Using the Digital Semiconductor
21041 with Boot ROM, Serial ROM,
and External Register:

An Application Note

Order Number: EC-QJLGB-TE

This application note provides information necessary to implement
connections between the Digital Semiconductor 21041 Ethernet LAN
Controller and boot ROM, serial ROM, and external register. It also
describes a connection of several chips sharing one serial ROM and the
format of the serial ROM programming.

Revision/Update Information: This document supersedes the Using
the DECchip 21041 with Boot ROM,
Serial ROM, and External Register: An
Application Note (EC-QJLGA-TE).

Digital Equipment Corporation
Maynard, Massachusetts

Important Notice

As of May 17, 1998, Digital Equipment Corporation’s StrongARM, PCI Bridge, and Networking component businesses, along
with the chip fabrication facility in Hudson, Massachusetts, were acquired by Intel Corporation and transferred to Intel
Massachusetts, Inc. As a result of this transaction, certain references to web sites, telephone numbers, and fax numbers have
changed in the documentation. This information will be updated in the next version of this manual. Copies of documeigts that hav
an ordering number and are referenced in this document, or other Intel literature may be obtained by calling

1-800-332-2717 or by visiting Intel’s website for developers at:

http://developer.intel.com

The Intel Massachusetts Customer Technology Center continues to service your StrongARM Product, Bridge Product, and
Network Product technical inquiries. Please use the following information lines for support:

For documentation and general information:

Intel Massachusetts Information Line

United States: 1-800-332-2717
Outside United States: 1-303-675-2148
Electronic mail address: techdoc@intel.com

For technical support:

Intel Massachusetts Customer Technology Center

Phone (U.S. and international): 1-978-568-7474
Fax: 1-978-568-6698
Electronic mail address: techsup@intel.com

February 1996

While Digital believes the information included in this publication is correct as of the date of
publication, it is subject to change without notice.

© Digital Equipment Corporation 1995, 1996. All rights reserved.

Digital, Digital Semiconductor, ThinWire, VAX DOCUMENT, and the DIGITAL logo are trademarks
of Digital Equipment Corporation.

Digital Semiconductor is a Digital Equipment Corporation business.

IEEE is a registered trademark of The Institute of Electrical and Electronics Engineers, Inc.
MicroWire is a registered trademark of BankAmerica Corporation.

All other trademarks and registered trademarks are the property of their respective owners.

This document was prepared using VAX DOCUMENT Version 2.1.

Contents

1 OVeIVIBW . . 1
2 Functional Overview i, 1
3 Connection to Boot ROM 2
4 Connection to Serial ROM 3
4.1 Single Digital Semiconductor 21041 Connection 3
4.2 Multiple Digital Semiconductor 21041 Connection. 3
5 External Register Connection 5
51 Configuration of External Register Without Boot ROM 5
5.2 Configuration of External Register with Boot ROM 7
6 Serial ROM Programmingt 8

A Serial ROM Access — Software Description

B Serial ROM CRC Calculation

C ID Block CRC Calculation

D Technical Support and Ordering Information
D.1 Obtaining Technical Support D-1
D.2 Ordering Digital Semiconductor Products D-1
D.3 Ordering Digital Semiconductor Literature D-1
D.4 Ordering Third-Party Literature i, D-2

Figures
1 Boot ROM (256KB) Connection, 2
2 Serial ROM (1024-Bit) Connection it 3
3 Four Chips Sharing One Serial ROM. 4
4 External Register Connection—Write Only (No Boot ROM) 5
5 External Register Connection—Read Only (No Boot ROM) 6
6 External Register Connection—Read and Write with Boot ROM 7
7 Serial ROM Structure 8
8 Info Leaf Format 11
9 Media Block Format. 12
10 Media-Specific Data Format 13

Tables

A wWDN

Boot ROM, Serial ROM, and External Register Interface Pins
Serial ROM Field Description
Info Leaf Description
Media Block Description

1 Overview

The information contained in this application note describes how to connect the
Digital Semiconductor 21041 Ethernet LAN Controller (21041) to its boot ROM,
serial ROM, and external register peripheral devices. Note that connection to
either a boot ROM or to an external register is not a requirement for correct
operation of the controller. You can use any combination of these connections.

The programming information supplied in this application note applies to device
drivers supplied by Digital Semiconductor.

For detailed technical product requirements, the product developer should refer
to the Digital Semiconductor 21041 PCI Ethernet LAN Controller Data Sheet
and the Digital Semiconductor 21041 PCI Ethernet LAN Controller Hardware
Reference Manual.

