_Addr, value);

}

/**

 Function: IORead32

Purpose: To read a dword (32 bits) from an io port
Input: IO address of dword to be read
Output: dword read from io port
Assumptions: That the IO port actually exists
Restrictions: Although IO_Addr is defined as a

ULONG it must not exceed 16 bits in
length as this is the maximum IO

address the X86 architecture can produce
Other functions called: none

**/

ULONG IORead32(ULONG IO_Addr)

{

ULONG result;

asm

{

.386

mov dx, [IO_Addr]

in eax, dx

mov [result], eax

}

return(result);

}

Integrating SCRIPTS Programs Into “C” Language Drivers
Overview

Symbios Logic PCI-SCSI Programming Guide 7-3

/**

 Function: IOWrite32

Purpose: To write a dword (32 bits) out to an IO port
Input: Value to be written and IO port address
Output: None
Assumptions: That the IO port actually exists
Restrictions: Although IO_Addr is defined as a

ULONG it must not exceed 16 bits in
length as this is the maximum IO

address the X86 architecture can produce
Other functions called: none

**/

void IOWrite32(ULONG IO_Addr, ULONG value)

{

asm

{

.386

mov dx, [IO_Addr]

mov eax, [value]

out dx, eax

}

}

Resetting The SYM53C8XX 0

This example shows how to reset the SYM53C8XX by setting, then
clearing, the Software Reset (SRST) bit in the ISTAT register. It
executes a Read-Modify-Write for each register whose default value
will be changed at reset.

* sets SRST(bit 6) */
IOWrite8(ISTAT, (IORead8(ISTAT) | 0x40));/

* clears SRST(bit 6) */
IOWrite8(ISTAT, (IORead8(ISTAT) & 0xBF))/

Table Indirect Operations 0

More information on Table Indirect operation and on creating a table
is provided in Chapter 9.

Initializing a Table 0

The following example is a SCRIPTS declaration of a table.
Although NASM does not actually generate any output based on the
table declaration, it does place offsets into the SCRIPTS array based
on the order of the buffers in the table declaration. The actual byte
values and byte counts in the SCRIPTS instruction are not used at
this stage, because NASM does not generate any output from the
table declaration.

Integrating SCRIPTS Programs Into “C” Language Drivers
Overview

7-4 Symbios Logic PCI-SCSI Programming Guide

TABLE dsa_table \

sendmsg = ??, \

rcvmsg = ??, \

cmd_adr = ??, \

device = ID{??}, \

status_adr = ??, \

ext_buf = ??, \

sync_in = ??, \

data_adr = ??

Create Table Indirect Entry Offsets 0

The following “C” code example sets up a table that can be used with
the SYM53C8XX table indirect addressing mode. Each entry in the
table is a pair of 32-bit values. These entries reference the same
buffers as the SCRIPTS code examples above. For more illustration
on the relationship between these pieces of code, refer to the Table
Indirect Addressing section in Chapter 8. For this SCRIPTS
program to work correctly, the table must start on a dword boundary
and the offset labels must be in the same order as in the SCRIPTS
table declaration.

/* The following definition sets up a table that can be used
with the SYM53C8XX table indirect addressing mode. Each entry
in the table is a pair of 32-bit values. For the SCRIPTS
routine to work correctly the table MUST start on a word boundary
and the offset labels must be in the same order in the SCRIPTS
table declaration. */

enum offsets {

 SENDMSG = 0,

 RCVMSG,

 CMD_ADR,

 DEVICE,

 STATUS_ADR,

 EXT_BUF,

 SYNC_IN,

 DATA_ADR, /* DATA_ADR must be last buffer.

};

Integrating SCRIPTS Programs Into “C” Language Drivers
Overview

Symbios Logic PCI-SCSI Programming Guide 7-5

Defining the Table Structure 0

The following code defines a data structure with two fields, a count
and an address, which correspond to one element in the DSA table.
A type is then defined and a pointer to a variable of this type is also
defined. This pointer and the enumerated offsets defined above will
then be used to access specific elements of the table. This example
defines the table structure, but no space has been allocated yet in
memory.

Example of data structure and type definition:

struct_table {

 uquad count;

 uquad address;

};

typedef struct_table table:

Declaring a Pointer to the Table 0

extern table *buffer_table;

Allocating Memory for the Table 0

int init_table(void)

{

 UBYTE *buf_ptr; /* temp ptr to ti tables */

 /* allocate space for table */

 buf_ptr = (UBYTE far *) malloc((TABLE_SIZE
sizeof(ti_entry))+ 4);

 /* did we get the memory */

 if (buf_ptr == NULL) return(COMMANDFAILED);

 /* dword align the table buffer, ByteAlignBuffer does
this */

 dsa_table = (ti_entry *) ByteAlignBuffer(buf_ptr, 0);

/* This initializes the DSA register to point to the buffer
table that was allocated above*/

IOWrite32(PCIDeviceIOBase+DSA, getPhysAddr(dsa_table));

 return(GOOD);

}

Integrating SCRIPTS Programs Into “C” Language Drivers
Overview

7-6 Symbios Logic PCI-SCSI Programming Guide

Using a Table 0

The following example creates two buffers (identify_msg and
test_unit_ready_cmd). The byte counts and addresses for these
buffers are then loaded into the CMD_ADR and SENDMSG elements of
the DSA_table array. These examples define a message and a
command buffer in the desired table, and loads the bytes into the
table. The enumerated types are used in the Test Unit Ready example
to index into the table.

static ubyte identify_msg[] = {

 0xc0 /* 0xc0 = allow disconnect, 0x80 = no

 ** disconnect */

};

static ubyte test_unit_ready_cmd[] = {

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

};

/* drive is the destination ID for the I/O*/
DSA_table[DEVICE].count=(ULONG)drive<< 16;

DSA_table[CMD_ADR].count = sizeof(test_unit_ready_cmd);

DSA_table[CMD_ADR].address=getPhyAddr(test_unit_ready_cmd;

DSA_table[SENDMSG].count = 1;

DSA_table[SENDMSG].address = getPhysAddr(identify_msg);

DSA_table[STATUS_ADR].count = 1;

DSA_table[STATUS_ADR].address = getPhysAddr(status);

DSA_table[RCVMSG].count = 1;

DSA_table[RCVMSG].address = getPhysAddr(msg_in);

Integrating SCRIPTS Programs Into “C” Language Drivers
Patching

Symbios Logic PCI-SCSI Programming Guide 7-7

Patching 0

Sometimes it is necessary for the “C” code to modify some elements
of the SCRIPTS array once buffers have been allocated. This is called
patching. Patching is required when relative transfer control
instructions or table indirect addressing are not used. However, most
applications will take advantage of these features, so patching is not
often required. When patching is necessary, the general format of the
patch in “C” is SCRIPT[patch_offset] = patch_value;

When only part of the 32-bit value in the SCRIPTS array must be
modified, a Read-Modify-Write can be used. The format for this type
of operation is SCRIPT[patch_offset]|= patch_value;. Any
arithmetic or logical operator can be used in place of the logical or
(|) symbol to make the desired modification.

The patch_offset is an index into the SCRIPTS array where the
patch must be made. This value is usually obtained from one of the
sections of the NASM output file. Please see Chapter 5 for more
information on the NASM output file and the patch offsets it
contains.

The patch_value is usually either a buffer physical address or a byte
count, but could be anything that modifies the part of the SCRIPTS
program.

The remainder of this section contains patching techniques for
various instructions and buffer types that require modification at run
time. Please note that this chapter only describes the most common
types of patches. Other types of patching can generally be used to
modify any part of a SCRIPTS instruction by using the ENTRY
point patching method described in this section.

EXTERN Buffers 0

1 Create a buffer in ‘C’ statically or dynamically if necessary

Example: UCHAR msgin_buf[4];

2 Patch the SCRIPT wherever this buffer is used, with the patch
array generated by NASM

Example: SCRIPT[E_ex_buf1_Used[1]] =
VirttoPhys(msgin_buf);

See Chapter 5 for more information on the _Used patch array.

Integrating SCRIPTS Programs Into “C” Language Drivers
Patching

7-8 Symbios Logic PCI-SCSI Programming Guide

RELATIVE Buffers 0

RELATIVE buffers are essentially the same as External buffers. The
SCRIPTS output file contains some additional information to aid in
patching the SCRIPTS instructions. The individual relative buffer
offset is encoded into the SCRIPTS instruction

Procedure 1 0

1 Create a buffer to hold all the individual relative buffers

Example: UCHAR rel_buffer[8]

2 Patch the SCRIPTS array using the Patch array generated by
NASM

Example: SCRIPT[R_rel_buf2_Used[0]] +=
VirttoPhys(rel_buffer)

Procedure 2 0

1 Create a buffer to hold all the individual relative buffers

Example: UCHAR rel_buffer[8]

2 All buffers can be patched in one loop if the main Patch array is
accessed and the Header record is used. The -o assembler option
must be used for this procedure to work.

Example: for(i=0; i<Rel_Count; i++) {

SCRIPT[Rel_Patches[i]] += VirttoPhys(rel_buffer);

}

See Chapter 5 for more information on the structures created for
patching relative buffers.

ABSOLUTE Values 0

ABSOLUTE values are patched exactly like EXTERN buffers. The
-o compiler option must be used to patch Absolutes. See Chapter 5
for more information on ABSOLUTE values

Buffer Addresses 0

Buffer addresses are usually patched into Block Move, Memory to
Memory, or Load/Store instructions. They are usually defined as
EXTERNS, RELATIVES, or ABSOLUTES. The general format of
this type of patch is:

SCRIPT[X_buffername_Used[n]] = VirttoPhys(c_buffer);

Where X is either E (Extern), R (Relative), or A (Absolute)
depending on the type of buffer used.

n is the nth occurrence of this buffer in the SCRIPTS program

c_buffer is a buffer/array defined in ‘C’

See Chapter 5 for more information on the _Used array.

Integrating SCRIPTS Programs Into “C” Language Drivers
Patching

Symbios Logic PCI-SCSI Programming Guide 7-9

Byte Counts 0

Byte counts are usually patched into Block Move, Memory to
Memory, or Load/Store instructions. Since the byte count is usually
encoded in the first dword along with the opcode, be sure to OR in
the byte count instead of doing a straight assignment. Byte counts to
be patched are usually defined as EXTERNS, RELATIVES, or
ABSOLUTES.The general format of this type of patch is:

SCRIPT[X_bytecount_Used[n]] |= c_byte_count;

Where X is either E, R, or A

n is the nth occurrence of this byte count in the SCRIPTS program

c_byte_count is a variable/constant byte count value

See Chapter 5 for more information on the _Used array.

Absolute JUMP/CALL
Addresses 0

Use the LABELPATCHES array to patch in absolute JUMP or
CALL addresses. The absolute offset from the beginning of the
SCRIPTS instruction is encoded in the JUMP instruction at
assembly. All that needs to be added is the base physical address of
the SCRIPTS array. The general format of this type of patch is:

SCRIPT[LABELPATCHES[n]] += VirttoPhys(SCRIPT);

Where n is the nth jump instruction to be patched.

This can be automated using a loop and the PATCHES values.

See Chapter 5 for more information on the LABELPATCHES array.

Entry Locations 0

Entry offsets are byte offsets, not dword offsets. Divide the Entry
offset by 4 to get to a SCRIPTS instruction offset. This method can
be used to modify any SCRIPTS instruction that normally does not
need patched, but needs to be modified in a special circumstance.
The general format of this type of patch is:

SCRIPT[Ent_entrylabel/4 + n] = value;

Where n is either 0, 1 or 2 depending on the particular dword of the
instruction that needs to be accessed.

If the first dword of an instruction is being accessed, you may need to
do a Read-Modify-Write instruction to maintain the opcode.

See Chapter 5 for more information on the Ent_ offsets.

Self Modifying SCRIPTS
Code 0

It is sometimes necessary to create self modifying SCRIPTS code for
various reasons. When creating self modifying SCRIPTS code it
should be done in such a way that external patching is only necessary
at initialization time. Self modifying code can be accomplished by
using either a Memory to Memory Move instruction or a
combination of LOAD and STORE instructions. The following
SCRIPTS example shows a Memory to Memory Move modifying a

Integrating SCRIPTS Programs Into “C” Language Drivers
Patching

7-10 Symbios Logic PCI-SCSI Programming Guide

Move Register instruction such that an offset can be added to a base
address for jumping into a table.

ENTRY Patch_label1
ENTRY Patch_label2

EXTERN SCRATCHA1_addr
EXTERN SCRATCHB_addr

MOVE MEMORY 4, Patch_label2+4, SCRATCHB_addr
MOVE MEMORY 1, SCRATCHA1_addr, Patch_label1+1

Patch_label1:
MOVE SCRATCHB0 + 0 to SCRATCHB0
MOVE SCRATCHB1 + 0 to SCRATCHB1 WITH CARRY
MOVE SCRATCHB2 + 0 to SCRATCHB2 WITH CARRY
MOVE SCRATCHB3 + 0 to SCRATCHB3 WITH CARRY

MOVE MEMORY 4, SCRATCHB_addr, Patch_label2+4

Patch_label2:

JUMP REL(Jump_Table)

.

.

Jump_Table: 0

Patches to the SCRIPTS Instruction 0

Patch the Labels in the memory to memory move instructions first:

for (i=0; i<PATCHES; i++) {
SCRIPT[LABELPATCHES[i]] += VirttoPhys(SCRIPT);

}

Next patch Scratch register physical addresses:

SCRIPT[E_SCRATCHA1_addr_Used[0]] =
VirttoPhys(chip_reg[ScratchA]) + 1;

SCRIPT[E_SCRATCHB_addr_Used[0]] =
VirttoPhys(chip_reg[ScratchB]);

SCRIPT[E_SCRATCHB_addr_Used[1]] =
VirttoPhys(chip_reg[ScratchB]);

These are the only patches required. LOAD and STORE
instructions could be used to replace the Memory to Memory Move
instructions.

Note: SCRATCHA1 is used instead of SCRATCHA0 due to the
alignment requirements of the Memory to Memory Move
instruction.

Integrating SCRIPTS Programs Into “C” Language Drivers
Running a SCRIPTS Program

Symbios Logic PCI-SCSI Programming Guide 7-11

Running a SCRIPTS Program 0

The SCRIPTS program is ready to run after all Command, Data,
and Message buffers have been set up for the I/O. Start the
SCRIPTS program by writing the physical address of the program to
the DSP register. The superscript numerals refer to portions of the
sample code in Figure 7-1 and Figure 7-2.

The entry points named in this example are all different points where
SCRIPTS instructions could start.

static uquad start_offset[] = {

Ent_init_siop3, Ent_start_up4, Ent_switch5

 };

This example starts the SCRIPTS program:

IOWrite32(PCIDeviceIOBase+DSP, getPhysAddr(script) +
start_offset[mode]);

In this example, mode = 0 begins at init_siop label, mode = 1
begins at start_up, and mode = 2 begins at the switch label.

Integrating SCRIPTS Programs Into “C” Language Drivers
Running a SCRIPTS Program

7-12 Symbios Logic PCI-SCSI Programming Guide

Figure 7-1
SCRIPTS Source File

; Single-threaded general purpose SCRIPTS routine

; Offset for counts and addresses in the table

TABLE dsa_table \

sendmsg = ??, \

rcvmsg = ??, \

cmd_adr = ??, \

device = ID{??}, \

status_adr = ??, \

ext_buf = ??, \

sync_in = ??, \

data_adr = ??

; The SCRIPTS routine has finished initializing the SIOP.

Absolute done_init = 0x01

ABSOLUTE ok = 0x00

ABSOLUTE err1 = 0x0ff01

ABSOLUTE err2 = 0x0ff02

ABSOLUTE err3 = 0x0ff03

ABSOLUTE err4 = 0x0ff04

ABSOLUTE err5 = 0x0ff05

ABSOLUTE err6 = 0x0ff06

ABSOLUTE err7 = 0x0ff07

ABSOLUTE err8 = 0x0ff08

ABSOLUTE err9 = 0x0ff09

EXTERN dsa_storage, out_offset, in_offset

; SCSI I/O entry point. This address must be loaded into the

; SIOP before initiating a SCSI I/O.

ENTRY init_siop

ENTRY start_up

ENTRY switch

ENTRY datain

Integrating SCRIPTS Programs Into “C” Language Drivers
Running a SCRIPTS Program

Symbios Logic PCI-SCSI Programming Guide 7-13

ENTRY dataout

3 init_siop:

INT done_init

4 start_up:

SELECT ATN FROM device, REL(resel)

; Every phase comes back to here.

5 switch:

JUMP REL(msgin), WHEN MSG_IN

JUMP REL(msgout), IF MSG_OUT

JUMP REL(command_phase), IF CMD

JUMP REL(dataout), IF DATA_OUT

JUMP REL(datain), IF DATA_IN

JUMP REL(end), IF STATUS

INT err1

msgin:

MOVE FROM rcvmsg, WHEN MSG_IN

JUMP REL(ext_msg), IF 0x01

JUMP REL(disc), IF 0x04

CLEAR ACK

JUMP REL(switch), IF 0x02 ; ignore save data pointers

JUMP REL(switch), IF 0x07 ; ignore message reject)

JUMP REL(switch), IF 0x03 ; ignore restore data pointers

INT err2

ext_msg:

CLEAR ACK

MOVE FROM ext_buf, WHEN MSG_IN

JUMP REL(sync_msg), IF 0x03

INT err3

Integrating SCRIPTS Programs Into “C” Language Drivers
Running a SCRIPTS Program

7-14 Symbios Logic PCI-SCSI Programming Guide

sync_msg:

CLEAR ACK

MOVE FROM sync_in, WHEN MSG_IN

CLEAR ACK

JUMP REL(switch)

disc:

MOVE SCNTL2 & 0x7f to SCNTL2 ;expect disconnect

CLEAR ACK

WAIT DISCONNECT

WAIT RESELECT REL(select_adr)

INT err4, WHEN NOT MSG_IN

MOVE FROM rcvmsg, WHEN MSG_IN

CLEAR ACK

INT err9

JUMP REL(switch)

msgout:

MOVE FROM sendmsg, WHEN MSG_OUT

JUMP REL(switch)

command_phase:

MOVE FROM cmd_adr, WHEN CMD

JUMP REL(switch)

; After every data transfer add 8 to data_adr. This allows

; scatter/gather operations when the list of addresses to

; read or write is appended to the end of the buffer_table.

1 dataout:

MOVE FROM data_adr, WHEN DATA_OUT

MOVE MEMORY 4, out_offset, scratch_adr

CALL REL(addscratch)

MOVE MEMORY 4, scratch_adr, out_offset

JUMP REL(switch)

Integrating SCRIPTS Programs Into “C” Language Drivers
Running a SCRIPTS Program

Symbios Logic PCI-SCSI Programming Guide 7-15

2 datain:

MOVE FROM data_adr, WHEN DATA_IN

MOVE MEMORY 4, in_offset, scratch_adr

CALL REL(addscratch)

MOVE MEMORY 4, scratch_adr, in_offset

JUMP REL(switch)

addscratch:

MOVE SCRATCHA0 + 8 to SCRATCHA0

MOVE SCRATCHA0 to SFBR

JUMP REL(ck_carry), IF 0x00

RETURN

ck_carry:

MOVE SCRATCHA1 + 1 to SCRATCHA1

RETURN

end:

MOVE FROM status_adr, WHEN STATUS

INT err5, WHEN NOT MSG_IN

MOVE FROM rcvmsg, WHEN MSG_IN

MOVE SCNTL2 & 0x7f to SCNTL2 ;expect disconnect

CLEAR ACK

WAIT DISCONNECT

INT ok

resel:

INT err6

select_adr:

INT err7

Integrating SCRIPTS Programs Into “C” Language Drivers
Running a SCRIPTS Program

7-16 Symbios Logic PCI-SCSI Programming Guide

Figure 7-2
NASM Output File

typedef unsigned long ULONG;

ULONG SCRIPT[] = {

0x98080000L,0x00000001L,

0x47000018L,0x000001E8L,

0x878B0000L,0x00000030L,

0x868A0000L,0x000000F0L,

0x828A0000L,0x000000F8L,

0x808A0000L,0x00000100L,

0x818A0000L,0x00000128L,

0x838A0000L,0x00000180L,

0x98080000L,0x0000FF01L,

0x1F000000L,0x00000008L,

0x808C0001L,0x00000030L,

0x808C0004L,0x00000068L,

0x60000040L,0x00000000L,

0x808C0002L,0xFFFFFFA0L,

0x808C0007L,0xFFFFFF98L,

0x808C0003L,0xFFFFFF90L,

0x98080000L,0x0000FF02L,

0x60000040L,0x00000000L,

0x1F000000L,0x00000028L,

0x808C0003L,0x00000008L,

0x98080000L,0x0000FF03L,

0x60000040L,0x00000000L,

0x1F000000L,0x00000030L,

0x60000040L,0x00000000L,

0x80880000L,0xFFFFFF48L,

0x7C027F00L,0x00000000L,

0x60000040L,0x00000000L,

0x48000000L,0x00000000L,

0x54000000L,0x00000118L,

0x9F030000L,0x0000FF04L,

0x1F000000L,0x00000008L,

0x60000040L,0x00000000L,

Integrating SCRIPTS Programs Into “C” Language Drivers
Running a SCRIPTS Program

Symbios Logic PCI-SCSI Programming Guide 7-17

0x98080000L,0x0000FF09L,

0x80880000L,0xFFFFFF00L,

0x1E000000L,0x00000000L,

0x80880000L,0xFFFFFEF0L,

0x1A000000L,0x00000010L,

0x80880000L,0xFFFFFEE0L,

0x18000000L,0x00000038L,

0xC0000004L,0x00000000L,0x000DFE34L,

0x88880000L,0x00000044L,

0xC0000004L,0x000DFE34L,0x00000000L,

0x80880000L,0xFFFFFEB0L,

0x19000000L,0x00000038L,

0xC0000004L,0x00000000L,0x000DFE34L,

0x88880000L,0x00000014L,

0xC0000004L,0x000DFE34L,0x00000000L,

0x80880000L,0xFFFFFE80L,

0x7E340800L,0x00000000L,

0x72340000L,0x00000000L,

0x808C0000L,0x00000008L,

0x90080000L,0x00000000L,

0x7E350100L,0x00000000L,

0x90080000L,0x00000000L,

0x1B000000L,0x00000020L,

0x9F030000L,0x0000FF05L,

0x1F000000L,0x00000008L,

0x7C027F00L,0x00000000L,

0x60000040L,0x00000000L,

0x48000000L,0x00000000L,

0x98080000L,0x00000000L,

0x98080000L,0x0000FF06L,

0x98080000L,0x0000FF07L

};

3 #define Ext_Count

char *External_Names[Ext_Count] = {

“dsa_storage”,

“in_offset”,

Integrating SCRIPTS Programs Into “C” Language Drivers
Running a SCRIPTS Program

7-18 Symbios Logic PCI-SCSI Programming Guide

“out_offset”

};

#define E_in_offset 0x00000000L

ULONG E_in_offset_Used[] = {

0x0000005BL,

0x00000061L

};

#define E_out_offset 0x00000000L

ULONG E_out_offset_Used[] = {

0x0000004FL,

0x00000055L

};

#define Abs_Count 11

char *Absolute_Names[Abs_Count] = {

“done_init”,

“err2”,

“err1”,

“err3”,

“err4”,

“err5”,

“err6”,

“err7”,

“err9”,

“ok”,

“scratch_adr”

};

#define A_ok 0x00000000L

ULONG A_ok_Used[] = {

0x0000007DL

};

#define A_done_init 0x00000001L

ULONG A_done_init_Used[] = {

0x00000001L

};

Integrating SCRIPTS Programs Into “C” Language Drivers
Running a SCRIPTS Program

Symbios Logic PCI-SCSI Programming Guide 7-19

#define A_err1 0x0000FF01L

ULONG A_err1_Used[] = {

0x00000011L

};

#define A_err2 0x0000FF02L

ULONG A_err2_Used[] = {

0x00000021L

};

#define A_err3 0x0000FF03L

ULONG A_err3_Used[] = {

0x00000029L

};

#define A_err4 0x0000FF04L

ULONG A_err4_Used[] = {

0x0000003BL

};

#define A_err5 0x0000FF05L

ULONG A_err5_Used[] = {

0x00000073L

};

#define A_err6 0x0000FF06L

ULONG A_err6_Used[] = {

0x0000007FL

};

#define A_err7 0x0000FF07L

ULONG A_err7_Used[] = {

0x00000081L

};

Integrating SCRIPTS Programs Into “C” Language Drivers
Running a SCRIPTS Program

7-20 Symbios Logic PCI-SCSI Programming Guide

#define A_err9 0x0000FF09L

ULONG A_err9_Used[] = {

0x00000041L

};

#define A_scratch_adr 0x000DFE34L

ULONG A_scratch_adr_Used[] = {

0x00000050L,

0x00000054L,

0x0000005CL,

0x00000060L

};

2 #define Ent_datain 0x00000160L

1 #define Ent_dataout 0x00000130L

3 #define Ent_init_siop 0x00000000L

4 #define Ent_start_up 0x00000008L

5 #define Ent_switch 0x00000010L

ULONG INSTRUCTIONS= 0x0000003FL;

ULONG PATCHES= 0x00000000L;

Writing Device Drivers With SCRIPTS
Overview

Symbios Logic PCI-SCSI Programming Guide 8-1

Chapter 8

Writing Device Drivers With
SCRIPTS

Overview 0

The architecture of a SCSI system may be viewed in layers, with each
layer providing data to the layers immediately above and below. The
device driver interfaces between the host operating system and the
SYM53C8XX hardware and firmware. The device driver, host
operating system, and all applications reside in the host computer's
main memory. The SYM53C8XX is a separate hardware
component, but has direct access to host memory. Figure 8-1 shows
the relationship of the device driver to other parts of the SCSI
system.

Figure 8-1
The Role of the SCSI Device Driver

Application Application Application

SCSI Device SCSI Device SCSI Device

Host Operating System

Device Driver

SYM53C8XX

Writing Device Drivers With SCRIPTS
Overview

8-2 Symbios Logic PCI-SCSI Programming Guide

The device driver itself contains two layers, illustrated in Figure 8-2.
The top layer is the operating system interface. It accepts and
interprets I/O requests from the host operating system. These
requests may vary, depending on the type and vendor of the SCSI
device. The formatted requests are passed to the hardware interface,
or lower layer of the driver. The operating system interface must also
schedule SCSI bus accesses when more than one device is active. It
schedules the I/O requests, and tracks the completed and
outstanding I/Os, based on status passed back from the hardware
interface. The SCRIPTS program is compiled with the driver
program, and is loaded into host memory when the device driver
program starts.

The hardware interface layer interprets the operating system
interface's formatted requests and prepares the SYM53C8XX by
initializing the DMA, SCSI, and Interrupt registers and by loading
the appropriate SCRIPTS into host memory. It then reserves
memory for any data buffers that will be used by the SCRIPTS
program. The hardware interface layer initializes data buffer
addresses, byte counts, and SCSI IDs embedded in the SCRIPTS
code. It then starts the execution of the SCRIPTS routine by loading
the DSP register (2C-2Fh) with the address of the first SCRIPTS
instruction. It waits for an interrupt to signal that the I/O is complete,
then passes I/O status information back to the operating system
interface.

Figure 8-2
SCSI Device Driver Layers

SCSI Hardware Specific Driver

(Host adapter, motherboard)

Main Device

 SCRIPT

Scheduler

SCRIPT

Reselected

SCRIPT

SCSI SCRIPTS Sequences

Operating System Interface Layer

Hardware Interface Layer

Device Type Driver

I/O Scheduler

Vendor Specific Driver

Writing Device Drivers With SCRIPTS
Command Block

Symbios Logic PCI-SCSI Programming Guide 8-3

Command Block 0

When the operating system interface layer of the SCSI device driver
receives an I/O request, it creates a data structure in host memory.
This data structure contains the information required by the
hardware interface for that specific request. This information
generally includes:

● the length of the array

● the SCSI ID for the target device

● the logical unit number (LUN)

● the length of the command block

● the SCSI command containing the beginning block and the
number of blocks to be transferred

● a place for the hardware interface to write its completion status.
The operating system interface reads the completion status and
uses it to update the scheduler information.

Power Up Example 0

The hardware interface initializes the chip whenever the system is
powered up or reset. In the DOS example in Figure 8-3, the system
BIOS scans host memory for a ROM, signified by a 55AA code. It
reads the third byte of the ROM, which contains a jump address. The
following SYM53C8XX initialization information is located at that
address:

● diagnostics to be run

● SCRIPTS to be loaded

● data buffer areas to be reserved

After performing these tasks, the hardware interface then scans for
the hard disk and loads the operating system from it. The operating

Writing Device Drivers With SCRIPTS
I/O Request Process

8-4 Symbios Logic PCI-SCSI Programming Guide

system cannot be loaded from disk until the SCSI driver is active.
This power on sequence of activities is illustrated in Figure 8-3.

 I/O Request Process 0

Figure 8-4 illustrates a typical SCSI I/O operation. The I/O begins
when the user application makes a request to the host operating
system to access data on a SCSI device. The request is passed to the
SCSI device driver's operating system interface where it is
interpreted, scheduled, and formatted for the hardware interface.
The operating system interface creates a data structure in host
memory, which it passes to the hardware interface layer for
execution. The hardware interface uses the information in the
command block to determine which SCRIPTS routine to run, as
well as where to place the data in memory.

The hardware interface sets up the data areas for the command and
data, buffers (initialized table areas and buffers that are needed for
the SCRIPTS to execute), and loads the SCRIPTS starting address
into the DSP register of the SYM53C8XX chip. The SYM53C8XX
executes the subroutine, accessing the drive with the SCSI device ID
specified. When the I/O is complete, the hardware interface receives
an interrupt and notifies the operating system interface. The
operating system interface reads the completion status and uses it to

Figure 8-3
Power Up Example

55AA - Jump

VGA Graphics BIOS

55AA - Jump

SCSI Driver Initialization

-diagnostics

-load SCRIPTS instruction

-initialize SCRIPTS instruction

-reserve data buffer area

-scan for hard disk

-load operating system from disk

POWER UP System BIOS Scan

Host Memory
C000

C2000

D800

Writing Device Drivers With SCRIPTS
I/O Request Process

Symbios Logic PCI-SCSI Programming Guide 8-5

update the scheduler information. For more information on the
scheduler, refer to Chapter 10.

Figure 8-4
I/O Operation

User Application

Operating System

SYM53C8XX

SCSI Device

Host Memory

DOS I/O Request

Command Block

Data Buffers

SCSI SCRIPTS

Buffers

Operating System

Interface

Hardware Interface

Device

Driver

I/O Request

I/O Request

Control

Information

SCRIPTS Address;

Control Information

SCSI Control Data

Writing Device Drivers With SCRIPTS
How to Write a Device Driver With SCRIPTS

8-6 Symbios Logic PCI-SCSI Programming Guide

How to Write a Device Driver With
SCRIPTS 0

To develop an executable SCSI SCRIPTS program, first define the
SCSI functions required. Identify which functions will be executed in
SCRIPTS code and which ones must be contained in other parts of
the driver code. Then, design the specific algorithms for the functions
that will be executed in the SCSI SCRIPTS portion of the SCSI
driver. A SCSI SCRIPTS program contains two areas: the definition
area and the SCRIPTS area. The definition area contains variable
and absolute values. These values may describe a variable location,
variable byte count, or a fixed status byte value. The SCRIPTS area
contains the SCSI instructions.

Use the SCRIPTS language to write instructions, then assemble
them to create the SCRIPTS output file. The assembler output is a
“C” include file that includes relocation information required to load
the SCRIPTS object module into main memory, if any relocation is
required. It can be directly included in firmware written in the “C”
language.

When the SCRIPTS starting address is loaded, the SCRIPTS
absolute jump addresses must be resolved. It is necessary to patch in
the correct buffer addresses, byte counts, destination ID, and so
forth, if table indirect addressing is not used.

Writing a logical I/O driver for the SYM53C8XX is easier than
previous generation solutions. Because SCSI sequences are so simple
to implement when written in SCSI SCRIPTS, you can rapidly
prototype SCSI sequences for proof of concept and build on them to
create more complete driver programs.

Writing Device Drivers With SCRIPTS
Table Indirect Addressing

Symbios Logic PCI-SCSI Programming Guide 8-7

 Table Indirect Addressing 0

Table indirect addressing simplifies SCRIPTS by separating
addresses and device information from control information in Block
Move and Select/Reselect instructions. One of the major advantages
of table indirect addressing is that SCRIPTS can directly load
operating system I/O data from the tables, which increases program
efficiency and simplifies program structure. These tables eliminate
the need for patching SCRIPTS at the beginning of an I/O. The table
can begin on any dword boundary and can cross system segment
boundaries. There are three restrictions on the placement of tables in
memory:

1 The I/O data structure must lie within 8 MB above or below the
base address.

2 An I/O table entry must have all 8 bytes contiguous in system
memory.

3 The table must be a contiguous data structure of 8-byte entries.

Prior to the start of an I/O, the DSA register must be loaded with the
base address of the table indirect data structure. The address must be
on a dword boundary. At the start of a table indirect instruction, the
DSA is added to the 24-bit signed offset value from the op code to
generate the address of the table entry. Both positive and negative
offsets are allowed. With table indirect addressing, it is not necessary
to initialize the SCSI ID, byte counts, clock dividers, synchronous
parameters, or data buffers within the SCRIPTS instruction.
Instead, only the table in memory needs to be updated.

To use table indirect addressing, set up tables in memory similar to
the one shown in Figure 8-5. These tables contain device IDs,
synchronous period information, byte counts, and data addresses.
The data in the table entry is fetched into the appropriate instruction,
depending on whether it is a Block Move or a Select/Reselect.

Block Move Instructions 0

When table indirect mode is selected by using the FROM operator in
a SCRIPTS Block Move instruction, the 32-bit start address is
treated as a 24-bit signed value. After the instruction is moved into
the SYM53C8XX, the 24 bits are added to the DSA register to form
a 32-bit physical address. From this new address, the byte count (24
bits of count plus 8 bits of high-order zeros) and the data buffer
address (32 bits) are fetched.

There are several programming implications of table indirect
addressing. First, a standard SCSI data structure can be designed

Writing Device Drivers With SCRIPTS
Table Indirect Addressing

8-8 Symbios Logic PCI-SCSI Programming Guide

with values at predefined offsets. The Block Move instruction does
not require the actual 32-bit address or 24-bit count to be in the
instruction itself. At the start of an I/O, once the actual data structure
is built, no more firmware intervention is required except loading the
data table base address into the DSA register. Second, the SCRIPTS
instructions may be placed in a PROM because no dynamic
alteration is required at the start of an I/O. Finally, only one copy of
the main SCSI SCRIPTS program is needed for all I/O operations,
with a fast context switch used to change to another I/O. Only the
data structure is unique to each I/O, and the SCRIPTS instructions
are reusable.

Select/Reselect Instructions0

During a Select/Reselect, when FROM is used to indicate table
indirect addressing, the 24-bit signed value in the DBC register is an
offset relative to the value of the DSA register. The table indirect
feature allows the Synchronous Clock Conversion, Enable Wide
SCSI, Clock Conversion Factor, SCSI Device ID, Synchronous
Offset, and Synchronous Period bit values to be fetched from an I/O
data structure that is built at the start of an I/O. Thus, an I/O can
begin with no requirement to write the values into the chip or into
the actual SCRIPTS instruction in memory. In the I/O data
structure, the user must have written the following 8-byte value:

The configuration information in byte lane 3 is mapped into the
SCNTL3 register (03h). This includes the Synchronous Clock
Conversion Factor, Enable Wide SCSI, Enable Ultra SCSI, and
Clock Conversion Factor. The Encoded SCSI destination ID in byte
lane 2 is mapped into the SDID register (06h), and the period and

Dword 0

Byte
Lane 3

Byte
Lane 2

Byte
Lane 1

Byte
Lane 0

Byte Count

Dword 1

Byte
Lane 3

Byte
Lane 2

Byte
Lane 1

Byte
Lane 0

Address

Dword 0

Byte
Lane 3

Byte
Lane 2

Byte
Lane 1

Byte
Lane 0

Config (SCNTL3) Device ID (SDID) Period & Offset
(SXFER) Res

Dword 1

Byte
Lane 3

Byte
Lane 2

Byte
Lane 1

Byte
Lane 0

Res Res Res Res

Writing Device Drivers With SCRIPTS
Table Indirect Addressing

Symbios Logic PCI-SCSI Programming Guide 8-9

offset information in byte lane 1 is mapped into the SXFER register
(05h). The data must begin on a 4-byte boundary and must be
located at the 24-bit signed offset from the address contained in the
DSA register.

Figure 8-5
Table Indirect Addressing

config
0

0

0ID period & offset

command_address

Host Memory (table_0)

cmd_byte_count(DSA + command_offset:)

DBC Register

DSPS Register

SYM53C8XX

DSA

SCNTL3 Register

SDID Register

SXFER Register

Select/Reselect

Block Move

Writing Device Drivers With SCRIPTS
Table Indirect Addressing

8-10 Symbios Logic PCI-SCSI Programming Guide

Defining a Table 0

The first step in defining a table is to describe it in SCRIPTS code in
terms of the order and size of table entries, or buffers. An example is
shown in Figure 8-6.

Figure 8-6
Table Definition

; Table definition and use in SCRIPTS

Table dsa_table \

SCSI_ID = ID{0x33, 0x00, 0x00, 0x00}

Data_buf = 512{??} , \

ID_msg = {0x80} , \

CMD_buf = {0x08, 0x00, 0x00, 0x00, 0x01, 0x00}

ENTRY table_use

SCRIPTS Code Output File Memory Definition

table_use:

SELECT ATN FROM SCSI_ID, REL (resel)

MOVE FROM ID_msg, WHEN MSG_OUT

MOVE FROM CMD_buf, WHEN CMD

MOVE FROM Data_buf, WHEN DATA_IN

INT 0x0A

resel:

int 0x0B				

ULONG SCRIPT [] = {

 0x47000000 0x00000020,

 0x1E000000 0x00000010,

 0x1A000000 0x00000018,

	

	 0x19000000 0x00000008

 0x98080000 0x0000000A,

 0x98080000 0x0900000B

};

#define ENT_table_use	 0x00000000

ULONG INSTRUCTIONS = 0x00000006;

ULONG PATCHES = 0x00000000;

Cmd (0x1A) Not Used

Table Offset (0x18)

Cmd (0x1E) Not Used

Table Offset (0x10)

Cmd (0x19) Not Used

Table Offset (0x08)

Cmd (0x47) Table Offset (0x00)

Alternate Jump Address (0x20)

Writing Device Drivers With SCRIPTS
Relative Addressing

Symbios Logic PCI-SCSI Programming Guide 8-11

Relative Addressing 0

In relative addressing mode, the 24-bit signed value in the DSPS
register is used as a relative displacement from the current DMA
SCRIPTS Pointer (DSP) register. Using this mode, the 32-bit
physical address is formed at execution time, and there is no need to
patch a SCRIPTS instruction at run time. Relative addressing may
be used for jumps or calls, and requires no initialization of jump and
call addresses. This feature may also be used with the alternate
address field of Select, Reselect, Wait Select, and Wait Reselect
instructions.

Note: use the REL qualifier keyword in SCRIPTS instructions to
specify relative addressing. RELATIVE is a declarative keyword,
used by the SCRIPTS assembler, to establish relative buffers.
These relative buffers are not used in connection with relative
addressing.

Writing Device Drivers With SCRIPTS
Relative Addressing

8-12 Symbios Logic PCI-SCSI Programming Guide

SCRIPTS Programming Topics
Overview

Symbios Logic PCI-SCSI Programming Guide 9-1

Chapter 9

SCRIPTS Programming Topics

Overview 0

This chapter presents general information for some of the
programming tasks that are often performed by SCRIPTS programs.
For the most up-to-date example code for many of these operations,
please contact the Symbios Logic electronic bulletin board.

Scatter/Gather Operations 0

Scatter/gather is used when data that is scattered throughout memory
must be transferred across the SCSI bus together. Memory
management units keep track of physical locations of user data that
cannot be stored contiguously. During an I/O request for a SCSI
device to fetch data, the memory management unit builds a gather
table that provides the addresses of all of the desired data. There may
be several entries, or pages, of data associated with a single transfer.
Without scatter gather each entry is treated as an individual transfer,
requiring a processor interrupt and DMA setup.

With SCSI SCRIPTS, it is possible to set up multiple data buffer
areas and then fill them rapidly without interrupting the host
processor. This allows faster and more efficient scatter/gather
operations. Block move data may come from any memory address, so
scatter/gather operations for user data are transparent to the chip and
the host processor. With the technique illustrated below, a number of
data buffers (pages, or gather table entries) are defined in advance
and each is associated with a Block Move instruction. Any number of
Block Moves can be hard-coded into the buffers. If the scatter/gather
list requested has more entries than have been defined for the buffer,
then an interrupt after the last entry in the series can inform the
firmware it needs to set up the remaining scatter gather entries after
the first group is complete.

SCRIPTS Programming Topics
Scatter/Gather Operations

9-2 Symbios Logic PCI-SCSI Programming Guide

RW_Offset_patch_do:
;Relative offset will be changed so that we jump into the
;proper place in the scatter gather list

JUMP REL(Data_Out_xfer); Data_Out_xfer:

CHMOV FROM data_buf1, WHEN DATA_OUT CHMOV FROM data_buf2, WHEN

; 16 moves to support Scatter Gather
DATA_OUT
CHMOV FROM data_buf3, WHEN DATA_OUT
CHMOV FROM data_buf4, WHEN DATA_OUT
CHMOV FROM data_buf5, WHEN DATA_OUT
CHMOV FROM data_buf6, WHEN DATA_OUT
CHMOV FROM data_buf7, WHEN DATA_OUT
CHMOV FROM data_buf8, WHEN DATA_OUT
CHMOV FROM data_buf9, WHEN DATA_OUT
CHMOV FROM data_buf10, WHEN DATA_OUT
CHMOV FROM data_buf11, WHEN DATA_OUT
CHMOV FROM data_buf12, WHEN DATA_OUT
CHMOV FROM data_buf13, WHEN DATA_OUT
CHMOV FROM data_buf14, WHEN DATA_OUT
CHMOV FROM data_buf15, WHEN DATA_OUT
CHMOV FROM data_buf16, WHEN DATA_OUT

; Check to see if we need more SG list entries
MOVE DWT & RW_NEED_MORE_SG_ENTRIES to SFBR
INT RW_Need_More_SG, if not 0

; If we are here then all the data was transferred
; so we set a flag to indicate that
MOVE SBR | RW_ALL_DATA_TRANSFERRED to DWT

JUMP REL(RW_Handle_Phase)

; *** Script move data ENTRY
RW_Offset_patch_di:

;Relative offset will be changed so that we jump into the
;proper place in the scatter gather list
JUMP REL(Data_In_xfer); Data_In_xfer:
CHMOV FROM rw_data_buf1, WHEN DATA_IN CHMOV FROM rw_data_buf2,
WHEN DATA_IN

; 16 moves to support Scatter Gather
CHMOV FROM rw_data_buf3, WHEN DATA_IN
CHMOV FROM rw_data_buf4, WHEN DATA_IN
CHMOV FROM rw_data_buf5, WHEN DATA_IN
CHMOV FROM rw_data_buf6, WHEN DATA_IN
CHMOV FROM rw_data_buf7, WHEN DATA_IN
CHMOV FROM rw_data_buf8, WHEN DATA_IN
CHMOV FROM rw_data_buf9, WHEN DATA_IN
CHMOV FROM rw_data_buf10, WHEN DATA_IN
CHMOV FROM rw_data_buf11, WHEN DATA_IN
CHMOV FROM rw_data_buf12, WHEN DATA_IN
CHMOV FROM rw_data_buf13, WHEN DATA_IN
CHMOV FROM rw_data_buf14, WHEN DATA_IN
CHMOV FROM rw_data_buf15, WHEN DATA_IN
CHMOV FROM rw_data_buf16, WHEN DATA_IN

SCRIPTS Programming Topics
Scatter/Gather Operations

Symbios Logic PCI-SCSI Programming Guide 9-3

; Check to see if we need more SG list entries
MOVE SBR & RW_NEED_MORE_SG_ENTRIES to SFBR
INT RW_Need_More_SG, if not 0

; If we are here then all the data was transferred
; so we set a flag to indicate that
MOVE SBR | RW_ALL_DATA_TRANSFERRED to DWT

The following example shows an alternative method for doing
scatter/gather operations in SCRIPTS. This mechanism uses a
looping strategy to execute each scatter/gather entry. On each loop
the DSA value is incremented by 8, effectively moving to the next
scatter/gather entry in the scatter/gather list. Generally, when this
strategy is used, the scatter/gather list is located at the end of the table
indirect entries or is located separately from the other table indirect
entries that handle (re)select, message, command and status phases.
The DSA value is then restored after the scatter gather operations are
complete or the target changes phase. This method of doing
scatter/gather operations requires that table indirect addressing be
used.

Move_Data:
MOVE MEMORY 4, DSA_addr, ScratchB_addr ; save DSA

address
JUMP REL(Data_In_Loop), WHEN DATA_IN

Data_Out_Loop:
MOVE FROM io_data_buf, WHEN DATA_OUT
MOVE DSA0 + 8 to DSA0 ; Update DSA for scatter gather
JUMP REL(Skip_Carry_Adds_DO), IF NOT CARRY; operations
MOVE DSA1 + 0 to DSA1 WITH CARRY
MOVE DSA2 + 0 to DSA2 WITH CARRY
MOVE DSA3 + 0 to DSA3 WITH CARRY

Skip_Carry_Adds_DO:
JUMP REL(Data_Out_Loop), WHEN DATA_OUT
MOVE MEMORY 4, ScratchB_addr, DSA_addr ; restore DSA

; address
JUMP REL(Get_Status), WHEN STATUS
JUMP REL(Handle_Message), WHEN MSG_IN
INT Unexpected_Phase

SCRIPTS Programming Topics
Loopback Mode

9-4 Symbios Logic PCI-SCSI Programming Guide

Loopback Mode 0

The SYM53C8XX provides advanced diagnostic and testing
capabilities. Loopback mode allows the SYM53C8XX to control all
signals, regardless of whether it is in initiator or target role.This mode
provides the ability to check the functionality of the part, insuring
proper SCRIPTS instruction fetches, checking bad parity
procedures, and insuring all data paths work properly. The
SYM53C8XX loopback mode allows testing of both initiator and
target operations. In this mode, the SYM53C8XX allows control of
all SCSI signals, and actually talks to itself. The SYM53C8XX
usually executes initiator instructions through the SCRIPTS
program and the host CPU implements the target role by asserting
and polling the appropriate SCSI signals in the SOCL, SODL,
SBCL, and SBDL registers. The initiator role is accomplished using
SCSI SCRIPTS and the target role is implemented using “C” code
to access the 53C8XX registers. The roles could be switched to test
target role applications of the SYM53C8XX.

To run loopback mode correctly, the following registers must be
initialized to the proper values.

● STEST2. Bits 3 and 4 should be set to turn on loopback mode
and hi-z the SCSI pins, so that signals are not asserted onto the
SCSI bus. STEST 2 bits 7-6 and 0 do not affect loopback
operation, but should remain clear. The values of bits 5 and 2-1
will not affect the running of loopback mode

● DCNTL. Bit 4 should be set to turn on single step mode. This
allows the target program to monitor when an initiator SCRIPTS
instruction has completed. Bits 3-2 should be clear, and the
remaining bit values will not affect the running of loopback
mode.

● DIEN. Bit 3 should be set to enable single step interrupts. This
bit works in conjunction with the single step mode bit to allow for
monitoring of SCRIPTS instruction completion. The remaining
bit values in this register will not affect the running of loopback
mode.

Loopback Example -
Selection 0

The following example shows how to perform selection in the SCSI
Loopback mode. It provides all the general code required to
implement any of the various SCSI sequences in loopback mode.
This example assumes that the SYM53C8XX was initialized as
described above. The initiator instructions are implemented using the
SYM53C8XX and SCRIPTS. The target instructions are
implemented using the CPU and a “C” program.

SCRIPTS Programming Topics
Loopback Mode

Symbios Logic PCI-SCSI Programming Guide 9-5

When a SCRIPTS routine is executing, a waiting period is required
to fetch the SCRIPTS instructions; this fetch time must be taken into
account when writing loopback code. To insure proper operation, a
delay should be inserted directly after SCRIPTS instructions have
started executing. After the DSP register (2C-2Fh) is initialized with
a SCRIPTS instruction address, the chip registers cannot be
accessed until the instruction has been fetched and begins executing.
This delay time must include:

● host arbitration

● SCRIPTS instruction fetch

● SCRIPTS instruction execution or internal bus moves

These delay times are system-dependent because of host arbitration
times, host bus width, and chip clock speed.

/*Load DSP with address of Select w/ATN instruction*/

/* SELECT ATN tar_id, REL(This_wont_occur) */

write_longreg (DSP,SCRIPTS_sel_inst);

/* Delay to allow instruction to be fetched by SIOP */

delay(1); /* 1 ms delay, varies with system*/

/* TARGET, wait for SEL to go high and BSY to go low */

while ((siop_reg[SBCL] & 0x30) != 0x10;

/*TARGET, check ID, but really don’t care what it is */

printf(“Initiator: Selecting target ID
%x\n”,siop_reg[SBDL]);

/*TARGET, assert BSY*/

siop_reg[SOCL] = 0x20;

/*TARGET, wait for SEL to drop */

while ((siop_reg[SBCL] & 0x10) !=0);

In this section of code, the Initiator Select SCRIPTS routine is
started by writing the address of the Select instruction to the DSP. A
delay is inserted to insure that the SIOP has time to fetch the
instruction. Polling the SBCL register determines when SEL/ is
active and selecting itself.

The variable siop_reg should be defined as a volatile pointer to the
registers of the SYM53C8XX. This insures that the registers will not
be shadowed internally by the CPU. Polling the SBDL register
determines which SCSI ID bits are being driven. This is not a vital
step in the loopback selection process, since the SYM53C8XX is
selecting itself. However, SBDL should be checked to make sure the

SCRIPTS Programming Topics
Loopback Mode

9-6 Symbios Logic PCI-SCSI Programming Guide

correct bits are driven on the SCSI data bus during normal selection.
The BSY/ bit is set in the SOCL register. This is a target operation
performed by the CPU. Polling the SEL/ bit of the SBCL register
determines when SEL/ is inactive. This indicates the “initiator” is
properly responding to BSY/ being asserted by the “target.”

/*TARGET, check for ATN*/

if (siop_reg[SBCL] & 0x08) {

/*TARGET, assert BSY, and MSG OUT*/

siop_reg[SOCL] = 0x26;

/*Self-Selection with ATN is now complete.*/

/* Wait for single step interrupt*/

while ((siop_reg[ISTAT] & 0x03) ==0);

/*Clear all interrupts*/

junk = siop_reg[SIST0];

junk = siop_reg[SIST1]

junk = siop_reg[DSTAT];

/*Start Script Block Move instruction*/

/*to send Identify Message to “Target” */

/*MOVE 1, identify_buf, WHEN MESSAGE OUT*/

siop_reg[DCNTL] |= 0x04;

/*Wait for SCRIPTS routine to finish using host bus*/

delay(1);

The program checks the SBCL register to determine if the selection
is with or without SATN/. This will effect the next phase that is
asserted by the “target.” The desired phase is asserted by setting the
MSG/, C_D/, and I/O bits in the SOCL register while maintaining
BSY/. This would be Message Out if SATN/ was sampled asserted or
Command if SATN/ was sampled deasserted in the SBCL register.
At this point, selection with ATN/ is now complete. The SIP and DIP
bits in the ISTAT register are polled for a single step interrupt and
any others that may have occurred. These interrupts are cleared by
reading the SIST0, SIST1 and DSTAT registers. Note that the single
step interrupt will be cleared by reading the DSTAT register. Other
interrupts may occur, depending on the particular settings in the
SIEN and DIEN registers. It is a safe procedure to make sure all
interrupts are cleared, as any pending interrupts would inhibit the
execution of further SCRIPTS instructions. This example uses a

SCRIPTS Programming Topics
Loopback Mode

Symbios Logic PCI-SCSI Programming Guide 9-7

polled interrupt procedure. If hardware interrupts are used, then this
would be handled in an interrupt service routine.

