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Preface

This manual provides information about the architecture, internal design, external
interface, and specifications of the Digital Semiconductor Alpha21164PC micropro-
cessor (referred to as the 21164PC) and its associated software.

Audience

This reference manual isfor system designers and programmers who use the
21164PC.

Manual Organization

This manual includes the following chapters and appendixes, and an index.

Chapter 1, Introduction, introduces the 21164PC and provides an overview of
the Alpha architecture.

Chapter 2, Internal Architecture, describesthe major hardware functions and the
internal chip architecture. It describes performance measurement facilities, cod-
ing rules, and design examples.

Chapter 3, Hardware Interface, lists and describes the external hardware inter-
face signals.

Chapter 4, Clocks, Cache, and External Interface, describes the external bus
functions and transactions, lists bus commands, and describes the clock func-
tions.

Chapter 5, Internal Processor Registers, lists and describes the 21164PC internal
processor register set.

Chapter 6, Privileged Architecture Library Code, describes the privileged archi-
tecture library code (PALcode).
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e Chapter 7, Initiaization and Configuration, describes the initialization and con-
figuration sequence.

e Chapter 8, Error Detection and Error Handling, describes error detection and
error handling.

» Chapter 9, Electrical Data, provides electrical dataand describes signal integrity
issues.

e Chapter 10, Therma Management, provides information about thermal manage-
ment.

« Chapter 11, Mechanical Packaging Information, provides mechanical dataand
packaging information, including signal pin lists.

» Chapter 12, Testability and Diagnostics, describes chip and system testability
features.

« Appendix A, Alphalnstruction Set, summarizes the Alphainstruction set.

« Appendix B, 21164PC Microprocessor Specifications, summarizes the
21164PC specifications.

« Appendix C, Serial Icache Load Predecode Values, provides a C code example
that calcul ates the predecode values of a serial Icache load.

« Appendix D, Errata Sheet, lists changes and revisionsto this manual.

« Appendix E, Support, Products, and Documentation, provides phone numbers
for support and lists related DIGITAL and third-party publications with order
information.

e The Glossary lists and defines terms associated with the 21164PC.

The companion volume to this manual, the Alpha AXP Architecture Reference Man-
ual, contains the Alpha architecture information.
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Conventions

This section defines product-specific terminology, abbreviations, and other conven-
tions used throughout this manual.

Abbreviations
e Binary Multiples

The abbreviationsK, M, and G (kilo, mega, and giga) represent binary multiples
and have the following values.

K = 219(1024)

M = 2%9(1,048,576)

G = 2%9(1,073,741,824)

For example:

2KB = 2kilobytes = 2 x210pytes
AMB = 4megabytes = 4 x 220 pytes
8GB = 8gigabytes = 8 x 230 bytes

* Register Access

The abbreviations used to indicate the type of access to register fields and bits
have the following definitions:

IGN — Ignore

Register bits specified as IGN are ignored when written and are UNPRE-
DICTABLE when read if not otherwise specified.

MBZ — Must Be Zero

Software must never place a nonzero value in bits and fields specified as
MBZ. Reads return unpredictable values. Such fields are reserved for future

use.
RAO — Read As One
Register bits specified as RAO return a 1 when read.
RAZ — Read As Zero
Register bits specified as RAZ return a 0 when read.
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RC — Read To Clear

A register field specified as RC is written by hardware and remains
unchanged until read. The value may be read by software, at which point,
hardware may write a new value into the field.

RES — Reserved

Bits and fields specified as RES are reserved by Digital Semiconductor and
should not be used; however, zeros can be written to reserved fields that can-
not be masked.

RO — Read Only

Bits and fields specified as RO can be read and are ignored (not written) on
writes.

RW — Read/Write
Bits and fields specified as RW can be read and written.
WOC — Write Zero to Clear

Bits and fields specified as WOC can be read. Writing a zero clears these bits
for the duration of the write; writing a one has no effect.

W1C — Write One to Clear

Bits and fields specified as W1C can be read. Writing a one clears these bits
for the duration of the write; writing a zero has no effect.

WO — Write Only

Bits and fields specified as WO can be written but not read.

Addresses

Unless otherwise noted, all addresses and offsets are hexadecimal.

Aligned and Unaligned

The termsligned andnaturally aligned are interchangeable and refer to data objects
that are powers of two in size. An aligned datum of size &tored in memory at a

byte address that is a multiple ¢ ghat is, one that haslow-order zeros. For ex-

ample, an aligned 64-byte stack frame has a memory address that is a multiple of 64.

A datum of size 2is unaligned if it is stored in a byte address that is not a multiple
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Bit Notation

Multiple-bit fields can include contiguous and noncontiguous bits contained in angle
brackets (<>). Multiple contiguous bits are indicated by a pair of numbers separated
by acolon (:). For example, <9:7,5,2:0> specifies bits 9,8,7,5,2,1, and 0. Similarly,
single bits are frequently indicated with angle brackets. For example, <27> specifies
bit 27.

Caution

Cautions indicate potential damage to equipment or loss of data.
Data Units

The following data-unit terminology is used throughout this manual.

Term Words Bytes Bits Other

Byte Yo 1 8 —

Word 1 2 16 —

Dword 2 4 32 Longword
Quadword 4 8 64 2 Dwords
External

Unless otherwise stated, externa means not contained in the 21164PC.

Numbering

All numbers are decimal or hexadecimal unless otherwise indicated. The prefix 0x
indicates a hexadecimal number. For example, 19 isdecimal, but 0x19 and 0x19A
are hexadecimal (also see Addresses). Otherwise, the base is indicated by a sub-
script; for example, 100, is abinary number.

Ranges and Extents

Ranges are specified by apair of numbers separated by two periods (..) and areinclu-
sive. For example, arange of integers 0..4 includes the integers 0, 1, 2, 3, and 4.

Extents are specified by a pair of numbersin angle brackets (<>) separated by a
colon (:) and areinclusive. Bit fields are often specified as extents. For example, bits
<7.3> specifies bits 7, 6, 5, 4, and 3.
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Security Holes

Security holes exist when unprivileged software (that is, software that is running out-
side of kernel mode) can:

«  Affect the operation of another process without authorization from the operating
System.

- Amplify its privilege without authorization from the operating system.

«  Communicate with another process, either overtly or covertly, without authori-
zation from the operating system.

Signal Names

Signal names are printed in lowercase, boldface type. L ow-asserted signals are indi-
cated by the _| suffix, while high-asserted signals have the _h suffix. For example,
osc_clk_in_hisahigh-asserted signal, and osc_clk_in_| isalow-asserted signal.

Unpredictable and Undefined

Throughout this manual, the terms UNPREDICTABLE and UNDEFINED are used.
Their meanings are quite different and must be carefully distinguished.

In particular, only privileged software (that is, software running in kernel mode) can
trigger UNDEFINED operations. Unprivileged software cannot trigger UNDE-
FINED operations. However, either privileged or unprivileged software can trigger
UNPREDICTABLE results or occurrences.

UNPREDICTABLE results or occurrences do not disrupt the basic operation of the
processor. The processor continues to execute instructions in its normal manner. In
contrast, UNDEFINED operations can halt the processor or cause it to lose informa-
tion.

The terms UNPREDICTABLE and UNDEFINED can be further described as fol-
lows:

Unpredictable

» Resultsor occurrences specified as UNPREDICTABL E may vary from moment
to moment, implementation to implementation, and instruction to instruction
within implementations. Software can never depend on results specified as
UNPREDICTABLE.
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«  AnUNPREDICTABLE result may acquire an arbitrary value subject to afew
constraints. Such aresult may be an arbitrary function of the input operands or of
any state information that is accessible to the processin its current access mode.
UNPREDICTABLE results may be unchanged from their previous values.

Operations that produce UNPREDICTABLE results may also produce excep-
tions.

« An occurrence specified as UNPREDICTABLE may happen or not based on an
arbitrary choice function. The choice function is subject to the same constraints
asare UNPREDICTABLE results and, in particular, must not constitute a secu-
rity hole.

Specifically, UNPREDICTABLE results must not depend upon, or be afunction
of the contents of memory locations or registers that are inaccessible to the cur-
rent process in the current access mode.

Also, operations that may produce UNPREDICTABLE results must not:

— Write or modify the contents of memory locations or registers to which the
current process in the current access mode does not have access.

— Halt or hang the system or any of its components.

For example, a security hole would exist if some UNPREDICTABLE result

depended on the value of a register in another process, on the contents of processor
temporary registers left behind by some previously running process, or on a
sequence of actions of different processes.

Undefined

«  Operations specified as UNDEFINED may vary from moment to moment,
implementation to implementation, and instruction to instruction within imple-
mentations. The operation may vary in effect from nothing, to stopping system
operation.

« UNDEFINED operations may halt the processor or cause it to lose information.
However, UNDEFINED operations must not cause the processor to hang, that is,
reach an unhalted state from which there is no transition to anormal statein
which the machine executes instructions. Only privileged software (that is, soft-
ware running in kernel mode) may trigger UNDEFINED operations.
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Introduction

This chapter provides a brief introduction to the Alpha architecture, Digital

Equipment Corporation's RISC (reduced instruction set computing) architecture
designed for high performance. The chapter then summarizes the specific features of
the Digital Semiconductor Alpha 21164PC microprocessor (hereafter called the
21164PC) that implements the Alpha architecture. Appendix A provides a list of
Alpha instructions.

For a complete definition of the Alpha architecture, refer to the companion volume,
the Alpha AXP Architecture Reference Manual.

1.1 The Architecture

The Alpha architecture is a 64-bit load and store RISC architecture designed with
particular emphasis on speed, multiple instruction issue, multiple processors, and
software migration from many operating systems.

All registers are 64 bits long and all operations are performed between 64-bit regis-
ters. All instructions are 32 bits long. Memory operations are either load or store
operations. All data manipulation is done between registers.

The Alpha architecture supports the following data types:
e 8-, 16, 32-, and 64-hit integers

* |EEE 32-bit and 64-hit floating-point formats

e VAX architecture 32-bit and 64-bit floating-point formats

In the Alpha architecture, instructions interact with each other only by one instruc-
tion writing to aregister or memory location and another instruction reading from
that register or memory location. This use of resources makes it easy to build imple-
mentations that issue multiple instructions every CPU cycle.
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The Architecture

The 21164PC uses a set of subroutines, called privileged architecture library code
(PALcode), that is specific to a particular Alpha operating system implementation
and hardware platform. These subroutines provide operating system primitives for
context switching, interrupts, exceptions, and memory management. These subrou-
tines can be invoked by hardware or CALL_PAL instructions. CALL_PAL instruc-
tions use the function field of the instruction to vector to a specified subroutine.
PAL code is written in standard machine code with some implementation-specific
extensions to provide direct access to low-level hardware functions. PAL code sup-
ports optimizations for multiple operating systems, flexible memory-management
implementations, and multi-instruction atomic sequences.

The Alpha architecture performs byte shifting and masking with normal 64-bit, reg-

ister-to-register instructions; it does not include single-byte load and store instruc-
tions.

1.1.1 Addressing

1-2

The basic addressable unit in the Alpha architecture is the 8-bit byte. The 21164PC
supports a43-bit virtual address.

Virtual addresses as seen by the program are translated into physical memory
addresses by the memory-management mechanism. The 21164PC supports a 40-bit
uncached and a 33-bit cached physical address space.
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The Architecture

1.1.2 Integer Data Types

Alpha architecture supports four integer data types.

Data Type

Description

Byte

Word

Longword

Quadword

A byteiseight contiguous bitsthat start at an addressable byte boundary. A
byteisan 8-bit value. A byteis supported in Alpha architecture by the
EXTRACT, INSERT, LDBU, MASK, SEXTB, STB, ZAP, PACK,
UNPACK, MIN, MAX, and PERR instructions.

A word istwo contiguous bytes that start at an arbitrary byte boundary. A
word isa 16-bit value. A word is supported in Alpha architecture by the
EXTRACT, INSERT, LDWU, MASK, SEXTW, STW, PACK, UNPACK,
MIN, and MAX instructions.

A longword is four contiguous bytes that start at an arbitrary byte bound-
ary. A longword is a 32-bit value. A longword is supported in Alpha archi-
tecture by sign-extended load and store instructions and by longword
arithmetic instructions.

A quadword is eight contiguous bytes that start at an arbitrary byte bound-
ary. A quadword is supported in Alpha architecture by load and store
instructions and quadword integer operate instructions.

Note:

Alphaimplementations may impose a significant performance penalty
when accessing operands that are not NATURALLY ALIGNED. Refer
to the Alpha AXP Architecture Reference Manual for details.

1.1.3 Floating-Point Data Types

The 21164PC supports the following floating-point data types:

* Longword integer format in floating-point unit

*  Quadword integer format in floating-point unit

* |EEE floating-point formats

— S_floating

— T _floating
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21164PC Microprocessor Features

* VAX floating-point formats
— F_floating
— G_floating
— D_floating (limited support)

1.2 21164PC Microprocessor Features

The 21164PC is a superscalar pipelined processor manufactured using 0.35-um
CMOS technology. It is packaged in a 413-pin IPGA carrier and has removable
application-specific heat sinks. The 21164PC has been optimized for uniprocessor
systems with very high cache and memory bandwidth. The 21164PC supports the
new motion video instructions (MVI) added to the Alpha instruction set.

The 21164PC can issue four Alpha instructions in a single cycle, thereby minimizing
the average cycles per instruction (CPI). A number of low-latency and/or high-
throughput features in the instruction issue unit and the onchip components of the
memory subsystem further reduce the average CPI.

The 21164PC and associated PALcode implements IEEE single-precision and dou-
ble-precision, VAX F_floating and G_floating data types, and supports longword
(32-bit) and quadword (64-bit) integers. Byte (8-bit) and word (16-bit) support is
provided by byte-manipulation instructions. Limited hardware support is provided
for the VAX D_floating data type.

Other 21164PC features include:
* A peak instruction execution rate of four times the CPU clock frequency.
* The ability to issue up to four instructions during each clock cycle.

*  An onchip, demand-paged memory-management unit with translation buffer,
which, when used with PAL code, can implement a variety of page table struc-
tures and trandlation algorithms. The unit consists of a 64-entry data translation
buffer (DTB) and a48-entry instruction translation buffer (1TB), with each entry
ableto map asingle 8KB page or agroup of 8, 64, or 512 8KB pages. The size of
each translation buffer entry’s group is specified by hint bits stored in the entry.
The DTB and ITB implement 7-bit address space numbers (ASN),
(MAX_ASN=127).

*  Two onchip, high-throughput pipelined floating-point units, capable of execut-
ing both DIGITAL and |EEE floating-point data types.

* Anonchip, 16KB virtual instruction cache with 7-bit ASNs (MAX_ASN=127).
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21164PC Microprocessor Features

An onchip, dual-read-ported, 8KB data cache.
An onchip write buffer with six 32-byte entries.
A 128-bit data bus with onchip parity and offchip longword parity.

Support for an external second-level cache. The size and access time of the
external second-level cacheis programmable.

Aninternal clock generator providing a high-speed clock used by the 21164PC,
and apair of programmable system clocks for use by the CPU module.

Onchip performance counters to measure and analyze CPU and system perfor-
mance.

Chip and module level test support, including an instruction cache test interface
to support chip and module level testing.

A 3.3-V external interface and 2.5-V internal interface.

Refer to Chapter 9 for 21164PC dc and ac electrical characteristics. Refer to the
Alpha AXP Architecture Reference Manual for a description of address space num-
bers (ASNSs).
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2

Internal Architecture

This chapter provides both an overview of the 21164PC microarchitecture and a sys-

tem designer’s view of the 21164PC implementation of the Alpha architecture. The
combination of the 21164PC microarchitecture and privileged architecture library
code (PALcode) defines the chip’s implementation of the Alpha architecture. If a
certain piece of hardware seems to be “architecturally incomplete,” the missing func-
tionality is implemented in PALcode. Chapter 6 provides more information on PAL-
code.

This chapter describes the major functional hardware units and is not intended to be
a detailed hardware description of the chip. It is organized as follows:

e 21164PC microarchitecture

* Pipeline organization

e Scheduling and issuing rules

* Replay traps

* Missaddressfile (MAF) and load-merging rules
* MTU storeinstruction execution

*  Write buffer and the WMB instruction

* Performance measurement support

*  Floating-point control register

* Design examples
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21164PC Microarchitecture

2.1 21164PC Microarchitecture

The 21164PC microprocessor is a high-performance implementation of Digital
Equipment Corporation’'s Alpha architecture. Figure 2—1 is a block diagram of the
21164PC that shows the major functional blocks relative to pipeline stage flow. The

following paragraphs provide an overview of the chip’s architecture and major func-
tional units.

Figure 2-1 21164PC Microprocessor Block/Pipe Flow Diagram
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The 21164PC microprocessor consists of the following internal sections:
* Clock generation logic (Section 4.2)

Instruction fetch/decode unit and branch unit (IDU) (Section 2.1.1), which
includes:

— Instruction prefetcher and instruction decoder
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— Instruction translation buffer

— Branch prediction

— Instruction slotting/issue

— Interrupt support

Integer execution unit (IEU) (Section 2.1.2)
Floating-point execution unit (FPU) (Section 2.1.3)
Memory address trand ation unit (MTU) (Section 2.1.4), which includes:
— Data translation buffer (DTB)

— Miss address file (MAF)

—  Write buffer

— Dcache control

Cache control and businterface unit (CBU) with interface to external cache
(Section 2.1.5)

Data cache (Dcache) (Section 2.1.6.1)
Instruction cache (Icache) (Section 2.1.6.2)
Seria read-only memory (SROM) interface (Section 2.1.7)

2.1.1 Instruction Fetch/Decode Unit and Branch Unit

The primary function of the instruction fetch/decode unit and branch unit (IDU) isto
manage and issue instructions to the IEU, MTU, and FEU. It also manages the
instruction cache. The IDU contains:

Prefetcher and instruction buffer

Instruction slot and issue logic

Program counter (PC) and branch prediction logic
48-entry instruction trangd ation buffers (ITBs)
Abort logic

Register conflict logic

Interrupt and exception logic
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2.1.1.1 Instruction Decode and Issue

The IDU decodes up to four instructions in parallel and checks that the required
resources are available for each instruction. The IDU issues only the instructions for
which all required resources are available. The IDU does not issue instructions out of
order, even if the resources are available for alater instruction and not for an earlier
one.

In other words;

* |f resources are available, and multiple issueis possible, then al four instruc-
tions are issued.

* If resources are available only for alater instruction and not for an earlier one,
then only the instructions up to the latest one for which resources are available
areissued.

The IDU handles only NATURALLY ALIGNED groups of four instructions
(INT16). The IDU does not advance to anew group of four instructions until all
instructions in agroup are issued. If a branch to the middle of an INT16 group
occurs, then the IDU attempts to issue the instructions from the branch target to the
end of the current INT16; the IDU then proceeds to the next INT16 of instructions
after all the instructionsin the target INT16 are issued. Thus, achieving maximum
issue rate and optimal performance requires that code be be scheduled properly and
that floating or integer NOP instructions be used to fill empty dotsin the scheduled
instruction stream.

For more information on instruction scheduling and issuing, including detailed rules
governing multiple instruction issue, refer to Section 2.3.

2.1.1.2 Instruction Prefetch

The IDU contains an instruction prefetcher and afour-entry, 32-byte-per-entry,
prefetch buffer called the refill buffer. Each instruction cache (Icache) missis
checked in the refill buffer. If the refill buffer containsthe instruction data, it fillsthe
Icache and instruction buffer simultaneoudly. If the refill buffer does not contain the
necessary data, afetch and anumber of prefetches are sent to the MTU. One prefetch
is sent per cycle until each of the four entriesin the refill buffer isfilled or hasa
pending fill. The refill buffer holds all returned fill data until the datais required by
the IDU pipeline or until it is overwritten by a subsequent fetch/prefetch sequence
caused by afuture Icache miss.
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Prefetching does not begin until there is a “true” miss. A true miss is a reference that
misses in the Icache and then also misses in the refill buffer. If an Icache miss results
in a refill buffer hit, prefetching is not started until all the data has been moved from
the refill buffer entry into the pipeline.

Each fill of the Icache by the refill buffer occurs when the instruction buffer stage in
the IDU pipeline requires a new INT16. The INT16 is written into the Icache and the
instruction buffer simultaneously. This can occur at a maximum rate of one Icache
fill per cycle. The actual rate depends on how frequently the instruction buffer stage
requires a new INT16, and on availability of data in the refill buffer.

Once an Icache miss occurs, the Icache enters fill mode. When the Icache is in fill
mode, the refill buffer is checked each cycle to see if it contains the next INT16
required by the instruction buffer.

When the required data is not available in the refill buffer (also a miss), the Icache is
checked for a hit while it awaits the arrival of the data from the Bcache or main
memory. The IDU sends a read request to the CBU by means of the MTU. The CBU
checks the Bcache, and if the request misses, the CBU drives a main memory
request.

If there is an Icache hit at this time, the Icache returns to access mode and the
prefetcher stops sending fetches to the MTU. When a new program counter (PC) is
loaded (that is, taken branches), the Icache returns to access mode until the first miss.
The refill buffer receives and holds instruction data from fetches initiated before the
Icache returned to access mode.

The Icache has a 64-byte block size, whereas the refill buffer is able to load the
Icache with only one INT16 (16 bytes) per cycle. Therefore, each Icache block has
four valid bits, one for each 16-byte subblock.

2.1.1.3 Branch Execution

When a branch or jump instruction is fetched from the Icache by the prefetcher, the
IDU needs one cycle to calculate the target PC before it is ready to fetch the target
instruction stream. In the second cycle after the fetch, the Icache is accessed at the
target address. Branch and PC prediction are necessary to predict and begin fetching
the target instruction stream before the branch or jump instruction is issued.

The Icache records the outcome of branch instructions in a 2048-entry, 2-bit per

entry branch history table. The table is indexed by the instruction’s virtual address

bits <13:03>. This information is used as the prediction for the next execution of the
branch instruction. The 2-bit history state is a saturating counter that increments on
taken branches and decrements on not-taken branches. The branch is predicted taken
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on the top two count values and is predicted not-taken on the bottom two count val-
ues. The history status is not initialized on Icache fill, therefore it may “remember” a
branch that was evicted from the Icache and subsequently reloaded.

The 21164PC does not limit the number of branch predictions outstanding to one. It
predicts branches even while waiting to confirm the prediction of previously pre-
dicted branches. There can be one branch prediction pending for each of pipeline
stages 3 and 4, plus up to four in pipeline stage 2. Refer to Section 2.2 for a descrip-
tion of pipeline stages.

When a predicted branch is issued, the IEU or FEU checks the prediction. The
branch history table is updated accordingly. On branch mispredict, a mispredict trap
occurs and the IDU restarts execution from the correct PC.

The 21164PC provides a 12-entry subroutine return stack that is controlled by
decoding the opcode (BSR, HW_REI, and JMP/JSR/RET/JSR_COROUTINE), and
DISP<15:14> in IMP/JSR/RET/JSR_COROUTINE. The stack stores an Icache
index in each entry. The stack is implemented as a circular queue that wraps around
in the overflow and underflow cases.

Table 2-1 lists the effect each of these instructions has on the state of the branch-pre-
diction stack.

Table 2-1 Effect of Branching Instructions on the Branch—Prediction Stack

Stack Used for

Instruction Prediction? Effect on Stack
BSR, JSR No Push PC+4

RET Yes Pop

JMP, BR, BRxx No No effect
JSR_COROUTINE Yes Pop, then push PC+4
PAL entry No Push PC+4

HW_REI Yes Pop

The 21164PC uses the Icache index hint in the JMP and JSR instructions to predict
the target PC. The Icache index hint in the instruction’s displacement field is used to
access the direct-mapped Icache. The upper bits of the PC are formed from the data
in the Icache tag store at that index. Later in the pipeline, the PC prediction is
checked against the actual PC generated by the IEU. A mismatch causes a PC
mispredict trap and restart from the correct PC. This is similar to branch prediction.
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The RET, JSR_COROUTINE, and HW_REI instructions predict the next PC by
using the index from the subroutine return stack. The upper bits of the PC are formed
from the data in the |cache tag at that index. These predictions are checked against
the actual PC in exactly the same way that IMP and JSR predictions are checked.

The branch-prediction stack never predicts atarget addressin PALmode. This pre-
vents the possibility of nonprivileged code accessing privileged modes through
incorrect stack predictions (for example, by underflow/overflow of the stack). This
implies that PAL code libraries should avoid using instructions such as RET and
JSR_COROUTINE for internal jumps with PALmode targets, as the 21164PC will
aways mispredict the target address.

2.1.1.4 Instruction Translation Buffer

The IDU includes a 48-entry, fully associative instruction trandation buffer (1TB).
The buffer stores recently used Istream address translations and protection informa-
tion for pages ranging from 8KB to 4MB and uses a not-last-used replacement ago-
rithm.

PAL code fillsand maintainsthe ITB. Each entry supportsal four granularity hint bit
combinations, so that any single ITB entry can provide translation for up to 512 con-
tiguously mapped 8K B pages. The operating system, using PAL code, must ensure
that virtual addresses can only be mapped through asingle I TB entry or superpage
mapping at one time. Multiple simultaneous mapping can cause UNDEFINED
results.

While not executing in PALmode, the 43-bit virtual PC is routed to the ITB each
cycle. If the page table entry (PTE) associated with the PC is cached in the I TB, the
protection bits for the page that contains the PC are used by the IDU to do the neces-
sary access checks. If thereis an Icache miss and the PC is cached inthe ITB, the
page frame number (PFN) and protection bits for the page that contains the PC are
used by the IDU to do the address translation and access checks.

The 21164PC’s ITB supports 128 address space numbers (ASNs) (MAX_ASN=127)
by means of a 7-bit ASN field in each ITB entry. PALcode uses the hardware-spe-
cific HW_MTPR instruction to write to the architecturally defined ITB_IAP register.
This has the effect of invalidating ITB entries that do not have their ASM bit set.

The 21164PC provides two optional translation extensions called superpages.
Access to superpages is enabled using ICSR<SPE> and is allowed only while exe-
cuting in privileged mode.
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One superpage maps virtual address bits <39:13> to physica address bits
<39:13>, on aone-to-one basis, when virtual address bits <42:41> equal 2. This
maps the entire physical address space four times over to the quadrant of the vir-
tual address space.

The other superpage maps virtual address bits <29:13> to physical address bits
<29:13>, on aone-to-one basis, and forces physical address bits <39:30>to 0
when virtual address bits <42:30> equal 1FFE,g. This effectively maps a 30-bit
region of physical address spaceto asingle region of the virtual address space
defined by virtual address bits <42:30> = 1FFE;.

Access to either superpage mapping is allowed only while executing in kernel mode.
Superpage mapping allows the operating system to map al physical memory to a
privileged virtual memory region.

2.1.1.5 Interrupts

The IDU exception logic supports three sources of interrupts:

Hardware interrupts

There are 7 level-sensitive hardware interrupt sources supplied by the following
signals:

irgq_h<3:0>

mch_hlt_irg_h

pwr_fail_irg_h

sys mch_chk_irg_h
Software interrupts

There are 15 prioritized software interrupts sourced by the software interrupt
request register (SIRR) (see Section 5.1.22).

Asynchronous system traps (ASTS)

There are 4 ASTs sourced by the asynchronous system trap request (ASTRR)
register.

The seria interrupt, the performance counter interrupts, and irq_h<3:0> are all
maskable by bitsin the ICSR (see Section 5.1.17). The four AST traps are maskable
by bitsin the ASTER (see Section 5.1.21). In addition, the AST traps are qualified
by the current processor mode. All interrupts are disabled when the processor is exe-
cuting PAL code.
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Each interrupt source, or group of sources, is assigned an interrupt priority level

(IPL), as shown in Table 4-11. The current IPL is set using the IPLR register (see
Section 5.1.18). Any interrupts that have an equal or lower IPL are masked. When an
interrupt occurs that has an IPL greater than the value in the IPLR register, program
control passes to the INTERRUPT PALcode entry point. PALcode processes the
interrupt by reading the ISR (see Section 5.1.24) and the INTID register (see
Section 5.1.19).

2.1.2 Integer Execution Unit

The integer execution unit (IEU) contains two 64-bit integer execution pipelines, EO
and E1, which include the following:

e Two adders

e Two logic boxes

* A barrel shifter

* Byte-manipulation logic

* Aninteger multiplier

* A motion video instruction unit

The lEU also includes the 40-entry, 64-bit integer register file (IRF) that containsthe
32 integer registers defined by the Alpha architecture and 8 PAL shadow registers.
Theregister file hasfour read ports and two write ports that provide operandsto both
integer execution pipelines and accept results from both pipes. The register file also
accepts load instruction results (memory data) on the same two write ports.

2.1.3 Floating-Point Execution Unit

The onchip, pipelined floating-point unit (FPU) can execute both |EEE and VAX
floating-point instructions. The 21164PC supports IEEE S floating and T_floating
datatypes, and all rounding modes. It also supports VAX F_floating and G_floating
datatypes, and provides limited support for the D_floating format. The FPU con-
tains:

* A 32-entry, 64-bit floating-point register file
* A user-accessible control register

* A floating-point multiply pipeline

* A floating-point add pipeline
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The floating-point divide unit is associated with the floating-point add pipeline
but is not pipelined.

The FPU can accept two instructions every cycle, with the exception of floating-
point divideinstructions. The result latency for nondivide, floating-point instructions
isfour cycles.

The floating-point register file (FRF) hasfive read ports and four write ports. Four of
the read ports are used by the two pipelines to source operands. The remaining read
port is used by floating-point stores. Two of the write ports are used to write results
from the two pipelines. The other two write ports are used to write fills from float-
ing-point loads.

2.1.4 Memory Address Translation Unit

The memory address trandation unit (MTU) contains three major sections:
e Datatrandation buffer (dual ported)

* Missaddressfile

*  Write buffer addressfile

The MTU receives up to two virtual addresses every cycle from the IEU. The trans-
lation buffer generates the corresponding physical addresses and access control
information for each virtual address. The 21164PC implements a 43-bit virtual
address, a 40-bit noncacheable physical address, and a 33-bit cacheable physical
address. Cacheable addresses consist of bits <32:0> when hit <39> = 0. Physical
addresses that set bits <38:33> are not supported by the 21164PC. These addresses
are not checked by the 21164PC and could result in erroneous data.

2.1.4.1 Data Translation Buffer

The 64-entry, fully associative, dual-read-ported data translation buffer (DTB) stores
recently used data stream (Dstream) page table entries (PTES). Each entry supports
al four granularity hint-bit combinations, so that asingle DTB entry can provide
tranglation for up to 512 contiguously mapped, 8KB pages. The trandation buffer
uses a not-last-used replacement algorithm.

For load and store instructions, and other MTU instructions requiring address trans-
lation, the effective 43-bit virtual addressis presented to the DTB. If the PTE of the
supplied virtual address is cached in the DTB, the page frame number (PFN) and
protection bits for the page that contains the address are used by the MTU to com-
plete the address translation and access checks.
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The DTB also supports the optional superpage extensions that are enabled using
ICSR<SPE>. The DTB superpage maps provide virtual-to-physical address transla-
tion for two regions of the virtual address space, as described in Section 2.1.1.4.

PAL code fills and maintains the DTB. The operating system, using PALcode, must
ensure that virtual addresses be mapped either through asingle DTB entry or through
superpage mapping. Multiple simultaneous mapping can cause UNDEFINED
results. The only exception to thisruleisthat any given virtual page may be mapped
twice with identical datain two different DTB entries. This occursin operating sys-
tems, such as OpenVMS, which utilize virtually accessible page tables. If thelevel 1
page tableis accessed virtually, PAL code |oads the translation information twice;
once in the double-miss handler, and once in the primary handler. The PTE mapping
thelevel 1 page table must remain constant during accesses to this page to meet this
requirement.

2.1.4.2 Load Instruction and the Miss Address File

The MTU begins the execution of each load instruction by trandating the virtual
address and by accessing the data cache (Dcache). Trandation and Dcache tag read
operations occur in paralld. If the addressed location is found in the Dcache (a hit),
then the data from the Dcache is formatted and written to either the integer register
file (IRF) or floating-point register file (FRF). The formatting required depends on
the particular load instruction executed. If the data is not found in the Dcache (a
miss), then the address, target register number, and formatting information are
entered in the miss address file (MAF).

The MAF performs aload-merging function. When aload miss occurs, each MAF
entry is checked to seeif it contains aload miss that addresses the same Dcache (32-
byte) block. If it does, and certain merging rules are satisfied, then the new load miss
is merged with an existing MAF entry. This allowsthe MTU to service two or more
load misses with one datafill from the CBU.

There are six MAF entries for load misses and four more for | DU instruction fetches
and prefetches. Load misses are usually the highest MTU priority.

Refer to Section 2.5 for information on load-merging rules.
2.1.4.3 Dcache Control and Store Instructions

The Dcache follows a write-through protocol. During the execution of a store
instruction, the MTU probes the Dcache to determine whether the location to be
overwritten is currently cached. If so (a Dcache hit), the Dcache is updated. Regard-
less of the Dcache state, the MTU forwards the data to the CBU.
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A load instruction that isissued one cycle after a store instruction in the pipeline cre-
atesaconflict if both the load and store operations access the same memory location.
(The storeinstruction has not yet updated the location when the load instruction
readsit.) This conflict is handled by forcing the load instruction to take areplay trap;
that is, the IDU flushes the pipeline and restarts execution from the load instruction.
By thetimethe load instruction arrives at the Dcache the second time, the conflicting
store instruction has written the Dcache and the load instruction is executed nor-
mally.

Replay traps can be avoided by scheduling the load instruction to issue three cycles
after the store instruction. If theload instruction is scheduled to issue two cycles after
the store instruction, then it will be issue-stalled for one cycle.

2.1.4.4 Write Buffer

The MTU contains awrite buffer that has six 32-byte entries, each of which holds
the data from one or more store instructions that access the same 32-byte block in
memory until the datais written into the Bcache. The write buffer provides afinite,
high-bandwidth resource for receiving store data to minimize the number of CPU
stall cycles. The write buffer and associated WMB instruction are described in Sec-
tion 2.7.

2.1.5 Cache Control and Bus Interface Unit

The cache control and bus interface unit (CBU) processes all accesses sent by the
MTU and implements all memory-related external interface functions, particularly
the coherence protocol functions for write-back caching. It controls the board-level
backup cache (Bcache). The CBU handles all instruction and primary Dcache read
misses and performs the function of writing data from the write buffer into the
shared coherent memory subsystem. The CBU also controls the 128-bit bidirectional
data bus, address bus, and 1/0 control. Chapter 4 describes the external interface.

2.1.6 Cache Organization

2-12

The 21164PC has two onchip caches—a primary data cache (Dcache) and a primary
instruction cache (Icache). All memory cells in the onchip caches are fully static,
six-transistor, CMOS structures.

The 21164PC also provides control for the external cache (Bcache).
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2.1.6.1 Data Cache

The data cache (Dcache) is a dual-read-ported, single-write-ported, 8KB cache. It is
awrite-through, read-allocate, direct-mapped, byte-accessible, physical cache with
32-byte blocks and data parity at the byte level.

2.1.6.2 Instruction Cache

The instruction cache (Icache) is a 16K B, virtual, direct-mapped cache with 64-byte
blocks and 32-byte fills. Each block tag contains:

* A 7-hit address space number (ASN) field as defined by the Alpha architecture

e A 1-bit address space match (ASM) field as defined by the Alpha architecture

e A 1-bit PALcode (physically addressed) indicator

Software, rather than Icache hardware, maintains | cache coherence with memory.
2.1.6.3 External Cache

The CBU implements control for an external, direct-mapped, physical, write-back,
write-all ocate cache with 64-byte blocks. The 21164PC supports board-level cache
sizes of 512K B, 1IMB, 2MB, and 4MB.

2.1.7 Serial Read-Only Memory Interface

The seria read-only memory (SROM) interface provides the initialization data load
path from a system SROM to the Icache. Chapter 7 provides information about the
SROM interface.

2.2 Pipeline Organization

The 21164PC has a 7-stage (or 7-cycle) pipeline for integer operate and memory ref-
erenceinstructions, and a 9-stage pipeline for floating-point operate instructions. The
IDU maintains state for al pipeline stages to track outstanding register write opera-
tions.

Figure 2—-2 shows the integer operate, memory reference, and floating-point operate
pipelines for the IDU, FPU, IEU, and MTU. The first four stages are executed in the
IDU. Remaining stages are executed by the IEU, FEU, MTU, and CBU. There are
bypass paths that allow the result of one instruction to be used as a source operand of
a following instruction before it is written to the register file.

Tables 2-2, 2-3, 2—-4, 2-5, 2—6, and 2—7 provide examples of events at various stages
of pipelining during instruction execution.
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Figure 2-2 Instruction Pipeline Stages
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Table 2-2 Pipeline Examples—All Cases

Pipeline Stage Events

0 Access | cache tag and data.

1 Buffer four instructions, check for branches, calculate branch displace-
ments, and check for |cache hit.

2 Slot-swap instructions around so they are headed for pipelines capable of
executing them. Stall preceding stagesif all instructionsin this stage can-
not issue simultaneously because of function unit conflicts.

3 Check the operands of each instruction to see that the sourceis valid and
available and that no write-write hazards exist. Read the IRF. Stall preced-
ing stages if any instruction cannot be issued. All source operands must be
available at the end of this stage for the instruction to issue.

Table 2—-3 Pipeline Examples—Integer Add

Pipeline Stage Events

4 Perform the add operation.

5 Result is available for use by an operate function in this cycle.

6 Write the IRF. Result is available for use by an operate function in this
cycle.

Table 2—4 Pipeline Examples—Floating Add

Pipeline Stage Events

Read the FRF.

First stage of FEU add pipeline.

Second stage of FEU add pipeline.

Third stage of FEU add pipeline.

Fourth stage of FEU add pipeline. Write the FRF.

© 00 N o o1 b

Result is available for use by an operate function in this cycle. For
instance, pipeline stage 5 of the user instruction can coincide with pipeline
stage 9 of the producer (latency of 4).
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Table 2-5 Pipeline Examples—Load (Dcache Hit)

Pipeline Stage! Events

4 Calculate the effective address. Begin the Dcache data and tag store
access.
5 Finish the Dcache data and tag store access. Detect Dcache hit. Format

the data as required. Bcache arbitration defaults to pipe EO in anticipation
of apossible miss.

6 Write the IRF or FRF. Datais available for use by an operate function in
thiscycle.

1 Pipe EO has not been defined at this point.

Table 2—-6 Pipeline Examples—Load (Dcache Miss)

Pipeline Stage! Events

4 Calculate the effective address. Begin the Dcache data and tag store
access.
5 Finish the Dcache data and tag store access. Detect Dcache miss. Bcache

arbitration defaults to pipe EO in anticipation of a possible miss. If there
are load instructions in both EO and E1, the load instruction in E1 would
be delayed at |east one more cycle because default arbitration specul a-
tively assumes the load in EO will miss.

6 Forward physical address to pins.

7 Begin Bcache access, cycle 1.

8 N more CPU cycles waiting for Bcache data.

9 Receive Bcache data at the pins, send data to the Dcache.

10 Begin Dcache fill. Format the data as required.

1 Finish the Dcache fill. Write the integer or floating-point register file.

Datais available for use by an operate function in this cycle.

1 Pipes E0 and E1 have not been defined at this point.
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Table 2—7 Pipeline Examples—Store (Dcache Hit)

Pipeline Stage Events

4 Calculate the effective address. Begin the Dcache tag store access.

5 Finish the Dcache tag store access. Detect Dcache hit. Send store to the
write buffer simultaneousdly.

6 Write the Dcache data store if hit (write begins this cycle).

2.2.1 Pipeline Stages and Instruction Issue

The 21164PC pipeline dividesinstruction processing into four static and anumber of
dynamic stages of execution. The first four stages consist of the instruction fetch,
buffer and decode, dlotting, and issue-check logic. These stages are static in that
instructions may remain valid in the same pipeline stage for multiple cycles while
waiting for aresource or stalling for other reasons. Dynamic stages (IEU and FEU)
always advance state and are unaffected by any stall in the pipeline. A pipeline stall
may occur while zero instructionsissue, or while some instructions of a set of four
issue and the others are held at the issue stage. A pipeline stall impliesthat avalid
instruction is (or instructions are) presented to be issued but cannot proceed.

Upon satisfying all issue requirements, instructions are issued into their slotted pipe-
line. After issuing, instructions cannot stall in a subsequent pipeline stage. The issue
stage is responsible for ensuring that all resource conflicts are resolved before an
instruction is allowed to continue. The only means of stopping instructions after the
issue stage isan abort condition. (Theterm abort as used hereis different fromitsuse
in the Alpha AXP Architecture Reference Manual.)

2.2.2 Aborts and Exceptions

Aborts result from a number of causes. In genera, they can be grouped into two
classes, exceptions (including interrupts) and nonexceptions. The difference between
the two is that exceptions require that the pipeline be drained of all outstanding
instructions before restarting the pipeline at aredirected address. In either case, the
pipeline must be flushed of all instructions that were fetched subsequent to the
instruction that caused the abort condition (arithmetic exceptions are an exception to
this rule). Thisincludes aborting some instructions of a multiple-issued set in the
case of an abort condition on the one instruction in the set.
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The nonexception case does not need to drain the pipeline of all outstanding instruc-
tions ahead of the aborting instruction. The pipeline can be restarted immediately at a
redirected address. Examples of nonexception abort conditions are branch mispre-
dictions, subroutine call/return mispredictions, and replay traps. Data cache misses
can cause aborts or issue stalls depending on the cycle-by-cycle timing.

In the event of an exception other than an arithmetic exception, the processor aborts
al instructions issued after the exceptional instruction, as described in the preceding
paragraphs. Due to the nature of some exception conditions, this may occur as late as
theinteger register file (IRF) write cycle. In the case of an arithmetic exception, the
processor may execute instructions issued after the exceptional instruction.

After aborting, the address of the exceptiona instruction or the immediately subse-
guent instruction is latched in the EXC_ADDR internal processor register (IPR). In
the case of an arithmetic exception, EXC_ADDR contains the address of the instruc-
tion immediately after the last instruction executed. (Every instruction prior to the
last instruction executed was al so executed.) For machine check and interrupts,
EXC_ADDR pointsto the instruction immediately following the last instruction exe-
cuted. For the remaining cases, EXC_ADDR points to the exceptional instruction;
where, in al cases, its execution should naturally restart.