2 Functional Overview

The 21041 allows connection to an upgradable boot ROM (flash or EPROM)
of 64KB, 128KB, or 256KB. The boot ROM typically contains code that can be
executed for device-specific initialization and, possibly, a system boot function.

The 21041 also supports connection to the serial ROM for read and write
operations. The serial ROM contains the IEEE address and other optional system
parameters.

Connection to a general-purpose external register can be done for read and
write operations. This connection allows a general-purpose bidirectional port for
various applications.

The 21041 provides a 12-pin interface for all the connections described in this
application note. The access control to the different devices is done by software
using CSR9 and CSR10.

Table 1 lists the 12 interface signals and their function in each connection.

Table 1 Boot ROM, Serial ROM, and External Register Interface Pins

Pin Function
Signal Number Boot ROM Serial ROM External Register
br_ad<6:0> 113:119 Address and Not used Data lines
data lines,
we_l, oe_I
br_ad<7>/sr_din 93 Address and Serial ROM Data line bit 7
data line data in
br_a<1>/sr_sk 80 Address bit 1, Serial ROM Not used
latch control for clock
external latches
br_a<0>/sr_dout 79 Address bits 16, Serial ROM Read and write control
17,and O data out
mode_select/br_ce_| 91 Chip enable Not used Chip enable or read and
control write control
sr_cs 81 Not used Chip select Not used

3 Connection to Boot ROM

Figure 1 shows a connection of a 256KB flash boot ROM. The required
components for this configuration are:

e Two 9-bit high edge-triggered latches (74FCT823)
e Flash ROM chip (28F020)

Figure 1 Boot ROM (256KB) Connection

256k x 8
FLASH 28F020
| 21 D7
>
| 20
>
> 19 D
o] 18 ata
>
ywi 17
>
wl 15
>
i 14
>
w| 13 DO
>
| 30 A17
>
! 2
>
w3
>
w] 29
>
wl 28
>
-l 4
>
wl 25
>
w] 23
>
wwl 26
>
-l 27
>
21041 - -
9-Bit D-Flop 9-Bit D-Flop Address
74FCT823 74FCT823
br_a<0>/sr_dout 79 w1 10 15 w1 10 15
el el
br_ad<7> 93 |l ! 9 16 ! 9 16 ! 5
- > > >
br_ad<6> 113 |l | 8 17 | 8 17 ! 6
— - -
br_ad<5> 114 | ey v 18 > 7 18 -1 7
br_ad<4> 115 |] 6 19] 6 19 wi 8
- - el el _—
br_ad<3> 116 | ! 5 20 ! 5 20 ! 9
- > > >
br_ad<2> 117 |l il 4 21 il 4 21 ! 10
— - -
br_ad<1> 118 | w13 22 w13 wl 11
br_ad<0> 119 | wl 2 23 -1 2] 12 A0
- > > >
—d1 eno —d1 eno 22 3 24 oe_l
d 14 en d 14 en
23 - 31 we_|
5V __J11r 5V __J11r »
—_— g liz — _gliza
br_a<i>/sr_sk 80
br_ce_| 91 - 22 ce_|
+12V 1 vpp
LJ-04381.Al5

4 Connection to Serial ROM

The following sections describe connections to the serial ROM.

4.1 Single Digital Semiconductor 21041 Connection

Figure 2 shows a connection between a single Digital Semiconductor 21041 and
a MicroWire 1024-bit serial EEPROM. No additional components are needed for
this connection.

Figure 2 Serial ROM (1024-Bit) Connection

21041
Serial ROM
93LC46B
br_ad<7>/sr_din 93 !l 3 di
br_a<1>/sr_sk 80 wl 2 clk
¢ S >
do 4
sr_cs 81 w] 1 cs
br_a<0>/sr_dout 79 -

LJ-04382.Al14

4.2 Multiple Digital Semiconductor 21041 Connection

It is possible that one serial ROM device can be shared by multiple 21041 devices.
For support, the serial ROM should contain specific information for each one of
the chips. Section 6, Serial ROM Programming, provides the required details.

Figure 3 shows a connection of four 21041 chips sharing a single MicroWire
1024-bit serial EEPROM. The required components for this configuration are:

e Dual 4-input multiplexer chip (74F153)
e Quad 2-input OR gate chip (74F32)

e Serial ROM chip

This configuration assumes that:

= One 21041 will not try to access its boot ROM (or external register) while
another 21041 has serial ROM access.

= Two 21041 chips will not have simultaneous access to the serial ROM.