The Start DMA operation bit of the DCNTL register is set so that
the Block Move SCRIPTS instruction will begin execution. This
Block Move instruction is used to transfer the identify message
associated with Selection with ATN/ to the target. A delay is inserted
to ensure that the SYM53C8XX has time to fetch the instruction.

The next section of code shows how to transfer bytes using loopback
mode. Although this is shown in line with the rest of the sample code,
it can be moved out into a separate function and used for any generic
data transfer between the initiator and the target, whenever the
SYM53C8XX is executing a Block Move instruction. The assertion
of the SREQ/ signal is the first thing that is done in this code.The
SREQ/ signal is asserted by keeping the phase bits the same and
setting the SREQ/ bit in the SOCL register. This is an acceptable
action for a data transfer from the “Initiator” to the “Target” (DATA
OUT, MESSAGE OUT, or COMMAND phase). For a transfer
from the “target” to the “initiator” (DATA IN, MESSAGE IN, or
STATUS phase) the data should be placed into the SODL register
before SREQ/ is asserted. Because the SYM53C8XX clocks
asynchronous data in on the rising edge of SACK/, data will be
corrupted if this procedure is not followed. If SREQ/ is asserted, the
SYM53C8XX will immediately assert ACK/ and clock in whatever
data is in the SOCL register, if the data has not been placed into the
SOCL register, then incorrect data will be clocked in.

After asserting the SREQ/ signal, the SBCL register is polled for
assertion of the SACK/ signal by the “initiator.” Data is then read by
the “target” from the SBDL register. SREQ/ is deasserted by the
“target” using the SOCL register, and the “target” polls the SBCL
register for deassertion of SACK/ by the “initiator.” The byte received
by the “target” is verified with the byte sent by the “initiator.”

/*TARGET, Get Message Byte */

/*TARGET, assert REQ, maintain all other SCSI signals*/

siop_reg[SOCL] |=0x80;

/*TARGET, wait for ACK*/

while ((siop_reg[SBCL] & 0x40) !=0)

msg_out_buf = siop_reg[SBDL]; /*read the data bus*/

siop_reg[SOCL] &=0x7f; /*deassert REQ*/

while ((siop_reg[SBCL] & 0x40) !=0) /* wait for ACK*/

/* verify message byte */

if (msg_out_buf !=identify_buf) {

loop_err = 1;

}

SCRIPTS Programming Topics
Loopback Mode

9-8 Symbios Logic PCI-SCSI Programming Guide

The following section of code shows the final step of the selection
procedure in Loopback mode. This selection procedure could be
placed into a function, as could procedures that implement
command, status, message in, and data transfer phases. Upon doing
this, full SCSI sequences could be implemented in loopback mode by
various function calls in the proper order.

If the selection was without ATN/, then nothing else needs to be
done other than assert the next phase and wait for a single step
interrupt. The MSG/, C_D/, and I_O/ signals are set to command
phase via the SOCL register. BSY/ is also kept asserted. The SIP and
DIP bits in the ISTAT register are polled for a single step interrupt
along with any other interrupts that may have occurred. These
interrupts are cleared by reading the SIST1, SIST0, and DSTAT
registers. Note that the single step interrupt will be cleared by
reading the DSTAT register, but depending on the particular settings
in the SIEN and DIEN registers, other interrupts may occur. It is a
safe procedure to make sure all interrupts are cleared, as any pending
interrupts would inhibit the execution of remaining SCRIPTS
instructions. This example uses a polled interrupt procedure. If
hardware interrupts are used then this would be handled in an
interrupt service routine. The chip is now in a state to transfer
command bytes. This can be accomplished by using the generic byte
transfer code given earlier in this example.

else{ /*select without ATN*/

printf(“Initiator: Selecting without ATN.../n);

}

/*assert BSY and Command phase*/

siop_reg[SOCL} = 0x22;

/*wait for single step int.*/

while ((siop_reg[ISTAT] & 0x03) == 0);

/* clear all interrupts */

junk = siop_reg[SIST0];

junk = siop_reg[SIST1];

junk = siop_reg[DSTAT];

/*SELECTION COMPLETE*/

SCRIPTS Programming Topics
Byte Recovery on Target Disconnect

Symbios Logic PCI-SCSI Programming Guide 9-9

Byte Recovery on Target Disconnect 0

There are three cases where a disconnect may occur. The first is
during a Data Read, when a SCSI device may disconnect while it is
seeking the data that was requested. This is very common, such as
when a SCSI disk drive must perform a seek operation. Seeks often
take many milliseconds to accomplish, and it is inefficient for the disk
drive to stay active on the bus when it has nothing to transfer. A
second case is after a SCSI device completes a write operation, and
disconnects to empty its buffers before returning its status and
command complete messages.

The third type of disconnect may occur at any time. It occurs when
data is being written to a SCSI device and its internal buffers become
full. The device will disconnect before the data transfer is complete to
empty its buffers and avoid an overflow condition. When it does, the
SCSI bus is in a different phase from that expected by the initiator,
creating a phase mismatch. When this happens, the SYM53C8XX
must interrupt and the CPU must perform byte recovery. When a
disconnect occurs, data may be in transition; it is important to
determine how much and where it is. In addition, it is crucial to
know where in the SCRIPTS program the transfer was interrupted
so that it can be resumed at a later time. To save the state of the chip
at the time of the disconnect, get the address of the current
SCRIPTS instruction and calculate the number of bytes of active
data remaining to be transferred. After saving the state of the chip,
update the SCRIPTS program and flush or clear the FIFO.

Saving the State of the
SYM53C8XX 0

The first step in saving the state of the SYM53C8XX is to write the
address of the current SCRIPTS instruction from the DSP register
to a special table that is indexed by SCSI ID. The instruction at that
address can be restored later to resume processing. The DSP is
incremented as the current instruction is fetched, so it will always
point to the next instruction. Therefore, the DSP will need to be
decremented by 8 or 12, depending on whether the instruction was a
regular SCRIPTS instruction or a Memory to Memory Move. This
can be determined by reading the DCMD register. Typically, the
instruction will be a Block Move. If table indirect addressing is used,
it may only be necessary to update the table and not the SCRIPTS
code.

Target disconnect may create a need to recover bytes in the chip’s
data paths. The location of the data is dependent on whether data is
being moved into or out of the chip, and whether SCSI data is being
transferred asynchronously or synchronously.The following steps will
determine if any bytes remain in the data path when the chip halts an
operation. Please consult the appropriate product data manual for

SCRIPTS Programming Topics
Byte Recovery on Target Disconnect

9-10 Symbios Logic PCI-SCSI Programming Guide

exact information on the default and extended (when supported)
DMA FIFO sizes in each SYM53C8XX PCI-SCSI I/O Processor.

Asynchronous SCSI Send 0

1 If the DMA FIFO size is set to the default size, Look at the
DFIFO and DBC registers and calculate if there are bytes left in
the DMA FIFO. To make this calculation, subtract the seven least
significant bits of the DBC register from the 7-bit value of the
DFIFO register. AND the result with 7Fh for a byte count
between zero and the FIFO size.

If the DMA FIFO size is set to the extended size, subtract the 10
least significant bits of the DBC register from the 10-bit value of
the DMA FIFO Byte Offset Counter, which consists of bits 1-0
in the CTEST5 register and bits 7-0 of the DMA FIFO register.
AND the result with 3FFh for a byte count between 0 and the
extended FIFO size.

2 Read bit 5 in the SSTAT0 and SSTAT2 registers to determine if
any bytes are left in the SODL register. If bit 5 is set in the
SSTAT0 or SSTAT2 then the least significant byte or the most
significant byte in the SODL register is full, respectively.
Checking this bit also reveals bytes left in the SODL register from
a Chained Move operation with an odd byte count.

Synchronous SCSI Send 0

1 If the DMA FIFO size is set to the default size, look at the
DFIFO and DBC registers and calculate if there are bytes left in
the DMA FIFO. To make this calculation, subtract the seven least
significant bits of the DBC register from the 7-bit value of the
DFIFO register. AND the result with 7Fh for a byte count
between zero and the FIFO size.

If the DMA FIFO size is set to the extended size, subtract the 10
least significant bits of the DBC register from the 10-bit value of
the DMA FIFO Byte Offset Counter, which consists of bits 1-0
in the CTEST5 register and bits 7-0 of the DMA FIFO register.
AND the result with 3FFh for a byte count between 0 and the
FIFO size.

2 Read bit 5 in the SSTAT0 and SSTAT2 registers to determine if
any bytes are left in the SODL register. If bit 5 is set in the
SSTAT0 or SSTAT2 then the least significant byte or the most
significant byte in the SODL register is full, respectively.
Checking this bit also reveals bytes left in the SODL register from
a Chained Move operation with an odd byte count.

SCRIPTS Programming Topics
Byte Recovery on Target Disconnect

Symbios Logic PCI-SCSI Programming Guide 9-11

3 Read bit 6 in the SSTAT0 and SSTAT2 registers to determine if
any bytes are left in the SODR register. If bit 6 is set in the
SSTAT0 or SSTAT2 then the least significant byte or the most
significant byte in the SODR register is full, respectively.

Asynchronous SCSI Receive 0

1 If the DMA FIFO size is set to the default size, Look at the
DFIFO and DBC registers and calculate if there are bytes left in
the DMA FIFO. To make this calculation, subtract the seven least
significant bits of the DBC register from the 7-bit value of the
DFIFO register. AND the result with 7Fh for a byte count
between 0 and the FIFO size.

If the DMA FIFO size is set to the extended size, subtract the 10
least significant bits of the DBC register from the 10-bit value of
the DMA FIFO Byte Offset Counter, which consists of bits 1-0
in the CTEST5 register and bits 7-0 of the DMA FIFO register.
AND the result with 3FFh for a byte count between 0 and the
FIFO size.

2 Read bit 7 in the SSTAT0 and SSTAT2 register to determine if
any bytes are left in the SIDL register. If bit 7 is set in the
SSTAT0 or SSTAT2 then the least significant byte or the most
significant byte is full, respectively.

3 If any wide transfers have been performed using the Chained
Move instruction, read the Wide SCSI Receive bit (SCNTL2, bit
0) to determine whether a byte is left in the SWIDE register.

Synchronous SCSI Receive 0

1 If the DMA FIFO size is set to the default size, subtract the seven
least significant bits of the DBC register from the 7-bit value of
the DFIFO register. AND the result with 7Fh for a byte count
between 0 and the FIFO size.

If the DMA FIFO size is set to the extended size, subtract the 10
least significant bits of the DBC register from the 10-bit value of
the DMA FIFO Byte Offset Counter, which consists of bits 1-0
in the CTEST5 register and bits 7-0 of the DMA FIFO register.
AND the result with 3FFh for a byte count between 0 and the
FIFO size.

2 Read the SSTAT1 register (and bit 4 of the SSTAT2 register for
extended FIFO size), the binary representation of the number of
valid bytes in the SCSI FIFO, to determine if any bytes are left in
the SCSI FIFO.

SCRIPTS Programming Topics
Byte Recovery on Target Disconnect

9-12 Symbios Logic PCI-SCSI Programming Guide

If any wide transfers have been performed using the Chained
Move instruction, read the Wide SCSI Receive bit (SCNTL2, bit
0) to determine whether a byte is left in the SWIDE register.

Updating the SCRIPTS
Program 0

Once the number of bytes in transition has been calculated, the
SCRIPTS instruction must be updated so that the correct number of
bytes will be transferred when the target reselects. This is done by
updating the byte count and address in the SCRIPTS program at
whatever the current instruction was at the time of disconnect. The
SCRIPT is stored in the host's main memory, so it may be modified
at any time. This manipulation must be performed on the binary
version of the instruction in host memory unless table indirect
addressing is used. If table indirect mode is used, the byte count and
address would be modified in the data structure instead of the binary
version of the instruction.

Cleaning Up 0

Bytes that are already in transition must be processed. Depending on
the direction of transfer and how the user writes the code, any data
left in the chip must be flushed to memory (SCSI Receive only) or
cleared and discarded. The Flush DMA FIFO bit in the CTEST3
register flushes the DMA FIFO data to memory. The Clear DMA
FIFO bit in CTEST3 discards the data in the DMA FIFO. The Clear
SCSI FIFO bit in STEST3 clears the data out of the Synchronous
SCSI Receive FIFO and clears data in any other intermediate
registers.

In a normal disconnect situation, when a Phase Mismatch interrupt
occurs during a SCSI receive, no data should be left in the chip
except in the SWIDE register.

Note: The Wide SCSI Send and Wide SCSI Receive bits are
cleared by any non-wide send or receive action, such as moving
message bytes. Examine these bit values first during byte
recovery.

Example Byte Recovery
Code 0

Byte recovery must be done when the SYM53C8XX receives a phase
mismatch interrupt either during Data In or Data Out phase. Below
are two example functions which handle these situations.

These examples use the following SCRIPTS sequence to move data:

Move_Data:

JUMP REL(RW_Offset_patch_di), WHEN DATA_IN

;During a write command, some devices disconnect after all the
;data has been sent and reselect with Status and msg_in. The
;following instructions prevents phase mismatch when this
;happens.
JUMP REL(RW_Handle_Phase) WHEN NOT DATA_OUT

SCRIPTS Programming Topics
Byte Recovery on Target Disconnect

Symbios Logic PCI-SCSI Programming Guide 9-13

; *** Script move data out ENTRY
RW_Offset_patch_do:

;Relative offset will be changed so that we jump
;into the proper place in the scatter gather list
JUMP REL(Data_Out_xfer); Data_Out_xfer:

CHMOV FROM data_buf1, WHEN DATA_OUT CHMOV FROM data_buf2, WHEN
DATA_OUT

; 16 moves to support Scatter Gather
CHMOV FROM data_buf3, WHEN DATA_OUT
CHMOV FROM data_buf4, WHEN DATA_OUT
CHMOV FROM data_buf5, WHEN DATA_OUT
CHMOV FROM data_buf6, WHEN DATA_OUT
CHMOV FROM data_buf7, WHEN DATA_OUT
CHMOV FROM data_buf8, WHEN DATA_OUT
CHMOV FROM data_buf9, WHEN DATA_OUT
CHMOV FROM data_buf10, WHEN DATA_OUT
CHMOV FROM data_buf11, WHEN DATA_OUT
CHMOV FROM data_buf12, WHEN DATA_OUT
CHMOV FROM data_buf13, WHEN DATA_OUT
CHMOV FROM data_buf14, WHEN DATA_OUT
CHMOV FROM data_buf15, WHEN DATA_OUT
CHMOV FROM data_buf16, WHEN DATA_OUT

; Check to see if we need more SG list entries
;In older SYM53C8XX chips, SBR = DWT
MOVE SBR & RW_NEED_MORE_SG_ENTRIES to SFBR
INT RW_Need_More_SG, if not 0

; If we are here then all the data was transferred
; so we set a flag to indicate that
MOVE SBR | RW_ALL_DATA_TRANSFERRED to DWT

JUMP REL(RW_Handle_Phase)

; *** Script move data ENTRY
RW_Offset_patch_di:

;Relative offset will be changed so that we jump into the
;proper place in the scatter gather list
JUMP REL(Data_In_xfer); Data_In_xfer:
CHMOV FROM rw_data_buf1, WHEN DATA_IN CHMOV FROM rw_data_buf2,
WHEN DATA_IN

; 16 moves to support Scatter Gather
CHMOV FROM rw_data_buf3, WHEN DATA_IN
CHMOV FROM rw_data_buf4, WHEN DATA_IN
CHMOV FROM rw_data_buf5, WHEN DATA_IN
CHMOV FROM rw_data_buf6, WHEN DATA_IN
CHMOV FROM rw_data_buf7, WHEN DATA_IN
CHMOV FROM rw_data_buf8, WHEN DATA_IN
CHMOV FROM rw_data_buf9, WHEN DATA_IN
CHMOV FROM rw_data_buf10, WHEN DATA_IN
CHMOV FROM rw_data_buf11, WHEN DATA_IN
CHMOV FROM rw_data_buf12, WHEN DATA_IN
CHMOV FROM rw_data_buf13, WHEN DATA_IN
CHMOV FROM rw_data_buf14, WHEN DATA_IN
CHMOV FROM rw_data_buf15, WHEN DATA_IN

SCRIPTS Programming Topics
Byte Recovery on Target Disconnect

9-14 Symbios Logic PCI-SCSI Programming Guide

CHMOV FROM rw_data_buf16, WHEN DATA_IN

; Check to see if we need more SG list entries
MOVE SBR & RW_NEED_MORE_SG_ENTRIES to SFBR
INT RW_Need_More_SG, if not 0

; If we are here then all the data was transferred
; so we set a flag to indicate that
MOVE SBR | RW_ALL_DATA_TRANSFERRED to DWT

JUMP REL(RW_Handle_Phase)

; *** Script move SWIDE byte ENTRY

RW_Move_swide_byte:

CHMOV 1, RW_Last_di_byte_buf, WHEN DATA_IN
INT RW_SWIDE_byte_moved

Example Function for handling DATA IN Phase
Mismatch interrupts 0

/***

 Function: HandleDataInPM

Purpose : To handle clean up after a Phase Mismatch (PM)
during Data In phase

Input: The IO Base address of the 8XX chip
A pointer to a variable which will indicate the
Scatter Gather entry that was executing when the
PM occurred, this is needed by the upper function
if there was a byte in the SWIDE register.

Output: Current_SG_Entry is filled in with the SG
entry that was being serviced.

Assumptions: That a phase mismatch has actually
occurred during data in.

Restrictions: None
Other functions called: IORead32 to read chip info

iowrite32 to start the script
Global Variables Used:FirstDIMove_paddr is the

physical address of the first Data In
block move in the scatter/gather
list. This is needed to get the
location of the scatter/gather entry
that was being serviced when the
phase mismatch occurred.

dsa_table is the table indirect table
that is being used for this IO

script is the actual script that was
being executed when the phase
mismatch occurred.

DATA_BUF1 is the offset into the Table
Indirect entries for the first Data
In table entry.

SCRIPTS Programming Topics
Byte Recovery on Target Disconnect

Symbios Logic PCI-SCSI Programming Guide 9-15

**/

static void HandleDataInPM(ULONG PCIDeviceIOBase, INT\
*Current_SG_Entry)

{

ULONG Current_DSP; /* Holds current DSP value */

/* where am I in the SG list? */
Current_DSP = IORead32(PCIDeviceIOBase+DSP) - 8;
*Current_SG_Entry = (VINT) (Current_DSP -\ FirstDIMove_paddr) /

8;

/* On Data In phase mismatch interrupts the part is
automatically flushed so there is no need to check for residual
data in the part, except for data in the SWIDE byte*/

/* now update the address and count */
dsa_table[DATA_BUF1 + *Current_SG_Entry].address +=

dsa_table[DATA_BUF1 + *Current_SG_Entry].count -
(IORead32(PCIDeviceIOBase+DBC) & 0x00FFFFFFl);

dsa_table[DATA_BUF1 + *Current_SG_Entry].count =
IORead32(PCIDeviceIOBase+DBC) & 0x00FFFFFFl;

/* update the jump offset into the SG list */
script[(INT) (Ent_RW_Offset_patch_di/4) + 1] =

(ULONG) *Current_SG_Entry * 8;

/* move the byte in SWIDE if necessary */
if (IORead8(PCIDeviceIOBase+SCNTL2) & 0x01)
{

/* patch move to get byte out of chip */
script[(INT) E_RW_Last_di_byte_buf_Used[0]] =

buffer_table[DATA_BUF1 +

*Current_SG_Entry].address;

/* start script to move byte */
iowrite32(PCIDeviceIOBase+DSP,

getPhysAddr(rw_script) +
Ent_RW_Move_swide_byte);

}

else /* nothing in swide so start the disconnect
/*script */

iowrite32(PCIDeviceIOBase+DSP,
getPhysAddr(rw_script) + Ent_RW_Handle_Phase);

}

SCRIPTS Programming Topics
Byte Recovery on Target Disconnect

9-16 Symbios Logic PCI-SCSI Programming Guide

 Example Function for handling DATA OUT Phase
Mismatch interrupts: 0

/***

 Function: HandleDataOutPM

Purpose: To handle clean up after a Phase Mismatch (PM)during
Data Out phase

Input: A pointer the pcidev_record.
Output: None
Assumptions: That a phase mismatch has actually

occurred during data out.
Restrictions: None
Other functions called:IORead32/8 to read chip info

RMWon to set bits in chip registers
iowrite32 to start the script

Global Variables Used:FirstDOMove_paddr is the
physical address of the first Data
Out block move in the scatter/gather
list. This is needed to get the
location of the scatter/gather entry
that was being serviced when the
phase mismatch occurred.

dsa_table is the table indirect table that
is being used for this IO

script is the actual script that was being
executed when the phase mismatch
occurred.

DATA_BUF1 is the offset into the Table
Indirect entries for the first Data
In table entry.

**/

static void HandleDataOutPM(pcidev_record *PCIDevice)

{

ULONG Current_DSP;/* holds current dsp value */
INT Current_SG_Entry;/* Used to calc. Current SG

entry */
UINT DFIFO_val; /* Holds chip DFIFO value */
UINT Bytes_remaining;/* Used to accout for other

bytes in chip */

/* where am I in the SG list? */
Current_DSP = IORead32(PCIDeviceIOBase+DSP) - 8;
Current_SG_Entry = (INT) (Current_DSP -

FirstDOMove_paddr) / 8;

/* now update the address and count */
buffer_table[DATA_BUF1 + Current_SG_Entry].address +=
 buffer_table[DATA_BUF1 + Current_SG_Entry].count -

(IORead32(PCIDeviceIOBase+DBC) & 0x00FFFFFFl);
buffer_table[DATA_BUF1 + Current_SG_Entry].count =

IORead32(PCIDeviceIOBase+DBC) & 0x00FFFFFFl;

/* Update count and address to reflect any data left in the

chip */

SCRIPTS Programming Topics
Byte Recovery on Target Disconnect

Symbios Logic PCI-SCSI Programming Guide 9-17

/* First check for data in the DMA FIFO */

/* The variable DFIFO_val is a combination of bits
/*1-0 of CTEST5 and bits 7-0 of the DFIFO register
/*this will take care of both the extended FIFO

devices
/*and all others */
DFIFO_val = ((IORead8(PCIDeviceIOBase+CTEST5) &

0x03) << 8) |
(IORead8(PCIDeviceIOBase+DFIFO));

if (IORead8(PCIDeviceIOBase+CTEST5) & 0x20)/* big
 fifo */

Bytes_remaining = (DFIFO_val - (UINT)
IORead32(PCIDevice->base_addr2+DBC) & 0x3FF) &
0x3FF;

else/* default FIFO size*/
Bytes_remaining = (DFIFO_val - (UINT)

IORead32(PCIDevice->base_addr2+DBC) & 0x7F) &
0x7F;

/* now check the other regs that may contain data*/

/* SODL LSB Full?*/
if (IORead8(PCIDevice->base_addr2+SSTAT0) & 0x20)

Bytes_remaining++;

/* SODL MSB Full?*/
if (IORead8(PCIDevice->base_addr2+SSTAT2) & 0x20

) Bytes_remaining++;

/* SODR LSB Full?*/
if (IORead8(PCIDevice->base_addr2+SSTAT0) & 0x40)

Bytes_remaining++;

/* SODR MSB Full?*/
if (IORead8(PCIDevice->base_addr2+SSTAT2) & 0x40)

Bytes_remaining++;

/* Now update the TI entry */
rw_buffer_table[RW_DATA_BUF1 +
Current_SG_Entry].address -= Bytes_remaining;
rw_buffer_table[RW_DATA_BUF1 +
Current_SG_Entry].count += Bytes_remaining;

/* update the jump offset into the SG list */
rw_script[(INT) (Ent_RW_Offset_patch_do/4) + 1] =
(ULONG) Current_SG_Entry * 8;

/*clear the dma fifo to get any left over data out */
RMWon(PCIDevice->base_addr2+CTEST3, 0x04);

/* start the disconnect script */
iowrite32(PCIDeviceIOBase, getPhysAddr(rw_script) +
Ent_RW_Handle_Phase);

}

SCRIPTS Programming Topics
Synchronous Negotiation and Transfer

9-18 Symbios Logic PCI-SCSI Programming Guide

Synchronous Negotiation and
Transfer 0

The SYM53C8XX must negotiate a set of synchronous parameters
for each synchronous device on the SCSI bus. The parameters for
each SCSI device are saved in memory, and reloaded into the
registers before communications resume between the set of devices.
A sample synchronous negotiation SCRIPTS program is supplied in
Appendix D. Once the synchronous parameters acceptable to the
target are received in the Message In phase, an interrupt returns
control to the interrupt service routine, which could program the
clock dividers and the synchronous parameters in the SCTNL3 and
SXFER registers. The parameters would then be saved for this
synchronous device.

When this device is selected again, the SELECT FROM command
could be used to indicate table indirect addressing. If table indirect
addressing is used, the SCNTL3, SDID, and SXFER registers would
be loaded from the table entry. If the device reselects the initiator,
these parameters need to be reloaded into the registers before the
data transfer begins. One method for loading them is to use a table
indirect Select instruction with the alternate address jump
programmed to the next instruction. This instruction must be
executed after determining the ITLQ nexus and loading the DSA to
point to the proper I/O data structure.

;ITLQ nexus complete and DSA loaded prior to performing
;this Select
SELECT FROM SCSI ID, REL(Next_Instr)

Next_Instr:
;begin I/O

The negotiated transfer information is stored in a table for use in
later connections to a particular target. This information can be
stored in the DSA table for use with table indirect Select and
Reselect SCRIPTS instructions. The I/O command structure must
have all four bytes contiguous in system memory, as shown below.

SCNTL3 SDID SXFER (00)

SCRIPTS Programming Topics
Interrupt Handling

Symbios Logic PCI-SCSI Programming Guide 9-19

Interrupt Handling 0

The SCRIPTS processor in the SYM53C8XX performs most
functions independently of the host microprocessor. However,
certain interrupt situations must be handled by the external
microprocessor. This section explains all aspects of interrupts as they
apply to the SYM53C8XX.

Polling and
Hardware Interrupts 0

The external microprocessor can be informed of an interrupt
condition by polling or hardware interrupts. Polling means that the
microprocessor must continually loop and read a register until it
detects a bit set that indicates an interrupt. This method is the fastest,
but it wastes CPU time that could be used for other system tasks. The
preferred method of detecting interrupts in most systems is hardware
interrupts. In this case, the SYM53C8XX will assert the Interrupt
Request (IRQ/) line that will interrupt the microprocessor when an
interrupt condition occurs, causing the microprocessor to execute an
interrupt service routine. A hybrid approach can also be used that
would use hardware interrupts for long waits, and polling for short
waits.

Registers 0

The registers in the SYM53C8XX that are used for detecting or
defining interrupts are the ISTAT, SIST0, SIST1, DSTAT, SIEN0,
SIEN1, and DIEN.

ISTAT 0

The ISTAT is the only register that can be accessed as a slave during
SCRIPTS operation, therefore it is the register that is polled when
polled interrupts are used. It is also the first register that should be
read when the IRQ/ pin has been asserted in response to a hardware
interrupt. The INTF (Interrupt on the Fly) bit should be the first
interrupt serviced. It must be written to one to be cleared. This
interrupt must be cleared before servicing any other interrupts. If the
SIP bit in the ISTAT register is set, then a SCSI-type interrupt has
occurred and the SIST0 and SIST1 registers should be read. If the
DIP bit in the ISTAT register is set, then a DMA-type interrupt has
occurred and the DSTAT register should be read. SCSI-type and
DMA-type interrupts may occur simultaneously, so in some cases
both SIP and DIP may be set.

SIST0 and SIST1 0

The SIST0 and SIST1 registers contain the SCSI-type interrupt bits.
Reading these registers will determine which condition or conditions
caused the SCSI-type interrupt, and will clear that SCSI interrupt
condition. If the SYM53C8XX is receiving data from the SCSI bus

SCRIPTS Programming Topics
Interrupt Handling

9-20 Symbios Logic PCI-SCSI Programming Guide

and a fatal interrupt condition occurs, the SYM53C8XX will
attempt to send the contents of the DMA FIFO to memory before
generating the interrupt. If the SYM53C8XX is sending data to the
SCSI bus and a fatal SCSI interrupt condition occurs, data could be
left in the DMA FIFO. Because of this, the DMA FIFO Empty
(DFE) bit in DSTAT should be checked. If this bit is clear, set the
CLF (Clear DMA FIFO) and CSF (Clear SCSI FIFO) bits before
continuing. The CLF bit is bit 2 in CTEST3. The FLF bit is bit 3 in
CTEST3. The CSF bit is bit 1 in STEST3.

DSTAT 0

The DSTAT register contains the DMA-type interrupt bits. Reading
this register will determine which condition or conditions caused the
DMA-type interrupt, and will clear that DMA interrupt condition.
Bit 7 in DSTAT, DFE (DMA FIFO Empty), is purely a status bit; it
will not generate an interrupt under any circumstances and will not
be cleared when read. DMA interrupts will flush neither the DMA
nor SCSI FIFOs before generating the interrupt, so the DFE bit in
the DSTAT register should be checked after any DMA interrupt. If
the DFE bit is clear, then the FIFOs must be cleared by setting the
CLF (Clear DMA FIFO) and CSF (Clear SCSI FIFO) bits, or
flushed by setting the FLF (Flush DMA FIFO) bit.

SIEN0 and SIEN1 0

The SIEN0 and SIEN1 registers are the interrupt enable registers for
the SCSI interrupts in SIST0 and SIST1.

DIEN 0

The DIEN register is the interrupt enable register for DMA
interrupts in DSTAT.

DCNTL (SYM53C825A, 53C875, 53C876, 53C885, 53C895
only) 0

When bit 1 in this register is set, the IRQ/ pin will not be asserted
when an interrupt condition occurs. The interrupt is not lost or
ignored, but merely masked at the pin. Clearing this bit when an
interrupt is pending will immediately cause the IRQ/ pin to assert. As
with any register other than ISTAT, this register cannot be accessed
except by a SCRIPTS instruction during SCRIPTS execution.

Fatal vs. Non-Fatal
Interrupts 0

A fatal interrupt, as the name implies, always causes SCRIPTS to
stop running. All non-fatal interrupts become fatal when they are
enabled by setting the appropriate interrupt enable bit. Interrupt
masking will be discussed later in this section. All DMA interrupts
(indicated by the DIP bit in ISTAT and one or more bits in DSTAT
being set) are fatal.

SCRIPTS Programming Topics
Interrupt Handling

Symbios Logic PCI-SCSI Programming Guide 9-21

Some SCSI interrupts (indicated by the SIP bit in the ISTAT and
one or more bits in SIST0 or SIST1 being set) are non-fatal. When
the SYM53C8XX is operating in Initiator mode, only the Function
Complete (CMP), Selected (SEL), Reselected (RSL), General
Purpose Timer Expired (GEN), and Handshake to Handshake Timer
Expired (HTH) interrupts are non-fatal. When operating in Target
mode CMP, SEL, RSL, Target mode: SATN/ active (M/A), GEN,
and HTH are non-fatal. Refer to the description for the Disable Halt
on a Parity Error or SATN/ active (Target Mode Only) (DHP) bit in
the SCNTL1 register to configure the chip’s behavior when the
SATN/ interrupt is enabled during Target mode operation. The
Interrupt on the Fly interrupt is also non-fatal, since SCRIPTS can
continue when it occurs.

The reason for non-fatal interrupts is to prevent SCRIPTS from
stopping when an interrupt occurs that does not require service from
the CPU. This prevents an interrupt when arbitration is complete
(CMP set), when the SYM53C8XX has been selected or reselected
(SEL or RSL set), when the initiator has asserted SATN/ (target
mode: SATN/ active), or when the General Purpose or Handshake to
Handshake timers expire. These interrupts are not needed for events
that occur during high-level SCRIPTS operation.

Masking 0

Masking an interrupt means disabling or ignoring that interrupt.
Interrupts can be masked by clearing bits in the SIEN0 and SIEN1
(for SCSI interrupts) interrupt enable registers or the DIEN (for
DMA interrupts) interrupt enable register. How the chip will
respond to masked interrupts depends on: whether polling or
hardware interrupts are being used; whether the interrupt is fatal or
non-fatal; and whether the chip is operating in initiator or target
mode.

If a non-fatal interrupt is masked and that condition occurs,
SCRIPTS will not stop, the appropriate bit in the SIST0 or SIST1
will still be set, the SIP bit in the ISTAT will not be set, and the IRQ/
pin will not be asserted. See the section on non-fatal vs. fatal
interrupts for a list of the non-fatal interrupts.

If a fatal interrupt is masked and that condition occurs, then
SCRIPTS will still stop, the appropriate bit in the DSTAT, SIST0, or
SIST1 register will be set, and the SIP or DIP bits in the ISTAT will
be set, but the IRQ/ pin will not be asserted.

When the chip is initialized, enable all fatal interrupts if you are using
hardware interrupts. If a fatal interrupt is disabled and that interrupt
condition occurs, SCRIPTS will halt and the system will never know
it unless it times out and checks the ISTAT after a certain period of
inactivity.

SCRIPTS Programming Topics
Interrupt Handling

9-22 Symbios Logic PCI-SCSI Programming Guide

If you are polling the ISTAT instead of using hardware interrupts,
then masking a fatal interrupt will make no difference since the SIP
and DIP bits in the ISTAT inform the system of interrupts, not the
IRQ/ pin.

Masking an interrupt after IRQ/ is asserted will not cause IRQ/ to be
deasserted.

Stacked Interrupts 0

The SYM53C8XX has the ability to stack interrupts if they occur
one after the other. If the SIP or DIP bits in the ISTAT register are
set (first level), then there is already at least one pending interrupt
and any future interrupts will be stacked in extra registers behind the
SIST0, SIST1, and DSTAT registers (second level). When two
interrupts have occurred and the two levels of the stack are full, any
further interrupts will set additional bits in the extra registers behind
SIST0, SIST1, and DSTAT. When the first level of interrupts is
cleared, all the interrupts that came in afterward will move into the
SIST0, SIST1, and DSTAT. After the first interrupt is cleared by
reading the appropriate register, the IRQ/ pin will be deasserted for a
minimum of three CLKs; the stacked interrupt(s) will move into the
SIST0, SIST1, or DSTAT; and the IRQ/ pin will be asserted once
again.

Since a masked non-fatal interrupt will not set the SIP or DIP bits,
interrupt stacking will not occur as a result of a masked, non-fatal
interrupt. A masked, non-fatal interrupt will still post the interrupt in
SIST0, but will not assert the IRQ/ pin. Since no interrupt is
generated, future interrupts will move right into the SIST0 or SIST1
instead of being stacked behind another interrupt. When another
condition occurs that generates an interrupt, the bit corresponding to
the earlier masked non-fatal interrupt will still be set.

A related situation to interrupt stacking is when two interrupts occur
simultaneously. Since stacking does not occur until the SIP or DIP
bits are set, there is a small timing window in which multiple
interrupts can occur but will not be stacked. These could be multiple
SCSI interrupts (SIP set), multiple DMA interrupts (DIP set), or
multiple SCSI and multiple DMA interrupts (both SIP and DIP set).

As previously mentioned, DMA interrupts will not attempt to flush
the FIFOs before generating the interrupt. It is important to set
either the Clear DMA FIFO (CLF) and Clear SCSI FIFO (CSF)
bits if a DMA interrupt occurs and the DMA FIFO Empty (DFE)
bit is not set. This is because any future SCSI interrupts will not be
posted until the DMA FIFO is clear of data. These ‘locked out’ SCSI
interrupts will be posted as soon as the DMA FIFO is empty.

SCRIPTS Programming Topics
Interrupt Handling

Symbios Logic PCI-SCSI Programming Guide 9-23

Halting in an
Orderly Fashion 0

When an interrupt occurs, the SYM53C8XX will attempt to halt in
an orderly fashion.

● If in the middle of an instruction fetch, the fetch will be
completed, except in the case of a Bus Fault. Execution will not
begin, but the DSP will point to the next instruction since it is
updated when the current instruction is fetched.

● If the DMA direction is a write to memory and a SCSI interrupt
occurs, the SYM53C8XX will attempt to flush the DMA FIFO
to memory before halting. Under any other circumstances only
the current cycle will be completed before halting, so the DFE bit
in DSTAT should be checked to see if any data remains in the
DMA FIFO.

● SCSI SREQ/SACK handshakes that have begun will be
completed before halting.

● The SYM53C8XX will attempt to clean up any outstanding
synchronous offset before halting.

● In the case of Transfer Control Instructions, once instruction
execution begins it will continue to completion before halting.

● If the instruction is a JUMP/CALL WHEN/IF <phase>, the DSP
will be updated to the transfer address before halting.

● All other instructions may halt before completion.

Sample Interrupt
Service Routine 0

The following is a sample of an interrupt service routine for the
SYM53C8XX. It can be repeated if polling is used, or should be
called when the IRQ/ pin is asserted if hardware interrupts are used.

1 Read ISTAT.

2 If the INTF bit is set, it must be written to a one to clear this
status.

3 If only the SIP bit is set, read SIST0 and SIST1 to clear the SCSI
interrupt condition and get the SCSI interrupt status. The bits in
the SIST0 and SIST1 tell which SCSI interrupt(s) occurred and
determine what action is required to service the interrupt(s).

4 If only the DIP bit is set, read the DSTAT to clear the interrupt
condition and get the DMA interrupt status. The bits in the
DSTAT will tell which DMA interrupt(s) occurred and
determine what action is required to service the interrupt(s).

5 If both the SIP and DIP bits are set, read SIST0, SIST1, and
DSTAT to clear the SCSI and DMA interrupt condition and get
the interrupt status. If using 8-bit reads of the SIST0, SIST1,
and DSTAT registers to clear interrupts, insert a
12 CLK delay between the consecutive reads to ensure that the

SCRIPTS Programming Topics
Migrating Existing Software to Ultra and Ultra2 SCSI

9-24 Symbios Logic PCI-SCSI Programming Guide

interrupts clear properly. Both the SCSI and DMA interrupt
conditions should be handled before leaving the ISR. It is
recommended that the DMA interrupt be serviced before the
SCSI interrupt, because a serious DMA interrupt condition
could influence how the SCSI interrupt is acted upon.

When using polled interrupts, go back to step 1 before leaving the
interrupt service routine, in case any stacked interrupts moved in
when the first interrupt was cleared. When using hardware
interrupts, the IRQ/ pin will be asserted again if there are any
stacked interrupts. This should cause the system to re-enter the
interrupt service routine. The example program in Appendix F
contains an interrupt service routine for an initiator; Appendix G
is a sample interrupt service routine that is more typical for a
target device.

Migrating Existing Software to Ultra
and Ultra2 SCSI 0

Ultra SCSI and Ultra2 SCSI extend the Fast SCSI-2 specification to
allow synchronous transfer periods to be negotiated down as low as
50 ns (Ultra SCSI) or 25 ns (Ultra2 SCSI). This allows a maximum
transfer rate of 20 MB/s on an 8-bit SCSI bus or 40 MB/s on a wide
SCSI bus for Ultra SCSI, and 40 MB/s on an 8-bit bus or 80 MB/s
on a wide SCSI bus for Ultra2 SCSI. Refer to Chapter 1 to
determine which members of the SYM53C8XX family support Ultra
SCSI and Ultra2 SCSI.

To achieve Ultra SCSI or Ultra2 SCSI transfer rates, existing
software programs must be updated to reflect changes in the
following areas of the SYM53C8XX (additional minor changes may
be needed to migrate existing software to support all the features in
the new device):

1 SCNTL3 Register CCF bits - adjust the bit values to reflect the
desired clock divider

2 SCNTL3 Register SCF bits - adjust the bit values to reflect the
SCLK frequency, doubled or quadrupled if applicable

3 SXFER Register XFERP bits - adjust the bit values to reflect the
desired divider values for the synchronous period

4 Adjust the Clock input as required for the SCSI processor being
used
● With the SYM53C860, add an external 80MHz SCSI clock

SCRIPTS Programming Topics
Migrating Existing Software to Ultra and Ultra2 SCSI

Symbios Logic PCI-SCSI Programming Guide 9-25

● With the SYM53C875, use an 80 MHz external SCSI clock
or use an external 40 MHz clock and enable the SCSI clock
doubler

● With the SYM53C895, use an 80MHz clock for Ultra SCSI
or use an external 40 MHz clock with the clock quadrupler
for Ultra2 SCSI

Note: the SYM53C885 and SYM53C876 require a 40MHz
clock and use of the clock doubler.

5 Ultra Enable bit, SCNTL3 register - set this bit to enable Ultra
SCSI or Ultra2 SCSI transfers

Clock Divider Bits 0

Two registers are used to divide down the clock. The first is the
SCNTL3 register. The CCF bits in this register determine the SCSI
core speed used for asynchronous transfers and any other timings
(such as selection time-out). These bits are set based on the input
clock frequency and do not change. The SCF bits are used to
determine the timings for synchronous transfers and can be changed
whenever the SYM53C8XX connects to a different device on the
SCSI bus.

The SCF bits in the SCNTL3 register are used in conjunction with
the XFERP bits in the SXFER register to determine the synchronous
period. To get a transfer rate of 10 MB/s with a 40 MHz clock,
program the SCF bits to 001 for a divide by one factor and then
program the XFERP bits for 000 for a divide by 4 factor. 40 MHz
divided by 1 and then divided by 4 is 10 MB/s. Other combinations
of these two sets of bits can be used to select a variety of synchronous
transfer rates. For more information on the bit combinations that are
supported, see the clock divider bit descriptions in the chip data
manuals.

Ultra Enable Bit 0

The Ultra Enable bit (also known as the Fast-20 Enable bit) adjusts
the chip’s timings to be compliant with the Fast-20 proposed
standard. It should be set when the synchronous transfer period is
less than 100 ns and cleared when it is greater than or equal to 100
ns.

Loading the New Register
Values 0

Since the Ultra Enable bit and the clock dividers are in the SCNTL3
and SXFER registers, these registers can be automatically loaded
during a selection or reselection by using Table Indirect Addressing.
This allows the chips to transparently talk with a combination of
Ultra SCSI, Ultra2 SCSI, and Fast SCSI devices on the same SCSI
bus.

SCRIPTS Programming Topics
Migrating Existing Software to Ultra and Ultra2 SCSI

9-26 Symbios Logic PCI-SCSI Programming Guide

Negotiating Synchronous
Transfers 0

The easiest way to calculate the synchronous transfer period is by
multiplying the clock period by the clock divider values. For example,
a 40 MHz clock is a 25 ns period. (25 ns)*(1)*(4)=100ns, which is
the Fast SCSI-2 synchronous transfer period.

If you are running an 80 MHz clock (12.5 ns period) and only
negotiated for Fast SCSI-2 rather than Ultra SCSI, the SCF bits
would need to be programmed for SCLK/2 and the XFERP bits for
4 which would be (12.5ns)*(2)*(4)=100ns.

The SCSI-2 specification states that synchronous transfer rates must
be a multiple of 4 ns. However with an 80 MHz clock, the period
must be a multiple of 12.5 ns. Ultra SCSI is defined to be a 20 mega-
transfer per second maximum, which would be a 50 ns period. Since
50 ns is not a multiple of 4, most SCSI devices cannot negotiate for
this exact rate. Unless future revisions of the standard make a
different recommendation, most devices will probably negotiate for a
48 ns period. The SYM53C8XX cannot be programmed for a 48 ns
period since it is not a multiple of 12.5 ns, so driver programs should
specify a 50 ns period and the chip should negotiate for a 48 ns
period. This is acceptable because the SCSI-2 specification allows
you to transfer data at a slower rate than what you negotiated for, but
not faster.

To program the chip for a full Ultra SCSI transfer rate of 50 ns using
the required 80 MHz clock, program the SCF bits for SCLK/1 and
select an XFERP of 4. This comes out to (12.5ns)*(1)*(4)=50 ns.

Using the SCSI Clock
Doubler 0

The SYM53C875, SYM53C876, and SYM53C885 can double the
frequency of a 40-50 MHz SCSI clock, allowing the system to
perform Ultra SCSI transfers in systems that do not have 80 MHz
clock input. This option is user-selectable with bit settings in the
STEST1, STEST3, and SCNTL3 registers. At power-on or reset,
the doubler is disabled and powered down. Follow these steps to use
the clock doubler:

1 Set the SCLK Doubler Enable bit (STEST1, bit 3)

2 Wait 20 µs

3 Halt the SCSI clock by setting the Halt SCSI Clock bit (STEST3
bit 5)

4 Set the clock conversion factor using the SCF and CCF fields in
the SCNTL3 register

5 Set the SCLK Doubler Select bit (STEST1, bit 2)

6 Clear the Halt SCSI Clock bit

SCRIPTS Programming Topics
Migrating Existing Software to Ultra and Ultra2 SCSI

Symbios Logic PCI-SCSI Programming Guide 9-27

Using the SCSI
Clock Quadrupler 0

The SYM53C895 can quadruple the frequency of a 40 MHz SCSI
clock, allowing the system to perform Ultra2 SCSI transfers. This
option is user-selectable with bit settings in the STEST1, STEST3,
and SCNTL3 registers. At power-on or reset, the quadrupler is
disabled and powered down. Follow these steps to use the clock
quadrupler:

1 Set the SCLK Quadrupler Enable bit (STEST1, bit 3)

2 Poll bit 5 of the STEST4 register. The SYM53C895 sets this bit
as soon as it locks in the 160 MHz frequency. The frequency
lockup takes approximately 100 microseconds.

3 Halt the SCSI clock by setting the Halt SCSI Clock bit (STEST3
bit 5)

4 Set the clock conversion factor using the SCF and CCF fields in
the SCNTL3 register

5 Set the SCLK Quadrupler Select bit (STEST1, bit 2)

6 Clear the Halt SCSI Clock bit

SCRIPTS Programming Topics
Using the SCRIPTS RAM

9-28 Symbios Logic PCI-SCSI Programming Guide

Using the SCRIPTS RAM 0

The SYM53C825A, SYM53C875, SYM53C876, SYM53C885,
and SYM53C895 have 4k bytes (1k x 32 bit) of internal, general
purpose RAM. The RAM is designed to store SCRIPTS instructions
and I/O data structure information, but is not limited to this type of
information. When the chip fetches SCRIPTS instructions or Table
Indirect information from the internal RAM, these fetches remain
internal to the chip and do not use the PCI bus. Other types of access
to the RAM by the SYM53C825A/53C875/53C876/53C885/
53C895 use the PCI bus, as if they were external accesses. This
section discusses loading of SCRIPTS and Table Indirect
information into the SCRIPTS RAM, and programming techniques
when using the RAM.

The RAM can be relocated by the PCI system BIOS anywhere in 32-
bit address space. The RAM Base Address register, located in the
chip’s PCI configuration space, contains the base address of the
internal RAM. This register is similar to the ROM Base Address
register in the PCI Configuration register set. To simplify loading of
SCRIPTS instructions, the base address of the RAM will appear in
the SCRATCHB register when bit 3 of the CTEST2 register is set.
The RAM is byte-accessible from the PCI bus and will be visible to
any bus mastering device on the bus. Accesses made externally (i.e.
by the CPU) follow the same timing sequence as a standard slave
register access, except that the target wait states required will drop
from 5 to 3.

Loading SCRIPTS RAM 0

SCRIPTS instructions can be loaded into the internal RAM in one
of two ways. The first way is to simply copy the instructions into the
RAM with the CPU. Another method is to use a MOVE MEMORY
instruction, which copies the SCRIPTS instructions from their initial
location in host memory to the SCRIPTS RAM. This method is
especially useful in the Intel processor real mode of operation,
because the SCRIPTS RAM is generally mapped by PCI system
BIOS outside the region where the processor can access it. The
syntax of the move instruction is as follows:

MOVE MEM Script_Inst_Bytes, SRC_Phys_Addr,\ Script_RAM_Phys_Addr

Where Script_Inst_Bytes is the number of bytes of instructions to
copy, SRC_Phys_Addr is the physical starting address of the static
SCRIPTS array to be copied into SCRIPTS RAM, and
Script_RAM_Phys_Addr is the physical base address of the
SCRIPTS RAM itself (found in the SCRATCHB register). To create
data structures such as table indirect tables, create a pointer to the

SCRIPTS Programming Topics
Using the SCRIPTS RAM

Symbios Logic PCI-SCSI Programming Guide 9-29

location in SCRIPTS RAM that will be used to store the data. An
example of this is in Figure 9-1.

Figure 9-1
Storing Data Structures in SCRIPTS
RAM

struct _table {/* Table indirect entry */

 uquad count;

 uquad address;

};

typedef struct table;

#define SCRAM_TABLE_OFFSET 0xC00; /* Locate table info at bottom
1K of SCRIPTS

 RAM*/

void main() {

table *buffer_table; /* pointer to table indirect entries */

ulong SCRAM_Phys_Addr;

ulong Table_Phys_Addr;

/* Get RAM physical address */

outpw(ChipIOBase+CTEST2, 0x08);/* Set bit 3 */

/* Get RAM Base in ScratchB */

SCRAM_Phys_Addr = (ulong) ((ulong) (inpw(ChipBaseIO+

SCRATCHB2) << 16) | inpw(ChipIOBase+SCRATCHB)); /* Read Reg*/

outpw(ChipIOBase+CTEST2, 0x00);/* Clear bit 3 */

/* Create pointer to RAM for Table */

Table_Phys_Addr = SCRAM_Phys_Addr + SCRAM_Table_Offset;

buffer_table = PhystoVirt(Table_Phys_Addr);

}

The routine “PhystoVirt” should convert the physical address of the
table location in the SCRIPT RAM to a virtual address that can be
used as a pointer in “C”.

SCRIPTS Programming Topics
Using the SCRIPTS RAM

9-30 Symbios Logic PCI-SCSI Programming Guide

Programming Techniques
when Using SCRIPTS
RAM 0

SCRIPTS programs may be stored on the chip, outside the chip, or
both internally and externally. When SCRIPTS code is located both
internally and externally, the following techniques will allow the
internal SCRIPTS to successfully communicate with the external
SCRIPTS and vice versa.

1 Two source (.SS) files should be created, one with the SCRIPTS
programs that are to be located externally and the other with the
SCRIPTS programs that are to be located internally.

2 The internal and external SCRIPTS programs must be given
unique array identifiers by using the PROC statement at the
beginning of each, so that both can be linked into a driver. This
causes the compiler to generate SCRIPTS arrays without the
default SCRIPTS name.

3 Both source files should be compiled with the -p option instead
of the -o option. This prevents the generation of data structures
which share common names between the two files, causing a ‘C’
compile time conflict with both files being linked into a driver.

4 All jumps between the internal and external SCRIPTS routines
should be absolute and should use EXTERNs as the destination
address variable. This allows the proper jump address to be
patched once the base addresses of both SCRIPTS programs
have been established at run time.

5 Any labels that are to be jumped to from the opposite SCRIPTS
program should be defined as entry points with the ENTRY
declarative. This causes the compiler to provide the proper offset
information in the compiled output file so that physical addresses
can be resolved at runtime.