When the pipelineis fully drained, the processor begins instruction execution at the
address given by the PAL code dispatch. The pipeline is drained when all outstanding
write operations to both the IRF and FRF have completed and all outstanding
instructions have passed the point in the pipeline such that they are guaranteed to
complete without an exception in the absence of a machine check.

Replay traps are aborts that occur when an instruction requires a resource that is not
available at some point in the pipeline. These are usually MTU resources whose
availability could not be anticipated accurately at issue time (refer to Section 2.4). If

the necessary resource is not available when the instruction requiresit, the instruc-

tion is aborted and the IDU begins fetching at exactly that instruction, thereby

replaying the instruction in the pipeline. A slight variation on this is the load-miss-

and-use replay trap in which an operate instruction isissued just asa Dcache hit is

being evaluated to determine if one of the instruction’s operands is valid. If the result
is a Dcache miss, then the operate instruction is aborted and replayed.
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2.2.3 Nonissue Conditions

There are two reasons for nonissue conditions. The first is a pipeline stall wherein a
valid instruction or set of instructions are prepared to issue but cannot due to a
resource conflict (register conflict or function unit conflict). These types of nonissue
cycles can be minimized through code scheduling.

The second type of nonissue conditions consists of pipeline bubbles where thereis
no valid instruction in the pipeline to issue. Pipeline bubbles result from the abort
conditions described in the previous section. In addition, a single pipeline bubbleis
produced whenever a branch type instruction is predicted to be taken, including sub-
routine calls and returns.

Pipeline bubbles are reduced directly by the instruction buffer hardware and through
bubble squashing, but can aso be effectively minimized through careful coding
practices. Bubble squashing involves the ability of the first four pipeline stagesto
advance whenever a bubble or buffer slot is detected in the pipeline stage immedi-
ately ahead of it while the pipeline is otherwise stalled.

2.3 Scheduling and Issuing Rules

The following sections define the classes of instructions and provide rules for
instruction slotting, instruction issuing, and latency.

2.3.1 Instruction Class Definition and Instruction Slotting

The scheduling and multiple issue rules presented here are performance related only;

that is, there are no functional dependencies related to scheduling or multiple i ssu-

ing. The rules are defined in terms of instruction classes. Table 2—8 specifies all of
the instruction classes and the pipeline that executes the particular class. With a few
additional rules, the table provides the information necessary to determine the func-
tional resource conflicts that determine which instructions can issue in a given cycle.

Table 2-8 Instruction Classes and Slotting (Sheet 1 of 3)
Class Name Pipeline Instruction List
LD EO'or E1°  All loads except LDx_L
ST EO All stores except STx_C
MBX EO LDx L, MB, WMB, STx _C, HW_LD-lock, HW_ST-cond,
FETCH
RX EO RS, RC
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Table 2-8 Instruction Classes and Slotting (Sheet 2 of 3)
Class Name Pipeline Instruction List
MXPR EOorE1  HW_MFPR, HW_MTPR
(depends
onthelPR)
IBR E1l Integer conditional branches
FBR FAS Floating-point conditional branches
JSR E1l Jump-to-subroutine instructions: IMP, JSR, RET, or
JSR_COROUTINE, BSR, BR, HW_REI, CALLPAL
IADD EOorE1l  ADDL, ADDL/V, ADDQ, ADDQ/V, SUBL, SUBL/V, SUBQ,

SUBQ/V, SAADDL, SAADDQ, SBADDL, SSADDQ, S4SUBL,
SASUBQ, S8SUBL, S8SUBQ, LDA, LDAH

ILOG EOorE1  AND, BIS, XOR, BIC, ORNOT, EQV
SEXT EO SEXTB, SEXTW
SHIFT EO SLL, SRL, SRA, EXTQL, EXTLL, EXTWL, EXTBL,

EXTQH, EXTLH, EXTWH, MSKQL, MSKLL, MSKWL,
MSKBL, MSKQH, MSKLH, MSKWH, INSQL, INSLL,
INSWL, INSBL, INSQH, INSLH, INSWH, ZAP, ZAPNOT

CMOV EOorE1 = CMOVEQ, CMOVNE, CMOVLT, CMOVLE, CMOVGT,
CMOVGE, CMOVLBS, CMOVLBC

ICMP EOorEl  CMPEQ, CMPLT, CMPLE, CMPULT, CMPULE, CMPBGE
IMULL EO MULL, MULL/V

IMULQ EO MULQ, MULQ/V

IMULH EO UMULH

MVI EO PERR, UNPKBW, UNPKBL, PKWB, PKLB, MINSBS,

MINSB4, MINUBS, MINUW4, MAXUB8, MAXUW4,
MAXSB8, MAXSW4

FADD FA Floating-point operates, including CPY SN and CPY SE, except
multiply, divide, and CPY S

FDIV FA Floating-point divide

FMUL FM*4 Floating-point multiply
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Table 2-8 Instruction Classes and Slotting (Sheet 3 of 3)
Class Name Pipeline Instruction List
FCPYS FMor FA  CPYS, not including CPY SN or CPY SE
MISC EO RPCC, TRAPB
UNOP None UNOP®
LIEU pipeline 0.
2|EU pipeline 1.

8 FEU add pipeline.
4 FEU multiply pipeline.
5 UNOPisLDQ U R31,0(Rx).

Slotting

The slotting function in the IDU determines which instructions will be sent forward
to attempt to issue. The dotting function detects and removes al static functional
resource conflicts. The set of instructions output by the slotting function will issue if
no register or other dynamic resource conflict is detected in stage 3 of the pipeline.
The dotting algorithm follows:

Starting from the first (lowest addressed) valid instruction in the INT16 in stage
2 of the 21164PC IDU pipeline, attempt to assign that instruction to one of the
four pipelines (EO, E1, FA, FM). If it is an instruction that can issue in either EO
or E1, assign it to EO. However, if one of the following istrue, assign it to E1:

* EOisnotfreeand Elisfree.
* The next integer instruction in this INT16 can issue only in EO.

If the current instruction is one that can issue in either FA or FM, assign it to FA
unless FA isnot free. If it isan FA-only instruction, it must be assigned to FA. If
itisan FM-only instruction, it must be assigned to FM. Mark the pipeline
selected by this process as taken and resume with the next sequential instruction.
Stop when an instruction cannot be allocated in an execution pipeline because
any pipeline it can use is already taken.

The slotting logic does not send instructions forward out of logical instruction order
because the 21164PC always issues instructions in order. The slotting logic also
enforces the specia rulesin the following list, stopping the slotting process when a
rule would be violated by allocating the next instruction an execution pipeline:

1 In this context, an integer instruction is one that can issue in one or both of EO or E1, but
not FA or FM.
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* Aninstruction of class LD cannot be issued simultaneoudly with an instruction
of class ST.

* Allinstructions are discarded at the slotting stage after a predicted-taken IBR or
FBR classinstruction, or a JSR class instruction.

* After apredicted not-taken IBR or FBR, no other IBR, FBR, or JSR class can be
dotted together.

* Thefollowing cases are detected by the dotting logic:

— From lowest address to highest within an INT16, with the following arrange-
ment:

l-instruction, F-instruction, |-instruction, |-instruction

I-instruction is any instruction that can issue in one or both of EO or E1.
F-instruction is any instruction that can issue in one or both of FA or FM.

— From lowest address to highest within an INT16, with the following arrange-
ment:

F-instruction, l-instruction, |I-instruction, |-instruction

When this type of case is detected, the first two instructions are forwarded to
the issue point in one cycle. The second two are sent only when the first two
have both issued, provided no other slotting rule would prevent the second
two from being slotted in the same cycle.

2.3.2 Coding Guidelines

Code should be scheduled according to latency and function unit availability. This is
good practice in most RISC architectures. Code alignment and the effects of split-
issué should be considered.

2 gplit-issue is the situation in which not all instructions sent from the slotting stage to the
issue stage issue. One or more stalls result.
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Instructions [a] (the LDL) and [b] (the first ADDL) in the following example are
dlotted together. Instruction [b] stalls (split-issue), thus preventing instruction [c]
from advancing to the issue stage:

Code exanpl e showi ng Code exanpl e showi ng

i ncorrect ordering correct ordering

(1) [a] LDL R2, 0 (R1) (1) [d] LDL R2, 0 (R1)
(3) [b] ADDL R2, R3, R4 (1) [e] NoP

(4) [c] ADDL R2, R5, R6 (3) [f] ADDL R2, R3, R4

(3) [g] ADDL R2, R5, R6

NOTES: The i nstruction exanpl es are assuned to begin on an I NT16
alignnent. (n) = Expected execute cycle.

Eventually [b] issues when the result of [] is returned from a presumed Dcache hit.
Instruction [c] is delayed because it cannot advance to the issue stage until [b] issues.

In the improved sequence, the LDL [d] is slotted with the NOP [€]. Then the first
ADDL [f] isslotted with the second ADDL [g] and those two instructions dual-issue.
This sequence takes one less cycle to complete than the first sequence.

2.3.3 Instruction Latencies

After dotting, instruction issue is governed by the availability of registersfor read or

write operations, and the availability of the floating divide unit and the integer multi-

ply unit. There are producer—consumer dependencies, producer—producer dependen-
cies (also known as write-after-write conflicts), and dynamic function unit

availability dependencies (integer multiply and floating divide). The IDU logic in

stage 3 of the 21164PC pipeline detects all these conflicts.

The latency to produce a valid result for most instructions is fixed. The exceptions
are loads that miss, floating-point divides, and integer multiplies. Table 2—9 gives the
latencies for each instruction class. A latency of 1 means that the result may be used
by an instruction issued one cycle after the producing instruction. Most latencies are
only a property of the producer. An exception is integer multiply latencies. There are
no variations in latency due to which a particular unit produces a given result relative
to the particular unit that consumes it. In the case of integer multiply, the instruction
is issued at the time determined by the standard latency numbers. The multiply’s
latency is dependent on which previous instructions produced its operands and when
they executed.
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Table 2-9 Instruction Latencies (Sheet 1 of 2)

Additional Time Before
Result Available to
Class Latency Integer Multiply Unit!

LD Dcache hits, latency=2. lcycle
Dcache miss/Bcache hit, latency=10 or longer.?

ST Store operations produce no result. —

MBX  LDx L Dcache hits, latency=2. —
LDx_L Dcache miss/Bcache hit, latency=10 or Ior?ger.
LDx_L Dcache miss/Bcache miss, latency depends on memory
subsystem state.
STx_C, latency depends on memory subsystem state.
MB, WMB, and FETCH produce no result.

RX RS, RC, latency=1. 2 cycles

MXPR HW_MFPR, latency=1, 2, or longer, depending on the IPR. 1 or 2 cycles
HW_MTPR, produces no result.

IBR Produces no result. (Taken branch issue latency minimum=1 —
cycle, branch mispredict penalty=5 cycles.)

FBR Produces no result. (Taken branch issue latency minimum=1—
cycle, branch mispredict penalty=5 cycles.)

JSR All but HW_REI, latency=1. 2 cycles
HW_REI produces no result. (Issue latency—minimum 1 cycle.)

SEXT Latency=1. 2 cycles
IADD Latency=1. 2 cycles
ILOG Latency=13 2 cycles
SHIFT Latency=1. 2 cycles
CMOV Latency=2. 1 cycle
ICMP  Latency=13 2 cycles

IMULL Latency=8, plus up to 2 cycles of added latency, depending onltlvgcle
source of the dathLatency until next IMULL, IMULQ, or
IMULH instruction can issue (if there are no data dependencies) is
4 cycles plus the number of cycles added to the latency.
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Table 2-9 Instruction Latencies (Sheet 2 of 2)

Additional Time Before
Result Available to

Class Latency Integer Multiply Unit!
IMULQ Latency=12, plusup to 2 cycles of added latency, dependingon 1 cycle
the source of the data. Latency until next IMULL, IMULQ, or
IMULH instruction can issue (if there are no data dependencies) is
8 cycles plus the number of cycles added to the latency.
IMULH Latency=14, plus up to 2 cycles of added latency, dependingon 1 cycle
the source of the data. Latency until next IMULL, IMULQ, or
IMULH instruction can issue (if there are no data dependencies) is
8 cycles plus the number of cycles added to the latency.
MVI Latency=2. lcycle
FADD Latency=4. —
FDIV  Data-dependent latency: 15 to 31 single precision, 22 to 60 double
precision. Next floating divide can be issued in the same cycle.
The result of the previous divide is available, regardless of data
dependencies.
FMUL Latency=4. —
FCYPS Latency=4. —
MISC RPCC, latency=2. TRAPB produces no result. 1 cycle
UNOP UNOP produces no result. —

1 The multiplier is unable to receive data from | EU bypass paths. The instruction issues at the expected time,
but its latency isincreased by the time it takes for the input data to become available to the multiplier. For
example, an IMULL instruction issued one cycle later than an ADDL instruction, which produced one of its
operands, has alatency of 10 (8 + 2). If the IMULL instruction isissued two cycles later than the ADDL
instruction, the latency is9 (8 + 1).

2\When idle, Beache arbitration predicts aload missin EO. If aload actually does missin EO, it is sent to the
Bcacheimmediately. If it hitsin the Bcache, and no other event in the CBU affects the operation, the requested
dataisavailable for usein 10 or more cycles. Otherwise, the request takes longer (possibly much longer,
depending on the state of the CBU and memory). It should be possible to schedule some unrolled code loops
for Bcache by prefetching datainto the Dcache using LDQ R31, x(Rx).

SA special bypass provides an effective latency of 0 (zero) cyclesfor an ICMP or ILOG instruction produu ng
the test operand of an IBR or CMOV instruction. Thisis true only when the IBR or CMQV instruction issues
in the same cycle asthe ICMP or ILOG instruction that produced the test operand of the IBR or CMOV
instruction. In all other cases, the effective latency of ICMP and ILOG instructionsis 1 cycle.
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2.3.3.1 Producer—Producer Latency

2-26

Producer—producer latency, also known as write-after-write conflicts, cause issue-
stalls to preserve write order. If two instructions write the same register, they are
forced to do so in different cycles by the IDU. This is necessary to ensure that the
correct result is left in the register file after both instructions have executed. For most
instructions, the order in which they write the register file is dictated by issue order.
However IMUL, FDIV, and LD instructions may require more time than other
instructions to complete. Subsequent instructions that write the same destination reg-
ister are issue-stalled to preserve write ordering at the register file.

Conditions that involve an intervening producer—consumer conflict can occur com-
monly in a multiple-issue situation when a register is reused. In these cases, pro-
ducer—consumer latencies are equal to or greater than the required producer—
producer latency as determined by write ordering and therefore dictate the overall
latency.

An example of this case is shown in the following code:

LDQ R2,0(RO) ; R2 destination

ADDQ R2, R3, R4 ;w-rd conflict stalls execution waiting for R2

LDQ R2,D(R1) ;wr-wr conflict may dual issue when ADDQ i ssues
Producer—producer latency is generally determined by applying the rule that register
file write operations must occur in the correct order (enforced by IDU hardware).
Two IADD or ILOG class instructions that write the same register issue at least one
cycle apart. The same is true of a pair of CMOV-class instructions, even though their
latency is 2. For IMUL, FDIV, and LD instructions, producer—producer conflicts
with any subsequent instruction results in the second instruction being issue-stalled
until the IMUL, FDIV, or LD instruction is about to complete. The second instruc-
tion is issued as soon as it is guaranteed to write the register file at least one cycle
after the IMUL, FDIV, or LD instruction.

If a load writes a register, and within two cycles a subsequent instruction writes the
same register, the subsequent instruction is issued speculatively, assuming the load
hits. If the load misses, a load-miss-and-use trap is generated. This causes the second
instruction to be replayed by the IDU. When the second instruction again reaches the
issue point, it is issue-stalled until the load fill occurs.
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2.3.4 Issue Rules

Thefollowing isalist of conditions that prevent the 21164PC from issuing an
instruction:

* Noinstruction can be issued until all of its source and destination registers are
clean; that is, all outstanding write operations to the destination register are guar-
anteed to completeinissue order and there are no outstanding write operationsto
the source registers, or those write operations can be bypassed.

Technically, load-miss-and-use replay traps are an exception to thisrule. The

consumer of the load’s result issues, and is aborted, because a load was predicted
to hit and was discovered to miss just as the consumer instruction issued. In
practice, the only difference is that the latency of the consumer may be longer
than it would have been had the issue logic “known” the load would miss in time

to prevent issue.

* Aninstruction of class LD cannot be issued in the second cycle after an instruc-
tion of class ST isissued.

* NoLD, ST, MXPR (to an MTU register), or MBX classinstructions can be
issued after an MB instruction has been issued until the MB instruction has been
acknowledged by the CBU.

* NoLD, ST, MXPR (to an MTU register), or MBX class instructions can be
issued after a STx_C (or HW_ST-cond) instruction has been issued until the
MTU writes the success/failure result of the STx_C (HW_ST-cond) in its desti-
nation register.

* NoIMUL instructions can be issued if the integer multiplier is busy.

* Nofloating-point divide instructions can beissued if the floating-point divider is
busy.

* Noinstruction can be issued to pipe EO exactly two cycles before an integer mul-
tiplication completes.

* Noinstruction can be issued to pipe FA exactly five cycles before afloating-
point divide completes.

* No Storeinstruction can be issued exactly three cycles before afill. The data
store write operation, if the store hits, will conflict with the fill operation.
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* Noinstruction can be issued to pipe EO or E1 exactly two cycles before an inte-
ger register fill is requested (speculatively) by the CBU, except IMULL,
IMULQ, and IMULH instructions and instructions that do not produce any
result.

* NoLD, ST, or MBX classinstructions can be issued to pipe EO or E1 exactly
one cycle before an integer register fill isrequested (speculatively) by the CBU.

* Noinstruction issues after a TRAPB instruction until all previously issued
instructions are guaranteed to finish without generating a trap other than a
machine check.

All instructions sent to the issue stage (stage 3) by the dotting logic (stage 2) are
issued subject to the previous rules. If issueis prevented for agiven instruction at the
issue stage, all logically subsequent instructions at that stage are prevented from
issuing automatically. The 21164PC only issuesinstructionsin order.

2.4 Replay Traps

There are no stalls after the instruction issue point in the pipeline. In some situations,
an MTU instruction cannot be executed because of insufficient resources (or some
other reason). These instructions trap and the IDU restarts their execution from the
beginning of the pipeline. Thisis called areplay trap. Replay traps occur in the fol-
lowing cases:

* Thewrite buffer isfull when a store instruction is executed and there are already
six write buffer entries allocated. The trap occurs even if the entry would have
merged in the write buffer.

* Aloadinstruction isissued in pipe EO when all six MAF entries are valid (not
available), or aload instruction issued in pipe E1 when five of the six MAF
entries are valid. The trap occurs even if the load instruction would have hitin
the Dcache or merged with an MAF entry.

* Alphashared memory model order trap (Litmustest 1 trap): If aload instruction
issues that address matches with any missin the MAF (down to the quadword
boundary), the load instruction is aborted through areplay trap regardless of
whether the newly issued load instruction hits or misses in the Dcache. This
ensures that the two loads execute in issue order.
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L oad-after-store trap: A replay trap occursif aload instruction isissued in the
cycleimmediately following a store instruction that hits in the Dcache, and both
access the same location. The address match is exact for address bits <12:2>
(longword granularity), but ignores address bits <42:13>.

When aload instruction is followed, within one cycle, by any instruction that
uses the result of that load, and the load misses in the Dcache, the consumer
instruction traps and is restarted from the beginning of the pipeline. This occurs
because the consumer instruction isissued speculatively while the Dcache hit is
being evaluated. If the load misses in the Dcache, the speculative issue of the
consumer instruction was incorrect. The replay trap generally brings the con-
sumer instruction to the issue point before or simultaneously with the availability
of fill data.

2.5 Miss Address File and Load-Merging Rules

The following sections describe the miss address file (MAF) and its load-merging
function, and the load-merging rules that apply after aload miss.

2.5.1 Merging Rules

When aload miss occurs, each MAF entry is checked to seeif it contains aload miss
that addresses the same 32-byte Dcache block. If it does, and certain merging rules®
are satisfied, then the new load miss is merged with an existing MAF entry. This
allowsthe MTU to service two or more |oad misses with one datafill from the CBU.
The merging rules for an individual MAF entry are different for cacheable and non-
cacheabl e space.

2.5.1.1 Cacheable Space Load-Merge Rules

The merging rules for cacheable space |oads (physical address bit <39>=0) are as
follows:

Merging only occursif the new load miss addresses a different INT8 from all
loads previously entered or merged to that MAF entry. If it addresses the same
INT8, the machine traps and replays the instruction. This continues until the
MAF entry isretired, at which time the trapping load hitsin the Dcache.

Bytes, words, longwords, and quadwords can merge with each other, provided
that they are not in the same INT8.

3 Merging rules result primarily from limitations of the implementation.
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Merging is prevented for the MAF entry after the first datafill (to that MAF
entry) from the Bcache, regardless of whether the Bcache access hits or not.

L oad misses that match any MAF address down to the INT32 boundary, but
could not merge (for any reason), are replay trapped. Once the Dcache isfilled,
this load instruction executes and hits in the Dcache.

All DREAD load-merging is prevented when MAF_MODE<00>=1 (see
Section 5.2.16).

2.5.1.2 Noncacheable Space Load-Merge Rules

The merging rules for noncacheable space loads (physical address bit <39>=1) are as
follows:

Merging only occurs if the new load miss addresses a different INT8 from all
loads previously entered or merged to that MAF entry. If it addresses the same
INTS8, the machine traps and replays the instruction. This continues until the
MAF entry is retired, at which time the trapping load hitsin the Dcache.

Only quadwords can merge with other quadwords, provided they are not in the
same INT8. Bytes, words, and longwords cannot merge.

Merging stops for aload instruction to noncacheable space as soon as the CBU
accepts the reference. This permits the system environment to access only those
INT8s that are actually requested by load instructions.

All accesses that could not merge (except those to the same INT8) are allocated
new MAF entries.

Noncacheabl e space load-merging is prevented when MAF_MODE<03>=1. All
DREAD load-merging is prevented when MAF_MODE<00>=1 (see
Section 5.2.16).

At the externa interface, noncacheable read instructions indicate to the system envi-
ronment which INT32 is addressed and which of the INT8s within the INT32 are
actually accessed. Each load for longword, word, or byte dataresultsin a separate
request to the CBU.

2.5.2 Read Requests to the CBU

Merging is done for two load instructions that issued simultaneoudy, and both miss;
in effect, asif they were issued sequentially with the load from IEU pipe EO first.
The MTU sends aread request to the CBU for each MAF entry allocated.
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A bypassis provided so that if the load instruction issuesin IEU pipe EO, and no

MAF requests are pending, the load instruction’s read request is sent to the CBU
immediately, provided the CBU is ready for such an access. Similarly, if a load
instruction from IEU pipe E1 misses, and there was no load instruction in pipe EO to
begin with, the E1 load miss is sent to the CBU immediately. In either case, the
bypassed read request is aborted if the load hits in the Dcache, merges in the MAF,
or is replay trapped by the MTU.

2.5.3 MAF Entries and MAF Full Conditions

There are six MAF entries for load misses and four for IDU instruction fetches and
prefetches. Load misses are usually the highest MTU priority request.

If the MAF is full and a load instruction issues in pipe EO, or if five of the six MAF
entries are valid and a load instruction issues in pipe E1, an MAF full trap occurs
causing the IDU to restart execution with the load instruction that caused the MAF
overflow. When the load instruction arrives at the MAF the second time, an MAF
entry may have become available. If not, the MAF full trap occurs again.

2.5.4 Fill Operation

Eventually, the CBU provides the data requested for a given MAF entry (afill). The
CBU requests that the IDU allocate up to three consecutive “bubble” cycles in the
IEU pipelines. The first bubble prevents any store instruction from issuing. The sec-
ond bubble prevents any instructions from issuing. The third bubble prevents only
MTU instructions (particularly load and store instructions) from issuing. The first
bubble prevents store data from colliding with the fill in the data cache. The fill uses
the second bubble cycle as it progresses down the IEU/MTU pipelines to format the
data and load the register file. It uses the third bubble cycle to fill the Dcache.

An instruction typically writes the register file in pipeline stage 6 (see Figure 2-2).
Because there is only one register file write port per integer pipeline, a no-instruction
bubble cycle is required to reserve a register file write port for the fill. A load or store
instruction accesses the Dcache in the second half of stage 4 and the first half of
stage 5. The fill operation writes the Dcache, making it unavailable for other
accesses at that time. Relative to the register file write operation, the Dcache (write)
access for a fill occurs a cycle later than the Dcache access for a load hit. Only load
and store instructions use the Dcache in the pipeline. Therefore, the second bubble
reserved for a fill is a no-MTU-instruction bubble.
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Up to two floating or integer registers may be written for each CBU fill cycle. Fills
deliver 32 bytesin two cycles. two INT8s per cycle. The MAF merging rules ensure
that there is no more than one register to write for each INTS8, so that thereisaregis
ter file write port available for each INT8. After appropriate formatting, data from
each INT8 iswritten into the IRF or FRF provided there is a miss recorded for that
INTS.

Load misses are all checked against the write buffer contents for conflicts between
new load instructions and previously issued store instructions. Refer to Section 2.7
for more information on write operations.

LDL_L and LDQ_L instructions always allocate a new MAF entry if they missthe
Dcache. LDL_L and LDQ_L instructions that hit in the Dcache areretired by the
MTU immediately. No load instructions that follow an LDL_L or LDQ _L instruc-
tion are allowed to merge with it. Afteran LDL_L or LDQ _L instruction isissued
(and missesin the Dcache), the IDU does not issue any more MTU instructions until
the MTU has successfully sent theLDL_L or LDQ_L instruction to the CBU. This
guarantees correct ordering between an LDL_L or LDQ_L instruction and a subse-
quent STL_C or STQ_C ingtruction even if they access different addresses.

2.6 MTU Store Instruction Execution

Store instructions execute in the MTU by:

1. Reading the Dcache tag store in the pipeline stage in which aload instruction
would read the Dcache

Checking for a hit in the next stage

Writing the Dcache data store instruction if thereisa hit in the second (follow-
ing) pipeline stage

Load instructions are not allowed to issue in the second cycle after astore instruction
(one bubble cycle). Other instructions can be issued in that cycle. Store instructions
can issue at therate of one per cycle because store instructions in the Dstream do not
conflict in their use of resources. The Dcache tag store and Dcache data store are the
principal resources. However, aload instruction uses the Dcache data store in the
same early stage that it usesthe Dcache tag store. Therefore, aload instruction would
conflict with astoreinstruction if it were issued in the second cycle after any store
instruction. Refer to Section 2.2 for more information on store instruction execution
in the pipeline.
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A load instruction that isissued one cycle after a store instruction in the pipeline cre-
ates a conflict if both access exactly the same memory location. This occurs because
the store instruction has not yet updated the location when the load instruction reads
it. This conflict is handled by forcing the load instruction to replay trap. The IDU
flushes the pipeline and restarts execution from the load instruction. By the time the
load instruction arrives at the Dcache the second time, the conflicting store instruc-
tion has written the Dcache and the load instruction is executed normally.

Software should not load dataimmediately after storing it. The replay trap that is

incurred “costs” seven cycles. The best solution is to schedule the load instruction to
issue three cycles after the store. No issue stalls or replay traps will occur in that
case. If the load instruction is scheduled to issue two cycles after the store instruc-
tion, it will be issue-stalled for one cycle. This is not an optimal solution, but is pre-
ferred over incurring a replay trap on the load instruction.

For each store instruction, a search of the MAF is done to detect load-before-store
hazards. If a store instruction is executed, and a load of the same address is present in
the MAF, two things happen:

1. Bits are set in each conflicting MAF entry to prevent its fill from being placed in
the Dcache when it arrives, and to prevent subsequent load instructions from
merging with that MAF entry.

2. Conflict bits are set with the store instruction in the write buffer to prevent the
store instruction from being issued until all conflicting load instructions have
been issued to the CBU.

Conflict checking is done at the 32-byte block granularity. This ensures proper
results from the load instructions and prevents incorrect data from being cached in
the Dcache.

A check is performed for each new store against store instructions in the write buffer
that have already been sent to the CBU but have not been completed. Section 2.7
describes this process.

2.7 Write Buffer and the WMB Instruction

The following sections describe the write buffer and the WMB instruction.
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2.7.1 The Write Buffer

The write buffer contains six fully associative 32-byte entries. The purpose of the
write buffer is to minimize the number of CPU stall cycles by providing afinite,
high-bandwidth resource for receiving store data. Thisis required because the
21164PC can generate store data at the peak rate of one INT8 every CPU cycle. This
is greater than the average rate at which the Bcache can accept the data.

In addition to HW_ST and other store instructions, the STQ C and STL_C instruc-
tions are also written into the write buffer and sent to the CBU. However, unlike
store instructions, these write buffer-directed instructions are never merged into a
write buffer entry with other instructions.

2.7.2 The Write Memory Barrier (WMB) Instruction

The memory barrier (MB) instruction is suitable for ordering memory references of
any kind. The WMB instruction forces ordering of write operations only (store
instructions). The WMB instruction has a special effect on the write buffer. When it
isexecuted, abit is set in every write buffer entry containing valid store data that will
prevent future store instructions from merging with any of the entries. Also, the next
entry to be allocated is marked with aWMB flag. At this point, the entry marked
with the WMB flag does not yet have valid datain it. When an entry marked with a
WMB flag isready to issueto the CBU, the entry is not issued until every previously
issued write instruction is complete. This ensures correct ordering between store
instructions issued before the WMB instruction and store instructions issued after it.

Each write buffer entry contains a content-addressable memory (CAM) for holding
physical address hits <39:05>, 32 bytes of data, 32-byte mask bits (that indicate
which of the 32 bytesin the entry contain valid data), and miscellaneous control bits.
Among the control bits are the WMB flag, and a no-merge bit, which indicates that
the entry is closed to further merging.

2.7.3 Entry-Pointer Queues

Two entry-pointer queues are associ ated with the write buffer: afree-entry queue and
apending-regquest queue. The free-entry queue contains pointersto availableinvalid
write buffer entries. The pending-request queue contains pointers to valid write
buffer entries that have not yet been issued to the CBU. The pending-request queue
isordered in allocation order.
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Each time the write buffer is presented with a store instruction, the physical address
generated by the instruction is compared to the address in each valid write buffer

entry that is open for merging. If the addressisin the same INT32 as an addressin a

valid write buffer entry (that also contains a store instruction), and the entry is open

for merging, then the new store data is merged into that entry and the entry’s byte
mask bits are updated. If no matching address is found, or all entries are closed to
merging, then the store data is written into the entry at the top of the free-entry
queue. This entry is validated, and a pointer to the entry is moved from the free-entry
gueue to the pending-request queue.

2.7.4 Write Buffer Entry Processing

When the number of entries in the pending-request queue reaches the number pro-
grammed in MAF_MODE<WB_SET_LO_THRESF‘I,>the MTU begins arbitration

with the other MTU queue requests. Once the request is granted, the MTU sends the
entry at the head of the pending-request queue to the CBU. The MTU then removes
the entry from the pending-request queue without placing it in the free-entry queue.
When the CBU has completely processed the write buffer entry, it notifies the MTU,
and the now invalid write buffer entry is placed in the free-entry queue. The MTU
may request that up to five additional write buffer entries be processed while waiting
for the CBU to finish the first. The write buffer entries are invalidated and placed in
the free-entry queue in the order that the requests complete. This order may be differ-
ent from the order in which the requests were made.

The MTU sends write requests from the write buffer to the CBU. The CBU pro-
cesses these requests according to the cache coherence protocol. Typically, this
involves loading the target block into the Bcache, making it writable, and then writ-
ing it. Because the Bcache is write-back, this completes the operation.

The MTU continues to request that write buffer entries be processed as long as one
of the following occurs:

e Onebuffer containsan STQ_C or STL_C instruction
* Onebuffer is marked by aWMB flag
* AnMB instruction is being executed by the MTU

4 Thefollowing actions can also cause the WB to begin arbitration: (1) an MB or WMB
instruction isissued, or (2) 264 cycles have elapsed without completing awrite operation
while there were pending write operations in the WB (triggered by the WB write counter).
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*  The number of entries in the write buffer exceeds the number programmed in
MAF_MODE<WB_CLR_LO_THRESH>.

This ensures that these instructions complete as quickly as possible.

The MTU requests that awrite buffer entry be processed every 264 cycles (provided
thereisavalid entry in the write buffer), even if the write buffer is not arbitrating.
This ensures that write instructions do not wait forever to be written to memory.
(Thisistriggered by afree-running timer that is reset each time awrite operation is
completed.)

Whenan LDL_L or LDQ_L instruction is processed by the MTU, the MTU requests
processing of the next pending write buffer request. This increases the chances of the
write buffer being empty when an STL_C or STQ_C instruction isissued.

Every store instruction that does not merge in the write buffer is checked against
every valid entry. If any entry is an address match, then the WMB flag is set on the
newly allocated write buffer entry. This prevents the MTU from concurrently send-
ing two write instructions to exactly the same block in the CBU.

Load misses are checked in the write buffer for conflicts. The granularity of this

check is an INT32. Any load instruction matching any write buffer entry’s address is
considered a hit even if it does not access a byte marked for update in that write
buffer entry. If a load hits in the write buffer, a conflict bit is set in the load instruc-
tion’'s MAF entry, which prevents the load instruction from being issued to the CBU
before the conflicting write buffer entry has been issued and completed. At the same
time, the no-merge bit is set in every write buffer entry with which the load hit. A
write buffer flush flag is also set. The MTU continues to request that write buffer
entries be processed until all the entries that were ahead of, and including, the con-
flicting write instructions at the time of the load hit have been processed.

2.7.5 Ordering of Noncacheable Space Write Instructions

Special logic ensures that write instructions to noncacheable space are sent offchip in
the order in which their corresponding buffers were allocated (placed in the pending-
request queue).

2.8 Performance Measurement Support—Performance
Counters

The 21164PC contains a performance-recording feature. The implementation of this
feature provides a mechanism to count various hardware events and causes an inter-
rupt upon counter overflow. Interrupts are triggered six cycles after the event and,
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therefore, the exception PC might not reflect the exact instruction causing counter
overflow. Three counters are provided to allow accurate comparison of two variables
under a potentially nonrepeatable experimental condition. The three counters are
designated counter O (16 bits), counter 1 (16 bits), and counter 2 (14 bits).

Counter inputs include:

* Issues

* Nonissues

e Tota cycles

* Pipedry

* Pipefreeze

* Mispredicts and cache misses

* Countsfor various instruction classifications

For information about counter contral, refer to the following IPR descriptions:
e Hardwareinterrupt clear (HWINT_CLR) register (see Section 5.1.23)
e Interrupt summary register (ISR) (see Section 5.1.24)

*  Performance counter (PMCTR) register (see Section 5.1.27)

e CBU configuration control (CBOX_CONFIG2) register bits <13:08> (see
Section 5.3.4)

2.8.1 CBU Performance Counters

The countersin the CBU (counters 0 and 1) are used to count Bcache and system bus
events. There are request events from the MTU to the CBU (three types), requests
from the CBU to the system (three types), and requests from the system to the CBU
(four types).

MTU-to-CBU Requests

The MTU can issue the following requests:

* Istream read request (32 bytes of instruction data), due to an Icache miss

* Dstreamread request (32 bytes of noninstruction data), due to a Dcache miss
*  Writerequest (32 bytes)
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Read and write requests can be to either cacheable or I/O space addresses, but the
CBU performance counters only count requests to cacheable address space. The
total number of read requestsis equa to the sum of the Dstream read requests and
the I'stream read requests.

CBU-to-System Requests

The CBU can issue the following requests to the system:
* READ MISS commands

e BCACHEVICTIM commands

* WRITE BLOCK commands

READ MISS commandsto I/O space and WRITE BLOCK commands (which are
aways to I/0O space on the 21164PC) are not counted by the performance counters.
BCACHE VICTIM commands are always to cacheable space and, therefore, are
aways counted. READ MISS commands to cacheable space are generated when the
21164PC detects either aread miss or write missin the Bcache. A BCACHE
VICTIM command is also generated along with the READ MISS command if the
block the request misses on isvalid and dirty in the cache. In this case, the 64-byte
Bcache block is read from the Bcache and sent to the system.

System-to-CBU Requests

The system can issue the following requests to the 21164PC:
* FILL commands

* READ commands

* FLUSH commands

e INVAL commands

Cacheable FILL commands are in response to READ MISS commands and write 64
bytes of datainto the Bcache. 1/O space FILL commands are not counted by the
CBU performance counters. Depending on whether the miss was for aread or write
request, the 21164PC will either forward the data to the onchip caches or write data
from the write buffer into the newly filled block. The total number of FILL com-
mands is the same as the total number of READ MISS commands.

The other three system commands are external probes of the Bcache. INVAL com-
mands are not counted by the CBU performance counter.
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Misses in the onchip caches can merge in the MTU before being issued to the CBU.
Therefore, MTU read or write requests are not the same as onchip cache misses.
Also, two Bcache misses can merge in the CBU and appear on the system bus as a
single READ MISSrequest. Requests only merge with other requests of the same
type (that is, Istream and Dstream requests do hot merge, nor does a write request
merge with a read request).

Using the Counters

Thetwo counterswork in parallel, so they can be used to determine simpleratioslike
Bcache miss rate or more complex statistics like Dstream read merging in the CBU
(by running several tests and normalizing the results).

For example:

Bcache missrate = 1- (Bcacheread hits/Total read requests)

Counter 0 selects 0x0 and counter 1 selects Ox1.

Dstream read merge 1 - (Bcache Dstream read hits/Bcache Dstream read requests) —
ratein the CBOX (Bcache Dstream read fills/Bcache Dstream read requests)

Counter 0 selects 0x1 and counter 1 selects 0x0 on thefirst pass,
then counter 0 selects 0x2 and counter 1 selects 0x0 on the second
pass.
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2.9 Floating-Point Control Register

Figure 2—-3 shows the format of the floating-point control register (FPCR) and
Table 2—10 describes the fields.

Figure 2-3 Floating-Point Control Register (FPCR) Format

31

I LI |
RAZ/IGN
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
63 62 61 60 59 58 57 56 55 54 53 52 51 5049 48 32
I I LI LI I RAIZ/IEBNI LI LI I
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
; INVD
DZED
———  OVFD
INV
DZE
OVF
UNF
INE
[0}V
DYN_RM
UNDZ
UNFD
INED
SUM LJ-05358.A14
Table 2-10 Floating-Point Control Register Bit Descriptions (Sheet 1 of 2)
Name Extent  Description (Meaning When Set)
SUM <63> Summary bit. Records bitwise OR of FPCR exception bits. Equal to
FPCR<57 |56 | 55|54 | 53| 52>
INED <62> Inexact disable. Suppress INE trap and place correct | EEE nontrap-
ping result in the destination register if the 21164PC is capable of
producing correct | EEE nontrapping resullt.
UNFD <61> Underflow disable. Subset support: Suppress UNF trap if UNDZ is
also set and the /S qualifier is set on the instruction.
UNDZz <60> Underflow to zero. When set together with UNFD, on underflow,
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the hardware places atrue zero (all 64 bits zero) in the destination
register rather than the denormal number specified by the IEEE stan-

dard.
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Table 2-10 Floating-Point Control Register Bit Descriptions (Sheet 2 of 2)

Name Extent

Description (Meaning When Set)

DYN_RM <59:58>

IOV <57>
INE <56>
UNF <55>
OVF <54>
DZE <53>
INV <52>

OVFD <51>
DZED <50>
INVD <49>

Reserved <48:0>

Dynamic routing mode. Indicates the rounding mode to be used by
an IEEE floating-point operate instruction when the instruction’s
function field specifies dynamic mode (/D). The assignments are:

DYN IEEE Rounding Mode Selected
00 Chopped rounding mode

01 Minus infinity

10 Normal rounding

11 Plus infinity

Integer overflow. An integer arithmetic operation or a conversion
from floating to integer overflowed the destination precision.

Inexact result. A floating arithmetic or conversion operation gave a
result that differed from the mathematically exact result.

Underflow. A floating arithmetic or conversion operation under-
flowed the destination exponent.

Overflow. A floating arithmetic or conversion operation overflowed
the destination exponent.

Division by zero. An attempt was made to perform a floating divide
operation with a divisor of zero.

Invalid operation. An attempt was made to perform a floating arith-
metic, conversion, or comparison operation, and one or more of the
operand values were illegal.

Overflow disable. Not supported.
Division by zero disable. Not supported.
Invalid operation disable. Not supported.

Reserved. Read as zero; ignored when written.
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2.10 Design Examples

The 21164PC can be designed into many different uniprocessor system configura-

tions. Figure 2—4 illustrates one possible configuration. This configuration employs
additional system/memory controller chipsets.

Figure 2—4 shows a typical uniprocessor system with a board-level cache. This sys-
tem configuration could be used in standalone or networked workstations.

Figure 2—-4 Typical Uniprocessor Configuration

External
21164PC |-=gff—p| Cache
Tag
Addr/cmd
External
<— P Cache
Data
Data
' ' Main Memory
r A N
Memory
1/0 Bus and
110
| | | Interface
DRAM DRAM
Bank Bank
PCA019
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3

Hardware Interface

This chapter contains the 21164PC microprocessor logic symbol and provides alist
of signal names and their functions.

3.1 21164PC Microprocessor Logic Symbol
Figure 3—1 shows the logic symbol for the 21164PC chip.
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Figure 3—1 21164PC Microprocessor Logic Symbol

addr_bus_req_h ———>
cack h ————

dack_ h ———>
data_bus_req_h —————
fil_Lh  ————

fill_dirty_h ———»
fill_error_h ———»
fil_id_h ————
idle_bc_h ————

irg_h<3:0> ——
mch_hlt_irq_h ——3
pwr_fail_irg_h ———
sys_mch_chk_irg_h ————

clk_mode_h<1:0>

osc_clk_in_h ————
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dc_ok_h
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3.2 21164PC Signal Names and Functions

The 21164PC is contained in a413-pin interstitial pin grid array (IPGA) package.
There are 264 functional signal pins, 2 spare signal pins (unused), 5 voltage refer-
ence pins (unused), 46 external power (Vdd) pins, 22 internal power (Vddi) pins,
and 74 ground (Vss) pins.

The following table defines the 21164PC signal types referred to in this section:

Signal Type Definition

B Bidirectional
I Input only
O Output only
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The remaining two tables describe the function of each 21164PC externa signal.