Figure 3 Four Chips Sharing One Serial ROM

21041
br_ad<7>/sr_din 93
L ettt
br_a<l>/sr_sk 80 1 74F32 Quad 2-Input OR Gate .
sr_cs 81 1 1
1 1
br_a<0>/sr_dout 79 : 1
1
1| | 1
! 1
1 — 1
L) g e
21041 !
br_ad<7>/sr_din 93
br_a<1>/sr_sk 80
sr_cs 81
br_a<0>/sr_dout 79
74F153
Dual 4-Input
Multiplexer
21041 P
1 ea_l
br_ad<7>/sr_din 93 J
br_a<1>/sr_sk 80 2 sl
sr_cs 81 3 I3a
4 |2a
br_a<0>/sr_dout 79
5 lla
6 l0a .
Serial ROM
10 10b 93LC46B
21041
11 I11b
L_11 cs
12 I12b .
X za 7 3 di
br_ad<7>/sr_din 93
13 130 zb 9 2 clk
br_a<i>/sr_sk 80 | do 4
14 sO
1
srcs 8 15 eb |
br_a<0>/sr_dout 79 =

LJ-04383.A14

5 External Register Connection

This section describes two configuration types for using the general-purpose 8-bit
external register.

e A minimum configuration without boot ROM and using the external register
port in one direction only.

e A maximum configuration with boot ROM, using the external register as a
bidirectional port.

5.1 Configuration of External Register Without Boot ROM

This configuration assumes that boot ROM is not used, and the general-purpose
external register is used for read-only or write-only operations.

Figure 4 shows a minimum type of configuration that uses the external register
for write operations only.

Figure 4 External Register Connection—Write Only (No Boot ROM)

21041 74FCT273
Octal
D Flip-Flop

br_ad<7>/sr_din 93 | 18 D7

_ _ >
br_ad<6> 113 w1 17 D6

_ > =
br_ad<5> 114 | 14 D5

_ >
br_ad<4> 115 | 13 D4
br_ad<3> 116 w] 8 D3

_ >
br_ad<2> 117 w| 7 D2

_ ’
br_ad<1> 118 | 4 D1

>
br_ad<0> 119] 3 DO
mode_select/br_ce_| 91 | 11 cp

> o
rst_| 6 4—'—>(1 mr

Reset

LJ-04384.Al4

Figure 5 shows a configuration that uses the external register for read operations
only. Data read by the 21041 should be driven constantly on the 74FCT244
outputs.

Figure 5 External Register Connection—Read Only (No Boot ROM)

21041 74FCT244

Tristate

Buffer
br_ad<7>/sr_din 93 - 3 2v3
br_ad<6> 113 | g 5 2Y2
br_ad<5> 114 | g 7 2Y1
br_ad<4> 115 | g 9 2Y0
br_ad<3> 116 | 12 1Y3
br_ad<2> 117 - 14 1Y2
br_ad<1> 118 | g 16 1Y1
br_ad<0> 119 | g 18 1Y0
mode_select/br_ce_| 91 > 1 1loe_l
3| 19 20e_|
> |

LJ-04385.Al4

5.2 Configuration of External Register with Boot ROM

This connection assumes that both the external register and the boot ROM are
used by the 21041. This connection also allows read and write accesses to the
external register, making it a bidirectional general-purpose port. Note that
Figure 1 shows the boot ROM connection.

Figure 6 describes the connection of the external register used for read and write
operations with the boot ROM included on the adapter. The required components
for this configuration are:

e 1-0f-8 decoder

e Octal latched transceiver (3-state).

Figure 6 External Register Connection—Read and Write with Boot ROM

From D-flop 74FCT823
Pin 22 (Also oe_|
Input to Boot ROM)

From D-flop 74FCT823

Pin 23 (Also we_|] 74FCT543
Input to Boot ROM 8-Bit 3-State
P) 74F138 Bidirectional
1-of-8 Decoder ;
Register
21041 | 6 €3
Vss 3l 5 e2_| q3_l 12 | 14 le_I(ab)
mode_select/br_ce_| 91 wl 4 el g2_| 13] 13 oe_l(ab)
_— _—
br_a<0>/sr_dout 79 w] 1 A0 | 1 le_l(ba)
el o
> 2 Al 3| 2 0e_l(ba)
Vss gl 3 A2
s Vss 3yl 11 e_|(ab)
>
.l 23 e_l(ba)
>
br_ad<7>/sr_din 93 | >l 10 A7
- >
br_ad<6> 113 | g wl 9 A6
- -
br_ad<5> 114 | & w] 8 A5
- — _—
br_ad<4> 115 | w] 7 A4
- —" A
br_ad<3> 116 | wl 6 A3
- >
br_ad<2> 117 | wl 5 A2
-
br_ad<1> 118 | wl 4 Al
- — _—
br_ad<0> 119 | w] 3 A0
- >

LJ-04386.Al14

6 Serial ROM Programming

The definition for serial ROM programming that is described in this section
supports multiple chips on a single board sharing a single serial ROM. It is
applicable for Digital-supplied device drivers.