6 All labels, externs, and relative buffers should have unique names
in each SCRIPTS program to prevent ‘C’ compile time conflicts.

7 All jumps which move within the same SCRIPTS program
should use the REL modifier.

8 The file that contains the internal SCRIPTS program should be
processed by the RAMFIX utility to eliminate any other conflicts
between the two files. The RAMFIX utility is included on the
diskette enclosed in this programming guide, or it can be
downloaded from the Symbios Logic BBS.

Figure 9-2 through Figure 9-5 are the internal and external
SCRIPTS.LIS and .OUT files, and illustrate the interactions between
the two. Certain parts of the program text appear in bold type to
highlight the coding differences when both internal and external
RAM are used for SCRIPTS program storage. The numbered notes
at the end of each example program reference numbered items in the
far left column of the program text.

SCRIPTS Programming Topics
Using the SCRIPTS RAM

Symbios Logic PCI-SCSI Programming Guide 9-31

Figure 9-2
External Script (.LIS):

 1 ARCH 825A

 2

 3 ABSOLUTE done=0xff

 4

1: 5 EXTERN Int_Start

 6 EXTERN Int_dataout

 7

2: 8 ENTRY Ext_Start

 9 ENTRY Ext_done

 10

3:11 00000000: PROC Ext_Script:

 12 00000000: Ext_Start:

 13 00000000: 78344500 00000000 MOVE 0x45 to SCRATCHA0

 14 00000008: 78354600 00000000 MOVE 0x46 to SCRATCHA1

 15 00000010: 80880000 00000018 JUMP REL(Entry_point)

 16 00000018: 78364700 00000000 MOVE 0x47 to SCRATCHA2

 17 00000020: 78374800 00000000 MOVE 0x48 to SCRATCHA3

4:18 00000028: 80080000 00000000 JUMP Int_Start

 19

 20 00000030: Entry_point:

 21 00000030: 6A360000 00000000 MOVE SFBR to SCRATCHA2

 22 00000038: 785C0000 00000000 MOVE 0x00 to SCRATCHB0

 23 00000040: 785D0100 00000000 MOVE 0x01 to SCRATCHB1

 24 00000048: 785F0200 00000000 MOVE 0x02 to SCRATCHB3

5:25 00000050: 80080000 00000000 JUMP Int_dataout

 26

 27 00000058: Ext_done:

 28 00000058: 98080000 000000FF INT done

 29

 30

NOTES:

1: Jump labels that are located in the internal SCRIPTS program are defined as EXTERNs
to facilitate patching at driver runtime.

2: Labels that will be jumped to from the internal SCRIPTS program are defined as
ENTRYs to facilitate patching at driver run time.

3: PROC directive used to override the default SCRIPTS array name and replace it with
Ext_Script

4: This is a jump to a location in the internal SCRIPTS program and should be patched at
driver init time.

5: This is a jump to a location in the internal SCRIPTS program and should be patched at
driver init time.

SCRIPTS Programming Topics
Using the SCRIPTS RAM

9-32 Symbios Logic PCI-SCSI Programming Guide

Figure 9-3
External Script (.OUT):

typedef unsigned long ULONG;

1:ULONGExt_Script[] = {

0x78344500L,0x00000000L,

0x78354600L,0x00000000L,

0x80880000L,0x00000018L,

0x78364700L,0x00000000L,

0x78374800L,0x00000000L,

0x80080000L,0x00000000L,

0x6A360000L,0x00000000L,

0x785C0000L,0x00000000L,

0x785D0100L,0x00000000L,

0x785F0200L,0x00000000L,

0x80080000L,0x00000000L,

0x98080000L,0x000000FFL

};

2:ULONG E_Int_dataout_Used[] = {

0x00000015L

};

ULONG E_Int_Start_Used[] = {

0x0000000BL

};

#define A_done0x000000FFL

3:#define Ent_Ext_done 0x00000058L

#define Ent_Ext_Start 0x00000000L

NOTES:

1: The use of the PROC statement has forced the array to be named Ext_Script instead of
SCRIPT so that a compile time conflict is avoided.

2: The offsets in these data structures indicate where the internal SCRIPTS jump address
should be patched.

3: These are the offsets into the Ext_Script array of the entry points that are being jumped to
from the internal SCRIPTS program. They are used to calculate the internal to external
jump physical addresses to be patched into the internal SCRIPTS program.

SCRIPTS Programming Topics
Using the SCRIPTS RAM

Symbios Logic PCI-SCSI Programming Guide 9-33

Figure 9-4
Internal Script (.LIS):

 1 ARCH 825A

 2

 3 ABSOLUTE scsi_id=0x00

 4 ABSOLUTE resel=0x01

 5

 6 EXTERN identify_buf={0x80}

 7 EXTERN cmd_buf=6{??}

 8 EXTERN data_buf=512{??}

 9 EXTERN stat_buf=1{??}

 10 EXTERN msgin_buf=1{??}

 11

1:12 EXTERN Ext_Start

 14

2:15 ENTRY Int_Start

 16 ENTRY Int_dataout

 17

3:18 00000000: PROC Int_Script:

 19 00000000: Int_Start:

 20 00000000: 45000000 00000058 SELECT ATN scsi_id,
REL(reselected)

 21 00000008: ident:

 22 00000008: 86830000 00000008 JUMP REL(send_cmd), WHEN
NOT MSG_OUT

 23 00000010: 0E000001 00000000 MOVE 1, identify_buf, WHEN
MSG_OUT

 24 00000018: send_cmd:

 25 00000018: 0A000006 00000000 MOVE 6, cmd_buf, WHEN CMD

4:26 00000020: 80080000 00000000 JUMP Ext_Start

 27 00000028: Int_dataout:

 28 00000028: 08000200 00000000 MOVE 512, data_buf, WHEN
DATA_OUT

 29 00000030: stat:

 30 00000030: 0B000001 00000000 MOVE 1, stat_buf, WHEN
STATUS

 31 00000038: msgin:

 32 00000038: 0F000001 00000000 MOVE 1, msgin_buf, WHEN
MSG_IN

 33

SCRIPTS Programming Topics
Using the SCRIPTS RAM

9-34 Symbios Logic PCI-SCSI Programming Guide

 34 00000040: complete:

 35 00000040: 7C027F00 00000000 MOVE SCNTL2 & 0x7F to SCNTL2

 36 00000048: 60000040 00000000 CLEAR ACK

 37 00000050: 48000000 00000000 WAIT DISCONNECT

5:38 00000058: 80080000 00000000 JUMP Ext_done

 39

 40 00000060: reselected:

 41 00000060: 98080000 00000001 INT resel

 42

NOTES:

1: Jump labels that are located in the external SCRIPTS program are defined as EXTERNs
to facilitate patching at driver run time.

2: Labels that will be jumped to from the external SCRIPTS program are defined as
ENTRYs to facilitate patching at driver run time.

3: PROC directive used to override the default SCRIPTS array name and replace it with
Int_Script

4: This is a jump to a location in the external SCRIPTS program and should be patched at
driver init time.

5: This is a jump to a location in the external SCRIPTS program and should be patched at
driver init time.

Figure 9-5
Internal SCRIPTS Program (.OUT):

typedef unsigned long ULONG;

1:ULONGInt_Script[] = {

0x45000000L,0x00000058L,

0x86830000L,0x00000008L,

0x0E000001L,0x00000000L,

0x0A000006L,0x00000000L,

0x80080000L,0x00000000L,

0x08000200L,0x00000000L,

0x0B000001L,0x00000000L,

0x0F000001L,0x00000000L,

0x7C027F00L,0x00000000L,

0x60000040L,0x00000000L,

0x48000000L,0x00000000L,

0x80080000L,0x00000000L,

0x98080000L,0x00000001L

};

ULONG E_cmd_buf_Used[] = {

SCRIPTS Programming Topics
Using the SCRIPTS RAM

Symbios Logic PCI-SCSI Programming Guide 9-35

0x00000007L

};

ULONG E_data_buf_Used[] = {

0x0000000BL

};

2:ULONG E_Ext_Start_Used[] = {

0x00000009L

};

ULONG E_Ext_done_Used[] = {

0x00000017L

};

ULONG E_identify_buf_Used[] = {

0x00000005L

};

ULONG E_msgin_buf_Used[] = {

0x0000000FL

};

ULONG E_stat_buf_Used[] = {

0x0000000DL

};

#define A_scsi_id0x00000000L

#define A_resel0x00000001L

3:

#define Ent_Int_dataout 0x00000028L

#define Ent_Int_Start 0x00000000L

NOTES:

1: The use of the PROC statement has forced the array to be named Int_Script instead of
SCRIPT so that a compile time conflict is avoided.

2: The offsets in these data structures indicate where the internal SCRIPTS jump address
should be patched.

3: These are the offsets into the Int_Script array of the entry points that are being jumped to
from the external SCRIPTS program. They are used to calculate the external to internal
jump physical addresses to be patched into the external SCRIPTS program.

SCRIPTS Programming Topics
Using the SCRIPTS RAM

9-36 Symbios Logic PCI-SCSI Programming Guide

Patching Internal and
External SCRIPTS
Programs 0

The following routine will patch the correct values into the above two
SCRIPTS programs so that they can interact properly. The following
assumptions are made in this routine:

1 The Int_Script array was copied into the SCRIPTS RAM at the
starting location of the RAM.

2 The Ext_Script is already 32-bit aligned.

3 The variable ChipIOBase contains the IO base address of the
chips register set.

4 VirttoPhys is a routine that will convert a virtual pointer to a
physical address.

void main() {

ulong Int_Script_Phys_Addr;

ulong Ext_Script_Phys_Addr;

/* Get RAM physical address, which is assumed to be */

/* the internal SCRIPTS physical address */

outpw(ChipIOBase+CTEST2, regval | 0x08);/* Set bit 3 to get
RAM Base in ScratchB*/

Int_Script_Phys_Addr = (ulong) ((ulong) (inpw(ChipBaseIO+

SCRATCHB2) << 16) | inpw(ChipIOBase+SCRATCHB)); /* Read Reg*/

outpw(ChipIOBase+CTEST5, 0x00);/* Clear bit 3 */

Ext_Script_Phys_Addr = (ulong) VirttoPhys(Ext_Script);

/* Patch External Script entries */

Ext_Script[E_Int_dataout_Used[0]] = Int_Script_Phys_Addr +

Ent_Int_dataout;

Ext_Script[E_Int_Start_Used[0]] = Int_Script_Phys_Addr +

 Ent_Int_Start;

/* Patch Internal SCRIPTS entries */

/* The cmd_buf, data_buf, identify_buf, stat_buf */

/* and msgin_buf should also be done but they will not be */

/* shown in this example as they are not pertinent */

Int_Script[E_Ext_done_Used[0]] = Ext_Script_Phys_Addr +

Ent_Ext_done;

Int_Script[E_Ext_Start_Used[0]] = Ext_Script_Phys_Addr +

Ent_Ext_Start;

}

Multi-Threaded I/O
Overview

Symbios Logic PCI-SCSI Programming Guide 10-1

Chapter 10

Multi-Threaded I/O

Overview 0

The SYM53C8XX allows multi-threaded I/O operations with
minimal external processor intervention, in systems that support
multi-tasking. Multi-threaded algorithms must be used any time
more than one task is active in the system. Figure 10-1 shows a
typical situation where multiple tasks are accessing multiple devices
simultaneously. The path between Task 1 and Disk 2 is highlighted to
show how information might be transferred. The device driver must
schedule and control the I/O requests based on such considerations
as what devices are available, and the relative priorities of the
requests.

Figure 10-1
Multi-threaded System Operation

Task 1 Task 2 Task 3

Operating System

Device Driver

SYM53C8XX

Disk 1

Disk 2

Disk 3

SCSI Bus

Multi-Threaded I/O
Overview

10-2 Symbios Logic PCI-SCSI Programming Guide

Multi-threaded algorithms are similar to single threaded algorithms
with disconnects, but a new element, called the scheduler, is added.
The scheduler keeps track of SCSI bus operations when more than
one task is active at a time. SCRIPTS code must be stored in RAM
to allow multi-threaded operation, because SCRIPTS and the CPU
must modify SCRIPTS dynamically. A multi-threaded SCRIPTS
algorithm contains three parts: the main SCRIPTS, the scheduler
SCRIPTS, and the reselect SCRIPTS. These areas are described in
detail after the overview of the steps that occur in a multi-threaded
I/O. This example shows how to implement a scheduler in SCRIPTS.
This is only one method of implementing a scheduler. Many users
choose to schedule I/Os in an upper layer, such as in the “C” driver
code.

Multi-threaded Operations
Flow 0

Figure 10-2 demonstrates the sequential flow of steps in a multi-
threaded operation. The heavy lines in the figure represent the initial
flow of information for a new operation. The lighter weight lines
represent the flow as the chip finishes pending steps of a multi-
threaded operation.

To begin a multi-threaded operation, the user application determines
that an I/O is needed, and makes an I/O request of the operating
system. The operating system then sets up and starts the appropriate
device driver. The main driver program modifies the SCSI scheduler
routine to call the appropriate I/O SCRIPTS instructions. At that
point, normal processing continues as the SYM53C8XX executes
the instructions of the SCRIPTS routine.

When the CPU issues a request for service, it writes a JUMP to the
scheduler to start the I/O. The SYM53C8XX selects the SCRIPT
needed to perform the requested action. That SCRIPTS instruction
then writes a NOP to the scheduler to prevent the same I/O from
being re-started. The number of entries (JUMPs) in the scheduler at
any one time will be the number of scheduled but not started. The
chip then executes the SCRIPTS subroutine and interrupts at
completion.

When the SYM53C8XX has no more instructions to execute, it
jumps to the scheduler SCRIPTS area. If no new I/Os are scheduled,
the SYM53C8XX jumps to a WAIT RESELECT instruction. If a
new I/O is scheduled, the chip will then execute the JUMP
instruction in the scheduler entry that corresponds to the SCSI ID of
the target device, to go to the main SCRIPTS area.

If the chip’s operation must halt until another peripheral device
retrieves data, a Wait RESELECT SCRIPT is executed. When the
chip is reselected by the target, it resumes execution of the main I/O
routine While the chip waits to be reselected by the target device, the
CPU may call the chip by setting the SIGP bit. The SYM53C8XX
schedules a new I/O and repeats the cycle described above.

Multi-Threaded I/O
Overview

Symbios Logic PCI-SCSI Programming Guide 10-3

SCRIPTS Areas 0

The main SCRIPTS area contains the SCRIPTS to perform the
standard operations associated with a SCSI command, such as
transferring messages, commands, and data. The scheduler
SCRIPTS area contains a three-SCRIPTS entry for each job the
CPU schedules. The scheduler is modified at run time. When the
operating system interface receives an I/O request, it creates an area
in host memory for the scheduler information for that request. It
tracks each request it receives. New requests are classified
outstanding as they are processed and performed. Upon completion
of the I/O request, the hardware interface returns a completed status
to the operating system interface which then updates the status of the
request. The reselect SCRIPTS area is the portion of SCRIPTS code
that is used after the target disconnects and the SYM53C8XX is
waiting to be reselected.

Multi-Threaded SCRIPTS
Example 0

An example SCRIPTS operation for the SYM53C8XX is illustrated
below. This example is for multi-threaded I/O where only one
command is sent to each target at a time. To send more than one
command to any target, tagged command queueing must be used.
For more complex situations such as this, it may be preferable to use

Figure 10-2
Multi-threaded SCRIPTS Operational
Flow

Processor

Service

Routine

Main I/O

SCRIPTS

Routine

Write Jump to

Scheduler to

start new I/O

Select Instruction

Write NOP to

Scheduler

Disconnect

or

I/O Complete

Wait Reselect

Instruction

Nothing to do...

SIGP

Reselection

Multi-Threaded I/O
Overview

10-4 Symbios Logic PCI-SCSI Programming Guide

“C” code for scheduling I/Os. The SCRIPTS program must be
modified to look at the queue tag messages, and there must be a DSA
table entry for each possible outstanding tagged command per target
ID, instead of just one per target ID as in this example. This program
appears in its entirety in Appendix C.

Any item in the code examples that is preceded by “PATCH_” needs
to be patched by the driver. Patching only occurs once, when the
driver is initially loaded. After initialization, all required addresses are
in the SCRIPTS array. For more information on instruction
patching, refer to Chapter 7.

Both dashed and solid lines are used in some of the program
illustrations. The dashed lines indicate pointers, and the solid lines
indicate data movement in the direction indicated by the arrows.

1 The first step occurs when the CPU writes a JUMP into the
io_requestX scheduler slot

2 Next, the CPU may need to set the SIGP bit in the
SYM53C8XX to indicate that an I/O needs to be processed. As
soon as this happens, the SIOP will JUMP to the scheduler. The
first instruction in the scheduler will set up the DSA to point to
the correct table in the example.

CPU			 JUMP io_request0: JUMP

																																																		 rel (multi_thread)

;Scheduler SCRIPT code

scheduler:

entry0:

	 MOVE MEMORY 4, PATCH_addr_of_table0_ptr, PATCH_chip_physaddr+DSA

SYM53C8XX

DSA

Host Memory

table0: SCNTL3

0

0device id synch period

 cmd_byte_count

 command_address

0

table0_ptr

Host Memory

Multi-Threaded I/O
Overview

Symbios Logic PCI-SCSI Programming Guide 10-5

3 Table0 has the nexus information about any previously
negotiated synchronous transfer period and offset. It also
contains the SCSI ID of the target device. Clock divider
information for the SCNTL3 register would also be included in
this table. Also, the operating system will build the command and
other buffer information into this table prior to starting this I/O.

Next, the SCRIPTS instruction will move the address of the
IO_requestX into the schedule_nop SCRIPTS destination
address field. This will allow the multi-threaded SCRIPTs
instruction to write a NOP into the io_requestX location in the
scheduler to indicate that the I/O has been started.

Before:

After:

schedule_nop: MOVE

MEM

4

nop_physaddr

place_hold_addr

(Source Address)

(Destination Address)

MOVE MEMORY 4, PATCH_SCRIPTphysaddr+io_request0,

 PATCH_SCRIPTphysaddr+schedule_NOP+8

schedule_nop: MOVE

MEM

4

nop_physaddr

io_request0

(Source Address)

(Destination Address)

Multi-Threaded I/O
Overview

10-6 Symbios Logic PCI-SCSI Programming Guide

4 The final task of the scheduler is to jump to the multi-thread
SCRIPTS subroutine.

5 io_request0:
JUMP rel (multi_thread)

6 The main SCRIPTS routine will execute a Select With Attention
instruction to connect to the appropriate SCSI device.

;Main SCRIPT code
multi_thread:

SELECT ATN FROM SCSI_id, REL (wait_for_reselect)

7 Once the two devices are connected, the SCRIPTS instruction
must write the NOP into the scheduler routine to avoid trying to
start the I/O again. This is accomplished using a Memory to
Memory Move command. The source address will be the address
of a NOP SCRIPTS instruction. The destination address is the
io_requestX location that was patched into place_hold_addr in
the scheduler.

8 Next, the will continue just as in single-threaded mode until a
disconnect occurs.

JUMP REL (to_decisions), WHEN NOT MSG_OUT

id_msg_out:

MOVE FROM identify_msg_buf, WHEN MSG_OUT

.

.

.

NOP JUMP
NOP

io_request0:

rel (multi_thread)

nop_physaddr:

schedule_nop:

 MOVE MEMORY 4, PATCH_nop_physaddr,PATCH_place_hold_addr

Multi-Threaded I/O
Overview

Symbios Logic PCI-SCSI Programming Guide 10-7

9 Upon disconnection, the initiator will jump to the
wait_for_reselect SCRIPT. It will then wait for any device that
had previously disconnected to reconnect. If a reselect occurs,
the code will continue. If the device gets selected or the processor
issues a SIGP, the SCRIPTS will continue at the alternate jump
address. Setting the SIGP bit allows the processor to start a new
I/O, instead of just waiting for a previous I/O to reconnect.

;Reselected SCRIPT code

wait_for_reselect:

WAIT RESELECT REL (CPU_set_SIGP)

10 Once the initiator is reselected it is necessary to determine which
SCSI ID has reselected it. In the SYM53C8XX, the ID of the
device that reselected the SYM53C8XX is in the SSID register.

SCSI_id_jump_table:

MOVE SSID to SFBR

JUMP REL (id_0), IF 0x00

JUMP REL (id_1), IF 0x01

JUMP REL (id_2), IF 0x02

INT reselect_id_error

11 Next, the DSA will need to be written to the address of the
correct table, depending on which SCSI ID has reselected the
initiator.

id0:

	 MOVE MEMORY 4, PATCH_addr_of_table0_ptr, PATCH_chip_physaddr+DSA
SYM53C8XX

DSA

Host Memory

table0: 0

0

0device id synch period

 cmd_byte_count

 command_address

0

table0_ptr

Host Memory

Multi-Threaded I/O
Overview

10-8 Symbios Logic PCI-SCSI Programming Guide

12 Upon reselection, it is not necessary to re-negotiate for
synchronous data transfer parameters. These can be restored to
the SXFER register and the SCNTL3 register from the
information stored in the table.

13 Once the DSA is pointing to the correct table, table indirect
SCRIPTS can be used to receive the identify message.

MOVE FROM identify_msg_buf, WHEN MSG_IN

CLEAR ACK

14 Finally, the SCRIPT will continue with a normal I/O until it has
completed.

JUMP REL (to_decisions)

id_1:

MOVE MEMORY 4, PATCH_addr_of_table1_ptr,
PATCH_chip_physaddr+DSA

MOVE MEMORY 1, PATCH_addr_of_table 1+2,
PATCH_chip_physaddr+SXFER

MOVE FROM identify_msg_buf, WHEN MSG_IN

CLEAR ACK

JUMP REL (to_decisions)

id_2:

MOVE MEMORY 4, PATCH_addr_of_table 2_ptr,
PATCH_chip_physaddr+DSA

MOVE MEMORY 1, PATCH_addr_of_table 2+2,
PATCH_chip_physaddr+SXFER

MOVE FROM identify_msg_buf, WHEN MSG_IN

CLEAR ACK

JUMP REL (to_decisions)

id0:

	 MOVE MEMORY 1, PATCH_addr_of_table0 + 2, PATCH_chip_physaddr+SXFER

SYM53C8XX

Host Memory

table0: 0

0

0device id synch period

 cmd_byte_count

 command_address

SXFER

Multi-Threaded I/O
Overview

Symbios Logic PCI-SCSI Programming Guide 10-9

Using the SIGP bit to
Abort an Instruction 0

The SIGP (Signal Process) bit in the ISTAT register is used to pass a
flag to a running SCRIPTS instruction. The SIGP bit is used to
signal that an I/O is ready for execution and has already been
scheduled by the host processor. The only SCRIPTS instructions
directly affected by this bit are Wait Select and Wait Reselect. Setting
the SIGP bit causes the instruction to jump immediately to the
alternate address. For more information on this bit, refer to the
SYM53C8XX data manuals. The following SCRIPTS code is an
example of how to use the SIGP bit when attempting to abort a Wait
Reselect or Wait Select instruction, assuming that the device is in the
initiator role.

;************************************

reselect_entry:

 WAIT RESELECT alt_sig_p

; if here, got reselected

handle_resel:

*

*

*

;************************************

selected_entry:

 WAIT SELECT alt_sig_p

; if here, got selected

handle_sel:

*

*

*

;************************************

alt_sig_p:

; We assume that the sig_p bit was set,

; and a reselection needs to be performed.

; If here because of a selection or

; reselection or if a selection or

; reselection occurred during the jump after

; sig_p bit was set, the alternate address

; 'sel_resel' will be taken.

: Setup relevant information for this IO.

 RESELECT FROM scsi_id, sel_resel

; if here, sig_p was set and there was no

; selection or reselection

 MOVE CTEST2 TO SFBR

; clear sig_p bit

 MOVE FROM ident_msg, WITH MSG_IN

; from this point a reselection is performed

Multi-Threaded I/O
Overview

10-10 Symbios Logic PCI-SCSI Programming Guide

; as normal by moving through the SCSI phases

*

*

*

;************************************

sel_resel:

; if here, we have been selected or reselected

; and sig_p may or may not have been set.

 MOVE SIST0 & 0x20 TO SFBR

; get selected bit

 JUMP sel, IF 0x20

; if we got selected

 MOVE SIST0 & 0x10 TO SFBR

; get reselected bit

 JUMP resel, IF 0x10

; if we got reselected

 INT sel_resel_error

; big error, should have been selected

; or reselected

;************************************

sel:

; if here, selection occurred and sig_p may or

; may not have been set. But process selection

; no matter what.

 JUMP handle_sel

;************************************

resel:

; if here, reselection occurred and sig_p may or

; may not have been set. But process reselection

; no matter what.

 JUMP handle_resel:

Multi-Threaded I/O
Overview

Symbios Logic PCI-SCSI Programming Guide 10-11

I/O Completion 0

When the SYM53C8XX completes an I/O, it must inform the host
system. Upon completion of an I/O, the programmer may want to
signal the system processor in one of several ways:

● Write to an address to generate an external interrupt. This allows
completely interrupt-driven software.

● Write to memory to signal the I/O driver. The driver would then
poll the memory location, or, optionally, a general purpose
output pin could be used to tell the processor the location
contains information. For example, the status_buf or
msg_in_buf would be polled for good status or command
complete to signal an I/O had completed.

Example:

MOVE 1, status_buf, WHEN STATUS
MOVE 1, msg_in_buf, WHEN MSG_IN
INT error_not_cmd_complete, IF NOT 0
CLEAR ACK
WAIT DISCONNECT
MOVE MEMORY 1, IO_DONE_BUF, DONE_YET_BUF
JUMP scheduler

● Execute a SCRIPTS INT instruction. This is the simplest
method. It causes the SCSI SCRIPTS to stop processing.

Example: INT io_complete

● Execute a Memory to Memory Move to a predetermined
location. Then execute an INTFLY instruction to indicate to the
processor to look at the predetermined location to determine
which I/O has completed.

Multi-Threaded I/O
Overview

10-12 Symbios Logic PCI-SCSI Programming Guide

Programming Multifunction Devices
Using the SYM53C885 Power Management Feature

Symbios Logic PCI-SCSI Programming Guide 11-1

Chapter 11

Programming Multifunction Devices

The SYM53C876 and SYM53C885 are multifunction devices, with
SCSI functions that are similar to the SYM53C875. This chapter
provides instructions for enabling and using features that are unique
to these products.

The SYM53C885 is wide, single-ended SCSI/Fast Ethernet
multifunction controller. The SCSI portion of the SYM53C885 is
functionally identical to the SYM53C875, with the addition of power
management features and programmable PCI bus arbitration
priority. The SYM53C876 is a dual-port SCSI controller based on
the SYM53C875. For more detailed information on the
SYM53C885 and SYM53C876 devices, please refer to the specific
product data manual.

Using the SYM53C885 Power
Management Feature 0

The SYM53C885 supports two power management modes: Coma
Mode and Snooze Mode. Before it can enter one of these modes, the
chip must be in the following condition:

1 No master cycles occurring (No SCSI SCRIPTS are running).

2 No SCSI transactions occurring.

3 In Target mode with select turned off.

4 No pending interrupts.

5 All interrupts are disabled except Wakeup interrupt (WI). This
will ensure WI is the only interrupt in the queue and minimize
hang-up conditions that may be caused by interrupts generated in
the disabled circuitry.

Introduction
Using the SYM53C885 Power Management Feature

11-2 Symbios Logic PCI-SCSI Programming Guide

Coma Mode 0

Coma mode is the lowest-power mode available on the chip. All
functions are powered down except for those necessary to cause the
chip to exit coma mode. Coma mode in the SCSI function
deactivates the following circuits:

● Entire SCSI core, except for register accesses

● SCSI Transceivers

To put the SCSI function into coma mode, set the CM bit in the
CTEST0 register. To take the SCSI function out of coma mode,
reset the CM bit in the CTEST0 register (PCI slave access is still
operational in coma mode).

Snooze Mode 0

Snooze mode deactivates all circuits except those that detect a
predetermined activity on the associated interface. These
predetermined activities are: a SCSI bus reset in the SCSI function;
or the reception of a Magic Packet in the Ethernet function. When
this activity is detected, the chip generates a “wakeup” interrupt. The
interrupt service routine should then take the appropriate function
out of snooze mode.

To put the SCSI function into snooze mode:

1 Set the WI bit in the SIEN1 register.

2 Set the SM bit in the CTEST0 register

In snooze mode, all data transmission circuitry is inoperative.

Upon reception of a SCSI bus reset, the chip generates an interrupt.
The SIP bit in the ISTAT register and the WI bit in the SIEN1
register will be set.

To take the SCSI function out of snooze mode:

1 Reset the SM bit in the CTEST0 register.

2 Reset the WI bit in the SIEN1 register.

Register Bits Used for
Power Management 0

The ISTAT, SIEN1, SIST1 and CTEST0 registers are used for the
SCSI implementation of the power management feature. The table
below shows the register and corresponding bits used by the power
management feature:

Introduction
Programming the SYM53C885 Internal Arbiter

Symbios Logic PCI-SCSI Programming Guide 11-3

Programming the SYM53C885
Internal Arbiter 0

There are three independent bus-mastering functions inside the
SYM53C885: the SCSI controller, the Ethernet transmit channel,
and the Ethernet receive channel. Each channel has a register which
allows programming of a three-bit arbitration priority level. Zero is
the lowest priority, and seven is the highest priority.

For example, if the Ethernet receive channel has an arbitration
priority level of 3, and the SCSI channel has an arbitration priority
level of 1, then the SCSI channel is allowed to transmit or receive one
burst of data over the PCI bus for every three bursts of data that the
Ethernet receive channel transmits (Enet arbitration level - SCSI
arbitration level + 1). If the SCSI channel’s arbitration priority level
was changed to two, then the SCSI channel would be allowed to
transmit or receive one burst of data over the PCI bus for every two
bursts of data that the Ethernet receive channel transmits. If
arbitration priority levels for all bus mastering functions are set to the
same value, then the arbitration algorithm defaults to a round-robin
arbitration scheme.

To program the SCSI function’s internal arbitration priority, set the
SCSI function’s three bit priority field (AP2-AP0) to the desired
binary arbitration level. The SCSI arbitration priority bits are
CTEST0 bits 2-0. To program the Ethernet function’s internal
arbitration priority, refer to the Symbios Logic Ethernet Programming
Guide.

Table 11-1
SYM53C885 Power Management
Registers

Register Bit Bit Name

CTEST0 4 Coma Mode Enable (CM)

CTEST0 3 Snooze Mode Enable (SM)

SIEN1 3 Wakeup Interrupt Enable (WIE)

SIST1 Wakeup Interrupt (WI)

ISTAT 1 SCSI Interrupt pending (SIP)

Introduction
Programming the SYM53C885 Internal Arbiter

11-4 Symbios Logic PCI-SCSI Programming Guide

Using the SYM53C8XX in Target Applications
Overview

Symbios Logic PCI-SCSI Programming Guide 12-1

Chapter 12

Using the SYM53C8XX in Target
Applications

Overview 0

The SYM53C8XX family of PCI-SCSI I/O Processors can run on
target as well as host devices. Target operation is very similar to host
operation, except that the SYM53C8XX responds to SCSI
commands from the host rather than initiating the commands. The
basic structure of all target operations is:

1 The SYM53C8XX issues a Wait Select instruction

2 The SCSI bus goes into Message Out phase

3 The SYM53C8XX performs a series of Block Moves
corresponding to the next four SCSI bus phases, as illustrated in
Table 12-1

4 The SYM53C8XX issues a Disconnect instruction to disconnect
the target device from the bus.

Table 12-1
SCSI Protocol and Target SCRIPTS
Instructions

Bus Phase Definition SCRIPTS
instruction

Bus Free This phase indicates that the SCSI
bus is available.

NA

Arbitration This phase allows the initiator to gain
control of the SCSI bus.

NA

Selection During this phase, the target
responds to the initiator’s selection.

WAIT SELECT

Message Out During this phase, the target may
receive messages from the initiator,
such as queuing and error recovery
information.

MOVE WITH
MESSAGE OUT

Introduction
Overview

12-2 Symbios Logic PCI-SCSI Programming Guide

Command During this phase, the target may
receive commands in the form of a
command descriptor block (CDB) to
the target buffer.

MOVE

Data In/Out Data In and Data Out phases are
used to send data to the initiator or
to the target and are used dependent
on the information transferred
during the Command phase. This
phase is optional. For example, a Test
Unit Ready command does not
require a data transfer.

MOVE

Status During this phase, the target sends
status information to the initiator
about the previously executed CDB.

MOVE

Message In During this phase, the target sends
messages to the initiator. These
messages can acknowledge or reject
previously sent initiator messages.
They also can provide other
information like queuing,
disconnect, or parity errors.

MOVE

Disconnect This phase is used to end the target
device's connection with the bus.

DISCONNECT

Bus Free After successful completion of an I/O
operation and a request for
disconnect, the bus returns to the
Bus Free state, indicating that it is
now available.

DISCONNECT

Table 12-1
SCSI Protocol and Target SCRIPTS
Instructions (Continued)

Bus Phase Definition SCRIPTS
instruction

Introduction
Registers Used for Target Operation

Symbios Logic PCI-SCSI Programming Guide 12-3

Registers Used for Target Operation 0

For target operation, only a few of the operating register values are
different from initiator operation. Table 12-2 summarizes the register
bit operations that are of particular interest for target operation.

Table 12-2
Register Bits Used for Target Operation

Register Name Bits Description

RESPID1, RESPID0 all Setting multiple bits in these
registers allows the
SYM53C8XX to respond to
multiple SCSI IDs

SCNTL0 0 Set this bit to make the
SYM53C8XX a target
device by default

SCID 5 Set this bit to allow the
SYM53C8XX to respond to
bus-initiated selection at the
chip ID in the RESPID1-0
registers

SCNTL1 5 When this bit is clear, the
SYM53C8XX halts the data
transfer when a parity error
is detected or when the
SATN/ signal is asserted.

Introduction
Using SCRIPTS for Target Operations

12-4 Symbios Logic PCI-SCSI Programming Guide

Using SCRIPTS for Target
Operations 0

SCRIPTS instructions operate identically in target or initiator mode,
except for certain forms that are valid in only one mode; these
exceptions are all noted in the individual instruction descriptions in
Chapter 3. When the target device is moving data to the SCSI bus
and is halted for any reason, the residual data in the FIFO must be
cleaned up before the transfer can resume. It is most common to
empty the FIFOs, send a Restore Pointers message and start the
transfer again.

Most interrupts to the target operation are expected. The floppy disk
provided with this programming guide contains a sample interrupt
service routine for a target device.

Sample Target Operation
SCRIPTS Program 0

This section uses a sample SCRIPTS program to illustrate
programming techniques for the SYM53C8XX chips when operating
in target mode. This program is used for testing and development of
Symbios Logic products. The full text of the SCRIPTS source file
and accompanying code for target operation may be downloaded
from the Symbios Logic BBS or from the floppy disk included with
this programming guide.

8xxtarg.ss Revision 2.2 2/12/96

;

; This software was written by Symbios Logic Inc. to
; develop and test new products. Symbios Logic assumes
; no liability for its use. This software is released
; to the public domain to illustrate certain
; programming techniques for the SYM53C8xx chips in
; target mode.

;

The ABSOLUTE declarations in this program are the types of
interrupts that the target will generate. The SYM53C8XX issues
interrupts to notify the host of completed actions or to find out what
action to take next.

;ABSOLUTE DECLARATIONS

ABSOLUTE read_access_medium= 0x00

ABSOLUTE write_access_medium= 0x01

ABSOLUTE last_write_disconnect= 0x02

ABSOLUTE seek_command= 0x03

Introduction
Using SCRIPTS for Target Operations

Symbios Logic PCI-SCSI Programming Guide 12-5

ABSOLUTE set_up_synch_neg= 0x04

ABSOLUTE set_up_wide_neg= 0x05

ABSOLUTE non_handled_msg = 0x06

ABSOLUTE bad_extended_msg= 0x07

ABSOLUTE message_sent = 0x08

ABSOLUTE request_sense_command= 0x09

ABSOLUTE inquiry_command= 0x0a

ABSOLUTE read_capacity_command= 0x0b

ABSOLUTE start_stop_command= 0x0c

ABSOLUTE format_unit= 0x0d

ABSOLUTE send_diagnostic= 0x0e

ABSOLUTE command_aborted= 0x0f

ABSOLUTE illegal_cmd= 0x10

ABSOLUTE got_SIGP = 0x11

ABSOLUTE done_with_copy= 0x12

ABSOLUTE got_selected= 0x13

ABSOLUTE done_with_busy_command= 0x14

The EXTERNs in this program are variables used for Memory-to-
Memory Move operations, such as moving SCRIPTS from program
memory into RAM or moving data from one memory location to
another.

EXTERN count

EXTERN source_address

EXTERN destination_address

This section defines the table format and layout. Each entry in the
table represents a two-dword entry in a data structure. Each entry
contains a byte count and an address that points to a buffer that is
used for Block Move instructions. The buffer must be declared in the
driver code.

Note: the declared values and sizes are only for the SCRIPTS
debugger, NVPCI. The assembler does not use these and the
information is not included in the “C” code. The buffers must be
set up in the driver program.

TABLE table_indirect \

Introduction
Using SCRIPTS for Target Operations

12-6 Symbios Logic PCI-SCSI Programming Guide

msg_out_buf = 1{??}, \

cmd_buf= 12{??}, \

synch_neg_msg_out = 2{??}, \

wide_neg_msg_out = 1{??}, \

neg_msg_in = {0x01, 0x03, 0x01, 0x19, 0x08}, \

stat_buf = {0x02}, \

identify_msg_in_buf = {0x80},\

msg_in_buf = 1{??}, \

data_buf = 512{??}, \

save_pointers = {0x02}, \

disconnect_msg = {0x02, 0x04}, \

selector_id = ID{0x33, 0x07, 0x00, 0x00}, \

sense_data_buf = {0x00,0x00,0x06,0x00, 0x00, 0x00, \

 0x00, 0x0a, 0x00, 0x00, 0x00, 0x00, \

 0x29, 0x00, 0x00, 0x00, 0x00, 0x00}, \

 inquiry_data_buf = {0x00,0x00,0x02,0x00, 0x1f,0x00, \

 0x00, 0x10, 0x20, 0x20, 0x20, 0x20, \

 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, \

 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, \

 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, \

 0x20, 0x20, 0x20, 0x20, 0x20, 0x20}, \

capacity_data_buf = {0x00, 0x80, 0x02, 0x00}

;**

The ENTRY declarations are starting points in the SCRIPTS
program that will be referred to in “C” code. See the output file
explanation for more information on how these are assembled and
used in the driver code.

; ENTRY declarations

ENTRY wait_select

ENTRY msg_out_phase

ENTRY tur

ENTRY stopped_busy_tur

ENTRY request_sense

Introduction
Using SCRIPTS for Target Operations

Symbios Logic PCI-SCSI Programming Guide 12-7

ENTRY read_return

ENTRY read_reconnect

ENTRY write_return

ENTRY write_reconnect

ENTRY synch_wide_neg_return

ENTRY msg_in_phase

ENTRY inquiry

ENTRY read_capacity

ENTRY stopped_busy_wait_select

ENTRY copy_data

The wait_select label is the generic starting point for target
operations. The SYM53C8XX waits here until it is selected. It jumps
to Command phase if ATN is not set, or performs one of the other
commands described in the comments below. It will jump to an
alternate label if the SIGP bit is set.

wait_select:

wait select rel(SIGP_set) ;wait to be selected

jump rel(command_phase), if not atn ;SCSI-1
 ;initiator
 ;support

move from msg_out_buf, with msg_out ;get message
 ;byte

move sfbr to scratchb0 ;save the identify message

call rel(msg_out_phase), if atn ;stay in message if
 ;atn still active

If the SYM53C8XX is selected without ATN, it goes directly to
Command phase to support SCSI-1 initiators. The chip receives the
command descriptor block and performs various functions,
described in the program comments, depending on the contents of
the command.

command_phase:

move from cmd_buf, with cmd ;get SCSI command

move scntl1 & 0xdf to scntl1 ;turns on the halt on
;parity error or atn

jump rel(read), if 0x08 ;jump to set up read
 ;(6-byte read)

Introduction
Using SCRIPTS for Target Operations

12-8 Symbios Logic PCI-SCSI Programming Guide

int write_access_medium, if 0x0a ;interrupt to set
 ;up write
 ;(6-byte write)

int seek_command, if 0x0b ;interrupt to perform seek

int seek_command, if 0x2b ;interrupt to perform seek

jump rel(read), if 0x28 ;jump to set up read
 ;(10-byte read)

int write_access_medium, if 0x2a ;interrupt to set
 ;up write
 ;(10-byte write)

jump rel(tur), if 0x00 ;jump to test unit ready

int request_sense_command,if 0x03 ;interrupt to set
 ;up request sense
 ;command

int inquiry_command, if 0x12 ;interrupt to set up
;inquiry command

int read_capacity_command,if 0x25 ;interrupt to set
 ;up read capacity
 ;command

int start_stop_command, if 0x1b ;interrupt to set
;up start/stop unit
;command

jump rel(tur), if 0x2f ;verify command, go to tur

jump rel(reserve_unit), if 0x16 ;jump to reserve
;unit

jump rel(release_unit), if 0x17 ;jump to release
;unit

int send_diagnostic, if 0x1d ;interrupt to set up
;send diagnostic

int format_unit, if 0x04 ;interrupt to set up
;format unit

int illegal_cmd ;interrupt on any other command

In Message Out phase, the initiator moves in other types of messages,
such as wide or synchronous negotiation, or NOPs.

msg_out_phase:

return, if not atn ;return if atn gone

move from msg_out_buf, with msg_out ;get message
 ;byte

Introduction
Using SCRIPTS for Target Operations

Symbios Logic PCI-SCSI Programming Guide 12-9

jump rel(extended_msg), if 0x01 ;jump if extended
;message

jump rel(abort), if 0x06 ;jump if abort message

jump rel(msg_out_phase), if 0x08;jump back if nop
; message

int non_handled_msg ;interrupt if can't handle
; message

If the chip receives a byte in the message phase indicating an
extended message, then it jumps to these commands.

extended_msg:

int bad_extended_msg, if not atn;if atn gone,
;extended message
;was bad

move from msg_out_buf, with msg_out;get next
;message byte

int bad_extended_msg, if not atn ;if atn gone,
;extended message
;was bad

move from msg_out_buf, with msg_out;this byte shows
;type of message

jump rel(synch_neg), if 0x01 ;0x01 is a synchronous
;negotiation message

jump rel(wide_neg), if 0x03 ;0x03 is a wide
 ;negotiation message

int bad_extended_msg ;interrupt on any other type

In these commands, the SYM53C8XX moves synchronous period
and offset data from the synchronous negotiation message and
interrupts to set up the synchronous operation and return message.

synch_neg:

move from synch_neg_msg_out, with msg_out;move in
;the period
;and offset

int set_up_synch_neg ;interrupt to set up
 ;synchronous and message

If the extended message is for wide negotiation, the SYM53C8XX
expects one more byte with SCSI bus width information, then
interrupts to set up the answer

wide_neg:

Introduction
Using SCRIPTS for Target Operations

12-10 Symbios Logic PCI-SCSI Programming Guide

move from wide_neg_msg_out, with msg_out ;move in
;the width

int set_up_wide_neg ;interrupt to set up answer

After the interrupt service routine executes, the SYM53C8XX sends
its return negotiation message.

synch_wide_neg_return:

move from neg_msg_in, with msg_in ;move out our
 ;answer to the
 ;negotiation

jump rel(command_phase), if not atn;jump to
;command_phase
;if atn gone

jump rel(msg_out_phase);jump to msg_out_phse if atn
;still active

If the target device goes into Message In phase, an exception
condition has occurred that requires the target device to send some
kind of recovery message to the initiator. With these commands, the
SYM53C8XX sends the message and interrupts to determine what
to do next. Some of the messages that the target might need to send
are Message Reject, Restore Data Pointers, or some other error
message.

msg_in_phase:

move from msg_in_buf, with msg_in ;move a message
; to the initiator

int message_sent ;interrupt to determine what to
;do next

This is the final sequence of commands for any I/O. The
SYM53C8XX sends a status message, disconnects from the SCSI
bus, executes an interrupt on the fly, and goes back to the
wait_select label to get ready for next command

tur: ; (Test Unit Ready)

move from stat_buf, with status ;send out status
;byte

move from msg_in_buf, with msg_in ;send out message
 ;byte

move 0x20 to scntl1 ;turns off the halt on parity
;error or atn

disconnect ;disconnect from the SCSI bus

Introduction
Using SCRIPTS for Target Operations

Symbios Logic PCI-SCSI Programming Guide 12-11

intfly ;interrupt to signal end of process

jump rel(wait_select)

This series of commands is the same as the Test Unit Ready label ,
but the SYM53C8XX has been selected while processing another
command or has been issued a Stop command. The device stops and
sends back a Status of busy if the command is one the target device
does not have to accept when busy or stopped.

stopped_busy_tur:

move from stat_buf, with status ;send out status
;byte

move from msg_in_buf, with msg_in ;send out message
 ;byte

move 0x20 to scntl1 ;turns off the halt on parity
;error or atn

disconnect ;disconnect from the SCSI bus

move scratcha1 to sfbr ;get the busy flag

int done_with_busy_command, if 0x01 ;if busy,
 ;interrupt to
 ;continue

intfly ;interrupt to signal end of process

jump rel(stopped_busy_wait_select)

These labels send the sense, inquiry, or capacity data requested by
the initiator. The SYM53C8XX moves the data and checks to see
which Test Unit Ready command to use next

request_sense:

move from sense_data_buf, with data_in ;move the
 ;sense data
 ;from the
 ;buffer

move scratcha2 to sfbr ;get the stopped/busy flag

jump rel(tur) if 0x00 ;go to the appropriate status\
;and message phases

jump rel(stopped_busy_tur)

inquiry:

move from inquiry_data_buf, with data_in ;move out
;inquiry data

move scratcha2 to sfbr ;get the stopped/busy flag

Introduction
Using SCRIPTS for Target Operations

12-12 Symbios Logic PCI-SCSI Programming Guide

jump rel(tur) if 0x00 ;go to the appropriate status
 ;and message phases

jump rel(stopped_busy_tur)

read_capacity:

move from capacity_data_buf, with data_in;move out
;read

 ;capacity data

move scratcha2 to sfbr ;get the stopped/busy flag

jump rel(tur) if 0x00 ;go to the appropriate status
;and message phases

jump rel(stopped_busy_tur)

The read label is the starting point for all read commands. If
disconnects are allowed, the chip jumps to the read_disconnect
label. Read return is used after read information is set up in the data
buffer. A series of commands determine if the transfer is finished. If
so, then the SYM53C8XX goes to Test Unit Ready or tries to
disconnect again.

read:

move scratchb0 to sfbr ;get identify message

jump rel(read_disconnect) if 0x40 and mask 0xbf
;jump disconnect if
 ;disconnects are allowed

int read_access_medium ;interrupt to read data
;from medium

read_return:

move from data_buf, with data_in;move the data out
;from the buffer

move scratchb1 to sfbr ;get the 'finished' flag

jump rel(tur) if 0x00 ;jump to status and message
;if transfer done

move scratchb0 to sfbr ;get identify message

jump rel(read_disconnect) if 0x40 and mask 0xbf
;jump to disconnect if

 ;disconnects are allowed

move from save_pointers, with msg_in ;move out the
;save pointers message

call rel(msg_out_phase) if atn ;jump to message out
;if atn active

Introduction
Using SCRIPTS for Target Operations

Symbios Logic PCI-SCSI Programming Guide 12-13

int read_access_medium ;interrupt to access medium

The read_disconnect label disconnects the device from the bus,
and sets the Semaphore bit to tell the ISR it is disconnected.

read_disconnect:

move from disconnect_msg, with msg_in ;move out the
;disconnect message

call rel(msg_out_phase) if atn ;jump to message out
 ;if atn active

move 0x20 to scntl1 ;turns off the halt on parity
;error or atn

disconnect ;disconnect from the bus

move 0x10 to istat ;set the semaphore bit to say we
;are disconnected

int read_access_medium ;interrupt to read data from
;medium

The read_reconnect label performs reselection, moves the identify
message from the message in buffer, and jumps to send the data.

read_reconnect:

reselect from selector_id, rel(alt_got_selected)
 ;reselect the initiator

move scntl1 & 0xdf to scntl1 ;turns on the halt on
parity error or atn

move from identify_msg_in_buf, with msg_in ;move in
 identify message

jump rel(read_return) ;jump to send data

On a write, the SYM53C8XX interrupts immediately to set up
counts for moving data. It takes data from the initiator, then begins
the write. When writing is done, control jumps to the Test Unit Ready
label.

write_return:

move from data_buf, with data_out ;move the data
 ;into the buffer

move scratchb0 to sfbr ;get identify message

jump rel(write_disconnect) if 0x40 and mask 0xbf
 ;jump to disconnect if

;disconnects allowed

Introduction
Using SCRIPTS for Target Operations

12-14 Symbios Logic PCI-SCSI Programming Guide

move scratchb1 to sfbr ;get the 'finished' flag

jump rel(tur) if 0x10 ;jump to status and
;message if transfer done

move from save_pointers, with msg_in ;move out the
 ;save pointers
 ;message

call rel(msg_out_phase) if atn ;jump to message out
;if atn active

int write_access_medium;interrupt to read data
;from medium

The write_disconnect label does all same things as the read_
disconnect. It sets the semaphore bit and issues one of two
interrupts, depending on whether or not this is the last write of the
transfer.

write_disconnect:

move from disconnect_msg, with msg_in ;move out the
;disconnect message

call rel(msg_out_phase) if atn ;jump to message out
;if atn active

move 0x20 to scntl1 ;turns off the halt on parity
;error or atn

disconnect ;disconnect from the bus

move 0x10 to istat ;set the semaphore bit to say
;we are disconnected

move scratchb1 to sfbr ;get the 'finished' flag

int last_write_disconnect if 0x10;special interrupt
 ;after last data
;phase

int write_access_medium;interrupt to read data
;from medium

The write_reconnect label operates the same as
read_reconnect.

write_reconnect:

reselect from selector_id, rel(alt_got_selected)
;reselect the initiator

move scntl1 & 0xdf to scntl1 ;turns on the halt on
;parity error or atn

Introduction
Using SCRIPTS for Target Operations

Symbios Logic PCI-SCSI Programming Guide 12-15

move from identify_msg_in_buf, with msg_in ;move in
 ;identify message

move scratchb1 to sfbr ;get the 'finished' flag

jump rel(tur) if 0x00 ;jump to status and message
 ;if transfer done

jump rel(write_return) ;jump to get data

The reserve_unit label sets a reservation flag, gets the ID of the
initiator who sent the command, and jumps to Test Unit Ready to
complete command.

reserve_unit:

move 0x01 to scratchb2 ;set 'reserved' in
;reservation flag

move ssid & 0x7f to sfbr ;get the ID of who
 ;reserved us

move sfbr to scratchb3 ;move ID into storage buffer

jump rel(tur) ;go to status and message

The release_unit command clears the reserved flag and goes to
Test Unit Ready.

release_unit:

move 0x00 to scratchb2 ;set 'not reserved' in
;reservation flag

jump rel(tur) ;go to status and message

The abort label turns off the halt on parity or ATN bit, and
disconnects from the bus. The chip executes this command when it
receives an Abort message for the command in process. The interrupt
service routine then cleans up the job.

abort:

move 0x20 to scntl1 ;turns off the halt on parity
;error or atn

disconnect ;go to bus free

int command_aborted ;int to notify driver that
;command was aborted

Introduction
Using SCRIPTS for Target Operations

12-16 Symbios Logic PCI-SCSI Programming Guide

The SYM53C8XX only performs this routine if it is selected while it
is stopped or busy working on another command. The Request
Sense, Test Unit Ready, Inquiry, and Read Capacity commands are
valid while the target device is busy or stopped and the chip must
respond to them. If the chip is stopped, it will only respond to one of
these commands or the Start command.

stopped_busy_wait_select:

wait select rel(SIGP_set) ;wait to be selected

move from msg_out_buf, with msg_out ;get message
 ;byte

call rel(msg_out_phase), if atn ;stay in message\
 ;if atn still active

move from cmd_buf, with cmd ;get SCSI command

move scntl1 & 0xdf to scntl1 ;turns on the halt on
;parity error or atn

jump rel(stopped_busy_tur), if 0x00 ;jump to test
 ;unit ready

int request_sense_command, if 0x03;interrupt to set
;up request sense command

int inquiry_command, if 0x12 ;interrupt to set up
;inquiry command

int read_capacity_command, if 0x25 ;interrupt to
;set up read

 ;capacity command

move sfbr to scratcha3 ;save the first byte of the
;command

move scratcha1 to sfbr ;get the busy flag

jump rel(stopped_busy_tur), if 0x01 ;if busy, go
;right to status
;and message

move scratcha3 to sfbr ;restore the first byte of
;the command

int start_stop_command, if 0x1b ;interrupt to set
;up start/stop unit
;command

Introduction
Synchronous Negotiation by a Target Device

Symbios Logic PCI-SCSI Programming Guide 12-17

jump rel(stopped_busy_tur) ;go to status and
 ;message for any other
 command

alt_got_selected:

int got_selected ;interrupt because got selected
;during reselect attempt

SIGP_set:

int got_SIGP ; taking interrupt because got SIGP

copy_data:

move memory count, source_address,
destination_address ;memory move to write

 ;SCRIPTS RAM and to
 ;transfer data to and

 ;from upper memory

int done_with_copy ;signal completion of memory move

Synchronous Negotiation by a Target
Device 0

For target operation, negotiating occurs when a synchronous
negotiation message is received from the initiator. Once this message
is received, a SCRIPTS Interrupt instruction would be executed to
determine the necessary response. Once the synchronous parameters
for a particular initiator have been established, they should be saved
in a table for later reconnects to the same device. If reselecting an
initiator, the RESELECT FROM command can be used to indicate
table indirect addressing. The SXFER, SCNTL3, and SDID register
values would then be loaded from the table entry. When selected by
an initiator that has previously negotiated for synchronous transfers,
these registers would need to be reloaded from memory before the
target goes to the data transfer phase.