Table 3-1 lists all signals in alphanumeric order. This table provides full signal
descriptions. Table 3-2 lists signals by function and provides an abbreviated descrip-
tion.

Table 3—1 21164PC Signal Descriptions (Sheet 1 of 10)

Signal Type Count Description

addr_h<39:4> B 36  Addressbus. Thesebidirectional signals provide the address of
the requested data or operation between the 21164PC and the
system. If addr_h<39> is asserted, then the referenceisto
noncached, I/0O memory space.

When the byte/word instructions are used and addr_h<39> is
asserted, six additional bits of information are communicated
over the pin bus. Two of the new bits are driven over
addr_h<38:37>, becoming transfer_size<1:0>, with the fol-
lowing values:

00 Size = 8 bytes
01 Size = 4 bytes
10 Size = 2 bytes
11 Size=1Dbyte

addr_bus req_h I 1  Address busrequest. The system interface uses this signal to
gain control of the addr_h<39:4> and cmd_h<3:0> pins (see
Figure 4-22).

addr_res h<1:0> (0] 2 Address response bits <1> and <0>. For system commands,
the 21164PC uses these pins to indicate the state of the block
in the Bcache:

Bits Command Meaning
00 NOP Nothing.
01 NOACK Data not found or clean.

10 — Reserved.
11 ACK/Bcache Data from Bcache.

cack_h I 1  Command acknowledge. The system interface uses this signal
to acknowledge any one of the commands driven by the
21164PC.
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Table 3—1 21164PC Signal Descriptions (Sheet 2 of 10)
Signal Type Count Description
clk_mode_h<1:0> I 2 Clock test mode. These signals specify arelationship between

osc_clk_in_h,l, the CPU cycletime, and the duty-cycle equal-
izer. These signals should be deasserted in normal operation
mode.

Bits Description

00 CPU clock frequency isequal to the input clock fre-
quency.

01 CPU clock frequency isequal to the input clock fre-
guency, with the onchip duty-cycle equalizer enabled.

10 |Initialize the CPU clock, allowing the system clock to be
synchronized to a stable reference clock.

11 Initializethe CPU clock, allowing the system clock to be
synchronized to a stable reference clock, with the onchip
duty-cycle equalizer enabled.
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Table 3—1 21164PC Signal Descriptions (Sheet 3 of 10)
Signal Type Count Description
cmd_h<3:0> B 4  Command bus. These signals drive and receive the commands

3-6
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from the command bus. The following tables define the com-
mands that can be driven on the cmd_h<3:0> bus by the
21164PC or the system. For additional information, refer to
Section4.1.1.1.

21164PC Commands to System:

cmd_h

<3:0> Command Meaning

0000 NOP Nothing.

o001 — Reserved.

0010 — Reserved.

0011 — Reserved.

0100 — Reserved.

0101 — Reserved.

0110 WRITE BLOCK Request to write a block.

0111 — Reserved.

1000 READ MISSO Request for data.

1001 READ MISS1 Request for data.

1010 — Reserved.

1011 — Reserved.

1100 BCACHE VICTIM Bcache victim should be
removed.

1101 — Reserved.

1110 — Reserved.

1111 — Reserved.
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Table 3—-1 21164PC Signal Descriptions (Sheet 4 of 10)

Signal

Type Count Description

cpu_clk_out_h
dack_h

data h<127:0>

data_adsc |
data_adv |

data bus req_h

data ram_oe |

0] 1
I 1
B 128
0] 1
0] 1
I 1
0] 1

System Commands to 21164PC:

cmd_h

<3:0> Command Meaning

0000 NOP Nothing.

0001 FLUSH Removes block from caches;
return dirty data.

0010 INVALIDATE Invalidates the block from
caches.

0011 — Reserved.

0100 READ Read a block.

0101 — Reserved.

0111 — Reserved.

Ixxx —— Reserved.

CPU clock output. Thissignal isused for test purposes.

Data acknowledge. The system interface usesthis signal to
control data transfer between the 21164PC and the system.

Data bus. These signals are used to move data between the
21164PC, the system, and the Bcache.

Load anew address into the Bcache SSRAM.
Advances the Bcache index to the next address.

Data bus request. If the 21164PC samples this signal asserted
on therising edge of sysclk n, then the 21164PC does not drive
the data bus on the rising edge of sysclk n+1. Before asserting
this signal, the system should assert idle_bc_h for the correct
number of cycles. If the 21164PC samples this signal deas-
serted on the rising edge of sysclk n, then the 21164PC drives
the data bus on the rising edge of sysclk n+1. For timing
details, refer to Section 4.9.4.

Data RAM output enable. Thissignal is asserted for Bcache
read operations.
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Table 3—-1 21164PC Signal Descriptions (Sheet 5 of 10)
Signal Type Count Description
data ram_we 1<3:0> O 4  DataRAM write-enable. These signals are asserted for any

dc ok _h I 1
fill_h I 1
fill_dirty_h I 1
fill_error_h I 1
fill_id_h I 1
idle_bc_h I 1
index_h<21:4> 0] 18
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Bcache write operation. Refer to Section 5.3.1 for timing
details.

dc voltage OK. Must be deasserted until dc voltage reaches
proper operating level. After that, dc_ok_h is asserted.

Fill warning. If the 21164PC samples this signal asserted on
the rising edge of sysclk n, then the 21164PC provides the
addressindicated by fill_id_h to the Bcache on the rising edge
of sysclk n+1. The Bcache beginsto writein that sysclk. At the
end of sysclk n+1, the 21164PC waits for the next sysclk and
then begins the write operation again if dack_h isnot asserted.
Refer to Section 4.9.3 for timing details.

Fill dirty. If the block being filled is dirty, this pin should be
asserted.

Fill error. If this signal is asserted during afill from memory;, it
indicates to the 21164PC that the system has detected an
invalid address or hard error. The system still provides an
apparently normal read sequence with correct ECC/parity
though the datais not vaid. The 21164PC traps to the machine
check (MCHK) PAL code entry point and indicates a serious
hardware error. fill_error_h should be asserted when the data
is returned. Each assertion produces a MCHK trap.

Fill identification. Asserted with fill_h to indicate which regis-
ter is used. The 21164PC supports two outstanding load
instructions. If this signal is asserted when the 21164PC sam-
plesfill_h asserted, then the 21164PC provides the address
from missregister 1. If it isdeasserted, then the addressin miss
register O is used for the read operation.

Idle Bcache. When asserted, the 21164PC finishes the current
Bcache read or write operation but does not start a new read or
write operation until the signal is deasserted. The system inter-
face must assert this signal in time to idle the Bcache before
fill data arrives.

Index. These signasindex the Bcache.
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Table 3—-1 21164PC Signal Descriptions (Sheet 6 of 10)

Signal

Type Count Description

int4_valid_h<3:0>
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4

INT4 datavalid. During write operations to noncached space,
these signals are used to indicate which INT4 bytes of dataare
valid. Thisis useful for noncached write operations that have
been merged in the write buffer.

int4_valid_h<3:0> Write Meaning

Xxx1 data h<31:0>valid
XX1X data h<63:32> valid
XXX data _h<95:64> valid
Ixxx data_h<127:96> valid

During read operations to noncached space, these signalsindi-
cate which INT8 bytes of a 32-byte block need to be read and
returned to the processor. Thisis useful for read operations to
noncached memory.

int4_valid_h<3:0> Read Meaning

Xxx1 data_h<63:0> valid
XX1X data_h<127:64> valid
XXX data h<191:128> valid
Ixxx data h<255:192> valid

Note: For both read and write operations, multiple
int4_valid_h<3:0> bits can be set simultaneously.
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Table 3—1 21164PC Signal Descriptions (Sheet 7 of 10)

Signal Type Count Description

When addr_h<39> isasserted, theint4_valid_h<3:0> signals
are considered the addr _h<3:0> hits required for byte/word
transactions. The functionality of these bitsistied to the value
stored in addr_h<38:37>.

For read transactions:

addr_h

<38:37> int4_valid_h<3:0> Value

00 Valid INT8 mask

01 addr_h<3:2>vaidonint4 valid_h<3;2>;
int4_valid<1:0> undefined

10 addr_h<3:1>vaidonint4 valid_h<3:1>;
int4_valid<0> undefined

11 addr_h<3:0> vaid onint4_valid_h<3:0>

For write transactions:

addr_h

<38:37> int4_valid_h<3:0> Value

00 Valid INT4 mask

01 Valid INT4 mask

10 addr_h<3:1>vaidonint4 valid_h<3:1>;
int4_valid<0> undefined

11 addr_h<3:0> vaid onint4 _valid_h<3:0>
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Table 3—-1 21164PC Signal Descriptions (Sheet 8 of 10)
Signal Type Count Description
irg_h<3:0> I 4  Systeminterrupt requests. These signals have multiple modes

of operation. During normal operation, these level-sensitive
signals are used to signal interrupt requests. During initializa-
tion, these signals are used to set up the CPU cycle time divi-
sor for sys clk_outl_h asfollows:

irg_h<3> irq_h<2> irq_h<1> irg_h<0> Ratio

Low High Low Low 4
Low High Low High
Low High High Low
Low High High High
High Low Low Low

© 00 N o O

High Low Low High
High Low High Low 10
High Low High High 11
High High Low Low 12
High High Low High 13
High High High Low 14
High High High High 15

Iw_parity_h<3:0> B 4  Longword parity. These signals set even INT4 parity for the
current data cycle. Refer to Section 4.12.1 for information on
the purpose of each lw_parity_h bit.

mch_hlt_irg_h I 1  Machinehalt interrupt request. This signal has multiple modes
of operation. During initialization, this signal is used to set up
sys clk_out2 h delay (see Table 4-3). During normal opera-
tion, it is used to signal a halt request.

osc clk_in_h I 1  Oscillator clock inputs. These signals provide the differential

osc_clk_in_| I 1 clock input that is the fundamental timing of the 21164PC.
These signals are driven at the same frequency as the internal
clock frequencydk_mode h<1:0> = 01).

port_ mode h<1:0> I 2  Select test port interface modes (normal, manufacturing, and

debug). For normal operation, both signals must be deasserted.
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Table 3—1 21164PC Signal Descriptions (Sheet 9 of 10)
Signal Type Count Description
pwr_fail_irg_h I 1  Power failureinterrupt request. Thissignal has multiple modes

srom_clk_h (0]
srom_data h I
srom_oe | (0]
srom_present_| 1 B
st_clkl_h (0]
st_clk2_h (0]
st_clk3_h (0]
sys clk_outl h 0]
sys clk_out2 h @]

sys mch_chk_irg_h I

sys reset_| I

3-12 Hardware Interface

of operation. During initialization, this signal is used to set up
sys clk_out2 h delay (see Table 4-3). During normal opera-
tion, this signal is used to signal a power failure.

Serial ROM clock. Supplies the clock that causes the SROM to
advance to the next bit. The cycle time of this clock is 128
times the cycle time of the CPU clock.

Serial ROM data. Input for the SROM.

Serial ROM output enable. Supplies the output enable to the
SROM.

Serial ROM present. Indicates that SROM is present and ready
to load the Icache.

STRAM clock. Clock for synchronously timed RAMs
(STRAMS). For Bcache, this signal is synchronous with
index_h<21:4> during private read and write operations, and
with sys clk_outl_h during read and fill operations.

This signal is a duplicate sf clk1_h, to increase the fanout
capability of the signal.

This signal is another duplicatesvfclk1_h, to increase the
fanout capability of the signal.

System clock output. Programmable system clock
(cpu_clk_out_h divided by a value of 3 to 15) is used for
board-level cache and system logic.

System clock output. A versiongfs clk_outl h delayed by
a programmable amount from 0 to 7 CPU cycles.

System machine check interrupt request. This signal has multi-
ple modes of operation. During initialization, it is used to set
upsys clk_out2 h delay (see Table 4-3). During normal
operation, it is used to signal a machine interrupt check
request.

System reset. This signal protects the 21164PC from damage
during initial power-up. It must be asserted uddilok_h is
asserted. After that, it is deasserted and the 21164PC begins its
reset sequence.

29 September 1997 — Subject To Change



21164PC Signal Names and Functions

Table 3—1 21164PC Signal Descriptions (Sheet 10 of 10)

Signal Type Count Description

tag_data h<32:19> B 14  Bcachetag data bits. This bit range supports .5MB to 4MB
Bcaches.

tag_data par_h B 1  Tagdataparity bit. Thissignal indicates odd parity for
tag_data h<32:19>.

tag_dirty h B 1 Tagdirty state bit. This bit is private to the 21164PC.

tag_ram_oe | (0] 1 Tag RAM output enable. Thissigna is asserted during any

Bcache read operation.

tag_ram_we | (0] 1 Tag RAM write-enable. This signal is asserted during any tag
write operation.

tag_valid_h B 1  Tagvalid bit. During fills, thissignal is asserted to indicate
that the block has valid data. See Table 4-5 for information
about Bcache protocol.

tck_h B 1  JTAG boundary-scan clock.

tdi_h I 1  JTAG serial boundary-scan data-in signal.

tdo_h 0] 1  JTAG serial boundary-scan data-out signal.

temp_sense I 1  Temperature sense. This signal is used to measure the die tem-
perature and is for manufacturing use only. For normal opera-
tion, this signal must be left disconnected.

test_status h<1> 0] 1 Icache test status or timeout reset. This signal is used for man-
ufacturing test purposes only to extract Icache test status infor-
mation from the chip.

tms_h I 1  JTAG test mode select signal.

trst It B 1  JTAG test access port (TAP) reset signal.

victim_pending_h 0] 1  Victim pending. When asserted, this signal indicates that the

current read miss has generated a victim.

L This signal is shown as bidirectional. However, for normal operation, it isinput only. The output function is
used during manufacturing test and verification only.
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Table 3-2 lists signals by function and provides an abbreviated description.

Table 3—2 21164PC Signal Descriptions by Function (Sheet 1 of 3)
Signal Type Count Description

Clocks

clk_mode h<1:0> I 2  Clock test mode.

cpu_clk_out_h 0] 1  CPU clock output.

osc clk_in_h,l I 2  Oscillator clock inputs.

st _clkl h 0] 1  Bcache STRAM clock outpuit.

st _clk2 h @] 1  Bcache STRAM clock outpuit.

st _clk3 h @] 1  Bcache STRAM clock outpuit.
sys clk_outl h @] 1  System clock output.

sys clk_out2 h @] 1  System clock output.

sys reset | I 1  Systemreset.

Bcache

data_h<127:0> 128 Databus.

data_adsc | 1 DataRAM addressload enable.
data adv | 1 DataRAM address advance enable.
data ram_oe | Data RAM output enable.

4 Data RAM write-enable bits.
18 Index.
Data check.

data ram_we 1<3:0>
index_h<21:4>
Iw_parity_h<3:0>

tag_data h<32:19> 14  Bcachetag data bits.

W O O I @ ™® @@ O O O O 0O w
N

tag_data par_h 1  Tag data parity bit.
tag_dirty h 1  Tagdirty state bit.
tag_ram_oe | 1  Tag RAM output enable.
tag_ram_we | 1 Tag RAM write-enable.
tag_valid_h 1 Tagvadlidhit.
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Table 3—2 21164PC Signal Descriptions by Function

21164PC Signal Names and Functions

(Sheet 2 of 3)

Signal

Type Count Description

System Interface

addr_h<39:4> B 36  Addressbus.

addr_bus reg_h I 1  Addressbus request.

addr_res h<1:0> 0] 2 Addressresponse.

cack_h I 1  Command acknowledge.
cmd_h<3:0> B 4 Command bus.

dack_h I 1  Dataacknowledge.

data bus reg_h I 1  Databusrequest.

fill_h I 1  Fill warning.

fill_dirty_h I 1 Fill dirty.

fill_error_h I 1  Fill error.

fill_id_h I 1  Fill identification.

idle_bc_h I 1 IdleBcache
int4_valid_h<3:0> O 4  INT4 datavalid.
victim_pending_h O 1  Victim pending.

Interrupts

irg_h<3:0> I 4 System interrupt requests.
mch_hlt_irg_h I 1  Machine hat interrupt request.
pwr_fail irg_h I 1  Power failure interrupt request.
sys mch_chk_irg_h I 1  System machine check interrupt request.

Test Modes and Miscellaneous

dc ok _h

port_mode h<1.0>

srom_clk_h

srom_data _h

I 1
I 2

o 1
I 1

29 September 1997 — Subject To Change

dc voltage OK.

Selects the test port interface mode (normal, man-
ufacturing, and debug).

Serial ROM clock.
Serial ROM data.
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Table 3—2 21164PC Signal Descriptions by Function (Sheet 3 of 3)
Signal Type Count Description

srom_oe | 0] 1  Seriad ROM output enable.
sromJJresent_I1 B 1  Serid ROM present.

tck_h B 1  JTAG boundary-scan clock.

tdi_h | 1  JTAG serial boundary-scan datain.
tdo_h 0] 1  JTAG seria boundary-scan data out.
temp_sense I 1  Temperature sense.

test_status h<1> @] 1 Icachetest status or timeout reset.
tms_h I 1  JTAG test mode select.

trst | B 1  JTAG test access port (TAP) reset.

L This signal is shown as bidirectional. However, for normal operation, it isinput only. The output
function is used during manufacturing test and verification only.
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Clocks, Cache, and External Interface

This chapter describes the 21164PC microprocessor external interface, which
includes the backup cache (Bcache) and system interfaces. It also describes the clock
circuitry, interrupt signals, and parity generation. It is organized as follows:

* Introduction to the external interface

* Clocks

* Physical address considerations

* Bcache structure and operation

* Cache coherency

e 21164PC-to-Bcache transactions

e 21164PC-initiated system transactions
e  System-initiated transactions

* Databus and command/address bus contention
e 21164PC interface restrictions

* 21164PC/system race conditions

* Dataintegrity and Bcache errors

* Interrupts

Chapter 3 lists and defines all 21164PC hardware interface signal pins. Chapter 9
describes the 21164PC hardware interface electrical requirements.

29 September 1997 — Subject To Change Clocks, Cache, and External Interface  4-1



Introduction to the External Interface

4.1 Introduction to the External Interface
A 21164PC-based system can be divided into three major sections:

e 21164PC microprocessor
* External Bcache
* Systeminterfacelogic

The 21164PC external interface is optimized for uniprocessor-based systems and
mandates few design rules. The interface includes a 128-bit bidirectional data bus, a
36-bit bidirectional address bus, and several control signals.

Read |atencies and data repetition rates of the external Bcache can be programmed
by means of register bits. The Bcache clock frequency for private read and write
operations is independent of the system interface clock frequency and makes for a
more flexible design.

The cache system supports a 64-byte block size to the external Bcache.

Figure 4-1 shows a simplified view of the external interface. The function and pur-
pose of each signal is described in Chapter 3.

4.1.1 System Interface

This section describes the system or external bus interface. The system interface is
made up of bidirectional address and command buses, a data bus that is shared with
the Bcache interface, and several control signals.

The system interface is under the control of the bus interface unit (BIU) in the CBU.
The system interface is a 128-bit bidirectional data bus.

The cycle time of the system interface is programmable to speeds of 4 to 15 times the
CPU cycle timegysclk ratio). All system interface signals are driven or sampled by

the 21164PC on the rising edge of sigsyal clk_outl _h. In this chapter, this edge

is sometimes referred to ag/sclk.” Precisely when interface signals rise and fall

does not matter as long as they meet the setup and hold times specified in Chapter 9.
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Figure 4-1 21164PC System/Bcache Interface

21164PC System Memory
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pwr_fail_irq_h
sys_mch_chk_irg_h
fill_dirty_h

Interrupts
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4.1.1.1 Commands and Addresses

The 21164PC can take up to two commands from the system at atime. The Bcacheis
probed to determine what must be done with the command.

* If nothing isto be done, the 21164PC acknowledges receiving the command.

* If aBcacheread or invalidate operation is required, the 21164PC performs the
task as soon as the Bcache becomes free. The 21164PC acknowledges receiving
the command at the start of the Bcache transaction.
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The BIU contains a three-entry BIU command/address buffer (BAF) capable of
queueing up to three Bcache misses or 1/0 references. These buffers are capable of
merging both read and write miss references, to reduce externa system bus traffic.

4.1.2 Bcache Interface

The 21164PC includes an interface and control for arequired backup cache
(Bcache). The Bcache interface features the following:

e Support for pipelined and flow-through synchronous burst SRAMs (SSRAMS)

* Nonblocking, pipelined Bcache (up to three probesin flight)

* Fully interleaved writes to saturate write-hit traffic

* Flexible Bcache sizes (512KB - 4MB)

* Direct-mapped organization with 64-byte block size

* Read/write-allocate replacement policy

*  Write-back cache policy

e A 128-bit data bus (shared with the system interface)

* 4.8 GB/speak datatransfer rate

* Programmable Bcache clock rate up to 300-MHz operation
4.1.2.1 Bcache Interface Enhancements

With the advent of commodity SSRAMS, offchip high-speed caches can now be built
a low cost to take advantage of the same performance techniques that until now had
been restricted to onchip caches. The SSRAMs contain an address register, a self-
incrementing address mechanism, and optionally, a data output register (pipelined).
The 21164PC uses these additional control features to deliver a high-performance
nonblocking, interleaved, fully pipelined Bcache interface.

4.1.2.2 Pipelined Bcache

A pipelined cache allows the processor to issue multiple cache operations that are
overlapped in time to increase throughput. The 21164PC supports pipelining of up to

three outstanding read or write probes at any given timeto attain 100% data bus uti-
lization. The outstanding Bcache probes are tracked by the BIU's “Bcache in flight”
(or BIF) buffer. Figure 4—2 shows the benefits of a having multiple probes in flight
for a pipelined cache.
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Figure 4-2 Merits of a Multiprobes In Flight — Pipelined Cache
Pipelining allows 100% utilization of the data bus.

Nonpipelined Cache:

ndex [at] [ [ | | | Jeef [ | | | [ [as]
|=— latency 1 —] | latency 2 —=|

data | | | | | IowoJoaa] ] | | | [p2ofp2if |

Pipelined Cache:

index [AL| [A2| [as| [aa| [as| [ae| [A7] [as]
|- latency 1 —]

|«— latency 2 —|
|<— latency 3 —|

data | | |  [p1o]p11]p20|p21]D30]|D31|D40[D41[D50|D51|
A A A
Multiple probes in flight

PCAO002

4.1.2.3 Write Interleaving

The 21164PC Bcacheinterface takes advantage of the SSRAM addressinput register

to employ interleaving techniques to maximize write-hit dirty bandwidth. The

Bcache interface decouples the tag and data store control to allow tag write probes to

be interleaved with data writes. Figure 4—3 shows an example of write interleaving
and its ability to keep the data bus at 100% utilization.
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Figure 4-3 Tag/Data Store Interleaving

Interleaving tag write probes with data write
operations allows 100% utilization of the data bus.

Data writes interleaved with tag probes

\ Y \
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tag [Ta] | T12f [T13] [T4] |
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data [ D10| D11 D20| D21 D30| D31| D40 D41
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Tag probes for writes that hit clean (valid, not dirty) in the Bcache must schedule a
tag store write to update the dirty bit.

4.2 Clocks
The 21164PC devel ops three clock signalsthat are available at output pins.

Signal Description
cpu_clk_out h A 21164PC internal clock that may or may not drive the system clock.
sys clk_outl h A clock of programmable speed supplied to the external interface.

sys clk_out2 h A delayed copy of sys clk_outl h. Thedelay is programmable and is
an integer number of cpu_clk_out_h periods.

The behavior of the programmable clocks during the reset sequence is described in
Section 7.1.
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4.2.1 CPU Clock

The 21164PC uses the differential input clock linesosc_clk__in_h,l as asource to
generate its CPU clock. Theinput signals clk_mode_h<1:0> control generation of
the CPU clock, as listed in Table 4-1 and as shown in Figure 4—4.

The 21164PC useatk_mode h<0> to provide onchip capability to equalize the
duty cycle of the input clock (eliminating the need for a 2x oscillator). When
clk_mode_h<0> is asserted, the equalizing circuitry, callegymmetrator, is
enabled.

The 21164PC usetk _mode _h<1> to reset the CPU clock. Whelk_mode_h<1>
is set, the internal CPU clock is reset to a known state. When it is clear, the CPU
clock is driven at the same frequency asasteclk _h,l differential input.

Table 4-1 CPU Clock Generation Control

Mode clk_mode_h<1:0> Description

Normal 0 0 CPU clock frequency is the same as the input clock
frequency; symmetrator is disabled.

Normal 0 1 CPU clock frequency is the same as the input clock
frequency; symmetrator is enabled. Also used to
accommodate chip testers.

Reset 10 Initializes CPU clock, allowing system clock to be
synchronized to a stable reference clock; symmetrator
is disabled.

Reset 11 Initializes CPU clock, allowing system clock to be
synchronized to a stable reference clock; symmetrator
isenabled.

Caution: A clock source should always be providedosno clk_in_h,| when sig-
naldc_ok_h is asserted.
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Figure 4-4 Clock Signals and Functions
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The CPU clock is the source clock used to generate the system clock

sys clk_outl_h. The system clock divider controls the frequency of

sys clk_outl_h. Thedivisor, 4 to 15, is obtained from the four interrupt lines

irq_h<3:0> at power-up as listed in Table 4-2. The system clock frequency is deter-
mined by dividing the ratio into the CPU clock frequency. Refer to Section 7.2 for
information onsysclk behavior during reset. The value is also latched into the
SYS_CLK_RATIO<3:0> field of the CBOX_STATUS IPR (bits <7:4>) for read-

only purposes.

Table 4-2 System Clock Divisor

(Sheet 1 of 2)

irg_h<3> irq_h<2> irqg_h<1> irg_h<0> Ratio
Low High Low Low 4
Low High Low High 5
Low High High Low 6
Low High High High 7
High Low Low Low 8

Clocks, Cache, and External Interface
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Table 4-2 System Clock Divisor (Sheet 2 of 2)
irg_h<3> irq_h<2> irqg_h<1> irg_h<0> Ratio

High Low Low High 9

High Low High Low 10

High Low High High 11

High High Low Low 12

High High Low High 13

High High High Low 14

High High High High 15

Figure 4-5 shows the 21164PC driving the system clock on a uniprocessor system.

Figure 4-5 21164PC Uniprocessor Clock

Memory
ASIC

sys_clk out
21164PC

Bus
ASIC

HLO004B

4.2.3 Delayed System Clock

The system clock sys clk_outl h isthe source clock for the delayed system clock
sys clk_out2_h. These clock signals provide flexible timing for system use. The

delay unit, from 0to 7 CPU CLK cycles, is obtained from the three interrupt signals:
mch_hlt_irqg_h, pwr_fail_irg_h, and sys mch_chk_irg_h at power-up, aslisted in
Table 4-3. The output of this programmable divider is symmetric if the divisor is
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even. The output is asymmetric if the divisor is odd. When the divisor is odd, the
clock is high for an extra cycle. Refer to Section 7.2 for information on sysclk
behavior during reset.

Table 4-3 System Clock Delay

sys_mch_chk_irqg_h pwr_fail_irg_h mch_hlt_irq_h Delay Cycles
Low Low Low 0
Low Low High 1
Low High Low 2
Low High High 3
High Low Low 4
High Low High 5
High High Low 6
High High High 7

4.3 Physical Address Considerations

This section lists and describes the physical address regions. Cache and data wrap-
ping characteristics of physical addresses are also described.

4.3.1 Physical Address Regions

Physical memory of the 21164PC is divided into three regions:

1. Thefirst region isthefirst half of the physical address space. It is treated by the
21164PC as memory-like.

2. The second region is the second half of the physical address space except for a
1MB region reserved for CBU IPRs. It istreated by the 21164PC as noncache-
able.

3. Thethird region isthe 1MB region reserved for CBU IPRs.

In the first region, write merging and load merging are permitted. All 21164PC
accesses in thisregion are 64-byte, the Bcache block size. This memory-like region
islimited to 8GB (maximum).

The 21164PC does not cache data accessed in the second and third region of the
physical address space; 21164PC read accesses in these regions are always INT32
requests. Load merging is permitted, but the request includes a mask to inform the
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system environment as to which INT8s are accessed. Write merging is permitted.
Write accesses are INT 32 requests with a mask indicating which INT4s are actually
modified.

The 21164PC never writes more than 32 bytes at a time in noncached space.

The 21164PC does not broadcast accesses to the CBU IPR region if they map to a
CBU IPR. Accessesin this region, that are not to adefined CBU IPR, produce
UNDEFINED results. The system should not probe this region.

Table 4-4 shows the 21164PC physical memory regions.

Table 4—4 Physical Memory Regions

Region Address Range Description

Memory-like 00 0000 0000 — Write invalidate cached, load, and store merging
01 FFFF FFFRg allowed.

Noncacheable 80 0000 0000 —Not cached, load merging limited.
FF FFEF FFFRg

IPR region FF FFFO 0000 — Accesses do not appear on the interface unless an
FF FFFF FFFRg undefined location is accessed (which produces
UNDEFINED results).

4.3.2 Data Wrapping

The 21164PC requires that wrapped read operations be performed on INT16 bound-
aries. READ and FLUSH commands are all wrapped on INT16 boundaries as
described here. The valid wrap orders for 64-byte blocks are selected by
addr_h<5:4>. They are:

0,123

1,0,3,2

2,3,0,1

3,2,1,0
Similarly, when the system interface supplies a command that returns data from the

21164PC caches, the values that the system drivaddvnh<5:4> determine the
order in which data is supplied by the 21164PC.

BCACHE VICTIM commands provide the data with the same wrap order as the read
miss that produced them.
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4.3.3 Noncached Read Operations

Read operationsto physical addressesthat haveaddr _h<39> asserted are not cached
in the Dcache or Bcache. They are merged like other read operations in the miss
addressfile (MAF). To prevent several read operations to noncached memory from
being merged into a single 32-byte bus request, software must insert memory barrier
(MB) ingtructions or set MAF_MODE IPR bit (I0_NMERGE). The MAF merges as
many Dstream read operations together as it can and sends the request to the BIU.

Rather than merging two 32-byte requestsinto a single 64-byte request, the BIU
requests aREAD MISS from the system. Signalsint4 valid_h<3:0> indicate which
of the four quadwords are being requested by software. The system should return the
fill datato the 21164PC as usual. The 21164PC does not write the Dcache or Bcache
with the fill data. The requested data is written in the register file or Icache.

Note: A special case using int4_valid_h<3:0> occurs during an Icachefill. In
this case the entire returned block is valid athough int4_valid_h<3:0>
indicates zero.

4.3.4 Noncached Write Operations

Write operations to physical addresses that have addr_h<39> asserted are not writ-
ten to any of the caches. These write operations are merged in the write buffer before
being sent to the system. If software does not want write operations to merge, it must
insert MB or WMB instructions between them.

When the write buffer decides to write data to noncached memory, the BIU requests
aWRITE BLOCK. During each data cycle, int4_valid_h<3:0> indicates which
INT4swithin the INT16 are valid.

4.4 Bcache Structure

The 21164PC supportsa.5, 1, 2, and 4MB Bcache. The size is under program con-
trol and is specified by CBOX_CONFIG<13:12> (BC_SIZE<1.0>). The Bcache
block size is 64-byte blocks.

Industry-standard, burst-mode synchronous static RAMs (SSRAMs) may be con-
nected to the 21164PC without many extra components, although fanout buffers may
be required for the index lines. The SSRAMs are directly controlled by the 21164PC,
and the Bcache data lines are connected to the 21164PC data bus.
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The 21164PC partitions physical address (addr_h<32:4>) into anindex field and a
tag field. The 21164PC presentsindex_ h<21:4> and tag_data h<32:19> to the
Bcache interface. Thetag size required is Bcache_size/block_size.

The system designer uses the signal lines needed for a particular size Bcache. For
example, the IMB Bcache needsindex_h<19:4> to address the cache block while
the tag field would be tag_data_h<32:20>.

The 21164PC uses only the relevant tag address bits during the tag compare for the
selected Bcache size. A larger Bcache has more index bits and fewer unused tag
address bits, while asmaller Bcache has fewer index bits and more unused tag
address bits. Unused index bits are driven to 0.

All private Bcache transactions operate on 32-byte subblocks. All system Bcache
transactions (memory fill, Bcache victim, system commands that require data move-
ment) operate on the 64-byte Bcache block size. The CPU data busis 16 byteswide
(128 bits), thus private Bcache transactions require two data cycles and system
Bcache transactions require four data cycles.

Longword write enables are provided to the data store for Bcache write operations.
To support byte and word write transactions, the 21164PC performs a read-modify-
write sequence at the Bcache interface.

4.4.1 Bcache Victim Buffers

A Bcache victim is generated when the 21164PC deallocates a dirty block from the
Bcache. Each time a Bcache victim is produced, the 21164PC asserts
victim_pending_h and stops reading the Bcache until the system takes the current
victim. Then Bcache transactions resume.

External logicisrequired to maintain at |east one victim buffer that acts astemporary
storage that can be written faster and with lower latency than system memory. The
victim buffer(s) hold Bcache victims and enabl e the Bcache location to befilled with
data from the desired address. Datain the victim buffer(s) will be written to memory
a alater time. This action reduces the time that the 21164PC is waiting for data.

4.5 Cache Coherency

Cache coherency rules must be followed when designing 21164PC-based uniproces-
sor systems as there are two levels of caches on a processor module that may be
snooped for data by 1/0 devices.
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The system hardware designer need not be concerned about Icache and Dcache
coherency. Coherency of the Icache is a software concern—it is flushed with an IMB
(PALcode) instruction.

The 21164PC requires the system to allow only one change to a block at a time. This
means that if the 21164PC gains the bus to read or write a block, 1/0 devices on the
system bus should not be allowed to access that block until the data has been moved.

Flush Cache Coherency Protocol

The 21164PC provides hardware mechanisms to support a flush-based cache coher-
ence protocol. This protocol is best suited for low-cost uniprocessor systems. It is
typically used by an I/O subsystem to ensure that data coherence is maintained when
DMA transactions are performed. Flush protocol does not allow shared data in the
cache. Table 4-5 shows the Bcache states for the cache coherency protocols.

Table 4-5 Bcache States for Cache Coherency Protocols

valid!  Dirty!  State of Cache Line

0 X Not valid.

1 0 Valid for read or write operations. This cache line contains the only
cached copy of the block and the copy in memory isidentical to this
line.

1 1 Valid for read or write operations. This cache line contains the only

cached copy of the block. The contents of the block have been modified
more recently than the copy in memory.

1 Thetag_valid_h and tag_dirty_h signals are described in Table 3-1.

The Bcache is probed for each transaction to determine if the block is present. If the
block is present, the requested action is taken. If the block is not present, the com-
mand is still acknowledged, but no other action is taken. The Flush protocol for the
21164PC does not support a duplicate tag store.

Section 4.5.1 provides a more detailed description of flush cache coherency protocol.
The system commands that are used to maintain cache coherency are described in
more detail in Section 4.8.2.

4.5.1 Flush Cache Coherency Protocol

System logic notifies the 21164PC of all DMA read operations that occur on the sys-
tem bus by using the interface READ command. The 21164PC returns data if the
block is dirty.
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System logic notifies the 21164PC of all DMA write operations that occur on the
system bus by using the interface FLUSH command. If the block is dirty, the
21164PC provides the data to the system and invalidates the block in the Bcache. If
the block is not dirty (clean), datais not returned, and the block isinvalidated.

System logic may choose to notify the 21164PC of full cache line DMA write oper-
ations that occur on the system bus by using the interface INVALIDATE system
command. The 21164PC invalidates the Bcache block if the block was found.

Figure 4—6 shows the 21164PC cache state transitions that can occur as a result of
transactions with the system. Figure 4—7 shows the 21164PC cache state transitions
maintained by the 21164PC as a result of transactions by other nodes on the system
bus. These two figures both represent the same state machine. They show transitions
caused by the 21164PC, and by the system, separately for clarity.

Note : The abbreviations “I”, “M” and “E” indicate the /VALID, VALID and
DIRTY, and the VALID and /DIRTY states, respectively.

Figure 4-6 Flush-Based Protocol 21164PC States

READ MISS MOD
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READ
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Figure 4—7 Flush-Based Protocol System/Bus States
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4.6 21164PC-to-Bcache Transactions

When initiating an Istream or Dstream data transaction, the 21164PC first probes the
Icache or Dcache, respectively. If the probe misses in the onchip caches, then the
Bcache is probed.

The 21164PC interface to the system and Bcache is controlled by the CBU. The
CBU provides address and control signals for transactions to and from the Bcache
and the system interface logic. The CBU also transfers data across the 128-bit bidi-
rectional data bus.

The 21164PC controls al Bcache transactions and will be able to process read and
write hits to the Bcache without assistance from the system. When system logic
writesto or reads from the Bcache, it transfers data to and from the Bcache, but only
under the direct control of the 21164PC.

4.6.1 Synchronous Burst-Mode Cache Support

The 21164PC supports both pipelined and flow-through SSRAMs. These SSRAMs
provide several new control functions that are capitalized on to deliver a high-perfor-
mance Bcache interface. All control pins driven from the 21164PC to the SSRAMs
are synchronous (except the output enables) and are sampled relative to the SSRAM
clock (st_clk). Figure 4-8 shows the SSRAM/Bcache interface.

4-16 Clocks, Cache, and External Interface 29 September 1997 — Subject To Change



21164PC-to-Bcache Transactions

Figure 4-8 SSRAM/Bcache Interface
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For every Bcache access, the 21164PC drives the index, address strobe
(data_adsc_l), and the SSRAM clock (st_clk) to the SSRAMsto load the initial
address. The st_clk may be delayed a programmable number of CPU cyclesto facil-
itate better control over module timing. For additional data reads or writes, the data
advance (data_adv_l) isdriven to the SSRAMs and is used to autoadvance the
address in interleaved burst mode to facilitate the data wrap order described in
Section 4.3.2.

For Bcache read and write probes, the tag store and data store have separate asyn-
chronous output enables (tag_ram_oe_| and data_ram_oe_I) that control the
SSRAM output drivers. A unique tag RAM output enable is required to facilitate the
interleaved writes as described in Section 4.1.2.3. When switching from a Bcache
read to awrite transaction, the 21164PC provides a programmabl e read-to-write
spacing to avoid data contention on the bidirectional tag and data buses (refer to Sec-
tion 4.9.2 for more details).

For Bcache data writes, the 21164PC supports the early write protocol using the
ADSCH# pin (the ADSP# late-write is not supported). During data transfers, the
21164PC driveslongword write enables (data_ram_we_1<3:0>) to the SSRAMs
that correspond to the appropriate longword lanes within the 128-bit data bus. For
byte and word granularity datawrites, the 21164PC performs a read-modify-write
operation to the Bcache. Tag store updates are necessary for memory fillsand private
writes that hit clean and are facilitated using the tag write enable (tag_ram_we ).

There are subtle but important differences between the pipelined and flow-through
SSRAM s that must be accounted for when interfacing to the 21164PC. The pipelined
SSRAM (PBSRAM) includes an additiona data output register that drives the data
onest_clk later than the flow-through SSRAM. These differences and their effect on
the 21164PC are explained in greater detail in Section 4.7.3.

4.6.2 Bcache Timing

The 21164PC provides a flexible Bcache interface with many programmable fea-
tures, including the following:

* Programmable read latency
*  Programmable data repetition rate
* Programmable st_clk delay

*  Programmable read-to-write spacing
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Bcache timing is configured using the CBOX_CONFIG and CBOX_CONFIG2
IPRs. Figures 5—48 and 5-51 show the layout of these registers. These registers are
normally configured by 21164PC initialization code.

Both the 21164PC and system require access to the Bcache through a shared 128-bit
data bus. When the 21164PC requires access to the Bcache (private mode), the
st_clk is switched to théc_clk regime where the clock is based on
CBOX_CONFIG<BC_CLK_ RATIO<3:0>. When the system requires access to the
Bcache (system mode), the clk is switched to theysclk regime where the clock is

based on theysclk ratio.

Table 4—6 describes the clocking regime and access type to the tag and data stores for
each Bcache transaction.

Table 4-6 Bcache Transactions

Bcache Access

Transaction Clock Regime Tag Store Data Store
Memory Fill System Write Write
Bcache Victim System — Read
System Data Movement System White Read
CPU Read Probe Private Read Read
CPU Write Probe Private Read —
System Probe Private Read —
CPU Data Write-Dirty Private — Write
CPU Data Write-Clean  Private Write Write
Invalidate-Hit Private Write —

L A tag store write during a system data movement is conditional.

System transactions include memory fills, Bcache victims, and system commands
that require data movement. System transactions read and write the Bcache in the
sys clk regime (see Section 4.2.2). System Bcache read or write operations start rel-
ative to asysclk edge. It is the responsibility of the system to control the rate of
Bcache transactions by using theek_h signal.

Private transactions include CPU-initiated read and write probes, CPU-initiated data
writes, system probes, and system invalidates. Private transactions read and write the
Bcache in thdoc _clk regime (see Section 5.3.1). For private Bcache reads, both the
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latency and repetition rate are programmable using the CBOX_CONFIG register
fields <11:08> (BC_LATENCY_OFF<3:0>) and <07:04>
(BC_CLK_RATIO<3:0>). For private Bcache writes, the 21164PC uses the early
write SSRAM protocol controlled by the ADSC# pin. The repetition rate for data
writes is programmable through the (BC_CLK_RATI0<3:0>). Read and write oper-
ationsthat are private to the 21164PC and Bcache may start on any CPU clock.

Thereisno relation between sysclk and private Bcache latency. Thebc clk ratiois
required to be less than or equal to the sysclk ratio for proper operation.

Note: Timing diagrams do not explicitly show tristated buses. For examples of
tristate timing, refer to Section 4.9.

4.6.3 Bcache Private Read Transaction

CPU-initiated reads must probe the Bcache to determine hit or miss status. CPU-ini-
tiated reads always perform the tag store lookup in paralel with a speculative
32-byte data store read.

Figure 4-9 shows an example of the timing for a private read operation to Bcache by
the 21164PC. CBOX_CONFIG<BC_LATENCY_OFF> = 0, which represents a
minimum read latency value of fiwpu_clk cycles.

The index is launched from an arbitrary intercial_clk edge (t=0). The data store
address strobelata_adsc |, is also asserted at this time and is deasserted one
bc_clk cycle later. The tag store address strobe is tied at the module level to always
be asserted so that a new address is latched lewertk cycle. The data store

address is autoadvanced for the next 16-byte data read with the assertion of
data_adv_| onebc clk cycle after the launch of the index. It is deasserted in the fol-
lowing bc_clk cycle.