Note

To optimize the ROM space usage, byte fields are used. Because the serial
ROM supports only word accesses, Digital recommends that you first
download the entire ROM into a memory shadow table.

Figure 7 shows the structure of the serial ROM, and Table 2 describes the byte
fields.

Figure 7 Serial ROM Structure

Byte
Offset
15 8 7 0 in SROM
Subsystem Vendor ID 0
Subsystem ID 2 D
ID_Reserved1 (0s) 4 Block
(12 Bytes)
ID_Reserved?2 - 1Byte (0s) ID_BLOCK_CRC 16
SROM Format Version 18
Chip_Count (n) 19
IEEE Network Address 20
(6 Bytes) 24
I Chip_1 Device_Number 26
I Chip_1 Info (Leaf Offset) 27
I Chip_2 Device_Number 29
I Chip_2 Info (Leaf Offset) 30
I Chip_n Device_Number
I Chip_n Info (Leaf Offset)
Reserved (MBZ)
(1 Byte)
Chip_1 Info Leaf
Chip_2 Info Leaf
Chip_n Info Leaf
Os
Manufacturer_Reserved 124
SROM_CRC 126

LJ04873B.AlI5

Table 2 Serial ROM Field Description
Field Size (Bytes) Definition

Subsystem Vendor ID 2 Subsystem vendor ID of this adapter. Uniquely
identifies the adapter, distinguishing it from
other adapters, based on the 21041 chip. See
PCI specification.

Subsystem 1D 2 Subsystem ID of this adapter. Uniquely
identifies the adapter, distinguishing it from
other adapters, based on the 21041 chip. See
PCI specification.

ID_reservedl 12 Reserved.

ID_ BLOCK _CRC 1 CRCS8 of the ID block, calculated on
word[0]..word[8], inclusive. This includes
the ID_reserved2 field. See Appendix C.

ID_reserved2 1 Reserved.

SROM format version 1 SROM format version. Current version is
0x03.

Chip_count (n) 1 Number of chips sharing this ROM. A single
port board will have a value of 1 in this field.

IEEE network address 6 This is the IEEE address of the chip in a single
chip board.

In a multiple chip board, this is the base IEEE
address. Every chip (0..n) adds its index (n) to
this base IEEE address.

Chip_n device_number 1 There is one such field per chip sharing the
SROM.

In a multiple chip board, this field contains the
Device_Number value by which the nth chip’s
configuration space can be accessed on this
board's secondary PCI bus. This value depends
on the hardware routing of the board. The
Device_Number is the chip select line routed
from this chip to the PCI-to-PCI bridge chip on
board.

In a single chip board, this field has no
meaning and should be ignored by the driver.

Chip_n info 2 Byte offset (from beginning of SROM) where
chip_n info block is located. There is one such
field per chip sharing the SROM.

Note: If multiple chips have identical
information blocks, a single leaf can be shared
and all leaf pointers can be set to point to it.
This is correct only if the user cannot select
between multiple media ports for each chip
(see the following details).

For example: A 4-TP port card can share one
info block for all 4 chips.

Reserved 1 MBZ.

Note that the location of this field depends on
the number of chips supported by this card.

(continued on next page)

10

Table 2 (Cont.) Serial ROM Field Description

Field Size (Bytes) Definition

Chip_n info leaf Chip Chip-specific information. See Figure 8 and
dependent Table 3 for details.

Manufacturer_reserved 2 This field is reserved for the adapter

manufacturers’ use. Standard drivers do

not make use of this field. This field is always
located in the two bytes preceding the SROM_
CRC. When manufacturer-specific data is more
than two bytes, this field can be used as a
pointer to the data. When not used, this field
must be filled with zeros (MBZ).

SROM_CRC 2 Is calculated on all the words of the SROM
from word[0] to the word before the CRC
(word[SROM_word_size -2]).

The CRC word is derived by calculating the
CRC32 of all the SROM until the last word
(not including it) and taking the two least
significant bytes of the result. The bytes
are written in little endian. The functional
definition is in Appendix B.

Figure 8 shows the info leaf format, and Table 3 describes the byte fields.