Introduction
Synchronous Negotiation by a Target Device

12-18 Symbios Logic PCI-SCSI Programming Guide

Debugging the SYM53C8XX
Overview

Symbios Logic PCI-SCSI Programming Guide 13-1

Chapter 13

Debugging the SYM53C8XX

Overview 0

The SCRIPTS registers and the SCSI registers contain information
that may be helpful in debugging the chip. Table 13-1 shows the
information contained in the registers:

Table 13-1
Registers Useful for Debugging
SYM53C8XX

Information Register Remarks

Information regarding the
most recent interrupt

ISTAT Check this register first, since its
contents may be affected by reading or
writing other registers.

Current SCRIPTS instruction DCMD and DBC
(first 32 bits);
 DNAD or DSPS
(second 32 bits)

The DCMD and DBC always contain
the op code of the most recently
executed SCRIPTS instruction. Use
the cross reference file created from
the SCRIPTS source by NASM to
interpret the contents. The DSPS or
DNAD contains the second 32-bit
field of the SCRIPTS instruction
fetched.

Next SCRIPTS Instruction
address

DSP Contains the address of the next
instruction to be fetched. This is
analogous to the program counter of a
microprocessor. Instruction addresses
are on 8-byte boundaries (except
Memory Move, which is on a 12-byte
boundary) and so the value in the DSP
should be eight past the address of the
current instruction.

SCSI Bus Control Lines SBCL Contains the current state of SCSI
control lines.

SCSI Bus Data Lines SBDL Contains the current status of SCSI
data lines.

Debugging the SYM53C8XX
Overview

13-2 Symbios Logic PCI-SCSI Programming Guide

Last SCSI Phase serviced SOCL Contains the phase to match (initiator)
or the phase driven (target) from the
last SCRIPTS instruction executed.

Last SCSI data byte sent SODL Contains the last byte transferred to
the SCSI bus.

Last SCSI data byte received SIDL Contains the last byte transferred in
from the SCSI bus.

First byte received from Block
Move instruction executed

SFBR Contains the first byte of a block move
transferred in from SCSI. It also
contains SCSI identities after a
reselection, if using 53C700
compatibility mode and if the IDs are
in the 0-7 range.

53C8XX SCSI ID SCID Contains the SCSI ID of the
SYM53C8XX chip.

Destination SCSI ID SDID Contains the identity of the target for
the last select or reselect instruction
executed.

Response ID RESPID0,
RESPID1 (wide
SCSI devices only)

Contains the IDs that the chip
responds to on the SCSI bus. The chip
can respond to multiple IDs , so more
than one bit can be set in these
registers.

Table 13-1
Registers Useful for Debugging
SYM53C8XX (Continued)

Information Register Remarks

Debugging the SYM53C8XX
Chip Debugging Guidelines

Symbios Logic PCI-SCSI Programming Guide 13-3

Chip Debugging Guidelines 0

1

a Check the register initialization routine. Several registers
should be checked in this step. The most important registers
to verify are listed in Chapter 6.

b Save and print out the data values in all SYM53C8XX
registers at the time the problem occurs. Record the value of
the ISTAT register first, since further register accesses may
trigger interrupts that were not caused by the initial problem.
If there is not an interrupt, abort the SCRIPTS operation by
writing to the ABRT bit in the ISTAT register. This will cause
a DMA abort interrupt. Reset this bit before reading the
DSTAT register to prevent further interrupts from being
generated. Clear the interrupt(s) following the method
suggested in Chapter 6.

Once the interrupts have been cleared, the registers listed in
Table 13-1 contain most of the critical information. If there is
no indication of what is causing the problem, it might be
helpful to look at the rest of the registers.

2 Use the DSP, DSPS, DCMD, and DBC registers to determine
where SCRIPTS execution was stopped. The .LIS file generated
by NASM using the -l option can be very helpful in this step.
Compare the listings to the debugging register values to
determine what might be causing the problem.

3 If the problem has not yet been discovered, examine logic
analyzer traces of both the host bus and the SCSI bus to verify
that SCRIPTS fetches are occurring correctly. They can also be
used to compare data transferred between the two interfaces.

4 Perform timing verification using a logic analyzer. Signal quality
issues and clock problems may require the use of an oscilloscope.

After this information has been gathered and examined, if no
problem has been revealed, this information along with your code
can enable an Symbios Logic system engineer to assist with your
debugging efforts.

Debugging the SYM53C8XX
Chip Debugging Guidelines

13-4 Symbios Logic PCI-SCSI Programming Guide

Common Problems/
Things to Check 0

1 The CPU is accessing registers other than ISTAT while
SCRIPTS are running. ISTAT is the only register that can be
accessed during SCRIPTS operation.

2 The RESPID register(s) are not initialized. This would keep the
chip from responding to any selection/reselection. Make sure
these registers are initialized correctly.

3 Verify signal connectivity. (Make sure that the chip pins are all
connected to board traces.) Verify power and ground connection
to the chip. Verify that decoupling capacitors are connected as
recommended in the chip data manual to avoid noise problems.

4 Make sure that the Enable Response to Selection/Reselection bits
are set correctly.

Glossary

Symbios Logic PCI-SCSI Programming Guide Glossary-1

Glossary 0

Address A specific location in memory, designated either
numerically or by a symbolic name.

Address Range A contiguous block of memory, designated by a
starting address and an ending address.

Common Command Block (CCB) Contains the information required by
the hardware interface of the device driver for a specific request.

Declarative Keywords Words in the SCRIPTS programming language
used to control the different aspects of code generation

Patching Modifying some elements of the SCRIPTS array after
buffers have been allocated.

PCI (Peripheral Component Interconnect) A high-performance interface
for personal computers and workstations.

Label A symbol representing a specific location in the section of
memory used for code.

Loopback Mode A diagnostic mode that allows the SYM53C8XX to
control all signals, to test both initiator and target operations of the
chip.

NASM A DOS command line assembler that supports Symbios
Logic SCSI processors.

SCSI Small Computer System Interface

SCSI SCRIPTS A high level instruction set for programming the
SYM53C8XX family of PCI-SCSI I/O Processors.

Symbol An identifier used to represent a location in memory. The
identifier may be any combination of alphanumeric characters
allowed by the lexical rules of the programming language being used.

Glossary

Glossary-2 Symbios Logic PCI-SCSI Programming Guide

NASM Error Messages
Errors

Symbios Logic PCI-SCSI Programming Guide A-1

Appendix A

NASM Error Messages

Errors 0

 24 bit value expected 0

The value specified is not within the range of a 24-bit unsigned
integer. The value must be between 0 and 4M.

Something other than a value was found.

 8 bit value expected 0

The value specified is not within the range of a 8-bit unsigned
integer. The value must be between 0 and 255.

Something other than a value was found.

ACK, ATN,TARGET or CARRY expected string 0

String was found instead of ACK, ATN, TARGET or CARRY.

AND or OR expected string 0

String was found instead of AND or OR.

ATN specified multiple times 0

The ATN field may only be specified once per instruction

Cannot compare CARRY and Data 0

The command is requesting that both a comparison of the SFBR
register to the specified data and a test of the carry bit take place, but
only one test is allowed.

 Cannot compare PHASE and Data 0

The command is requesting that both a comparison of the SCSI bus
phase and a comparison of the SFBR register to the specified data
take place, but only one test is allowed.

 Cannot specify PHASE when using ATN 0

The use of PHASE and ATN are mutually exclusive.

NASM Error Messages
Errors

A-2 Symbios Logic PCI-SCSI Programming Guide

 Cannot use MASK without compare Data 0

Valid Data must be present when using the MASK field.

 Cannot use Pass for count address 0

The PASS feature cannot be used in a count field. The current
format of the output file does not support this.

 Carry operations not available on 53c700 architectures 0

The Carry feature is only available on the 53C710 or higher
architectures.

CARRY specified multiple times 0

CARRY may only be specified once per instruction.

 CHMOV 53c720, 53c770, 53c82X, 53c875, 53c876, 53c885,
and 53c895 architectures only 0

The CHMOV instruction is only available on the chips that support
wide SCSI.

Comma expected string 0

String was found instead of a comma.

CTEST7 53c700 and 53c710 architectures only 0

The CTEST7 register is only available on the 53C700/710
architectures.

 CTEST8 53c700 and 53c710 architectures only 0

The CTEST8 register is only available on the 53C700/710
architectures.

Data list expected string 0

String was found instead of a list of initialized data.

Data specified multiple times 0

The Data field may only be specified once for a given instruction.

Data specifier expected string 0

String was found instead of a Data specifier. A Data specifier is used
to specify the size of a data area and to initialize that data area.

Declaration expected string 0

String was found when a declaration was expected. A declaration is
an assignment of a variable to some value or data specifier.

NASM Error Messages
Errors

Symbios Logic PCI-SCSI Programming Guide A-3

Divide or mod by zero 0

DSAREL: 53c810A, 53c825A, 53C860, 53c875, and 53c895
architectures only 0

The DSAREL keyword is only supported by the chips that support
Load and Store instructions.

Entry identifier expected name 0

Name was found instead of an identifier. An identifier is a symbol
that has not previously been declared.

Expression must evaluate to a constant string 0

A label, relative, external, or an undeclared identifier, string, does
not evaluate to a known value. The value must be known at assembly
time.

 Expression or External expected 0

 GPCNTL 53C720, 53C770, and 53C8XX only 0

The GPCNTL register is available only on the 53C720 and higher
architectures

 GPREG 53c720,53C770, and 53C8XX architectures only 0

The GPREG register is only available on the 53C720 and higher
architecture

 ID specifier only valid for table entries 0

IF or WHEN expected string 0

String was found instead of one of IF or WHEN.

INTFLY:53c720, 53C770, and 53C8XX architecture only 0

The INTFLY instruction is only available on the 53C720 and higher
architectures.

Invalid Address string 0

String was found instead of a valid address. A valid address is an
expression, external, relative, table, or an absolute.

NASM Error Messages
Errors

A-4 Symbios Logic PCI-SCSI Programming Guide

Invalid assignment 0

 Invalid character/s 0

 Invalid constant type 0

Invalid destination address string 0

String was found instead of a valid destination address. A valid
destination address is an expression, external, relative, table or an
absolute.

Invalid register operator string 0

String was instead of a valid operator. Valid operators are '+', '-', '|',
'&'.

Invalid register value 0

Value must be in the range 0-3Fh for the 53c700/710 and 0-5Ch for
the 53c720.

 Invalid SCSI id 0

Value must have only one bit set (bits 0-7) for the 53C700/710/810
and must be in the range of 0-15 for the 53c720/820/825.

Invalid syntax string 0

String was found and not expected causing an unknown syntax error.

Invalid test condition string 0

String was found instead of a valid test condition. The valid test
conditions are CARRY, a PHASE, an 8 bit value, or a MASK.

LCRC 53c710 architectures only 0

The LCRC register is only available on the 53C710 architecture

Left parenthesis expected string 0

String was found instead of a left parentheses.

LOAD: 53c810A, 53c825A, 53c860, 53c875, 53c876, 53c885,
and 53c895 architectures 0

The LOAD instruction is only supported by the 53C810A and
higher architectures

LOAD: Count must not exceed 4 bytes 0

Four bytes is the maximum byte count to LOAD.

NASM Error Messages
Errors

Symbios Logic PCI-SCSI Programming Guide A-5

Logical end of line '\' expected string 0

A logical line separator is needed before continuing the directive on a
new line.

MACNTL 53c720, 53c770, and 53c8XX architectures only 0

The MACNTL register is available only on the 53C720 and higher
architectures

 MASK specified multiple times 0

MASK may only be specified once per instruction.

 Memory Move operations not available on 53c700
architectures 0

The Memory Move instruction is only available on the 53C710 and
higher architectures.

Memory Move Noflush only available on 53c810A,
53c825A, 53c860, 53c875, 53c876, 53c885, and 53c895
architectures. 0

The No Flush option is only available in the 53c810A and higher
architectures.

Old EXTERNAL directive, use new EXTERNAL
directive string 0

When the Debug switch is on, the operand string must be declared
with the new EXTERNAL directive syntax. The new syntax informs
the debugger of the size of the external variable.

Old RELATIVE directive, use new RELATIVE directive
string 0

When the Debug switch is on, the operand string must be declared
with the new RELATIVE directive syntax. The new syntax informs
the debugger of the size of the relative data area.

One register must be SFBR or both the same. 0

Register move instruction requires either the source or destination
register be the SFBR register, or both the source and destination be
the same register.

 Only use CARRY with Addition or Subtraction. 0

The CARRY bit can only be checked when either an addition or
subtraction operation is used.

NASM Error Messages
Errors

A-6 Symbios Logic PCI-SCSI Programming Guide

Operand must be a TABLE entry string 0

When the Debug switch is on, the operand where string resides must
be of type TABLE entry. This is used for table indirect addressing
and to inform the debugger about the size of the table.

Parenthesis must match when PASS is used as an
argument 0

When a PASS variable is used as an argument the parentheses must
match.

PHASE expected string 0

String was found instead of a PHASE.

PHASE specified multiple times 0

 Redeclaration of Label string 0

The string has previously been declared as a label or some other type
of identifier other than an ENTRY.

 Redeclaration of TABLE identifier 0

The string has previously been declared as a TABLE name or some
other type of identifier. Only one TABLE declaration per source file
is allowed.

 Register or Data24 value expected string 0

String was found instead of a register or a 24 bit value.

Register right of operand must be SFBR 0

In a Move to SFBR operation, SFBR must be to the right of the
operand.

Relative addressing not available on 53c700 architecture 0

Relative addressing is not supported by the 53c700 architecture.

 RESPID 53c81X architecture only 0

The RESPID register is only one byte in the 53C810.

 RESPID0 53c720, 53c770, 53c82X, 53C875, 53c876,
53c885, and 53c895 architectures only 0

The RESPID0 register is only available in devices that support Wide
SCSI.

NASM Error Messages
Errors

Symbios Logic PCI-SCSI Programming Guide A-7

 RESPID1 53c720, 53c770, 53c82X, 53C875, 53c876,
53c885, and 53c895 architectures only 0

The RESPID1 register is only available in devices that support Wide
SCSI.

Right parenthesis expected string 0

String was found instead of a right parentheses.

SBDL 53c700, 53c710, and 53c81X architectures only 0

The SBDL register is only one byte in the 53C700, 53C710, and
53C81X architectures.

 SBDL0 53c720, 53c770, 53c82X, 53C875, 53c876, 53c885,
and 53C895 architectures only 0

The SBDL register is two bytes in the devices that support Wide
SCSI.

 SBDL1 53c720, 53c770, 53c82X, 53C875, 53c876, 53c885,
and 53C895 architectures only 0

The SBDL register is two bytes in the devices that support WIde
SCSI.

 SCNTL2 53c720,53c770, and 53c8XX architectures only. 0

The SCNTL2 register is only available on the 53C720 and higher
architectures.

 SCNTL3 53c720, 53c770, and 53c8XX architectures only 0

The SCNTL3 register is only available on the 53C720 and higher
architectures.

 Scratch0 53c710 architectures only 0

The SCRATCH0 register is only available on the 53C710
architecture.

 Scratch1 53c710 architectures only 0

The SCRATCH1 register is only available on the 53C710
architecture.

 Scratch2 53c710 architectures only. 0

The SCRATCH2 register is only available on the 53C710
architecture.

NASM Error Messages
Errors

A-8 Symbios Logic PCI-SCSI Programming Guide

 Scratch3 53c710 architectures only 0

The SCRATCH3 register is only available on the 53C710
architecture.

 Scratcha0 53c720, 53c770, and 53c8XX architectures only0

The SCRATCHA0 register is only available on the 53C720 and
higher architectures.

 Scratcha1 53c720, 53c770, and 53c8XX architectures
only 0

The SCRATCHA1 register is only available on the 53C720 and
higher architectures.

 Scratcha253c720, 53c770, and 53c8XX architectures only 0

The SCRATCHA2 register is only available on the 53C720 and
higher architectures.

 Scratcha3 53c720, 53c770, and 53c8XX architectures
only 0

The SCRATCHA3 register is only available on the 53C720 and
higher architectures.

 Scratchb0 53c720, 53c770, and 53c8XX architectures
only 0

The SCRATCHB0 register is only available on the 53C720 and
higher architectures.

 Scratchb1 53c720, 53c770, and 53c8XX architectures
only 0

The SCRATCHB1 register is only available on the 53C720 and
higher architectures.

 Scratchb2 53c720, 53c770, and 53c8XX architectures
only 0

The SCRATCHB2 register is only available on the 53C720 and
higher architectures.

 Scratchb3 53c720, 53c770, and 53c8XX architectures
only 0

The SCRATCHB3 register is only available on the 53C720 and
higher architectures.

NASM Error Messages
Errors

Symbios Logic PCI-SCSI Programming Guide A-9

Scratchc0 53c770, 53c825A, 53C875, 53c876, 53c885, and
53c895 architectures only 0

The SCRATCHC-J registers are only available on the 53C770,
53C825A, 53C875, and 53C895 architectures.

Scratchc1 53c770, 53c825A, 53C875, 53c876, 53c885, and
53c895 architectures only 0

The SCRATCHC-J registers are only available on the 53C770,
53C825A, 53C875, and 53C895 architectures.

Scratchc2 53c770, 53c825A, 53C875, 53c876, 53c885, and
53c895 architectures only 0

The SCRATCHC-J registers are only available on the 53C770,
53C825A, 53C875, and 53C895 architectures.

Scratchc3 53c770, 53c825A, 53C875, 53c876, 53c885, and
53c895 architectures only 0

The SCRATCHC-J registers are only available on the 53C770,
53C825A, 53C875, and 53C895 architectures.

Scratchd0 53c770, 53c825A, 53C875, 53c876, 53c885, and
53c895 architectures only 0

The SCRATCHC-J registers are only available on the 53C770,
53C825A, 53C875, and 53C895 architectures.

Scratchd1 53c770, 53c825A, 53C875, 53c876, 53c885, and
53c895 architectures only 0

The SCRATCHC-J registers are only available on the 53C770,
53C825A, 53C875, and 53C895 architectures.

Scratchd2 53c770, 53c825A, 53C875, 53c876, 53c885, and
53c895 architectures only 0

The SCRATCHC-J registers are only available on the 53C770,
53C825A, 53C875, and 53C895 architectures.

Scratchd3 53c770, 53c825A, 53C875,53c876, 53c885, and
53c895 architectures only 0

The SCRATCHC-J registers are only available on the 53C770,
53C825A, 53C875, and 53C895 architectures.

Scratche0 53c770, 53c825A, 53C875, 53c876, 53c885, and
53c895 architectures only 0

The SCRATCHC-J registers are only available on the 53C770,
53C825A, 53C875, and 53C895 architectures.

NASM Error Messages
Errors

A-10 Symbios Logic PCI-SCSI Programming Guide

Scratche1 53c770, 53c825A, 53C875, 53c876, 53c885, and
53c895 architectures only 0

The SCRATCHC-J registers are only available on the 53C770,
53C825A, 53C875, and 53C895 architectures.

Scratche2 53c770, 53c825A, 53C875, 53c876, 53c885, and
53c895 architectures only 0

The SCRATCHC-J registers are only available on the 53C770,
53C825A, 53C875, and 53C895 architectures.

Scratche3 53c770, 53c825A, 53C875, 53c876, 53c885, and
53c895 architectures only 0

The SCRATCHC-J registers are only available on the 53C770,
53C825A, 53C875, and 53C895 architectures.

Scratchf0 53c770, 53c825A, 53C875, 53c876, 53c885, and
53c895 architectures only 0

The SCRATCHC-J registers are only available on the 53C770,
53C825A, 53C875, and 53C895 architectures.

Scratchf1 53c770, 53c825A, 53C875, 53c876, 53c885, and
53c895 architectures only 0

The SCRATCHC-J registers are only available on the 53C770,
53C825A, 53C875, and 53C895 architectures.

Scratchf2 53c770, 53c825A, 53C875, 53c876, 53c885, and
53c895 architectures only 0

The SCRATCHC-J registers are only available on the 53C770,
53C825A, 53C875, and 53C895 architectures.

Scratchf3 53c770, 53c825A, 53C875, 53c876, 53c885, and
53c895 architectures only 0

The SCRATCHC-J registers are only available on the 53C770,
53C825A, 53C875, and 53C895 architectures.

Scratchg0 53c770, 53c825A, 53C875,53c876, 53c885, and
53c895 architectures only 0

The SCRATCHC-J registers are only available on the 53C770,
53C825A, 53C875, and 53C895 architectures.

Scratchg1 53c770, 53c825A, 53C875, 53c876, 53c885, and
53c895 architectures only 0

The SCRATCHC-J registers are only available on the 53C770,
53C825A, 53C875, and 53C895 architectures.

NASM Error Messages
Errors

Symbios Logic PCI-SCSI Programming Guide A-11

Scratchg2 53c770, 53c825A, 53C875, 53c876, 53c885, and
53c895 architectures only 0

The SCRATCHC-J registers are only available on the 53C770,
53C825A, 53C875, and 53C895 architectures.

Scratchg3 53c770, 53c825A, 53C875, 53c876, 53c885, and
53c895 architectures only 0

The SCRATCHC-J registers are only available on the 53C770,
53C825A, 53C875, and 53C895 architectures.

Scratchh0 53c770, 53c825A, 53C875, 53c876, 53c885, and
53c895 architectures only 0

The SCRATCHC-J registers are only available on the 53C770,
53C825A, 53C875, and 53C895 architectures.

Scratchh1 53c770, 53c825A, 53C875, 53c876, 53c885, and
53c895 architectures only 0

The SCRATCHC-J registers are only available on the 53C770,
53C825A, 53C875, and 53C895 architectures.

Scratchh2 53c770, 53c825A, 53C875, 53c876, 53c885, and
53c895 architectures only 0

The SCRATCHC-J registers are only available on the 53C770,
53C825A, 53C875, and 53C895 architectures.

Scratchh3 53c770, 53c825A, 53C875, 53c876, 53c885, and
53c895 architectures only 0

The SCRATCHC-J registers are only available on the 53C770,
53C825A, 53C875, and 53C895 architectures.

Scratchi0 53c770, 53c825A, 53C875, 53c876, 53c885, and
53c895 architectures only 0

The SCRATCHC-J registers are only available on the 53C770,
53C825A, 53C875, and 53C895 architectures.

Scratchi1 53c770, 53c825A, 53C875, 53c876, 53c885, and
53c895 architectures only 0

The SCRATCHC-J registers are only available on the 53C770,
53C825A, 53C875, and 53C895 architectures.

Scratchi2 53c770, 53c825A, 53C875, 53c876, 53c885, and
53c895 architectures only 0

The SCRATCHC-J registers are only available on the 53C770,
53C825A, 53C875, and 53C895 architectures.

NASM Error Messages
Errors

A-12 Symbios Logic PCI-SCSI Programming Guide

Scratchi3 53c770, 53c825A, 53C875, 53c876, 53c885, and
53c895 architectures only 0

The SCRATCHC-J registers are only available on the 53C770,
53C825A, 53C875, and 53C895 architectures.

Scratchj0 53c770, 53c825A, 53C875, 53c876, 53c885, and
53c895 architectures only 0

The SCRATCHC-J registers are only available on the 53C770,
53C825A, 53C875, and 53C895 architectures.

Scratchj1 53c770, 53c825A, 53C875, 53c876, 53c885, and
53c895 architectures only 0

The SCRATCHC-J registers are only available on the 53C770,
53C825A, 53C875, and 53C895 architectures.

Scratchj2 53c770, 53c825A, 53C875, 53c876, 53c885, and
53c895 architectures only 0

The SCRATCHC-J registers are only available on the 53C770,
53C825A, 53C875, and 53C895 architectures.

Scratchj3 53c770, 53c825A, 53C875, 53c876, 53c885, and
53c895 architectures only 0

The SCRATCHC-J registers are only available on the 53C770,
53C825A, 53C875, and 53C895 architectures.

SELID0: 53c720, 535c770, and 53c8XX architectures only 0

SELID1: 53c720, 53c770, and 53c8XX architectures only 0

Separator expected ',' or '\\' 0

A comma or a logical line separator is needed to delimit declarations.

SIDL 53c700, 53C710, and 53c81X architectures only 0

The SIDL register is only one byte on the 53C700, 53C710, and
53C81X chips.

 SIDL0 53c720, 53c770, 53C82X, 53c875, 53c876, 53c885,
and 53c895 architectures only 0

The SIDL register is two bytes on the chips that support Wide SCSI.

 SIDL1 53c720, 53c770, 53c82X, 53C875, 53c876, 53c885,
and 53C895 architectures only 0

The SIDL register is two bytes on the chips that support Wide SCSI.

NASM Error Messages
Errors

Symbios Logic PCI-SCSI Programming Guide A-13

 SHL 53c720, 53c770, and 53c8XX architectures only 0

The shift left instruction is only supported on 53C720 and higher
architectures.

 SHR 53c720, 53c770, and 53c8XX architectures only 0

The shift right instruction is only supported on 53C720 and higher
architectures.

 SIEN 53c700 and 53c710 architectures only 0

The SIEN register is only available on the 53C700/710 architectures.

 SIEN0 53c720, 53c770, and 53c8XX architectures only 0

The SIEN0 register is only available on the 53C720 and higher
architectures.

 SIEN1 53c720, 53c770, and 53c8XX architectures only 0

The SIEN1 register is only available on the 53C720 and higher
architectures.

 SIST0 53c720, 53c770, and 53c8XX architectures only 0

The SIST0 register is only available on the 53C720 and higher
architectures.

 SIST1 53c720, 53c770, and 53c8XX architectures only 0

The SIST1 register is only available on the 53C720 and higher
architectures.

 SLPAR 53c720, 53c770, and 53c8XX architectures only 0

The SLPAR register is only available on the 53C720 and higher
architectures.

 SODL 53c700, 53c710, and 53C81X architectures only 0

The SODL register is one byte only on the 53C700, 53C710, and
53C81X chips.

 SODL0 53c720, 53c770, 53c82X, 53c875, 53c876, 53c885,
and 53c895 architectures only 0

The SODL register is two bytes on the chips that support Wide
SCSI.

NASM Error Messages
Errors

A-14 Symbios Logic PCI-SCSI Programming Guide

 SODL1 53c720, 53c770, 53c82X, 53c875, 53c876, 53c885,
and 53C895 architectures only 0

The SODL register is two bytes on the chips that support Wide
SCSI.

 SSID 53c720, 53c770, and 53c8XX architectures only 0

The SSID register is only available on the 53C720 and higher
architectures.

 STEST0 53c720, 53c770, and 53c8XX architectures only 0

The STEST0 register is only available on the 53C720 and higher
architectures.

 STEST1 53c720, 53c770, and 53c8XX architectures only 0

The STEST1 register is only available on the 53C720 and higher
architectures.

 STEST2 53c720, 53c770, and 53c8XX architectures only 0

The STEST2 register is only available on the 53C720 and higher
architectures.

 STEST3 53c720, 53c770, and 53c8XXarchitectures only 0

The STEST3 register is only available on the 53C720 and higher
architectures.

STEST4 53c895 architecture only 0

The STEST4 register is only available on the53C895.

STIME0 53c720, 53c770, and 53c8XX architectures only 0

The STIME0 register is only available on the 53C720 and higher
architecture.

 STIME1 53c720, 53c770, and 53c8XX architectures only 0

The STIME1 register is only available on the 53C720 and higher
architectures.

STORE: 53c810A, 53c825A, 53c860, 53c875, 53c876,
53c885, and 53c895 architectures 0

The STORE instruction is only supported by the 53C810A and
higher architectures

STORE: Count must not exceed 4 bytes 0

Four bytes is the maximum byte count to STORE.

NASM Error Messages
Fatal Errors

Symbios Logic PCI-SCSI Programming Guide A-15

SWIDE 53c720, 53c82X, 53c875, 53c876, 53c885, and
53c895 architectures only 0

The SWIDE register is only available on the Symbios Logic SCSI
processors that support wide SCSI.

TABLE directive not available on 53c700 architecture 0

Table indirect operations are not supported by the 53C700.

Table indirect operations not available on 53c700
architecture 0

Table indirect addressing is not supported by the 53c700
architecture.

Table name expected string 0

The directive TABLE was found without a table name declaration.

Unexpected EOF 0

End of file was found when not expected.

Unresolved Label or Identifier string 0

String was used but never declared as a label, external, relative,
absolute or table.

 WITH or WHEN expected 0

 XOR 53c720, 53c810, and 53c825 only 0

XOR operations are only supported on 53C720 and higher
architectures

Fatal Errors 0

Fatal Error allocating input file buffer(s) 0

Fatal File Not found 0

The file named filename was not found in the path specified.

Fatal Memory allocation error 0

Not enough dynamic memory available to complete assembly of the
file. Try dividing up file or freeing memory.

Fatal No source file specified. 0

A source file to assemble must be specified on the command line. Try
specifying source files first before options.

NASM Error Messages
Warnings

A-16 Symbios Logic PCI-SCSI Programming Guide

Fatal Opening file 0

The filename specified can not be opened for some unknown reason.

Fatal read permission denied for file 0

The filename specified can not be opened with read access.

Warnings 0

 ACK specified multiple times. 0

The ACK bit can only be specified once per instruction.

 ATN specified multiple times. 0

The ATN bit can only be specified once per instruction.

 Cannot extract pass information correctly 0

The pass variable is poorly formatted and may not have been
correctly interpreted.

 CARRY specified multiple times. 0

The CARRY bit can only be specified once per instruction.

 Initializer value truncated to byte value 0

Initialization of data by byte offset only.

 Debug record contains old format EXTERNAL
statement, data size unknown 0

Use the new style EXTERNAL directive where data specifiers are
used.

 Debug record contains old format RELATIVE
statement, Data size unknown 0

Use the new style RELATIVE directive where data specifiers are
used.

 Initializer value truncated to byte 0

Possible truncation of constant value 0

The value of the constant may have been truncated. This is caused by
the ASCII conversion of the value.

NASM Error Messages
Warnings

Symbios Logic PCI-SCSI Programming Guide A-17

 Relative offset value truncated 0

 Source and.bin file have same the name 0

The binary file has the same name as the source. The binary file will
be renamed or not created.

 Source and Error file have same the name 0

The error file has the same name as the source. The error file will be
renamed or not created.

 Source and listing file have the same name 0

The listing file has the same name as the source. The listing file will
be renamed or not created.

 Source and Object file the same name 0

The object file and source file have the same name. The object file
will be renamed or not created

 Source and Out file have the same name 0

The output file and source file have the same name. The output file
will be renamed or not created.

 TARGET specified multiple times. 0

The TARGET bit can only be specified once per instruction

NASM Error Messages
Warnings

A-18 Symbios Logic PCI-SCSI Programming Guide

Register Summaries
SYM53C810A Operating Registers

Symbios Logic PCI-SCSI Programming Guide B-1

Appendix B

Register Summaries

SYM53C810A Operating
Registers 0

Register 00 (80)
SCSI Control Zero (SCNTL0)
Read/Write

Bit 7 ARB1 (Arbitration mode bit 1)
Bit 6 ARB0 (Arbitration mode bit 0)
Bit 5 START (Start sequence)
Bit 4 WATN (Select with SATN/ on a start sequence)
Bit 3 EPC (Enable parity checking)
Bit 2 Reserved
Bit 1 AAP (Assert SATN/ on parity error)
Bit 0 TRG (Target role)

Register 01 (81)
SCSI Control One (SCNTL1)
Read/Write

Bit 7 EXC (Extra clock cycle of data setup)
Bit 6 ADB (Assert SCSI data bus)
Bit 5 DHP (Disable Halt on Parity Error or ATN)

(Target Only)
Bit 4 CON (Connected)
Bit 3 RST (Assert SCSI RST/ signal)
Bit 2 AESP (Assert even SCSI parity (force bad parity))
Bit 1 IARB (Immediate Arbitration)
Bit 0 SST (Start SCSI Transfer)

Register 02 (82)
SCSI Control Two (SCNTL2)
Read/Write

Bit 7 SDU (SCSI Disconnect Unexpected)
Bits 6-0 Reserved

Register 03 (83)
SCSI Control Three (SCNTL3)
Read/Write

Bit 7 Reserved
Bits 6-4 SCF2-0 (Synchronous Clock
Bit 3 Reserved
Bits 2-0 CCF2-0 (Clock Conversion Factor)

Register 04 (84)
SCSI Chip ID (SCID)
Read/Write

Bit 7 Reserved
Bit 6 RRE (Enable Response to

Reselection)
Bit 5 SRE (Enable Response to Selection)
Bit 4-3 Reserved
Bits 2-0 Encoded Chip SCSI ID, bits 2-0

ARB1 ARB0 START WATN EPC RES AAP TRG

7 6 5 4 3 2 1 0

Default>>>

1 1 0 0 0 X 0 0

EXC ADB DHP CON RST AESP IARB SST

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 0 0 0

SDU RES RES RES RES RES RES RES

7 6 5 4 3 2 1 0

Default>>>

0 X X X X X X X

RES SCF2 SCF1 SCF0 RES CCF2 CCF1 CCF0

7 6 5 4 3 2 1 0

Default>>>

X 0 0 0 X 0 0 0

RES RRE SRE RES RES ENC2 ENC1 ENC0

7 6 5 4 3 2 1 0

Default>>>

X 0 0 X X 0 0 0

Register Summaries
SYM53C810A Operating Registers

B-2 Symbios Logic PCI-SCSI Programming Guide

Register 05 (85)
SCSI Transfer (SXFER)
Read/Write

Bits 7-5 TP2-0 (SCSI Synchronous Transfer Period)
Bit 4 Reserved
Bits 3-0 MO3-MO0 (Max SCSI synchronous offset)

Register 06 (86)
SCSI Destination ID (SDID)
Read/Write

Bits 7-3 Reserved
Bits 2-0 Encoded destination SCSI ID

Register 07 (87)
General Purpose (GPREG)
Read/Write

Bits 7-2 Reserved
Bits 1-0 GPIO1-GPIO0 (General Purpose)

Register 08 (88)
SCSI First Byte Received (SFBR)
Read/Write

Register 09 (89)
SCSI Output Control Latch (SOCL)
Read /Write

Bit 7 REQ(Assert SCSI REQ/ signal)
Bit 6 ACK(Assert SCSI ACK/ signal)
Bit 5 BSY(Assert SCSI BSY/ signal)
Bit 4 SEL(Assert SCSI SEL/ signal)
Bit 3 ATN(Assert SCSI ATN/ signal)
Bit 2 MSG(Assert SCSI MSG/ signal)
Bit 1 C/D(Assert SCSI C_D/ signal)
Bit 0 I/O(Assert SCSI I_O/ signal)

Register 0A (8A)
SCSI Selector ID (SSID)
Read Only

Bit 7 VAL (SCSI Valid Bit)
Bits 6-3 Reserved
Bits 2-0 Encoded Destination SCSI ID

Register 0B (8B)
SCSI Bus Control Lines (SBCL)
Read Only

Bit 7 REQ (SREQ/ status)
Bit 6 ACK (SACK/ status)
Bit 5 BSY (SBSY/ status)
Bit 4 SEL (SSEL/ status)
Bit 3 ATN SATN/ status)
Bit 2 MSG (SMSG/ status)
Bit 1 C/D (SC_D/ status)
Bit 0 I/O (SI_O/ status)

TP2 TP1 TP0 RES MO3 MO2 MO1 MO0

7 6 5 4 3 2 1 0

Default>>>

0 0 0 X 0 0 0 0

RES RES RES RES RES ENC2 ENC1 ENC0

7 6 5 4 3 2 1 0

Default>>>

X X X X X 0 0 0

RES RES RES RES RES RES GPIO1 GPIO0

7 6 5 4 3 2 1 0

Default>>>

X X X X X X 0 0

1B7 1B6 1B5 1B4 1B3 1B2 1B1 1B0

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 0 0 0

REQ ACK BSY SEL ATN MSG C/D I/O

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 0 0 0

VAL RES RES RES RES ENID2 ENID1 ENID0

7 6 5 4 3 2 1 0

Default>>>

0 X X X X 0 0 0

REQ ACK BSY SEL ATN MSG C/D I/O

7 6 5 4 3 2 1 0

Default>>>

X X X X X X X X

Register Summaries
SYM53C810A Operating Registers

Symbios Logic PCI-SCSI Programming Guide B-3

Register 0C (8C)
DMA Status (DSTAT)
Read Only

Bit 7 DFE (DMA FIFO empty)
Bit 6 MDPE (Master Data Parity Error)
Bit 5 BF (Bus fault)
Bit 4 ABRT (Aborted)
Bit 3 SSI (Single step interrupt)
Bit 2 SIR (SCRIPTS interrupt

instruction received)
Bit 1 Reserved
Bit 0 IID (Illegal instruction detected)

Register 0D (8D)
SCSI Status Zero (SSTAT0)
Read Only

Bit 7 ILF (SIDL full)
Bit 6 ORF (SODR full)
Bit 5 OLF (SODL full)
Bit 4 AIP (Arbitration in progress)
Bit 3 LOA (Lost arbitration)
Bit 2 WOA (Won arbitration)
Bit 1 RST/ (SCSI RST/ signal)
Bit 0 SDP/ (SCSI SDP/ parity signal)

Register 0E (8E)
SCSI Status One (SSTAT1)
Read Only

Bits 7-4 FF3-FF0 (FIFO flags)
Bit 3 SDPL (Latched SCSI parity)
Bit 2 MSG (SCSI MSG/ signal)
Bit 1 C/D (SCSI C_D/ signal)
Bit 0 I/O (SCSI I_O/ signal)

Register 0F (8F)
SCSI Status Two (SSTAT2)
(Read Only)

Bits 7-2 Reserved
Bit 1 LDSC (Last Disconnect)
Bit 0 Reserved

Registers 10-13 (90-93)
Data Structure Address (DSA)
Read/Write

Register 14 (94)
Interrupt Status (ISTAT)
(Read/Write)

Bit 7 ABRT (Abort operation)
Bit 6 SRST (Software reset)
Bit 5 SIGP (Signal process)
Bit 4 SEM (Semaphore)
Bit 3 CON (Connected)
Bit 2 INTF (Interrupt on the Fly)
Bit 1 SIP (SCSI interrupt pending)
Bit 0 DIP (DMA interrupt pending)

Register 18 (98)
Chip Test Zero (CTEST0)
Read/Write

Register 19 (99)
Chip Test One (CTEST1)
Read Only

Bits 7-4 FMT3-0 (Byte empty in DMA FIFO)
Bits 3-0 FFL3-0 (Byte full in DMA FIFO)

Register 1A (9A)
Chip Test Two (CTEST2)
Read Only

Bit 7 DDIR (Data transfer direction)
Bit 6 SIGP (Signal process)
Bit 5 CIO (Configured as I/O)
Bit 4 CM (Configured as memory)
Bit 3 Reserved
Bit 2 TEOP (SCSI true end of process)
Bit 1 DREQ (Data request status)
Bit 0 DACK (Data acknowledge status)

DFE MDPE BF ABRT SSI SIR RES IID

7 6 5 4 3 2 1 0

Default>>>

1 0 0 0 0 0 X 0

ILF ORF OLF AIP LOA WOA RST SDP0/

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 0 0 0

FF3 FF2 FF1 FF0 SDP0L MSG C/D I/O

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 X X X X

RES RES RES RES RES RES LDSC RES

7 6 5 4 3 2 1 0

Default>>>

X X X X X X 1 X

ABRT SRST SIGP SEM CON INTF SIP DIP

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 0 0 0

FMT3 FMT2 FMT1 FMT0 FFL3 FFL2 FFL1 FFL0

7 6 5 4 3 2 1 0

Default>>>

1 1 1 1 0 0 0 0

DDIR SIGP CIO CM RES TEOP DREQ DACK

7 6 5 4 3 2 1 0

Default>>>

0 0 X X 0 0 0 1

Register Summaries
SYM53C810A Operating Registers

B-4 Symbios Logic PCI-SCSI Programming Guide

Register 1B (9B)
Chip Test Three (CTEST3)
Read/Write

Bits 7-4 V3-V0 (Chip revision level)
Bit 3 FLF (Flush DMA FIFO)
Bit 2 CLF (Clear DMA FIFO)
Bit 1 FM (Fetch pin mode)
Bit 0 WRIE (Write and Invalidate Enable)

Registers 1C-1F (9C-9F)
Temporary (TEMP)
Read/Write

Register 20 (A0)
DMA FIFO (DFIFO)
Read/Write

Bit 7 Reserved
Bits 6-0 BO6-BO0 (Byte offset counter)

Register 21 (A1)
Chip Test Four (CTEST4)
Read/Write

Bit 7 BDIS (Burst Disable)
Bit 6 ZMOD (High impedance mode)
Bit 5 ZSD (SCSI Data High Impedance)
Bit 4 SRTM (Shadow Register Test Mode)
Bit 3 MPEE (Master Parity Error Enable)
Bits 2-0 FBL2-FBL0 (FIFO byte control)

Register 22 (A2)
Chip Test Five (CTEST5)
Read/Write

Bit 7 ADCK (Clock address incrementor)
Bit 6 BBCK (Clock byte counter)
Bit 5 Reserved
Bit 4 MASR (Master control for set or reset pulses)
Bit 3 DDIR (DMA direction)
Bits 2-0 Reserved

Register 23 (A3)
Chip Test Six (CTEST6)
Read/Write

Bits 7-0 DF7-DF0 (DMA FIFO)

Registers 24-26 (A4-A6)
DMA Byte Counter (DBC)
Read/Write

Register 27 (A7)
DMA Command (DCMD)
Read/Write

Registers 28-2B (A8-AB)
DMA Next Address (DNAD)
Read/Write

Registers 2C-2F (AC-AF)
DMA SCRIPTS Pointer (DSP)
Read/Write

Registers 30-33 (B0-B3)
DMA SCRIPTS Pointer Save (DSPS)
Read/Write

Registers 34-37 (B4-B7)
Scratch Register A (SCRATCH A)
Read/Write

Register 38 (B8)
DMA Mode (DMODE)
Read/Write

Bit 7-6 BL1-BL0 (Burst length)
Bit 5 SIOM (Source I/O-Memory Enable)
Bit 4 DIOM (Destination I/O-Memory Enable)
Bit 3 ERL (Enable Read Line)
Bit 2 ERMP (Enable Read Multiple)
Bit 1 BOF (Burst Op Code Fetch Enable)
Bit 0 MAN (Manual Start Mode)

Register 39 (B9)
DMA Interrupt Enable (DIEN)
Read/Write

Bit 7 Reserved
Bit 6 MDPE (Master Data Parity Error)
Bit 5 BF (Bus fault)
Bit 4 ABRT (Aborted)
Bit 3 SSI (Single step interrupt)
Bit 2 SIR (SCRIPTS interrupt

instruction received
Bit 1 Reserved
Bit 0 IID (Illegal instruction detected)

V3 V2 V1 V0 FLF CLF FM WRIE

7 6 5 4 3 2 1 0

Default>>>

X X X X 0 0 0 0

RES BO6 BO5 BO4 Bo3 BO2 BO1 BO0

7 6 5 4 3 2 1 0

Default>>>

X 0 0 0 0 0 0 0

BDIS ZMOD ZSD SRTM MPEE FBL2 FBL1 FBL0

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 0 0 0

ADCK BBCK RES MASR DDIR RES RES RES

7 6 5 4 3 2 1 0

Default>>>

0 0 X 0 0 X X X

DF7 DF6 DF5 DF4 DF3 DF2 DF1 DF0

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 0 0 0

BL1 BL0 SIOM DIOM ERL ERMP BOF MAN

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 0 0 0

RES MDPE BF ABRT SSI SIR RES IID

7 6 5 4 3 2 1 0

Default>>>

X 0 0 0 0 0 X 0

Register Summaries
SYM53C810A Operating Registers

Symbios Logic PCI-SCSI Programming Guide B-5

Register 3A (BA)
Scratch Byte Register (SBR)
Read/Write

Register 3B (BB)
DMA Control (DCNTL)
Read/Write

Bit 7 CLSE (Cache Line Size Enable)
Bit 6 PFF (Pre-Fetch Flush)
Bit 5 PFEN (Pre-fetch Enable)
Bit 4 SSM (Single-step mode)
Bit 3 IRQM (IRQ Mode)
Bit 2 STD (Start DMA operation)
Bit 1 IRQD (IRQ Disable)
Bit 0 COM (53C700 compatibility)

Register 3C-3F (BC-BF)
Adder Sum Output (ADDER)
Read Only

Register 40 (C0)
SCSI Interrupt Enable Zero (SIEN0)
Read/Write

Bit 7 M/A (SCSI Phase Mismatch -
Initiator Mode; SCSI ATN
Condition - Target Mode)

Bit 6 CMP (Function Complete)
Bit 5 SEL (Selected)
Bit 4 RSL (Reselected)
Bit 3 SGE (SCSI Gross Error)
Bit 2 UDC (Unexpected Disconnect)
Bit 1 RST (SCSI Reset Condition)
Bit 0 PAR (SCSI Parity Error)

Register 41 (C1)
SCSI Interrupt Enable One (SIEN1)
Read/Write

Bits 7-3 Reserved
Bit 2 STO (Selection or Reselection Time-out)
Bit 1 GEN (General Purpose Timer Expired)
Bit 0 HTH (Handshake to Handshake timer Expired)

Register 42 (C2)
SCSI Interrupt Status Zero (SIST0)
Read Only

Bit 7 M/A (Initiator Mode: Phase Mismatch; Target
Mode: SATN/ Active)

Bit 6 CMP (Function Complete)
Bit 5 SEL (Selected)
Bit 4 RSL (Reselected)
Bit 3 SGE (SCSI Gross Error)
Bit 2 UDC (Unexpected Disconnect)
Bit 1 RST (SCSI RST/ Received)
Bit 0 PAR (Parity Error)

Register 43 (C3)
SCSI Interrupt Status One (SIST1)
Read Only

Bits 7-3 Reserved
Bit 2 STO (Selection or Reselection Time-out)
Bit 1 GEN (General Purpose Timer Expired)
Bit 0 HTH (Handshake-to-Handshake Timer Expired)

Register 44 (C4)
SCSI Longitudinal Parity (SLPAR)
Read/Write

Register 46 (C6)
Memory Access Control (MACNTL)
Read/Write

Bits 7-4 TYP3-0 (Chip Type)
Bit 3 DWR (DataWR)
Bit 2 DRD (DataRD)
Bit 1 PSCPT (Pointer SCRIPTS)
Bit 0 SCPTS (SCRIPTS)

Register 47 (C7)
General Purpose Pin Control (GPCNTL)
Read/Write

Bit 7 Master Enable
Bit 6 Fetch Enable
Bit 5 -2 Reserved
Bits 1-0 GPIO1_EN– GPIO0_EN (GPIO Enable)

CLSE PFF PFEN SSM IRQM STD IRQD COM

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 0 0 0

M/A CMP SEL RSL SGE UDC RST PAR

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 0 0 0

RES RES RES RES RES STO GEN HTH

7 6 5 4 3 2 1 0

Default>>>

X X X X X 0 0 0

M/A CMP SEL RSL SGE UDC RST PAR

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 0 0 0

RES RES RES RES RES STO GEN HTH

7 6 5 4 3 2 1 0

Default>>>

X X X X X 0 0 0

TYP3 TYP2 TYP1 TYP0 DWR DRD PSCPT SCPTS

7 6 5 4 3 2 1 0

Default>>>

0 1 0 1 0 0 0 0

ME FE RES RES RES RES GPIO1 GPIO0

7 6 5 4 3 2 1 0

Default>>>

0 0 X 0 1 1 1 1

Register Summaries
SYM53C810A Operating Registers

B-6 Symbios Logic PCI-SCSI Programming Guide

Register 48 (C8)
SCSI Timer Zero (STIME0)
Read /Write

Bits 7-4 HTH (Handshake-to-Handshake Timer Period)
Bits 3-0 SEL (Selection Time-Out)

Register 49 (C9)
SCSI Timer One (STIME1)
Read/Write

Bits 7-4 Reserved
Bits 3-0 GEN3-0 (General Purpose Timer Period)

Register 4A (CA)
Response ID (RESPID)
Read/Write

Register 4C (CC)
SCSI Test Zero (STEST0)
Read Only

Bit 7 Reserved
Bits 6-4 SSAID (SCSI Selected As ID)
Bit 3 SLT (Selection response logic test)
Bit 2 ART (Arbitration Priority Encoder Test)
Bit 1 SOZ (SCSI Synchronous Offset Zero)
Bit 0 SOM (SCSI Synchronous Offset Maximum)

Register 4D (CD)
SCSI Test One (STEST1)
Read/Write

Bit 7 SCLK
Bit 6 SISO (SCSI Isolation Mode)
Bits 5-0 Reserved

Register 4E (CE)
SCSI Test Two (STEST2)
Read/Write

Bit 7 SCE (SCSI Control Enable)
Bit 6 ROF (Reset SCSI Offset)
Bit 5 Reserved
Bit 4 SLB (SCSI Loopback Mode)
Bit 3 SZM (SCSI High-Impedance Mode)
Bit 2 Reserved
Bit 1 EXT(Extend SREQ/SACK

filtering)
Bit 0 LOW (SCSI Low level Mode)