The asynchronous tag RAM output enabdg, ram_oe |, is asserted at index
launch plus onepu_clk cycle and is deassertbd rd_latency cpu_clk cycles after
the index launch.

The asynchronous data RAM output enatia ram_oe |, is also asserted at
index launch plus ongpu_clk cycle and is deasserted

(bc_rd_latency + bc_clk _ratio) cpu_clk cycles after the index launch. All private
Bcache operations return a 32-byte subblock (two data cycles).

4-20 Clocks, Cache, and External Interface 29 September 1997 — Subject To Change



21164PC-to-Bcache Transactions

Figure 4-9 Bcache Private Read Transaction
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4.6.4 Bcache st_clk Timing

The SSRAM clock (st_clk) isasserted bc_clk_delay cpu_clk cycles from the index
launch. The minimum pulse width for st_clk is dependent upon the
CBOX_CONFIG<BC_CLK_RATIO> programmable parameter. For abc_clk ratio
greater than 5, the st_clk remains asserted for 3 cpu_clk cycles. For abc clk ratio
from 3to 5, the st_clk remains asserted for 2 cpu_clk cycles. For abc_clk ratio of
2, the st_clk remains asserted for 1 cpu_clk cycle.
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4.6.5 Bcache Private Write Transactions

CPU-initiated write operations are broken into two suboperations, namely awrite-
probe operation and a subsequent data-write operation. The write-probe operation
performs the tag store lookup to determine hit or miss status as well asto determine
thetag state, clean (V */D) or dirty (V* D). Once awrite hit has been detected, a data-
write operation is performed to update the data store. Additionally, if the write-probe
operation hits clean, the tag store must be updated to reflect dirty (or modified) sta-
tus. If the write-probe operation hits dirty, then the tag store will not be updated. The
two suboperations that make up a CPU-initiated write operation are not atomic and
are pipelined with other read and write operations. Up to three Bcache probe opera-
tions can be in flight at any given time to increase overall Bcache performance.

4.6.5.1 Bcache Private Write-Probe Operation

Figure 4-10 shows an example of the timing for a write-probe operation to the
Bcache by the 21164PC. CBOX_CONFIG<BC_CLK_RATIO> is set to three
cpu_clk cycles.

The write-probe operation is identical to the Bcache read at the tag store interface.
The index is launched from an arbitrary intercgal_clk clock edge (t=0). The
asynchronous tag RAM output enalikgy ram_oe |, is asserted at index launch

plus onecpu_clk cycle and is deasserted rd_latency cpu_clk cycles after the

index launch.
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Figure 4-10 Bcache Private Write Probe
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4.6.5.2 Bcache Private Data-Write Operation

If a CPU-initiated write command hitsin the Bcache, the data-write operation is
scheduled immediately. If the write hits clean, then the data-write operation must
update the tag state to dirty. If the write hits dirty, then the data-write operation does
not update the tag store.

If the CPU-initiated write command misses in the Bcache, the data-write is sched-
uled after the fill data from memory has returned. During the fill operation, the
Bcachetag store is updated to reflect the new tag and control state (modified). There-
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fore, the data-write operation after the fill operation completes does not update the
tag store. The Bcache is nonblocking and allows other transactions to use the Bcache
while waiting for outstanding Bcache misses.

Figure 4-11 shows an example of the timing for a data-write operation that hits
clean to the Bcache during the write probe. CBOX_CONFIG<BC_CLK_RATIO> is
set to threepu_clk cycles.

Figure 4-11 Bcache Private Data — Write Hit Clean
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The index islaunched from an arbitrary internal cpu_clk edge (t=0). The data store
address strobe, data_adsc |, is also asserted at thistime and is deasserted one
bc_clk cycle later. The tag store address strobe is tied at the module level to always
be asserted so that a new address is latched every bc_clk cycle. The data store
address is autoadvanced for the next 16-byte data write with the assertion of
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data_adv_| one bc_clk cycle after the launch of the index. It is deasserted in the fol-
lowing bc_clk cycle. Thelongword write enables, data ram_we 1<3:0>, aredriven
for each 16-byte of write data at index launch time and at the subsequent bc_clk
cycle.

Figure 4—12 shows an example of the timing for a data-write operation that hits dirty
to the Bcache during the write probe. CBOX_CONFIG<BC_CLK_RATIO> is set to
threecpu_clk cycles. Note that the tag update is not required for a write hit to a dirty
block.

Figure 4-12 Bcache Private Data — Write Hit Dirty
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4.6.5.3 Interleaving Write-Probes

The 21164PC is able to interleave data-write operations that hit dirty with write-
probe operations, since both operations access different stores (tag and data). This
techniqueis used to fully saturate the data bus during write-hit streams asis shownin
Figure 4-13.

Figure 4-13 Bcache Interleaving
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4.6.6 Selecting Bcache Options
Table 4-7 lists the variables to consider when designing and implementing a Bcache.

Table 4—7 Bcache Options

Parameter Selection

sysclk ratio (4-15) CPU cycles
Cache protocol, flush or flush invalidate

Longword parity or no parity

Bcache size (.5MB to 4MB) ____MB
Bcache read latency (5-20) ____ CPUcycles
Bcache cycle time (2-10) ____ CPUcycles
Bcache victim buffer Must be present

Bcache read-to-write spacing (1-8)
Bcachefill offset (1-8)

SSRAM type, pipelined or flow-through
st_clk delay (0-3)

4.7 21164PC-Initiated System Transactions

This section describes how commands are used to move data between the 21164PC
and its cache system.

Note: Timing diagrams do not explicitly show tristated buses. For examples of
tristate timing, refer to Section 4.9.
The 21164PC starts an external transaction when:
* It encounters a “miss.”
* The CPU addresses a honcached region of memory.
For example, the sequence for a 21164PC-initiated transaction caused by a Bcache
missis:
* Atthe start of a Bcache transaction, the 21164PC checks the tag and tag control
status of the target block.
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* |f thereisatag mismatch or the valid bit is clear, a Bcache miss has been
detected. If the block to be replaced is clean, the Bcache continues operation
whilethe READ MISS request is sent to the system. If the block to bereplaced is
dirty, the 21164PC waits for al outstanding probes in flight to complete, and
then starts an external READ MISS with VICTIM PENDING transaction that
instructs the system logic to access and return data.

*  System logic acknowledges acceptance of the command from the 21164PC by
asserting cack_h.

* Becausethetransactionisaread operation, requiring afill operation, the transac-
tion is broken (pended) while system logic obtains thefill data. The Bcacheis
nonblocking and allows other transactions to use the Bcache while amissis
being serviced.

* Prior to thefill data arriving, the system assertsidle_bc_h back to the 21164PC
to arbitrate for the shared 128-hit data bus. Any private read or write operations
in progress are alowed to complete before the fill data arrives from the system.

* Atalater time, the system assertsfill_h.

* The 21164PC asserts the tag and tag control bits, and controls the write action
during the fill operation.

* The system logic provides the data. As each of the two (or four) data cycles
becomes valid, the system logic asserts dack _h to cause the 21164PC to sample
the data and write it into the Bcache.

Interface commands from the 21164PC to the system are driven on thecmd_h<3:0>
signals. Table 4-8 lists and describes the set of interface commands.

Table 4-8 21164PC-Initiated Interface Commands (Sheet 1 of 2)
cmd_h

Command <3:0> Description

NOP 0000 The NOP command is driven by the owner of the cmd_h bus

when it has no tasks queued.
— 0001 Reserved.
— 0010 Reserved.
— 0011 Reserved.
— 0100 Reserved.
— 0101 Reserved.
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Table 4-8 21164PC-Initiated Interface Commands (Sheet 2 of 2)
cmd_h
Command <3:0> Description

WRITEBLOCK 0110 Request to write ablock. When the 21164PC wants to write a
32-byte block of data to noncached memory, it drives the com-
mand, address, and first INT16 of data on a sysclk edge. The
21164PC outputs the next INT16 of datawhen dack_h is
received. When the system asserts cack_h, the 21164PC
removes the command and address from the bus and begins the
write of the Bcache. Signal cack_h can be asserted before all
the datais removed.

— 0111 Reserved.

READ MISSO 1000 Request for data. This command indicates that the 21164PC
has probed its caches and that the addressed block is not
present.

READ MISS1 1001  Request for data. This command indicates that the 21164PC
has probed its caches and that the addressed block is not
present.

— 1010 Reserved.
— 1011 Reserved.

BCACHE 1100  Bcache victim should be removed. If there is a victim buffer in
VICTIM the system, this command is used to pass the address of the vic-
tim to the system. The READ MISS command that produced
the victim precedes the BCACHE VICTIM command. Signal
victim_pending_h is asserted during the READ MISS com-
mand to indicate that a BCACHE VICTIM command is wait-
ing, and that the Bcache is starting the read of the victim data.

— 1101 Reserved.
— 1110 Reserved.
— 1111 Reserved.
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4.7.1 READ MISS Clean - No Victim

A READ MISS command is launched to the system interface when:

1. The Bcache probe for a CPU-initiated READ command detects amiss.

2. The Bcache probe for a CPU-initiated WRITE command detects a miss.

3. A CPU-initiated READ command to noncached memory space is detected.

The 21164PC starts a Bcache probe operation on any CPU clock. If amissis
detected to aclean or invalid block, then a victim does not need to be processed, and
the address and command can be immediately issued to the system interface on the
next sysclk edge. However, if amissis detected to a dirty block, the CBU will
reguire the data bus to process victims, and must wait for any in-flight probesto
complete.

Figure 4—-14 shows the timing of several Bcache reads and the resulting READ MISS
Clean request. The system immediately assads h to acknowledge the com-

mand. This allows the 21164PC to make additional READ MISS requests. It is also
possible for the system to defer assertiocack_h until the fill data is returned. The
assertion otack _h should arrive no later than the last fiick_h.

Note: A READ MISS command witlnt4_valid_h<3:0> of zero is a request
for Istream data whilent4 _valid_h<3:0> of nonzero is a request for
Dstream data.
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Figure 4-14 READ MISS Clean — Bcache Timing Diagram
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4.7.2 FILL

The 21164PC provides an st_clkx_h pulse acertain number of cycles after therising
edge of the system clock, determined by the sum of theBC_CLK_DELAY <1:0> and
the FILL_OFFSET<2:0> valuesin the CBOX_CONFIG register (see Section 5.3.1).
The value must be from 1 to 7 and cannot be greater than the sysclk ratio. This
alows the SSRAM write operation to take place later in the sysclk cycle, allowing
more time for the data to get to the 21164PC.

Signasfill_h, fill_id_h, and fill_error_h are used to control the return of fill datato

the 21164PC and the Bcache. Signal idle_bc_h must be used to stop CPU requestsin

the Bcache in such away that the Bcache will be idle when the fill data arrives (but

not the FILL command). Signal fill_h must be asserted so that it is sampled by the

CPU at least one sysclk period before the fill datais driven by the system. Signal

fill_id_h should be asserted at the same time to indicate whether the fill operation is

for aREAD MISS0 or READ MISS1 operation. The 21164PC uses this information

to select the correct fill address. Figure 4—14 shows the timing of a FILL command.
Refer also to Section 4.9.3 for more information on using sigdi@sbc h and

fill_h.

If fill_h is asserted at the rising edgesgéclk N, the 21164PC samplé&$l_id_h,

then ensures thatata_h<127:0> are tristated at the rising edgespéclk N+1. Also
atsysclk N+1, the 21164PC asserts the Bcache index, and begins a Bcache write
operation. The system should drive the data onto the data bus andiadsdrt

before the end of theysclk cycle. Ifdack_h has not been asserted, the Bcache write
operation starts again at the same indedadk _h is asserted, the Bcache data-write
operation starts again at the same indedatk_h is asserted, the advance pin,

data ram_adv_l, is asserted, which advances the index to the next part of the fill,
and the data-write operation begins again.

For all cacheable memory fill operations, the 21164PC updates the tag store in the
same cycle that the Bcache index is driven, to reflect the new tag and control. Fill
operations for READ commands update the tag store to the clean (V*/D) state, and
fill operations for WRITE commands update the tag store to the dirty (V*D) state.

For system logic that returns fill data directly from its victim buffer without updating
memory (Victim Buffer Fill Hit), thefill_dirty_h signal is used to remark the tag

store to the dirty (V*D) state. This maintains data coherency. In systems that do not
support Victim Buffer Fill Hits, it is recommended to tie fié dirty h signal deas-
serted.
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At the end of the fill transaction, the 21164PC does not assert data_ram_oe | or
begin to drive the data bus until thefifth cpu_clk cycle after the sysclk that loads the
last dack_h. If systems require more timeto turn off their drivers, they must use
idle_bc_h in combination with data_bus req_h to stop 21164PC requests and not
send any system requests.

4.7.3 READ MISS with Victim

The 21164PC requires that the system contain a victim buffer to displace dirty
blocks from the Bcache. The 21164PC requests the new block from memory whileit
starts to read the victim from the Bcache. The VICTIM command and address follow

the miss request. This technique, known as “victims under fills,” allows the victim to

be processed in parallel with the memory read.

When a miss is detected to a dirty block, the 21164PC waits for all outstanding
Bcache probes in flight to complete. Then on the sgsdk edge, the 21164PC
asserts a READ MISS command, the read miss addressctime_pending_h sig-

nal, and indexes the Bcache to begin the read operation of the victim. When the sys-
tem assertsack_h, the 21164PC sends out a NOP command. In the following cycle

the BCACHE VICTIM command is driven along with the victim address. Each

assertion oflack_h causes the Bcache index to advance to the next part of the block.
Figures 4-15 and 4-16 show the timing of a READ MISS command with a victim.

The 21164PC and systenust treat a READ MISS/BCACHE VICTIM as an atomic

transaction pair. Once the system has acknowledged the READ MISS command, it
must guaranteeot to start a system command or a FILL command until the READ
MISS/BCACHE VICTIM atomic pair have completed. However, if the READ MISS
command has not yet been acknowledged, the system is allowed to start a system

command or a FILL command (by the assertioadufr _bus req_h oridle bc _h).

The unacknowledged READ MISS command is retracted from the pin bus, and the
system command or fill transaction is serviced at a higher priority. After the system
or FILL command has completed, the READ MISS command is then replayed to the
pin bus. For example, if the 21164PC sends the READ MISS command to the sys-
tem, victim data can be removed from the Bcache without the READ MISS com-
mand being acknowledged. If the system sends an INVALIDATE system command

to the same address before the READ MISS command is acknowledged, the

21164PC processes the INVALIDATE request and then restarts the READ MISS
command from the beginning. The second time, the READ MISS command is issued
to the pin bus withoutictim_pending_h asserted, because the data had been invali-

dated.
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The use of dack_h for a system Bcache read command (Bcache victim or system
command with data movement) is very dependent on the SSRAM style, either pipe-
lined or flow-through. The assertion of dack _h isresponsible for the assertion of the
data_adv_| pin, and is not to be confused with the sampling of data. When using the
pipelined SSRAMS, the data output register delays the data an additional sysclk
cycle. When the CBOX_CONFIG<BC_REG_REG> hit is set, the data_ram_oe |
deassertion is delayed an additional sysclk cycleto alow the system ampletimeto
sample the delayed Bcache read data.

System designers must also maintain the proper read-to-write spacing when going
from BCACHE VICTIM commands to FILL commands. When using the pipelined
SSRAMSs, this delayed data on the victims impacts the earliest fill_h assertion (see
Section 4.9.5.2 for more details).
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Figure 4-15 READ MISS with Victim Timing Diagram, Pipelined Mode
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Figure 4-16 READ MISS with Victim Timing Diagram, Flow-Through Mode
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4.7.4 WRITE BLOCK

The WRITE BLOCK command is used to complete write operations to noncached
memory. The 21164PC asserts the WRITE BLOCK command, along with the
address at the start of asysclk cycle. Thefirst 16 bytes of dataand the int4 valid
signals are driven one cpu_clk cycle later, so that system interface can be assured a
one cpu_clk cycle minimum hold time when sampling data on the next sysclk edge.
If the system removes ownership of the cmd_h<3:0> bus, the 21164PC retains the
WRITE command and waits for bus ownership to be returned.

When the system takes the first part of the data, it asserts dack_h. This causes the
21164PC to drive the next 16 bytes of data on the same sysclk edge plus one
cpu_clk cycle delay.

If the system asserts cack_h, the 21164PC outputs the next command in the next
sysclk. Receipt of cack_h indicates to the 21164PC that the write operation will be
taken.

During each cycle, theint4_valid_h<3:0> signalsindicate which INT4 parts of the
write operation are really being written by the processor. For write operations to
noncached memory, only those INT4 with theint4_valid_h<n> signal asserted are
valid. See the definition for int4_valid_h<n>in Table 3-1.

Figure 4-17 shows the timing of a WRITE BLOCK command.
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Figure 4-17 WRITE BLOCK Timing Diagram
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4.8 System-Initiated Transactions

System commands to the 21164PC are driven on the cmd_h<3:0> signal lines.
Before driving these signal's, the system must gain control of the command and
address buses by using addr_bus req_h, as described in Section 4.9.1. The algo-
rithm used by the 21164PC for accepting system commands to be processed in paral-
lel by the 21164PC is presented in Section 4.8.1.

Note: Timing diagrams do not explicitly show tristated buses. For examples of
tristate timing, refer to Section 4.9.

4.8.1 Sending Commands to the 21164PC

The rules used by the CBU BIU to process commands sent by the system to the
21164PC are listed in Section 4.11.1.
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The 21164PC can hold two outstanding commands from the system at any time. The
agorithm used by the system to send commands to the 21164PC without overflow-
ing the two CBU BIU command buffers is shown in Figure 4-18.

Figure 4-18 Algorithm for System Sending Commands to the 21164PC
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4.8.2 Write Invalidate Protocol Commands

All 21164PC-based systemsthat use the write invalidate protocol are expected to use
the READ, FLUSH, and INVALIDATE commands to maintain cache coherency.
These commands are defined in Table 4-9.

Table 4-9 System-Initiated Interface Commands (Write Invalidate

Protocol)
cmd_h

Command <3:0> Description

NOP 0000 The NOP command is driven by the owner of the cmd_h<3:0>
bus when it has no tasks queued.

FLUSH 0001  Remove block from caches; return dirty data. The FLUSH com-
mand causes a block to be removed from the 21164PC cache sys-
tem.

If the block is not found, the 21164PC responds with NOACK.

If the block isfound and is clean, the 21164PC responds with
NOACK. Theblock isinvalidated in the Dcache and Bcache.

If the block isfound and is dirty, the 21164PC responds with
ACK/Bcache and the Bcache read operation beginsin the same
sysclk cycle asthe ACK. The block isinvalidated in the Dcache
and Bcache.

INVALIDATE 0010 Remove the block. When the system issuesthe INVALIDATE
command, the 21164PC probesits Bcache. If the block is found,
the 21164PC responds with ACK/Bcache and invalidates the
block. If the block is not found, the 21164PC responds with a
NOACK.

READ 0100 Read ablock. The READ command probes the Bcache to seeif
the requested block is present.

If the block is present and is dirty, the 21164PC responds with
ACK/Bcache and the Bcache read operation beginsin the same
sysclk cycle asthe ACK.

If the block is not present or is present and clean, the 21164PC
responds with aNOACK on addr_res h<1:0>.
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4.8.2.1 21164PC Responses to Flush-Based Protocol Commands

The system responds to flush-based protocol commands on addr_res h<1:0>, as
shown in Table 4-10.

Table 4-10 21164PC Responses to Flush-Based Protocol Commands

READ and FLUSH Commands

Bcache 21164PC Response

Bcache Miss NOACK

Bcache Hit, Not Dirty NOACK

Bcache Hit, Dirty ACK/Bcache
4.8.2.2 FLUSH

The FLUSH command is used to remove blocks from the 21164PC cache system.

Figure 4—19 shows the timing of a FLUSH transaction.

If the block is dirty, the 21164PC will respond with an ACK and the system must
read data from the cache usihack h to control the rate at which data is supplied,

and write it to memory.

In the timing diagram shown in Figure 4-19, the cache block state changes from

DIRTY, VALID to DIRTY, VALID . When the block state changes to VAl libe
state of DIRTY does not matter.

If the block is clean, the 21164PC invalidates both the Dcache and Bcache and
responds to the system with a NOACK. If the block is not found, the 21164PC
responds to the system with a NOACK.

The system probe is performed in private mode, and if data is found dirty in the

Bcache, the subsequent tag invalidate and data movement are performed in system

mode.

When using the pipelined SSRAMs, the data output register delays the data an addi-

tional sysclk cycle. When the CBOX_CONFIG<BC_REG_REG> bit is set, the
data_ram_oe | deassertion is delayed an additiosyatlk cycle to allow the system
ample time to sample the delayed Bcache read data.
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Figure 4-19 FLUSH Timing Diagram (Bcache Hit) Flow-Through SSRAM
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4.8.2.3 INVALIDATE

The INVALIDATE command can be used to remove a block from the cache system.
Unlike the FLUSH command, any modified datawill not be read. The Bcache is

probed and invalidated if the block is found. Figure 4—20 shows the timing of an
INVALIDATE transaction. Both the system probe and the invalidate are performed
in private mode to reduce overall latency.

Figure 4-20 INVALIDATE Timing Diagram — Bcache Hit
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4.8.2.4 READ

The READ command is used by the system to read dirty datafrom the 21164PC. The
tag control status does not change. Figure 4-21 shows the timing and tag control sta-
tus of a read transaction.
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When using the pipelined SSRAMSs, the data output register delays the data an addi-
tional sysclk cycle. When the CBOX_CONFIG<BC_REG_REG> hit is set, the
data_ram_oe | deassertion is delayed an additional sysclk cycleto alow the system
ample time to sample the delayed Bcache read data.

Figure 4-21 READ Timing Diagram (Bcache Hit) Flow-Through SSRAM
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4.9 Data Bus and Command/Address Bus Contention

The data bus is composed of data_h<127:0> and Iw_parity _h<3:0>. The com-
mand/address bus is composed of cmd_h<3:0> and addr_h<39:4>,

The following sections describe situations that have contention for use of the data
bus or contention for use of the command/address bus.

49.1 Command/Address Bus

Figure 4-22 shows the 21164PC and the system alternately driving the command/
address bus. If signatidr_bus req_h is asserted at the rising edgesgdclk N, the

next cycle on the command/address bus belongs to the system. The 21164PC turns
off its drivers at the rising edge sfsclk N. While the system must turn on its driv-

ers betweesysclk N andsysclk N+1, it must ensure that the drivers do not turn on
before the 21164PC drivers turn off. The 21164PC samples the state of the com-
mand/address bus at the endyaclk N+1. If addr_bus req_h remains asserted,

the system should continue to drive the command/address bus.

Figure 4-22 Driving the Command/Address Bus
N N+1 N+2

' ' '

addr_bus_req_h / \

21164PC Drive > (

System Drive —<

21164PC Sample Point —1

N

MK145503B

To pass control of the command/address bus back to the 21164PC, the system should
turn off its drivers during asysclk cycle and deassert addr_bus req_h. The
21164PC does not sample the state of the busif addr_bus req_h is deasserted. The
21164PC drives the command/address bus at the rising edge of sysclk N+2.
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4.9.2 Read/Write Spacing—Data Bus Contention

The data bus, data_h<127:0>, can be driven by the 21164PC, the Bcache array, or
the system.

In the case of private Bcache write operations followed by private Bcache read oper-
ations, the 21164PC stops driving the data buswell in advance of the Bcache turning
on.

For private Bcache read operations followed by private Bcache write operations, the
21164PC inserts a programmable number of cpu_clk cycles between the read and
the write operation (controlled by CBOX_CONFIG<BC_RW_OFF>). Thisalows
time for the Bcache driversto turn off before the 21164PC data drivers are turned on.

4.9.3 Using idle_bc_h and fill_h

The 21164PC usestheidle_bc_h and fill_h signalsto fill datainto the Bcache. The
system must assert theidle_bc_h signal early enough to ensure that the 21164PC
completes any private Bcache transaction it might have started while waiting for the
fill data.

Signal fill_h is asserted a fixed number of sysclk cycles before the start of afill
transaction.

At the end of thefill, the 21164PC waitsfive cpu_clk cyclesbefore starting aread or
write operation. This time should alow the system to turn off its drivers. If, in prac-
tice, thisis not enough time, the system may assert data_bus req_h to gain addi-
tional cycles.

Calculating Time to Assertidle_bc_h
Theidle_bc_time equation, for calculating the number of sysclk cycles that
idle_bc_h must sample prior to fill data being driven, can be expressed as:

idle_cpu_cycles = (4 + BC_RD _LATENCY + BC CLK_RATIO + tristate_ramturn_off);
Al'l val ues expressed as # of cpu cycles

idle_bc_time ROUNDUP(i dl e_cpu_cycles / sysclk_ratio);

Al'l val ues expressed as # of sysclk cycles
When determining the tristate turnoff times, if the system will not turn on its drivers

for some number of nanoseconds after the 21164PC starts driving Bcache
index_h<21:4>; this time can be used to reduce the tristate_turn_off time.
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For example, if the sysclk ratio is 7, the Bcache read latency is 5, thebc _clk ratiois
3, and two cycles are necessary for tristate turnoff, then the equations would work
out to:

N-2 N-1 N

| i ¢ ¢

T S AVAVAVAVAVAVAVAVAVaAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVA'

| -=—— 7 —|sysclk ratio
sys_clk / \ / \ / \ / \
idle_bc_h / \
fill_h / \
data_h<127:0> Private Read ><>Q<><>< Fill Data
|=— 4 *‘ bc_read_latency | 2 |turnoff
S <
bc_clk_ratio

data_ram_oe_| /

[~ 3 > bc_clk_ratio

st_clk N\ N —

idle_cpu_cycles = 4 + bc_rd_latency + bc_clk_ratio +
tristate_ramturn_off

4 +5+ 3+ 2

14 CPU cycl es
ROUNDUP( 14/ 7)

idle_bc_time(sysclk)

2 syscl k cycles

This requires idle_bc_h to be sanpled two sysclk cycles before the fill data
is driven.

4.9.4 Using data_bus_req_h

Thesignal data_bus req_h can be used along with theidle_bc_h signal to prevent
the 21164PC and the Bcache from driving the data bus. In general, the system should
not need to use thisfeature but it may be useful if the system places other devices on
the data bus. Figure 4—23 shows an example of this timing.
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To gain control of the data bus, the system must ensure that the Bcacheisidle by
asserting idle_bc_h for the required time. It can then assert data_bus req_h. If
data bus req_h isreceived asserted at the rising edge of sysclk N, the 21164PC
stops driving the bus on the rising edge of sysclk N+1.

To return the bus to the 21164PC, the system should deassert data_bus req_h and
then deassert idle_bc_h on the next sysclk.

Figure 4-23 Using data_bus_req_h
N N+1

sys_clk_outl_h |

idle_bc_h _J |
data_bus_req_h | |

21164PC Drive >—<

PCAO015

4.9.5 Tristate Overlap

Theaddr_h<39:4>, cmd_h<3:0>, data_h<127:0>, and tag_data h<32:19> buses
must be operated in such away that no more than one driver may drive the bus at a

time. This section describes particular cases where tristate overlap may be aproblem
that needs to be corrected using features described in previous sections.

The “owner” of each bus must drive the bus to some value for each cycle. Tristate
drivers in the 21164PC turn on and off very fast (in the 0.5-ns to 1.0-ns range). At the
other end of the range, SSRAM memory devices turn on and off slowly (in the 4.0-ns
to 7.0-ns range). Generally, system drivers fall somewhere in the middle.

4.9.5.1 Private READ or WRITE to FILL

The time required to tristate the 21164PC drivers at the end of a WRITE command,
or the Bcache drivers at the end of a READ command is part aflthéc_h equa-
tion.
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4.9.5.2 System READ to FILL (System WRITE) Spacing

The time to turn off the Bcache drivers at the end of a system READ (Bcache victim

or system command with data movement) is fixed by the 21164PC design (refer to

Figure 4—24). The CBOX_CONFIG<BC_REG_REG> bhit is set when using pipe-
lined SSRAMSs, which delays the deassertiodath ram_oe | by onesysclk cycle

after the detection of the findack_h. When the bit is clear (for use with flow-

through SSRAMs)data_ram_oe | is deasserted ormpu_clk cycle after the detec-

tion of the finaldack _h. The system must allow time fdata ram_oe | to turn off

and the RAMSs to stop driving the bus, before the system drives fill data to avoid data
bus contention.

Figure 4-24 System READ to FILL Spacing
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4.9.5.3 FILL to Private READ or WRITE Operation

At the end of thefill, the 21164PC does not begin to drive the data bus until the fifth
cpu_clk cycle after the sysclk that loads the last dack_h (refer to Figure 4—-25). The
21164PC does not assdeta ram_oe | until the fifth cycle after theysclk that
loads the lastlack_h.

Systems requiring more time to turn off their drivers must not send any more
requests and must ugle_bc_h anddata_bus req_h at the end of the fill to pro-
vide adequate write-to-read spacing to avoid data bus contention.

Figure 4-25 FILL to Private READ or WRITE Operation
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4.10 21164PC Interface Restrictions
This section lists restrictions on the use of 21164PC interface features.

4.10.1 Fill Operations After Other Transactions

For a system Bcache read operation (Bcache victim or a system-initiated data move-
ment) followed by afill operation, the earliest assertion of fill_h by the systemis
dependent upon the CBOX_CONFIG<BC_REG_REG> hit to avoid aread-to-write
data bus contention. When the BC_REG_REG hit is set, the 21164PC will deassert
data_ram_oe | afull sysclk cycle after the final dack_h is detected to allow the
system adequate time to sample the Bcache read data. See Section 4.9.5.2 for timing
diagrams and assumptions that must be met by the system.
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For aWRITE BLOCK operation followed by afill operation, the earliest point the
system can assert thefill_h signal is at the sysclk after the last assertion of dack _h.

Fill operations followed by fill operations are specia cases. Fill operations can be
pipelined back-to-back so that 100% of the data bus bandwidth can be used.

4.10.2 Command Acknowledge for WRITE BLOCK Commands

When the 21164PC requests aWRITE BLOCK operation, the system can acknowl-
edge the data by asserting dack _h before asserting cack_h. The system must assert
cack_h no later than the last assertion of dack_h.

4.11 21164PC/System Race Conditions

When certain sequences of transactions occur on the interface between the 21164PC,
the Bcache, and the system, race conditions may occur. The rules for use of the inter-
face by the 21164PC and the system are listed in Section 4.11.1.

Examples of race conditions to be avoided are described and illustrated in
Section 4.11.2 through Section 4.11.6.

4.11.1 Rules for 21164PC and System Use of External Interface

This section lists the rules for determining the order in which 21164PC and system
requests are allowed by the CBU BIU. In genera, the order allowed is determined by
use of cmd_h<3:0>, idle_bc_h, and fill_h.

1. Ifidle_bc_hisnot asserted and there are no valid requests in the BIU command
buffer, then the BIU is free to perform any 21164PC request.

2. If afill transaction is pending, the BIU only produces another READ MISS com-
mand, with a possible BCACHE VICTIM command. The BIU will not attempt
any other command.

3. Theassertion of idle_bc_h, or the sending of asystem command other than NOP
to the 21164PC, causes the BIU toidle. If the BIU has a command loaded in the
pad ring, it removes the command and replaces it with a NOP command. The
state of cmd_h<3:0> is unpredictable until the idle condition ends.

4. Theidle condition ends when the 21164PC receives adeasserted idle_bc_h, and
the 21164PC has responded to all the system commands that were sent.

5. The system must not assert cack_h during the idle condition.

29 September 1997 — Subject To Change Clocks, Cache, and External Interface 4-51



21164PC/System Race Conditions

6. Thereisoneexceptiontorules3, 4, and 5. If idle_bc_h or a system command
arrives while the 21164PC is reading the Bcache, and that read transaction turns
into aread miss transaction, and it does not produce a victim, then the 21164PC
|oads the missinto the pad ring. The system may assert cack_h for this read miss
request at any time.

7. If cack_h isasserted at the sametime asidle bc _h or avalid system request,
cack_h wins and the command istaken by the system. Signal cack _h should not
be asserted if idle_bc_h has been asserted or avalid system command is under

way.

8. A read misswith aBcache victim transaction is treated as an atomic pair. If the
READ MISS command is acknowledged with cack _h, then the BCACHE VIC-
TIM command must be acknowledged with cack_h and all the data acknowl-
edged with dack_h, before the 21164PC responds to any other request. The
system must also guarantee that once the read miss operation has been cacked,
system commands or fill transactions are not started until the read miss/Bcache
victim pair have completed.

9. The cack_h acknowledgment for awrite block or Bcache victim transaction
must be received by the 21164PC with or before the last dack _h acknowledg-
ment of the data. For write block and Bcache victim transactions, it is possible to
acknowledge all but the last data, and then decide to do something else.

10. For aread misstransaction, cack _h must be received with or before the last data
acknowledgment (dack _h) for the requested fill operation.
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4.11.2 READ MISS with Victim Aborted by FILL Example

In Figure 4-26, the 21164PC asserts a READ MISS command with a victim. The
system assertiack _h for two data cycles received from the Bcache and then asserts
idle_bc_h. This causes the 21164PC to remove the READ MISS command with vic-
tim pending. The 21164PC reasserts the READ MISS and BCACHE VICTIM com-
mands, if needed, at a later time.

Figure 4-26 READ MISS with Victim Aborted by FILL Example
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4.11.3 idle_bc_h and cack_h Race Example

In Figure 4-27idle_bc_h andcack_h are asserted in the sasysclk cycle. The
system takes the READ MISS and BCACHE VICTIM commands before doing any-

thing else. The lagstack_h meets the requirement that tteek_h arrive before or
with the lastdack_h.

Figure 4-27 idle_bc_h and cack_h Race Examples
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4.11.4 READ MISS with idle_bc_h Asserted Example

In Figure 4-28, the 21164PC has started a Bcache read operation that misses. The
signalidle_bc_h is asserted, but no victim was created, so the read miss request is
loaded into the pad ring. The system then takes the request.

Figure 4-28 READ MISS with idle_bc_h Asserted Example
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4.11.5 READ MISS with Victim Aborted by System Command Example

In Figure 4-29, the 21164PC produces a READ MISS command with a victim and is
waiting for the system to take it when the system takes the bus and requests a flush
transaction. The 21164PC drives the read miss request for one more cycle after it
gets command of the bus and then removes the request. The 21164PC then responds
to the FLUSH command and driveslex_h<21:4> to read the Bcache. The

21164PC restarting the Bcache read operation, requesting the read miss with victim,
is not shown in the timing diagram. If the victim block was invalidated by the system
request, the 21164PC produces a clean read miss transaction.

Figure 4-29 READ MISS with Victim Abort Example
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4.11.6 Bcache Hit Under READ MISS Example

In Figure 4-30, the 21164PC produces a read miss transaction and requests a fill
from the system. A Bcache hit to index j take places while waiting for the fill. The
system then returns the requested data in two bursts, assadint) at the same

time as the last assertionadck h.

Figure 4-30 Bcache Hit Under READ MISS Example
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4.12 Data Integrity and Bcache Errors

Mechanisms for ensuring that errors on data received by the 21164PC from the
Bcache, the system, or both are described in this section. Tag data errors are also
described.

4.12.1 Data Parity

The 21164PC supports INT4 parity protection on the data bus for the external
Bcache and memory system. When the 21164PC drives data to memory, it generates
longword parity and placesit on lw_parity h<3:0> for write operations. Parity is
checked for read operations. Parity for data_h<31:0> isdriven on signa
Iw_parity_h<0> and so on.
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4.12.2 Bcache Tag Data Parity

Thesignal linetag_data par_h isused to maintain parity over
tag_data h<32:19>, tag_valid_h, and tag_dirty_h. A Bcache tag data parity error
is usualy not recoverable.

A Bcache hit is determined based on the tag alone, not the tag parity bit. The CBU
records the Bcache probe address and the tag value read from the Bcache. A tag data
parity error causes atrap to privileged architecture library code (PALcode), which
handles the error condition.

4.12.3 Fill Error

Thesigna fill_error_h is asserted by the system to notify the 21164PC that afill
error has occurred.

In systemsin which afill error timeout is not expected, such asasmall system with
fixed accesstime, it islikely that the 21164PC internal IDU timeout logic would
detect astall if the system fails to complete afill transaction.

Systems in which afill error timeout could occur should contain logic to detect fill
timeouts and cleanly terminate the transaction with the 21164PC.

To properly terminate afill in an error case, thefill_error_h lineis asserted for one
cycle and the normal fill sequence involving linesfill_h, fill_id_h, and dack_h is
generated by the system.

Asserting fill_error_h forces atrap to the PALcode at the MCHK entry point but
has no other effect.

4.13 Interrupts

4-58

The 21164PC has seven interrupt signalsthat have different uses during initialization
and normal operation.

Figure 4-31 shows the 21164PC interrupt signals.

Figure 4-31 21164PC Interrupt Signals
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4.13.1 Interrupt Signals During Initialization

The 21164PC interrupt signals work in tandem with the sys reset_| signa to set the
values for clock ratios and clock delays. During initialization, the 21164PC reads
system clock configuration parameters from the interrupt pins. Section 4.2.2 and
Section 4.2.3 describe how the interrupt signals are used to set system clock values
when the system isinitialized.

4.13.2 Interrupt Signals During Normal Operation

During normal operation, interrupt signals indicate interrupt requests from external
devices such as the real-time clock and 1/O controllers.

4.13.3 Interrupt Priority Level

Table 4-11 shows which interrupts are enabled for a given interrupt priority level
(IPL). An interrupt is enabled if the current IPL is less than the target IPL of the

interrupt.

Table 4-11 Interrupt Priority Level Effect (Sheet 1 of 2)
Interrupt Source Target IPL Source
Software Interrupt Request 1 1 Internal
Software Interrupt Request 2 2 Internal
Software Interrupt Request 3 3 Internal
Software Interrupt Request 4 4 Internal
Software Interrupt Request 5 5 Internal
Software Interrupt Request 6 6 Internal
Software Interrupt Request 7 7 Internal
Software Interrupt Request 8 8 Internal
Software Interrupt Request 9 9 Internal
Software Interrupt Request 10 10 Internal
Software Interrupt Request 11 11 Internal
Software Interrupt Request 12 12 Internal
Software Interrupt Request 13 13 Internal
Software Interrupt Request 14 14 Internal
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Table 4-11 Interrupt Priority Level Effect (Sheet 2 of 2)

Interrupt Source Target IPL Source

Software Interrupt Request 15 15 Internal

Asynchronous system trap ATR pending (for 2 Internal

current or more privileged mode)

Performance counter interrupt 29 Internal

Powerfail interrupt! 30 pwr_fail_irq_h

System machine check interrupt? 31 sys mch_chk_irg_h
and internal

External interrupt 20* 202 irq_h<0>

External interrupt 211 212 irq_h<1>

External interrupt 221 222 irq_h<2>

External interrupt 231 232 irgq_h<3>

Halt!

Seria line interrupt

Masked only by exe- mch_hlt_irq_h
cuting in PALmode.

Masked only by exe- Internal
cuting in PALmode.

1 These interrupts are from external sources. In some cases, the system environment provides the
logic-OR of multiple interrupt sources at the same |PL to a particular pin.
2 The external interrupts 20-23 are separately maskable by setting the appropriate bitsin the ICSR

register.

When the processor receives an interrupt request and that request is enabled, an
interrupt is reported or delivered to the exception logic if the processor is not cur-
rently executing PALcode. Before vectoring to the interrupt service PAL dispatch
address, the pipelineis completely drained to the point that instructionsissued before
entering the PAL code cannot trap (implied TRAPB).

The restart address is saved in the exception address (EXC_ ADDR) IPR and the
processor enters PALmode. The cause of the interrupt can be determined by examin-
ing the state of the INTID and ISR registers.

Hardware interrupt requests are level-sensitive and, therefore, may be removed
before an interrupt is serviced. PAL code must verify that the interrupt actually indi-
cated in INTID isto be serviced at an IPL higher than the current IPL. If it is not,
PAL code should ignore the spurious interrupt.
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Internal Processor Registers

This chapter describes the 21164PC microprocessor internal processor registers
(IPRs). It is organized as follows:

* Instruction fetch/decode unit and branch unit (IDU) IPRs
* Memory address trandation unit (MTU) IPRs

e Cache control and bus interface unit (CBU) IPRs

* PAL storageregisters

* Restrictions

IDU, MTU, data cache (Dcache), and PALtemp IPRs are accessible to PAL code by
means of the HW_MTPR and HW_MFPR instructions. Table 5-1 lists the IPR num-
bers for these instructions.

CBU and backup cache (Bcache) IPRs are accessible in the physical address region
FF FFFO 0000 to FF FFFF FFFF. Table 5-25 summarizes the CBU and Bcache IPRs.
Table 5-31 lists restrictions on the IPRs.

Note: Unless explicitly stated, IPRs are not cleared or set by hardware on chip
or timeout reset.