Figure 8 Info Leaf Format

Byte
Offset
00 in Leaf

15 o7

Selected Connection Type 0
Media Count (k)
Media_1 Block
Media_2 Block

Media_k Block

LJ-04388.A15

Table 3 Info Leaf Description

Field Size (Bytes)

Meaning

Selected connection type 2

Media count (k) 1

Media
dependent

Media_k block

Usually, the connection type used by the
chip is selected by the user in the drivers’
configuration files. However, this field has
been provided to allow setup utilities that are
unable to modify the configuration files and
save this information in the SROM instead.
The possible values are:

0x0000 - TP

0x0100 - TP with autonegotiation
0x0204 - TP full-duplex

0x0400 - TP without LinkPass test
0x0001 - BNC

0x0002 - AUI

0x0800 - AutoSense

0x0900 - AutoSense with autonegotiation

If this field is not used, it must be set to
OXFFFF. Any other value is invalid and may
cause unpredictable results.

The number of media blocks present for this
chip.

Describes one supported medium. There is one
such field per supported medium. See details
in Figure 9 and Table 4.

11

12

Figure 9 shows the media block format, and Table 4 describes the byte fields.

Figure 9 Media Block Format

07 06 00

Reserved‘ EXT ‘ Media Code

Media-Specific Data

LJ-04389.AI5
Table 4 Media Block Description
Field Size Meaning
Media code 6 bits Indicates to the driver that this medium is

supported by the chip.
Possible values are:

OOH - TP

01H - BNC

02H - AUI

04H - TP Full-Duplex

EXT 1 bit When set to 1, indicates that the lower 16 bits of
CSRs 13 through 15 (SIA registers) will be set via
the SROM, and not by using the internal default
values for this media type. The SIA setting values
are given by the media-specific data field.

Reserved 1 bit Reserved.
Media-specific 6 bytes Media-specific data. This field exists only when
data the EXT bit is set. This field provides the values

of CSR13, CSR14, and CSR15 (Figure 10) to use
instead of the driver internal defaults for this
media type.

Figure 10 shows the media-specific data format.
Figure 10 Media-Specific Data Format

15 00
CSR13 <15:0>
CSR14 <15:0>
CSR15 <15:0>

LJ-04390.A15

A

Serial ROM Access — Software Description

This appendix provides software code for both serial ROM read and write
accesses. The routines that follow are written for the 39LC46B serial ROM

device. Some modifications to the code may be required when supporting other

devices.
/*
** Constants, variables, functions prototypes & definitions.
*

#define SROM_93LC46B_LAST_ADDRESS 0x3F
#define SROM_93LC46B_LAST_ADDRESS_BIT 5
#define CSR9_READ 0x4000

#define CSR9_WRITE 0x2000

#define SEL_SROM 0x0800

#define DATA_1 0x0004

#define DATA_0 0x0000

#define CLK 0x0002

#define CS 0x0001

enum WIDTH {Byte,Word,Dword};

#define Byte 0
#define Word 1
#define Dword 2

typedef unsigned char BYTE;
typedef unsigned short WORD;
typedef unsigned long DWORD;

#define FALSE 0
#define TRUE 1

void In32Bits(WORD port_number, enum WIDTH width, DWORD *ret_val);

void Out32Bits(WORD port_number, enum WIDTH width, DWORD value);

void Delay800nSec(void); /* Minimum time of clock high and clock low we apply
** 10 SROM. The 93LC46B device requires a minimum of
** 250nSec.
*

WORD CSR9; /* Address of DC21140/DC21041 CSR9 in I/O space.
** This address is filled after locating DC21140/DC21041.
*

Serial ROM Access — Software Description A-1

** WrittCommandEWEN

* Qperation:

* Writes the Erase/Write Enable instruction to the serial ROM.
o This enables writing to the serial ROM.

*

void WriteCommandEWEN(void)

{
WORD i;

/*

** \Write the EWEN command to enable write/erase commands

*

/

Out32Bits(CSRY, Dword, CSR9_WRITE | SEL_SROM | CS | DATA 1);
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | CLK | DATA_1);
Delay800nSec();

Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | DATA_1);
Delay800nSec();
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | DATA_0);

Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | CLK | DATA 0);
Delay800nSec();

Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | DATA_0);
Delay800nSec();
Out32Bits(CSR9, Dword, CSR9_ WRITE | SEL_SROM | CS | DATA_0);
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | CLK | DATA_0);
Delay800nSec();
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | DATA_0);
Delay800nSec();
for (i=0; i<5; i++)
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | DATA_1);
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | CLK | DATA"1);
Delay800nSec();
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | DATA 1);
Delay800nSec();
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | DATA_1);

Out32Bits(CSR9, Dword, CSR9 WRITE | SEL_SROM | CS | CLK | DATA 1);
Delay800nSec();
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | DATA 1);
Delay800nSec();

Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS);
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | CLK);
Delay800nSec();

Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS);
Delay800nSec();

Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM);
Delay800nSec();
}

A-2 Serial ROM Access — Software Description

¥ WriteCommandEWDS

* Qperation;

b Writes the Erase/Write Disable instruction to the serial ROM.
* This disables writing to the serial ROM.