Register 4F (CF)
SCSI Test Three (STEST3)
Read/Write

Bit 7 TE (TolerANT Enable)
Bit 6 STR (SCSI FIFO Test Read)
Bit 5 HSC (Halt SCSI Clock)
Bit 4 DSI (Disable Single Initiator Response)
Bit 3 Reserved
Bit 2 TTM (Timer Test Mode)
Bit 1 CSF (Clear SCSI FIFO)
Bit 0 STW (SCSI FIFO Test Write)

Register 50 (D0)
SCSI Input Data Latch (SIDL)
Read Only

Registers 54 (D4)
SCSI Output Data Latch (SODL)
Read/Write

Registers 58 (D8)
SCSI Bus Data Lines (SBDL)
Read Only

Registers 5C-5F (DC-DF)
Scratch Register B (SCRATCHB)
(Read/Write)

HTH HTH HTH HRH SEL SEL SEL SEL

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 0 0 0

RES RES RES RES GEN3 GEN2 GEN1 GEN0

7 6 5 4 3 2 1 0

Default>>>

X X X X 0 0 0 0

RES SSAID2 SSAID1 SSAID0 SLT ART SOZ SOM

7 6 5 4 3 2 1 0

Default>>>

X X X X 0 X 1 1

SCLK SISO RES RES RES RES RES RES

7 6 5 4 3 2 1 0

Default>>>

0 0 X X X X X X

SCE ROF RES SLB SZM RES EXT LOW

7 6 5 4 3 2 1 0

Default>>>

0 0 X 0 0 X 0 0

TE STR HSC DSI RES TTM CSF STW

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 X 0 0 0

Register Summaries
SYM53C815 Operating Registers

Symbios Logic PCI-SCSI Programming Guide B-7

SYM53C815 Operating
Registers 0

Register 00 (80)
SCSI Control Zero (SCNTL0)
Read/Write

Bit 7 ARB1 (Arbitration mode bit 1)
Bit 6 ARB0 (Arbitration mode bit 0)
Bit 5 START (Start sequence)
Bit 4 WATN (Select with SATN/ on a start sequence)
Bit 3 EPC (Enable parity checking)
Bit 2 Reserved
Bit 1 AAP (Assert SATN/ on parity error)
Bit 0 TRG (Target role)

Register 01 (81)
SCSI Control One (SCNTL1)
Read/Write

Bit 7 EXC (Extra clock cycle of data setup)
Bit 6 ADB (Assert SCSI data bus)
Bit 5 DHP (Disable Halt on Parity Error or ATN) (Tar-

get Only)
Bit 4 CON (Connected)
Bit 3 RST (Assert SCSI RST/ signal)
Bit 2 AESP (Assert even SCSI parity (force bad parity))
Bit 1 IARB (Immediate Arbitration)
Bit 0 SST (Start SCSI Transfer)

Register 02 (82)
SCSI Control Two (SCNTL2)
Read/Write

Bit 7 SDU (SCSI Disconnect Unexpected)
Bits 6-0 Reserved

Register 03 (83)
SCSI Control Three (SCNTL3)
Read/Write

Bit 7 Reserved
Bits 6-4 SCF2-0 (Synchronous Clock
Bit 3 Reserved
Bits 2-0 CCF2-0 (Clock Conversion Factor)

Register 04 (84)
SCSI Chip ID (SCID)
Read/Write

Bit 7 Reserved
Bit 6 RRE (Enable Response to

Reselection)
Bit 5 SRE (Enable Response to Selection)
Bit 4-3 Reserved
Bits 2-0 Encoded Chip SCSI ID, bits 2-0

Register 05 (85)
SCSI Transfer (SXFER)
Read/Write

Bits 7-5 TP2-0 (SCSI Synchronous Transfer Period)
Bit 4 Reserved
Bits 3-0 MO3-MO0 (Max SCSI synchronous offset)

Register 06 (86)
SCSI Destination ID (SDID)
Read/Write

Bits 7-3 Reserved
Bits 2-0 Encoded destination SCSI ID

ARB1 ARB0 START WATN EPC RES AAP TRG

7 6 5 4 3 2 1 0

Default>>>

1 1 0 0 0 X 0 0

EXC ADB DHP CON RST AESP IARB SST

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 0 0 0

SDU RES RES RES RES RES RES RES

7 6 5 4 3 2 1 0

Default>>>

0 X X X X X X X

RES SCF2 SCF1 SCF0 RES CCF2 CCF1 CCF0

7 6 5 4 3 2 1 0

Default>>>

X 0 0 0 X 0 0 0

RES RRE SRE RES RES ENC2 ENC1 ENC0

7 6 5 4 3 2 1 0

Default>>>

X 0 0 X X 0 0 0

TP2 TP1 TP0 RES MO3 MO2 MO1 MO0

7 6 5 4 3 2 1 0

Default>>>

0 0 0 X 0 0 0 0

RES RES RES RES RES ENC2 ENC1 ENC0

7 6 5 4 3 2 1 0

Default>>>

X X X X X 0 0 0

Register Summaries
SYM53C815 Operating Registers

B-8 Symbios Logic PCI-SCSI Programming Guide

Register 07 (87)
General Purpose (GPREG)
Read/Write

Bits 7-2 Reserved
Bits 1-0 GPIO1-GPIO0 (General Purpose)

Register 08 (88)
SCSI First Byte Received (SFBR)
Read/Write

Register 09 (89)
SCSI Output Control Latch (SOCL)
Read /Write

Bit 7 REQ(Assert SCSI REQ/ signal)
Bit 6 ACK(Assert SCSI ACK/ signal)
Bit 5 BSY(Assert SCSI BSY/ signal)
Bit 4 SEL(Assert SCSI SEL/ signal)
Bit 3 ATN(Assert SCSI ATN/ signal)
Bit 2 MSG(Assert SCSI MSG/ signal)
Bit 1 C/D(Assert SCSI C_D/ signal)
Bit 0 I/O(Assert SCSI I_O/ signal)

Register 0A (8A)
SCSI Selector ID (SSID)
Read Only

Bit 7 VAL (SCSI Valid Bit)
Bits 6-3 Reserved
Bits 2-0 Encoded Destination SCSI ID

Register 0B (8B)
SCSI Bus Control Lines (SBCL)
Read Only

Bit 7 REQ (SREQ/ status)
Bit 6 ACK (SACK/ status)
Bit 5 BSY (SBSY/ status)
Bit 4 SEL (SSEL/ status)
Bit 3 ATN SATN/ status)
Bit 2 MSG (SMSG/ status)
Bit 1 C/D (SC_D/ status)
Bit 0 I/O (SI_O/ status)

Register 0C (8C)
DMA Status (DSTAT)
Read Only

Bit 7 DFE (DMA FIFO empty)
Bit 6 MDPE (Master Data Parity Error)
Bit 5 BF (Bus fault)
Bit 4 ABRT (Aborted)
Bit 3 SSI (Single step interrupt)
Bit 2 SIR (SCRIPTS interrupt

instruction received)
Bit 1 Reserved
Bit 0 IID (Illegal instruction detected)

Register 0D (8D)
SCSI Status Zero (SSTAT0)
Read Only

Bit 7 ILF (SIDL full)
Bit 6 ORF (SODR full)
Bit 5 OLF (SODL full)
Bit 4 AIP (Arbitration in progress)
Bit 3 LOA (Lost arbitration)
Bit 2 WOA (Won arbitration)
Bit 1 RST/ (SCSI RST/ signal)
Bit 0 SDP/ (SCSI SDP/ parity signal)

RES RES RES GPIO4 GPIO3 GPIO2 GPIO1 GPIO0

7 6 5 4 3 2 1 0

Default>>>

X X X X X X 0 0

1B7 1B6 1B5 1B4 1B3 1B2 1B1 1B0

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 0 0 0

REQ ACK BSY SEL ATN MSG C/D I/O

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 0 0 0

VAL RES RES RES RES ENID2 ENID1 ENID0

7 6 5 4 3 2 1 0

Default>>>

0 X X X X 0 0 0

REQ ACK BSY SEL ATN MSG C/D I/O

7 6 5 4 3 2 1 0

Default>>>

X X X X X X X X

DFE MDPE BF ABRT SSI SIR RES IID

7 6 5 4 3 2 1 0

Default>>>

1 0 0 0 0 0 X 0

ILF ORF OLF AIP LOA WOA RST SDP0/

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 0 0 0

Register Summaries
SYM53C815 Operating Registers

Symbios Logic PCI-SCSI Programming Guide B-9

Register 0E (8E)
SCSI Status One (SSTAT1)
Read Only

Bits 7-4 FF3-FF0 (FIFO flags)
Bit 3 SDPL (Latched SCSI parity)
Bit 2 MSG (SCSI MSG/ signal)
Bit 1 C/D (SCSI C_D/ signal)
Bit 0 I/O (SCSI I_O/ signal)

Register 0F (8F)
SCSI Status Two (SSTAT2)
(Read Only)

Bits 7-2 Reserved
Bit 1 LDSC (Last Disconnect)
Bit 0 Reserved

Registers 10-13 (90-93)
Data Structure Address (DSA)
Read/Write

Register 14 (94)
Interrupt Status (ISTAT)
(Read/Write)

Bit 7 ABRT (Abort operation)
Bit 6 SRST (Software reset)
Bit 5 SIGP (Signal process)
Bit 4 SEM (Semaphore)
Bit 3 CON (Connected)
Bit 2 INTF (Interrupt on the Fly)
Bit 1 SIP (SCSI interrupt pending)
Bit 0 DIP (DMA interrupt pending)

Register 18 (98)
Chip Test Zero (CTEST0)
Read/Write

Register 19 (99)
Chip Test One (CTEST1)
Read Only

Bits 7-4 FMT3-0 (Byte empty in DMA FIFO)
Bits 3-0 FFL3-0 (Byte full in DMA FIFO)

Register 1A (9A)
Chip Test Two (CTEST2)
Read Only

Bit 7 DDIR (Data transfer direction)
Bit 6 SIGP (Signal process)
Bit 5 CIO (Configured as I/O)
Bit 4 CM (Configured as memory)
Bit 3 Reserved
Bit 2 TEOP (SCSI true end of process)
Bit 1 DREQ (Data request status)
Bit 0 DACK (Data acknowledge status)

Register 1B (9B)
Chip Test Three (CTEST3)
Read/Write

Bits 7-4 V3-V0 (Chip revision level)
Bit 3 FLF (Flush DMA FIFO)
Bit 2 CLF (Clear DMA FIFO)
Bit 1 FM (Fetch pin mode)
Bit 0 Reserved

Registers 1C-1F (9C-9F)
Temporary (TEMP)
Read/Write

Register 20 (A0)
DMA FIFO (DFIFO)
Read/Write

Bit 7 Reserved
Bits 6-0 BO6-BO0 (Byte offset counter)

Register 21 (A1)
Chip Test Four (CTEST4)
Read/Write

Bit 7 BDIS (Burst Disable)
Bit 6 ZMOD (High impedance mode)
Bit 5 ZSD (SCSI Data High Impedance)
Bit 4 SRTM (Shadow Register Test Mode)
Bit 3 MPEE (Master Parity Error Enable)
Bits 2-0 FBL2-FBL0 (FIFO byte control)

FF3 FF2 FF1 FF0 SDP0L MSG C/D I/O

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 X X X X

RES RES RES RES RES RES LDSC RES

7 6 5 4 3 2 1 0

Default>>>

X X X X X X 1 X

ABRT SRST SIGP SEM CON INTF SIP DIP

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 0 0 0

FMT3 FMT2 FMT1 FMT0 FFL3 FFL2 FFL1 FFL0

7 6 5 4 3 2 1 0

Default>>>

1 1 1 1 0 0 0 0

DDIR SIGP CIO CM RES TEOP DREQ DACK

7 6 5 4 3 2 1 0

Default>>>

0 0 X X 0 0 0 1

V3 V2 V1 V0 FLF CLF FM RES

7 6 5 4 3 2 1 0

Default>>>

X X X X 0 0 0 0

RES BO6 BO5 BO4 Bo3 BO2 BO1 BO0

7 6 5 4 3 2 1 0

Default>>>

X 0 0 0 0 0 0 0

BDIS ZMOD ZSD SRTM MPEE FBL2 FBL1 FBL0

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 0 0 0

Register Summaries
SYM53C815 Operating Registers

B-10 Symbios Logic PCI-SCSI Programming Guide

Register 22 (A2)
Chip Test Five (CTEST5)
Read/Write

Bit 7 ADCK (Clock address incrementor)
Bit 6 BBCK (Clock byte counter)
Bit 5 Reserved
Bit 4 MASR (Master control for set or reset pulses)
Bit 3 DDIR (DMA direction)
Bits 2-0 Reserved

Register 23 (A3)
Chip Test Six (CTEST6)
Read/Write

Bits 7-0 DF7-DF0 (DMA FIFO)

Registers 24-26 (A4-A6)
DMA Byte Counter (DBC)
Read/Write

Register 27 (A7)
DMA Command (DCMD)
Read/Write

Registers 28-2B (A8-AB)
DMA Next Address (DNAD)
Read/Write

Registers 2C-2F (AC-AF)
DMA SCRIPTS Pointer (DSP)
Read/Write

Registers 30-33 (B0-B3)
DMA SCRIPTS Pointer Save (DSPS)
Read/Write

Registers 34-37 (B4-B7)
Scratch Register A (SCRATCH A)
Read/Write

Register 38 (B8)
DMA Mode (DMODE)
Read/Write

Bit 7-6 BL1-BL0 (Burst length)
Bit 5 SIOM (Source I/O-Memory Enable)
Bit 4 DIOM (Destination I/O-Memory Enable)
Bit 3 ERL (Enable Read Line)
Bit 2 Reserved
Bit 2 Reserved
Bit 1 BOF (Burst Op Code Fetch Enable)
Bit 0 MAN (Manual Start Mode)

Register 39 (B9)
DMA Interrupt Enable (DIEN)
Read/Write

Bit 7 Reserved
Bit 6 MDPE (Master Data Parity Error)
Bit 5 BF (Bus fault)
Bit 4 ABRT (Aborted)
Bit 3 SSI (Single step interrupt)
Bit 2 SIR (SCRIPTS interrupt

instruction received
Bit 1 Reserved
Bit 0 IID (Illegal instruction detected)

Register 3A (BA)
DMA Watchdog Timer (DWT)
Read/Write

Register 3B (BB)
DMA Control (DCNTL)
Read/Write

Bits 7-5 Reserved
Bit 4 SSM (Single-step mode)
Bit 3 IRQM (IRQ Mode)
Bit 2 STD (Start DMA operation)
Bit 1 Reserved
Bit 0 COM (53C700 compatibility)

Register 3C-3F (BC-BF)
Adder Sum Output (ADDER)
Read Only

Register 40 (C0)
SCSI Interrupt Enable Zero (SIEN0)
Read/Write

Bit 7 M/A (SCSI Phase Mismatch -
Initiator Mode; SCSI ATN
Condition - Target Mode)

Bit 6 CMP (Function Complete)
Bit 5 SEL (Selected)
Bit 4 RSL (Reselected)
Bit 3 SGE (SCSI Gross Error)
Bit 2 UDC (Unexpected Disconnect)
Bit 1 RST (SCSI Reset Condition)
Bit 0 PAR (SCSI Parity Error)

ADCK BBCK RES MASR DDIR RES RES RES

7 6 5 4 3 2 1 0

Default>>>

0 0 X 0 0 X X X

DF7 DF6 DF5 DF4 DF3 DF2 DF1 DF0

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 0 0 0

BL1 BL0 SIOM DIOM RES RES BOF MAN

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 0 0 0

RES MDPE BF ABRT SSI SIR RES IID

7 6 5 4 3 2 1 0

Default>>>

X 0 0 0 0 0 X 0

RES RES RES SSM IRQM STD RES COM

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 0 0 0

M/A CMP SEL RSL SGE UDC RST PAR

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 0 0 0

Register Summaries
SYM53C815 Operating Registers

Symbios Logic PCI-SCSI Programming Guide B-11

Register 41 (C1)
SCSI Interrupt Enable One (SIEN1)
Read/Write

Bits 7-3 Reserved
Bit 2 STO (Selection or Reselection Time-out)
Bit 1 GEN (General Purpose Timer Expired)
Bit 0 HTH (Handshake to Handshake timer Expired)

Register 42 (C2)
SCSI Interrupt Status Zero (SIST0)
Read Only

Bit 7 M/A (Initiator Mode: Phase Mismatch; Target
Mode: SATN/ Active)

Bit 6 CMP (Function Complete)
Bit 5 SEL (Selected)
Bit 4 RSL (Reselected)
Bit 3 SGE (SCSI Gross Error)
Bit 2 UDC (Unexpected Disconnect)
Bit 1 RST (SCSI RST/ Received)
Bit 0 PAR (Parity Error)

Register 43 (C3)
SCSI Interrupt Status One (SIST1)
Read Only

Bits 7-3 Reserved
Bit 2 STO (Selection or Reselection Time-out)
Bit 1 GEN (General Purpose Timer Expired)
Bit 0 HTH (Handshake-to-Handshake Timer Expired)

Register 44 (C4)
SCSI Longitudinal Parity (SLPAR)
Read/Write

Register 46 (C6)
Memory Access Control (MACNTL)
Read/Write

Bits 7-4 TYP3-0 (Chip Type)
Bit 3 DWR (DataWR)
Bit 2 DRD (DataRD)
Bit 1 PSCPT (Pointer SCRIPTS)
Bit 0 SCPTS (SCRIPTS)

Register 47 (C7)
General Purpose Pin Control (GPCNTL)
Read/Write

Bit 7 Master Enable
Bit 6 Fetch Enable
Bit 5 Reserved
Bits 4-2 GPIO4_EN–GPIO2_EN (GPIO Enable)
Bits 1-0 GPIO1_EN– GPIO0_EN (GPIO Enable)

Register 48 (C8)
SCSI Timer Zero (STIME0)
Read /Write

Bits 7-4 HTH (Handshake-to-Handshake Timer Period)
Bits 3-0 SEL (Selection Time-Out)

Register 49 (C9)
SCSI Timer One (STIME1)
Read/Write

Bits 7-4 Reserved
Bits 3-0 GEN3-0 (General Purpose Timer Period)

Register 4A (CA)
Response ID (RESPID)
Read/Write

Register 4C (CC)
SCSI Test Zero (STEST0)
Read Only

Bits 7-4 Reserved
Bit 3 SLT (Selection response logic test)
Bit 2 ART (Arbitration Priority Encoder Test)
Bit 1 SOZ (SCSI Synchronous Offset Zero)
Bit 0 SOM (SCSI Synchronous Offset Maximum)

RES RES RES RES RES STO GEN HTH

7 6 5 4 3 2 1 0

Default>>>

X X X X X 0 0 0

M/A CMP SEL RSL SGE UDC RST PAR

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 0 0 0

RES RES RES RES RES STO GEN HTH

7 6 5 4 3 2 1 0

Default>>>

X X X X X 0 0 0

TYP3 TYP2 TYP1 TYP0 DWR DRD PSCPT SCPTS

7 6 5 4 3 2 1 0

Default>>>

00 11 00 10 0 0 0 0

ME FE RES GPIO4 GPIO3 GPIO2 GPIO1 GPIO0

7 6 5 4 3 2 1 0

Default>>>

0 0 X 0 1 1 1 1

HTH HTH HTH HRH SEL SEL SEL SEL

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 0 0 0

RES RES RES RES GEN3 GEN2 GEN1 GEN0

7 6 5 4 3 2 1 0

Default>>>

X X X X 0 0 0 0

RES RES RES RES SLT ART SOZ SOM

7 6 5 4 3 2 1 0

Default>>>

X X X X 0 X 1 1

Register Summaries
SYM53C825A Operating Registers

B-12 Symbios Logic PCI-SCSI Programming Guide

Register 4D (CD)
SCSI Test One (STEST1)
Read/Write

Bit 7 SCLK
Bits 5-0 Reserved

Register 4E (CE)
SCSI Test Two (STEST2)
Read/Write

Bit 7 SCE (SCSI Control Enable)
Bit 6 ROF (Reset SCSI Offset)
Bit 5 Reserved
Bit 4 SLB (SCSI Loopback Mode)
Bit 3 SZM (SCSI High-Impedance Mode)
Bit 2 Reserved
Bit 1 EXT(Extend SREQ/SACK

filtering)
Bit 0 LOW (SCSI Low level Mode)

Register 4F (CF)
SCSI Test Three (STEST3)
Read/Write

Bit 7 TE (TolerANT Enable)
Bit 6 STR (SCSI FIFO Test Read)
Bit 5 HSC (Halt SCSI Clock)
Bit 4 DSI (Disable Single Initiator Response)
Bit 3 Reserved
Bit 2 TTM (Timer Test Mode)
Bit 1 CSF (Clear SCSI FIFO)
Bit 0 STW (SCSI FIFO Test Write)

Register 50 (D0)
SCSI Input Data Latch (SIDL)
Read Only

Registers 54 (D4)
SCSI Output Data Latch (SODL)
Read/Write

Registers 58 (D8)
SCSI Bus Data Lines (SBDL)
Read Only

Registers 5C-5F (DC-DF)
Scratch Register B (SCRATCHB)
(Read/Write)

SYM53C825A Operating
Registers 0

Register 00 (80)
 SCSI Control Zero (SCNTL0)
Read/Write

Bit 7 ARB1 (Arbitration Mode bit 1)
Bit 6 ARB0 (Arbitration Mode bit 0)
Bit 5 START (Start Sequence)
Bit 4 WATN (Select with SATN/ on a Start Sequence)
Bit 3 EPC (Enable Parity Checking)
Bit 2 Reserved
Bit 1 AAP (Assert SATN/ on Parity Error)
Bit 0 TRG (Target Mode)

Register 01 (81)
SCSI Control One (SCNTL1)
Read/Write

Bit 7 EXC (Extra Clock Cycle of Data Setup)
Bit 6 ADB (Assert SCSI Data Bus)
Bit 5 DHP (Disable Halt on Parity Error or ATN) (Tar-

get Only)
Bit 4 CON (Connected)
Bit 3 RST (Assert SCSI RST/ Signal)
Bit 2 AESP (Assert Even SCSI Parity (force bad par-

ity))
Bit 1 IARB (Immediate Arbitration)
Bit 0 SST (Start SCSI Transfer)

Register 02 (82)
SCSI Control Two (SCNTL2)
Read/Write

Bit 7 SDU (SCSI Disconnect Unexpected)
Bit 6 CHM (Chained Mode)
Bit 5 SLPMD (SLPAR Mode Bit)
Bit 4 SLPHBEN (SLPAR High Byte Enable)
Bit 3 WSS (Wide SCSI Send)
Bit 2 VUE0 (Vendor Unique Enhancements bit 0)
Bit 1 VUE1 (Vendor Unique Enhancements bit 1)
Bit 0 WSR (Wide SCSI Receive)

SCLK RES RES RES RES RES RES RES

7 6 5 4 3 2 1 0

Default>>>

0 0 X X X X X X

SCE ROF RES SLB SZM RES EXT LOW

7 6 5 4 3 2 1 0

Default>>>

0 0 X 0 0 X 0 0

TE STR HSC DSI RES TTM CSF STW

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 X 0 0 0

ARB1 ARB0 START WATN EPC RES AAP TRG

7 6 5 4 3 2 1 0

Default>>>

1 1 0 0 0 X 0 0

EXC ADB DHP CON RST AESP IARB SST

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 0 0 0

SDU CHM SLPMD SLPHBEN WSS VUE0 VUE1 WSR

7 6 5 4 3 2 1 0

Default>>>

0 0 X0 X0 0 0X 0X 0

Register Summaries
SYM53C825A Operating Registers

Symbios Logic PCI-SCSI Programming Guide B-13

Register 03 (83)
SCSI Control Three (SCNTL3)
Read/Write

Bit 7 Reserved
Bits 6-4 SCF2-0 (Synchronous Clock

Conversion Factor)
Bit 3 EWS (Enable Wide SCSI)
Bits 2-0 CCF2-0 (Clock Conversion Factor)

Register 04 (84)
SCSI Chip ID (SCID)
Read/Write

Bit 7 Reserved
Bit 6 RRE (Enable Response to

Reselection)
Bit 5 SRE (Enable Response to Selection)
Bit 4 Reserved
Bits 3-0 Encoded Chip SCSI ID, bits 3-0

Register 05 (85)
SCSI Transfer (SXFER)
Read/Write

Bits 7-5 TP2-0 (SCSI Transfer Period)
Bits 4-0 MO4-MO0 (Max SCSI Synchronous Offset)

Register 06 (86)
SCSI Destination ID (SDID)
Read/Write

Bits 7-4 Reserved
Bits 3-0 Encoded Destination SCSI ID

Register 07 (87)
General Purpose (GPREG)
Read/Write

Bits 7-5 Reserved
Bits 4-0 GPIO4-GPIO0 (General Purpose)

Register 08 (88)
SCSI First Byte Received (SFBR)
Read/Write

Register 09 (89)
SCSI Output Control Latch (SOCL)
Read /Write

Bit 7 REQ(Assert SCSI REQ/ Signal)
Bit 6 ACK(Assert SCSI ACK/ Signal)
Bit 5 BSY(Assert SCSI BSY/ Signal)
Bit 4 SEL(Assert SCSI SEL/ Signal)
Bit 3 ATN(Assert SCSI ATN/ Signal)
Bit 2 MSG(Assert SCSI MSG/ Signal)
Bit 1 C/D(Assert SCSI C_D/ Signal)
Bit 0 I/O(Assert SCSI I_O/ Signal)

Register 0A (09)
SCSI Selector ID (SSID)
Read Only

Bit 7 VAL (SCSI Valid)
Bits 6-4 Reserved
Bits 3-0 Encoded Destination SCSI ID

Register 0B (8B)
SCSI Bus Control Lines (SBCL)
Read Only

Bit 7 REQ (SREQ/ Status)
Bit 6 ACK (SACK/ Status)
Bit 5 BSY (SBSY/ Status)
Bit 4 SEL (SSEL/ Status)
Bit 3 ATN (SATN/ Status)
Bit 2 MSG (SMSG/ Status)
Bit 1 C/D (SC_D/ Status)
Bit 0 I/O (SI_O/ Status)

RES SCF2 SCF1 SCF0 EWS CCF2 CCF1 CCF0

7 6 5 4 3 2 1 0

Default>>>

X0 0 0 0 0 0 0 0

RES RRE SRE RES ENC3 ENC2 ENC1 ENC0

7 6 5 4 3 2 1 0

Default>>>

X 0 0 X 0 0 0 0

TP2 TP1 TP0 MO4 MO3 MO2 MO1 MO0

7 6 5 4 3 2 1 0

Default>>>

0 0 0 X0 0 0 0 0

RES RES RES RES ENC3 ENC2 ENC1 ENC0

7 6 5 4 3 2 1 0

Default>>>

X X X X 0 0 0 0

RES RES RES GPIO4 GPIO3 GPIO2 GPIO1 GPIO0

7 6 5 4 3 2 1 0

Default>>>

X X X 0 X X X X

1B7 1B6 1B5 1B4 1B3 1B2 1B1 1B0

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 0 0 0

REQ ACK BSY SEL ATN MSG C/D I/O

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 0 0 0

VAL RES RES RES ENID3 ENID2 ENID1 ENID0

7 6 5 4 3 2 1 0

Default>>>

0 X X X 0 0 0 0

REQ ACK BSY SEL ATN MSG C/D I/O

7 6 5 4 3 2 1 0

Default>>>

X X X X X X X X

Register Summaries
SYM53C825A Operating Registers

B-14 Symbios Logic PCI-SCSI Programming Guide

Register 0C (8C)
DMA Status (DSTAT)
Read Only

Bit 7 DFE (DMA FIFO Empty)
Bit 6 MDPE (Master Data Parity Error)
Bit 5 BF (Bus Fault)
Bit 4 ABRT (Aborted)
Bit 3 SSI (Single Step Interrupt)
Bit 2 SIR (SCRIPTS Interrupt

Instruction Received)
Bit 1 Reserved
Bit 0 IID (Illegal Instruction Detected)

Register 0D (8D)
SCSI Status Zero (SSTAT0)
Read Only

Bit 7 ILF (SIDL Least Significant Byte Full)
Bit 6 ORF (SODR Least Significant Byte Full)
Bit 5 OLF (SODL Least Significant Byte Full)
Bit 4 AIP (Arbitration in Progress)
Bit 3 LOA (Lost Arbitration)
Bit 2 WOA (Won Arbitration)
Bit 1 RST/ (SCSI RST/ Signal)
Bit 0 SDP0/ (SCSI SDP0/ Parity Signal)

Register 0E (8E)
SCSI Status One (SSTAT1)
Read Only

Bits 7-4 FF3-FF0 (FIFO Flags
Bit 3 SDP0L (Latched SCSI Parity)
Bit 2 MSG (SCSI MSG/ Signal)
Bit 1 C/D (SCSI C_D/ Signal)
Bit 0 I/O (SCSI I_O/ Signal)

Register 0F (8F)
SCSI Status Two (SSTAT2)
(Read Only)

Bit 7 ILF1 (SIDL Most Significant Byte Full)
Bit 6 ORF1 (SODR Most Significant Byte Full)
Bit 5 OLF1 (SODL Most Significant Byte Full)
Bit 4 FF4 (FIFO Flags bit 4)
Bit 3 SPL1(Latched SCSI parity for SD15-8)
Bit 2 DIFFSENSE SENSE
Bit 1 LDSC (Last Disconnect)
Bit 0 SDP1 (SCSI SDP1 Signal)

Registers 10-13 (90-93)
Data Structure Address (DSA)
Read/Write

Register 14 (94)
Interrupt Status (ISTAT)
(Read/Write)

Bit 7 ABRT (Abort Operation)
Bit 6 SRST (Software Reset)
Bit 5 SIGP (Signal Process)
Bit 4 SEM (Semaphore)
Bit 3 CON (Connected)
Bit 2 INTF (Interrupt on the Fly)
Bit 1 SIP (SCSI Interrupt Pending)
Bit 0 DIP (DMA Interrupt Pending)

Register 18 (98)
Chip Test Zero (CTEST0)
Read/Write

Register 19 (99)
Chip Test One (CTEST1)
Read Only

Bits 7-4 FMT3-0 (Byte Empty in DMA FIFO)
Bits 3-0 FFL3-0 (Byte Full in DMA FIFO)

DFE MDPE BF ABRT SSI SIR RES IID

7 6 5 4 3 2 1 0

Default>>>

1 0 0 0 0 0 X 0

ILF ORF OLF AIP LOA WOA RST SDP0/

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 0 0 0

FF3 FF2 FF1 FF0 SDP0L MSG C/D I/O

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 X X X X

ILF1 ORF1 OLF1 FF4 SPL1 RES LDSC SDP1

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 X X 1 X

ABRT SRST SIGP SEM CON INTF SIP DIP

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 0 0 0

FMT3 FMT2 FMT1 FMT0 FFL3 FFL2 FFL1 FFL0

7 6 5 4 3 2 1 0

Default>>>

1 1 1 1 0 0 0 0

Register Summaries
SYM53C825A Operating Registers

Symbios Logic PCI-SCSI Programming Guide B-15

Register 1A (9A)
Chip Test Two (CTEST2)
Read/Write

Bit 7 DDIR (Data Transfer Direction)
Bit 6 SIGP (Signal Process)
Bit 5 CIO (Configured as I/O)
Bit 4 CM (Configured as Memory)
Bit 3 SRTCH (SCRATCHA/B Operation)
Bit 2 TEOP (SCSI True End of Process)
Bit 1 DREQ (Data Request Status)
Bit 0 DACK (Data Acknowledge Status)

Register 1B (9B)
Chip Test Three (CTEST3)
Read/Write

Bits 7-4 V3-V0 (Chip revision level)
Bit 3 FLF (Flush DMA FIFO)
Bit 2 CLF (Clear DMA FIFO)
Bit 1 FM (Fetch Pin Mode)
Bit 0 ReservedWRIE (Write and Invalidate Enable)

Registers 1C-1F (9C-9F)
Temporary (TEMP)
Read/Write

Register 20 (A0)
DMA FIFO (DFIFO)
Read/Write

Bits 7-0 BO76BO0 (Byte offset counter)

Register 21 (A1)
Chip Test Four (CTEST4)
Read/Write

Bit 7 BDIS (Burst Disable)
Bit 6 ZMOD (High Impedance Mode)
Bit 5 ZSD (SCSI Data High Impedance)
Bit 4 SRTM (Shadow Register Test Mode)
Bit 3 MPEE (Master Parity Error Enable)
Bits 2-0 FBL2-FBL0 (FIFO Byte Control)

Register 22 (A2)
Chip Test Five (CTEST5)
Read/Write

Bit 7 ADCK (Clock Address Incrementor)
Bit 6 BBCK (Clock Byte Counter)
Bit 5 DFS (DMA FIFO Size)
Bit 4 MASR (Master Control for Set or Reset Pulses)
Bit 3 DDIR (DMA Direction)
Bit 2 BL2 (Burst Length bit 2)
Bits 1-0 BO9-8

Register 23 (A3)
Chip Test Six (CTEST6)
Read/Write

Bits 7-0 DF7-DF0 (DMA FIFO)

Registers 24-26 (A4-A6)
DMA Byte Counter (DBC)
Read/Write

Register 27 (A7)
DMA Command (DCMD)
Read/Write

Registers 28-2B (A8-AB)
DMA Next Address (DNAD)
Read/Write

Registers 2C-2F (AC-AF)
DMA SCRIPTS Pointer (DSP)
Read/Write

Registers 30-33 (B0-B3)
DMA SCRIPTS Pointer Save (DSPS)
Read/Write

Registers 34-37 (B4-B7)
Scratch Register A (SCRATCH A)
Read/Write

Register 38 (B8)
DMA Mode (DMODE)
Read/Write

Bit 7-6 BL1-BL0 (Burst Length)
Bit 5 SIOM (Source I/O-Memory Enable)
Bit 4 DIOM (Destination I/O-Memory Enable)
Bit 3 ERL (Enable Read Line)
Bit 2 ERMP (Enable Read Multiple)
Bit 1 BOF (Burst Op Code Fetch Enable)
Bit 0 MAN (Manual Start Mode)

DDIR SIGP CIO CM SRTCH TEOP DREQ DACK

7 6 5 4 3 2 1 0

Default>>>

0 0 X X 0 0 0 1

V3 V2 V1 V0 FLF CLF FM
RESW-

RIE

7 6 5 4 3 2 1 0

Default>>>

x x x x 0 0 0 X0

BO7 BO6 BO5 BO4 Bo3 BO2 BO1 BO0

7 6 5 4 3 2 1 0

Default>>>

X 0 0 0 0 0 0 0

BDIS ZMOD ZSD SRTM MPEE FBL2 FBL1 FBL0

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 0 0 0

ADCK BBCK DFS MASR DDIR BL2 BO9 BO8

7 6 5 4 3 2 1 0

Default>>>

0 0 0X 0 0 X X X

DF7 DF6 DF5 DF4 DF3 DF2 DF1 DF0

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 0 0 0

BL1 BL0 SIOM DIOM ER ERMP BOF MAN

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 X0 0 0

Register Summaries
SYM53C825A Operating Registers

B-16 Symbios Logic PCI-SCSI Programming Guide

Register 39 (B9)
DMA Interrupt Enable (DIEN)
Read/Write

Bit 7 Reserved
Bit 6 MDPE (Master Data Parity Error)

Bit 5 BF (Bus Fault)
Bit 4 ABRT (Aborted)
Bit 3 SSI (Single -step Interrupt)
Bit 2 SIR (SCRIPTS Interrupt

Instruction Received
Bit 1 Reserved
Bit 0 IID (Illegal Instruction Detected)

Register 3A (BA)
Scratch Byte Register (SBR)
Read/Write

Register 3B (BB)
DMA Control (DCNTL)
Read/Write

Bit 7 CLSE (Cache Line Size Enable)
Bit 6 PFF (Pre-fetch Flush)
Bit 5 PFEN (Pre-fetch Enable)
Bit 4 SSM (Single-step Mode)
Bit 3 IRQM (IRQ Mode)
Bit 2 STD (Start DMA Operation)
Bit 1 IRQD (IRQ Disable)
Bit 0 COM (53C700 Compatibility)

Register 3C-3F (BC-BF)
Adder Sum Output (ADDER)
Read Only

Register 40 (C0)
SCSI Interrupt Enable Zero (SIEN0)
Read/Write

Bit 7 M/A (SCSI Phase Mismatch -
Initiator Mode; SCSI ATN
Condition - Target Mode)

Bit 6 CMP (Function Complete)
Bit 5 SEL (Selected)
Bit 4 RSL (Reselected)
Bit 3 SGE (SCSI Gross Error)
Bit 2 UDC (Unexpected Disconnect)
Bit 1 RST (SCSI Reset Condition)
Bit 0 PAR (SCSI Parity Error)

Register 41 (C1)
SCSI Interrupt Enable One (SIEN1)
Read/Write

Bits 7-3 Reserved
Bit 2 STO (Selection or Reselection Time-out)
Bit 1 GEN (General Purpose Timer Expired)
Bit 0 HTH (Handshake-to-Handshake Timer Expired)

Register 42 (C2)
SCSI Interrupt Status Zero (SIST0)
Read Only

Bit 7 M/A (Initiator Mode: Phase Mismatch; Target
Mode: SATN/ Active)

Bit 6 CMP (Function Complete)
Bit 5 SEL (Selected)
Bit 4 RSL (Reselected)
Bit 3 SGE (SCSI Gross Error)
Bit 2 UDC (Unexpected Disconnect)
Bit 1 RST (SCSI RST/ Received)
Bit 0 PAR (Parity Error)

Register 43 (C3)
SCSI Interrupt Status One (SIST1)
Read Only

Bits 7-3 Reserved
Bit 2 STO (Selection or Reselection Time-out)
Bit 1 GEN (General Purpose Timer Expired)
Bit 0 HTH (Handshake-to-Handshake Timer Expired)

Register 44 (C4)
SCSI Longitudinal Parity (SLPAR)
Read/Write

Register 45 (C5)
SCSI Wide Residue (SWIDE)
Read/Write

RES MDPE BF ABRT SSI SIR RES IID

7 6 5 4 3 2 1 0

Default>>>

X 0 0 0 0 0 X 0

CLSE PFF PFEN SSM IRQM STD IRQD COM

7 6 5 4 3 2 1 0

Default>>>

X0 X0 X0 0 0 0 X0 0

M/A CMP SEL RSL SGE UDC RST PAR

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 0 0 0

RES RES RES RES RES STO GEN HTH

7 6 5 4 3 2 1 0

Default>>>

X X X X X 0 0 0

M/A CMP SEL RSL SGE UDC RST PAR

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 0 0 0

RES RES RES RES RES STO GEN HTH

7 6 5 4 3 2 1 0

Default>>>

X X X X X 0 0 0

Register Summaries
SYM53C825A Operating Registers

Symbios Logic PCI-SCSI Programming Guide B-17

Register 46 (C6)
Memory Access Control (MACNTL)
Read/Write

Bits 7-4 TYP3-0 (Chip Type)
Bit 3 DWR (DataWR)
Bit 2 DRD (DataRD)
Bit 1 PSCPT (Pointer SCRIPTS)
Bit 0 SCPTS (SCRIPTS)

Register 47 (C7)
General Purpose Pin Control (GPCNTL)
Read/Write

Bit 7 Master Enable
Bit 6 Fetch Enable
Bit 5 Reserved
Bits 4-2 GPIO4_EN–GPIO2_EN (GPIO Enable)
Bits 1-0 GPIO1_EN– GPIO0_EN (GPIO Enable)

Register 48 (C8)
SCSI Timer Zero (STIME0)
Read /Write

Bits 7-4 HTH (Handshake-to-Handshake Timer Period)
Bits 3-0 SEL (Selection Time-Out)

Register 49 (C9)
SCSI Timer One (STIME1)
Read/Write

Bit 7 Reserved
Bit 6 HTHBA (Handshake-to-Handshake Timer Bus

Activity Enable)
Bit 5 GENSF (General Purpose Timer Scale Factor)
Bit 4 HTHSF (Handshake to Handshake Timer Scale

Factor)
Bits 3-0 GEN3-0 (General Purpose Timer Period)

Register 4A (CA)
Response ID Zero (RESPID0)
Read/Write

Register 4B (CB)
Response ID One(RESPID1)
Read/Write

Register 4C (CC)
SCSI Test Zero (STEST0)
Read Only

Bits 7-4 SSAID (SCSI Selected As ID)
Bit 3 SLT (Selection Response Logic Test)
Bit 2 ART (Arbitration Priority Encoder Test)
Bit 1 SOZ (SCSI Synchronous Offset Zero)
Bit 0 SOM (SCSI Synchronous Offset Maximum)

Register 4D (CD)
SCSI Test One (STEST1)
Read/Write

Bit 7 SCLK
Bit 6 SISO (SCSI Isolation Mode)
Bits 5-0 Reserved

Register 4E (CE)
SCSI Test Two (STEST2)
Read/Write

Bit 7 SCE (SCSI Control Enable)
Bit 6 ROF (Reset SCSI Offset)
Bit 5 DIF (SCSI Differential Mode)
Bit 4 SLB (SCSI Loopback Mode)
Bit 3 SZM (SCSI High-Impedance Mode)
Bit 1 EXT (Extend SREQ/SACK Filtering)
Bit 0 LOW (SCSI Low level Mode)

Register 4F (CF)
SCSI Test Three (STEST3)
Read/Write

Bit 7 TE (TolerANT Enable)
Bit 6 STR (SCSI FIFO Test Read)
Bit 5 HSC (Halt SCSI Clock)
Bit 4 DSI (Disable Single Initiator Response)
Bit 3 S16 (16-bit System)
Bit 2 TTM (Timer Test Mode)
Bit 1 CSF (Clear SCSI FIFO)
Bit 0 STW (SCSI FIFO Test Write)

Register 50-51 (D0-D1)
SCSI Input Data Latch (SIDL)
Read Only

TYP3 TYP2 TYP1 TYP0 DWR DRD PSCPT SCPTS

7 6 5 4 3 2 1 0

Default>>>

0 01 1 10 0 0 0 0

ME FE RES GPIO4 GPIO3 GPIO2 GPIO1 GPIO0

7 6 5 4 3 2 1 0

Default>>>

0 0 X 0 1 1 1 1

HTH HTH HTH HRH SEL SEL SEL SEL

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 0 0 0

RES HTHBA GENSF HTHSF GEN3 GEN2 GEN1 GEN0

7 6 5 4 3 2 1 0

Default>>>

X 0X 0X 0X 0 0 0 0

SSAID3 SSAID2 SSAID1 SSAID0 SLT ART SOZ SOM

7 6 5 4 3 2 1 0

Default>>>

0X 0X 0X 0X 0 X 1 1

SCLK SISO RES RES RES RES RES RES

7 6 5 4 3 2 1 0

Default>>>

0 X0 X X X X X X

SCE ROF DIF SLB SZM AWS EXT LOW

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 0 0 0

TE STR HSC DSI S16 TTM CSF STW

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 0 0 0

Register Summaries
SYM53C860 Operating Registers

B-18 Symbios Logic PCI-SCSI Programming Guide

Registers 54-55 (D4-D5)
SCSI Output Data Latch (SODL)
Read/Write

Registers 58-59 (D8-D9)
SCSI Bus Data Lines (SBDL)
Read Only

Registers 5C-5F (DC-DF)
Scratch Register B (SCRATCHB)
(Read/Write)

Registers 60h-7Fh (E0h-FFh)
Scratch Registers C-J
(SCRATCHC-SCRATCHJ)
Read/Write

SYM53C860 Operating
Registers 0

Register 00 (80)
SCSI Control Zero (SCNTL0)
Read/Write

Bit 7 ARB1 (Arbitration mode bit 1)
Bit 6 ARB0 (Arbitration mode bit 0)
Bit 5 START (Start sequence)
Bit 4 WATN (Select with SATN/ on a start sequence)
Bit 3 EPC (Enable parity checking)
Bit 2 Reserved
Bit 1 AAP (Assert SATN/ on parity error)
Bit 0 TRG (Target role)

Register 01 (81)
SCSI Control One (SCNTL1)
Read/Write

Bit 7 EXC (Extra clock cycle of data setup)
Bit 6 ADB (Assert SCSI data bus)
Bit 5 DHP (Disable Halt on Parity Error or ATN) (Tar-

get Only)
Bit 4 CON (Connected)
Bit 3 RST (Assert SCSI RST/ signal)
Bit 2 AESP (Assert even SCSI parity (force bad parity))
Bit 1 IARB (Immediate Arbitration)
Bit 0 SST (Start SCSI Transfer)

Register 02 (82)
SCSI Control Two (SCNTL2)
Read/Write

Bit 7 SDU (SCSI Disconnect Unexpected)
Bits 6-0 Reserved

ARB1 ARB0 START WATN EPC RES AAP TRG

7 6 5 4 3 2 1 0

Default>>>

1 1 0 0 0 X 0 0

EXC ADB DHP CON RST AESP IARB SST

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 0 0 0

SDU RES RES RES RES RES RES RES

7 6 5 4 3 2 1 0

Default>>>

0 X X X X X X X

Register Summaries
SYM53C860 Operating Registers

Symbios Logic PCI-SCSI Programming Guide B-19

Register 03 (83)
SCSI Control Three (SCNTL3)
Read/Write

Bit 7 ULTRA (Ultra Enable)
Bits 6-4 SCF2-0 (Synchronous Clock
Bit 3 Reserved
Bits 2-0 CCF2-0 (Clock Conversion Factor)

Register 04 (84)
SCSI Chip ID (SCID)
Read/Write

Bit 7 Reserved
Bit 6 RRE (Enable Response to

Reselection)
Bit 5 SRE (Enable Response to Selection)
Bit 4-3 Reserved
Bits 2-0 Encoded Chip SCSI ID, bits 2-0

Register 05 (85)
SCSI Transfer (SXFER)
Read/Write

Bits 7-5 TP2-0 (SCSI Synchronous Transfer Period)
Bit 4 Reserved
Bits 3-0 MO3-MO0 (Max SCSI synchronous offset)

Register 06 (86)
SCSI Destination ID (SDID)
Read/Write

Bits 7-3 Reserved
Bits 2-0 Encoded destination SCSI ID

Register 07 (87)
General Purpose (GPREG)
Read/Write

Bits 7-2 Reserved
Bits 1-0 GPIO1-GPIO0 (General Purpose)

Register 08 (88)
SCSI First Byte Received (SFBR)
Read/Write

Register 09 (89)
SCSI Output Control Latch (SOCL)
Read /Write

Bit 7 REQ(Assert SCSI REQ/ signal)
Bit 6 ACK(Assert SCSI ACK/ signal)
Bit 5 BSY(Assert SCSI BSY/ signal)
Bit 4 SEL(Assert SCSI SEL/ signal)
Bit 3 ATN(Assert SCSI ATN/ signal)
Bit 2 MSG(Assert SCSI MSG/ signal)
Bit 1 C/D(Assert SCSI C_D/ signal)
Bit 0 I/O(Assert SCSI I_O/ signal)

Register 0A (8A)
SCSI Selector ID (SSID)
Read Only

Bit 7 VAL (SCSI Valid Bit)
Bits 6-3 Reserved
Bits 2-0 Encoded Destination SCSI ID

ULTRA SCF2 SCF1 SCF0 RES CCF2 CCF1 CCF0

7 6 5 4 3 2 1 0

Default>>>

X 0 0 0 X 0 0 0

RES RRE SRE RES RES ENC2 ENC1 ENC0

7 6 5 4 3 2 1 0

Default>>>

X 0 0 X X 0 0 0

TP2 TP1 TP0 RES MO3 MO2 MO1 MO0

7 6 5 4 3 2 1 0

Default>>>

0 0 0 X 0 0 0 0

RES RES RES RES RES ENC2 ENC1 ENC0

7 6 5 4 3 2 1 0

Default>>>

X X X X X 0 0 0

RES RES RES RES RES RES GPIO1 GPIO0

7 6 5 4 3 2 1 0

Default>>>

X X X X X X 0 0

1B7 1B6 1B5 1B4 1B3 1B2 1B1 1B0

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 0 0 0

REQ ACK BSY SEL ATN MSG C/D I/O

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 0 0 0

VAL RES RES RES RES ENID2 ENID1 ENID0

7 6 5 4 3 2 1 0

Default>>>

0 X X X X 0 0 0

Register Summaries
SYM53C860 Operating Registers

B-20 Symbios Logic PCI-SCSI Programming Guide

Register 0B (8B)
SCSI Bus Control Lines (SBCL)
Read Only

Bit 7 REQ (SREQ/ status)
Bit 6 ACK (SACK/ status)
Bit 5 BSY (SBSY/ status)
Bit 4 SEL (SSEL/ status)
Bit 3 ATN SATN/ status)
Bit 2 MSG (SMSG/ status)
Bit 1 C/D (SC_D/ status)
Bit 0 I/O (SI_O/ status)

Register 0C (8C)
DMA Status (DSTAT)
Read Only

Bit 7 DFE (DMA FIFO empty)
Bit 6 MDPE (Master Data Parity Error)
Bit 5 BF (Bus fault)
Bit 4 ABRT (Aborted)
Bit 3 SSI (Single step interrupt)
Bit 2 SIR (SCRIPTS interrupt

instruction received)
Bit 1 Reserved
Bit 0 IID (Illegal instruction detected)

Register 0D (8D)
SCSI Status Zero (SSTAT0)
Read Only

Bit 7 ILF (SIDL full)
Bit 6 ORF (SODR full)
Bit 5 OLF (SODL full)
Bit 4 AIP (Arbitration in progress)
Bit 3 LOA (Lost arbitration)
Bit 2 WOA (Won arbitration)
Bit 1 RST/ (SCSI RST/ signal)
Bit 0 SDP/ (SCSI SDP/ parity signal)

Register 0E (8E)
SCSI Status One (SSTAT1)
Read Only

Bits 7-4 FF3-FF0 (FIFO flags)
Bit 3 SDPL (Latched SCSI parity)
Bit 2 MSG (SCSI MSG/ signal)
Bit 1 C/D (SCSI C_D/ signal)
Bit 0 I/O (SCSI I_O/ signal)

Register 0F (8F)
SCSI Status Two (SSTAT2)
(Read Only)

Bits 7-2 Reserved
Bit 1 LDSC (Last Disconnect)
Bit 0 Reserved

Registers 10-13 (90-93)
Data Structure Address (DSA)
Read/Write

Register 14 (94)
Interrupt Status (ISTAT)
(Read/Write)

Bit 7 ABRT (Abort operation)
Bit 6 SRST (Software reset)
Bit 5 SIGP (Signal process)
Bit 4 SEM (Semaphore)
Bit 3 CON (Connected)
Bit 2 INTF (Interrupt on the Fly)
Bit 1 SIP (SCSI interrupt pending)
Bit 0 DIP (DMA interrupt pending)

Register 18 (98)
Chip Test Zero (CTEST0)
Read/Write

Register 19 (99)
Chip Test One (CTEST1)
Read Only

Bits 7-4 FMT3-0 (Byte empty in DMA FIFO)
Bits 3-0 FFL3-0 (Byte full in DMA FIFO)