Table 5-1 IDU, MTU, Dcache, and PALtemp IPR Encodings (Sheet 1 of 4)

IPR Mnemonic Access Index,g  IDU Slots to Pipe

IDU_IPRs

ISR R 100 El

ITB_TAG w 101 El

ITB_PTE R/W 102 El

ITB_ASN R/W 103 El
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Table 5-1 IDU, MTU, Dcache, and PALtemp IPR Encodings (Sheet 2 of 4)

IPR Mnemonic Access Index,;g  IDU Slots to Pipe
ITB_PTE_TEMP R 104 El
ITB_IA W 105 El
ITB_IAP W 106 El
ITB_IS W 107 El
SIRR R/W 108 El
ASTRR R/W 109 El
ASTER R/W 10A El
EXC_ADDR R/W 10B El
EXC_SUM R/WOC 10C El
EXC_MASK R 10D El
PAL_BASE R/W 10E El
ICM R/W 10F El
IPLR R/W 110 El
INTID R 111 El
IFAULT_VA_FORM R 112 El
IVPTBR R/W 113 El
HWINT_CLR w 115 El
SL_XMIT w 116 E1l
SL_RCV R 117 E1l
ICSR R/W 118 E1l
IC_FLUSH_CTL w 119 E1l
ICPERR_STAT R/W1C 11A E1l
PMCTR R/W 11C E1l

PALtemp_IPRs
PALtempO R/W 140 El
PALtempl R/W 141 El
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Table 5-1 IDU, MTU, Dcache, and PALtemp IPR Encodings (Sheet 3 of 4)

IPR Mnemonic Access Index,;g  IDU Slots to Pipe
PALtemp2 R/W 142 El
PALtemp3 R/W 143 El
PALtemp4 R/W 144 El
PALtemp5 R/W 145 El
PALtemp6 R/W 146 El
PALtemp7 R/W 147 El
PALtemp8 R/W 148 El
PALtemp9 R/W 149 El
PALtempl10 R/W 14A El
PALtempll R/W 14B El
PALtempl12 R/W 14C El
PALtempl13 R/W 14D El
PALtempl4 R/W 14E El
PALtempl15 R/W 14F El
PALtempl6 R/W 150 El
PALtempl7 R/W 151 El
PALtempl8 R/W 152 El
PALtempl19 R/W 153 El
PALtemp20 R/W 154 El
PALtemp21 R/W 155 El
PALtemp22 R/W 156 El
PALtemp23 R/W 157 El
MTU_IPRs

DTB_ASN w 200 EO
DTB_CM w 201 EO
DTB_TAG w 202 EO
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5-4

Table 5-1 IDU, MTU, Dcache, and PALtemp IPR Encodings

(Sheet 4 of 4)

IPR Mnemonic Access Index,;g  IDU Slots to Pipe
DTB_PTE R/W 203 EO
DTB_PTE_TEMP R 204 EO
MM_STAT R 205 EO
VA R 206 EO
VA_FORM R 207 EO
MVPTBR W 208 EO
DTB_IAP W 209 EO
DTB_IA W 20A EO
DTB_IS W 20B EO
ALT_MODE W 20C EO
CcC w 20D EO
CC_CTL w 20E EO
MCSR R/W 20F EO
DC_FLUSH w 210 EO
DC_PERR_STAT R/W1C 212 EO
DC_TEST_CTL R/W 213 EO
DC_TEST_TAG R/W 214 EO
DC_TEST_TAG_TEMP R/W 215 EO
DC_MODE R/W 216 EO
MAF_MODE R/W 217 EO

Internal Processor Registers
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Instruction Fetch/Decode Unit and Branch Unit (IDU) IPRs

5.1 Instruction Fetch/Decode Unit and Branch Unit (IDU) IPRs

The IDU internal processor registers (IPRs) are described in Section 5.1.1 through
Section 5.1.27.

5.1.1 Istream Translation Buffer Tag (ITB_TAG) Register (101)

ITB_TAG isawrite-only register written by hardware on an ITBMISS/IACCVI0,
with thetag field of the faulting virtual address. To ensure the integrity of the
instruction trand ation buffer (ITB), the TAG and page table entry (PTE) fields of an
ITB entry are updated simultaneously by awrite operation to the ITB_PTE register.
Thiswrite operation causes the contents of the ITB_TAG register to be written into
the tag field of the ITB location, which is determined by a not-last-used replacement
algorithm. The PTE field is obtained from the HW_MTPR ITB_PTE instruction.
Figure 5-1 shows the ITB_TAG register format.

Figure 5-1 Istream Translation Buffer Tag (ITB_TAG) Register

31 1312 00

LJ-03473.A14

5.1.2 Instruction Translation Buffer Page Table Entry (ITB_PTE)
Register (102)

ITB_PTE isaread/write register.

Write Format

A write operation to this register writes both the PTE and TAG fields of an ITB loca
tion determined by a not-last-used replacement algorithm. The TAG and PTE fields
are updated simultaneoudly to ensure the integrity of the ITB. A write operation to
the ITB_PTE register increments the not-last- used (NLU) pointer, which alows for
writing the entire set of ITB PTE and TAG entries. If the HW_MTPR ITB_PTE
instruction falsin the shadow of a trapping instruction, the NLU pointer may be
incremented multiple times. The TAG field of the ITB location is determined by the
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contents of the ITB_TAG register. The PTE field is provided by the HW_ MTPR
ITB_PTE instruction. Write operations to this register use the memory format bits,

as described in the Alpha AXP Architecture Reference Manual. Figure 5—-2 shows the
ITB_PTE register write format.

Figure 5-2 Instruction Translation Buffer Page Table Entry (ITB_PTE) Register
Write Format

31 12 1110 09 08 07 06 05 04 03 00

T T T T T T T T T T T T T I T
IGN IGN
S Y O B Y W
I—ASM
t————GH
IGN
KRE
ERE
SRE
URE

63 59 58 32
rrrrrrrrr T T T T T T T T T T T T T
IGN PFN<39:13>
S e S S e s A o

LJ-03474.A14

Read Format

A read of the ITB_PTE requires two instructions. A read of the ITB_PTE register
returns the PTE pointed to by the NLU pointer to the ITB_PTE_TEMP register and
increments the NLU pointer. If the HW_MFPR ITB_PTE instruction fallsin the
shadow of atrapping instruction, the NLU pointer may be incremented multiple
times. A zero value isreturned to the integer register file. A second read of the
ITB_PTE_TEMP register returns the PTE to the general-purpose integer register file
(IRF). Figure 5-3 shows the ITB_PTE register read format.

Figure 5-3 Instruction Translation Buffer Page Table Entry (ITB_PTE) Register
Read Format

31 29 28 22 212019 18 17 14 13 12 00
T TT \ \ T T \ T T T T T T T T T T
RAZ
| | \ \ [ | \ | I Y
ASM
KRE
ERE
SRE
URE
GHD<2:0>
63 59 58 32

T T rrrrrrrrrrrT T T T T T T T T T T T T T
PFN<39:13>
L1 1| )

LJ-03475.A14
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5.1.3 Instruction Translation Buffer Address Space Number (ITB_ASN)
Register (103)

ITB_ASN isaread/write register that contains the address space number (ASN) of
the current process. Figure 5—4 shows the ITB_ASN register format.

Figure 5-4 Instruction Translation Buffer Address Space Number (ITB_ASN)

Register

31 1110 04 03 00
I O N O O

RAZ/IGN ASN<6:0> RAZ/IGN
T Y Y I O
63 32
I O O B B I

RAZ/IGN

I e O O O

1.J-03476.A14

5.1.4 Instruction Translation Buffer Page Table Entry Temporary
(ITB_PTE_TEMP) Register (104)

ITB_PTE_TEMP isaread-only holding register for ITB_PTE read data. A read of
the ITB_PTE register returns data to this register. A second read of the
ITB_PTE_TEMP register returns data to the general-purpose integer register file
(IRF). Figure 5-3 shows the ITB_PTE register format.

Table 5-2 shows the GHD settings for the ITB_PTE_TEMP register.

Table 5-2 Granularity Hint Bits in ITB_PTE_TEMP Read Format

Name Extent Type Description

GHD <29> RO Set if granularity hint equals 01, 10, or 11.
GHD <30> RO Set if granularity hint equals 10 or 11.
GHD <31> RO Set if granularity hint equals 11.

5.1.5 Instruction Translation Buffer Invalidate All Process (ITB_IAP)
Register (106)

ITB_IAP is a write-only register. Any write operation to this register invalidates all
ITB entries that have an address space match (ASM) bit that equals zero.
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5.1.6 Instruction Translation Buffer Invalidate All (ITB_IA) Register (105)

ITB_IA isawrite-only register. A write operation to this register invalidates all ITB
entries, and resets the ITB not-last-used (NLU) pointer to itsinitial state. RESET
PAL code must execute an HW_MTPR ITB_IA instruction in order to initialize the
NLU pointer.

5.1.7 Instruction Translation Buffer IS (ITB_IS) Register (107)

ITB_ISisawrite-only register. Writing a virtual address to this register invalidates
the ITB entry that meets either of the following criteria:

* AnITB entry whose virtua address (VA) field matches ITB_1S<42:13> and
whose ASN field matches ITB_ASN<10:04>.

* AnITB entry whose VA field matches ITB_1S<42:13> and whose ASM bit is
Set.

Figure 5-5 shows the ITB_IS register format.

Figure 5-5 Instruction Translation Buffer IS (ITB_IS) Register

31 1312 00

63 43 42 32
T T T
[ |

VA<42:13>

1.1-03478 Al4
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5.1.8 Formatted Faulting Virtual Address (IFAULT_VA_FORM)
Register (112)

IFAULT_VA_FORM isaread-only register containing the formatted faulting virtual
addresson an ITBMISS/IACCVIO (except on IACCVI10s generated by sign-check
errors). The formatted faulting address generated depends on whether NT superpage
mapping is enabled through ICSR bit SPE<0>. Figure 5-6 shows the
IFAULT_VA_FORM register format in non-NT mode.

Figure 5-6 Formatted Faulting Virtual Address (IFAULT_VA_FORM) Register

(NT_Mode=0)
31 0302 00

L VA<42:13>

LJ-03479.A14

Figure 5-7 shows the IFAULT_VA_ FORM register format in NT mode.

Figure 5-7 Formatted Faulting Virtual Address (IFAULT_VA_FORM) Register
(NT_Mode=1)
313029 22 21 0302 00

N S S N s s e I I I
[ VPTB<63:30>

1.1-03480.A14
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5.1.9 Virtual Page Table Base (IVPTBR) Register (113)

IVPTBR is aread/write register. Bits <32:30> are UNDEFINED on aread of this
register in non-NT mode. Figure 5-8 shows the IVPTBR register format in non-NT
mode.

Figure 5-8 Virtual Page Table Base (IVPTBR) Register (NT_Mode=0)

313029 00
\ et
IGN RAZ/IGN
| e e o
63 33 32
et |
VPTB<63:33> G
S I I I I I I | N

MA0602.Al4

Figure 5-9 shows the IVPTBR register format in NT mode.

Figure 5-9 Virtual Page Table Base (IVPTBR) Register (NT_Mode=1)
3130 29 00
\ et

I S I S e A A A A
\ VPTB<63:30>

LJ-03481.A14
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5.1.10 Icache Parity Error Status (ICPERR_STAT) Register (11A)

ICPERR_STAT is aread/write register. The |cache parity error status bits may be
cleared by writing a 1 to the appropriate bits. Figure 5-10 and Table 5-3 describe the
ICPERR_STAT register format.

Figure 5-10 Icache Parity Error Status (ICPERR_STAT) Register

31 1312 1110 00
T T T T T
RAZ/IGN ‘RA‘Z/IGN
| 1 |
’ l DPE
TPE
TMR
63 32
N O O A IR N R O O O R R
RAZ/IGN
e e e e s

LJ-03482.A14

Table 5-3 Icache Parity Error Status Register Fields

Name Extent Type Description

DPE <11> wicC Data parity error

TPE <12> wicC Tag parity error

TMR <13> wicC Timeout reset error or cfail_h/no cack _h error

5.1.11 Icache Flush Control (IC_FLUSH_CTL) Register (119)

IC_FLUSH_CTL isawrite-only register. Writing any vaue to this register flushes
the entire Icache.
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5.1.12 Exception Address (EXC_ADDR) Register (10B)

EXC_ADDR isaread/write register used to restart the system after exceptions or
interrupts. The HW_REI instruction causes areturn to the instruction pointed to by
the EXC_ADDR register. This register can be written both by hardware and soft-
ware. Hardware write operations occur as aresult of exceptions/interrupts and
CALL_PAL instructions. Hardware write operations that occur as aresult of excep-
tiong/interrupts take precedence over all other write operations.

In case of an exception/interrupt, hardware writes a program counter (PC) to thisreg-
ister. In case of precise exceptions, thisisthe PC value of the instruction that caused
the exception. In case of imprecise exceptiong/interrupts, thisis the PC value of the
next instruction that would have issued if the exception/interrupt was not reported.

In case of a CALL_PAL instruction, the PC value of the next instruction after the
CALL_PAL iswrittento EXC_ADDR.

Bit <00> of thisregister isused to indicate PALmode. On aHW_REI instruction, the
mode of the system is determined by bit <00> of EXC_ADDR. Figure 5-11 shows
the EXC_ADDR register format.

Figure 5-11 Exception Address (EXC_ADDR) Register
31 00

L PAL
RAZ/IGN

1.1-03483.A14

5.1.13 Exception Summary (EXC_SUM) Register (10C)

EXC_SUM isaread/write register that records the different arithmetic traps that

occur between EXC_SUM write operations. Any write operation to this register

clears bits <16:10>. Figure 5-12 and Table 5-4 describe the EXC_SUM register for-
mat.
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Figure 5-12 Exception Summary (EXC_SUM) Register

31

17 16 1514 13 12 1110 09 00

B swe
INV
DZE
FOV
UNF
INE
10V

LJ-03484.A14

Table 5-4 Exception Summary Register Fields

Name

Extent

Type

Description

SWC

INV
DZE
FOV
UNF
INE
[e)Y]

<10>

<11>
<12>
<13>
<14>
<15>
<16>

WA

WA
WA
WA
WA
WA
WA

Indicates software completion possible. This hit is set after a
floating-point instruction containing the /S modifier com-
pletes with an arithmetic trap, and if al previous floating-
point instructions that trapped since the last HW_MTPR
EXC_SUM instruction also contained the /S modifier.

The SWC hit is cleared whenever afloating-point instruction
without the /S modifier completes with an arithmetic trap.
The bit remains cleared regardless of additional arithmetic
traps until the register is written by an HW_ MTPR instruc-
tion. The bit is always cleared upon any HW_MTPR write
operation to the EXC_SUM register.

Indicates invalid operation.
Indicates divide by zero.

Indicates floating-point overflow.
Indicates floating-point underflow.
Indicates floating inexact error.

Indicates floating-point execution unit (FEU) convert to inte-
ger overflow or integer arithmetic overflow.

29 September 1997 — Subject To Change
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5.1.14 Exception Mask (EXC_MASK) Register (10D)

EXC_MASK isaread/write register that records the destinations of instructions that
have caused an arithmetic trap between EXC_MASK write operations. The destina-
tion is recorded as a single bit mask in the 64-bit IPR representing FO—F31 and
10-131. A write operation to EXC_ SUM clears the EXC_MASK register.

Figure 5-13 shows the EXC_MASK register format.

Figure 5-13 Exception Mask (EXC_MASK) Register

31 00
rrrrrrerrrrrrrrrrrr T T T T T T
131130 129 ..... 1110
e e s
63 32
rrrrrrrrrrrrrrrrr T T T T T
F31 F30 F29 ..... F1 FO

e S A e

LJ-03485.Al4
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5.1.15 PAL Base Address (PAL_BASE) Register (10E)

PAL_BASE is aread/write register containing the base address for PALcode. The
register is cleared by hardware on reset. Figure 5-14 shows the PAL_BASE register
format.

Figure 5-14 PAL Base Address (PAL_BASE) Register
31 1413 00

rrrrrorrorrrrrrrrprr T T T T
i A A 1 Y

63 40 39 32

et T T T T
?AZ“G]N}] ]PA}L_E?AS}Eng:}JAT

1.1-03486 Al4

5.1.16 IDU Current Mode (ICM) Register (10F)

ICM isaread/write register containing the current mode bits of the architecturally
defined processor status, as described in the Alpha AXP Architecture Reference
Manual. Figure 5-15 shows the ICM register format.

Figure 5-15 IDU Current Mode (ICM) Register
31 05 04 03 02 00

rrrrrrrrrr T T T T T T [

e e e | |
I—RAZ/IGN
CMO

CM1

rrrrrrrrrrrrrrererrrrrrrr T T T T T T T T T
RAZ/IGN
| |

LJ-03487.Al4
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5.1.17 IDU Control and Status (ICSR) Register (118)

ICSR isaread/write register containing IDU-related control and status information.
Figure 5-16 and Table 5-5 describe the ICSR register format.

Figure 5-16 IDU Control and Status (ICSR) Register

31 30 29 28 27 26 25 24 23 20 19 18 17 16 10 09 08 07 00

! L L ! T Tl
IRAIZ/|IGN | I?AZI/IGII\I |

PME<1:0>
RSV

MBZ
MVE
IMSK<3:0>
TMM
TMD

FPE

HWE
SPE<1:0>
SDE
RAZ/IGN

63 40 39 38 37 36 35 34 33 32

MBZ
SLE
FMS
FBT
FBD
MBO
ISTA
TST

HLO001B

e

Table 5-5 IDU Control and Status Register Fields (Sheet 1 of 3)

Name Extent Type Description

PME<1:.0> <09:08> RW,0 Performance counter master enable bits. If both
PME<1> and PME<O> are clear, al perfor-
mance countersinthe PMCTR IPR are disabled.
If either PME<1> or PME<0> are set, the
counter is enabled according to the settings of
the PMCTR CTL fields.

RSV <17> RwW,0 Reserved to DIGITAL.
MBZ <18> RW,0 Reserved to DIGITAL. Must be zero.
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Table 5-5 IDU Control and Status Register Fields (Sheet 2 of 3)
Name Extent Type Description
MVE <19> RwW,0 If set, enables the motion video instruction

IMSK<3:0>

T™MM

TMD

FPE

HWE

SPE<1:0>

MBZ
SLE
FMS

FBT

29 September 1997 — Subject To Change

<23:20>

<24>

<25>

<26>

<27>

<29:28>

<30>
<32>
<33>
<34>

<35>

RW,0

RW,0

RW,0

RW,0

RwW,0

RW,0

RW,0
RW,0
RW,0
RW,0

RW,0

(MVI) set. If clear, causes any MV class
instructions to generate a RESDEC trap.

If set, each IMSK <3:0> signal disables the cor-
responding IRQ_ H<3:0> interrupt.

If set, the timeout counter counts 5000 cycles
before asserting timeout reset. If clear, the time-
out counter counts 1 billion cycles before assert-
ing timeout reset.

If set, disables the IDU timeout counter. Does
not affect cfail_h/no cack_h error.

If set, floating-point instructions may be issued.
If clear, floating-point instructions cause FEN
exceptions.

If set, dlows PALRES instructions to be issued
in kernel mode.

If SPE<1> is set, it enables superpage mapping
of Istream virtual address VA<39:13> directly to
physical address PA<39:13> assuming
VA<42:41> = 10. Virtual address bit VA<40> is
ignored in this translation. Accessis allowed
only in kernel mode.

If SPE<O> isset (NT mode), it enables super-
page mapping of |stream virtual addresses
VA<42:30> = 1FFE4 directly to physical
address PA<39:30> = 044. VA<30:13> is
mapped directly to PA<30:13>. Accessis
allowed only in kernel mode.

If set, enables PAL shadow registers.
Reserved to DIGITAL. Must be zero.
If set, enables seria line interrupts.

If set, forces miss on | cache references. MBZ in
normal operation.

If set, forces bad |cache tag parity. MBZ in nor-
mal operation.

Internal Processor Registers 5-17



Instruction Fetch/Decode Unit and Br

anch Unit (IDU) IPRs

Table 5-5 IDU Control and Status Register Fields (Sheet 3 of 3)
Name Extent Type Description
FBD <36> RwW,0 If set, forces bad Icache data parity. MBZ in nor-
mal operation.
MBO <37> RW,1 Reserved to DIGITAL. Must be one.
ISTA <38> RO Reading this bit indicates ICACHE BIST status.
If set, ICACHE BIST was successful.
TST <39> RwW,0 Writing a1 to this bit asserts the

test_status h<1> signal.

5.1.18 Interrupt Priority Level (IPLR) Register (110)

IPLR is aread/write register that is accessed by PAL code to set the value of the

interrupt priority level (IPL). Whenever hardware detects an interrupt whose target

IPL is greater than the value in IPLR<04:00>, an interrupt is taken. Figure 5-17
shows the IPLR register format. Refer to Table 4—11 for a description of which inter-

rupts are enabled for a given IPL.

Figure 5-17 Interrupt Priority Level (IPLR) Register

31

5-18 Internal Processor Registers

LJ-03489.A14
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5.1.19 Interrupt ID (INTID) Register (111)

INTID is aread-only register that is written by hardware with the target IPL of the
highest priority pending interrupt. The hardware recognizes an interrupt if the IPL
being read is greater than the IPL given by 1PLR<04:00>.

Interrupt service routines may use the value of thisregister to determine the cause of
theinterrupt. PALcode, for the interrupt service, must ensure that the IPL in INTID
is greater than the IPL specified by IPLR. Thisrestriction isrequired because alevel-
sensitive hardware interrupt may disappear before the interrupt service routineis
entered (passive release).

The contents of INTID are not correct on a HALT interrupt because this particular
interrupt does not have atarget IPL at which it can be masked. When aHALT inter-
rupt occurs, INTID indicates the next highest priority pending interrupt. PAL code
for interrupt service must check the interrupt summary register (ISR) to determine if
a HALT interrupt has occurred. Figure 5-18 shows the INTID register format.

Figure 5-18 Interrupt ID (INTID) Register

31 05 04 00
rrrrrrrrrerr T T T T T
RAZ/IGN INTID<4:0>
S S S A A | 1| |
63 32
rrrrrrrr T T T T T T
RAZ/IGN
S A S S A

1.1-03490.A14
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5.1.20 Asynchronous System Trap Request (ASTRR) Register (109)

ASTRR isaread/write register containing bits to request asynchronous system trap

(AST) interrupts in each of the four processor modes (U,S,E,K). In order to generate

an AST interrupt, the corresponding enable bit in the ASTER must be set and the

current processor mode given in the ICM<04:03> should be equal to or higher than

the mode associated with the AST request. Figure 5-19 shows the ASTRR register
format.

Figure 5-19 Asynchronous System Trap Request (ASTRR) Register

31 04 03 02 01 00
T T T T T T T T
RAZ/IGN

e
LKAR
EAR
SAR
UAR

63 32

rrrrrrrrrrrrrrrr Tt T T T T T T

RAZ/IGN
I S | [ 1 | N N S B

LJ-03491.A14

5.1.21 Asynchronous System Trap Enable (ASTER) Register (10A)

ASTER isaread/write register containing bitsto enable corresponding asynchronous
system trap (AST) interrupt requests. Figure 5-20 shows the ASTER register format.

Figure 5-20 Asynchronous System Trap Enable (ASTER) Register

31 04 03 02 0100
rrrrrrrrrrrrr Tt T T T T T
RAZ/IGN
S || A
LKAE
EAE
SAE
UAE
63 32
rrrrrrr T T T
RAZ/IGN
S A B | | A

LJ-03492.A14
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5.1.22 Software Interrupt Request (SIRR) Register (108)

SIRR is aread/write register used to control software interrupt requests. A software
request for a particular IPL may be requested by setting the appropriate bit in
SIRR<15:01>. Figure 5-21 and Table 5-6 describe the &gRter format.

Figure 5-21 Software Interrupt Request (SIRR) Register

31 1918 04 03 00
T T T T T T T T T T
RAZ/IGN SIRR<15:1> RAZ/IGN
S I o S S S S [ | |
63 32
rrrrrrrrrrrrrr e T T T T T T T
RAZ/IGN
e A s

1.1-03493.Al4

Table 5-6 Software Interrupt Request Register Fields

Name Extent Type Description

SIRR<15:1> <18:04> RwW Request software interrupts.
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5.1.23 Hardware Interrupt Clear (HWINT_CLR) Register (115)

HWINT_CLR isawrite-only register used to clear edge-sensitive hardware interrupt
requests. Figure 5-22 and Table 5—7 describe the HWINT_CLR register format.

Figure 5-22 Hardware Interrupt Clear (HWINT_CLR) Register

3130 29 28 27 26 00
\ rrrrrrrrrrrrrrr T T T T T T T T
IGN IGN
| e
‘ PCoOC
PCiC
pPC2C
63 34 33 32
rrrrrrrrrrrrrrrr T T T T T T T T T
IGN
S s o

L CRDC
SLC
1.1-03495 Al4

Table 5—-7 Hardware Interrupt Clear Register Fields

Name Extent Type Description

PCOC <27> wicC Clears performance counter O interrupt requests.
PC1C <28> wicC Clears performance counter 1 interrupt requests.
pPC2C <29> wiC Clears performance counter 2 interrupt requests.
CRDC <32> wicC Clears correctable read data interrupt requests.
SLC <33> wicC Clears seria lineinterrupt requests.
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5.1.24 Interrupt Summary (ISR) Register (100)

ISR is aread-only register containing information about all pending hardware, soft-

ware, and asynchronous system trap (AST) interrupt requests. Figure 5-23 and
Table 5-8 describe the ISR register format. Refer to Table 4-11 for a description of
which interrupts are enabled for a given interrupt priority level (IPL).

Figure 5-23 Interrupt Summary (ISR) Register

313029 28 27 26 25 24 23 22 212019 18

ASTRR<3:0>
and ASTER<3:0>
ATR

120

121

122

123

PCO

PC1

PC2

PFL

MCK

CRD
SLI
HLT

y—%%ﬁ

LJ03496A.Al4

Table 5-8 Interrupt Summary Register Fields (Sheet 1 of 2)

Name Extent Type Description
ASTRR<3:0> <03:00> RO Boolean AND of ASTRR<USEK> with
and ASTER<USEK> used to indicate enabled AST

ASTER<3:0> requests.

SISR<15:1> <18:04> RO,0 Software interrupt requests 15 through 1 corre-
sponding to IPL 15 through 1.

ATR <19> RO Set if any AST request and corresponding
enable bit is set and if the processor mode is
equal to or higher than the AST request mode.

120 <20> RO External hardware interruptire_h<0>.

21 <21> RO External hardware interrupirg h<1>.
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5-24

Table 5-8 Interrupt Summary Register Fields (Sheet 2 of 2)
Name Extent Type Description
122 <22> RO External hardware interruptirg_h<2>.
123 <23> RO External hardware interrupire_h<3>.
PCO <27> RO External hardware interrupt—performance
counter 0 (IPL 29).
PC1 <28> RO External hardware interrupt—performance
counter 1 (IPL 29).
PC2 <29> RO External hardware interrupt—performance
counter 2 (IPL 29).
PFL <30> RO External hardware interrupt—power failure
(IPL 30).
MCK <31> RO External hardware interrupt—system machine
check (IPL 31).
CRD <32> RO Correctable ECC errors (IPL 31).
SLI <33> RO Serial line interrupt.
HLT <34> RO External hardware interrupt—nhalt.

Internal Processor Registers
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5.1.25 Serial Line Transmit (SL_XMIT) Register (116)

SL_XMIT isawrite-only register used to transmit bit-serial data out of the micro-
processor chip under the control of a software timing loop. The value of the TMT bit
is transmitted offchip on the srom_clk_h signal. In normal operation mode (not in
debugging mode), the srom_clk_h signal serves both the seria line transmission and
the Icache SROM interface (see Sections 7.4 and 7.5). Figure 5-24 and Table 5-9
describe the SL_XMIT register format.

Figure 5-24 Serial Line Transmit (SL_XMIT) Register
31 08 07 06 00

‘ ™T

LJ-03497.A14

Table 5-9 Serial Line Transmit Register Fields

Name Extent Type Description

TMT <07> WO,1 Serial line transmit data
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5.1.26 Serial Line Receive (SL_RCV) Register (117)

SL_RCYV isaread-only register used to receive bit-serial data under the control of a
software timing loop. The RCV bitinthe SL_RCYV register isfunctionally connected
tothesrom_data h signa. A serid lineinterrupt is requested whenever atransition
is detected on the srom_data_h signal and the SLE bit in the ICSR is set. During
normal operations (not in test mode), the srom_data _h signal serves both the serial
line reception and the I cache SROM interface (see Sections 7.4 and 7.5).

Figure 5-25 and Table 5-10 describe the SL_RCV register format.

Figure 5-25 Serial Line Receive (SL_RCV) Register

31 07 06 05 00
rrrrrrrrrrr T T T T T T T T T T T T
RAZ RAZ
O S S s oy [
. RCV
63 32

1.1-03498 Al4

Table 5-10 Serial Line Receive Register Fields

Name Extent Type Description

RCV <06> RO Serial line receive data
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5.1.27 Performance Counter (PMCTR) Register (11C)

PMCTR is aread/write register that controls the three onchip performance counters.

Figure 5-26 and Table 5-11 describe the PMCTR register format. Performance
counter interrupt requests are summarized in Section 5.1.24. CBU inputs to the
counter select options are described in the PM0_ MUX<2:0> and PM1_ MUX<2.0>
fields of the CBOX_CONFIG2 IPR (see Table 5-29). Section 2.8 describes the per-
formance measurement support features.

Note: The arrangement of the select option tables is not meant to imply any
restrictions on permitted combinations of selections. The only cases in
which the selection for one counter influences another’s count is
SEL1=8 (SEL2=2, 3, other).

Figure 5-26 Performance Counter (PMCTR) Register

3130 29 16 1514 13 12 1110 09 08 07 04 03 00

W T T T T T T T T T T T T T 1T 1 TT T Il LT T T
CTR2<13:0> CTLO|CTL1|CTL2 K SEL1<3:0>| SEL2<3:0>

AN N T T AN N I 1 [ A

SELO

63 48 47 32

T 1T 1T 1T 1T 1T T 1T 1T T T T T T[T T T T T T 71T 1T T T T 71T T
CTR0<15:0> CTR1<15:0>

S e

MAQO601A.Al4
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Table 5-11 Performance Counter Register Fields

Name Extent Type Description

CTRO0<15:0> <63:48> RW A 16-bit counter of events selected by SEL 0 and
enabled by CTLO0<1:0>.

CTR1<15:0> <47:32> RW A 16-bit counter.

SELO <31> RW Counter0 Select—refer to Table 5-12.

Ku <30> RW Kill user mode—disables all counters in user
mode (refer to Table 5-13).

CTR2<13:0> <29:16> RW 14-bit counter

CTLO<1:0> <15:14> RwW,0 CTRO counter control:
00 counter disable, interrupt disable
01 counter enable, interrupt disable
10 counter enable, interrupt at count 65536
(Refer to Section 5.1.23 and Section 5.1.24.)
11 counter enable, interrupt at count 256

CTL1<1:0> <13:12> RW,0 CTR1 counter control:
00 counter disable, interrupt disable
01 counter enable, interrupt disable
10 counter enable, interrupt at count 65536
11 counter enable, interrupt at count 256

CTL2<1:0> <11:10> RW,0 CTR2 counter control:
00 counter disable, interrupt disable
01 counter enable, interrupt disable
10 counter enable, interrupt at count 16384
11 counter enable, interrupt at count 256

Kp <09> RW Kill PALmode—disables all counters in
PALmode (refer to Table 5-13).

Kk <08> RwW Kill kernel, executive, supervisor mode—dis-
ables all counters in kernel, executive, and
supervisor modes (refer to Table 5-13). Ku=1,
Kp=1, and Kk=1 enables counters in executive
and supervisor modes only.

SEL1<3:0> <07:04> RW Counterl Select—refer to Table 5-12.
SEL2<3:0> <03:00> RW Counter2 Select—refer to Table 5-12.
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Table 5-12 shows the PMCTR counter select options.

Table 5-12 PMCTR Counter Select Options (Sheet 1 of 2)
Counter0 Counterl Counter2

SELO0<0> SEL1<3:0> SEL2<3:0>

0:Cycles 0x0: nonissue cycles 0x0: long(>15 cycle) stalls

Valid instruction in S3 but none issued.

0x1: split-issue cycles Ox1: reserved
Some, but not all, instructions at S3 issued.

0x2: pipe-dry cycles
No valid instruction at S3.

0x3: replay trap
A replay trap occurred.

0x4: single-issue cycles
Exactly one instruction issued.

0x5: dual-issue cycles
Exactly two instructions issued.

0x6: triple-issue cycles
Exactly three instructions issued.

0x7: quad-issue cycles
Exactly four instructions issued.

Linstructions Ox8: jsr-ret if sel2=PC-M 0x2: PC-mispredicts
Instruction issued if sel2 is PC-M.
0x8: cond-branch if sel2=BR-M 0x3: BR-mispredicts

Instruction issued if sel2 is BR-M
0x8: al flow-change instructions if sel2=!

(PC-M or BR-M)

0x9: IntOpsissued 0x4: Icache/RFB misses
OxA: FPOps issued 0x5: ITB misses

0xB: loads issued 0x6: Dcache LD misses
OxC: stores issued Ox7: DTB misses

0xD: Icache issued 0x8: LDs merged in MAF
OXE: Dcache accesses 0x9: LDU replay traps

OxA:WB/MAF full replay traps
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Table 5-12 PMCTR Counter Select Options (Sheet 2 of 2)
Counter0 Counterl Counter2
SELO0<0> SEL1<3:0> SEL2<3:0>

0xB: Reserved

0xC: CPU cycles

0xD: MB stall cycles
OxE: LDxL instructions issued
OxF: pick CBU<0> input OxF: pick CBU<1> input

Table 5-13 shows the measurement mode bit settings.

Table 5-13 Measurement Mode Control

Kill Bit Settings

Measurement Mode Desired Ku Kp Kk
Program 0 0 0
PAL only 1 0 1
OS only (kernel, executive, supervisor) 1 1 0
User only 0 1 1
All except PAL 0 1 0
OS + PAL (not user) 1 0 0
User + PAL (not kernel, executive, and supervisor) 0 0 1

Executive and supervisor onIy1 1 1 1

L Inthisinstance, Kk meanskill kernel only. The combination Ku=1, Kp=1, and Kk=1 is used to
gather events for the executive and supervisor modes only.

Note: Both the user and the operating system can make PAL subroutine calls
that put the machine in PALmode. The “OS only,” “user only,” and
“executive and supervisor only” modes do not measure the events dur-
ing the PAL subroutine calls made by the OS or user. The “OS + PAL”
and “user + PAL" modes should be used carefully. “OS + PAL” mode
measures the events during the PAL calls made by the user, whereas
“user + PAL” mode measures the events during the PAL calls made by
the OS.
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5.2 Memory Address Translation Unit (MTU) IPRs

The MTU internal processor registers (IPRs) are described in Section 5.2.1 through
Section 5.2.23.

5.2.1 Dstream Translation Buffer Address Space Number (DTB_ASN)
Register (200)

DTB_ASN isawrite-only register that must be written with an exact duplicate of the
ITB_ASN register ASN field. Figure 5-27 shows the DTB_ASN register format.

Figure 5-27 Dstream Translation Buffer Address Space Number (DTB_ASN)
Register

1.J-03499 Al4

5.2.2 Dstream Translation Buffer Current Mode (DTB_CM) Register (201)

DTB_CM isawrite-only register that must be written with an exact duplicate of the
IDU current mode (ICM) register CM field. These bits indicate the current mode of
the machine, as described in the Alpha AXP Architecture Reference Manual.

Figure 5-28 shows the DTB_CM register format.

Figure 5-28 Dstream Translation Buffer Current Mode (DTB_CM) Register

31 05 04 03 02 00
rrrrr T T T T T T T T T T T T T T T T T T T
IGN IGN
s | |
L CMO
CM1
63 32
rrrrrrrrrrrrrrrrr T T T T T T T T T
IGN
e e S e e e e s o

LJ-03500.A14
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5.2.3 Dstream Translation Buffer Tag (DTB_TAG) Register (202)

DTB_TAG isawrite-only register that writes the DTB tag and the contents of the
DTB_PTE register to the DTB. To ensure the integrity of the DTBs, the DTB’s PTE
array is updated simultaneously from the internal DTB_PTE register when the
DTB_TAG register is written.

The entry to be written is chosen at the time of the DTB_TAG write operation by a
not-last-used replacement algorithm implemented in hardware. A write operation to
the DTB_TAG register increments the translation buffer (TB) entry pointer of the
DTB, which allows writing the entire set of DTB PTE and TAG entries. The TB

entry pointer is initialized to entry zero and the TB valid bits are cleared on chip reset
but not on timeout reset. Figure 5-29 shows the DTB_TAG register format.

Figure 5-29 Dstream Translation Buffer Tag (DTB_TAG) Register
31 1312 00

UL
IGN VA<42:13>
S S S S s S S M |

1.J-03501.A14

5.2.4 Dstream Translation Buffer Page Table Entry (DTB_PTE)
Register (203)

DTB_PTE isaread/write register representing the 64-entry DTB page table entries
(PTEs). The entry to be written is chosen by a not-last-used replacement a gorithm
implemented in hardware. Write operationsto DTB_PTE use the memory format bit
positions, as described in the Alpha AXP Architecture Reference Manual, with the
exception that some fields are ignored. In particular, the page frame number (PFN)
valid bit is not stored in the DTB.

To ensure the integrity of the DTB, the PTE is actually written to atemporary regis-
ter and is not transferred to the DTB until the DTB_TAG register iswritten. Asa
result, writing the DTB_PTE and then reading without an intervening DTB_TAG
write operation does not return the data previously written to the DTB_PTE register.
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Read operations of the DTB_PTE require two instructions. First, aread from the
DTB_PTE sendsthe PTE datato the DTB_PTE_TEMP register. A zero valueis

returned to the integer register file (IRF) on aDTB_PTE read operation. A second
instruction reading from the DTB_PTE_TEMP register returns the PTE entry to the
register file. Reading the DTB_PTE register increments the TB entry pointer of the
DTB, which allows reading the entire set of DTB PTE entries. Figure 5-30 shows
the DTB_PTE register format.

Note: TheAlpha AXP Architecture Reference Manual provides descriptions of
the fields of the PTE.

Figure 5-30 Dstream Translation Buffer Page Table Entry (DTB_PTE)
Register—Write Format
31 16 1514 1312 1110 09 08 07 06 05 04 03 02 01 00
I O B B T

L IGN
FOR
FOwW
IGN
ASM
L GH<L:.0>
IGN
KRE
ERE
SRE
URE
KWE
EWE
SWE
UWE

LJ-03502.Al4
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5.2.5 Dstream Translation Buffer Page Table Entry Temporary
(DTB_PTE_TEMP) Register (204)

DTB_PTE _TEMP isaread-only holding register used for DTB_PTE data. Read
operations of the DTB_PTE require two instructions to return the PTE data to the

register file. Thefirst readsthe DTB_PTE register tothe DTB_PTE_TEMP register

and returns zero to the register file. The second returnsthe DTB_PTE_TEMP regis-

ter to the integer register file (IRF). Figure 5-31 shows the DTB_PTE_TEMP regis-
ter format.

Figure 5—-31 Dstream Translation Buffer Page Table Entry Temporary (DTB_PTE_TEMP)
Register
31 1312 10 09 08 07 06 05 04 03 02 01 00

rrrrrrrrrrrr T ]
PFN<39:13> RAZ
S S s s e e | |

L FOR
FOW
KRE
L—— ERE
L——— SRE
L—— URE
L————— KWE
EWE
SWE
UWE
PFEN<39:13>

63 39 38 32

rrrrrrrrrrrrrrrr T T T
RAZ }TF’\}I<3}9:1}3>}
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5.2.6 Dstream Memory Management Fault Status (MM_STAT)
Register (205)

MM _STAT isaread-only register that stores information on Dstream faults and

Dcache parity errors. The VA, VA_FORM, and MM _STAT registers are locked

against further updates until software reads the VA register. The MM _STAT bits are

only modified by hardware when the register is not locked and a memory manage-

ment error, DTB miss, or Dcache parity error occurs. The MM _STAT register is not
unlocked or cleared on reset. Figure 5-32 and Table 5-14 describe the MM_STAT
register format.

Figure 5-32 Dstream Memory Management Fault Status (MM_STAT) Register
31 17 16 1110 06 05 04 03 02 01 00

T T T T T L T
RAZ OPCODE RA
S I A o I T L L]

T
ACV
FOR
FOW

DTB_MISS
BAD_VA
63 32
B B O B O
RAZ
I e e o O
LJ-03504.A14
Table 5-14 Dstream Memory Management Fault Status Register
Fields (Sheet 1 of 2)
Name Extent Type Description
WR <00> RO Set if reference that caused error was awrite
operation.
ACV <01> RO Set if reference caused an access violation.
Includes bad virtual address.
FOR <02> RO Set if reference was a read operation and the
PTE FOR bit was set.
FOW <03> RO Set if reference was awrite operation and the
PTE FOW bit was set.
DTB_MISS <04> RO Set if referenceresulted inaDTB miss.
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Table 5-14 Dstream Memory Management Fault Status Register

Fields (Sheet 2 of 2)
Name Extent Type Description
BAD VA  <05> RO Set if reference had a bad virtual address.
RA <10:06> RO RA field of the faulting instruction.
OPCODE  <16:11> RO Opcode field of the faulting instruction.

5.2.7 Faulting Virtual Address (VA) Register (206)

VA isaread-only register. When Dstream faults, DTB misses, or Dcache parity
errors occur, the effective virtual address associated with the fault, miss, or error is
latched in the VA register. The VA, VA_FORM, and MM__STAT registersare
locked against further updates until software reads the VA register. The VA register
is not unlocked on reset. Figure 5-33 shows the VA register format.

Figure 5-33 Faulting Virtual Address (VA) Register

31

rrrrrrrrrr T T T T T T T T
Virtual Address
S

T rrrrrr T T T T T T T T T
Virtual Address
N S s A oy

5-36
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5.2.8 Formatted Virtual Address (VA_FORM) Register (207)

VA_FORM isaread-only register containing the virtual page table entry (PTE)
address calculated as a function of the faulting virtual address and the virtual page
table base (VA and MVPTBR registers). Thisis done as a performance enhancement
to the Dstream TBmiss PAL flow.

The virtual addressisformatted as a 32-bit PTE when the NT_Mode bit

(MCSR<01>) is set (see Figure 5-34). VA_ FORM is locked on any Dstream fault,
DTB miss, or Dcache parity error. The VA, VA_FORM, and MM_STAT registers

are locked against further updates until software reads the VA register. The
VA_FORM register is not unlocked on reset. Figure 5-35 shows the VA_FORM reg-
ister format when MCSR<01> is clear.

Figure 5-34 Formatted Virtual Address (VA_FORM) Register (NT_Mode=1)
3130 29 22 21 03 02 00
T I O O A N I O I ]

A S I S A s s I I s I
‘ VPTB<63:30>

LJ-03507.Al4

Figure 5-35 Formatted Virtual Address (VA_FORM) Register (NT_Mode=0)
31 03 02 00

rrrrrrrrrrrrrrrrrrrrT T T T T [
VA<42:13> RAZ
S S A | |

rrrrrrr+rrrrrrr T T T T
| VXPT?<613:313>1

L VA<42:13>

L.J-03506.A14
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Table 5-15 describes the VA_FORM register fields.

Table 5-15 Formatted Virtual Address Register Fields

Name Extent Type Description
NT_Mode=0
VPTB <63:33> RO Virtual page table base address as stored in

VA<42:13> <32:03> RO

MVPTBR.
Subset of the original faulting virtual address.

NT_Mode=1

VPTB <63:30> RO

VA<31:13> <21:03> RO

Virtual page table base address as stored in
MVPTBR.

Subset of the original faulting virtual address.