*

void WriteCommandEWDS(void)

{
WORD i;
/*

* \Write the EWDS command to disable write/erase commands
#

Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | DATA_1);
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | CLK | DATA"1);
Delay800nSec();
Out32Bits(CSR9, Dword, CSR9_ WRITE | SEL_SROM | CS | DATA 1);
Delay800nSec();
for (i=0; i<7; i++)
Out32Bits(CSR9, Dword, CSR9_ WRITE | SEL_SROM | CS | DATA_0);
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | CLK | DATA_0);
Delay800nSec();
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | DATA 0);
Delay800nSec();
}
Out32Bits(CSR9, Dword, CSR9_ WRITE | SEL_SROM | CS | DATA_0);
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | CLK | DATA_0);
Delay800nSec();
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | DATA_0);
Delay800nSec();

Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS);
Out32Bits(CSR9, Dword, CSR9 WRITE | SEL_SROM | CS | CLK);
Delay800nSec();

Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS);
Delay800nSec();

Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM);
Delay800nSec();

Serial ROM Access — Software Description A-3

* WriteSROM

*%

*%

* Qperation;

** Writes the contents of a buffer to the SROM, word by word.
*%

** Input:

b ROM_Address: Offset in SROM. Is auto incremented after write.
o It is number of WORD to which Data is written.

* Len: Length in words.

b Data: Pointer to data buffer to write.

*%

* QOutput:

b If an error occurs, error message is printed.

*%

¥ Return value:

b FALSE if an error occurs.

*

int WriteSROM(WORD *ROM_Address, WORD Len, WORD *Data)

{

WORD i, |;

DWORD Dhit;

DWORD Dout;

WORD ROM_WordAddress;
WORD WordData;

ROM_WordAddress = *ROM_Address;

/*

** Make sure the ROM_Address is not too big for this ROM
*

if (ROM_WordAddress + Len - 1 > SROM_93LC46B_LAST ADDRESS)

{
printf("Address or data length is too big for SROM\n");
return(FALSE);

WriteCommandEWEN();
/*
* Loop on all DATA words.
*
for (j=0; j<Len; j+t)
/*

* Qutput the WRITE command to the SROM
¥

Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | DATA 1);
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | CLK | DATA"1);
Delay800nSec();
Out32Bits(CSR9, Dword, CSR9 WRITE | SEL_SROM | CS | DATA 1);
Delay800nSec();
Out32Bits(CSR9, Dword, CSR9_ WRITE | SEL_SROM | CS | DATA_0);
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | CLK | DATA 0);
Delay800nSec();
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | DATA 0);
Delay800nSec();
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | DATA_1);

Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | CLK | DATA 1);

Delay800nSec();
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS |
Delay800nSec();

A-4 Serial ROM Access — Software Description

DATA_1);

/*

* Qutput the WORD Address of the SROM

*

for (i=0; i<=SROM_93LC46B_LAST_ADDRESS_BIT; i++)

{
Dbit = (DWORD)((ROM_WordAddress >> (SROM_93LC46B_LAST_ADDRESS_BIT-)) & 1) << 2;

Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | Dbit);
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | CLK | Dbit);
Delay800nSec();
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | Dbit);
Delay800nSec();

/*
* Qutput the WORD of data to the SROM
¥

WordData = *Data;
for (i=0; i<=15; i++)

{Dbit = (DWORD)((WordData >> (15-i)) & 1) << 2;

Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | Dbit);
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | CLK | Dbit);
Delay800nSec();
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | Dbit);
Delay800nSec();

/*

** Point at next user buffer address
*

Data++;

/*

** Point at next SROM Address
*

ROM_WordAddress++;

/*

** Negate the CS (chip select) to start the SROM write
*

Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM);
Delay800nSec();

/*

** Set the CS to continue the SROM write

*

Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS);

/*

* Verify that the SROM is in BUSY state by reading the Dout, if Dout=0.
¥

In32Bits(CSR9, Dword, &Dout);

Dout = (Dout>>3) & 1,

if (Dout = 0)

printf("SROM did not become busy in write command\n®);

return(FALSE);
}

Serial ROM Access — Software Description A-5

/*

* Wait for completion of WRITE command up to 10Msec.
** 10Msec = 11900 loops of 800nSec.