REQ ACK BSY SEL ATN MSG C/D I/O

7 6 5 4 3 2 1 0

Default>>>

X X X X X X X X

DFE MDPE BF ABRT SSI SIR RES IID

7 6 5 4 3 2 1 0

Default>>>

1 0 0 0 0 0 X 0

ILF ORF OLF AIP LOA WOA RST SDP0/

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 0 0 0

FF3 FF2 FF1 FF0 SDP0L MSG C/D I/O

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 X X X X

RES RES RES RES RES RES LDSC RES

7 6 5 4 3 2 1 0

Default>>>

X X X X X X 1 X

ABRT SRST SIGP SEM CON INTF SIP DIP

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 0 0 0

FMT3 FMT2 FMT1 FMT0 FFL3 FFL2 FFL1 FFL0

7 6 5 4 3 2 1 0

Default>>>

1 1 1 1 0 0 0 0

Register Summaries
SYM53C860 Operating Registers

Symbios Logic PCI-SCSI Programming Guide B-21

Register 1A (9A)
Chip Test Two (CTEST2)
Read Only

Bit 7 DDIR (Data transfer direction)
Bit 6 SIGP (Signal process)
Bit 5 CIO (Configured as I/O)
Bit 4 CM (Configured as memory)
Bit 3 Reserved
Bit 2 TEOP (SCSI true end of process)
Bit 1 DREQ (Data request status)
Bit 0 DACK (Data acknowledge status)

Register 1B (9B)
Chip Test Three (CTEST3)
Read/Write

Bits 7-4 V3-V0 (Chip revision level)
Bit 3 FLF (Flush DMA FIFO)
Bit 2 CLF (Clear DMA FIFO)
Bit 1 FM (Fetch pin mode)
Bit 0 WRIE (Write and Invalidate Enable)

Registers 1C-1F (9C-9F)
Temporary (TEMP)
Read/Write

Register 20 (A0)
DMA FIFO (DFIFO)
Read/Write

Bit 7 Reserved
Bits 6-0 BO6-BO0 (Byte offset counter)

Register 21 (A1)
Chip Test Four (CTEST4)
Read/Write

Bit 7 BDIS (Burst Disable)
Bit 6 ZMOD (High impedance mode)
Bit 5 ZSD (SCSI Data High Impedance)
Bit 4 SRTM (Shadow Register Test Mode)
Bit 3 MPEE (Master Parity Error Enable)
Bits 2-0 FBL2-FBL0 (FIFO byte control)

Register 22 (A2)
Chip Test Five (CTEST5)
Read/Write

Bit 7 ADCK (Clock address incrementor)
Bit 6 BBCK (Clock byte counter)
Bit 5 Reserved
Bit 4 MASR (Master control for set or reset pulses)
Bit 3 DDIR (DMA direction)
Bits 2-0 Reserved

Register 23 (A3)
Chip Test Six (CTEST6)
Read/Write

Bits 7-0 DF7-DF0 (DMA FIFO)

Registers 24-26 (A4-A6)
DMA Byte Counter (DBC)
Read/Write

Register 27 (A7)
DMA Command (DCMD)
Read/Write

Registers 28-2B (A8-AB)
DMA Next Address (DNAD)
Read/Write

Registers 2C-2F (AC-AF)
DMA SCRIPTS Pointer (DSP)
Read/Write

Registers 30-33 (B0-B3)
DMA SCRIPTS Pointer Save (DSPS)
Read/Write

Registers 34-37 (B4-B7)
Scratch Register A (SCRATCH A)
Read/Write

Register 38 (B8)
DMA Mode (DMODE)
Read/Write

Bit 7-6 BL1-BL0 (Burst length)
Bit 5 SIOM (Source I/O-Memory Enable)
Bit 4 DIOM (Destination I/O-Memory Enable)
Bit 3 ERL (Enable Read Line)
Bit 2 ERMP (Enable Read Multiple)
Bit 1 BOF (Burst Op Code Fetch Enable)
Bit 0 MAN (Manual Start Mode)

DDIR SIGP CIO CM RES TEOP DREQ DACK

7 6 5 4 3 2 1 0

Default>>>

0 0 X X 0 0 0 1

V3 V2 V1 V0 FLF CLF FM WRIE

7 6 5 4 3 2 1 0

Default>>>

X X X X 0 0 0 0

RES BO6 BO5 BO4 Bo3 BO2 BO1 BO0

7 6 5 4 3 2 1 0

Default>>>

X 0 0 0 0 0 0 0

BDIS ZMOD ZSD SRTM MPEE FBL2 FBL1 FBL0

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 0 0 0

ADCK BBCK RES MASR DDIR RES RES RES

7 6 5 4 3 2 1 0

Default>>>

0 0 X 0 0 X X X

DF7 DF6 DF5 DF4 DF3 DF2 DF1 DF0

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 0 0 0

BL1 BL0 SIOM DIOM
RESER

L
RESER

MP
BOF MAN

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 0 0 0

Register Summaries
SYM53C860 Operating Registers

B-22 Symbios Logic PCI-SCSI Programming Guide

Register 39 (B9)
DMA Interrupt Enable (DIEN)
Read/Write

Bit 7 Reserved
Bit 6 MDPE (Master Data Parity Error)
Bit 5 BF (Bus fault)
Bit 4 ABRT (Aborted)
Bit 3 SSI (Single step interrupt)
Bit 2 SIR (SCRIPTS interrupt

instruction received
Bit 1 Reserved
Bit 0 IID (Illegal instruction detected)

Register 3A (BA)
Scratch Byte Register (SBR)
Read/Write

Register 3B (BB)
DMA Control (DCNTL)
Read/Write

Bit 7 CLSE (Cache Line Size Enable)
Bit 6 PFF (Pre-Fetch Flush)
Bit 5 PFEN (Pre-fetch Enable)
Bit 4 SSM (Single-step mode)
Bit 3 IRQM (IRQ Mode)
Bit 2 STD (Start DMA operation)
Bit 1 IRQD (IRQ Disable)
Bit 0 COM (53C700 compatibility)

Register 3C-3F (BC-BF)
Adder Sum Output (ADDER)
Read Only

Register 40 (C0)
SCSI Interrupt Enable Zero (SIEN0)
Read/Write

Bit 7 M/A (SCSI Phase Mismatch -
Initiator Mode; SCSI ATN
Condition - Target Mode)

Bit 6 CMP (Function Complete)
Bit 5 SEL (Selected)
Bit 4 RSL (Reselected)
Bit 3 SGE (SCSI Gross Error)
Bit 2 UDC (Unexpected Disconnect)
Bit 1 RST (SCSI Reset Condition)
Bit 0 PAR (SCSI Parity Error)

Register 41 (C1)
SCSI Interrupt Enable One (SIEN1)
Read/Write

Bits 7-3 Reserved
Bit 2 STO (Selection or Reselection Time-out)
Bit 1 GEN (General Purpose Timer Expired)
Bit 0 HTH (Handshake to Handshake timer Expired)

Register 42 (C2)
SCSI Interrupt Status Zero (SIST0)
Read Only

Bit 7 M/A (Initiator Mode: Phase Mismatch; Target
Mode: SATN/ Active)

Bit 6 CMP (Function Complete)
Bit 5 SEL (Selected)
Bit 4 RSL (Reselected)
Bit 3 SGE (SCSI Gross Error)
Bit 2 UDC (Unexpected Disconnect)
Bit 1 RST (SCSI RST/ Received)
Bit 0 PAR (Parity Error)

Register 43 (C3)
SCSI Interrupt Status One (SIST1)
Read Only

Bits 7-3 Reserved
Bit 2 STO (Selection or Reselection Time-out)
Bit 1 GEN (General Purpose Timer Expired)
Bit 0 HTH (Handshake-to-Handshake Timer Expired)

Register 44 (C4)
SCSI Longitudinal Parity (SLPAR)
Read/Write

Register 46 (C6)
Memory Access Control (MACNTL)
Read/Write

Bits 7-4 TYP3-0 (Chip Type)
Bit 3 DWR (DataWR)
Bit 2 DRD (DataRD)
Bit 1 PSCPT (Pointer SCRIPTS)
Bit 0 SCPTS (SCRIPTS)

RES MDPE BF ABRT SSI SIR RES IID

7 6 5 4 3 2 1 0

Default>>>

X 0 0 0 0 0 X 0

CLSE PFF PFEN SSM IRQM STD IRQD COM

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 0 0 0

M/A CMP SEL RSL SGE UDC RST PAR

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 0 0 0

RES RES RES RES RES STO GEN HTH

7 6 5 4 3 2 1 0

Default>>>

X X X X X 0 0 0

M/A CMP SEL RSL SGE UDC RST PAR

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 0 0 0

RES RES RES RES RES STO GEN HTH

7 6 5 4 3 2 1 0

Default>>>

X X X X X 0 0 0

TYP3 TYP2 TYP1 TYP0 DWR DRD PSCPT SCPTS

7 6 5 4 3 2 1 0

Default>>>

0 1 0 1 0 0 0 0

Register Summaries
SYM53C860 Operating Registers

Symbios Logic PCI-SCSI Programming Guide B-23

Register 47 (C7)
General Purpose Pin Control (GPCNTL)
Read/Write

Bit 7 Master Enable
Bit 6 Fetch Enable
Bit 5 -2 Reserved
Bits 1-0 GPIO1_EN– GPIO0_EN (GPIO Enable)

Register 48 (C8)
SCSI Timer Zero (STIME0)
Read /Write

Bits 7-4 HTH (Handshake-to-Handshake Timer Period)
Bits 3-0 SEL (Selection Time-Out)

Register 49 (C9)
SCSI Timer One (STIME1)
Read/Write

Bits 7-4 Reserved
Bits 3-0 GEN3-0 (General Purpose Timer Period)

Register 4A (CA)
Response ID (RESPID)
Read/Write

Register 4C (CC)
SCSI Test Zero (STEST0)
Read Only

Bit 7 Reserved
Bits 6-4 SSAID (SCSI Selected As ID)
Bit 3 SLT (Selection response logic test)
Bit 2 ART (Arbitration Priority Encoder Test)
Bit 1 SOZ (SCSI Synchronous Offset Zero)
Bit 0 SOM (SCSI Synchronous Offset Maximum)

Register 4D (CD)
SCSI Test One (STEST1)
Read/Write

Bit 7 SCLK
Bit 6 SISO (SCSI Isolation Mode)
Bits 5-0 Reserved

Register 4E (CE)
SCSI Test Two (STEST2)
Read/Write

Bit 7 SCE (SCSI Control Enable)
Bit 6 ROF (Reset SCSI Offset)
Bit 5 Reserved
Bit 4 SLB (SCSI Loopback Mode)
Bit 3 SZM (SCSI High-Impedance Mode)
Bit 2 Reserved
Bit 1 EXT(Extend SREQ/SACK

filtering)
Bit 0 LOW (SCSI Low level Mode)

Register 4F (CF)
SCSI Test Three (STEST3)
Read/Write

Bit 7 TE (TolerANT Enable)
Bit 6 STR (SCSI FIFO Test Read)
Bit 5 HSC (Halt SCSI Clock)
Bit 4 DSI (Disable Single Initiator Response)
Bit 3 Reserved
Bit 2 TTM (Timer Test Mode)
Bit 1 CSF (Clear SCSI FIFO)
Bit 0 STW (SCSI FIFO Test Write)

Register 50 (D0)
SCSI Input Data Latch (SIDL)
Read Only

Registers 54 (D4)
SCSI Output Data Latch (SODL)
Read/Write

Registers 58 (D8)
SCSI Bus Data Lines (SBDL)
Read Only

Registers 5C-5F (DC-DF)
Scratch Register B (SCRATCHB)
(Read/Write)

ME FE RES RES RES RES GPIO1 GPIO0

7 6 5 4 3 2 1 0

Default>>>

0 0 X 0 1 1 1 1

HTH HTH HTH HRH SEL SEL SEL SEL

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 0 0 0

RES RES RES RES GEN3 GEN2 GEN1 GEN0

7 6 5 4 3 2 1 0

Default>>>

X X X X 0 0 0 0

RES SSAID2 SSAID1 SSAID0 SLT ART SOZ SOM

7 6 5 4 3 2 1 0

Default>>>

X X X X 0 X 1 1

SCLK SISO RES RES RES RES RES RES

7 6 5 4 3 2 1 0

Default>>>

0 0 X X X X X X

SCE ROF RES SLB SZM RES EXT LOW

7 6 5 4 3 2 1 0

Default>>>

0 0 X 0 0 X 0 0

TE STR HSC DSI RES TTM CSF STW

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 X 0 0 0

Register Summaries
SYM53C875 Operating Registers

B-24 Symbios Logic PCI-SCSI Programming Guide

SYM53C875 Operating
Registers 0

Register 00 (80)
 SCSI Control Zero (SCNTL0)
Read/Write

Bit 7 ARB1 (Arbitration Mode bit 1)
Bit 6 ARB0 (Arbitration Mode bit 0)
Bit 5 START (Start Sequence)
Bit 4 WATN (Select with SATN/ on a Start Sequence)
Bit 3 EPC (Enable Parity Checking)
Bit 2 Reserved
Bit 1 AAP (Assert SATN/ on Parity Error)
Bit 0 TRG (Target Mode)

Register 01 (81)
SCSI Control One (SCNTL1)
Read/Write

Bit 7 EXC (Extra Clock Cycle of Data Setup)
Bit 6 ADB (Assert SCSI Data Bus)
Bit 5 DHP (Disable Halt on Parity Error or ATN) (Tar-

get Only)
Bit 4 CON (Connected)
Bit 3 RST (Assert SCSI RST/ Signal)
Bit 2 AESP (Assert Even SCSI Parity (force bad par-

ity))
Bit 1 IARB (Immediate Arbitration)
Bit 0 SST (Start SCSI Transfer)

Register 02 (82)
SCSI Control Two (SCNTL2)
Read/Write

Bit 7 SDU (SCSI Disconnect Unexpected)
Bit 6 CHM (Chained Mode)
Bit 5 SLPMD (SLPAR Mode Bit)
Bit 4 SLPHBEN (SLPAR High Byte Enable)
Bit 3 WSS (Wide SCSI Send)
Bit 2 VUE0 (Vendor Unique Enhancements bit 0)
Bit 1 VUE1 (Vendor Unique Enhancements bit 1)
Bit 0 WSR (Wide SCSI Receive)

Register 03 (83)
SCSI Control Three (SCNTL3)
Read/Write

Bit 7 F20 (Fast-20 Enable)
Bits 6-4 SCF2-0 (Synchronous Clock

Conversion Factor)
Bit 3 EWS (Enable Wide SCSI)
Bits 2-0 CCF2-0 (Clock Conversion Factor)

Register 04 (84)
SCSI Chip ID (SCID)
Read/Write

Bit 7 Reserved
Bit 6 RRE (Enable Response to

Reselection)
Bit 5 SRE (Enable Response to Selection)
Bit 4 Reserved
Bits 3-0 Encoded Chip SCSI ID, bits 3-0

Register 05 (85)
SCSI Transfer (SXFER)
Read/Write

Bits 7-5 TP2-0 (SCSI Synchronous Transfer Period)
Bits 3-0 MO3-MO0 (Max SCSI Synchronous Offset)

Register 06 (86)
SCSI Destination ID (SDID)
Read/Write

Bits 7-4 Reserved
Bits 3-0 Encoded Destination SCSI ID

Register 07 (87)
General Purpose (GPREG)
Read/Write

Bits 7-5 Reserved
Bits 4-0 GPIO4-GPIO0 (General Purpose)

ARB1 ARB0 START WATN EPC RES AAP TRG

7 6 5 4 3 2 1 0

Default>>>

1 1 0 0 0 X 0 0

EXC ADB DHP CON RST AESP IARB SST

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 0 0 0

SDU CHM SLPMD SLPHBEN WSS VUE0 VUE1 WSR

7 6 5 4 3 2 1 0

Default>>>

0 0 X0 X0 0 0X 0X 0

F20 SCF2 SCF1 SCF0 EWS CCF2 CCF1 CCF0

7 6 5 4 3 2 1 0

Default>>>

X0 0 0 0 0 0 0 0

RES RRE SRE RES ENC3 ENC2 ENC1 ENC0

7 6 5 4 3 2 1 0

Default>>>

X 0 0 X 0 0 0 0

TP2 TP1 TP0 MO4 MO3 MO2 MO1 MO0

7 6 5 4 3 2 1 0

Default>>>

0 0 0 X0 0 0 0 0

RES RES RES RES ENC3 ENC2 ENC1 ENC0

7 6 5 4 3 2 1 0

Default>>>

X X X X 0 0 0 0

RES RES RES GPIO4 GPIO3 GPIO2 GPIO1 GPIO0

7 6 5 4 3 2 1 0

Default>>>

X X X 0 X X X X

Register Summaries
SYM53C875 Operating Registers

Symbios Logic PCI-SCSI Programming Guide B-25

Register 08 (88)
SCSI First Byte Received (SFBR)
Read/Write

Register 09 (89)
SCSI Output Control Latch (SOCL)
Read /Write

Bit 7 REQ(Assert SCSI REQ/ Signal)
Bit 6 ACK(Assert SCSI ACK/ Signal)
Bit 5 BSY(Assert SCSI BSY/ Signal)
Bit 4 SEL(Assert SCSI SEL/ Signal)
Bit 3 ATN(Assert SCSI ATN/ Signal)
Bit 2 MSG(Assert SCSI MSG/ Signal)
Bit 1 C/D(Assert SCSI C_D/ Signal)
Bit 0 I/O(Assert SCSI I_O/ Signal)

Register 0A (09)
SCSI Selector ID (SSID)
Read Only

Bit 7 VAL (SCSI Valid)
Bits 6-4 Reserved
Bits 3-0 Encoded Destination SCSI ID

Register 0B (8B)
SCSI Bus Control Lines (SBCL)
Read Only

Bit 7 REQ (SREQ/ Status)
Bit 6 ACK (SACK/ Status)
Bit 5 BSY (SBSY/ Status)
Bit 4 SEL (SSEL/ Status)
Bit 3 ATN (SATN/ Status)
Bit 2 MSG (SMSG/ Status)
Bit 1 C/D (SC_D/ Status)
Bit 0 I/O (SI_O/ Status)

Register 0C (8C)
DMA Status (DSTAT)
Read Only

Bit 7 DFE (DMA FIFO Empty)
Bit 6 MDPE (Master Data Parity Error)
Bit 5 BF (Bus Fault)
Bit 4 ABRT (Aborted)
Bit 3 SSI (Single Step Interrupt)
Bit 2 SIR (SCRIPTS Interrupt

Instruction Received)
Bit 1 EBPI (Extended Byte Parity Error Interrupt)

(53C875N only)
Bit 0 IID (Illegal Instruction Detected)

Register 0D (8D)
SCSI Status Zero (SSTAT0)
Read Only

Bit 7 ILF (SIDL Least Significant Byte Full)
Bit 6 ORF (SODR Least Significant Byte Full)
Bit 5 OLF (SODL Least Significant Byte Full)
Bit 4 AIP (Arbitration in Progress)
Bit 3 LOA (Lost Arbitration)
Bit 2 WOA (Won Arbitration)
Bit 1 RST/ (SCSI RST/ Signal)
Bit 0 SDP0/ (SCSI SDP0/ Parity Signal)

Register 0E (8E)
SCSI Status One (SSTAT1)
Read Only

Bits 7-4 FF3-FF0 (FIFO Flags
Bit 3 SDP0L (Latched SCSI Parity)
Bit 2 MSG (SCSI MSG/ Signal)
Bit 1 C/D (SCSI C_D/ Signal)
Bit 0 I/O (SCSI I_O/ Signal)

1B7 1B6 1B5 1B4 1B3 1B2 1B1 1B0

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 0 0 0

REQ ACK BSY SEL ATN MSG C/D I/O

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 0 0 0

VAL RES RES RES ENID3 ENID2 ENID1 ENID0

7 6 5 4 3 2 1 0

Default>>>

0 X X X 0 0 0 0

REQ ACK BSY SEL ATN MSG C/D I/O

7 6 5 4 3 2 1 0

Default>>>

X X X X X X X X

DFE MDPE BF ABRT SSI SIR EBPI IID

7 6 5 4 3 2 1 0

Default>>>

1 0 0 0 0 0 X 0

ILF ORF OLF AIP LOA WOA RST SDP0/

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 0 0 0

FF3 FF2 FF1 FF0 SDP0L MSG C/D I/O

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 X X X X

Register Summaries
SYM53C875 Operating Registers

B-26 Symbios Logic PCI-SCSI Programming Guide

Register 0F (8F)
SCSI Status Two (SSTAT2)
(Read Only)

Bit 7 ILF1 (SIDL Most Significant Byte Full)
Bit 6 ORF1 (SODR Most Significant Byte Full)
Bit 5 OLF1 (SODL Most Significant Byte Full)
Bit 4 FF4 (FIFO Flags bit 4)
Bit 3 SPL1(Latched SCSI parity for SD15-8)
Bit 2 DIFFSENSE SENSE
Bit 1 LDSC (Last Disconnect)
Bit 0 SDP1 (SCSI SDP1 Signal)

Registers 10-13 (90-93)
Data Structure Address (DSA)
Read/Write

Register 14 (94)
Interrupt Status (ISTAT)
(Read/Write)

Bit 7 ABRT (Abort Operation)
Bit 6 SRST (Software Reset)
Bit 5 SIGP (Signal Process)
Bit 4 SEM (Semaphore)
Bit 3 CON (Connected)
Bit 2 INTF (Interrupt on the Fly)
Bit 1 SIP (SCSI Interrupt Pending)
Bit 0 DIP (DMA Interrupt Pending)

Register 18 (98)
Chip Test Zero (CTEST0)
Read/Write

Register 19 (99)
Chip Test One (CTEST1)
Read Only

Bits 7-4 FMT3-0 (Byte Empty in DMA FIFO)
Bits 3-0 FFL3-0 (Byte Full in DMA FIFO)

Register 1A (9A)
Chip Test Two (CTEST2)
Read/Write

Bit 7 DDIR (Data Transfer Direction)
Bit 6 SIGP (Signal Process)
Bit 5 CIO (Configured as I/O)
Bit 4 CM (Configured as Memory)
Bit 3 SRTCH (SCRATCHA/B Operation)
Bit 2 TEOP (SCSI True End of Process)
Bit 1 DREQ (Data Request Status)
Bit 0 DACK (Data Acknowledge Status)

Register 1B (9B)
Chip Test Three (CTEST3)
Read/Write

Bits 7-4 V3-V0 (Chip revision level)
Bit 3 FLF (Flush DMA FIFO)
Bit 2 CLF (Clear DMA FIFO)
Bit 1 FM (Fetch Pin Mode)
Bit 0 WRIE (Write and Invalidate Enable)

Registers 1C-1F (9C-9F)
Temporary (TEMP)
Read/Write

Register 20 (A0)
DMA FIFO (DFIFO)
Read/Write

Bits 7-0 BO7-BO0 (Byte offset counter)

Register 21 (A1)
Chip Test Four (CTEST4)
Read/Write

Bit 7 BDIS (Burst Disable)
Bit 6 ZMOD (High Impedance Mode)
Bit 5 ZSD (SCSI Data High Impedance)
Bit 4 SRTM (Shadow Register Test Mode)
Bit 3 MPEE (Master Parity Error Enable)
Bits 2-0 FBL2-FBL0 (FIFO Byte Control)

ILF1 ORF1 OLF1 FF4 SPL1 RES LDSC SDP1

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 X X 1 X

ABRT SRST SIGP SEM CON INTF SIP DIP

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 0 0 0

FMT3 FMT2 FMT1 FMT0 FFL3 FFL2 FFL1 FFL0

7 6 5 4 3 2 1 0

Default>>>

1 1 1 1 0 0 0 0

DDIR SIGP CIO CM SRTCH TEOP DREQ DACK

7 6 5 4 3 2 1 0

Default>>>

0 0 X X 0 0 0 1

V3 V2 V1 V0 FLF CLF FM WRIE

7 6 5 4 3 2 1 0

Default>>>

x x x x 0 0 0 X0

BO7 BO6 BO5 BO4 Bo3 BO2 BO1 BO0

7 6 5 4 3 2 1 0

Default>>>

X 0 0 0 0 0 0 0

BDIS ZMOD ZSD SRTM MPEE FBL2 FBL1 FBL0

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 0 0 0

Register Summaries
SYM53C875 Operating Registers

Symbios Logic PCI-SCSI Programming Guide B-27

Register 22 (A2)
Chip Test Five (CTEST5)
Read/Write

Bit 7 ADCK (Clock Address Incrementor)
Bit 6 BBCK (Clock Byte Counter)
Bit 5 DFS (DMA FIFO Size)
Bit 4 MASR (Master Control for Set or Reset Pulses)
Bit 3 DDIR (DMA Direction)
Bit 2 BL2 (Burst Length bit 2)
Bits 1-0 BO9-8

Register 23 (A3)
Chip Test Six (CTEST6)
Read/Write

Bits 7-0 DF7-DF0 (DMA FIFO)

Registers 24-26 (A4-A6)
DMA Byte Counter (DBC)
Read/Write

Register 27 (A7)
DMA Command (DCMD)
Read/Write

Registers 28-2B (A8-AB)
DMA Next Address (DNAD)
Read/Write

Registers 2C-2F (AC-AF)
DMA SCRIPTS Pointer (DSP)
Read/Write

Registers 30-33 (B0-B3)
DMA SCRIPTS Pointer Save (DSPS)
Read/Write

Registers 34-37 (B4-B7)
Scratch Register A (SCRATCH A)
Read/Write

Register 38 (B8)
DMA Mode (DMODE)
Read/Write

Bit 7-6 BL1-BL0 (Burst Length)
Bit 5 SIOM (Source I/O-Memory Enable)
Bit 4 DIOM (Destination I/O-Memory Enable)
Bit 3 ERL (Enable Read Line)
Bit 2 ERMP (Enable Read Multiple)
Bit 1 BOF (Burst Op Code Fetch Enable)
Bit 0 MAN (Manual Start Mode)

Register 39 (B9)
DMA Interrupt Enable (DIEN)
Read/Write

Bit 7 Reserved
Bit 6 MDPE (Master Data Parity Error)
Bit 5 BF (Bus Fault)
Bit 4 ABRT (Aborted)
Bit 3 SSI (Single -step Interrupt)
Bit 2 SIR (SCRIPTS Interrupt

Instruction Received
Bit 1 EBPE (Extended Byte Parity Enable)

(SYM53C875N only)
Bit 0 IID (Illegal Instruction Detected)

Register 3A (BA)
Scratch Byte Register (SBR)
Read/Write

Register 3B (BB)
DMA Control (DCNTL)
Read/Write

Bit 7 CLSE (Cache Line Size Enable)
Bit 6 PFF (Pre-fetch Flush)
Bit 5 PFEN (Pre-fetch Enable)
Bit 4 SSM (Single-step Mode)
Bit 3 IRQM (IRQ Mode)
Bit 2 STD (Start DMA Operation)
Bit 1 IRQD (IRQ Disable)
Bit 0 COM (53C700 Compatibility)

Register 3C-3F (BC-BF)
Adder Sum Output (ADDER)
Read Only

Register 40 (C0)
SCSI Interrupt Enable Zero (SIEN0)
Read/Write

Bit 7 M/A (SCSI Phase Mismatch -
Initiator Mode; SCSI ATN
Condition - Target Mode)

Bit 6 CMP (Function Complete)
Bit 5 SEL (Selected)
Bit 4 RSL (Reselected)
Bit 3 SGE (SCSI Gross Error)
Bit 2 UDC (Unexpected Disconnect)
Bit 1 RST (SCSI Reset Condition)
Bit 0 PAR (SCSI Parity Error)

ADCK BBCK DFS MASR DDIR BL2 BO9 BO8

7 6 5 4 3 2 1 0

Default>>>

0 0 0X 0 0 X X X

DF7 DF6 DF5 DF4 DF3 DF2 DF1 DF0

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 0 0 0

BL1 BL0 SIOM DIOM ER ERMP BOF MAN

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 X0 0 0

RES MDPE BF ABRT SSI SIR EBPE IID

7 6 5 4 3 2 1 0

Default>>>

X 0 0 0 0 0 X 0

CLSE PFF PFEN SSM IRQM STD IRQD COM

7 6 5 4 3 2 1 0

Default>>>

X0 X0 X0 0 0 0 X0 0

M/A CMP SEL RSL SGE UDC RST PAR

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 0 0 0

Register Summaries
SYM53C875 Operating Registers

B-28 Symbios Logic PCI-SCSI Programming Guide

Register 41 (C1)
SCSI Interrupt Enable One (SIEN1)
Read/Write

Bits 7-3 Reserved
Bit 2 STO (Selection or Reselection Time-out)
Bit 1 GEN (General Purpose Timer Expired)
Bit 0 HTH (Handshake-to-Handshake Timer Expired)

Register 42 (C2)
SCSI Interrupt Status Zero (SIST0)
Read Only

Bit 7 M/A (Initiator Mode: Phase Mismatch; Target
Mode: SATN/ Active)

Bit 6 CMP (Function Complete)
Bit 5 SEL (Selected)
Bit 4 RSL (Reselected)
Bit 3 SGE (SCSI Gross Error)
Bit 2 UDC (Unexpected Disconnect)
Bit 1 RST (SCSI RST/ Received)
Bit 0 PAR (Parity Error)

Register 43 (C3)
SCSI Interrupt Status One (SIST1)
Read Only

Bits 7-3 Reserved
Bit 2 STO (Selection or Reselection Time-out)
Bit 1 GEN (General Purpose Timer Expired)
Bit 0 HTH (Handshake-to-Handshake Timer Expired)

Register 44 (C4)
SCSI Longitudinal Parity (SLPAR)
Read/Write

Register 45 (C5)
SCSI Wide Residue (SWIDE)
Read/Write

Register 46 (C6)
Memory Access Control (MACNTL)
Read/Write

Bits 7-4 TYP3-0 (Chip Type)
Bit 3 DWR (DataWR)
Bit 2 DRD (DataRD)
Bit 1 PSCPT (Pointer SCRIPTS)
Bit 0 SCPTS (SCRIPTS)

Register 47 (C7)
General Purpose Pin Control (GPCNTL)
Read/Write

Bit 7 Master Enable
Bit 6 Fetch Enable
Bit 5 Reserved
Bits 4-2 GPIO4_EN–GPIO2_EN (GPIO Enable)
Bits 1-0 GPIO1_EN– GPIO0_EN (GPIO Enable)

Register 48 (C8)
SCSI Timer Zero (STIME0)
Read /Write

Bits 7-4 HTH (Handshake-to-Handshake Timer Period)
Bits 3-0 SEL (Selection Time-Out)

Register 49 (C9)
SCSI Timer One (STIME1)
Read/Write

Bit 7 Reserved
Bit 6 HTHBA (Handshake-to-Handshake Timer Bus

Activity Enable)
Bit 5 GENSF (General Purpose Timer Scale Factor)
Bit 4 HTHSF (Handshake to Handshake Timer Scale

Factor)
Bits 3-0 GEN3-0 (General Purpose Timer Period)

Register 4A (CA)
Response ID Zero (RESPID0)
Read/Write

Register 4B (CB)
Response ID One(RESPID1)
Read/Write

Register 4C (CC)
SCSI Test Zero (STEST0)
Read Only

Bits 7-4 SSAID (SCSI Selected As ID)
Bit 3 SLT (Selection Response Logic Test)
Bit 2 ART (Arbitration Priority Encoder Test)
Bit 1 SOZ (SCSI Synchronous Offset Zero)
Bit 0 SOM (SCSI Synchronous Offset Maximum)

RES RES RES RES RES STO GEN HTH

7 6 5 4 3 2 1 0

Default>>>

X X X X X 0 0 0

M/A CMP SEL RSL SGE UDC RST PAR

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 0 0 0

RES RES RES RES RES STO GEN HTH

7 6 5 4 3 2 1 0

Default>>>

X X X X X 0 0 0

TYP3 TYP2 TYP1 TYP0 DWR DRD PSCPT SCPTS

7 6 5 4 3 2 1 0

Default>>>

0 01 1 10 0 0 0 0

ME FE RES GPIO4 GPIO3 GPIO2 GPIO1 GPIO0

7 6 5 4 3 2 1 0

Default>>>

0 0 X 0 1 1 1 1

HTH HTH HTH HRH SEL SEL SEL SEL

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 0 0 0

RES HTHBA GENSF HTHSF GEN3 GEN2 GEN1 GEN0

7 6 5 4 3 2 1 0

Default>>>

X 0X 0X 0X 0 0 0 0

SSAID3 SSAID2 SSAID1 SSAID0 SLT ART SOZ SOM

7 6 5 4 3 2 1 0

Default>>>

0X 0X 0X 0X 0 X 1 1

Register Summaries
SYM53C875 Operating Registers

Symbios Logic PCI-SCSI Programming Guide B-29

Register 4D (CD)
SCSI Test One (STEST1)
Read/Write

Bit 7 SCLK
Bit 6 SISO (SCSI Isolation Mode)
Bits 5-4 Reserved
Bit 3 SCLK Doubler Enable (DBLEN)
Bit 2 SCLK Doubler Select (DBLSEL)
Bits1-0 Reserved

Register 4E (CE)
SCSI Test Two (STEST2)
Read/Write

Bit 7 SCE (SCSI Control Enable)
Bit 6 ROF (Reset SCSI Offset)
Bit 5 DIF (SCSI Differential Mode)
Bit 4 SLB (SCSI Loopback Mode)
Bit 3 SZM (SCSI High-Impedance Mode)
Bit 1 EXT (Extend SREQ/SACK Filtering)
Bit 0 LOW (SCSI Low level Mode)

Register 4F (CF)
SCSI Test Three (STEST3)
Read/Write

Bit 7 TE (TolerANT Enable)
Bit 6 STR (SCSI FIFO Test Read)
Bit 5 HSC (Halt SCSI Clock)
Bit 4 DSI (Disable Single Initiator Response)
Bit 3 S16 (16-bit System)
Bit 2 TTM (Timer Test Mode)
Bit 1 CSF (Clear SCSI FIFO)
Bit 0 STW (SCSI FIFO Test Write)

Register 50-51 (D0-D1)
SCSI Input Data Latch (SIDL)
Read Only

Registers 54-55 (D4-D5)
SCSI Output Data Latch (SODL)
Read/Write

Registers 58-59 (D8-D9)
SCSI Bus Data Lines (SBDL)
Read Only

Registers 5C-5F (DC-DF)
Scratch Register B (SCRATCHB)
(Read/Write)

Registers 60h-7Fh (E0h-FFh)
Scratch Registers C-J
(SCRATCHC-SCRATCHJ)
Read/Write

SCLK SISO RES RES RES RES RES RES

7 6 5 4 3 2 1 0

Default>>>

0 X0 X X X X X X

SCE ROF DIF SLB SZM AWS EXT LOW

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 0 0 0

TE STR HSC DSI S16 TTM CSF STW

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 0 0 0

Register Summaries
SYM53C876 Operating Registers

B-30 Symbios Logic PCI-SCSI Programming Guide

SYM53C876 Operating
Registers 0

Register 00h
SCSI Control Zero (SCNTL0)
Read/Write

Bit 7 ARB1 (Arbitration Mode bit 1)
Bit 6 ARB0 (Arbitration Mode bit 0)
Bit 5 START (Start Sequence)
Bit 4 WATN (Select with SATN/ on a Start Sequence)
Bit 3 EPC (Enable Parity Checking)
Bit 2 Reserved
Bit 1 AAP (Assert SATN/ on Parity Error)
Bit 0 TRG (Target Mode)

Register 01h
SCSI Control One (SCNTL1)
Read/Write

Bit 7 EXC (Extra Clock Cycle of Data Setup)
Bit 6 ADB (Assert SCSI Data Bus)
Bit 5 DHP (Disable Halt on Parity Error or ATN) (Tar-

get Only)
Bit 4 CON (Connected)
Bit 3 RST (Assert SCSI RST/ Signal)
Bit 2 AESP (Assert Even SCSI Parity (force bad par-

ity))
Bit 1 IARB (Immediate Arbitration)
Bit 0 SST (Start SCSI Transfer)

Register 02h
SCSI Control Two (SCNTL2)
Read/Write

Bit 7 SDU (SCSI Disconnect Unexpected)
Bit 6 CHM (Chained Mode)
Bit 5 SLPMD (SLPAR Mode Bit)
Bit 4 SLPHBEN (SLPAR High Byte Enable)
Bit 3 WSS (Wide SCSI Send)
Bit 2 VUE0 (Vendor Unique Enhancement bit 0)
Bit 1 VUE1 (Vendor Unique Enhancement bit 1)
Bit 0 WSR (Wide SCSI Receive)

Register 03h
SCSI Control Three (SCNTL3)
Read/Write

Bit 7 USE (Ultra SCSI Enable)
Bits 6-4 SCF2-0 (Synchronous Clock

Conversion Factor)
Bit 3 EWS (Enable Wide SCSI)
Bits 2-0 CCF2-0 (Clock Conversion Factor)

Register 04h
SCSI Chip ID (SCID)
Read/Write

Bit 7 Reserved
Bit 6 RRE (Enable Response to

Reselection)
Bit 5 SRE (Enable Response to Selection)
Bit 4 Reserved
Bits 3-0 Encoded Chip SCSI ID, bits 3-0

Register 05h
SCSI Transfer (SXFER)
Read/Write

Bits 7-5 TP2-0 (SCSI Synchronous Transfer Period)
Bits 4-0 MO4-MO0 (Max SCSI Synchronous Offset)

Register 06h
SCSI Destination ID (SDID)
Read/Write

Bits 7-4 Reserved
Bits 3-0 Encoded Destination SCSI ID

Register 07h
General Purpose (GPREG)
Read/Write

Bits 7-5, 3 Reserved
Bits 4, 2-0 GPIO4-GPIO0 (General Purpose)

ARB1 ARB0 START WATN EPC RES AAP TRG

7 6 5 4 3 2 1 0

Default >>>

1 1 0 0 0 X 0 0

EXC ADB DHP CON RST AESP IARB SST

7 6 5 4 3 2 1 0

Default >>>

0 0 0 0 0 0 0 0

SDU CHM SLPMD
SLPH-
BEN

WSS VUE0 VUE1 WSR

7 6 5 4 3 2 1 0

Default >>>

0 0 0 0 0 0 X 0

USE SCF2 SCF1 SCF0 EWS CCF2 CCF1 CCF0

7 6 5 4 3 2 1 0

Default >>>

0 0 0 0 0 0 0 0

RES RRE SRE RES ENC3 ENC2 ENC1 ENC0

7 6 5 4 3 2 1 0

Default >>>

X 0 0 X 0 0 0 0

TP2 TP1 TP0 MO4 MO3 MO2 MO1 MO0

7 6 5 4 3 2 1 0

Default >>>

0 0 0 X 0 0 0 0

RES RES RES RES ENC3 ENC2 ENC1 ENC0

7 6 5 4 3 2 1 0

Default >>>

X X X X 0 0 0 0

RES RES RES GPIO4 GPIO3 GPIO2 GPIO1 GPIO0

7 6 5 4 3 2 1 0

Default >>>

X X X 0 X X X X

Register Summaries
SYM53C876 Operating Registers

Symbios Logic PCI-SCSI Programming Guide B-31

Register 08h
SCSI First Byte Received (SFBR)
Read/Write

Register 09h
SCSI Output Control Latch (SOCL)
Read/Write

Bit 7 REQ(Assert SCSI REQ/ Signal)
Bit 6 ACK(Assert SCSI ACK/ Signal)
Bit 5 BSY(Assert SCSI BSY/ Signal)
Bit 4 SEL(Assert SCSI SEL/ Signal)
Bit 3 ATN(Assert SCSI ATN/ Signal)
Bit 2 MSG(Assert SCSI MSG/ Signal)
Bit 1 C/D(Assert SCSI C_D/ Signal)
Bit 0 I/O(Assert SCSI I_O/ Signal)

Register 0Ah
SCSI Selector ID (SSID)
Read Only

Bit 7 VAL (SCSI Valid)
Bits 6-4 Reserved
Bits 3-0 Encoded Destination SCSI ID

Register 0Bh
SCSI Bus Control Lines (SBCL)
Read Only

Bit 7 REQ (SREQ/ Status)
Bit 6 ACK (SACK/ Status)
Bit 5 BSY (SBSY/ Status)
Bit 4 SEL (SSEL/ Status)
Bit 3 ATN (SATN/ Status)
Bit 2 MSG (SMSG/ Status)
Bit 1 C/D (SC_D/ Status)
Bit 0 I/O (SI_O/ Status)

Register 0Ch
DMA Status (DSTAT)
Read Only

Bit 7 DFE (DMA FIFO Empty)
Bit 6 MDPE (Master Data Parity Error)
Bit 5 BF (Bus Fault)
Bit 4 ABRT (Aborted)
Bit 3 SSI (Single Step Interrupt)
Bit 2 SIR (SCRIPTS Interrupt

Instruction Received)
Bit 1 Reserved
Bit 0 IID (Illegal Instruction Detected)

Register 0Dh
SCSI Status Zero (SSTAT0)
Read Only

Bit 7 ILF (SIDL Least Significant Byte Full)
Bit 6 ORF (SODR Least Significant Byte Full)
Bit 5 OLF (SODL Least Significant Byte Full)
Bit 4 AIP (Arbitration in Progress)
Bit 3 LOA (Lost Arbitration)
Bit 2 WOA (Won Arbitration)
Bit 1 RST/ (SCSI RST/ Signal)
Bit 0 SDP0/ (SCSI SDP0/ Parity Signal)

Register 0Eh
SCSI Status One (SSTAT1)
Read Only

Bits 7-4 FF3-FF0 (FIFO Flags)
Bit 3 SDP0L (Latched SCSI Parity)
Bit 2 MSG (SCSI MSG/ Signal)
Bit 1 C/D (SCSI C_D/ Signal)
Bit 0 I/O (SCSI I_O/ Signal)

1B7 1B6 1B5 1B4 1B3 1B2 1B1 1B0

7 6 5 4 3 2 1 0

Default >>>

0 0 0 0 0 0 0 0

REQ ACK BSY SEL ATN MSG C/D I/O

7 6 5 4 3 2 1 0

Default >>>

0 0 0 0 0 0 0 0

VAL RES RES RES ENID3 ENID2 ENID1 ENID0

7 6 5 4 3 2 1 0

Default >>>

0 X X X 0 0 0 0

REQ ACK BSY SEL ATN MSG C/D I/O

7 6 5 4 3 2 1 0

Default >>>

X X X X X X X X

DFE MDPE BF ABRT SSI SIR RES IID

7 6 5 4 3 2 1 0

Default >>>

1 0 0 0 0 0 X 0

ILF ORF OLF AIP LOA WOA RST/ SDP0/

7 6 5 4 3 2 1 0

Default >>>

0 0 0 0 0 0 0 0

FF3 FF2 FF1 FF0 SDP0L MSG C/D I/O

7 6 5 4 3 2 1 0

Default >>>

0 0 0 0 X X X X

Register Summaries
SYM53C876 Operating Registers

B-32 Symbios Logic PCI-SCSI Programming Guide

Register 0Fh
SCSI Status Two (SSTAT2)
Read Only

Bit 7 ILF1 (SIDL Most Significant Byte Full)
Bit 6 ORF1 (SODR Most Significant Byte Full)
Bit 5 OLF1 (SODL Most Significant Byte Full)
Bit 4 FF4 (FIFO Flags bit 4)
Bit 3 SPL1(Latched SCSI parity for SD15-8)
Bit 2 DIFFSENSE Sense
Bit 1 LDSC (Last Disconnect)
Bit 0 SDP1 (SCSI SDP1 Signal)

Registers 10h-13h
Data Structure Address (DSA)
Read/Write

Register 14h
Interrupt Status (ISTAT)
Read/Write

Bit 7 ABRT (Abort Operation)
Bit 6 SRST (Software Reset)
Bit 5 SIGP (Signal Process)
Bit 4 SEM (Semaphore)
Bit 3 CON (Connected)
Bit 2 INTF (Interrupt on the Fly)
Bit 1 SIP (SCSI Interrupt Pending)
Bit 0 DIP (DMA Interrupt Pending)

Register 19h
Chip Test One (CTEST1)
Read Only

Bits 7-4 FMT3-0 (Byte Empty in DMA FIFO)
Bits 3-0 FFL3-0 (Byte Full in DMA FIFO)

Register 1Ah
Chip Test Two (CTEST2)
Read Only

Bit 7 DDIR (Data Transfer Direction)
Bit 6 SIGP (Signal Process)
Bit 5 CIO (Configured as I/O)
Bit 4 CM (Configured as Memory)
Bit 3 SRTCH (SCRATCHA/B Operation)
Bit 2 TEOP (SCSI True End of Process)
Bit 1 DREQ (Data Request Status)
Bit 0 DACK (Data Acknowledge Status)

Register 1Bh
Chip Test Three (CTEST3)
Read/Write

Bits 7-4 V3-V0 (Chip Revision Level)
Bit 3 FLF (Flush DMA FIFO)
Bit 2 CLF (Clear DMA FIFO)
Bit 1 FM (Fetch Pin Mode)
Bit 0 WRIE (Write and Invalidate Enable)

Registers 1Ch-1Fh
Temporary (TEMP)
Read/Write

Register 20h
DMA FIFO (DFIFO)
Read/Write

Bits 7-0 BO7-BO0 (Byte offset counter)

Register 21h
Chip Test Four (CTEST4)
Read/Write

Bit 7 BDIS (Burst Disable)
Bit 6 ZMOD (High Impedance Mode)
Bit 5 ZSD (SCSI Data High Impedance)
Bit 4 SRTM (Shadow Register Test Mode)
Bit 3 MPEE (Master Parity Error Enable)
Bits 2-0 FBL2-FBL0 (FIFO Byte Control)

ILF1 ORF1 OLF1 FF4 SPL1 DIFF LDSC SDP1

7 6 5 4 3 2 1 0

Default >>>

0 0 0 0 X X 1 X

ABRT SRST SIGP SEM CON INTF SIP DIP

7 6 5 4 3 2 1 0

Default >>>

0 0 0 0 0 0 0 0

FMT3 FMT2 FMT1 FMT0 FFL3 FFL2 FFL1 FFL0

7 6 5 4 3 2 1 0

Default >>>

1 1 1 1 0 0 0 0

DDIR SIGP CIO CM SRTCH TEOP DREQ DACK

7 6 5 4 3 2 1 0

Default >>>

0 0 X X 0 0 0 1

V3 V2 V1 V0 FLF CLF FM WRIE

7 6 5 4 3 2 1 0

Default >>>

X X X X 0 0 0 0

BO7 BO6 BO5 BO4 B03 BO2 BO1 BO0

7 6 5 4 3 2 1 0

Default >>>

0 0 0 0 0 0 0 0

BDIS ZMOD ZSD SRTM MPEE FBL2 FBL1 FBL0

7 6 5 4 3 2 1 0

Default >>>

0 0 0 0 0 0 0 0

Register Summaries
SYM53C876 Operating Registers

Symbios Logic PCI-SCSI Programming Guide B-33

Register 22h
Chip Test Five (CTEST5)
Read/Write

Bit 7 ADCK (Clock Address Incrementor)
Bit 6 BBCK (Clock Byte Counter)
Bit 5 DFS (DMA FIFO Size)
Bit 4 MASR (Master Control for Set or Reset Pulses)
Bit 3 DDIR (DMA Direction)
Bit 2 BL2 (Burst Length bit 2)
Bits 1-0 BO9-BO8 (DMA FIFO Byte Offset Counter, bits

9-8)

Register 23h
Chip Test Six (CTEST6)
Read/Write

Bits 7-0 DF7-DF0 (DMA FIFO)

Registers 24h-26h
DMA Byte Counter (DBC)
Read/Write

Register 27h
DMA Command (DCMD)
Read/Write

Registers 28h-2Bh
DMA Next Address (DNAD)
Read/Write

Registers 2Ch-2Fh
DMA SCRIPTS Pointer (DSP)
Read/Write

Registers 30h-33h
DMA SCRIPTS Pointer Save (DSPS)
Read/Write

Registers 34h
Scratch Register A (SCRATCHA)
Read/Write

Register 38h
DMA Mode (DMODE)
Read/Write

Bit 7-6 BL1-BL0 (Burst Length)
Bit 5 SIOM (Source I/O-Memory Enable)
Bit 4 DIOM (Destination I/O-Memory Enable)
Bit 3 ERL (Enable Read Line)
Bit 2 ERMP (Enable Read Multiple)
Bit 1 BOF (Burst Op Code Fetch Enable)
Bit 0 MAN (Manual Start Mode)

Register 39h
DMA Interrupt Enable (DIEN)
Read/Write

Bit 7 Reserved
Bit 6 MDPE (Master Data Parity Error)
Bit 5 BF (Bus Fault)
Bit 4 ABRT (Aborted)
Bit 3 SSI (Single -step Interrupt)
Bit 2 SIR (SCRIPTS Interrupt

Instruction Received
Bit 1 Reserved
Bit 0 IID (Illegal Instruction Detected)

Register 3Ah
Scratch Byte Register (SBR)
Read/Write

Register 3Bh
DMA Control (DCNTL)
Read/Write

Bit 7 CLSE (Cache Line Size Enable)
Bit 6 PFF (Pre-fetch Flush)
Bit 5 PFEN (Pre-fetch Enable)
Bit 4 SSM (Single-step Mode)
Bit 3 INTM (INTA Mode)
Bit 1 IRQD (INTA, INTB Disable)
Bit 0 COM (53C700 Compatibility)

Register 3Ch-3Fh
Adder Sum Output (ADDER)
Read Only

ADCK BBCK DFS MASR DDIR BL2 BO9 BO8

7 6 5 4 3 2 1 0

Default >>>

0 0 0 0 0 0 0 0

DF7 DF6 DF5 DF4 DF3 DF2 DF1 DF0

7 6 5 4 3 2 1 0

Default >>>

0 0 0 0 0 0 0 0

BL1 BL0 SIOM DIOM ER ERMP BOF MAN

7 6 5 4 3 2 1 0

Default >>>

0 0 0 0 0 0 0 0

RES MDPE BF ABRT SSI SIR RES IID

7 6 5 4 3 2 1 0

Default >>>

X 0 0 0 0 0 X 0

CLSE PFF PFEN SSM INTM STD INTD COM

7 6 5 4 3 2 1 0

Default >>>

0 0 0 0 0 0 0 0

Register Summaries
SYM53C876 Operating Registers

B-34 Symbios Logic PCI-SCSI Programming Guide

Register 40h
SCSI Interrupt Enable Zero (SIEN0)
Read/Write

Bit 7 M/A (SCSI Phase Mismatch -
Initiator Mode; SCSI ATN
Condition - Target Mode)

Bit 6 CMP (Function Complete)
Bit 5 SEL (Selected)
Bit 4 RSL (Reselected)
Bit 3 SGE (SCSI Gross Error)
Bit 2 UDC (Unexpected Disconnect)
Bit 1 RST (SCSI Reset Condition)
Bit 0 PAR (SCSI Parity Error)

Register 41h
SCSI Interrupt Enable One (SIEN1)
Read/Write

Bits 7-3 Reserved
Bit 2 STO (Selection or Reselection Time-out)
Bit 1 GEN (General Purpose Timer Expired)
Bit 0 HTH (Handshake-to-Handshake Timer Expired)

Register 42h
SCSI Interrupt Status Zero (SIST0)
Read Only

Bit 7 M/A (Initiator Mode: Phase Mismatch; Target
Mode: SATN/ Active)

Bit 6 CMP (Function Complete)
Bit 5 SEL (Selected)
Bit 4 RSL (Reselected)
Bit 3 SGE (SCSI Gross Error)
Bit 2 UDC (Unexpected Disconnect)
Bit 1 RST (SCSI RST/ Received)
Bit 0 PAR (Parity Error)