5.2.9 MTU Virtual Page Table Base (MVPTBR) Register (208)

MVPTBR is a write-only register containing the virtual address of the base of the
page table structure. It is stored in the MTU to be used in calculating the VA_FORM
value for the Dstream TBmiss PAL flow. Unlike the VA register, the MVPTBR is

not locked against further updates when a Dstream fault, DTB miss, or Dcache parity
error occurs. Figure 5—-36 shows the MVPTBR register format.

Figure 5-36 MTU Virtual Page Table Base (MVPTBR) Register

313029

VPTB<63:30>

rrrrrrr T T T T T T T T T
VPTB<63:30>
Y ) Y A S A A
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5.2.10 Dcache Parity Error Status (DC_PERR_STAT) Register (212)

DC_PERR_STAT isaread/write register that locks and stores Dcache parity error
status. The VA, VA_FORM, and MM _STAT registers are locked against further
updates until software reads the VA register. If a Dcache parity error is detected
while the Dcache parity error status register is unlocked, the error statusis loaded
into DC_PERR_STAT<05:02>. The LOCK hit is set and the register is locked
against further updates (except for the SEO bit) until software writesa 1 to clear the
LOCK bit.

The SEO bit is set when a Dcache parity error occurs while the Dcache parity error
status register is locked. Once the SEO bit is set, it is locked against further updates
until the softwarewritesa 1 to DC_PERR_STAT<00> to unlock and clear the bit.
The SEO bit is not set when Dcache parity errors are detected on both pipes within
the same cycle. In this particular situation, the pipe0/pipel Dcache parity error status
bits indicate the existence of a second parity error. The DC_PERR_STAT register is
not unlocked or cleared on reset.

Figure 5-37 and Table 5-16 describe the DC_PERR_STAT register format.

Figure 5-37 Dcache Parity Error Status (DC_PERR_STAT) Register
31 06 05 04 03 02 01 00

E SEO
LOCK
DPO
DP1

TPO
TP1

LJ-03509.A14
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Table 5-16 Dcache Parity Error Status Register Fields

Name Extent Type Description

SEO <00> wiC Set if second Dcache parity error occurred in a
cycle after the register was locked. The SEO bit
isnot set as aresult of asecond parity error that
occurs within the same cycle as the first.

LOCK <01> wicC Set if parity error is detected in Dcache. Bits
<05:02> are locked against further updates when
this bit is set. Bits <05:02> are cleared when the
LOCK bit is cleared.

DPO <02> RO Set on data parity error in Dcache bank 0.

DP1 <03> RO Set on data parity error in Dcache bank 1.

TPO <04> RO Set on tag parity error in Dcache bank 0.

TP1 <05> RO Set on tag parity error in Dcache bank 1.

5.2.11 Dstream Translation Buffer Invalidate All Process (DTB_IAP)
Register (209)

DTB_lAPisawrite-only register. Any write operation to this register invalidates all
data translation buffer (DTB) entries in which the address space match (ASM) bit is

equal to zero.

5.2.12 Dstream Translation Buffer Invalidate All (DTB_IA) Register (20A)

DTB_IA isawrite-only register. Any write operation to this register invalidates all
64 DTB entries, and resets the DTB not-last-used (NLU) pointer to itsinitial state.
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5.2.13 Dstream Translation Buffer Invalidate Single (DTB_IS)
Register (20B)

DTB_ISisawrite-only register. Writing a virtual address to this register invalidates
the DTB entry that meets either of the following criteria:

* A DTB entry whose VA field matches DTB_1S<42:13> and whose ASN field
matches DTB_ASN<63:57>.

* A DTB entry whose VA field matches DTB_|S<42:13> and whose ASM hit is
Set.

Figure 5-38 shows the DTB_IS register format.

Figure 5-38 Dstream Translation Buffer Invalidate Single (DTB_IS) Register

31 1312 00
T T T T T T 1T T T T T T T T T T[T T T T T T T T T T T
VA<42:13> IGN

I e Y T I I

63 43 42 32

I B B A S B B B O B B

IGN VA<42:13>

I e Y O B
LJ-03510.A14

Note: The DTB_ISregister is written before the normal 1DU trap point. The

DTB invaidate single operation is aborted by the IDU only for the fol-
lowing trap conditions:

* |ITB miss
* PC mispredict
* Whenthe HW_MTPR DTB_ISis executed in user mode
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5.2.14 MTU Control (MCSR) Register (20F)

MCSR is aread/write register that controls features and records status in the MTU.
This register is cleared on chip reset but not on timeout reset. Figure 5-39 and
Table 5-17 describe the MCSR register format.

Figure 5-39 MTU Control (MCSR) Register

31 06 05 04 03 02 01 00
Tt T ]
RAZ/IGN
I T T A A A O |
L M_BIG_ENDIAN
L SP<1:.0>
MBZ
E_BIG_ENDIAN
MBZ
63 32
e
RAZ/IGN
I O T T A e |
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Table 5-17 MTU Control Register Fields

Name Extent Type Description

M_BIG_ <00> RwW,0 MTU Big Endian mode enable. When set, bit 2

ENDIAN of the physical addressisinverted for al long-
word Dstream references.

SP<1.0> <02:01> RW,0 Superpage mode enables.

Note: Superpage accessisonly allowed in ker-
nel mode.

SP<1> enables superpage mapping when
VA<42:41> = 2. In thismode, virtual addresses
VA<39:13> are mapped directly to physical
addresses PA<39:13>. Virtual address bit
VA<40> isignored in this tranglation.

SP<0> enables one-to-one superpage mapping
of Dstream virtual addresses with VA<42:30> =
1FFEg. In this mode, virtual addresses
VA<29:13> are mapped directly to physical
addresses PA<29:13>, with bits <39:30> of
physical address set to 0. SP<0> isthe
NT_Mode bit that is used to control virtual
address formatting on a read operation from the
VA_FORM register.

Reserved <03> RW,0 Reserved to DIGITAL. Must be zero (MBZ).
E BIG_ <04> RwW,0 IEU Big Endian mode enable. Thisbit is sent to
ENDIAN the IEU to enable Big Endian support for the

EXTxx, MSKxx, and INSxx byte instructions.

This bit causes the shift amount to be inverted
(one’s-complemented) prior to the shifter opera-
tion.

Reserved <05> RW,0 Reserved to DIGITAL. Must be zero (MBZ).
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5.2.15 Dcache Mode (DC_MODE) Register (216)

DC_MODE isaread/write register that controls diagnostic and test modes in the
Dcache. This register is cleared on chip reset but not on timeout reset. Figure 5-40
and Table 5-18 describe the DC_MODE register format.

Note: The following bit settings are required for normal operation:

DC_ENA=1
DC_FHIT=0
DC_BAD_PARITY =0
DC_PERR_DISABLE =0

Figure 5-40 Dcache Mode (DC_MODE) Register
31 04 03 02 01 00

rrrrrrrrrrrrrr T T T T T T T T T T
RAZ/IGN
O S S S S S R S N Ay Ay v |

\: DC_ENA

DC_FHIT
DC_BAD_PARITY
DC_PERR_DISABLE

LJ-03512.A14
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Table 5-18 Dcache Mode Register Fields

Name

Extent

Type

Description

DC_ENA

DC_FHIT

DC_BAD_
PARITY

DC_PERR

DISABLE

<00>

<01>

<02>

<03>

RwW,0

RW,0

RW,0

RW,0

Software Dcache enable. When set, the
DC_ENA hit enables the Dcache. When clear,
the Dcache command is not updated by ST or
FILL operations, and all LD operations are
forced to missin the Dcache. Must be one
(MBO) in normal operation.

Dcache force hit. When set, the DC_FHIT bit
forces al Dstream references to hit in the
Dcache. Must be zero in normal operation.

When set, the DC_BAD_PARITY bit invertsthe
data parity inputs to the Dcache on integer
stores. This has the effect of putting bad data
parity into the Dcache on integer stores that hit
in the Dcache. This bit has no effect on the tag
parity written to the Dcache during FILL opera-
tions, or the data parity written to the CBU write
data buffer on integer store instructions.

Floating-point store instructions should not be
issued when this bit is set because it may result
in bad parity being written to the CBU write data
buffer. Must be zero (MBZ) in normal operation.

When set, theDC_PERR_DISABLE bit disables
Dcache parity error reporting. When clear, this
bit enables all Dcache tag and data parity errors.
Parity error reporting is enabled during al other
Dcache test modes unless this bit is explicitly
set. Must be zero (MBZ) in normal operation.
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5.2.16 Miss Address File Mode (MAF_MODE) Register (217)

MAF_MODE isaread/write register that controls diagnostic and test modesin the
MTU miss addressfile (MAF). Thisregister is cleared on chip reset.
MAF_MODE<05> is also cleared on timeout reset. Figure 5-41 and Table 5-19
describe the MAF_MODE register format.

Note: The following bit settings are required for normal operation:

DREAD_NOMERGE = 0
WB_FLUSH_ALWAYS =0
WB_NOMERGE =0
MAF_ARB_DISABLE = 0
WB_CNT_DISABLE =0

Figure 5-41 Miss Address File Mode (MAF_MODE) Register

31 12 11 10 09 08 07 06 05 04 03 02 01 00
L L L

L EE I IR

=

DREAD_NOMERGE
WB_FLUSH_ALWAYS
WB_NOMERGE

10_NMERGE
WB_CNT_DISABLE
MAF_ARB_DISABLE
DREAD_PENDING (Read-Only)
WEB_PENDING (Read-Only)
WB_SET_LO_THRESH<1:0>
WB_CLR_LO_THRESH<1:0>

PCAO008
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Memory Address Translation Unit (MTU) IPRs

(Sheet 1 of 2)

Name Extent Type Description

DREAD_ <00> RW,0  Missaddressfile (MAF) DREAD Merge Disable. When set,

NOMERGE this bit disables all merging in the DREAD portion of the
MAF. Any load instruction that isissued when
DREAD_NOMERGE is set isforced to allocate a new entry.
Subsequent merging to that entry is not allowed (even if
DREAD_NOMERGE iscleared). Must be zero (MBZ) in nor-
mal operation.

WB _FLUSH_  <01> RW,0  When set, this bit forces the write buffer to flush whenever

ALWAYS thereisavalid WB entry. Must be zero (MBZ) in normal
operation.

WB_ <02> RW,0  When set, thishit disables all merging in the write buffer. Any

NOMERGE store instruction that isissued when WB_NOMERGE is setis
forced to allocate a new entry. Subsequent merging to that
entry is not alowed (even if WB_ NOMERGE is cleared).
Must be zero (MBZ) in normal operation.

IO NMERGE <03> RW,0  When set, this bit prevents loads from I/O space (address bit
<39>=1) from merging in the MAF. Should be zero (SBZ) in
typical operation.

WB_CNT_ <04> RW,0  When set, this bit disables the 256-cycle WB counter in the

DISABLE MAF arbiter. The top entry of the WB arbitrates at |ow prior-
ity only when aLDx_L instruction isissued or the number of
WB entries equals or exceeds the value programmed in
MAF_MODE<WB_LO_PRIO_THRESH>. Must be zero
(MBZ) in normal operation.

MAF ARB_  <05> RW,0  When set, this bit disablesall DREAD and WB requestsin the

DISABLE MAF arbiter. WB_Reissue, Replay, Iref, and MB requests are
not blocked from arbitrating. This bit is cleared on both time-
out and chip reset. Must be zero (MBZ) in nhormal operation.

DREAD _ <06> R,0 Indicates the status of the MAF DREAD file. When set, there

PENDING are one or more outstanding DREAD requestsinthe MAFfile.
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When clear, there are no outstanding DREAD requests.
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Table 5-19 Miss Address File Mode Register Fields (Sheet 2 of 2)
Name Extent Type Description
WB _ <Q7> R,0 This bit indicates the status of the MAF WB file. When set,

PENDING

WB_SET LO_ <09:08> RW,0
THRESH<1:0>

WB_CLR LO_ <11:10> RW,0
THRESH<1:0>

there are one or more outstanding WB requestsin the MAF
file. When clear, there are no outstanding WB requests.

These bits set the threshold at which the WB begins arbitration
at low priority. The thresholds are as follows:

00 3entries
01 4entries
10 5entries
11 2 entries (21164 mode)

WB_SET_LO_THRESH must be greater than
WB_CLR_LO _THRESH

These bits set the threshold at which the WB stops arbitration.
The thresholds are as follows:

00 Oentries
01 1entry (21164 mode)
10 2entries
11 3entries

WB_SET _LO_THRESH must be greater than
WB_CLR LO_THRESH
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5.2.17 Dcache Flush (DC_FLUSH) Register (210)

DC_FLUSH isawrite-only register. A write operation to thisregister clears al the
valid bits in both banks of the Dcache.

5.2.18 Alternate Mode (ALT_MODE) Register (20C)

ALT_MODE isawrite-only register that specifies the alternate processor mode used
by some HW_LD and HW_ST instructions. Figure 5-42 and Table 5-20 describe the
ALT_MODE register format.

Figure 5-42 Alternate Mode (ALT_MODE) Register
31 05 04 03 02 00

rrrrrrrrerrrrrrrr T T T T T T T T
IGN AMiGN

LJ-03514.A14

Table 5-20 Alternate Mode Register Settings

ALT_MODE<04:03> Mode

00 Kernel

01 Executive
10 Supervisor
11 User
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5.2.19 Cycle Counter (CC) Register (20D)

CC isaread/write register. The 21164PC supportsit as described in the Alpha AXP
Architecture Reference Manual. The low half of the counter, when enabled, incre-
ments once each CPU cycle. The upper half of the CC register is the counter offset.
AnHW_MTPR instruction writes CC<63:32>. Bits <31:00> are unchanged.
CC_CTL<32> isused to enable or disable the cycle counter. The CC<31:00> iswrit-
tento CC_CTL by an HW_MTPR instruction.

The CC register isread by the RPCC instruction as defined in the Alpha AXP Archi-
tecture Reference Manual. The RPCC instruction returns a 64-bit value. The cycle
counter is enabled to increment only three cycles after the MTPR CC_CTL (with
CC_CTL<32> set) instruction isissued. This means that an RPCC instruction issued
four cyclesafter an HW_MTPR CC_CTL instruction that enables the counter reads a
value that is one greater than the initial count.

The CC register is disabled on chip reset. Figure 5-43 shows the CC register format.

Figure 5-43 Cycle Counter (CC) Register
31 00

LJ-03515.Al4
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5.2.20 Cycle Counter Control (CC_CTL) Register (20E)

CC_CTL isawrite-only register that writes the low 32 bits of the cycle counter to
enable or disable the counter. Bits CC<31:04> are written with the value in

CC _CTL<31:04>onaHW_MTPR instruction to the CC_CTL register. Bits
CC<03:00> are written with zero. Bits CC<63:32> are not changed. If
CC_CTL<32> is set, then the counter is enabled; otherwise, the counter is disabled.
Figure 5-44 and Table 5-21 describe the CC_CTL register format.

Figure 5-44 Cycle Counter Control (CC_CTL) Register

31 04 03 00
rrrrrrrrrr T T T T T T T T T T T T T T T T
COUNT<31:04> IGN
S O | I S Y I O I A | | |
63 3332
rrrrrrrrrrrrrrrrr T T T T T T T T T T
IGN
O e s S I S O I
L cc EnA

LJ-03516.A14

Table 5-21 Cycle Counter Control Register Fields

Name Extent Type Description
COUNT<31:04> <31:.04> WO Cyclecount. Thisvalueisloaded into CC<31:04>.
CC_ENA <32> WO  Cycle Counter enable. When set, this bit enables the

CC register to begin incrementing three cycles later.
An RPCC that isissued four cycles after
CC_CTL<32> is written “sees” the initial count
incremented by 1.
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5.2.21 Dcache Test Tag Control (DC_TEST_CTL) Register (213)

DC_TEST_CTL isaread/write register used exclusively for testing and diagnostics.

An address written to thisregister is used to index into the Dcache array when read-

ing or writing to the DC_TEST_TAG register. Figure 5-45 and Table 5-22 describe
the DC_TEST_CTL register format. Section 5.2.22 describes how this register is
used. DC_TEST_CTL<15> is cleared on reset.

Figure 5-45 Dcache Test Tag Control (DC_TEST_CTL) Register

31 16 15 14 13 12 03 02 01 00
1T 1111117171717 17T 7T 1T 1T 17T 17T 17T 17T 1T 11
RAZ/IGN l I I I INDEX<12:3> I I I |
11 1 1 1 1 1 1 1 1 1 I 1 | L1 1 1 1 1 1 1 |
|\|—BANKO
BANK1
RAZ/IGN
DATA
SHIFT
LOAD
63 32
1T 171 1rrrr1r1rr 171117 17T 17 1T 1717 17T 17T 7T 7T 17T 1T 1T 1T 1T 1T 1T 1T 1T71
RAZ/IGN
| NN (NN N NN NN AN NN NN NN N SN N U NN SN S SN SN SN U SN U S U S N ——
PCA021
Table 5-22 Dcache Test Tag Control Register Fields (Sheet 1 of 2)
Name Extent Type Description
BANKO <00> RW  Dcache BankO enable. When set, reads from

DC _TEST_TAG return the tag from Dcache bankO,
writesto DC_TEST_TAG write to Dcache bank0. When
clear, reads from DC_TEST_TAG return the tag from
Dcache bank1.

BANK1 <01> RW  Dcache Bank1l enable. When set, writes to
DC_TEST_TAG writeto Dcache bankl. This bit has no
effect on reads.

INDEX<12:3> <12:03> RW  Dcachetagindex. Thisfield is used on reads from and
writesto the DC_TEST_TAG register to index into the
Dcache tag array.
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Table 5-22 Dcache Test Tag Control Register Fields (Sheet 2 of 2)
Name Extent Type Description
DATA <13> RW  Datafor Dcache soft repair. When set, alogic level 1 for

the programmable soft repair fusesis sent to the Dcache.
When clear, alogic level 0issent to the Dcache. A write
to thislocation should be followed by an MB instruction.

SHIFT <14> RW/  Shift signal for Dcache soft repair. When set, a pulse
RAZ (thatis, alogiclevel signal for one cycle) is sent to the
Dcache, enabling it to shift the data from one scan latch
to the next.

Consecutively setting this bit has the effect of shifting
soft repair datainto the Dcache programmabl e soft repair
logic. A write to this location should be followed by an
MB instruction.

LOAD <15> RW,0 Load signal for Dcache soft repair. When set, the data
shifted into the soft repair scan chain is selected, thus
enabling soft repair. When clear, the datais not selected
and the default selection is the data from the hardware
fuses. A write to thislocation should be followed by an
MB instruction.
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5.2.22 Dcache Test Tag (DC_TEST_TAG) Register (214)

DC_TEST_TAG isaread/write register used exclusively for testing and diagnostics.
When DC_TEST_TAG isread, thevalueinthe DC_TEST_CTL register isused to
index into the Dcache. The value in the tag, tag parity, valid, and data parity bits for
that index are read out of the Dcache and loaded into the DC_TEST _TAG_TEMP
register. A zero value is returned to the integer register file (IRF). If BANKO is set,
the read operation is from Dcache bank0. Otherwise, the read operation isfrom
Dcache bank1.

When DC_TEST_TAG iswritten, thevaluewrittento DC_TEST_ TAG iswritten to
the Dcache index referenced by the valueinthe DC_TEST _CTL register. The tag,
tag parity, and vaid bits are affected by this write operation. Data parity bits are not
affected by this write operation (use DC_MODE<02> and force hit modes). If
BANKO is set, the write operation is to Dcache bankO. If BANK1 is set, the write
operation isto Dcache bankl. If both are set, both banks are written.

Figure 5-46 and Table 5-23 describe the DC_TEST_TAG register format.

Figure 5-46 Dcache Test Tag (DC_TEST_TAG) Register

31 13 12 11 10 07 06 05 04 03 02 01 00
rrrrrrrrr 1T 1T T rrrrnrl LI L 1
TAG<32:13> IGN IGN
| I (NN N AN AN N [ N NN N S N S A —— L1 1 1 1 1 | 1
\— TAG_PARITY
OWO_VALID
OW1_VALID
63 33 32

1
IGN
1

l— TAG<32:13>
PCA020
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Table 5-23 Dcache Test Tag Register Fields

Name Extent Type Description

TAG_PARITY <02> WO Tag parity. This bit refers to the Dcache tag parity bit that
covers tag bits 32 through 13 (valid bits not covered).

OWO0 VALID <11> WO Octaword valid bit 0. This bit refers to the Dcache valid
bit for the low-order octaword within a Dcache 32-byte
block.

OW1 VALID <12> WO Octaword valid bit 1. This bit refers to the Dcache valid
bit for the high-order octaword within a Dcache 32-byte
block.

TAG<32:13> <32:13> WO TAG<32:13>. These bitsrefer to the tag field in the
Dcache array.
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5.2.23 Dcache Test Tag Temporary (DC_TEST_TAG_TEMP)
Register (215)

DC _TEST_TAG_TEMPisaread-only register used exclusively for testing and
diagnostics.
Reading the Dcache tag array requires a two-step read process.

1. Thefirst read operation from DC_TEST_TAG readsthe tag array and data parity
bitsand loadsthem intothe DC_ TEST_TAG_TEMP register. An UNDEFINED
value is returned to the integer register file (IRF).

2. The second read operation of the DC_TEST_TAG_TEMP register returns the
Dcache test data to the integer register file (IRF).

Figure 5-47 and Table 5-24 describe the DC_TEST_TAG_TEMP register format.

Figure 5-47 Dcache Test Tag Temporary (DC_TEST_TAG_TEMP) Register

31 13 12 11 10 07 06 05 04 03 02 01 00
1 17T 11117 17T 17T 17T 17T 7T 1T 1T 1T 1T T71 1T 17T 17T 1T 1T°1 1
TAG<32:13> [ [ [ DATA_PAR<7:0> [ [ RAZl
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
\— TAG_PARITY
OWO_VALID
OW1_VALID
63 33 32

TAG<32:13>
HLO002B
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Table 5-24 Dcache Test Tag Temporary Register Fields

Name Extent Type Description

TAG_PARITY <02> RO  Tag parity. This bit refers to the Dcache tag parity
bit that coverstag bits 32 through 13 (valid bits not
covered).

DATA_PAR<7:0> <10:03> RO  Dataparity. When any of these bits are set, it indi-
cates aparity error occurred in aread of
DC_TEST_TAG, in the bank specified in
DC TEST_CTL.

OWO0 VALID <11> RO  Octaword valid bit 0. This bit refers to the Dcache
valid bit for the low-order octaword within a Dcache
32-byte block.

OW1 VALID <12> RO  Octaword valid hit 1. This bit refers to the Dcache
valid bit for the high-order octaword within a
Dcache 32-byte block.

TAG<32:13> <32:13> RO  TAG<32:13>. These hitsrefer to the tag field in the
Dcache array.
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5.3 External Interface Control (CBU) IPRs

Table 5-25 lists specific IPRs for controlling Bcache, system configuration, and log-
ging error information. These IPRs cannot be read or written from the system. They
are placed in the 1MB region of 21164PC-specific I/O address space ranging from
FF FFFO 0000 to FF FFFF FFFF. Any read or write operation to an undefined IPR in
this address space produces UNDEFINED behavior. The operating system should
not map any address in this region as writable in any mode.

The CBU internal processor registers are described in Section 5.3.1 through
Section 5.3.4.

Table 5-25 CBU Internal Processor Register Descriptions

Register Address Type Description
CBOX_CONFIG FFFFFO0008 RW  Contains Bcache configuration parameters.

CBOX_ADDR FFFFFO0088 R Contains the address for Bcache/system-
related errors.

CBOX_STATUS FFFFF00108 R Contains system-to-CPU clock ratio, chip-
ID information, and logs Bcache/system-
related errors.

CBOX_CONFIG2 FFFFF00188 RW  Containsadditional Bcache configuration
parameters.
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5.3.1 CBU Configuration (CBOX_CONFIG) Register (FF FFF0 0008)

CBOX_CONFIG is a read/write register that controls Bcache activity. Figure 5-48
and Table 5-26 describe the CBOX_CONFIG register format. The bits in this regis-
ter are initialized to the value indicated in Table 5-26 on reset, but not on timeout
reset.

Figure 5-48 CBU Configuration (CBOX_CONFIG) Register
31 30 28 27 26 25 24 23 22 20 19 18 16 1514 13 12 11 08 07 04 03 00

LI LI LI I I L L L
I N I | ez, |

| | | | | | | | | | | |
I— BC_CLK_RATIO<3:0>
BC_LATENCY_OFF<3:0>
BC_SIZE<1:0>
BC_CLK_DELAY<1:0>
BC_RW_OFF<2:0>
BC_PROBE_UNDER_FILL
BC_FILL_DLY_OFF<2:0>

10 PARITY_ENABLE
MEM_PARITY_ENABLE

BC_FORCE_HIT
BC_FORCE_ERR
BC_BIG_DRV
BC_TAG_DATA<2:0>
BC_ENABLE
63 32
rrrrrrrrrrrrrrrrrrrrrrrrnrTrrrronrl
MBZ
| AN (NN NN AN NN AN NN NN N NN SN SN N S SN S NN SN SN U S U S U U S ——
PCA004
Table 5-26 CBU Configuration Register Fields (Sheet 1 of 3)
Name Extent Type Description
Reserved <03:00> RW,0 Reserved to DIGITAL. Must be zero (MBZ).
BC CLK_ <07:04> RW,3 Thisfield determines the Bcache clock period
RATIO<3:.0> (st_clk) in number of CPU cycles. At power-up, the

st_clk remains O until the Bcacheis enabled. The
supported range of valuesis 2 t010.

BC_ <11:08> RW,0 This offset field determines the number of CPU
LATENCY _ cyclestowait from the CPU clock edge that launches
OFF<3:.0> the index until the dataiis latched into the 21164PC.

(Total Latency =5+ BC_LATENCY_OFF<3:0>.)
At power-up, thisfield isinitialized to 0, which rep-
resents a total Bcache latency of five CPU cycles.
The supported range of valuesfor thisfield is 0 to15,
which provides atotal latency range of 5 to 20 CPU
cycles.
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Table 5—26 CBU Configuration Register Fields

(Sheet 2 of 3)

Name Extent

Type

Description

BC_ <13:12>
SIZE<1:0>

RwW,0

BC_CLK_
DELAY<1:0>

<15:14> RW]1

BC_RW

_ <18:16>> RW,0
OFF<2:0>

BC_PROBE_ <19> RW,0
UNDER_

FILL
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Thisfield is used to indicate the size of the Bcache.
At power-up, thisfield isinitialized to a value that
represents a 512K B Bcache. Thefield encodingisas
follows:

BC_SIZE<1.0> Size

00 512KB
01 1IMB
10 2MB
1 4aMB

Thisfield represents the number of CPU cyclesto
delay the st_clk from the driving of the index field
during Bcache transactions. At power-up, thisfieldis
initialized to 1, indicating a clock delay of one CPU
cycle. The supported field rangeis0to 3.

This offset field is used to determine the number of
CPU cyclesto insert for read-to-write spacing when
switching from private Bcache reads to private
Bcache writes. (Total read-to-write spacing =

1+ BC_RW_OFF<3:0>.) At power-up, thisfield is
initialized to 2, which represents atotal read-to-write
spacing of three CPU cycles. The supported range of
valuesfor thisfield is 2 to 7, which provides atotal
read-to-write spacing of three to eight CPU cycles.
For other data movement commands, such as
FLUSH or FILL from main memory, it is up to the
system to direct systemwide datamovement in away
that is safe.

When set, this bit enables Bcache tag probes under
fills. Thisis a performance-enhancement feature that
allowsthetag store to beread (tag probe) for the next
transaction, while the data store is written with fill
datafrom a previous transaction. It allows systemsto
gain better bus utilization during streaming read
misses.
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Table 5-26 CBU Configuration Register Fields (Sheet 3 of 3)
Name Extent Type Description
BC FILL <22:20> RW,1 This offset field represents the additional number of
DLY CPU cyclesto delay the st_clk when processing
OFF<2:.0> FILL commands. It allows the system designer flexi-
bility to position the Bcache clock within the fill data
window. (Total delay of st_clk =
1+BC FILL_DLY_OFF+BC_CLK_DELAY).
IO_PARITY_ <23> Rw,0 When set, the 21164PC checks even longword parity
ENABLE during read operations to 1/O space (PA<39>=1).
MEM _ <24> RwW,0 When set, the 21164PC checks even longword parity
PARITY _ during read operations to memory space
ENABLE (PA<39>=0).
BC FORCE_ <25> RwW,0 When set, all read and write operations with
HIT PA<39>=0 hit in the Bcache. Thisis useful when ini-
tializing the Bcache on power-up.
BC FORCE_<26> RwW,0 When set, bit zero of each longword written into the
ERR Bcacheisinverted.
BC BIG_ <27> RwW,0 When set, this bit enables 50% more drive on the fol-
DRV lowing pins:
index_h<21:4> data_ram_oe |
data ram_we [1<3:0> st _clkl h
st_clk2_h st_clk3_h
data_adsc | data_adv |
BC_TAG_ <30:28> RW,0 When BC_FORCE_HIT=1, BC_TAG _DATA is
DATA<2:.0> used to write the tag field:
Bcache Tag Data Description
BC_TAG_DATA<2> Bcachetag parity
BC TAG_DATA<1> Bcachetagvalid
BC _TAG_DATA<0> Bcachetag dirty
BC ENABLE <31> RwW,0 When set, this bit enables caching of dataand

instructions in the Bcache. When clear, Iread and
Dread references go to read memory. Dwritesto
memory are not allowed.
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5.3.2 CBU Address (CBOX_ADDR) Register (FF FFF0 0088)

CBOX_ADDR isaread-only register that contains the physical address associated
with errorsreported by the CBOX_STATUS register. Its contentsis meaningful only
when one of the error bitsis set. A read of CBOX_STATUS unlocks the
CBOX_ADDR register. Figure 5-49 and Table 5-27 describe the CBOX_ADDR
register format.

Figure 5-49 CBU Address (CBOX_ADDR) Register
63 40 39 38 37 36 04 03 00

MBZ MBZ ADDRESS<36:04> MBZ

ADDRESS<39>
PCAO005

Table 5—27 CBU Address Register Fields

Name Extent Type Description

Reserved <03:00> RO Reserved to DIGITAL. Must be zero (MBZ).
ADDRESS<36:04> <36:04> RO Error address.

Reserved <38:37> RO Reserved to DIGITAL. Must be zero (MBZ).
ADDRESS<39> <39> RO Error address bit 39.

Reserved <63:40> RO Reserved to DIGITAL. Must be zero (MBZ).
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5.3.3 CBU Status (CBOX_STATUS) Register (FF FFF0 0108)

CBOX_STATUS isaread-only register. It islocked when any of the error bits are
set. Additiona errors set the MULTI_ERR error bitin CBOX_STATUS. A read of
CBOX_STATUS unlocks and clears CBOX_STATUS and unlocks CBOX_ADDR.

Figure 5-50 and Table 5-28 describe the CBOX_STATUS register format.

Figure 5-50 CBU Status (CBOX_STATUS) Register
31 30 28 27 26 25 24 23 22 20 19 18 17 16 1514 13 12 11 08 07 04 03 00

I— SYS_CLK_RATIO<3:0>
CHIP_REV<3:0>

DATA_PAR_ERR<3:0>

TAG_PAR_ERR
TAG_DIRTY
MEMORY
MULTI_ERR
63 32
rrrrrrrrrrnrr 11t 1P 11t 1 11 17 11 17T 11T 17 117 1T 1T 1/
MBZ
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
PCA006
Table 5-28 CBU Status Register Fields (Sheet 1 of 2)
Name Extent Type Description
Reserved <03:00> RO,0 Reservedto DIGITAL. Must be zero (MBZ).
SYS CLK_ <07:04> RO,0 Thesysclk period in CPU cycles. The sysclk ratio is
RATIO<3:0> loaded from the IRQ pins on reset. Note that this field

CHIP_REV<3:0> <11:08> RO,0

DATA_PAR_ <15:12> RO,0
ERR<3:0>

TAG PAR ERR <16> RO,0
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isread only.

Thisfield displays 0001, the current revision of the
chip. Future update revisions of the chip will return
different unique values.

If set, this field indicates that the corresponding long-
word had a parity error. Bit<0> corresponds to
data_h<31:0>, hit<3> correspondsto

data h<127:96>.

If set, a parity error was detected on the Bcache tag
store.
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Table 5-28 CBU Status Register Fields (Sheet 2 of 2)

Name Extent Type

Description

TAG_DIRTY <17> RO,0

MEMORY <18> RO,0

MULTI_ERR <19> RO,0

Reserved <31:20> RO,0

Thisbit isthe value of the TAG_DIRTY bit for the
failing address. If set, the data had been modified and
not written to memory.

If set, the error was detected during afill from
memory.

If set, another error was detected after the register was
locked.

Reserved to DIGITAL. Must be zero (MBZ).
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5.3.4 CBU Configuration #2 (CBOX_CONFIG2) Register (FF FFF0 0188)

CBOX_CONFIG2 is aread/write register that controls Bcache and memory, the per-
formance counters, and the debug test port. Figure 5-51 and Table 5-29 describe the
CBOX_CONFIG2 register format.

Figure 5-51 CBU Configuration #2 (CBOX_CONFIG2) Register
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Table 5-29 CBU Configuration #2 Register Fields (Sheet 1 of 3)
Name Extent Type Description
Reserved <03:00> RW,0 Reservedto DIGITAL. Must be zero (MBZ).

BC _REG_REG <04> RW,1 When set, this bit indicates that the Bcache is built from
REG/REG SSRAM. When clear, it indicates that the Bcache
isbuilt from REG/FT SSRAM.

Thisbit is used to delay the deassertion of data ram_oe |
during system Bcache read transactions (for example, Bcache
victims or system probes that require data movement).

DBG_SEL <5> RW,0 Selectsthe Chox debug information for the debug port.
DBG_SEL=0 DBG_SEL=1

biu_trans head merge
NOP cmd tail merge
rty or abt RMW tail
Wr_now stxc

ri_wrreq fmc = NOP
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Table 5—29 CBU Configuration #2 Register Fields

(Sheet 2 of 3)

Name

Extent Type Description

BC_THREE_MISS <6>

Reserved <7> RW,0
PM0O MUX<2:0> <10:8> RW,0
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DBG_SEL=0 DBG_SEL=1

spareq
replay req

io_wror
rmv reg

spc != NOP
sce code<0>

scc code<1>

RW,0 Allow three read misses to be launched to the system. This

feature assumes the system can guarantee that fills can be
returned in order.

Reserved to DIGITAL. Must be zero (MBZ).
Thisfield selects the CBU events used for performance

counter #0.

PMO_MUX

<2:0> Counter 0 is used to count:

0x0 Total Bcache read requests (the total number
of read requests from the MTU).

0x1 Bcache Dstream read hits (total number of
Dstream read requests that hit in the Bcache).

0x2 Bcache Dstream read fills (the total number of
Dstream read fill requests to the Bcache).

0x3 Bcache write operations (the total number of
write requests from the MTU).

Ox4 Undefined.

0x5 Bcache clean write hits (the total number of
write operations that hit a clean block in the
Bcache).

0x6 Bcache victims (the total number of VICTIM
commands issued by the 21164PC).

0ox7 Read miss 2 launched (the number of times a

second READ MISS request is sent to the sys-
tem while thereis aready an outstanding
READ MISS command).
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Table 5-29 CBU Configuration #2 Register Fields (Sheet 3 of 3)
Name Extent Type Description
PM1 MUX<2:0> <13:11> RW,0 Thisfield selectsthe CBU events used for performance

counter #1.

PM1_MUX

<2:0> Counter 1 is used to count:

0x0 Bcache Dstream read requests (the total num-
ber of Dstream read requests from the MTU).

Ox1 Bcache read hits (the total number of read
requests that hit in the Bcache).

0x2 Bcache read fills (the total number of read fill
operations in the Bcache).

0x3 Bcache write hits (the total number of write
operations that hit in the Bcache).

0x4 Bcache write fills (the total number of write
fill operationsin the Bcache).

0x5 System read/flush Bcache hits (the total num-
ber of system READ or FLUSH hitsin the
Bcache).

0x6 System read/flush Bcache misses (the total
number of system READ or FLUSH requests).

0x7 Read miss 3 launched (the number of times a

third READ MISS request is sent to the system
while there are already two READ MISSes
outstanding).

SYSRD_DCLK_EN <14> RW,0 When set, this bit is used to support pipelined SSRAM in a
Digital Semiconductor 21174-based core-chip environment.
It aids module timing for sampling system Bcache reads
(Bcache victims and system probes with data movement).

Restrictions:
1. 6< sysclk_ratio< 11.
2. bc_clk_ratio < ROUND_DOWN(sysclk_ratio/2).
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5.4 PALcode Storage Registers

The 21164PC IEU register file has eight extra registers that are called the

PA L shadow registers. The PALshadow registers overlay R8 through R14 and R25
when the CPU isin PALmMode and ICSR<SDE> is set. Thus, PAL code can consider
R8 through R14 and R25 as local scratch. PAL shadow registers cannot be written in
the last two cycles of a PALcode flow. The normal state of the CPU is

ICSR<SDE> = ON. PAL code disables SDE for the unaigned trap and for error
flows.

The IDU holds abank of 24 PALtemp registers. The PALtemp registers are accessed
with the HW_MTPR and HW_MFPR instructions. The latency from a PALtemp
read operation to availability is one cycle.

5.5 Restrictions

The following sections list all known register access restrictions. A software tool
called the PALcode violation checker (PVC) isavailable. Thistool can be used to
verify adherence to many of the PALcode restrictions.

5.5.1 CBU IPR PALcode Restrictions
Table 5-30 describes the CBU IPR PALcode restrictions.

Table 5-30 CBU IPR PALcode Restrictions (Sheet 1 of 2)
Condition Restriction

Storeto CBOX_CONFIG or Must be preceded by MB, must be followed by MB,
CBOX_CONFIG2. must have no concurrent cacheable I stream refer-

ences or concurrent system commands.

Load from any CBOX IPR at initial- Must guarantee that there are no outstanding read
ization prior to the Bcache being misses.

enabled.
Load from CBOX_STATUS.! Unlocks CBOX_ADDR and CBOX_STATUS.
Any CBU IPR address. NoLDx L or STx C.
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Table 5-30 CBU IPR PALcode Restrictions

Restrictions

(Sheet 2 of 2)

Condition

Restriction

Any undefined CBU IPR address.  No store instructions.

Bcache in force hit mode. No STx_C to cacheable space.

Clearing of BC_FORCE_HIT in

CBOX_CONFIG.

Must be followed by MB, read operation of

CBOX_STATUS, then MB prior to subsequent store.

1 CBOX_ADDR must be read before CBOX_STATUS to ensure error address.

5.5.2 PALcode Restrictions—Instruction Definitions

MTU instructionsare: LDx, LDQ_U, LDx L, HW LD, STx, STQ U, STx C,
HW_ST, and FETCHXx.

Virtual MTU instructions are: LDx, LDQ_U, LDx_L, HW_LD (virtua), STx,
STQ U, STx_C, HW_ST (virtual), and FETCHXx.

Load instructions are: LDx, LDQ_U, LDx L, and HW_LD.
Storeinstructions are; STx, STQ_U, STx_C, and HW_ST.
Table 5-31 lists PALcode restrictions.

Table 5-31 PALcode Restrictions Table

(Sheet 1 of 5)

Y if
checked
The following in cycle O: Restrictions (Note: Numbers refer to cycle number): by PvC!
CALL_PAL entry No HW_REI or HW_REI_STALL incycleO. Y
No HW_MFPR EXC_ADDR incycle0,1. Y
PAL shadow write instruc- NoHW_REI or HW_REI_STALL inO0, 1. Y
tion
HW_LD, lock hit set PAL must dot to EQ.
No other MTU instruction in O.
HW_LD, VPTE bit set No other virtual referencein O.
Any load instruction NoMTU HW_MTPR or HW_MFPR in 0. Y
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No HW_MFPR MAF_MODE in 1,2 (DREAD_PENDING Y

may not be updated).
No HW_MFPR DC_PERR_STAT in 1,2.
No HW_MFPR DC_TEST_TAG slotted in 0.
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Table 5-31 PALcode Restrictions Table (Sheet 2 of 5)
Y if
checked

The following in cycle 0: Restrictions (Note: Numbers refer to cycle number): by PvCl

Any store instruction NoHW_MFPR DC PERR STAT in1,2. Y

Any virtual MTU instruction

Any MTU instruction or
WMB, if it traps

Any IDU trap except
PC-mispredict, ITBMISS,
or OPCDEC due to user
mode

HW_REI_STALL

HW_MTPR any undefined
IPR number

ARITH trap entry
Machine check trap entry

HW_MTPR any IDU IPR
(including PALtemp regis-
ters)

HW_MTPR ASTRR,
ASTER

HW_MTPR SIRR
HW_MTPR EXC_ADDR

HW_MTPR
IC_FLUSH_CTL

HW_MTPR ICSR: HWE
HW_MTPR ICSR: FPE
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No HW_MFPR MAF_MODE in 1,2 (WB_PENDING may Y

not be updated).
No HW_MTPR DTB_ISin 1.

HW_MTPR any IDU IPR not aborted in 0,1 (except that
EXC_ADDR is updated with correct faulting PC).
HW_MTPR DTB_IS not aborted in 0,1.

HW_MTPR DTB_IS not aborted in 0,1.

Only one HW_REI_STALL inan aligned block of four
instructions.

Illegal in any cycle.

No HW_MFPR EXC_SUM or EXC_MASK in cycle0,1.

No register file read or write accessin 0,1,2,3,4,5,6,7.

No HW_MFPR EXC_SUM or EXC_MASK in cycle0,1.

No HW_MFPR same IPR in cycle 1,2.
No floating-point conditional branchin 0.
No FEN or OPCDEC instruction in O.

No HW_MFPR INTID in 0,1,2,3,4,5.
No HW_REI in0,1.

NoHW_MFPRINTID in0,1,2,3,4.
No HW_REI incycle 0,1.
Must be followed by 44 inline PAL code instructions.

No HW_REI in0,1,2,3.

No floating-point instructionsin 0, 1, 2, 3.
No HW_REI in0,1,2.