*

for (i=0; i<11900; i++)

{
Delay800nSec();
In32Bits(CSR9, Dword, &Dout);
Dout = (Dout>>3) & 1;
if (Dout == 1)
break;
}

if (Dout == 0)

printf("SROM did not end busy state in write command\n®);
return(FALSE);

}
/*
** Negate the CS to end the SROM command
*
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM);
Delay800nSec();

WriteCommandEWDS();

/*
** Save the ROM byte address for next use.
*

*ROM_Address = ROM_WordAddress;
return 1,

}
[* ReadSROM

*%

*%

* Qperation:

o Reads the contents of the SROM (starting at a given offset),
o into a given buffer.

*%

** Input:

b ROM_Address: Offset in SROM. Is auto incremented after write.
o It is number of WORD to which Data is written.

b Len: Length in words.

ok Data: Pointer to data to buffer to read into.

*%

* Qutput:

o If an error occurs, error message is printed.

*%

* Return value:

ok FALSE if an error occurs.

*

int ReadSROM(WORD *ROM_Address,WORD Len,WORD *Data)
{

WORD i, j;

DWORD Dhit;

DWORD Dout;

WORD ROM_WordAddress;

WORD WordData;

ROM_WordAddress = *ROM_Address;

A—6 Serial ROM Access — Software Description

/*

** Make sure the ROM_Address is not too big for this ROM

*

if (ROM_WordAddress + Len -1 > SROM_93LC46B_LAST ADDRESS)

{
printf("Address or data length is too big for SROM\n");
return(FALSE);

/*
** Loop on all DATA words.
*
for (j=0; j<Len; j++)
/*
** Qutput the READ command to the SROM

¥

Out32Bits(CSR9, Dword, CSR9_ WRITE | SEL_SROM | CS | DATA 1);
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | CLK | DATA_1);
Delay800nSec();
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | DATA_1);
Delay800nSec();
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | DATA_1);
Out32Bits(CSR9, Dword, CSR9_ WRITE | SEL_SROM | CS | CLK | DATA 1);
Delay800nSec();
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | DATA 1);
Delay800nSec();
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | DATA 0);
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | CLK | DATA_0);
Delay800nSec();
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | DATA_0);
Delay800nSec();

/*
** Qutput the WORD Address of the SROM
*

for (i=0; i<=SROM_93LC46B_LAST ADDRESS_BIT; i++)
{
Dbit = (DWORD)((ROM_WordAddress >> (SROM_93LC46B_LAST ADDRESS BIT-)) & 1) << 2;

Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | Dbit);
Out32Bits(CSR9, Dword, CSR9 WRITE | SEL_SROM | CS | CLK | Dbit);
Delay800nSec();
Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | Dbit);
Delay800nSec();

/*

** Verify that the SROM output data became now O.
¥

In32Bits(CSR9, Dword, &Dout);

Dout = (Dout>>3) & 1;

if (Dout != 0)

printf("SROM did not become busy in read command\n®);

return(FALSE);
}

Serial ROM Access — Software Description A-7

/*

* |nput the WORD of data from the SROM
*

/

for (i=0; i<=15; i++)

{

Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS | CLK);
Delay800nSec();

In32Bits(CSR9, Dword, &Dout);

WordData |= ((Dout>>3) & 1) << (15-);

Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM | CS);
Delay800nSec();

/*

** Put our read data in user buffer

*

*Data = WordData;

/*

** Point at next user buffer address

*

Data++;

/*

** Point at next SROM Address

*

ROM_WordAddress++;

/*

** Negate the CS (chip select) to end the SROM command
*

Out32Bits(CSR9, Dword, CSR9_WRITE | SEL_SROM);
Delay800nSec();
}

/*

** Save the ROM byte address for next use.
*

*ROM_Address = ROM_WordAddress;

return(TRUE);
}

A-8 Serial ROM Access — Software Description

B

Serial ROM CRC Calculation

This appendix provides the routine for calculating the serial ROM CRC value.

unsigned short CalcSromCrc(unsigned char *SromData);

#define DATA_LEN 126 /| 1024 bits SROM

struct {
unsigned char SromData[DATA_LEN];
unsigned short SromCRC;

} Srom;

main()

{
Srom.SromCRC = CalcSromCrc(&Srom.SromData);

unsigned short CalcSromCrc(unsigned char *SromData)

{
#define POLY 0x04C11DB6L

unsigned long crc = OXFFFFFFFF;
unsigned long FlippedCRC = 0;

unsigned char CurrentByte;

unsigned Index;

unsigned Bit;

unsigned Msb;

int i;

for (Index = 0; Index < DATA_LEN; Index+t)