Register 43h
SCSI Interrupt Status One (SIST1)
Read Only

Bits 7-4 Reserved
Bit 2 STO (Selection or Reselection Time-out)
Bit 1 GEN (General Purpose Timer Expired)
Bit 0 HTH (Handshake-to-Handshake Timer Expired)

Register 44h
SCSI Longitudinal Parity (SLPAR)
Read/Write

Register 45h
SCSI Wide Residue (SWIDE)
Read/Write

Register 46h
Memory Access Control (MACNTL)
Read/Write

Bits 7-4 TYP3-0 (Chip Type)
Bit 3-0 Reserved

Register 47h
General Purpose Pin Control (GPCNTL)
Read/Write

Bit 7 Master Enable
Bit 6 Fetch Enable
Bits 5 Reserved
Bits 4, 2 GPIO4_EN-GPIO2_EN (GPIO Enable)
Bits 1-0 GPIO1_EN-GPIO0_EN (GPIO Enable)

Register 48h
SCSI Timer Zero (STIME0)
Read/Write

Bits 7-4 HTH (Handshake-to-Handshake Timer Period)
Bits 3-0 SEL (Selection Time-Out)

M/A CMP SEL RSL SGE UDC RST PAR

7 6 5 4 3 2 1 0

Default >>>

0 0 0 0 0 0 0 0

RES RES RES RES RES STO GEN HTH

7 6 5 4 3 2 1 0

Default >>>

X X X X X 0 0 0

M/A CMP SEL RSL SGE UDC RST PAR

7 6 5 4 3 2 1 0

Default >>>

0 0 0 0 0 0 0 0

RES RES RES RES RES STO GEN HTH

7 6 5 4 3 2 1 0

Default >>>

X X X X 0 0 0 0

TYP3 TYP2 TYP1 TYP0 RES RES RES RES

7 6 5 4 3 2 1 0

Default >>>

0 1 1 1 X X X X

ME FE RES GPIO4 GPIO3 GPIO2 GPIO1 GPIO0

7 6 5 4 3 2 1 0

Default >>>

0 0 X 0 1 1 1 1

HTH7 HTH6 HTH5 HRH4 SEL SEL SEL SEL

7 6 5 4 3 2 1 0

Default >>>

0 0 0 0 0 0 0 0

Register Summaries
SYM53C876 Operating Registers

Symbios Logic PCI-SCSI Programming Guide B-35

Register 49h
SCSI Timer One (STIME1)
Read/Write

Bit 7 Reserved
Bit 6 HTHBA (Handshake-to-Handshake Timer Bus

Activity Enable)
Bit 5 GENSF (General Purpose Timer Scale Factor)
Bit 4 HTHSF (Handshake to Handshake Timer Scale

Factor)
Bits 3-0 GEN3-0 (General Purpose Timer Period)

Register 4Ah
Response ID Zero (RESPID0)
Read/Write

Register 4Bh
Response ID One (RESPID1)
Read/Write

Register 4Ch
SCSI Test Zero (STEST0)
Read Only

Bits 7-4 SSAID3-0 (SCSI Selected As ID)
Bit 3 SLT (Selection Response Logic Test)
Bit 2 ART (Arbitration Priority Encoder Test)
Bit 1 SOZ (SCSI Synchronous Offset Zero)
Bit 0 SOM (SCSI Synchronous Offset Maximum)

Register 4Dh
SCSI Test One (STEST1)
Read/Write

Bit 7 SCLK
Bit 6 ISO_MODE (SCSI Isolation Mode)
Bit 5 Reserved
Bit 4 Reserved
Bit 3 DBLEN (SCLK Doubler Enable)
Bit 2 DBLSEL (SCLK Doubler Select)
Bits 1-0 Reserved

Register 4Eh
SCSI Test Two (STEST2)
Read/Write

Bit 7 SCE (SCSI Control Enable)
Bit 6 ROF (Reset SCSI Offset)
Bit 5 DIF
Bit 4 SLB (SCSI Loopback Mode)
Bit 3 SZM (SCSI High-Impedance Mode)
Bit 2 AWS (Always Wide SCSI)
Bit 1 EXT (Extend SREQ/SACK

Filtering)
Bit 0 LOW (SCSI Low level Mode)

Register 4Fh
SCSI Test Three (STEST3)
Read/Write

Bit 7 TE (TolerANT Enable)
Bit 6 STR (SCSI FIFO Test Read)
Bit 5 HSC (Halt SCSI Clock)
Bit 4 DSI (Disable Single Initiator Response)
Bit 3 CHECKHI (Check High Parity)
Bit 2 TTM (Timer Test Mode)
Bit 1 CSF (Clear SCSI FIFO)
Bit 0 STW (SCSI FIFO Test Write)

Register 50h-51h
SCSI Input Data Latch (SIDL)
Read Only

Registers 54h-55h
SCSI Output Data Latch (SODL)
Read/Write

Registers 58h-59h
SCSI Bus Data Lines (SBDL)
Read Only

Registers 5Ch-5Fh
Scratch Register B (SCRATCHB)
Read/Write

Registers 60h-7Fh
Scratch Registers C-J
(SCRATCHC-SCRATCHJ)
Read/Write

RES HTHBA GENSF HTHSF GEN3 GEN2 GEN1 GEN0

7 6 5 4 3 2 1 0

Default >>>

X 0 0 0 0 0 0 0

ID ID ID ID ID ID ID ID

7 6 5 4 3 2 1 0

Default >>>

X X X X X X X X

ID ID ID ID ID ID ID ID

15 14 13 12 11 10 9 8

Default >>>

X X X X X X X X

SSAID3 SSAID2 SSAID1 SSAID0 SLT ART SOZ SOM

7 6 5 4 3 2 1 0

Default >>>

0 0 0 0 0 X 1 1

SCLK ISO RES RES DBLEN DBLSEL RES RES

7 6 5 4 3 2 1 0

Default >>>

0 0 X X 0 0 X X

SCE ROF DIF SLB SZM AWS EXT LOW

7 6 5 4 3 2 1 0

Default >>>

0 0 0 0 0 0 0 0

TE STR HSC DSI CHECKHI TTM CSF STW
7 6 5 4 3 2 1 0

Default >>>
0 0 0 0 X 0 0 0

Register Summaries
SYM53C885 SCSI Register Summary

B-36 Symbios Logic PCI-SCSI Programming Guide

SYM53C885 SCSI
Register Summary 0

Register 00h
SCSI Control Zero (SCNTL0)
Read/Write

Bit 7 ARB1 (Arbitration Mode bit 1)
Bit 6 ARB0 (Arbitration Mode bit 0)
Bit 5 START (Start Sequence)
Bit 4 WATN (Select with SATN/ on a Start Sequence)
Bit 3 EPC (Enable Parity Checking)
Bit 2 Reserved
Bit 1 AAP (Assert SATN/ on Parity Error)
Bit 0 TRG (Target Mode)

Register 01h
SCSI Control One (SCNTL1)
Read/Write

Bit 7 EXC (Extra Clock Cycle of Data Setup)
Bit 6 ADB (Assert SCSI Data Bus)
Bit 5 DHP (Disable Halt on Parity Error or ATN) (Tar-

get Only)
Bit 4 CON (Connected)
Bit 3 RST (Assert SCSI RST/ Signal)
Bit 2 AESP (Assert Even SCSI Parity (force bad par-

ity))
Bit 1 IARB (Immediate Arbitration)
Bit 0 SST (Start SCSI Transfer)

Register 02h
SCSI Control Two (SCNTL2)
Read/Write

Bit 7 SDU (SCSI Disconnect Unexpected)
Bit 6 CHM (Chained Mode)
Bit 5 SLPMD (SLPAR Mode Bit)
Bit 4 SLPHBEN (SLPAR High Byte Enable)
Bit 3 WSS (Wide SCSI Send)
Bit 2 VUE0 (Vendor Unique Enhancement bit 0)
Bit 1 VUE1 (Vendor Unique Enhancement bit 1)
Bit 0 WSR (Wide SCSI Receive)

Register 03h
SCSI Control Three (SCNTL3)
Read/Write

Bit 7 USE (Ultra SCSI Enable)
Bits 6-4 SCF2-0 (Synchronous Clock

 Conversion Factor)
Bit 3 EWS (Enable Wide SCSI)
Bits 2-0 CCF2-0 (Clock Conversion Factor)

Register 04h
 SCSI Chip ID (SCID)
 Read/Write

Bit 7 Reserved
Bit 6 RRE (Enable Response to

 Reselection)
Bit 5 SRE (Enable Response to Selection)
Bit 4 Reserved
Bits 3-0 Encoded Chip SCSI ID

 bits 3-0

Register 05h
SCSI Transfer (SXFER)
Read/Write

Bits 7-5 TP2-0 (SCSI Synchronous Transfer Period)
Bits 4-0 MO4-MO0 (Max SCSI Synchronous Offset)

Register 06h
SCSI Destination ID (SDID)
Read/Write

Bits 7-4 Reserved
Bits 3-0 Encoded Destination SCSI ID

Register 07h
General Purpose (GPREG)
Read/Write

Bits 7-3 Reserved
Bits 2-0 GPIO4-GPIO0 (General Purpose)

ARB1 ARB0 START WATN EPC RES AAP TRG

7 6 5 4 3 2 1 0

Default >>>

1 1 0 0 0 X 0 0

EXC ADB DHP CON RST AESP IARB SST

7 6 5 4 3 2 1 0

Default >>>

0 0 0 0 0 0 0 0

SDU CHM SLPMD
SLPH-
BEN

WSS VUE0 VUE1 WSR

7 6 5 4 3 2 1 0

Default >>>

0 0 0 0 0 0 X 0

USE SCF2 SCF1 SCF0 EWS CCF2 CCF1 CCF0

7 6 5 4 3 2 1 0

Default >>>

0 0 0 0 0 0 0 0

RES RRE SRE RES ENC3 ENC2 ENC1 ENC0

7 6 5 4 3 2 1 0

Default >>>

X 0 0 X 0 0 0 0

TP2 TP1 TP0 MO4 MO3 MO2 MO1 MO0

7 6 5 4 3 2 1 0

Default >>>

0 0 0 X 0 0 0 0

RES RES RES RES ENC3 ENC2 ENC1 ENC0

7 6 5 4 3 2 1 0

Default >>>

X X X X 0 0 0 0

RES RES RES GPIO4 RES GPIO2 GPIO1 GPIO0

7 6 5 4 3 2 1 0

Default >>>

X X X 0 X X X X

Register Summaries
SYM53C885 SCSI Register Summary

Symbios Logic PCI-SCSI Programming Guide B-37

Register 08h
 SCSI First Byte Received (SFBR)
 Read/Write

Register 09h
 SCSI Output Control Latch (SOCL)
 Read/Write

Bit 7 REQ(Assert SCSI REQ/ Signal)
Bit 6 ACK(Assert SCSI ACK/ Signal)
Bit 5 BSY(Assert SCSI BSY/ Signal)
Bit 4 SEL(Assert SCSI SEL/ Signal)
Bit 3 ATN(Assert SCSI ATN/ Signal)
Bit 2 MSG(Assert SCSI MSG/ Signal)
Bit 1 C/D(Assert SCSI C_D/ Signal)
Bit 0 I/O(Assert SCSI I_O/ Signal)

Register 0Ah
 SCSI Selector ID (SSID)
 Read Only

Bit 7 VAL (SCSI Valid)
Bits 6-4 Reserved
Bits 3-0 Encoded Destination SCSI ID

Register 0Bh
 SCSI Bus Control Lines (SBCL)
 Read Only

Bit 7 REQ (SREQ/ Status)
Bit 6 ACK (SACK/ Status)
Bit 5 BSY (SBSY/ Status)
Bit 4 SEL (SSEL/ Status)
Bit 3 ATN (SATN/ Status)
Bit 2 MSG (SMSG/ Status)
Bit 1 C/D (SC_D/ Status)
Bit 0 I/O (SI_O/ Status)

Register 0Ch
DMA Status (DSTAT)
Read Only

Bit 7 DFE (DMA FIFO Empty)
Bit 6 MDPE (Master Data Parity Error)
Bit 5 BF (Bus Fault)
Bit 4 ABRT (Aborted)
Bit 3 SSI (Single Step Interrupt)
Bit 2 SIR (SCRIPTS Interrupt

 Instruction Received)
Bit 1 Reserved
Bit 0 IID (Illegal Instruction Detected)

Register 0Dh
 SCSI Status Zero (SSTAT0)
 Read Only

Bit 7 ILF (SIDL Least Significant Byte Full)
Bit 6 ORF (SODR Least Significant Byte Full)
Bit 5 OLF (SODL Least Significant Byte Full)
Bit 4 AIP (Arbitration in Progress)
Bit 3 LOA (Lost Arbitration)
Bit 2 WOA (Won Arbitration)
Bit 1 RST/ (SCSI RST/ Signal)
Bit 0 SDP0/ (SCSI SDP0/ Parity Signal)

Register 0Eh
SCSI Status One (SSTAT1)
Read Only

Bits 7-4 FF3-FF0 (FIFO Flags)
Bit 3 SDP0L (Latched SCSI Parity)
Bit 2 MSG (SCSI MSG/ Signal)
Bit 1 C/D (SCSI C_D/ Signal)
Bit 0 I/O (SCSI I_O/ Signal)

Register 0Fh
SCSI Status Two (SSTAT2)
Read Only

Bit 7 ILF1 (SIDL Most Significant Byte Full)
Bit 6 ORF1 (SODR Most Significant Byte Full)
Bit 5 OLF1 (SODL Most Significant Byte Full)
Bit 4 FF4 (FIFO Flags bit 4)
Bit 3 SPL1(Latched SCSI parity for SD15-8)
Bit 2 Reserved
Bit 1 LDSC (Last Disconnect)
Bit 0 SDP1 (SCSI SDP1 Signal)

1B7 1B6 1B5 1B4 1B3 1B2 1B1 1B0

7 6 5 4 3 2 1 0

Default >>>

0 0 0 0 0 0 0 0

REQ ACK BSY SEL ATN MSG C/D I/O

7 6 5 4 3 2 1 0

Default >>>

0 0 0 0 0 0 0 0

VAL RES RES RES ENID3 ENID2 ENID1 ENID0

7 6 5 4 3 2 1 0

Default >>>

0 X X X 0 0 0 0

REQ ACK BSY SEL ATN MSG C/D I/O

7 6 5 4 3 2 1 0

Default >>>

X X X X X X X X

DFE MDPE BF ABRT SSI SIR RES IID

7 6 5 4 3 2 1 0

Default >>>

1 0 0 0 0 0 X 0

ILF ORF OLF AIP LOA WOA RST/ SDP0/

7 6 5 4 3 2 1 0

Default >>>

0 0 0 0 0 0 0 0

FF3 FF2 FF1 FF0 SDP0L MSG C/D I/O

7 6 5 4 3 2 1 0

Default >>>

0 0 0 0 X X X X

ILF1 ORF1 OLF1 FF4 SPL1 RES LDSC SDP1

7 6 5 4 3 2 1 0

Default >>>

0 0 0 0 X X 1 X

Register Summaries
SYM53C885 SCSI Register Summary

B-38 Symbios Logic PCI-SCSI Programming Guide

Registers 10h-13h
 Data Structure Address (DSA)
 Read/Write

Register 14h
 Interrupt Status (ISTAT)
 Read/Write

Bit 7 ABRT (Abort Operation)
Bit 6 SRST (Software Reset)
Bit 5 SIGP (Signal Process)
Bit 4 SEM (Semaphore)
Bit 3 CON (Connected)
Bit 2 INTF (Interrupt on the Fly)
Bit 1 SIP (SCSI Interrupt Pending)
Bit 0 DIP (DMA Interrupt Pending)

Register 18h
 Chip Test Zero (CTEST0)
 Read/Write

Bits 7-5 Reserved
Bit 4 CM (Coma Mode)
Bit 3 SM (Snooze Mode)
Bits 2-0 AP2-0 (Arbitration Priority 2-0)

Register 19h
 Chip Test One (CTEST1)
 Read Only

Bits 7-4 FMT3-0 (Byte Empty in DMA FIFO)
Bits 3-0 FFL3-0 (Byte Full in DMA FIFO)

Register 1Ah
 Chip Test Two (CTEST2)
 Read Only

Bit 7 DDIR (Data Transfer Direction)
Bit 6 SIGP (Signal Process)
Bit 5 CIO (Configured as I/O)
Bit 4 CM (Configured as Memory)
Bit 3 SRTCH (SCRATCHA/B Operation)
Bit 2 TEOP (SCSI True End of Process)
Bit 1 DREQ (Data Request Status)
Bit 0 DACK (Data Acknowledge Status)

Register 1Bh
 Chip Test Three (CTEST3)
 Read/Write

Bits 7-4 V3-V0 (Chip revision level)
Bit 3 FLF (Flush DMA FIFO)
Bit 2 CLF (Clear DMA FIFO)
Bit 1 FM (Fetch Pin Mode)
Bit 0 WRIE (Write and Invalidate Enable)

Registers 1Ch-1Fh
 Temporary (TEMP)
 Read/Write

Register 20h
 DMA FIFO (DFIFO)
 Read/Write

Bits 7-0 BO7-BO0 (Byte offset counter)

Register 21h
 Chip Test Four (CTEST4)
 Read/Write

Bit 7 BDIS (Burst Disable)
Bit 6 ZMOD (High Impedance Mode)
Bit 5 ZSD (SCSI Data High Impedance)
Bit 4 SRTM (Shadow Register Test Mode)
Bit 3 MPEE (Master Parity Error Enable)
Bits 2-0 FBL2-FBL0 (FIFO Byte Control)

Register 22h
 Chip Test Five (CTEST5)
 Read/Write

Bit 7 ADCK (Clock Address Incrementor)
Bit 6 BBCK (Clock Byte Counter)
Bit 5 DFS (DMA FIFO Size)
Bit 4 MASR (Master Control for Set or Reset Pulses)
Bit 3 DDIR (DMA Direction)
Bit 2 BL2 (Burst Length bit 2)
Bits 1-0 BO9-BO8 (DMA FIFO Byte Offset Counter

 bits 9-8)

ABRT SRST SIGP SEM CON INTF SIP DIP

7 6 5 4 3 2 1 0

Default >>>

0 0 0 0 0 0 0 0

RES RES RES CM SM AP2 AP1 AP0

7 6 5 4 3 2 1 0

Default >>>

X X X 0 0 0 0 0

FMT3 FMT2 FMT1 FMT0 FFL3 FFL2 FFL1 FFL0

7 6 5 4 3 2 1 0

Default >>>

1 1 1 1 0 0 0 0

DDIR SIGP CIO CM SRTCH TEOP DREQ DACK

7 6 5 4 3 2 1 0

Default >>>

0 0 X X 0 0 0 1

V3 V2 V1 V0 FLF CLF FM WRIE

7 6 5 4 3 2 1 0

Default >>>

x x x x 0 0 0 0

BO7 BO6 BO5 BO4 B03 BO2 BO1 BO0

7 6 5 4 3 2 1 0

Default >>>

0 0 0 0 0 0 0 0

BDIS ZMOD ZSD SRTM MPEE FBL2 FBL1 FBL0

7 6 5 4 3 2 1 0

Default >>>

0 0 0 0 0 0 0 0

ADCK BBCK DFS MASR DDIR BL2 BO9 BO8

7 6 5 4 3 2 1 0

Default >>>

0 0 0 0 0 0 0 0

Register Summaries
SYM53C885 SCSI Register Summary

Symbios Logic PCI-SCSI Programming Guide B-39

Register 23h
 Chip Test Six (CTEST6)
 Read/Write

Bits 7-0 DF7-DF0 (DMA FIFO)

Registers 24h-26h
 DMA Byte Counter (DBC)
 Read/Write

Register 27h
 DMA Command (DCMD)
 Read/Write

Registers 28h-2Bh
 DMA Next Address (DNAD)
 Read/Write

Registers 2Ch-2Fh
 DMA SCRIPTS Pointer (DSP)
 Read/Write

Registers 30h-33h
 DMA SCRIPTS Pointer Save (DSPS)
 Read/Write

Registers 34h
 Scratch Register A (SCRATCHA)
 Read/Write

Register 38h
 DMA Mode (DMODE)
 Read/Write

Bit 7-6 BL1-BL0 (Burst Length)
Bit 5 SIOM (Source I/O-Memory Enable)
Bit 4 DIOM (Destination I/O-Memory Enable)
Bit 3 ERL (Enable Read Line)
Bit 2 ERMP (Enable Read Multiple)
Bit 1 BOF (Burst Op Code Fetch Enable)
Bit 0 MAN (Manual Start Mode)

Register 39h
 DMA Interrupt Enable (DIEN)
 Read/Write

Bit 7 Reserved
Bit 6 MDPE (Master Data Parity Error)
Bit 5 BF (Bus Fault)
Bit 4 ABRT (Aborted)
Bit 3 SSI (Single -Step Interrupt)
Bit 2 SIR (SCRIPTS Interrupt

 Instruction Received
Bit 1 Reserved
Bit 0 IID (Illegal Instruction Detected)

Register 3Ah
 Scratch Byte Register (SBR)
 Read/Write

Register 3Bh
 DMA Control (DCNTL)
 Read/Write

Bit 7 CLSE (Cache Line Size Enable)
Bit 6 PFF (Pre-fetch Flush)
Bit 5 PFEN (Pre-fetch Enable)
Bit 4 SSM (Single-step Mode)
Bit 3 INTM (INTA Mode)
Bit 2 STD (Start DMA Operation)
Bit 1 INTD (INTA Disable)
Bit 0 COM (53C700 Compatibility)

Register 3Ch-3Fh
 Adder Sum Output (ADDER)
 Read Only

Register 40h
 SCSI Interrupt Enable Zero (SIEN0)
 Read/Write

Bit 7 M/A (SCSI Phase Mismatch -
 Initiator Mode; SCSI ATN
 Condition - Target Mode)

Bit 6 CMP (Function Complete)
Bit 5 SEL (Selected)
Bit 4 RSL (Reselected)
Bit 3 SGE (SCSI Gross Error)
Bit 2 UDC (Unexpected Disconnect)
Bit 1 RST (SCSI Reset Condition)
Bit 0 PAR (SCSI Parity Error)

DF7 DF6 DF5 DF4 DF3 DF2 DF1 DF0

7 6 5 4 3 2 1 0

Default >>>

0 0 0 0 0 0 0 0

BL1 BL0 SIOM DIOM ER ERMP BOF MAN

7 6 5 4 3 2 1 0

Default >>>

0 0 0 0 0 0 0 0

RES MDPE BF ABRT SSI SIR RES IID

7 6 5 4 3 2 1 0

Default >>>

X 0 0 0 0 0 X 0

CLSE PFF PFEN SSM INTM STD INTD COM

7 6 5 4 3 2 1 0

Default >>>

0 0 0 0 0 0 0 0

M/A CMP SEL RSL SGE UDC RST PAR

7 6 5 4 3 2 1 0

Default >>>

0 0 0 0 0 0 0 0

Register Summaries
SYM53C885 SCSI Register Summary

B-40 Symbios Logic PCI-SCSI Programming Guide

Register 41h
 SCSI Interrupt Enable One (SIEN1)
 Read/Write

Bits 7-4 Reserved
Bit 3 WI (Wakeup)
Bit 2 STO (Selection or Reselection Time-out)
Bit 1 GEN (General Purpose Timer Expired)
Bit 0 HTH (Handshake-to-Handshake Timer Expired)

Register 42h
 SCSI Interrupt Status Zero (SIST0)
 Read Only

Bit 7 M/A (Initiator Mode: Phase Mismatch; Target
Mode: SATN/ Active)

Bit 6 CMP (Function Complete)
Bit 5 SEL (Selected)
Bit 4 RSL (Reselected)
Bit 3 SGE (SCSI Gross Error)
Bit 2 UDC (Unexpected Disconnect)
Bit 1 RST (SCSI RST/ Received)
Bit 0 PAR (Parity Error)

Register 43h
 SCSI Interrupt Status One (SIST1)
 Read Only

Bits 7-4 Reserved
Bit 3 WI (Wakeup)
Bit 2 STO (Selection or Reselection Time-out)
Bit 1 GEN (General Purpose Timer Expired)
Bit 0 HTH (Handshake-to-Handshake Timer Expired)

Register 45h
 SCSI Wide Residue (SWIDE)
 Read/Write

Register 46h
 Memory Access Control (MACNTL)
 Read/Write

Bits 7-4 TYP3-0 (Chip Type)
Bit 3 DWR (DataWR)
Bit 2 DRD (DataRD)
Bit 1 PSCPT (Pointer SCRIPTS)
Bit 0 SCPTS (SCRIPTS)

Register 47h
 General Purpose Pin Control (GPCNTL)
 Read/Write

Bit 7 Master Enable
Bit 6 Fetch Enable
Bits 5

 3Reserved
Bits 4

 2GPIO4_EN/GPIO2_EN (GPIO Enable)
Bits 1-0 GPIO1_EN– GPIO0_EN (GPIO Enable)

Register 48h
 SCSI Timer Zero (STIME0)
 Read/Write

Bits 7-4 HTH (Handshake-to-Handshake Timer Period)
Bits 3-0 SEL (Selection Time-Out)

Register 49h
 SCSI Timer One (STIME1)
 Read/Write

Bit 7 Reserved
Bit 6 HTHBA (Handshake-to-Handshake Timer Bus

Activity Enable)
Bit 5 GENSF (General Purpose Timer Scale Factor)
Bit 4 HTHSF (Handshake to Handshake Timer Scale

Factor)
Bits 3-0 GEN3-0 (General Purpose Timer Period)

RES RES RES RES WI STO GEN HTH

7 6 5 4 3 2 1 0

Default >>>

X X X X 0 0 0 0

M/A CMP SEL RSL SGE UDC RST PAR

7 6 5 4 3 2 1 0

Default >>>

0 0 0 0 0 0 0 0

RES RES RES RES WI STO GEN HTH

7 6 5 4 3 2 1 0

Default >>>

X X X X 0 0 0 0

TYP3 TYP2 TYP1 TYP0 DWR DRD PSCPT SCPTS

7 6 5 4 3 2 1 0

Default >>>

1 0 1 0 0 0 0 0

ME FE RES GPIO4 RES GPIO2 GPIO1 GPIO0

7 6 5 4 3 2 1 0

Default >>>

0 0 X 0 1 1 1 1

HTH7 HTH6 HTH5 HRH4 SEL SEL SEL SEL

7 6 5 4 3 2 1 0

Default >>>

0 0 0 0 0 0 0 0

RES HTHBA GENSF HTHSF GEN3 GEN2 GEN1 GEN0

7 6 5 4 3 2 1 0

Default >>>

X 0 0 0 0 0 0 0

Register Summaries
SYM53C885 SCSI Register Summary

Symbios Logic PCI-SCSI Programming Guide B-41

Register 4Ah
 Response ID Zero (RESPID0)
 Read/Write

Register 4B
 Response ID One(RESPID1)
 Read/Write

Register 4Ch
 SCSI Test Zero (STEST0)
 Read Only

Bits 7-4 SSAID3-0 (SCSI Selected As ID)
Bit 3 SLT (Selection Response Logic Test)
Bit 2 ART (Arbitration Priority Encoder Test)
Bit 1 SOZ (SCSI Synchronous Offset Zero)
Bit 0 SOM (SCSI Synchronous Offset Maximum)

Register 4Dh
 SCSI Test One (STEST1)
 Read/Write

Bit 7 Reserved
Bit 6 SISO (SCSI Isolation Mode)
Bits 5-4 Reserved
Bit 3 DBLEN (SCLK Doubler Enable)
Bit 2 DBLSEL (SCLK Doubler Select)
Bits 1-0 Reserved

Register 4Eh
 SCSI Test Two (STEST2)
 Read/Write

Bit 7 SCE (SCSI Control Enable)
Bit 6 ROF (Reset SCSI Offset)
Bit 5 Reserved
Bit 4 SLB (SCSI Loopback Mode)
Bit 3 SZM (SCSI High-Impedance Mode)
Bit 2 AWS (Always Wide SCSI)
Bit 1 EXT (Extend SREQ/SACK

 Filtering)
Bit 0 LOW (SCSI Low level Mode)

Register 4Fh
 SCSI Test Three (STEST3)
 Read/Write

Bit 7 TE (TolerANT Enable)
Bit 6 STR (SCSI FIFO Test Read)
Bit 5 HSC (Halt SCSI Clock)
Bit 4 DSI (Disable Single Initiator Response)
Bit 3 Reserved
Bit 2 TTM (Timer Test Mode)
Bit 1 CSF (Clear SCSI FIFO)
Bit 0 STW (SCSI FIFO Test Write)

Register 50h-51h
 SCSI Input Data Latch (SIDL)
 Read Only

Registers 54h-55h
 SCSI Output Data Latch (SODL)
 Read/Write

Registers 58h-59h
 SCSI Bus Data Lines (SBDL)
 Read Only

Registers 5Ch-5Fh
 Scratch Register B
 (SCRATCHB)
 Read/Write

Registers 60h-7Fh
 Scratch Registers C-J
 (SCRATCHC-SCRATCHJ)
 Read/Write

ID ID ID ID ID ID ID ID

7 6 5 4 3 2 1 0

Default >>>

X X X X X X X X

ID ID ID ID ID ID ID ID

15 14 13 12 11 10 9 8

Default >>>

X X X X X X X X

SSAID3 SSAID2 SSAID1 SSAID0 SLT ART SOZ SOM

7 6 5 4 3 2 1 0

Default >>>

0 0 0 0 0 X 1 1

RES SISO RES RES DBLEN DBLSEL RES RES

7 6 5 4 3 2 1 0

Default >>>

0 0 X X 0 0 X X

SCE ROF RES SLB SZM AWS EXT LOW

7 6 5 4 3 2 1 0

Default >>>

0 0 0 0 0 0 0 0

TE STR HSC DSI RES TTM CSF STW

7 6 5 4 3 2 1 0

Default >>>

0 0 0 0 X 0 0 0

Register Summaries
SYM53C895 Operating Registers

B-42 Symbios Logic PCI-SCSI Programming Guide

SYM53C895 Operating
Registers 0

Register 00 (80)
SCSI Control Zero (SCNTL0)
Read/Write

Bit 7 ARB1 (Arbitration Mode bit 1)
Bit 6 ARB0 (Arbitration Mode bit 0)
Bit 5 START (Start Sequence)
Bit 4 WATN (Select with SATN/ on a Start Sequence)
Bit 3 EPC (Enable Parity Checking)
Bit 2 Reserved
Bit 1 AAP (Assert SATN/ on Parity Error)
Bit 0 TRG (Target Mode)

Register 01 (81)
SCSI Control One (SCNTL1)
Read/Write

Bit 7 EXC (Extra Clock Cycle of Data Setup)
Bit 6 ADB (Assert SCSI Data Bus)
Bit 5 DHP (Disable Halt on Parity Error or ATN) (

Target Only)
Bit 4 CON (Connected)
Bit 3 RST (Assert SCSI RST/ Signal)
Bit 2 AESP (Assert Even SCSI Parity (force bad

parity))
Bit 1 IARB (Immediate Arbitration)
Bit 0 SST (Start SCSI Transfer)

Register 02 (82)
SCSI Control Two (SCNTL2)
Read/Write

Bit 7 SDU (SCSI Disconnect Unexpected)
Bit 6 CHM (Chained Mode)
Bit 5 SLPMD (SLPAR Mode Bit)
Bit 4 SLPHBEN (SLPAR High Byte Enable)
Bit 3 WSS (Wide SCSI Send)
Bit 2 VUE0 (Vendor Unique Enhancements bit 0)
Bit 1 VUE1 (Vendor Unique Enhancements bit 1)
Bit 0 WSR (Wide SCSI Receive)

Register 03 (83)
SCSI Control Three (SCNTL3)
Read/Write

Bit 7 ULTRA (Ultra Enable)
Bits 6-4 SCF2-0 (Synchronous Clock

Conversion Factor))
Bit 3 EWS (Enable Wide SCSI)
Bits 2-0 CCF2-0 (Clock Conversion Factor)

Register 04 (84)
SCSI Chip ID (SCID)
Read/Write

Bit 7 Reserved
Bit 6 RRE (Enable Response to

Reselection)
Bit 5 SRE (Enable Response to Selection)
Bit 4 Reserved
Bits 3-0 Encoded Chip SCSI ID, bits 3-0

Register 05 (85)
SCSI Transfer (SXFER)
Read/Write

Bits 7-5 TP2-0 (SCSI Synchronous Transfer Period)
Bits 4-0 MO4-MO0 (Max SCSI Synchronous Offset)

Register 06 (86)
SCSI Destination ID (SDID)
Read/Write

Bits 7-4 Reserved
Bits 3-0 Encoded Destination SCSI ID

Rexgister 07 (87)
General Purpose (GPREG)
Read/Write

Bits 7-5 Reserved
Bits 4-0 GPIO4-GPIO0 (General Purpose)

ARB1 ARB0 START WATN EPC RES AAP TRG

7 6 5 4 3 2 1 0

Default>>>

1 1 0 0 0 X 0 0

EXC ADB DHP CON RST AESP IARB SST

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 0 0 0

SDU CHM SLPMD SLPHBEN WSS VUE0 VUE1 WSR

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 0 0 0

ULTRA SCF2 SCF1 SCF0 EWS CCF2 CCF1 CCF0

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 0 0 0

RES RRE SRE RES ENC3 ENC2 ENC1 ENC0

7 6 5 4 3 2 1 0

Default>>>

X 0 0 X 0 0 0 0

TP2 TP1 TP0 MO4 MO3 MO2 MO1 MO0

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 0 0 0

RES RES RES RES ENC3 ENC2 ENC1 ENC0

7 6 5 4 3 2 1 0

Default>>>

X X X X 0 0 0 0

RES RES RES GPIO4 GPIO3 GPIO2 GPIO1 GPIO0

7 6 5 4 3 2 1 0

Default>>>

X X X 0 X X X X

Register Summaries
SYM53C895 Operating Registers

Symbios Logic PCI-SCSI Programming Guide B-43

Register 08 (88)
SCSI First Byte Received (SFBR)
Read/Write

Register 09 (89)
SCSI Output Control Latch (SOCL)
Read /Write

Bit 7 REQ(Assert SCSI REQ/ Signal)
Bit 6 ACK(Assert SCSI ACK/ Signal)
Bit 5 BSY(Assert SCSI BSY/ Signal)
Bit 4 SEL(Assert SCSI SEL/ Signal)
Bit 3 ATN(Assert SCSI ATN/ Signal)
Bit 2 MSG(Assert SCSI MSG/ Signal)
Bit 1 C/D(Assert SCSI C_D/ Signal)
Bit 0 I/O(Assert SCSI I_O/ Signal)

Register 0A (8A)
SCSI Selector ID (SSID)
Read Only

Bit 7 VAL (SCSI Valid)
Bits 6-4 Reserved
Bits 3-0 Encoded Destination SCSI ID

Register 0B (8B)
SCSI Bus Control Lines (SBCL)
Read Only

Bit 7 REQ (SREQ/ Status)
Bit 6 ACK (SACK/ Status)
Bit 5 BSY (SBSY/ Status)
Bit 4 SEL (SSEL/ Status)
Bit 3 ATN (SATN/ Status)
Bit 2 MSG (SMSG/ Status)
Bit 1 C/D (SC_D/ Status)
Bit 0 I/O (SI_O/ Status)

Register 0C (8C)
DMA Status (DSTAT)
Read Only

Bit 7 DFE (DMA FIFO Empty)
Bit 6 MDPE (Master Data Parity Error)
Bit 5 BF (Bus Fault)
Bit 4 ABRT (Aborted)
Bit 3 SSI (Single Step Interrupt)
Bit 2 SIR (SCRIPTS Interrupt

Instruction Received)
Bit 1 Reserved
Bit 0 IID (Illegal Instruction Detected)

Register 0D (8D)
SCSI Status Zero (SSTAT0)
Read Only

Bit 7 ILF (SIDL Least Significant Byte Full)
Bit 6 ORF (SODR Least Significant Byte Full)
Bit 5 OLF (SODL Least Significant Byte Full)
Bit 4 AIP (Arbitration in Progress)
Bit 3 LOA (Lost Arbitration)
Bit 2 WOA (Won Arbitration)
Bit 1 RST/ (SCSI RST/ Signal)
Bit 0 SDP0/ (SCSI SDP0/ Parity Signal)

Register 0E (8E)
SCSI Status One (SSTAT1)
Read Only

Bits 7-4 FF3-FF0 (FIFO Flags)
Bit 3 SDP0L (Latched SCSI Parity)
Bit 2 MSG (SCSI MSG/ Signal)
Bit 1 C/D (SCSI C_D/ Signal)
Bit 0 I/O (SCSI I_O/ Signal)

1B7 1B6 1B5 1B4 1B3 1B2 1B1 1B0

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 0 0 0

REQ ACK BSY SEL ATN MSG C/D I/O

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 0 0 0

VAL RES RES RES ENID3 ENID2 ENID1 ENID0

7 6 5 4 3 2 1 0

Default>>>

0 X X X 0 0 0 0

REQ ACK BSY SEL ATN MSG C/D I/O

7 6 5 4 3 2 1 0

Default>>>

X X X X X X X X

DFE MDPE BF ABRT SSI SIR RES IID

7 6 5 4 3 2 1 0

Default>>>

1 0 0 0 0 0 X 0

ILF ORF OLF AIP LOA WOA RST SDP0/

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 0 0 0

FF3 FF2 FF1 FF0 SDP0L MSG C/D I/O

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 X X X X

Register Summaries
SYM53C895 Operating Registers

B-44 Symbios Logic PCI-SCSI Programming Guide

Register 0F (8F)
SCSI Status Two (SSTAT2)
(Read Only)

Bit 7 ILF1 (SIDL Most Significant Byte Full)
Bit 6 ORF1 (SODR Most Significant Byte Full)
Bit 5 OLF1 (SODL Most Significant Byte Full)
Bit 4 FF4 (FIFO Flags bit 4)
Bit 3 SPL1(Latched SCSI parity for SD15-8)
Bit 2 DM (DIFFSENS Mismatch)
Bit 1 LDSC (Last Disconnect)
Bit 0 SDP1 (SCSI SDP1 Signal)

Registers 10-13 (90-93)
Data Structure Address (DSA)
Read/Write

Register 14 (94)
Interrupt Status (ISTAT)
(Read/Write)

Bit 7 ABRT (Abort Operation)
Bit 6 SRST (Software Reset)
Bit 5 SIGP (Signal Process)
Bit 4 SEM (Semaphore)
Bit 3 CON (Connected)
Bit 2 INTF (Interrupt on the Fly)
Bit 1 SIP (SCSI Interrupt Pending)
Bit 0 DIP (DMA Interrupt Pending)

Register 18 (98)
Chip Test Zero (CTEST0)
Read/Write

Register 19 (99)
Chip Test One (CTEST1)
Read Only

Bits 7-4 FMT3-0 (Byte Empty in DMA FIFO)
Bits 3-0 FFL3-0 (Byte Full in DMA FIFO)

Register 1A (9A)
Chip Test Two (CTEST2)
Read/Write

Bit 7 DDIR (Data Transfer Direction)
Bit 6 SIGP (Signal Process)
Bit 5 CIO (Configured as I/O)
Bit 4 CM (Configured as Memory)
Bit 3 SRTCH (SCRATCHA/B Operation)
Bit 2 TEOP (SCSI True End of Process)
Bit 1 DREQ (Data Request Status)
Bit 0 DACK (Data Acknowledge Status)

Register 1B (9B)
Chip Test Three (CTEST3)
Read/Write

Bits 7-4 V3-V0 (Chip revision level)
Bit 3 FLF (Flush DMA FIFO)
Bit 2 CLF (Clear DMA FIFO)
Bit 1 FM (Fetch Pin Mode)
Bit 0 WRIE (Write and Invalidate Enable)

Registers 1C-1F (9C-9F)
Temporary (TEMP)
Read/Write

Register 20 (A0)
DMA FIFO (DFIFO)
Read/Write

Bits 7-0 BO7-BO0 (Byte offset counter)

Register 21 (A1)
Chip Test Four (CTEST4)
Read/Write

Bit 7 BDIS (Burst Disable)
Bit 6 ZMOD (High Impedance Mode)
Bit 5 ZSD (SCSI Data High Impedance)
Bit 4 SRTM (Shadow Register Test Mode)
Bit 3 MPEE (Master Parity Error Enable)
Bits 2-0 FBL2-FBL0 (FIFO Byte Control

ILF1 ORF1 OLF1 FF4 SPL1 DM LDSC SDP1

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 X X 1 X

ABRT SRST SIGP SEM CON INTF SIP DIP

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 0 0 0

FMT3 FMT2 FMT1 FMT0 FFL3 FFL2 FFL1 FFL0

7 6 5 4 3 2 1 0

Default>>>

1 1 1 1 0 0 0 0

DDIR SIGP CIO CM SRTCH TEOP DREQ DACK

7 6 5 4 3 2 1 0

Default>>>

0 0 X X 0 0 0 1

V3 V2 V1 V0 FLF CLF FM WRIE

7 6 5 4 3 2 1 0

Default>>>

x x x x 0 0 0 0

BO7 BO6 BO5 BO4 Bo3 BO2 BO1 BO0

7 6 5 4 3 2 1 0

Default>>>

X 0 0 0 0 0 0 0

BDIS ZMOD ZSD SRTM MPEE FBL2 FBL1 FBL0

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 0 0 0

Register Summaries
SYM53C895 Operating Registers

Symbios Logic PCI-SCSI Programming Guide B-45

Register 22 (A2)
Chip Test Five (CTEST5)
Read/Write

Bit 7 ADCK (Clock Address Incrementor)
Bit 6 BBCK (Clock Byte Counter)
Bit 5 DFS (DMA FIFO Size)
Bit 4 MASR (Master Control for Set or Reset Pulses)
Bit 3 DDIR (DMA Direction)
Bit 2 BL2 (Burst Length bit 2)
Bits 1-0 BO9-8

Register 23 (A3)
Chip Test Six (CTEST6)
Read/Write

Bits 7-0 DF7-DF0 (DMA FIFO)

Registers 24-26 (A4-A6)
DMA Byte Counter (DBC)
Read/Write

Register 27 (A7)
DMA Command (DCMD)
Read/Write

Registers 28-2B (A8-AB)
DMA Next Address (DNAD)
Read/Write

Registers 2C-2F (AC-AF)
DMA SCRIPTS Pointer (DSP)
Read/Write

Registers 30-33 (B0-B3)
DMA SCRIPTS Pointer Save (DSPS)
Read/Write

Registers 34-37 (B4-B7)
Scratch Register A (SCRATCH A)
Read/Write

Register 38 (B8)
DMA Mode (DMODE)
Read/Write

Bit 7-6 BL1-BL0 (Burst Length)
Bit 5 SIOM (Source I/O-Memory Enable)
Bit 4 DIOM (Destination I/O-Memory Enable)
Bit 3 ERL (Enable Read Line)
Bit 2 ERMP (Enable Read Multiple)
Bit 1 BOF (Burst Op Code Fetch Enable)
Bit 0 MAN (Manual Start Mode)

Register 39 (B9)
DMA Interrupt Enable (DIEN)
Read/Write

Bit 7 Reserved
Bit 6 MDPE (Master Data Parity Error)
Bit 5 BF (Bus Fault)
Bit 4 ABRT (Aborted)
Bit 3 SSI (Single -step Interrupt)
Bit 2 SIR (SCRIPTS Interrupt

Instruction Received
Bit 1 RES
Bit 0 IID (Illegal Instruction Detected)

Register 3A (BA)
Scratch Byte Register (SBR)
Read/Write

Register 3B (BB)
DMA Control (DCNTL)
Read/Write

Bit 7 CLSE (Cache Line Size Enable)
Bit 6 PFF (Pre-fetch Flush)
Bit 5 PFEN (Pre-fetch Enable)
Bit 4 SSM (Single-step Mode)
Bit 3 IRQM (IRQ Mode)
Bit 2 STD (Start DMA Operation)
Bit 1 IRQD (IRQ Disable)
Bit 0 COM (53C700 Compatibility)

Register 3C-3F (BC-BF)
Adder Sum Output (ADDER)
Read Only

ADCK BBCK DFS MASR DDIR BL2 BO9 BO8

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 X X X

DF7 DF6 DF5 DF4 DF3 DF2 DF1 DF0

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 0 0 0

BL1 BL0 SIOM DIOM ER ERMP BOF MAN

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 0 0 0

RES MDPE BF ABRT SSI SIR RES IID

7 6 5 4 3 2 1 0

Default>>>

X 0 0 0 0 0 X 0

CLSE PFF PFEN SSM IRQM STD IRQD COM

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 0 0 0

Register Summaries
SYM53C895 Operating Registers

B-46 Symbios Logic PCI-SCSI Programming Guide

Register 40 (C0)
SCSI Interrupt Enable Zero (SIEN0)
Read/Write

Bit 7 M/A (SCSI Phase Mismatch -
Initiator Mode; SCSI ATN
Condition - Target Mode)

Bit 6 CMP (Function Complete)
Bit 5 SEL (Selected)
Bit 4 RSL (Reselected)
Bit 3 SGE (SCSI Gross Error)
Bit 2 UDC (Unexpected Disconnect)
Bit 1 RST (SCSI Reset Condition)
Bit 0 PAR (SCSI Parity Error)

Register 41 (C1)
SCSI Interrupt Enable One (SIEN1)
Read/Write

Bits 7-5 Reserved
Bit 4 SBMC (SCSI Bus Mode Change)
Bit 3 Reserved
Bit 2 STO (Selection or Reselection Time-out)
Bit 1 GEN (General Purpose Timer Expired)
Bit 0 HTH (Handshake-to-Handshake Timer Expired)

Register 42 (C2)
SCSI Interrupt Status Zero (SIST0)
Read Only

Bit 7 M/A (Initiator Mode: Phase Mismatch; Target
Mode: SATN/ Active)

Bit 6 CMP (Function Complete)
Bit 5 SEL (Selected)
Bit 4 RSL (Reselected)
Bit 3 SGE (SCSI Gross Error)
Bit 2 UDC (Unexpected Disconnect)
Bit 1 RST (SCSI RST/ Received)
Bit 0 PAR (Parity Error)

Register 43 (C3)
SCSI Interrupt Status One (SIST1)
Read Only

Bits 7-5 Reserved
Bit 4 SBMC (SCSI Bus Mode Change)
Bit 3 Reserved
Bit 2 STO (Selection or Reselection Time-out)
Bit 1 GEN (General Purpose Timer Expired)
Bit 0 HTH (Handshake-to-Handshake Timer Expired)

Register 44 (C4)
SCSI Longitudinal Parity (SLPAR)
Read/Write

Register 45 (C5)
SCSI Wide Residue (SWIDE)
Read/Write

Register 46 (C6)
Memory Access Control (MACNTL)
Read/Write

Bits 7-4 TYP3-0 (Chip Type)
Bit 3 DWR (DataWR)
Bit 2 DRD (DataRD)
Bit 1 PSCPT (Pointer SCRIPTS)
Bit 0 SCPTS (SCRIPTS)

Register 47 (C7)
General Purpose Pin Control (GPCNTL)
Read/Write

Bit 7 Master Enable
Bit 6 Fetch Enable
Bit 5 Reserved
Bits 4-2 GPIO4_EN–GPIO2_EN (GPIO Enable)
Bits 1-0 GPIO1_EN– GPIO0_EN (GPIO Enable)

Register 48 (C8)
SCSI Timer Zero (STIME0)
Read /Write

Bits 7-4 HTH (Handshake-to-Handshake Timer Period)
Bits 3-0 SEL (Selection Time-Out)

M/A CMP SEL RSL SGE UDC RST PAR

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 0 0 0

RES RES RES SBMC RES STO GEN HTH

7 6 5 4 3 2 1 0

Default>>>

X X X 0 X 0 0 0

M/A CMP SEL RSL SGE UDC RST PAR

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 0 0 0

RES RES RES SBMC RES STO GEN HTH

7 6 5 4 3 2 1 0

Default>>>

X X X 0 X 0 0 0

TYP3 TYP2 TYP1 TYP0 DWR DRD PSCPT SCPTS

7 6 5 4 3 2 1 0

Default>>>

1 1 0 1 0 0 0 0

ME FE RES GPIO4 GPIO3 GPIO2 GPIO1 GPIO0

7 6 5 4 3 2 1 0

Default>>>

0 0 X 0 1 1 1 1

HTH HTH HTH HRH SEL SEL SEL SEL

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 0 0 0

Register Summaries
SYM53C895 Operating Registers

Symbios Logic PCI-SCSI Programming Guide B-47

Register 49 (C9)
SCSI Timer One (STIME1)
Read/Write

Bit 7 Reserved
Bit 6 HTHBA (Handshake-to-Handshake Timer Bus

Activity Enable)
Bit 5 GENSF (General Purpose Timer Scale Factor)
Bit 4 HTHSF (Handshake to Handshake Timer Scale

Factor)
Bits 3-0 GEN3-0 (General Purpose Timer Period)

Register 4A (CA)
Response ID Zero (RESPID0)
Read/Write

Register 4B (CB)
Response ID One(RESPID1)
Read/Write

.Register 4C (CC)
SCSI Test Zero (STEST0)
Read Only

Bits 7-4 SSAID (SCSI Selected As ID)
Bit 3 SLT (Selection Response Logic Test)
Bit 2 ART (Arbitration Priority Encoder Test)
Bit 1 SOZ (SCSI Synchronous Offset Zero)
Bit 0 SOM (SCSI Synchronous Offset Maximum)

Register 4D (CD)
SCSI Test One (STEST1)
Read/Write

Bit 7 SCLK
Bit 6 SISO (SCSI Isolation Mode)
Bits 5-4 Reserved
Bit 3 QEN (SCLK Quadrupler Enable)
Bit 2 QSEL (SCLK Quadrupler Select)
Bits1-0 Reserved

Register 4E (CE)
SCSI Test Two (STEST2)
Read/Write

Bit 7 SCE (SCSI Control Enable)
Bit 6 ROF (Reset SCSI Offset)
Bit 5 DIF (SCSI Differential Mode)
Bit 4 SLB (SCSI Loopback Mode)
Bit 3 SZM (SCSI High-Impedance Mode)
Bit 2 AWS (Always Wide SCSI)
Bit 1 EXT (Extend SREQ/SACK Filtering)
Bit 0 LOW (SCSI Low level Mode)

Register 4F (CF)
SCSI Test Three (STEST3)
Read/Write

Bit 7 TE (TolerANT Enable)
Bit 6 STR (SCSI FIFO Test Read)
Bit 5 HSC (Halt SCSI Clock)
Bit 4 DSI (Disable Single Initiator Response)
Bit 3 S16 (16-bit System)
Bit 2 TTM (Timer Test Mode)
Bit 1 CSF (Clear SCSI FIFO)
Bit 0 STW (SCSI FIFO Test Write)

Register 50-51 (D0-D1)
SCSI Input Data Latch (SIDL)
Read Only

Register 52 (D2)
SCSI Test 4 (STEST4)
Read Only

Bit 7-6 SMODE (SCSI Mode)
Bit 5 LOCK (Frequency Lock)
Bits 4-0 Reserved

Registers 54-55 (D4-D5)
SCSI Output Data Latch (SODL)
Read/Write

Registers 58-59 (D8-D9)
SCSI Bus Data Lines (SBDL)
Read Only

Registers 5C-5F (DC-DF)
Scratch Register B (SCRATCHB)
(Read/Write)