Y

<

< < <<
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Table 5-31 PALcode Restrictions Table (Sheet 3 of 5)
Y if
checked
The following in cycle 0: Restrictions (Note: Numbers refer to cycle number): by PvCl
HW_MTPR ICSR: SPE, If HW_REI_STALL, thenno HW_REI_STALL in0,1. Y
FMS If HW_REI, then no HW_REI in 0,1,2,3,4. Y
HW_MTPR ICSR: SPE Must flush Icache.
HW_MTPR ICSR: SDE No PAL shadow read/write accessin 0,1,2,3.
NoHW _REIin0,1,2. Y
HW_MTPR ICSR: BSE No LDBU, LDWU, STB, STW, SEXTB, SEXTW in Y
0,1,2,3.
HW_MTPRICSR: MVE No PERR, UNPKBW, UNPKBL, PKWB, PKLB,
MINSB8, MINSW4, MINUBS8, MINUW4, MAXUBS,
MAXUW4, MAXSB8, MAXSW4in 0,1,2,3.
HW_MTPRITB_ASN Must be followed by HW_REI_STALL.
NoHW _REI_STALL incycle0,1,2,3,4. Y
NoHW _MTPRITB 1Sin0,1,2,3. Y
HW_MTPRITB_PTE Must be followed by HW_REI_STALL.
HW_MTPRITB_IAPR, Must be followed by HW_REI_STALL.
ITB_IS, ITB_IA
HW_MTPRITB_IS HW_REI_STALL must bein the same Istream octaword.
HW_MTPR IVPTBR NoHW_MFPR IFAULT VA FORM in0,1,2. Y
HW_MTPR PAL_BASE No CALL PAL in0,1,2,34,5,6,7. Y
NoHW REI in0,1,2,3,4,5,6. Y
HW_MTPR ICM NoHW _REI in0,1,2. Y
No private CALL_PAL in0,1,2,3.
HW_MTPRCC,CC CTL NoRPCCin0,1,2. Y
NoHW_REI in0,1. Y
HW_MTPR DC_FLUSH No MTU ingtructionsin 1,2. Y
No outstanding fillsin O.
No HW_REIl in0,1. Y
HW_MTPR DC_MODE No MTU instructionsin 1,2,3,4. Y
NoHW_MFPR DC_MODE in1,2. Y
No outstanding fillsin O.
NoHW _REI in0,1,2,3. Y
NoHW_REI_STALL in0,1. Y
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Table 5-31 PALcode Restrictions Table (Sheet 4 of 5)
Y if
checked

The following in cycle 0: Restrictions (Note: Numbers refer to cycle number): by PvC?
HW_MTPR No load or storeinstructionsin 1. Y
DC_PERR_STAT No HW_MFPR DC_PERR_STAT in1,2. Y
HW_MTPR No HW_MFPR DC_TEST_TAG in 1,2,3. Y
DC TEST _CTL NoHW_MFPR DC_TEST_CTL issued or slotted in 1,2.
HW_MTPR No outstanding DC fillsin 0.
DC TEST _TAG NoHW_MFPR DC TEST_TAGin1,2,3. Y
HW_MTPR DTB_ASN No virtual MTU instructionsin 1,2,3. Y
No HW_REI in0,1,2. Y
HW_MTPR DTB_CM, No virtual MTU instructionsin 1,2. Y
ALT_MODE No HW_REI in 0,1. Y
HW_MTPRDTB_PTE No virtua MTU instructionsin 2. Y
NoHW_MTPR DTB_ASN, DTB_CM, ALT_MODE, Y
MCSR, MAF_MODE, DC_MODE, DC_ PERR_STAT,
DC TEST_CTL,DC TEST TAGin2.
HW_MTPRDTB_TAG No virtual MTU instructionsin 1,2,3. Y
NoHW _MTPRDTB_TAGin 1. Y
NoHW_MFPR DTB_PTEin 1,2. Y
NoHW _MTPRDTB_ISin1,2. Y
NoHW_REI in0,1,2. Y
HW_MTPR DTB_IAPR, No virtual MTU instructionsin 1,2,3. Y
DTB_IA NoHW _MTPRDTB_ISin0,1,2. Y
No HW_REI in 0,1,2. Y
HW_MTPR DTB_IA NoHW_MFPR DTB_PTEin L Y
HW_MTPR MAF_MODE NoMTU instructionsin 1,2,3. Y
NoWMB in1,2,3. Y
No HW_MFPR MAF_MODE in 1,2. Y
No HW_REI in0,1,2. Y
HW_MTPR MCSR No virtual MTU instructionsin 0,1,2,3,4. Y
NoHW_MFPR MCSRin 1,2. Y
No HW_MFPR VA_FORM in1,2,3. Y
No HW_REI in0,1,2,3. Y
No HW_REI_STALL in0,1. Y
HW_MTPR MVPTBR No HW_MFPR VA_FORM in 1,2. Y
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Table 5-31 PALcode Restrictions Table (Sheet 5 of 5)
Y if
checked

The following in cycle 0: Restrictions (Note: Numbers refer to cycle number): by PvCl
HW_MFPRITB_PTE NoHW _MFPRITB PTE TEMPin1,2,3. Y
HW_MFPR No outstanding DC fillsin 0.
DC _TEST_TAG NoHW_MFPR DC TEST _TAG_TEMP issued or dlotted

inl.

No LDx instructions slotted in O.

NoHW_MTPR DC TEST_CTL between HW_MFPR
DC TEST _TAG and HW_MFPR DC_TEST _
TAG_TEMP.

HW_MFPRDTB_PTE No MTU instructionsin 0,1. Y
NoHW_MTPR DC_TEST_CTL,DC TEST_TAGin0,1. Y
No HW_MFPR DTB_PTE_TEMP issued or dotted in

1,2,3.

No HW_MFPR DTB_PTEin 1. Y

No virtual MTU instructionsin 0,1,2. Y
HW_MFPR VA Must be donein ARITH, MACHINE CHECK,

DTBMISS SINGLE, UNALIGN, DFAULT traps and
ITBMISS flow after the VPTE load.

1 paLcode violation checker.
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6

Privileged Architecture Library Code

This chapter describes the 21164PC privileged architecture library code (PALcode).
The chapter is organized as follows:

e PALcode description

*  PALmode environment

* Invoking PALcode

* PALcode entry points

* Required PALcode function codes

e 21164PC implementation of the architecturally reserved opcodes

6.1 PALcode Description

Privileged architecture library code (PALcode) is macrocode that provides an archi-
tecturally defined operating-system-specific programming interface that is common
across al Alphamicroprocessors. The actual implementation of PAL code differsfor
each operating system.

PAL code runs with privileges enabled, instruction stream mapping disabled, and
interrupts disabled. PAL code has privilege to use five special opcodes that allow
functions such as physical data stream references and internal processor register
(IPR) manipulation.

PAL code can beinvoked by the following events:

* Reset

e System hardware exceptions (MCHK, ARITH)
*  Memory-management exceptions

* Interrupts
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e CALL_PAL instructions

PAL code has characteristics that make it appear to be a combination of microcode,
ROM BIOS, and system service routines, though the analogy to any of these other
itemsis not exact. PALcode exists for several major reasons:

e  There are some necessary support functions that are too complex to implement
directly in a processor chip’s hardware, but that cannot be handled by a normal
operating system software routine. Routines to fill the translation buffer (TB),
acknowledge interrupts, and dispatch exceptions are some examples. In some
architectures, these functions are handled by microcode, but the Alpha architec-
ture is careful not to mandate the use of microcode so as to allow reasonable chip
implementations.

* There are functions that must run atomically, yet involve long sequences of
instructions that may need complete access to al the underlying computer hard-
ware. An example of thisis the sequence that returns from an exception or inter-
rupt.

* There are someinstructions that are necessary for backward compatibility or
ease of programming; however, these are not used often enough to dedicate them
to hardware, or are so complex that they would jeopardize the overall perfor-
mance of the computer. For example, an instruction that doesaVAX style inter-
locked memory access might be familiar to someone used to programming on a
CISC machine, but is not included in the Alpha architecture. Another exampleis
the emulation of an instruction that has no direct hardware support in a particul ar
chip implementation.

In each of these cases, PAL code routines are used to provide the function. The rou-
tines are nothing more than programs invoked at specified times, and read in as
Istream code in the same way that all other Alpha codeis read. Once invoked, how-
ever, PALcode runsin a special mode called PALmode.

6.2 PALmode Environment

PAL code runsin a special environment called PALmaode, defined as follows:

* Istream memory mapping is disabled. Because the PALcode is used to imple-
ment translation buffer fill routines, | stream mapping clearly cannot be enabled.
Dstream mapping is still enabled.
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* The program has privileged access to all the computer hardware. Most of the
functions handled by PAL code are privileged and need control of the lowest lev-
elsof the system.

* Interrupts are disabled. If along sequence of instructions need to be executed
atomically, interrupts cannot be allowed.

An important aspect of PALcodeisthat it uses normal Alphainstructionsfor most of
its operations; that is, the sameinstruction set that nonprivileged Alpha programmers
use. There are afew extrainstructions that are only available in PALmode, and will
cause a dispatch to the OPCDEC PAL code entry point if attempted while not in
PALmode. The Alpha architecture allows some flexibility in what these specia
PALmode instructions do. In the 21164PC the special PALmode-only instructions
perform the following functions:

* Read or write internal processor registers (HW_MFPR, HW_MTPR).

* Perform memory load or store operations without invoking the norma memory-
management routines (HW_LD, HW_ST).

* Return from an exception or interrupt (HW_REI) .

When executing in PALmode, there are certain restrictions for using the privileged
instructions because PALmode gives the programmer compl ete access to many of
the internal details of the 21164PC. Refer to Section 6.6 for information on these
special PALmode instructions.

Caution:  Itispossibleto cause unintended side effects by writing what appearsto
be perfectly acceptable PALcode. As such, PALcode is not something
that many users will want to change.

6.3 Invoking PALcode

PALcodeisinvoked at specific entry points, under certain well-defined conditions.
These entry points provide access to a series of callable routines, with each routine
indexed as an offset from a base address. The base address of the PALcodeis pro-
grammable (stored in the PAL_BASE IPR), and is normally set by the system reset
code. Refer to Section 6.4 for additional information on PAL code entry points.

PC<00> is used as the PALmode flag both to the hardware and to PAL code itself.
When the CPU enters a PALflow, the IDU sets PC<00>. This bit remains set as
instructions are executed in the PAL Istream. The IDU hardware ignores this and
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behaves asif the PC were still longword aligned for the purposes of Istream fetch
and execute. On HW_REI, the new state of PALmode is copied from
EXC_ADDR<00>.

When an event occurs that needs to invoke PAL code, the 21164PC first drains the
pipeline. The current PC isloaded into the EXC_ADDR IPR, and the appropriate
PAL code routine is dispatched. These operations occur under direct control of the
chip hardware, and the machine is now in PALmode. When the HW_REI instruction
is executed at the end of the PAL code routine, the hardware executes ajump to the
address contained in the EXC_ ADDR IPR. The LSB is used to indicate PALmode
to the hardware. Generally, the LSB is clear upon return from a PAL code routine, in
which case, the hardware loads the new PC, enables interrupts, enables memory
mapping, and dispatches back to the user.

The most basic use of PALcode isto handle complex hardware events, and it is
called automatically when the particular hardware event is sensed. This use of PAL-
code is similar to other architectures’ use of microcode.

There are several major categories of hardware-initiated invocations of PALcode:

*  When the 21164PC isreset, it enters PALmode and executes the RESET
PALcode. The system will remain in PALmode until aHW _ REI instruction is
executed and EXC_ADDR<00> is cleared. It then continues execution in non-
PALmode (native mode), as just described. It isduring thisinitial RESET PAL-
code execution that the rest of the low-level system initialization is performed,
including any modification to the PAL code base register.

* When asystem hardware error is detected by the 21164PC, it invokes one of
several PAL code routines, depending upon the type of error. Errors such as
machine checks, arithmetic exceptions, reserved or privileged instruction
decode, and datafetch errors are handled in this manner.

*  When the 21164PC senses an interrupt, it dispatches the acknowledgment of the
interrupt to a PAL code routine that does the necessary information gathering,
then handles the situation appropriately for the given interrupt.

¢ When aDstream or Istream trand ation buffer miss occurs, one of several PAL-
coderoutinesis called to perform the TB fill.

The 21164PC IEU register file has eight extra registers that are called the
PALshadow registers. The PALshadow registers overlay R8, R9, R10, R11, R12,
R13, R14, and R25 when the CPU isin PALmode and ICSR<SDE> is asserted. For
additional PAL scratch, the IDU has aregister bank of 24 PALtemp registers, which
are accessibleviaHW_MTPR and HW_MFPR instructions.
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6.4 PALcode Entry Points

PALcodeisinvoked at specific entry points. The 21164PC has two types of PAL-
code entry points: CALL_PAL and traps.

6.4.1 CALL_PAL Entry

CALL_PAL entry points are used whenever the IDU encountersa CALL_PAL
instruction in the instruction stream (Istream). CALL__ PAL instructions start at the
following offsets:

* Privileged CALL_PAL instructions start at offset 20004.
* Nonnprivileged CALL_PAL instructions start at offset 3000,¢.

The CALL_PAL itself isissued into pipe E1 and the IDU stalls for the minimum
number of cycles necessary to perform an implicit TRAPB. The PC of theinstruction
immediately following the CALL_PAL isloaded into EXC_ADDR and is pushed
onto the return prediction stack.

The IDU contains specia hardware to minimize the number of cyclesin the TRAPB
at the start of a CALL_PAL. Software can benefit from this by scheduling
CALL_PALssuch that they do not fall in the shadow of:

e IMUL
* Any floating-point operate, especialy FDIV

Each CALL_PAL instruction includes afunction field that will be used in the calcu-
lation of the next PC. The PAL OPCDEC flow will be started if the CALL_PAL
function field is:

* Intherange 40;¢ to 7Fg inclusive.
¢ Greater than BF16.
* Between 00,5 and 3F;¢ inclusive, and ICM<04:03> is not equal to kernel.

If no OPCDEC is detected on the CALL_PAL function, then the PC of the instruc-
tion to execute after the CALL_PAL iscalculated as follows:

¢ PC<63:14> = PAL_BASE IPR<63:14>

e PC<13>=1

e PC<12>=CALL_PAL function field<7>

* PC<11:06> = CALL_PAL function field<5:0>
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e PC<05.01>=0
e PC<00> =1 (PALmMode)

The minimum number of cyclesfor a CALL_PAL execution isfour.

Number of

Cycles Description

1 Minimum TRAPB for empty pipe. Typically thiswill be four cycles.

1 Issuethe CALL_PAL instruction.

2 The minimum length of a PAL flow. However, in most cases there will be

more than two cycles of work for the CALL_PAL.

6.4.2 PALcode Trap Entry Points

6-6

Chip-specific trap entry points start PALcode. (No PALcode assist is required for
replay and mispredict typetraps.) EXC _ADDR isloaded with the return PC and the
IDU performs a TRAPB in the shadow of the trap. The return prediction stack is
pushed with the PC of the trapping instruction for precise traps, and with some later
PC for imprecise traps.

Table 6—1 shows the PALcode trap entry points and their offset from the PAL_BASE
IPR. Entry points are listed from highest to lowest priority. (Prioritization among the
Dstream traps works because DTBMISS is suppressed when there is a sigh check
error. The priority of ITBMISS and interrupt is reversed if there is an Icache miss.)

Table 6-1 PALcode Trap Entry Points (Sheet 1 of 2)
Entry Name Offset,g Description
RESET 0000 Reset
IACCVIO 0080 I stream access violation or sign check error on PC
INTERRUPT 0100 Interrupt: hardware, software, and AST
ITBMISS 0180 Istream TBMISS

DTBMISS _SINGLE 0200 Dstream TBMISS
DTBMISS DOUBLE 0280 Dstream TBMISS during virtual page table entry

(PTE) fetch
UNALIGN 0300 Dstream unaligned reference
DFAULT 0380 Dstream fault or sign check error on virtual address
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Table 6-1 PALcode Trap Entry Points (Sheet 2 of 2)
Entry Name Offset;g Description

MCHK 0400 Uncorrected hardware error

OPCDEC 0480 Ilegal opcode

ARITH 0500 Arithmetic exception

FEN 0580 Floating-point operation attempted with:

*  Floating-point instructions (LD, ST, and
operates) disabled through FPE bit in the
ICSRIPR

*  Floating-point | EEE operation with datatype
otherthan S, T, or Q

6.5 Required PALcode Function Codes

Table 6-2 lists opcodes required for all Alpha implementations. The notation used is
oo.ffff, whereoo is the hexadecimal 6-bit opcode dfftlis the hexadecimal 26-bit
function code.

Table 6—2 Required PALcode Function Codes

Mnemonic Type Function Code
DRAINA Privileged 00.0002
HALT Privileged 00.0000
IMB Unprivileged 00.0086

6.6 21164PC Implementation of the Architecturally Reserved
Opcodes

PALcode uses the Alpha instruction set for most of its operations. Table 6-3 lists the
opcodes reserved by the Alpha architecture for implementation-specific use. These
opcodes are privileged and are only available in PALmode.
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Note: These architecturally reserved opcodes contain different options to the
21064 opcodes of the same names.

Table 6—3 Opcodes Reserved for PALcode

21164PC Architecture

Mnemonic Opcode Mnemonic Function

HW_LD 1B PAL1B Performs Dstream load instructions.

HW_ST 1F PAL1F Performs Dstream store instructions.

HW_REI 1E PAL1E Returns instruction flow to the program counter
(PC) pointed to by EXC_ ADDR IPR.

HW_MFPR 19 PAL19 Accessesthe IDU, MTU, and Dcache internal
processor registers (IPRS).

HW_MTPR 1D PAL1D Accessesthe IDU, MTU, and Dcache IPRs.

These instructions produce an OPCDEC exception if executed while not in the
PALmode environment. If ICSR<KHWE> is set, these instructions can be executed in
kernel mode. Any software executing with ICSR<KHWE> set must use extreme care
to obey al restrictions listed in this chapter and in Chapter 5.

Register checking and bypassing logic is provided for PALcode instructions asit is
for non-PAL code instructions, when using general-purpose registers (GPRS).

Note: Explicit software timing is required for accessing the hardware-specific
IPRs and the PAL_TEMP registers. These constraints are described in
Table 5-31.

6.6.1 HW_LD Instruction

PALcode uses the HW_LD instruction to access memory outside of the realm of nor-
mal Alpha memory management and to do special forms of Dstream loads.

Figure 6-1 and Table 6—4 describe the format and fields of the HW_LD instruction.
Data alignment traps are inhibited for HW_LD instructions.
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Figure 6-1 HW_LD Instruction Format

26 25

2120 16 1514 13 12 1110 09 00

| LOCK
VPTE
QUAD
WRTCK
ALT
PHYS

LJ-03469.A14

Table 6-4 HW_LD Format Description

Field Value Description

OPCODE 1B4g The OPCODE field contains 1B4g.

RA — Destination register number.

RB — Base register for memory address.

PHYS 0 The effective address for the HW_LD is virtual.

1 The effective address for the HW_LD is physical. Translation and
memory-management access checks are inhibited.

ALT 0 Memory-management checks use MTU IPR DTB_CM for access
checks.

1 Memory-management checks use MTU IPR ALT_MODE for
access checks.

WRTCK 0 Memory-management checks fault on read (FOR) and read access
violations.

1 Memory-management checks FOR, fault on write (FOW), read,
and write access violations.

QUAD 0 Length is longword.

1 Length is quadword.

VPTE 1 Flags a virtual PTE fetch. Used by trap logic to distinguish single
TBMISS from double TBMISS. Access checks are performed in
kernel mode.

LOCK 1 Load lock version of HW_LD. PAL must slot to EO pipe.

DISP — Holds a 10-bit signed byte displacement.
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6.6.2 HW_ST Instruction

PAL code uses the HW_ST instruction to access memory outside of the realm of nor-
mal Alpha memory management and to do special forms of Dstream store instruc-
tions. Figure 6—-2 and Table 6-5 describe the format and fields of the HW_ST
instruction. Data alignment traps are inhibited for HW_ST instructions. The IDU
logic will always slot HW_ST to pipe EO.

Figure 6—-2 HW_ST Instruction Format

26 25

2120 16 1514 13 12 1110 09 00

| COND
MBZ
QUAD
MBZ
ALT
PHYS

LJ-03470.A14

Table 6-5 HW_ST Format Description

Field Value  Description
OPCODE  1F44 The OPCODE field contains 1F;.
RA — Write data register number.
RB — Base register for memory address.
PHYS 0 The effective address for the HW_ST is virtual.
1 The effective address for the HW_ST is physical. Translation and
memory-management access checks are inhibited.
ALT 0 Memory-management checks use MTU IPR DTB_CM for access
checks.
1 Memory-management checks use MTU IPR ALT_MODE for
access checks.
QUAD 0 Length is longword.
1 Length is quadword.
COND 1 Store_conditional version of HW_ST. In this case, RA is written
with the value of LOCK_ FLAG.
DISP — Holds a 10-bit signed byte displacement.
MBZ — HW_ST<13,11> must be zero.
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6.6.3 HW_REI Instruction

The HW_REI instruction is used to return instruction flow to the PC pointed to by
the EXC_ADDR IPR. Thevauein EXC_ADDR<0> will be used as the new value
of PALmode after the HW_REI instruction.

The IDU uses the return prediction stack to speed the execution of HW_REI. There
are two different types of HW_REI:

* Prefetch: In this case, the IDU begins fetching the new I stream as soon as possi-
ble. Thisisthe version of HW_REI that is normally used.

o Stall prefetch: Thisencoding of HW_REI inhibits Istream fetch until the
HW_REI itself isissued. Thus, thisisthe method used to synchronize IDU
changes (such as ITB write instructions) with the HW_REI. Thereisarule that
PAL code can have only one such HW_REI in an aligned block of four instruc-
tions.

Figure 6-3 and Table 6—6 describe the format and fields of the HW_ REI instruction.
The IDU logic will slot HW_REI to pipe E1.

Figure 6-3 HW_REI Instruction Format

31 26 25 2120 16 1514 13 00

\ \
OPCODE RA RB TYP MBZ
| |

LJ-03471.A14

Table 6-6 HW_REI Format Description

Fields Value  Description

OPCODE 1E4 The OPCODE field contains 1Eg.

RA/RB — Register numbers; should be R31 to avoid unnecessary stalls.
TYP 10 Normal version.

11 Stall version.
MBZz 0 HW_REI<13:00> must be zero.
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6.6.4 HW_MFPR and HW_MTPR Instructions

The HW_MFPR and HW_MTPR instructions are used to access internal state from
the IDU, MTU, and Dcache. The HW_MFPR from IDU IPRs has alatency of one
cycle (HW_MFPR in cycle n resultsin data available to the using instruction in
cyclen+l). HW_MFPR from MTU and Dcache IPRs has alatency of two cycles.
IDU hardware dots each type of MXPR to the correct IEU pipe (refer to

Table 5-1).

Figure 6—4 and Table 6—7 describe the format and fields of the HW_MFPR and
HW_MTPR instructions.

Figure 6-4 HW_MFPR and HW_MTPR Instruction Format

31 26 25 2120 16 15 00

1.1-03472 Al4

Table 6-7 HW_MFPR and HW_MTPR Format Description

Field Value Description

OPCODE 1944 The OPCODE field contains 19;¢ for HW_MFPR.
1D¢g The OPCODE field contains 1D, for HW_MTPR.

RA/RB — Must be the same; source register for HW_MTPR and destination
register for HW_MFPR.

Index — Specifies the IPR. Refer to Table 5-1 for field encoding. Refer to
Chapter 5 for more details about specific IPRs.
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Initialization and Configuration

This chapter provides information on 21164PC-specific microprocessor/system ini-
tialization and configuration. It is organized as follows:

Input signals sys reset_| and dc_ok_h and booting
sysclk ratio and delay

Built-in self-test (BiSt)

Seria read-only memory (SROM) interface port
Serial terminal port

Cacheinitialization

External interface initialization

Internal processor register (IPR) reset state
Timeout reset

IEEE 1149.1 test port reset

7.1 Input Signals sys_reset_| and dc_ok_h and Booting

The 21164PC reset sequence uses two input signals: sys reset_| and dc_ok_h.
When transitioning from a powered-down state to a powered-up state, signal
dc_ok_h must be deasserted, and signal sys reset_| must be asserted until power has
reached the proper operating point and the input clock to the 21164PC is stable. If
theinput clock is derived from a PLL, it may take many milliseconds for the input
oscillator to start and the PLL output to stabilize.
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Input Signals sys_reset_| and dc_ok_h and Booting

After power has reached the proper operating point, signal dc_ok _h must be
asserted. Then, signal sys reset_| must be deasserted. At this point, the 21164PC
recognizes a powered-up state. If signal dc_ok_h is not asserted, signal sys reset_|
isforced asserted internally. After sys reset_| is deasserted, the 21164PC begins the
following sequence of operations:

1. lcache built-in self-test (BiSt)

2. Anoptional automatic Icacheinitialization, using an external serial ROM
(SROM) interface

3. Dispatch to the reset PAL code trap entry point (physical location 0)

a. If step 2 initialized the Icache by using the SROM interface, the cache
should contain code that appears to be at location 0, that is, the cache
should beinitialized such that it hits on the dispatch. Typically the code
in the Icache should configure the IPRs in the 21164PC as necessary
before causing any offchip read or write commands. This allows the
21164PC to be configured to match the external system implementation.

b. If step 2 did not initialize the Icache, the Icache has been flushed by
reset. The reset PAL code trap dispatch misses in the Icache and pro-
duces an offchip read command. The external system implementation
must be compatible with the default configuration of the 21164PC after
reset (refer to Section 7.8). The code that is executed at this point should
compl ete the 21164PC configuration as necessary.

4, After configuring the 21164PC, control can be transferred to code anywhere in
memory, including the noncacheable regions. If the SROM interface was used to
initialize the Icache, the Icache can be flushed by a write operation to
IC_FLUSH_CTL after control istransferred. Thistransfer of control should be
to addresses not |oaded in the Icache by the SROM interface or the Icache may
provide unexpected instructions.

5. Typicaly, PALbase and any state required by PAL code are initialized and the
consoleis started (switching out of PALmode and into native mode). The con-
sole code initializes and configures the system and boots an operating system
from an 1/0O device such as a disk or the network.

Signal sys reset_| forcesthe CPU into aknown state. Signal sys reset_| must
remain asserted while signal dc_ok_h is deasserted, and for some period of time
after dc_ok _h assertion. It should remain asserted for at least 400 internal CPU
cyclesin length. Then, signa sys reset_| may be deasserted. Signal sys reset_|
deassertion need not be synchronous with respect to sysclk. Section 7.8 liststhe reset
state of each IPR.
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Table 7-1 provides the reset state of each external signal pin.

Table 7-1 21164PC Signal Pin Reset State

(Sheet 1 of 3)

Signal

Reset State

Clocks

clk_mode h<1:0>

cpu_clk_out_h

NA (input).
Clock output.

osc clk_in_h|l Must be clocking.
st _clkl h Deasserted.
st _clk2 h Deasserted.
st _clk3 h Deasserted.
sys clk_outl h Clock output.
sys clk_out2 h Clock output.
sys reset | NA (input).
Bcache

data_h<127:0> Tristated.
data_adsc | Deasserted.
data adv | Deasserted.
data ram_oe | Deasserted.
data ram_we 1<3:0> Deasserted.
index_h<21:4> Unspecified.
Iw_parity_h<3:0> Tristated.
tag_data h<32:19> Tristated.
tag_data par_h Tristated.
tag_dirty h Tristated.
tag_ram_oe | Deasserted.
tag_ram_we | Deasserted.
tag_valid_h Tristated.
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7-4

Table 7-1 21164PC Signal Pin Reset State

(Sheet 2 of 3)

Signal

Reset State

System Interface

addr_h<39:4>

addr_bus req_h
addr_res h<1:0>
cack_h
cmd_h<3:0>

dack_h
data bus req_h
fill_h

fill_dirty_h
fill_error_h
fill_id_h
idle bc h

int4_valid_h<3:0>
victim_pending_h

Driven or tristated depending upon addr_bus req_h at most
recent sysclk edge. If driven, the value is unspecified.

NA (input).
NOP.
Must be deasserted.

Driven or tristated depending upon addr_bus req_h at most
recent sysclk edge. If driven, the command is NOP.

Must be deasserted.
NA (input).

Must be deasserted.
NA (input).

Must be deasserted.
Must be deasserted.
Must be deasserted.
Unspecified.
Unspecified.

Interrupts

irg_h<3:0>
mch_hlt_irg_h
pwr_fail irq_h
sys mch_chk_irg_h

sysclk divisor ratio input.

sysclk delay input.
sysclk delay input.
sysclk delay input.

Test Modes

dc_ok_h NA (input).
port_mode h<1:0> NA (input).
srom_clk_h Deasserted.

Initialization and Configuration
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Table 7-1 21164PC Signal Pin Reset State (Sheet 3 of 3)
Signal Reset State
srom_data_h NA (input).
srom_oe | Deasserted.
srom_present_| NA (input).
tck_h NA (input).
tdi_h NA (input).
tdo_h NA (input).
temp_sense NA (input).
test_status h<1> Deasserted.
tms_h NA (input).
trst_| Must be asserted (input).

While signal dc_ok_h is deasserted, the 21164PC provides its own internal clock
source from an onchip ring oscillator. When dc_ok_h is asserted, the 21164PC clock
source isthe differential clock input pinsosc_clk_in_h,l.

When the 21164PC is free-running from the internal ring oscillator, the internal
clock frequency isin the range of 10 MHz to 100 MHz (varies from chip to chip).
The sysclk divisor and sys clk_out2_h delay are determined by input pins while
signal sys reset_| remains asserted. Refer to Section 4.2.2 and Section 4.2.3 for rétio
and delay values.

7.1.1 Pin State with dc_ok_h Not Asserted

Whiledc_ok_h isdeasserted, and sys reset | isasserted, every output and bidirec-
tional 21164PC pinistristated and pulled weakly to ground by a small pull-down
transistor.
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7.2 sysclk Ratio and Delay

Whileinreset, the 21164PC reads sysclk configuration parameters from theinterrupt
signal pins. These inputs should be driven with the correct configuration values
whenever sys reset_| is asserted. Refer to Section 4.2.2 and Section 4.2.3 for rele-
vant input signals and ratio/delay values.

If the signal inputs reflecting configuration parameters change while sys reset_| is
asserted, allow 20 internal CPU cycles before the new sysclk behavior is correct.

7.3 Built-In Self-Test (BiSt)

Upon deassertion of signal sys reset_|, the 21164PC automatically executes the
Icache built-in self-test (BiSt). The Icache is automatically tested and the result is
made availableinthe ICSR IPR and on signal test_status_h<1>. Internally, the CPU
reset continues to be asserted throughout the BiSt process. For additional informa-
tion, refer to Section 9.4.4.1.

7.4 Serial Read-Only Memory Interface Port

The seria read-only memory (SROM) interface provides the initialization data load
path from a system SROM to the instruction cache (Icache). Following initialization,
this interface can function as a diagnostic port using privileged architecture library
code (PALcode).

The following signals make up the SROM interface:

srom_present_|
srom_data_h
srom_oe |
srom_clk_h

During system reset, the 21164PC samples the srom_present_| signal for the pres-
ence of SROM. If srom_present_| isdeasserted, the SROM load is disabled and the
reset sequence clearsthe Icache valid bits. This causes the first instruction fetch to
miss the Icache and read instructions from offchip memory.

7-6 Initialization and Configuration 29 September 1997 — Subject To Change



Serial Read-Only Memory Interface Port

If srom_present_| isasserted during setup, then the system performs an SROM load
asfollows:

1. Thesrom_oe | signa supplies the output enable to the SROM.

2. Thesrom_clk_h signal suppliesthe clock to the ROM that causesit to advance
to the next bit. The cycle time of this clock is 126+ times the CPU clock period.

3. Thesrom_data h signal inputs the SROM data.
7.4.1 Serial Instruction Cache Load Operation

All Icache bits, including each block’s tag, address space number (ASN), address
space match (ASM), valid, and branch history bits, can be loaded serially from off-
chip serial ROMs. Once the serial load has been invoked by the chip reset sequence,
the first 8KB of the Icache is loaded automatically from the lowest to the highest
addresses. The second 8KB of the Icache cannot be loaded serially. The tag valid bits
for this bank should reflect this.

The automatic serial Icache fill invoked by the chip reset sequence operates inter-
nally at a frequency of 126 x CPU clock period. However, due to the synchroniza-
tion with the system clocks, consecutive access cycles to SROM may shrink or
stretch by a system cycle. For example, for a system with a system clock ratio of 15,
the time between the two consecutive SROM accesses may be anywhere in the range
111 to 141 CPU cycles. The SROM used in the system must be able to support
access times in this range. Refer to Section 9.4.4 for additional SROM timing infor-
mation.

The serial bits are received in a 256-bit-long fill scan path, from which they are writ-
ten in parallel into the Icache address. The fill scan path is organized as shown in the
text following this paragraph. The farthest bit is shifted in first and the nearest bit is
shifted in last. The data and predecode bits in the data array are interleaved. The
placeholders are merely for padding the record to a power of 2 and are “don’t cares.”

29 September 1997 — Subject To Change Initialization and Configuration  7-7



Serial Terminal Port

sromdata_h serial input ->

BHT Array 0-> 1-> ... -> 7->

Dat a 127 -> 95 -> 126 -> 94 -> ... -> 96 -> 64 ->
Pr edecodes 19 -> 14-> 18 -> 13->... -> 15-> 10 ->
Data parity 1-> 0->

Pr edecodes 9-> 4-> 8-> 3->. -> 5.> 0->
[at a 63 -> 31 -> 62-> 30 ->. -> 32 -> 0->
Tag Parity b ->

Tag Valids 0-> 1-> 2-> 3->

TAG Phy. Addr ess b ->

TAG ASN 0-> 1-> ... -> 6->

TAG ASM b ->

TAG 14 -> -> 42 ->

P acehol der 0-> -> b4

b =S ngle bit signal

Refer to Appendix C for an example of C code that calcul ates the predecode values
of aserial Icache load.

7.5 Serial Terminal Port

After the SROM dataisloaded into the | cache, the three SROM interface signals can
be used as a software “UART” and the pins become parallel I/0O pins that can drive a
diagnostic terminal by using an interface such as RS-232 or RS-423.

7.6 Cache Initialization

Regardless of whether the Icache BiSt is executed, the Icache is flushed during the
reset sequence prior to the SROM load. If the SROM load is bypassed, the Icache
will be in the flushed state initially.

The data cache (Dcache) is disabled by reset. It is not initialized or flushed by reset.
It should be initialized by PALcode before being enabled.

The external board-level Bcache is disabled by reset. It should be initialized by PAL-
code before being enabled.
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7.6.1 Icache Initialization

The Icacheis not kept coherent with memory. When it is necessary to make it coher-
ent with memory, the following procedure is used. The CALL_PAL IMB function
performs this function by using this procedure.

1. Execute an MB instruction. Thisforces al write data in the write buffer into
memory.

— Stall until write buffer is drained.
— Carry load or issue a HW_MFPR from any MTU IPR.
Write to IC_FLUSH_CTL with an HW_MTPR to flush the Icache.

Execute a total of 44 NOP instructions (BIS r31,r31,r31) to clear the prefetch

buffers and IDU pipeline. The 44 NOP instructions must start on an INT16
boundary. Pad with additional NOP instructions if necessary.

7.6.2 Flushing Dirty Blocks

During a power failure recovery, dirty blocks must be flushed out of the backup
cache (Bcache).

To flush out dirty blocks from the Bcache on power failure, the following sequence
must be used to guarantee that all the dirty blocks have been written back to main

memory:

Performloads at a stride of Bcache bl ock size = 2 x size of the Bcache

7.7 External Interface Initialization

After reset, the cache control and bus interface unit (CBU) is in the default configu-
ration dictated by the reset state of the IPR bits that select the configuration options.
The CBU response to system commands and internally generated memory accesses
is determined by this default configuration. System environments that are not com-
patible with the default configuration must use the SROM Icache load feature to ini-
tially load and execute a PALcode program. This program configures the external

interface control (CBU) IPRs as needed.
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7.8 Internal Processor Register Reset State

Many IPR bits are not initialized by reset. They are located in error-reporting regis-

ters and other IPR states. They must be initialized by initialization PALcode.

Table 7-2 lists the state of all internal processor registers (IPRs) immediately follow-
ing reset. The table also specifies which registers need to be initialized by power-up

PALcode.

Table 7-2 Internal Processor Register Reset State

(Sheet 1 of 3)

IPR

Reset State

Comments

IDU Registers

ITB_TAG
ITB_PTE

ITB_ASN
ITB_PTE_TEMP
ITB_IAP

ITB_IA

ITB_IS
IFAULT_VA_FORM
IVPTBR
ICPERR_STAT
IC_FLUSH_CTL
EXC_ADDR
EXC_SUM

EXC_MASK
PAL_BASE
ICM

ICSR

IPLR

UNDEFINED
UNDEFINED
UNDEFINED
UNDEFINED
UNDEFINED
UNDEFINED
UNDEFINED
UNDEFINED
UNDEFINED
UNDEFINED
UNDEFINED
UNDEFINED
UNDEFINED

UNDEFINED
Cleared
UNDEFINED

See Comments

UNDEFINED

Initialization and Configuration

PALcode must initidize.

PALcode must initialize.

PALcode must initidize.
PALcode must initialize.

PALcode must clear exception summary and
exception register write mask by writing
EXC_SUM.

Cleared on reset.
PAL code must set current mode.

All bits are cleared on reset except ICSR<37>,
which is set, and ICSR<38>, which is UNDE-
FINED.

PALcode must initialize.
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Table 7-2 Internal Processor Register Reset State (Sheet 2 of 3)
IPR Reset State Comments

INTID UNDEFINED

ASTRR UNDEFINED PALcode must initialize.

ASTER UNDEFINED PALcode must initialize.

SIRR UNDEFINED PALcode must initialize.

HWINT_CLR UNDEFINED PALcode must initialize.

ISR UNDEFINED

SL_XMIT Cleared Appears on externa pin.

SL_RCV UNDEFINED

PMCTR See Comments PMCTR<15:10> are cleared on reset. All other

bits are UNDEFINED.

MTU Registers

DTB_ASN
DTB_CM
DTB_TAG

DTB_PTE
DTB_PTE_TEMP
MM_STAT

VA

VA_FORM

MVPTBR
DC_PERR_STAT
DTB_IAP
DTB_IA
DTB_IS

UNDEFINED
UNDEFINED
Cleared

UNDEFINED
UNDEFINED
UNDEFINED

UNDEFINED

UNDEFINED

UNDEFINED
UNDEFINED
UNDEFINED
UNDEFINED
UNDEFINED
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PALcode must initidize.
PALcode must initidize.

Valid bits are cleared on chip reset but not on
timeout reset.

Must be unlocked by PAL code by reading VA
register.

Must be unlocked by PAL code by reading VA
register.

Must be unlocked by PAL code by reading VA
register.

PALcode must initialize.
PAL code must initialize.
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Timeout Reset

Table 7-2 Internal Processor Register Reset State (Sheet 3 of 3)
IPR Reset State Comments
MCSR Cleared Cleared on chip reset but not on timeout reset.
DC_MODE Cleared Cleared on chip reset but not on timeout reset.
MAF_MODE Cleared Cleared on chip reset. MAF_MODE<05>
cleared on timeout reset.
DC FLUSH UNDEFINED PALcode must write this register to clear
Dcache valid bits.
ALT_MODE UNDEFINED
CcC UNDEFINED CC isdisabled on chip reset.
CC_CTL UNDEFINED
DC TEST _CTL <15> cleared Cleared on chip reset but not on timeout reset.
DC_TEST_TAG UNDEFINED

DC_TEST_TAG_TEMP UNDEFINED

CBU Registers

CBOX_CONFIG See Section 5.3.1 for power-up state.
CBOX_CONFIG2 See Section 5.3.4 for power-up state.
CBOX_ADDR See Section 5.3.2 for power-up state.
CBOX_STATUS See Section 5.3.3 for power-up state.

7.9 Timeout Reset

The instruction fetch/decode unit and branch unit (IDU) contains atimer that times

out when avery long period of time passes with no instruction completing. When
thistimeout occurs, an internal reset event occurs. This clears sufficient internal state

to alow the CPU to begin executing again. Registers, IPRs (except as noted in

Table 7-2), and caches are not affected. Dispatch to the PALcode MCHK trap entry
point occurs immediately.
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7.10 IEEE 1149.1 Test Port Reset

Signal trst_| must be asserted when sys reset_| isasserted or whendc _ok_his
deasserted. Continuous trst_| assertion during normal operation is used to guarantee
that the IEEE 1149.1 test port does not affect 21164PC operation.
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Error Detection and Error Handling

This chapter provides an overview of the error handling strategy of the 21164PC.
Eachinterna cache (instruction cache[lcache] and data cache [Dcache]) implements
parity protection for tag and data. Longword parity protection isimplemented for
memory and backup cache (Bcache) data. Bcache tag and control (valid and dirty
bits) are parity protected. The instruction fetch/decode unit and branch unit (IDU)
implements logic that detects when no progress has been made for avery long time
and forces a machine check trap.

PAL code handles al error traps (machine checks and parity error interrupts). Where
possible, the address of affected dataislatched in an onchip IPR. Most of the Istream
errors can beretried by the operating system because the machine check occurs
before any part of the instruction causing the error is executed. In some other cases,
the system may be able to recover from an error by terminating all processes that had
access to the affected memory location.

8.1 Error Flows

The following flows describe the events that take place during an error, the recom-
mended responses necessary to determine the source of the error, and the suggested
actions to resolve them.

8.1.1 Icache Data or Tag Parity Error

* Machine check occurs before the instruction causing the parity error is executed.

* EXC_ADDR containseither the PC of theinstruction that caused the parity error
or that of an earlier trapping instruction.

* |ICPERR_STAT<TPE> or <DPE> is s&t.
e Canberetried.

29 September 1997 — Subject To Change Error Detection and Error Handling  8-1



Error Flows

Note: The Icacheis not flushed by hardware in this event. If an | cache parity
error occurs early in the PAL code routine at the machine check entry
point, an infinite loop may result.

* Recommendation: Flush the Icache early in the MCHK routine.

8.1.2 Dcache Data Parity Error

* Machine check occurs. Machine state may have changed.

e Cannot beretried, but may only need to delete the process if datais confined to a
single process and no second error occurred.

* DCPERR_STAT: <DP0O> or <DP1> is set. <LOCK> is set. <SEO> is set if there
are multiple errors.