CurrentByte = SromData[Index];

for (Bit = 0; Bit < 8; Bit++)
{
Msh = (crc >> 31) & 1;
cre <<= 1;

if (Msb * (CurrentByte & 1))

crc "= POLY;
crc |= 0x00000001;

CurrentByte >>= 1,
}
}

for i = 0; i < 32, i++)

FlippedCRC <<= 1;
Bit = crc & 1,

cre >>= 1,
FlippedCRC += Bit;

Serial ROM CRC Calculation B-1

crc = FlippedCRC " OXFFFFFFFF;
return (crc & OXFFFF);

}

B—2 Serial ROM CRC Calculation

C

ID Block CRC Calculation

This appendix provides the routine for calculating the ID_BLOCK_CRC value.

/*

* This program calculates the CRC which sums the

* Serial ROM header. This serial ROM header of 9 words is read upon reset of
** the chip. If the CRC result of these 9 words equals 0, it means data read

** correctly.

** 8 2 1

* CRC is a 8 bit crc. Polynom is X + X + X + 1.

** Note that in contrary to regular CRC, this CRC is calculated on data stream
** from MSB 1'st to LSB. This is because of the nature of the SROM data stream
** which goes this way.

*%k

** Predefined SROM header:

*%

** WORD# Meaning

*%

** 0 Subsystem vendor 1D
b 1 Subsystem 1D

b 2 reserved (value = 0)
b 3 reserved (value = 0)
b 4 reserved (value = 0)
b 5 reserved (value = 0)

** 6 reserved (value = 0)
* 7 reserved (value = 0)
** 8 High byte is reserved (value
*

main()

0), Low byte = CRC

{
#define POLY 0x6
unsigned short DAT[9];

int i,Word,n;

char Bit;

unsigned char BitVal;
unsigned char crc;

n=0;

cre = -1,

for (Word=0; Word<9; Word++)
for (Bit=15; Bit>=0; Bit--)

{
if (Word == 8) && (Bit == 7))
A
* Insert the correct CRC result into input data stream in place.
*
DAT[8] = (DAT[8] & 0xff00) | (unsigned short)crc;
break;
}

ID Block CRC Calculation C-1

n++;

Bitval = ((DAT[Word] >> Bit) & 1) * ((crc >> 7) & 1);
crc = cre << 1;

if (Bitval == 1)
{
crc A= POLY;
cre |= 0x01;
}
!
1

C-2 ID Block CRC Calculation

D

Technical Support and Ordering Information

D.1 Obtaining Technical Support

If you need technical support or help deciding which literature best meets your
needs, call the Digital Semiconductor Information Line:

United States and Canada 1-800-332-2717
Outside North America +1-508-628-4760

D.2 Ordering Digital Semiconductor Products

To order the Digital Semiconductor 21041 PCI Ethernet LAN Controller and
evaluation board, contact your local distributor.

The following table lists some of the semiconductor products you can order from

Digital:

Product Order Number
Digital Semiconductor 21041 PCI Ethernet LAN Controller 21041-AB
Digital Semiconductor 21041 Evaluation Board Kit 21A41-01

Digital Semiconductor 21140A PCI Fast Ethernet LAN Controller = 21140-AC
Digital Semiconductor 21140A 10/100BASE-TX Evaluation Board 21A40-TX

Kit

Digital Semiconductor 21142 PCI 10/100-Mb/s Ethernet LAN 21142-PA (PQFP

Controller package)
21142-TA (TQFP
package)

D.3 Ordering Digital Semiconductor Literature

The following table lists some of the available Digital Semiconductor literature.
For a complete list, contact the Digital Semiconductor Information Line.

Title Order Number
Digital Semiconductor 21041 PCI Ethernet LAN EC-QAWVB-TE
Controller Product Brief

Digital Semiconductor 21041 PCI Ethernet LAN EC-QAWWB-TE
Controller Data Sheet

Digital Semiconductor 21041 PCI Ethernet LAN EC-QAWXB-TE

Controller Hardware Reference Manual

Technical Support and Ordering Information D-1

D.4 Ordering Third-Party Literature

You can order the following third-party literature directly from the vendor:

Title Vendor

PCI Local Bus Specification, Revision 2.0 PCI Special Interest Group
1-800-433-5177 (U.S.)
1-503-797-4207 (International)
1-503-234-6762 (FAX)

Institute of Electrical and Electronics IEEE Service Center

Engineers (IEEE) 802.3 1-800-701-4333 (U.S))
1-908-981-0060 (International)
1-908-981-9667 (FAX)

D-2 Technical Support and Ordering Information