Registers 60h-7Fh (E0h-FFh)
Scratch Registers C-J
(SCRATCHC-SCRATCHJ)
Read/Write

RES HTHBA GENSF HTHSF GEN3 GEN2 GEN1 GEN0

7 6 5 4 3 2 1 0

Default>>>

X 0 0 0 0 0 0 0

SSAID3 SSAID2 SSAID1 SSAID0 SLT ART SOZ SOM

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 X 1 1

SCLK SISO RES RES QEN QSEL RES RES

7 6 5 4 3 2 1 0

Default>>>

0 0 X X 0 0 X X

SCE ROF DIF SLB SZM AWS EXT LOW

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 0 0 0

TE STR HSC DSI S16 TTM CSF STW

7 6 5 4 3 2 1 0

Default>>>

0 0 0 0 0 0 0 0

SMODE LOCK RES RES RES RES RES

7 6 5 4 3 2 1 0

Default>>>

X X 0 X X X X X

Register Summaries
SYM53C895 Operating Registers

B-48 Symbios Logic PCI-SCSI Programming Guide

Multi-Threaded SCRIPTS Example

Symbios Logic PCI-SCSI Programming Guide C-1

Appendix C

Multi-Threaded SCRIPTS Example

**

; 53C810 MULTI THREAD EXAMPLE

;***
; ABSOLUTE declarations

ABSOLUTE SCSI_id = 0

ABSOLUTE MATCH_SCSI_ID = 0x81

; Messages

ABSOLUTE CMD_COMPLETE_ = 0x00

ABSOLUTE EXTEND_MSG_ = 0x01

ABSOLUTE SAVE_DATAPTR_ = 0x02

ABSOLUTE DISCONNECT_ = 0x04

ABSOLUTE MSG_REJECT_ = 0x07

; Interrupt codes

ABSOLUTE error_not_cmd_phase = 0x01

ABSOLUTE error_not_data_in_phase = 0x02

ABSOLUTE error_not_data_out_phase = 0x03

ABSOLUTE error_not_msg_in_phase = 0x04

ABSOLUTE error_not_msg_out_phase = 0x05

ABSOLUTE error_not_status_phase = 0x06

ABSOLUTE error_unexpected_phase = 0x07

ABSOLUTE error_jump_not_taken = 0x10

ABSOLUTE error_not_cmd_complete = 0x20

ABSOLUTE error_not_extended_msg = 0x21

ABSOLUTE io_complete = 0x0A

ABSOLUTE setup_SXFER = 0x888

ABSOLUTE reselect_id_error = 0x999

ABSOLUTE select_error = 0xfff

;***

; TABLE declarations for Table Indirect offsets in bytes

Table Table_Indirect \

SCSI_ID=ID{0x00,0x00,0x00,0x00}, \

identify_msg_buf = {0xc0}, \

synch_msgi_buf = 5{??}, \

cmd_buf=12{??}, \

status_buf = 1{??}, \

msg_in_buf = 1{??}, \

data_buf = 512{??}

;***

; ENTRY declarations

ENTRY multi_thread

ENTRY to_decisions

Multi-Threaded SCRIPTS Example

C-2 Symbios Logic PCI-SCSI Programming Guide

AT&T -- PROPRIETARY
Use pursuant to Company Instructions

ENTRY id_msg_out

ENTRY msg_in_phase

 ENTRY cmd_phase

ENTRY data_in_phase

ENTRY data_out_phase

ENTRY status_phase

ENTRY disconnected

ENTRY entry0

ENTRY entry1

ENTRY entry2

ENTRY io_request0

ENTRY io_request1

ENTRY io_request2

ENTRY schedule_NOP

; Scheduler SCRIPT code

scheduler:

entry0:

;Initialize DSA register with table base address for using table

;indirect addressing

MOVE MEMORY 4, PATCH_addr_of_table0_ptr, PATCH_chip_physaddr+DSA

;Initilize address for changing jump to nop after starting new I/O

;(after SELECT instruction in main SCRIPT code)

MOVE MEMORY 4,
PATCH_SCRIPTphysaddr+io_request0,PATCH_SCRIPTphysaddr+schedule_NOP+8

io_request0:

JUMP REL(multi_thread)

entry1:

MOVE MEMORY 4, PATCH_addr_of_table1_ptr, PATCH_chip_physaddr+DSA

MOVE MEMORY 4,
PATCH_SCRIPTphysaddr+io_request1,PATCH_SCRIPTphysaddr+schedule_NOP+8

io_request1:

JUMP REL(multi_thread)

entry2:

MOVE MEMORY 4, PATCH_addr_of_table2_ptr, PATCH_chip_physaddr+DSA

MOVE MEMORY 4,
PATCH_SCRIPTphysaddr+io_request2,PATCH_SCRIPTphysaddr+schedule_NOP+8

io_request2:

JUMP REL(multi_thread)

JUMP REL(wait_for_reselect)

;***

; main SCRIPT code

multi_thread:

SELECT ATN FROM SCSI_id, REL(wait_for_reselect)

;Change jump to nop in scheduler after starting new I/O

;the destination address is initialized from scheduler SCRIPT

Multi-Threaded SCRIPTS Example

Symbios Logic PCI-SCSI Programming Guide C-3

schedule_NOP:

MOVE MEMORY 4, PATCH_nop_physaddr, PATCH_place_hold_addr

JUMP REL(to_decisions), WHEN NOT MSG_OUT

id_msg_out:

MOVE FROM identify_msg_buf, WHEN MSG_OUT

JUMP REL(to_decisions), WHEN NOT CMD

cmd_phase:

CLEAR ATN

MOVE FROM cmd_buf, WHEN CMD

JUMP REL(to_decisions), WHEN NOT DATA_IN

data_in_phase:

MOVE FROM data_buf, WHEN DATA_IN

JUMP REL(status_phase), WHEN STATUS

JUMP REL(to_decisions)

data_out_phase:

MOVE FROM data_buf, WHEN DATA_OUT

JUMP REL(to_decisions), WHEN NOT STATUS

status_phase:

MOVE FROM status_buf, WHEN STATUS

JUMP REL(to_decisions), WHEN NOT MSG_IN

msg_in_phase:

MOVE FROM msg_in_buf, WHEN MSG_IN

JUMP REL(disconnected), IF DISCONNECT_

JUMP REL(msg_in_phase), WHEN SAVE_DATAPTR_ ;compare data, wait for
phase

INT error_not_cmd_complete, IF NOT 0x00

CLEAR ACK

MOVE SCNTL2 & 0x7F TO SCNTL2

WAIT DISCONNECT

INT io_complete

disconnected:

MOVE SCNTL2 & 0x7F TO SCNTL2

WAIT DISCONNECT

JUMP REL(wait_for_reselect)

to_decisions:

JUMP REL(msg_in_phase), WHEN MSG_IN

JUMP REL(cmd_phase), IF CMD

JUMP REL(data_in_phase), IF DATA_IN

JUMP REL(data_out_phase), IF DATA_OUT

JUMP REL(status_phase), IF STATUS

INT error_unexpected_phase

;Reselect SCRIPT code

wait_for_reselect:

Multi-Threaded SCRIPTS Example

C-4 Symbios Logic PCI-SCSI Programming Guide

AT&T -- PROPRIETARY
Use pursuant to Company Instructions

WAIT RESELECT REL(CPU_set_SIGP)

SCSI_id_jump_table:

MOVE SSID TO SFBR

JUMP REL(id_0), IF 0x00 ;

JUMP REL(id_1), IF 0x01

JUMP REL(id_2), IF 0x02

INT reselect_id_error

id_0:

MOVE MEMORY 4, PATCH_addr_of_table0_ptr, PATCH_chip_physaddr+DSA

;initialize SXFER for synchronous transfers from table

MOVE MEMORY 1,PATCH_addr_of_table0+2,PATCH_chip_physaddr+SXFER

MOVE MEMORY 1,PATCH_addr_of_table0,PATCH_chip_physaddr+SCNTL3

; This will set up the clock dividers as defined in the SCNTL3 register

MOVE FROM identify_msg_buf, WHEN MSG_IN

CLEAR ACK

JUMP REL(to_decisions)

id_1:

MOVE MEMORY 4, PATCH_addr_of_table1_ptr, PATCH_chip_physaddr+DSA

;initialize SXFER for synchronous transfers from table

MOVE MEMORY 1, PATCH_addr_of_table1+2,PATCH_chip_physaddr+SXFER

MOVE MEMORY 1,PATCH_addr_of_table1,PATCH_chip_physaddr+SCNTL3

; This will set up the clock dividers as defined in the SCNTL3 register

MOVE FROM identify_msg_buf, WHEN MSG_IN

CLEAR ACK

JUMP REL(to_decisions)

id_2:

MOVE MEMORY 4, PATCH_addr_of_table2_ptr, PATCH_chip_physaddr+DSA

;initialize SXFER for synchronous transfers from table

MOVE MEMORY 1,PATCH_addr_of_table2+2,PATCH_chip_physaddr+SXFER

MOVE MEMORY 1,PATCH_addr_of_table2,PATCH_chip_physaddr+SCNTL3

; This will set up the clock dividers as defined in the SCNTL3 register

MOVE FROM identify_msg_buf, WHEN MSG_IN

CLEAR ACK

JUMP REL(to_decisions)

CPU_set_SIGP:

JUMP scheduler

Symbios Logic PCI-SCSI Programming Guide Index-1

Index

Symbols
"/" line continuation character 4-12

"C" code

compiling SCRIPTS 2-4
examples

allocating table buffer 7-4
allocating table memory 7-5
chip initialization 7-1
patching 7-7
pointing to table 7-5
running SCRIPTS 7-11
storing data structures in SCRIPTS RAM

9-29
table definition 7-5
table initialization 7-3
using a table 7-6

A
ABSOLUTE 4-7

ACK 3-47

ADDER register 6-7

address 3-7, 3-22, 3-29, 3-39, 3-45, 3-52
destination address 3-32
source address 3-32

arbitration priority (SYM53C885) 11-3

ARCH 4-7

arithmetic operators 2-7

Assembler, see NASM

ATN (Attention) 3-10, 3-13, 3-17, 3-22, 3-41,
3-47

B
Big Endian byte addressing 2-10

bitwise operators 2-7

block diagram 1-5

Block Move instruction 3-29, 3-33
forms 3-30
in scatter/gather operations 9-1

byte addressing 2-10

byte ordering 2-10

byte recovery 9-9

byte_count 3-27, 3-49

C
cache line burst mode 3-33

CALL instruction 3-2

CARRY 3-10, 3-13, 3-17, 3-22, 3-34, 3-41,
3-47

chained block moves 3-7

chip initialization

example 7-1

CHMOV 3-7

CLEAR instruction 3-10

clock doubler 9-26

clock quadrupler 9-27

command block 8-3

command line 4-1

compiler, see NASM

conditional keywords 4-13

conventions 1-8

count 3-7, 3-29, 3-32
definition 4-10

CTEST0 register 6-8

CTEST1 register 6-7

CTEST2 register 6-7

Index-2 Symbios Logic PCI-SCSI Programming Guide

CTEST3 register 6-7

CTEST4 register 6-7

CTEST5 register 6-7

CTEST6 register 6-7

D
data 3-13, 3-17, 3-22, 3-41

data8 3-34

DBC register 6-4, 6-5

DCMD register 6-4, 6-5

DCNTL register 6-4

destination_address 3-32

device driver 8-4
how to write 8-6
layers 8-2

hardware interface 8-2, 8-4
operating system interface 8-2

DFIFO register 6-4

diagnostics

loopback mode 9-4

DIEN register 6-4, 6-6

directives, see declarative keywords

disconnect 3-51
byte recovery 9-9
causes 9-9
illegal 9-9
legal 9-9
phase mismatch 9-9

DISCONNECT instruction 3-12

DMA Registers 6-4

DMODE register 6-4

DNAD register 6-4, 6-5

DSA register 6-5

DSAREL 3-27, 3-49

DSAREL keyword 4-14

DSP register 6-4, 6-5

DSPS register 6-4, 6-5

DSTAT register 6-6

DWT register 6-8

E
ENTRY 4-8

error messages A-1–A-17

EXTERN 4-8

F
fast-20. See Ultra SCSI

fast-40 See Ultra 2 SCSI>

flag fields 4-14

FROM 3-29, 3-39, 3-45

G
General Purpose Registers 6-8

GPCNTL register 6-8

GPREG register 6-8

I
I/O

completion 10-11
request flow 8-4

I/O (Input/Output)

ID 3-39, 3-45

IF 3-13, 3-17, 3-22, 3-41

immediate data 3-35

initialization 7-1

instruction fields

Assert SCSI ACK 3-10
Assert SCSI ATN 3-10
Byte Count 3-8
Carry 3-10
Compare Data 3-3
Compare Phase 3-3
Data 3-4
Dest Addr 3-4

Symbios Logic PCI-SCSI Programming Guide Index-3

function 3-35
Immediate Data 3-35
Indirect 3-7
Mask 3-4
Op code 3-3
Operator 3-35
Relative Addr 3-23
Relative Addr Mode 3-3
Table Indirect 3-7
True 3-3
Wait 3-4

instruction operands

ACK 3-10
Address 3-2
ATN 3-2
CARRY 3-3
count 3-7
data 3-2
data8 3-34
FROM 3-7
IF 3-2
int_value 3-13
MASK 3-2
NOT 3-2
operator 3-34
Phase 3-2, 3-7, 3-13, 3-17, 3-22, 3-29, 3-41
PTR 3-7
register 3-34
REL 3-2
TARGET 3-10
WHEN 3-2
WITH CARRY 3-34
WITH/WHEN 3-7

instruction patching 7-7

instruction prefetching

no flush option 3-32

instruction types

block move

Chained Move 3-7
description 2-10
example 3-61
MOVE 3-29

examples 3-56–3-62
I/O (Input/Output)

Clear 3-10
description 2-8
Disconnect 3-12
example 3-56
RESELECT 3-39
SELECT 3-45
SET 3-47
WAIT DISCONNECT 3-51
WAIT RESELECT 3-52
WAIT SELECT 3-54

Load and Store
description 2-10
DSAREL 4-14
example 3-62
STORE 3-49
Store 3-27

memory move
description 2-9
example 3-57
MOVE MEMORY 3-32

read/write
description 2-9
example 3-60
MOVE REGISTER 3-34
Register to Register Move 3-34

transfer control
CALL 3-2
description 2-9
example 3-59
Interrupt 3-13
INTFLY (Interrupt on the Fly) 3-17
JUMP 3-22
RETURN 3-41

instructions

CALL 3-2
CHMOV 3-7

Index-4 Symbios Logic PCI-SCSI Programming Guide

CLEAR 3-10
DISCONNECT 3-12
examples 3-56–3-62
INT (Interrupt) 3-13
INTFLY (Interrupt on the Fly) 3-17
JUMP 3-22
LOAD 3-27
MOVE 3-29
MOVE MEMORY 3-32
MOVE REGISTER 3-34
No Operation 3-38
NOP 3-38
Register to Register Move 3-34
RESELECT 3-39
RETURN 3-41
SELECT 3-45
SET 3-47
STORE 3-49
transfer control

CALL 3-2
WAIT DISCONNECT 3-51
WAIT RESELECT 3-52
WAIT SELECT 3-54

INT, see Interrupt instruction

int_value (interrupt value) 3-13, 3-17

internal arbiter (SYM53C885) 11-3

interrupt handling 9-19–9-24

Interrupt instruction 3-13

Interrupt on the Fly instruction 3-17

Interrupt Registers 6-6

interrupts

fatal vs. non-fatal interrupts 9-20
IRQ Disable bit 9-20
masking 9-21
sample interrupt service routine 9-23
stacked interrupts 9-22

INTFLY, see Interrupt on the Fly Instruction

ISTAT register 6-6

J
JUMP instruction 3-22

K
keywords

conditional 4-13
flag fields 4-14
logical 4-13
other 4-16
qualifier 4-14

L
language elements 2-7

legal disconnect 3-51

Little Endian byte addressing 2-10

LOAD instruction 3-27
rules for using 3-28

logical keywords 4-13

loopback mode 9-4–9-8

M
MACNTL register 6-8

MASK 3-13, 3-17, 3-22, 3-41

Memory to Memory Move 3-32

MOVE instruction 3-29

MOVE MEMORY instruction 3-32
no flush option 3-32

MOVE REGISTER instruction 3-34

multi-threaded I/O 10-1–10-10
example 10-3–10-8
main and scheduler SCRIPTS 10-3
operations flow 10-2
SCRIPTS example C-1
use of the SIGP bit 10-9

N
NASM

command line
ARCH option 4-3
binary cross reference option 4-3
error listing option 4-3

Symbios Logic PCI-SCSI Programming Guide Index-5

generate .bin output option 4-4
generate partial "C" source option 4-4
listing file option 4-4
omit termination record option 4-4
options 4-3–4-4
output file option 4-4
patch offsets option 4-4
verbose messages option 4-4

declarative keywords
ABSOLUTE 4-7
ARCH 4-7
ENTRY 4-8
EXTERN 4-8
PASS 4-9
RELATIVE 4-10
TABLE 4-11

description 4-1
directives, see declarative keywords

installation 4-1
keywords

conditional 4-13

NASM command line 4-1
example 4-5

NASM keywords

flag fields 4-14
logical 4-13
other 4-16
qualifier 4-14

NASM output file

example 5-2
sections 5-3–5-11

no flush option

and STORE instructions 3-49
in MOVE MEMORY instructions 3-32

No Operation command 3-38

NOFLUSH keyword 4-15

NOP 3-38

NOT 3-13, 3-17, 3-22, 3-41

O
operating system interface 8-4

operator 3-34

output file

example 7-16
sections 5-3

absolute 5-10
entry 5-9
external 5-6
label patches 5-9
module termination 5-11
relative 5-7
SCRIPTS array 5-3

output file example 5-2

P
PASS 4-9

patching 7-7

phase 3-7

power management (SYM53C885) 11-1
register bits 11-2

power up 8-3

product overview 1-2
product features 1-3

PTR (pointer) 3-7, 3-29

Q
qualifier keywords 4-14

R
RAM, see SCRIPTS RAM

register 3-27, 3-34, 3-49

register bits

default values 6-8

register initialization

default values 6-8

Register to Register Move

immediate data 3-35
procedure 3-35

Index-6 Symbios Logic PCI-SCSI Programming Guide

SFBR register 3-35
shift left 3-35
shift right 3-35

Register to Register Move instruction 3-34

register writes, cautions 3-36

registers

ADDER (Adder Sum Output) 6-7
CTEST0 (Chip Test 0) 6-8
CTEST1 (Chip Test 1) 6-7
CTEST2 (Chip Test 2) 6-7
CTEST3 (Chip Test 3) 6-7
CTEST4 (Chip Test 4) 6-7
CTEST5 (Chip Test 5) 6-7
CTEST6 (Chip Test 6) 6-7
DBC (DMA Byte Command) 6-4
DBC (DMA Byte Counter) 6-5
DCMD (DMA Command) 6-4, 6-5
DCNTL (DMA Control) 6-4
DFIFO (DMA FIFO) 6-4
DIEN (DMA Interrupt Enable) 6-4, 6-6
DMA registers 6-4
DMODE (DMA Mode) 6-4
DNAD (DMA Next Address) 6-4, 6-5
DSA (Data Structure Address) 6-5
DSP (DMA SCRIPTS Pointer) 6-4, 6-5
DSPS (DMA SCRIPTS Pointer Save) 6-4, 6-5
DSTAT (DMA Status) 6-6
DWT (DMA Watchdog Timer) 6-8
general purpose registers 6-8
GPCNTL (General Purpose Control) 6-8
GPREG (General Purpose) 6-8
initialization 6-8–6-13

default values 6-8
interrupt registers 6-6
ISTAT (Interrupt Status) 6-6
MACNTL (Memory Access Control) 6-8
RESPID0 (Response ID 0) 6-3
RESPID1 (Response ID 1) 6-3

SBCL (SCSI Bus Control Lines) 6-2
SBDL (SCSI Bus Data Lines) 6-2
SCID (SCSI Chip ID) 6-2
SCNTL0 (SCSI Control 0) 6-2
SCNTL1 (SCSI Control 1) 6-2
SCNTL2 (SCSI Control 2) 6-2
SCNTL3 (SCSI Control 3) 6-2
SCRATCHA (General Purpose Scratchpad A)
6-8
SCRATCHB (General Purpose Scratchpad B)
6-8
SCRIPTS registers 6-5
SCSI registers 6-1–6-3
SDID (SCSI Destination ID) 6-2
SFBR (SCSI First Byte Received) 6-2
SIDL (SCSI Input Data Latch) 6-2
SIEN0 (SCSI Interrupt Enable 0) 6-2, 6-6
SIEN1 (SCSI Interrupt Enable 1) 6-2, 6-6
SIST0 (SCSI Interrupt Status 0) 6-6
SIST1 (SCSI Interrupt Status 1) 6-6
SLPAR (SCSI Longitudinal Parity) 6-3
SOCL (SCSI Output Control Latch) 6-2
SODL 6-2
SSID 6-2
SSTAT0 (SCSI Status 0) 6-3
SSTAT1 (SCSI Status 1) 6-2
SSTAT2 (SCSI Status 2) 6-2
STEST0 (SCSI Test 0) 6-3
STEST1 (SCSI Test 1) 6-3
STEST2 (SCSI Test 2) 6-3
STEST3 (SCSI Test 3) 6-3
STEST4 6-3
STIME0 (SCSI Timer 0) 6-3
STIME1 (SCSI Timer 1) 6-3
SWIDE (SCSI Wide Residue Data) 6-3
SXFER (SCSI Transfer) 6-2
TEMP (Temporary) 6-4
test registers 6-7

REL (Relative) 3-22, 3-39, 3-45, 3-52, 4-10

Symbios Logic PCI-SCSI Programming Guide Index-7

relative addressing 8-11
REL keyword 4-15

relative buffer 4-10

relative buffers

in the output file 5-7

RELATIVEkeyword

output 5-7

RESELECT Instruction 3-39

reselection 3-52
in multi-threaded I/O 10-2, 10-8
RESELECT instruction 3-39

RESPID0 register 6-3

RESPID1 register 6-3

RETURN Instruction 3-41

S
SBCL register 6-2

SBDL register 6-2

scatter/gather operations 9-1
Block Move instruction 9-1

scheduler 8-5

SCID register 6-2

SCNTL0 register 6-2

SCNTL1 register 6-2

SCNTL2 register 6-2

SCNTL3 register 6-2

SCRATCHA register 6-8

SCRATCHB register 6-8

SCRIPTS

and "C" language program 2-4–2-5
compiler, see NASM

control of SYM53C8XX 1-7
correspondence with SCSI bus phases 2-2–2-
3, 12-1–12-2
data sizes 2-6
expressions 2-7
features 1-6
for target operation 12-4

how NASM parses 4-5
inclusion in "C" program 7-1–7-11
instructions described 2-8–2-10
keywords 2-8
language elements

comment 2-7
label 2-7
name 2-7

numeric values 4-5
operation 1-8
operational overview 1-8
operators

arithmetic 2-7
bitwise 2-7

output file example 7-16
processor 2-1
running a program 7-11
source code example 7-12
system overview 1-6

SCRIPTS examples

multi-threaded I/O C-1
output file 7-16
source code 7-12

SCRIPTS language elements 2-7

SCRIPTS RAM

loading 9-28
parts that support 1-3
patching internal and external programs 9-36
programming techniques 9-30
size 9-28
use 9-28

SCRIPTS Registers 6-5

SCSI

bus phases 2-2, 12-1
I/O process 8-4

SCSI Clock Doubler

using 9-26

SCSI clock quadrupler 9-27

Index-8 Symbios Logic PCI-SCSI Programming Guide

SCSI Registers 6-1–6-3

SCSI SCRIPTS, see SCRIPTS

SDID register 6-2

SELECT instruction 3-45

selection

SELECT instruction 3-45

SET instruction 3-47

SFBR register 6-2

shift left 3-35

shift right 3-35

SIDL register 6-2

SIEN0 register 6-2, 6-6

SIEN1 register 6-2, 6-6

SIGP bit 10-9
use in multi-threaded I/O 10-2

SIST0 register 6-6

SIST1 register 6-6

SLPAR register 6-3

SOCL register 6-2

SODL register 6-2

source_address 3-27, 3-32, 3-49

SSID register 6-2

SSTAT0 register 6-3

SSTAT1 register 6-2

SSTAT2 register 6-2

starting NASM 4-1

STEST0 register 6-3

STEST1 register 6-3

STEST2 register 6-3

STEST3 register 6-3

STEST4 register 6-3

STIME0 register 6-3

STIME1 register 6-3

STORE instruction 3-49
no flush option 3-49
rules for using 3-50

SWIDE register 6-3

SXFER register 6-2

SYM53C885

programmable features 11-1

SYM53C8XX

list of product features 1-3

Symbios Logic Assembler, see NASM

synchronous negotiation 9-18

system architecture 8-1

system overview 1-6

T
TABLE 4-11

table indirect addressing

Block Move instructions 8-7
defining a table 8-10
Select/Reselect instructions 8-8

table indirect operation

addressing 4-11, 8-7
allocating buffer space 7-4
allocating memory for the table 7-5
defining the table structure 7-5
initializing a table 7-3
pointing to the table 7-5
purpose 4-12
using a table 7-6

TARGET 3-10, 3-47

target disconnect 9-9

target operation

basic structure 12-1
registers used 12-3
sample SCRIPTS 12-4

technical support 13-3

TEMP register 6-4

Test Registers 6-7

token 4-5

Symbios Logic PCI-SCSI Programming Guide Index-9

U
Ultra SCSI

benefits 1-5
migrating from existing software 9-24
parts that support 1-3
register bits 9-25
using the SCSI clock doubler 9-26

Ultra2 SCSI

benefits 1-5
migrating from existing software 9-24
SCSI clock quadrupler 9-27

W
WAIT DISCONNECT instruction 3-51

WAIT RESELECT instruction 3-52

WAIT SELECT instruction 3-54

WHEN 3-13, 3-17, 3-22, 3-41

WITH CARRY, see CARRY

WITH/WHEN 3-7, 3-29

Index-10 Symbios Logic PCI-SCSI Programming Guide

North American Sales Locations

Western Sales Area
1731 Technology Drive, Suite 610
San Jose, CA 95110
(408) 441-1080

3300 Irvine Avenue, Suite 255
Newport Beach, CA 92660
(714) 474-7095

Eastern Sales Area
8000 Townline Avenue, Suite 209
Bloomington, MN 55438-1000
(612) 941-7075

12377 Merit Dr., Suite 400
Dallas, TX 75251
(972) 503-3205

92 Montvale Avenue, Suite 3500
Stoneham, MA 02180-3623
(617) 438-0043

30 Mansell Court, Suite 220
Roswell, GA 30076
(404) 641-8001

International Sales Locations

European Sales Headquarters
Westendstrasse 193\III
80686 Muenchen
Germany
011-49-89-547470-0

Asia/Pacific Sales Headquarters
Marina Square, #02-256
No. 6 Raffles Boulevard
Singapore, 0103
011-65-3376323

Symbios Logic
Sales Locations

For literature on any Symbios Logic product or service,
call our hotline toll-free
1-800-856-3093

© Symbios Logic Inc.
Printed in the U.S.A.
J25972I
0897-3MH

53C
8X

X
 PC

I-SC
SI SC

SI I/O
 Processors Program

m
ing G

uide Version 2.1 Sym
bios L

ogic

	The products described in this publication are pro...
	SCRIPTS and NASM are trademarks and TolerANT is a ...
	Ultra SCSI is the term used by the SCSI Trade Asso...
	It is the policy of Symbios Logic to improve produ...
	The products in this manual are not intended for u...
	Copyright ©1995, 1996, 1997 By Symbios Logic Inc. ...
	We use comments from our readers to improve Symbio...
	Purpose and Audience
	Additional Information
	ANSI SCSI-2 Standard, SCSI-3 Parallel Interface (S...
	SCSI Bench Reference, SCSI Encyclopedia
	What Is SCSI? Understanding the Small Computer Sys...
	Symbios Logic Electronic Bulletin Board
	SCSI Electronic Bulletin Board
	Symbios Logic Internet Anonymous FTP Site
	Symbios Logic World Wide Web Home Page

	Revision Record
	List of Figures
	Introduction
	Programming the SYM53C8XX With SCRIPTS
	The SYM53C8XX Instruction Set
	The NASM Output File
	Integrating SCRIPTS Programs Into “C” Language Dri...
	Writing Device Drivers With SCRIPTS
	SCRIPTS Programming Topics
	Multi-Threaded I/O

	List of Tables
	Introduction
	Programming the SYM53C8XX With SCRIPTS
	The SYM53C8XX Instruction Set
	Using the Symbios Logic Assembler
	The NASM Output File
	Using the Registers to Control Chip Operations
	Integrating SCRIPTS Programs Into “C” Language Dri...
	Writing Device Drivers With SCRIPTS
	SCRIPTS Programming Topics
	Multi-Threaded I/O
	Programming Multifunction Devices
	Using the SYM53C8XX in Target Applications
	Debugging the SYM53C8XX
	NASM Error Messages
	Register Summaries
	Multi-Threaded SCRIPTS Example
	Introduction

	What is Covered in This Guide
	Product Overview
	Table 1-1 (Continued)
	Figure 1-1

	Benefits of Ultra SCSI and Ultra2 SCSI
	System Overview
	How SCRIPTS Operations Control the SYM53C8XX
	Figure 1-2

	Conventions
	Chapter 2
	Programming the SYM53C8XX With SCRIPTS

	The SCRIPTS Processor
	SCRIPTS and the SCSI Bus Phases
	Table 2-1

	Assembling SCSI SCRIPTS
	Using SCSI SCRIPTS
	SCRIPTS Data Sizes
	SCSI SCRIPTS Language Elements
	SCSI SCRIPTS Expressions
	Arithmetic Operators
	Bitwise Operators

	SCSI SCRIPTS Keywords

	Description of SCRIPTS Instructions
	I/O Instructions
	Memory Move Instructions
	Transfer Control Instructions
	Read/Write Instructions
	Block Move Instructions
	Load and Store Instructions

	Big and Little Endian Byte Addressing
	Order of SCRIPTS Instructions
	Operating Register Access from Firmware
	Operating Register Access from SCRIPTS Routines
	User Data Byte Ordering
	Chapter 3
	The SYM53C8XX Instruction Set

	Overview
	CALL
	Figure 3-1

	CHMOV
	CLEAR
	DISCONNECT
	INT
	INTFLY
	JUMP
	LOAD
	MOVE
	MOVE MEMORY
	MOVE REGISTER
	Additional Forms for SYM53C825A/53C875/53C876/ 53C...

	NOP
	RESELECT
	XXXX
	SCSI ID
	Figure 3-2

	RETURN
	SELECT
	31��30
	29���27
	26
	25
	24
	23
	20
	19
	16
	15 0
	31
	0
	01
	0
	0
	X
	0000
	XXXX
	00...00
	XX...XX
	Instr
	Type
	Relative
	Table
	Indirect
	Select with ATN
	RES
	SCSI ID
	RES
	Dest Addr

	SET
	STORE
	WAIT DISCONNECT
	WAIT RESELECT
	Figure 3-3

	WAIT SELECT
	Instruction Examples
	I/O Instruction Example
	Memory Move Instruction Example
	Figure 3-5
	Figure 3-6

	Transfer Control Instruction Example
	Read/Write Instruction Example
	Block Move Instruction Example
	Load/Store Instruction Example
	Chapter 4
	Using the Symbios Logic Assembler

	Overview
	Starting NASM
	Command Line Options
	A [arch] - Specify processor for code generation
	B - Binary Cross Reference Values
	E - Creates an error listing file
	L - Creates a listing file
	O - Generate output file
	P - Generate Partial “C” Source
	S - Generate .BIN Output
	U - Omit Termination Record
	V - Verbose Messages
	X - Patch Offsets

	Example Assembler Command Lines
	1 NASM demoPCI.ss
	2 NASM demoPCI.ss -a 875 -l -o -e errors.txt

	How NASM Parses SCRIPTS Files
	Assembler Declarative Keywords
	Table 4-1
	Table 4-2
	Table 4-3
	ABSOLUTE
	ARCH
	ENTRY
	EXTERN
	PASS
	PROC
	RELATIVE
	TABLE

	Conditional Keywords
	If
	When

	Logical Keywords
	NOT
	AND
	OR

	Flag Fields
	ACK
	ATN
	TARGET
	CARRY

	Qualifier Keywords
	DSAREL
	FROM
	MASK
	MEMORY
	PTR
	REG
	REL
	TO
	WITH
	NOFLUSH

	Other Keywords
	Action Keywords
	SCSI Phases
	Register Names
	Chapter 5
	The NASM Output File

	Overview
	Figure 5-1

	NASM Output File Sections
	SCRIPTS Array
	Entry and PROC
	Table 5-1 ��

	External
	Effect of Command Line Switches

	Relative
	Effect of Command Line Switches

	Entry
	Label Patches
	Absolute
	Effect of Command Line Switches

	Termination Record
	Chapter 6
	Using the Registers to Control Chip Operations

	Overview
	SCSI Registers
	Table 6-1 (Continued)

	DMA Registers
	SCRIPTS Registers
	Interrupt Registers
	Test and Miscellaneous Registers
	General Purpose Registers
	Register Initialization
	Chapter 7
	Integrating SCRIPTS Programs Into “C” Language Dri...

	Overview
	Initializing the SYM53C8XX
	Resetting The SYM53C8XX

	Table Indirect Operations
	Initializing a Table
	Create Table Indirect Entry Offsets
	Defining the Table Structure
	Declaring a Pointer to the Table
	Allocating Memory for the Table
	Using a Table

	Patching
	EXTERN Buffers
	1 Create a buffer in ‘C’ statically or dynamically...
	2 Patch the SCRIPT wherever this buffer is used, w...

	RELATIVE Buffers
	Procedure 1
	1 Create a buffer to hold all the individual relat...
	2 Patch the SCRIPTS array using the Patch array ge...

	Procedure 2
	1 Create a buffer to hold all the individual relat...
	2 All buffers can be patched in one loop if the ma...

	ABSOLUTE Values
	Buffer Addresses
	Byte Counts
	Absolute JUMP/CALL Addresses
	Entry Locations
	Self Modifying SCRIPTS Code
	Patch_label2: JUMP REL(Jump_Table) . . Jump_Table:...
	Patches to the SCRIPTS Instruction

	Running a SCRIPTS Program
	Figure 7-1
	Figure 7-2
	Chapter 8
	Writing Device Drivers With SCRIPTS

	Overview
	Figure 8-1
	Figure 8-2

	Command Block
	Power Up Example
	Figure 8-3

	I/O Request Process
	Figure 8-4

	How to Write a Device Driver With SCRIPTS
	Table Indirect Addressing
	1 The I/O data structure must lie within 8 MB abov...
	2 An I/O table entry must have all 8 bytes contigu...
	3 The table must be a contiguous data structure of...
	Block Move Instructions
	Select/Reselect Instructions
	Figure 8-5

	Defining a Table
	Figure 8-6

	Relative Addressing
	Chapter 9
	SCRIPTS Programming Topics

	Overview
	Scatter/Gather Operations
	Loopback Mode
	Loopback Example - Selection

	Byte Recovery on Target Disconnect
	Saving the State of the SYM53C8XX
	Asynchronous SCSI Send
	1 If the DMA FIFO size is set to the default size,...
	2 Read bit 5 in the SSTAT0 and SSTAT2 registers to...

	Synchronous SCSI Send
	1 If the DMA FIFO size is set to the default size,...
	2 Read bit 5 in the SSTAT0 and SSTAT2 registers to...
	3 Read bit 6 in the SSTAT0 and SSTAT2 registers to...

	Asynchronous SCSI Receive
	1 If the DMA FIFO size is set to the default size,...
	2 Read bit 7 in the SSTAT0 and SSTAT2 register to ...
	3 If any wide transfers have been performed using ...

	Synchronous SCSI Receive
	1 If the DMA FIFO size is set to the default size,...
	2 Read the SSTAT1 register (and bit 4 of the SSTAT...

	Updating the SCRIPTS Program
	Cleaning Up
	Example Byte Recovery Code
	Example Function for handling DATA IN Phase Mismat...
	Example Function for handling DATA OUT Phase Misma...

	Synchronous Negotiation and Transfer
	Interrupt Handling
	Polling and Hardware Interrupts
	Registers
	ISTAT
	SIST0 and SIST1
	DSTAT
	SIEN0 and SIEN1
	DIEN
	DCNTL (SYM53C825A, 53C875, 53C876, 53C885, 53C895 ...

	Fatal vs. Non-Fatal Interrupts
	Masking
	Stacked Interrupts
	Halting in an Orderly Fashion
	Sample Interrupt Service Routine
	1 Read ISTAT.
	2 If the INTF bit is set, it must be written to a ...
	3 If only the SIP bit is set, read SIST0 and SIST1...
	4 If only the DIP bit is set, read the DSTAT to cl...
	5 If both the SIP and DIP bits are set, read SIST0...

	Migrating Existing Software to Ultra and Ultra2 SC...
	1 SCNTL3 Register CCF bits - adjust the bit values...
	2 SCNTL3 Register SCF bits - adjust the bit values...
	3 SXFER Register XFERP bits - adjust the bit value...
	4 Adjust the Clock input as required for the SCSI ...
	5 Ultra Enable bit, SCNTL3 register - set this bit...
	Clock Divider Bits
	Ultra Enable Bit
	Loading the New Register Values
	Negotiating Synchronous Transfers
	Using the SCSI Clock Doubler
	1 Set the SCLK Doubler Enable bit (STEST1, bit 3)
	2 Wait 20 ms
	3 Halt the SCSI clock by setting the Halt SCSI Clo...
	4 Set the clock conversion factor using the SCF an...
	5 Set the SCLK Doubler Select bit (STEST1, bit 2)
	6 Clear the Halt SCSI Clock bit

	Using the SCSI Clock Quadrupler
	1 Set the SCLK Quadrupler Enable bit (STEST1, bit ...
	2 Poll bit 5 of the STEST4 register. The SYM53C895...
	3 Halt the SCSI clock by setting the Halt SCSI Clo...
	4 Set the clock conversion factor using the SCF an...
	5 Set the SCLK Quadrupler Select bit (STEST1, bit ...
	6 Clear the Halt SCSI Clock bit

	Using the SCRIPTS RAM
	Loading SCRIPTS RAM
	Figure 9-1

	Programming Techniques when Using SCRIPTS RAM
	1 Two source (.SS) files should be created, one wi...
	2 The internal and external SCRIPTS programs must ...
	3 Both source files should be compiled with the -p...
	4 All jumps between the internal and external SCRI...
	5 Any labels that are to be jumped to from the opp...
	6 All labels, externs, and relative buffers should...
	7 All jumps which move within the same SCRIPTS pro...
	8 The file that contains the internal SCRIPTS prog...
	Figure 9-2
	Figure 9-3
	Figure 9-5

	Patching Internal and External SCRIPTS Programs
	1 The Int_Script array was copied into the SCRIPTS...
	2 The Ext_Script is already 32-bit aligned.
	3 The variable ChipIOBase contains the IO base add...
	4 VirttoPhys is a routine that will convert a virt...
	Chapter 10
	Multi-Threaded I/O

	Overview
	Figure 10-1
	Multi-threaded Operations Flow
	Figure 10-2

	SCRIPTS Areas
	Multi-Threaded SCRIPTS Example
	1 The first step occurs when the CPU writes a JUMP...
	2 Next, the CPU may need to set the SIGP bit in th...
	3 Table0 has the nexus information about any previ...
	4 The final task of the scheduler is to jump to th...
	5 io_request0: 5 JUMP rel (multi_thread)
	6 The main SCRIPTS routine will execute a Select W...
	7 Once the two devices are connected, the SCRIPTS ...
	8 Next, the will continue just as in single-thread...
	9 Upon disconnection, the initiator will jump to t...
	10 Once the initiator is reselected it is necessar...
	11 Next, the DSA will need to be written to the ad...
	12 Upon reselection, it is not necessary to re-neg...
	13 Once the DSA is pointing to the correct table, ...
	14 Finally, the SCRIPT will continue with a normal...

	Using the SIGP bit to Abort an Instruction
	I/O Completion
	Programming Multifunction Devices

	Using the SYM53C885 Power Management Feature
	1 No master cycles occurring (No SCSI SCRIPTS are ...
	2 No SCSI transactions occurring.
	3 In Target mode with select turned off.
	4 No pending interrupts.
	5 All interrupts are disabled except Wakeup interr...
	Coma Mode
	Snooze Mode
	1 Set the WI bit in the SIEN1 register.
	2 Set the SM bit in the CTEST0 register
	1 Reset the SM bit in the CTEST0 register.
	2 Reset the WI bit in the SIEN1 register.

	Register Bits Used for Power Management

	Programming the SYM53C885 Internal Arbiter
	Using the SYM53C8XX in Target Applications

	Overview
	1 The SYM53C8XX issues a Wait Select instruction
	2 The SCSI bus goes into Message Out phase
	3 The SYM53C8XX performs a series of Block Moves 3...
	4 The SYM53C8XX issues a Disconnect instruction to...
	Table 12-1

	Registers Used for Target Operation
	Table 12-2

	Using SCRIPTS for Target Operations
	Sample Target Operation SCRIPTS Program

	Synchronous Negotiation by a Target Device
	Chapter 13
	Debugging the SYM53C8XX
	Overview
	Table 13-1

	Chip Debugging Guidelines
	a Check the register initialization routine. Sever...
	b Save and print out the data values in all SYM53C...
	2 Use the DSP, DSPS, DCMD, and DBC registers to de...
	3 If the problem has not yet been discovered, exam...
	4 Perform timing verification using a logic analyz...
	Common Problems/ Things to Check
	1 The CPU is accessing registers other than ISTAT ...
	2 The RESPID register(s) are not initialized. This...
	3 Verify signal connectivity. (Make sure that the ...
	4 Make sure that the Enable Response to Selection/...

	Glossary
	NASM Error Messages
	Errors
	24 bit value expected
	8 bit value expected
	ACK, ATN,TARGET or CARRY expected string
	AND or OR expected string
	ATN specified multiple times
	Cannot compare CARRY and Data
	Cannot compare PHASE and Data
	Cannot specify PHASE when using ATN
	Cannot use MASK without compare Data
	Cannot use Pass for count address
	Carry operations not available on 53c700 architect...
	CARRY specified multiple times
	CHMOV 53c720, 53c770, 53c82X, 53c875, 53c876, 53c8...
	Comma expected string
	CTEST7 53c700 and 53c710 architectures only
	CTEST8 53c700 and 53c710 architectures only
	Data list expected string
	Data specified multiple times
	Data specifier expected string
	Declaration expected string
	Divide or mod by zero
	DSAREL: 53c810A, 53c825A, 53C860, 53c875, and 53c8...
	Entry identifier expected name
	Expression must evaluate to a constant string
	Expression or External expected
	GPCNTL 53C720, 53C770, and 53C8XX only
	GPREG 53c720,53C770, and 53C8XX architectures only...
	ID specifier only valid for table entries
	IF or WHEN expected string
	INTFLY:53c720, 53C770, and 53C8XX architecture onl...
	Invalid Address string
	Invalid assignment
	Invalid character/s
	Invalid constant type
	Invalid destination address string
	Invalid register operator string
	Invalid register value
	Invalid SCSI id
	Invalid syntax string
	Invalid test condition string
	LCRC 53c710 architectures only
	Left parenthesis expected string
	LOAD: 53c810A, 53c825A, 53c860, 53c875, 53c876, 53...
	LOAD: Count must not exceed 4 bytes
	Logical end of line '\' expected string
	MACNTL 53c720, 53c770, and 53c8XX architectures on...
	MASK specified multiple times
	Memory Move operations not available on 53c700 arc...
	Memory Move Noflush only available on 53c810A, 53c...
	Old EXTERNAL directive, use new EXTERNAL directive...
	Old RELATIVE directive, use new RELATIVE directive...
	One register must be SFBR or both the same.
	Only use CARRY with Addition or Subtraction.
	Operand must be a TABLE entry string
	Parenthesis must match when PASS is used as an arg...
	PHASE expected string
	PHASE specified multiple times
	Redeclaration of Label string
	Redeclaration of TABLE identifier
	Register or Data24 value expected string
	Register right of operand must be SFBR
	Relative addressing not available on 53c700 archit...
	RESPID 53c81X architecture only
	RESPID0 53c720, 53c770, 53c82X, 53C875, 53c876, 53...
	RESPID1 53c720, 53c770, 53c82X, 53C875, 53c876, 53...
	Right parenthesis expected string
	SBDL 53c700, 53c710, and 53c81X architectures only...
	SBDL0 53c720, 53c770, 53c82X, 53C875, 53c876, 53c8...
	SBDL1 53c720, 53c770, 53c82X, 53C875, 53c876, 53c8...
	SCNTL2 53c720,53c770, and 53c8XX architectures onl...
	SCNTL3 53c720, 53c770, and 53c8XX architectures on...
	Scratch0 53c710 architectures only
	Scratch1 53c710 architectures only
	Scratch2 53c710 architectures only.
	Scratch3 53c710 architectures only
	Scratcha0 53c720, 53c770, and 53c8XX architectures...
	Scratcha1 53c720, 53c770, and 53c8XX architectures...
	Scratcha253c720, 53c770, and 53c8XX architectures ...
	Scratcha3 53c720, 53c770, and 53c8XX architectures...
	Scratchb0 53c720, 53c770, and 53c8XX architectures...
	Scratchb1 53c720, 53c770, and 53c8XX architectures...
	Scratchb2 53c720, 53c770, and 53c8XX architectures...
	Scratchb3 53c720, 53c770, and 53c8XX architectures...
	Scratchc0 53c770, 53c825A, 53C875, 53c876, 53c885,...
	Scratchc1 53c770, 53c825A, 53C875, 53c876, 53c885,...
	Scratchc2 53c770, 53c825A, 53C875, 53c876, 53c885,...
	Scratchc3 53c770, 53c825A, 53C875, 53c876, 53c885,...
	Scratchd0 53c770, 53c825A, 53C875, 53c876, 53c885,...
	Scratchd1 53c770, 53c825A, 53C875, 53c876, 53c885,...
	Scratchd2 53c770, 53c825A, 53C875, 53c876, 53c885,...
	Scratchd3 53c770, 53c825A, 53C875,53c876, 53c885, ...
	Scratche0 53c770, 53c825A, 53C875, 53c876, 53c885,...
	Scratche1 53c770, 53c825A, 53C875, 53c876, 53c885,...
	Scratche2 53c770, 53c825A, 53C875, 53c876, 53c885,...
	Scratche3 53c770, 53c825A, 53C875, 53c876, 53c885,...
	Scratchf0 53c770, 53c825A, 53C875, 53c876, 53c885,...
	Scratchf1 53c770, 53c825A, 53C875, 53c876, 53c885,...
	Scratchf2 53c770, 53c825A, 53C875, 53c876, 53c885,...
	Scratchf3 53c770, 53c825A, 53C875, 53c876, 53c885,...
	Scratchg0 53c770, 53c825A, 53C875,53c876, 53c885, ...
	Scratchg1 53c770, 53c825A, 53C875, 53c876, 53c885,...
	Scratchg2 53c770, 53c825A, 53C875, 53c876, 53c885,...
	Scratchg3 53c770, 53c825A, 53C875, 53c876, 53c885,...
	Scratchh0 53c770, 53c825A, 53C875, 53c876, 53c885,...
	Scratchh1 53c770, 53c825A, 53C875, 53c876, 53c885,...
	Scratchh2 53c770, 53c825A, 53C875, 53c876, 53c885,...
	Scratchh3 53c770, 53c825A, 53C875, 53c876, 53c885,...
	Scratchi0 53c770, 53c825A, 53C875, 53c876, 53c885,...
	Scratchi1 53c770, 53c825A, 53C875, 53c876, 53c885,...
	Scratchi2 53c770, 53c825A, 53C875, 53c876, 53c885,...
	Scratchi3 53c770, 53c825A, 53C875, 53c876, 53c885,...
	Scratchj0 53c770, 53c825A, 53C875, 53c876, 53c885,...
	Scratchj1 53c770, 53c825A, 53C875, 53c876, 53c885,...
	Scratchj2 53c770, 53c825A, 53C875, 53c876, 53c885,...
	Scratchj3 53c770, 53c825A, 53C875, 53c876, 53c885,...
	SELID0: 53c720, 535c770, and 53c8XX architectures ...
	SELID1: 53c720, 53c770, and 53c8XX architectures o...
	Separator expected ',' or '\\'
	SIDL 53c700, 53C710, and 53c81X architectures only...
	SIDL0 53c720, 53c770, 53C82X, 53c875, 53c876, 53c8...
	SIDL1 53c720, 53c770, 53c82X, 53C875, 53c876, 53c8...
	SHL 53c720, 53c770, and 53c8XX architectures only
	SHR 53c720, 53c770, and 53c8XX architectures only
	SIEN 53c700 and 53c710 architectures only
	SIEN0 53c720, 53c770, and 53c8XX architectures onl...
	SIEN1 53c720, 53c770, and 53c8XX architectures onl...
	SIST0 53c720, 53c770, and 53c8XX architectures onl...
	SIST1 53c720, 53c770, and 53c8XX architectures onl...
	SLPAR 53c720, 53c770, and 53c8XX architectures onl...
	SODL 53c700, 53c710, and 53C81X architectures only...
	SODL0 53c720, 53c770, 53c82X, 53c875, 53c876, 53c8...
	SODL1 53c720, 53c770, 53c82X, 53c875, 53c876, 53c8...
	SSID 53c720, 53c770, and 53c8XX architectures only...
	STEST0 53c720, 53c770, and 53c8XX architectures on...
	STEST1 53c720, 53c770, and 53c8XX architectures on...
	STEST2 53c720, 53c770, and 53c8XX architectures on...
	STEST3 53c720, 53c770, and 53c8XXarchitectures onl...
	STEST4 53c895 architecture only
	STIME0 53c720, 53c770, and 53c8XX architectures on...
	STIME1 53c720, 53c770, and 53c8XX architectures on...
	STORE: 53c810A, 53c825A, 53c860, 53c875, 53c876, 5...
	STORE: Count must not exceed 4 bytes
	SWIDE 53c720, 53c82X, 53c875, 53c876, 53c885, and ...
	TABLE directive not available on 53c700 architectu...
	Table indirect operations not available on 53c700 ...
	Table name expected string
	Unexpected EOF
	Unresolved Label or Identifier string
	WITH or WHEN expected
	XOR 53c720, 53c810, and 53c825 only

	Fatal Errors
	Fatal Error allocating input file buffer(s)
	Fatal File Not found
	Fatal Memory allocation error
	Fatal No source file specified.
	Fatal Opening file
	Fatal read permission denied for file

	Warnings
	ACK specified multiple times.
	ATN specified multiple times.
	Cannot extract pass information correctly
	CARRY specified multiple times.
	Initializer value truncated to byte value
	Debug record contains old format EXTERNAL statemen...
	Debug record contains old format RELATIVE statemen...
	Initializer value truncated to byte
	Possible truncation of constant value
	Relative offset value truncated
	Source and.bin file have same the name
	Source and Error file have same the name
	Source and listing file have the same name
	Source and Object file the same name
	Source and Out file have the same name
	TARGET specified multiple times.
	Appendix B
	Register Summaries

	SYM53C810A Operating Registers
	SYM53C815 Operating Registers
	SYM53C825A Operating Registers
	SYM53C860 Operating Registers
	SYM53C875 Operating Registers
	SYM53C876 Operating Registers
	SYM53C885 SCSI Register Summary
	SYM53C895 Operating Registers
	Appendix C
	Multi-Threaded SCRIPTS Example
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	W

	Symbios Logic Sales Locations
	For literature on any Symbios Logic product or ser...
	North American Sales Locations
	International Sales Locations