Note: For multiple parity errorsin the same cycle, the <SEO> hit isnot set, but
more than one error bit will be set.

* VA: Containsthe virtua address of the quadword with the error.

e MM_STAT locked. Contents contain information about instruction causing par-
ity error.

Note: Fault information on another instruction in same cycle may be lost.

8.1.3 Dcache Tag Parity Error

* Machine check occurs. Machine state may have changed.

* DCPERR_STAT: <TPO> or <TP1> isset. <LOCK> is set. <SEO> is set if there
are multiple errors.

Note: For multiple parity errorsin the same cycle, the <SEO> bit isnot set, but
more than one error bit will be set.

* VA: Containsthe virtual address of the Dcache block (hexword) with the error.

* MM_STAT locked. Contents contain information about instruction causing par-
ity error. <WR> hit is set if error occurred on a store instruction.

Note: Fault information on another instruction in the same cycle may be lost.
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Error Flows

* Probably will not be able to recover by deleting a single process, because exact
address is unknown, and aload may have falsely hit.

8.1.4 Istream Data Parity Errors (Bcache or Memory)

* Machine check occurs before the instruction causing the error is executed.
* Bad datamay be written to the Icache or Icache refill buffer and validated.
e Can beretried if there are no multiple errors.

* Must flush Icache to remove bad data. The Icache refill buffer may be flushed by
executing enough instructions to fill the refill buffer with new data (32 instruc-
tions). Then flush the Icache again.

e CBOX_STATUS: <DATA_ PAR ERR<3:0>> isset; <MULTI_ERR> isset if
there are multiple errors.

* CBOX_STATUS. <MEMORY > isset if source of fill datais memory/system; is
clear if source is Bcache.

* CBOX_ADDR: Contains the physical address bits <39:04> of the octaword
associated with the error.

Note: If the Istream parity error occurs early in the PAL code routine at the
machine check entry point, an infinite loop may result.

* Recommendation: On data parity errors, it may be feasible for the operating
system to “flush” the block of data out of the Bcache by requesting a block of
data with the same Bcache index, but a different tag. If the requested block is
loaded with no problems, then the “bad data” has been replaced. If the “bad
data” is marked dirty, then when the new data tries to replace the old data,
another parity error may result during the write-back (this is a reason not to
attempt this in PALcode, because a MCHK from PALcode is always fatal).

8.1.5 Dstream Data Parity Errors (Bcache or Memory)

* Machine check occurs. Machine state may have changed.

e Cannot beretried, but may only need to delete the process if datais confined to a
single process and no second error occurred.

e CBOX_STATUS: <DATA_PAR_ERR<3:0>>isset; <MULTI_ERR> isset if
there are multiple errors.
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Error Flows

CBOX_STATUS: <MEMORY > is set if source of fill datais memory/system; is
clear if source is Bcache.

CBOX_ADDR: Contains the physical address bits <39:04> of the octaword
associated with the error.

8.1.6 Bcache Tag Parity Errors—Istream

Machine check occurs before the instruction causing the error is executed.
Bad data may be written to the Icache or Icache refill buffer and validated.
Can be retried if there are no multiple errors.

Must flush Icache to remove bad data. The Icache refill buffer may be flushed by
executing enough instructions to fill the refill buffer with new data (32 instruc-
tions). Then flush the Icache again.

CBOX_STATUS: <TAG_PAR_ERR> isset; <MULTI_ERR> isset if there are
multiple errors.

CBOX_ADDR: Contains the physical address bits <39:04> of the octaword
associated with the error.

Note: The Bcache hit is determined based on the tag alone, not the parity bit.

The victim is processed according to the status bits in the tag, ignoring
the control field parity. PAL code can distinguish fatal from nonfatal
occurrences by checking for the casein which apotentially dirty block is
replaced without the victim being properly written back and the case of
false hit when the tag parity isincorrect.

8.1.7 Bcache Tag Parity Errors—Dstream

Machine check occurs. Machine state may have changed.

Cannot be retried, but may only need to delete the processif datais confined to a
single process and no second error occurred. The Bcache hit is determined based
on the tag aone, not the parity bit. The victim is processed according to the sta-
tus bitsin the tag, ignoring the control field parity. PAL code can distinguish fatal
from nonfatal occurrences by checking for the case in which a potentially dirty
block is replaced without the victim being properly written back and the case of
false hit when the tag parity isincorrect.

CBOX_STATUS: <TAG_PAR_ERR> is set; <MULTI_ERR> is set if there are
multiple errors.
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Error Flows

e CBOX_ADDR: Contains the physical address bits <39:04> of the octaword
associated with the error.

8.1.8 System Read Operations of the Bcache

The 21164PC does not check the parity on outgoing Bcache data. If it is bad, the
receiving processor will detect it.

8.1.9 Fill Timeout (FILL_ERROR_H)

* For systemsin which fill timeout can occur, the system environment should
detect fill timeout and cleanly terminate the reference to 21164PC. If the system
environment expects fill timeout to occur, it should detect them. If it does not
expect them (as might be true in small systems with fixed memory access tim-
ing), itislikely that theinternal IDU timeout will eventually detect astall if afill
failsto occur. To properly terminate afill in an error case, thefill_error_h pinis
asserted for one cycle and the normal fill sequence involving thefill_h,
fill_id_h, and dack_h pinsis generated by the system environment.

e Afill_error_h assertion forces a PAL code trap to the MCHK entry point, but
has no other effect.

Note: No internal statusis saved to show that this happened. If necessary, sys-
tems must save this status, and include read operations of the appropriate
status registersin the MCHK PAL code.

8.1.10 System Machine Check

* The 21164PC has a maskable machine check interrupt input pin. It is used by
system environments to signal fatal errors that are not directly connected to a
read access from the 21164PC. It ismasked at IPL 31 and anytime the 21164PC
isin PALmode.

¢ |SR: <MCK> isset.
8.1.11 IDU Timeout

* When the IDU detects atimeout, it causes a PALcode trap to the MCHK entry
point.

e Simultaneoudly, apartia interna reset occurs. most states (except the IPR state)
are reset. This should not be depended on by systemsin which fill timeouts
occur in typical use (such as, operating system or console code probing locations
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MCHK Flow

to determine if certain hardware is present). The purpose of this error detection
mechanism isto attempt to prevent system hang in order to write a machine
check stack frame.

ICPERR_STAT: <TMR> is set.

8.2 MCHK Flow

The following flow is the recommended | PR access order to determine the source of
amachine check.

Must flush Icache to remove bad data on Istream errors. The Icache refill buffer
may be flushed by executing enough instructions to fill the refill buffer with new
data (32 instructions). Then flush the Icache again.

Read EXC_ADDR.
If EXC_ADDR=PAL, then halt.

Issue MB to clear out MTU/CBU before reading CBU registers or issuing
DC_FLUSH.

Flush Dcache to remove bad data on Dstream errors.
Read ICSR.

Read ICPERR_STAT.

Read DCPERR_STAT.

Read CBOX_ADDR.

Use an MB instruction to ensure that read operations of CBOX_ADDR occur
before subsequent read operations of CBOX_STATUS.

Read CBOX_STATUS and save (unlocks CBOX_STATUS and
CBOX_ADDR).

Read CBOX_STATUS again to be sureit is unlocked; discard resullt.

Check for cases that cannot be retried. If any one of the following are true, then
skip retry:

—  CBOX_STATUS<TAG_PAR_ERR>
—  CBOX_STATUS<DATA PAR_ERR>
— CBOX_STATUS<MULTI_ERR>

8-6  Error Detection and Error Handling 29 September 1997 — Subject To Change



MCK_INTERRUPT Flow

* |f none of the previous conditions are true, then there is either an IRD that can be
retried or the source of the MCHK isafill_error_h. Add code for query of sys-
tem status.

* Thecasecan beretried if any one or several of the following are true (and none

of the previous conditions were true):

CBOX_STATUS<DATA PAR_ERR>
ICPERR_STAT<TPE>
ICPERR_STAT<DPE>

Unlock the following IPRs:

ICPERR_STAT (write 0x1800)

— DCPERR_STAT (write 0x03)

— VA and CBOX_STATUS are already unlocked
*  Check for arithmetic exceptions:

— Read EXC_SUM.

— Check for arithmetic errors and handle according to operating-system-spe-
cific requirements.

— Clear EXC_SUM (unlocks EXC_MASK).

* Report the processor-uncorrectable MCHK according to operating-system-spe-
cific requirements.

8.3 MCK_INTERRUPT Flow

* Arrived here through interrupt routine because ISR<MCK> hit is set.

*  Report the system-uncorrectable MCHK according to operating-system-specific
requirements.

29 September 1997 — Subject To Change Error Detection and Error Handling  8-7






9

Electrical Data

This chapter describes the electrical characteristics of the 21164PC component and
itsinterface pins. It is organized as follows:

* Electrical characteristics
* dc characteristics
* Clocking scheme
* ac characteristics

*  Power supply considerations

9.1 Electrical Characteristics

Table 9-1 lists the maximum ratings for the 21164PC and Table 9-2 lists the operat-

ing voltages.

Table 9-1 21164PC Absolute Maximum Ratings (Sheet 1 of 2)
Characteristics Ratings

Storage temperature -55°C t0 125°C (-67°F to 257°F)
Junction temperature 15°C to 85°C (59°F to 185°F)

Supply voltage Vss= -0.5V,Vddi=25V,Vdd =33V
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DC Characteristics

Table 9-1 21164PC Absolute Maximum Ratings (Sheet 2 of 2)

Characteristics Ratings

Signal input or output applied -05Vtod46V

Typical Vdd worst case power @ Vdd = 3.3V
Frequency = 400 MHz 25W
Frequency = 466 MHz 25W
Frequency = 533 MHz 3.0wW

Typical Vddi worst case power @ Vddi =25V
Fregquency = 400 MHz 240W
Frequency = 466 MHz 280wW
Freguency = 533 MHz 320W

Caution:  Stress beyond the absolute maximum rating can cause permanent dam-
age to the 21164PC. Exposure to absolute maximum rating conditions
for extended periods of time can affect the 21164PC reliability.

Table 9-2 Operating Voltages

Nominal Maximum Minimum

vdd vddi vdd vddi vdd vddi
33V 25V 346V 26V 3.13V 24V

9.2 DC Characteristics

The 21164PC isdesigned to runin a3.3-V CMOS/TTL environment. The 21164PC
istested and characterized in a CM OS environment.

9.2.1 Power Supply

The Vss pins are connected to 0.0 V, and the Vddi pins are connected to
2.5V £0.1V, and th& dd pins are connected to 3.3 V £5%.

9.2.2 Input Signal Pins

Nearly all input signals are ordinary CMOS inputs with standard TTL levels (see
Table 9-3). (See Section 9.3.1 for a description of an exceptisn-€tk_in_h,l.)

After power has been applied, input and bidirectional pins can be driven to a maxi-
mum dc voltage o¥ clamp at a maximum current ¢€lamp without harming the
21164PC. Refer to Table 9-3 féclamp andl clamp values. Inputs greater than
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9.2.3 Output Signal Pins

DC Characteristics

Vclamp will be clamped to Vclamp provided that the current does not exceed
Iclamp. The 21164PC may be damaged if the voltage exceeds V clamp or the current
exceeds | clamp.

Output pins are ordinary 3.3-V CMOS outputs. Although output signals are rail-to-
rail, timing is specified to Vdd/2.

The 21164PC microprocessor chips do not have an onchip resistor for an

output driver.

Table 9—-3 CMOS DC Input/Output Characteristics

Table 9—3 shows the CMOS dc input and output pins.

Bidirectional pinsare either input or output pins, depending on control timing. When
functioning as output pins, they are ordinary 3.3-V CMOS outputs.

(Sheet 1 of 2)

Parameter Requirements

Symbol Description Min. Max. Units Test Conditions

Vih High-level input voltage 20 — \% —

Vil Low-level input voltage — 038 \% —

Voh High-level output voltage 24 — V  loh=-6.0mA

Vol Low-level output voltage — 04 \% lol = 6.0 mA

lil_pd Input with pull-down leakage @ — 50 A Vin=0V
current

lih_pd Input with pull-down current — 250 MA Vin=24V

lil_pu Input with pull-up current — =800 A Vin=0.4V

lih_pu Input with pull-up leakage — 150 A Vin=Vvdd V
current

lozl_pd Output with pull-down — 100 A Vin=0V
leakage current (tristate)

lozh_pd Output with pull-down current — 500 HA Vin=24V
(tristate)

lozl_pu Output with pull-up current — =800 HA Vin=0.4V

(tristate)
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DC Characteristics

Table 9-3 CMOS DC Input/Output Characteristics

(Sheet 2 of 2)

Vddi power supply

Parameter Requirements

Symbol Description Min. Max. Units Test Conditions
lozh_pu Output with pull-up leakage — 100 A Vin =Vvdd V

current (tristate)
Vclamp Maximum clamping voltage — Vdd+1.0 V Iclamp = 100 mA
Idd Peak power supply current for —  1.0% A Vdd =3.465V

Vdd power supply Frequency = 400 MHz
Idd Peak power supply current for —  1.0% A Vdd =3.465V

Vdd power supply Frequency = 466 MHz
Idd Peak power supply current for — 1.3 A Vdd = 3.465V

Vdd power supply Frequency = 533 MHz
Iddi Peak power supply current for —  11.25 A Vddi=2.6V

Vddi power supply Frequency = 400 MHz
lddi Peak power supply current for —  13.0 A Vddi =26V

Vddi power supply Frequency = 466 MHz
Iddi Peak power supply current for —  14.75 A Vddi =2.6 V

Frequency = 533 MHz

1 This assumes a sysclk ratio of 4 and worst-case loading of output pins.

Most pins have low current pull-down devices to Vss. However, two pins have a
pull-up deviceto Vdd. The pull-downs (or pull-ups) are always enabled. This means
that some current will flow from the 21164PC (if the pin has a pull-up device) or into
the 21164PC (if the pin has a pull-down device) even when the pin isin the high-
impedance state. All pins have pull-down devices, except for the pinsin the follow-

ing table:

Signal Name

Notes

tms h

tdi_h

osc clk_in_h
osc_clk_in_|

temp_sense

Has a pull-up device

Has a pull-up device

50Q to Vterm (= Vdd/2) (See Figure 9-1)
50Q to Vterm (= Vdd/2) (See Figure 9-1)

150Q toVss
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Clocking Scheme

9.3 Clocking Scheme

The differential input clock signalsosc_clk_in_h,l run at the internal frequency of
the time base for the 21164PC. The output signal cpu_clk_out_h toggles with an
unspecified propagation delay relative to the transitionson osc_clk_in_h,l.

The 21164PC provides a system clock to run the chip synchronous to the system.

The 21164PC generates and drives out a system clock, sys clk_out1_h. It runs syn-
chronousto the system clock at a selected ratio of theinternal clock frequency. There
isasmall clock skew between theinternal clock and sys clk_outl h.

Refer to Section 4.2 for more information on clock functions.
9.3.1 Input Clocks

The differential input clocks osc_clk_in_h,| provide the time base for the chip when
dc_ok_hisasserted. These pinsare self-biasing, and must be capacitively coupled to
the clock source on the module.

Note: It isnot desirable to drivethe osc_clk_in_h,I pinsdirectly.

The terminations on these signals are designed to be compatible with system oscilla
tors of arbitrary dc bias. The oscillator must have a duty cycle of 60%/40% or
tighter. Figure 9—1 shows the input network and the schematic equivalent of
osc_clk_in_h,l terminations.
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Clocking Scheme

Figure 9-1 osc_clk_in_h,l Input Network and Terminations
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Note:
* Coupling capacitors 47 pF to 220 pF
LJ-05357.Al14

Ring Oscillator

When signal dc_ok_h is deasserted, the clock outputs follow the internal ring oscil-
lator. The 21164PC runs off the ring oscillator, just as it would when an externa
clock is applied. The frequency of the ring oscillator varies from chip to chip within
arange of 10 MHz to 100 MHz. This correspondsto an internal CPU clock fre-
guency range of 5 MHz to 50 MHz. The system clock divisor isforced to 8, and the
sys clk_out2 delay isforced to 3.

9.3.2 Clock Termination and Impedance Levels

In Figure 9-1, the clock is designed to approximate 8 %&rmination for the pur-

pose of impedance matching for those systems that drive input clocks across long
traces. The clock input pins appear as &5€kries termination resistor connected to

a high-impedance voltage source. The voltage source produces a nominal voltage
value ofVdd/2. The source has an impedance of betweerQ2180d 600Q. This

voltage is called the self-bias voltage and sources current when the applied voltage at
the clock input pins is less than the self-bias voltage. It sinks current when the
applied voltage exceeds the self-bias voltage. This high-impedance bias driver
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Clocking Scheme

alows aclock source of arbitrary dc biasto be ac coupled to the 21164PC. The peak-

to-peak amplitude of the clock source must be between 0.6 V and 3.0 V. Either a
square-wave or a sinusoidal source may be used. Full-rail clocks may be driven by

in_h,l inputs

osc_clk

testers. In any case, the oscillator should be ac coupled to the

by 47 pF through 220 pF capacitors.

Figure 9-2 shows a plot of the simulated impedance versus the clock input fre-
quency. Figure 9-1 is a simplified circuit of the complex model used to create

Figure 9-2.
Figure 9-2 Impedance vs Clock Input Frequency
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AC Characteristics

9.3.3 AC Coupling

Using series coupling (blocking) capacitors renders the 21164PC clock input pins
insensitive to the oscillator’s dc level. When connected this way, oscillators with any
dc offset relative t&/ss can be used provided they can drive a signal into the
osc_clk_in_h,l pins with a peak-to-peak level of at least 600 mV, but no greater than
3.0 V peak-to-peak.

The value of the coupling capacitor is not overly critical. However, it should be suf-
ficiently low impedance at the clock frequency so that the oscillator’s output signal
(when measured at tlwsc_clk_in_h,| pins) is not attenuated below the 600-mV,
peak-to-peak lower limit. For sine waves or oscillators producing nearly sinusoidal
(pseudo square wave) outputs, 220 pF is recommended at 433 MHz. A high-quality
dielectric such as NPO is required to avoid dielectric losses.

Table 9-4 shows the input clock specification.

Table 9—4 Input Clock Specification

Signal Parameter Nominal Bin! Unit
osc_clk_in_h,| symmetry 50+ 10 %

osc_clk_in_h,| minimum voltage 0.6 V (peak-to-peak)
osc_clk_in_h,l Z input 50 Q

1 Minimum clock frequency = 50.0 MHz; Maximum clock frequency = 533 MHz = 1/Tcycle

9.4 AC Characteristics
This section describes the ac timing specifications for the 21164PC.

9.4.1 Test Configuration

All input timing is specified relative to the crossing of standard TTL input levels of
0.8 V and 2.0 V. Output timing is to the nominal CMOS switch poiMdif/2 (see
Figure 9-3).
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Figure 9-3 Input/Output Pin Timing
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Because the speed and complexity of microprocessors has increased substantially
over the years, it is necessary to change the way they are tested. Traditional assump-
tions that all loads can be lumped into some accumulation of capacitance cannot be
employed any more. Rather, the model of atransmission line with discrete loadsis a
much more realistic approach for current test technol ogy.

Typicaly, printed circuit board (PCB) etch has a characteristic impedance of approx-
imately 75 Q. Thismay vary from 60 Q to 90 Q with tolerances. If thelineisdriven
in the e ectrical center, the load could be as low as 30 Q. Therefore, a characteristic
impedance range of 30 Q to 90 Q could be experienced.

The 21164PC output drivers are designed with typical printed circuit board applica-
tionsin mind rather than trying to accommodate a 40-pF test |oad specification. As

such, it “launches” a voltage step into a characteristic impedance, ranging f@m 30
to 90Q.
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There is no source termination resistor in the 21164PC fabricated in 0.35-um CMOS
process technology. The source impedance of the driver is approximately 132

The circuit is designed to deliver a TTL signal under worst-case conditions. Under
light load, high drive voltages, and fast process conditions there may be considerable
overdrive. It may be necessary to install termination or clamping elements to the sig-
nal etches or loads.

9.4.2 Pin Timing
The following sections describe Bcache loop timing and sys_clk-based system tim-
ing.

9.4.2.1 Backup Cache Loop Timing

The 21164PC must be configured to support an offchip backup cache (Bcache). Pri-
vate Bcache read or write transactions initiated by the 21164PC are independent of
the system clocking scheme. Bcache loop timing must be an integer multiple of the

21164PC cycle time.

Table 9-5 lists the Bcache loop timing.

Table 9-5 Bcache Loop Timing

Signal Specification Value Name
data_h<127:0> Input setup 11lns Tdsu
data_h<127:0> Input hold 0.0ns Tdh
data_h<127:0> Output delay Tdd + 0.2 nst Tdbd?
data_h<127:0> Output hold Tmdd Tdbh3
index_h<21:4>, Output delay Tbedd + 0.2 ns, Tiod
st_clk1_h, or Thddd + 0.2 ns*?

st_clk2_h,

st clk3 h

index_h<21:4>, Output hold time Tmdd Tioh
st_clkl_h,

st_clk2_h,

st_ck3 h

1 The value 0.2 ns accounts for onchip driver and clock skew.

2 For big drive enabled or big drive disabled, respectively. See Table 9-7.

3 For private Bcache write operations, 21164PC drives data_h<127:0> coincident with driving
index_h<21:4>.
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AC Characteristics

Outgoing Bcache index and data signals are driven off the internal clock edge and

the incoming Bcache tag and data signals are latched on the same internal clock

edge. Table 9-6 and Table 9—-7 show the output driver characteristics for the normal
driver and big driver, respectively.

Additional drive for the following pins can be enabled by setting bit <27>
(BC_BIG_DRYV) of the CBOX_CONFIG register, described in Section 5.3.1:

* index_h<21:4>

e tag_ram_oe |l,tag ram_we |

e data ram_oe |, data ram_we 1<3:0>
e o clkl h, st clk2 h,st ck3 h

e data adsc |, data adv_|

If any of the previous pins are connected to lightly loaded lines (less than 40 pF)
additiona drive should not be enabled or the lines should be properly terminated to
avoid transmission line ringing.

Table 9—6 Normal Output Driver Characteristics

Specification 40-pF Load 10-pF Load Name
Maximum driver delay 2.7ns l4ns Tdd
Minimum driver delay 0.8ns 0.8ns Tmdd

Table 9—7 Big Output Driver Characteristics

Specification 60-pF Load  40-pF Load 10-pF Load Name

Extra Drive Disabled

Maximum driver delay NAL 2.6ns 1.5ns Thddd
Minimum driver delay NAL 0.8ns 0.8ns Tmdd

Extra Drive Enabled

Maximum driver delay 27ns 20ns 15ns Thedd
Minimum driver delay 10ns 0.8ns 0.8ns Tmdd
1 NA = Not applicable.
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Output pin timing is specified for lumped 40-pF and 10-pF loads for the normal
driver and lumped 60-pF, 40-pF, and 10-pF loads for the big driver. In some cases,
the circuit may have loads higher than 40 pF (60 pF for big driver). The 21164PC
can safely drive higher loads provided the average charging or discharging current
from each pinis 11 mA or less for normal output drivers or 25 mA or lessfor big
output drivers. The following equation can be used to determine the maximum
capacitance that can be safely driven by each pin:

* For normal output drivers: C. 5y (in pF) = 5t, where t is the waveform period
(measured from rising to rising or falling to falling edge), in nanoseconds.

* For big output drivers: Cx (in pF) = 7t, where t is the waveform period (mea-
sured from rising to rising or falling to falling edge), in nanoseconds.

For example, if the waveform appearing on a given normal 1/0 pin has a 15.0-ns
period, it can safely drive up to and including 75 pF.

Figure 9—4 shows the Bcache read and write timing.

Figure 9-4 Bcache Timing
Bcache Loop (Read)

BC_RD_LATENCY
cPUCIock [\ [\ /[ \_/ \_/ [\ [ \J
Tiod ' ITioh
Index Out X X
Tdsul—|
Data in
Tdh

Bcache Loop (Write)

BC_CLK_RATIO
cPUCiock T\ [T\
Tiod | Tioh
Index Out X X
Data Out X X
Tdbd Tdbh FM-05981 Al4
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9.4.2.2 sys_clk-Based Systems

AC Characteristics

All timing is specified relative to the rising edge of the internal CPU clock.

Table 9—-8 shows 21164PC system clegk clk_outl h output timing. Setup and
hold times are specified independent of the relative capacitive loading of
sys clk_outl _h,l, addr_h<39:4>, data_h<127:0>, andecmd_h<3:0> signals.

Table 9-8 21164PC System Clock Output Timing (sysclk=T  p)

Signal Specification Value Name
sys clk_outl h Output delay Tdd Tsyd
sys clk_outl h Minimum output delay Tmdd Tsysdm
data_bus_reqg_h, data h<127:0>, Input setup 11lns Tdsu
addr_h<39:4>

data_bus reg_h, data_h<127:0>, Input hold Ons Tdh
addr_h<39:4>

addr_h<39:4> Output delay Tdd + 0.2 nst Taod
addr_h<39:4> Output hold time Tmdd Taoh
data_h<127:0> Output delay Tdd [+ Teyclgl2+0.2ns!  Tdod?
data_h<127:0> Output hold time Tmdd [+ Teycle]? Tdoh?
addr_bus reg_h Input setup 3.4ns Tabrsu
addr_bus reg_h Input hold -1.0ns Tabrh
dack_h Input setup 3.2ns Tntacksu
cack_h Input setup 34ns Tntcacksu
cack, dack Input hold -1.0ns Tntackh

L The value 0.2 ns accounts for onchip driver and clock skew.

2 For all system write transactions initiated by the 21164PC, datais driven Tcycle (= 1 cpu_clk) after the
sys_clk_outl_h pin. For all private write transactions, data is driven coincident with Tcycle (= 0 cpu_clk) the

driving of index_h<21:4>.
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Figure 9-5 shows sys_clk system timing.

Figure 9-5 sys_clk System Timing

Relationship of CPU Clock and sys_clk_outl
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Tsysd
sys_clk_outl \ [ \ /
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cPuCock [~ \__ [T\ \_[ \_/ /[ \_/ \_J
Taod Taoh|e—
Address/Command Out
Ttacksu =—
dack
TdSU f~—s|
Data In
Memory Read (Non-Pipe_Latch Mode)
sys_clk_outl \ \
Tsysd Tsysd Tsysd
cPUClock [~ \_ /T \_/ \_J \_/ /[ \_/ \_J
Taod Tntacksu __ltaon
Address/Command Out
_‘l‘ Tntackh
dack ntac
Tntcacksu
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9.4.3 Timing—Additional Signals
This section liststiming for al other signals.

Asynchronous Input Signals

Thefollowing isalist of the asynchronous input signals:

clk_mode h<1:0>  dc_ok_h sys reset_| irgq_h<3:0>1
mch_hlt_irg_h? pwr_fail_irq_h!  sys mch_chk_irg_ht

1 These signals can also be used synchronously.

Miscellaneous Signals

Table 9-9 and Table 9-10 list the timing for miscellaneous input-only and output-
only signals. All timing is expressed in hanoseconds.

Table 9-9 Input Timing for sys_clk_out-Based Systems

Signal Specification Value Name

fill_h, fill_error_h, fill_id_h, idle bc _h Input setup 11ns Tdsu

irg_h<3:0>, mch_hlt_irg_h, pwr_fail _irq_h,
sys mch_chk_irg_h

Testability pins:
port_mode _h, srom_data h, srom_present_|
fill_h, fill_error_h, fill_id_h, idle bc h Input hold Ons Tdh

irg_h<3:0>, mch_hlt_irg_h, pwr_fail _irqg_h,
sys mch_chk_irg_h

sys reset |

Testability pins:
port_mode h, srom_data h, srom_present_|
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Table 9-10 Output Timing for sys_clk_out-Based Systems

Signal Specification  Value Name

Unidirectional Signals

addr_res h, int4 valid_h,X srom_clk_h, Output delay Tdd+0.2ns Taod
srom_oe |, victim_pending_h
addr_res h, int4 valid_h,* srom_clk_h, Output hold Tmdd Taoh
srom_oe |, victim_pending_h
int4_valid_h? Output delay ~ Tdd + Tcycle+02ns  Tdod
int4_valid_h? Output hold Tmdd + Tcycle Tdoh

Bidirectional Signals

Input mode;

cmd_h, Iw_parity_h,!tag dirty_h3 Input setup 11ns Tdsu
cmd_h, Iw_parity_h,!tag dirty_h3 Input hold ons Tdh
Output mode:

cmd_h, tag_dirty_h,*tag_valid_h* Outputdelay ~ Tdd +0.2ns Taod
lw_parity_h? Output delay ~ Tdd + Tcycle+0.2ns  Tdod
cmd_h, tag_dirty_h,*tag_valid_h* Output hold Tmdd Taoh
lw_parity h? Output hold Tmdd + Teycle Tdoh

1 Read transaction

2 Write transaction

3 Fills from memory

4 Only for write broadcasts and system transactions
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Signals in Table 9-11 are used to control Bcache data transfers. These signals are
driven off the CPU clock. The timing of these signals does not change when switch-
ing over to thesys clk_out timing domain.

Table 9—11 Bcache Control Signal Timing

Signal Specification Value Name
Input mode:

tag_data h, tag data par_h, Input setup 1l1lns Tdsu
tag_valid_h

tag_data_h, tag data par_h, Input hold Ons Tdh
tag_valid_h

Output mode;

data ram_oe |, data ram_we 1<3:0>, Output delay Thedd +0.2ns or Taod
tag_ram_oe |, tag_ram_we | Thddd + 0.2 ns-2
tag_data h, tag data par_h, Output delay Tdd + 0.2 nst Taod
tag_valid_h

data ram_oe |, data ram_we 1<3:0>, Output hold Tmdd Taoh
tag_ram_oe |, tag ram_we |

tag_data_h, tag data par_h, Output hold Tmdd Taoh
tag valid_h

1 The value 0.2 ns accounts for onchip driver and clock skew.
2 For big drive enabled or big drive disabled, respectively. See Table 9-7.

9.4.4 Timing of Test Features

Timing of 21164PC testability features depends on the system clock rate and the test
port’'s operating mode. This section provides timing information that may be needed
for most common operations.

9.4.4.1 Icache BiSt Operation Timing

The Icache BiSt is invoked by deasserting the external reset sygnicset_|.
Figure 9—6 shows the timing between various events relevant to BiSt operations.
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Figure 9-6 BiSt Timing Event —Timeline

Deassert BiSt Start Deassert* BiSt Done
sys_reset_| (test_status_h<1:0>=01) Internal Reset (test_status_h<1:0>=00)
(T%Z_RESET_B_L)

tp

The timing for deassertion of internal reset (timet,, see asterisk) isvalid only if an
SROM is not present (indicated by keeping signal srom_present_| deasserted). If an
SROM is present, the SROM load is performed once the BiSt completes. The inter-

nal reset signal T%Z_ RESET B_L isextended until the end of the SROM load (Sec-
tion 9.4.4.2). Inthis case, the end of thetimeline shown in Figure 9—6 connects to the
beginning of the timeline shown in Figure 9-7.

Table 9-12 and Table 9-13 list timing shown in Figure 9-6 for some of the system
clock ratios. Time4tis measured starting from the rising edgsystlk following
the deassertion of theys reset_| signal.

Table 9-12 BiSt Timing for Some System Clock Ratios, Port Mode=Normal
(System Cycles)

System Cycles

Sysclk Ratio t b tz
4 7 28569 + 3% 28570
15 7 15749 + 14% 15750

Table 9-13 BiSt Timing for Some System Clock Ratios, Port Mode=Normal
(CPU Cycles)

CPU Cycles
Sysclk Ratio t b tz
4 28 114279% 114280
15 105 236249Y 236250
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9.4.4.2 Automatic SROM Load Timing

The SROM load istriggered by the conclusion of BiSt if srom_present_| isasserted.
The SROM load occurs at the internal cycle time of approximately 126 CPU cycles
for srom_clk_h, but the behavior at the pins may shift dightly. Refer to Chapter 7
for more information on input signals, booting, and the SROM interface port.

Timing events are shown in Figure 9—7 and are listed in Table 9-14 and Table 9-15.

Figure 9-7 SROM Load Timing Event—Timeline

Deassert
Internal Reset Deassert
srom_clk_h (T%Z_RESET B L) srom_oe_|

BiSt Done Assert First Rise Last Rise
test_status_h srom_oe_|  srom_clk_h

€ t, P

<l

< t -
<

MK145510B

Table 9-14 SROM Load Timing for Some System Clock Ratios (System Cycles)

System Cycles?!

SySC”( Ratio tl t2 t3 t4 t5
4 3 48 4209267 4209361 + 32 4209362
15 3 13 1122472 1122496 + 14% 1122497

1 Measured in sysclk cycles, where “y” refers to an additionai CPU cycles

Table 9-15 SROM Load Timing for Some System Clock Ratios (CPU Cycles)

CPU Cycles
Sysclk Ratio t b t3 Iy Is
4 12 192 16837068 16837447%2 16837448
15 45 195 16837080 16837454% 16837455
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Figure 9-8 is a timing diagram of an SROM load sequence.

Figure 9-8 Serial ROM Load Timing

/ //
sys_reset_| / 7/ [

/[

srom_oe_| £/ \ )y / T

&4

srom_clk_h /7 / \
l/

tsu tho ;
srom_data_h / / < { { X / / >_

7 1

tsu = 4 x sysclk period + 1.1 ns 131, 072 Bits Total
tho=0ns

MK145507B
The minimum srom_clk_h cycle = (126 - sysclk ratio) x (CPU cycle time).
The maximunsrom_clk_h to srom_data_h delay allowable (in order to meet the
required setup time) = [126(5 x sysclk ratio)] x (CPU cycle time).

9.4.5 Clock Test Modes

This section describes the 21164PC clock test modes.
9.4.5.1 Normal (1x Clock) Mode

When clk_mode_h<1> isnot asserted, the osc_clk_in_h,| frequency isused to drive
theinput clock frequency. The clk_mode_h<0> signal is used to enable/disable a
clock equalizing circuit, called asymmetrator. The symmetrator equalizes the duty-
cycle of theinput clock for use onchip. Theosc clk_in_h,l signals must have a duty
cycle of at least 60/40 for the symmetrator to work properly. Normal clock mode
with the symmetrator enabled is the preferred clocking mode of the 21164PC.

9.4.5.2 Clock Test Reset Mode

When clk_mode_h<1> isasserted, the sys clk_out generator circuit isforced to
reset to aknown state. This allows the chip manufacturing tester to synchronize the

chip to the tester cycle. This mode can be used with the symmetrator either enabled
or disabled.
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Table 9-16 lists the clock test modes.

Table 9-16 Clock Test Modes

clk_mode_h

Mode <1> <0> Notes

Normal (1x) clock mode
Symmetrator is enabled.

0
Normal (1x) clock mode 0
Clock reset 1

1

0

1
0
1

Clock reset Symmetrator is enabled.

9.4.6 IEEE 1149.1 (JTAG) Performance

Table 9-17 lists the standard mandated performance specifications for the
IEEE 1149.1 circuits.

Table 9-17 IEEE 1149.1 Circuit Performance Specifications

Item Specification
trst_| isasynchronous. Minimum pulse width. 4ns

trst_| setup time for deassertion before atransition on tck_h. 4ns
Maximum acceptable tck_h clock frequency. 16.6 MHz
tdi_h/tms_h setup time (referenced to tck_h rising edge). 4ns
tdi_h/tms_h hold time (referenced to tck_h rising edge). 4ns
Maximum propagation delay at pin tdo_h (referenced to tck_h falling 14 ns

edge).

Maximum propagation delay at system output pins (referencedtotck_h  20ns

falling edge).

9.5 Power Supply Considerations

For correct operation of the 21164PC, all of s pins must be connected to

ground, all of th&/dd pins must be connected to a 3.3-V +5% power source, and all
of theVddi pins must be connected to a 2.5-V +0.1 V power source. This source
voltage should be guaranteed (even under transient conditions) at the 21164PC pins,
and not just at the PCB edge.
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Plus5V isnot used in the 21164PC. The voltage difference between the Vdd pins
and V'ss pins must never be greater than 3.46 V, and the voltage difference between
the Vddi pinsand Vss pins must never be greater than 2.6 V. If the differentials
exceed these limits, the 21164PC chip will be damaged.

9.5.1 Decoupling

The effectiveness of decoupling capacitors depends on the amount of inductance

placed in series with them. The inductance depends both on the capacitor style (con-
struction) and on the module design. In general, the use of small, high-frequency

capacitors placed close to the chip package’s power and ground pins with very short
module etch will give best results. Depending on the user’s power supply and power
supply distribution system, bulk decoupling may also be required on the module.

The 21164PC requires two sets of decoupling capacitors: olelfband one for
Vvddi.

9.5.1.1 vdd Decoupling

The amount of decoupling capacitance connected betv@émndV ss should be
roughly equal to 10 times the amount of capacitive load that 21164PC is required to
drive at any one time. This should guarantee a voltage drop of no more than 10% on
Vdd during heavy drive conditions.

Use capacitors that are as physically small as possible. Connect the capacitors
directly to the 21164P¥dd andVss pins by short surface etch (0.64 cm [0.25 in] or
less). The small capacitors generally have better electrical characteristics than the
larger units and will more readily fit close to the IPGA pin field.

When designing the placement of decoupling capachald,decoupling capacitors
should be favored ov&fddi decoupling capacitors (that Mdd capacitors should
be placed closer to the 21164PC than\ddi capacitors).

9.5.1.2 Vvddi Decoupling

Each individual case must be separately analyzed, but generally designers should
plan to use at least 4 yuF of capacitance connected betdemndV ss. Typically,

30 to 40 small, high-frequency 0.1-uF capacitors are placed near the\ddpand
Vsspins. Actually placing the capacitors in the pin field is the best approach. Several
tens of pF of bulk decoupling (comprised of tantalum and ceramic capacitors) should
be positioned near the 21164PC chip.
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Use capacitors that are as physically small as possible. Connect the capacitors
directly to the 21164PC Vddi and Vss pins by short surface etch (0.64 cm [0.25 in]
or less). The small capacitors generally have better electrical characteristics than the
larger units, and will more readily fit close to the IPGA pin field.

9.5.2 Power Supply Sequencing

When applying or removing power to the 21164PC, Vdd (the 3.3-V supply voltage)
must be no less than Vddi (the 2.5-V supply voltage).

The following rules must be followed when either applying or removing the supply
voltages:

1. Vdd must always be at the same or a higher voltage than Vddi during normal
operation.

2. Thesignal voltage must not exceed Vclamp.
3. Thesignal voltage must not be more than 2.4 V higher than Vddi.

Rule 1 means that either Vdd and Vddi can be brought up and down in unison or
Vddi can be applied after and removed before Vdd.

Rule 2 means that the signal voltage must not be allowed to exceed Vclamp during

the application or removal of power. Refer to Table 9-3 for the valelamp.

Note that it is acceptable for the signal voltage either to be held at zero or to follow
Vdd during the application or removal of power.

Rule 3 means that, if the signal voltage follovidd, the signal voltage must never
be greater than 2.4 V above the valu&/dtli. This applies equally during the appli-
cation or the removal of power.

Note that if the signal voltage is held at 0 V during power-up reset (that is, the ASICs
and SRAMs are set to drive 0 V during resetyd andVvddi can be brought up

together. In a similar manner, the power-down situation can be managed if the signal
voltages are forced to 0 V when the los¥dfli is detected.

During power-upVddi can momentarily exceed the maximum steady-state value
under the following conditions:

e Thetransient voltageis 200 mV or less.
* The transient period lasts for 200 ps or less.

The transient voltage is defined as the voltage that rises above the maximum-allowed
steady-state value. The transient period is defined as the time beginning when the
transient voltage exceeds the steady-state value and ending when it falls back to it.
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Thereisno derating for shorter transient periods or lower transient voltages (for
example, a 400-mV transient voltage lasting for 100 us is not acceptable).

All input and bidirectional signals are diode-clampe¥ tldl andVss. A current

greater thamclamp on an individual pin could damage the 21164PC. Designers
must take care that currents greater tlehaamp will not be achieved during power-
supply sequencing. While currents less thaamp will not damage the 21164PC,
other source drivers connected to the 21164PC could be damaged by the clamp.
Designers must verify that the source drivers will not be damaged by currents up to
Iclamp.
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Thermal Management

This chapter describes the 21164PC thermal management and thermal design consid-
erations.

10.1 Operating Temperature

The 21164PC is specified to operate when the temperature at the center of the heat

sink (Ty) is 71.8°C for 400 MHz, 69.8°C for 466 MHz, or 67.5°C for 533 MHz.
Temperature (J) should be measured at the center of the heat sink (between the two
package studs). The GRAFOIL pad is the interface material between the package
and the heat sink.

Table 10-1 lists the values for the center of heat-sink-to-amitga) for the 413-
pin grid array. Table 10-2 shows the allowab]éwithout exceeding J at various
airflows.

Note: DIGITAL recommends using the heat sink because it greatly improves
the ambient temperature requirement.

Table 10-1 O.a at Various Airflows

Frequency: 400 MHz, 466 MHz, and 533 MHz

Airflow (linear ft/min)
100 200 400 600 800 1000
Oa with heat sink 1 (°C/W) 3.2 1.7 0.95 0.75 0.65 0.55

©.a with heat sink 2 (°C/W) - 0.75 >
(includes 52x10 mm fan)

L With the heat-sink fan, performance does not depend on system airflow.

29 September 1997 — Subject To Change Thermal Management 10-1



Operating Temperature

Table 10-2 Maximum T , at Various Airflows

Airflow (linear ft/min)

100 200 400 600 800 1000

Frequency: 400 MHz, Power: 26.5 W @Vdd =3.3 V and @Vddi =25V
T, with heat sink 1 (°C) — 26.8 46.6 51.9 54.6 57.2

T, with heat sink 2 (°C) - 51.9" -
(includes 52x10 mm fan)

Frequency: 466 MHz, Power: 30.5 W @Vdd =3.3V and @Vvddi =25V
T, with heat sink 1 (°C) — 18.0 40.8 46.9 50.0 53.0

T, with heat sink 2 (°C) - 46.9" >
(includes 52x10 mm fan)

Frequency: 533 MHz, Power: 35 W @Vdd = 3.3V and @Vvddi =25V
T, with heat sink 1 (°C) — — 34.3 41.3 44.8 48.3

T, with heat sink 2 (°C) - 41.3 >
(includes 52x10 mm fan)

L With the heat-sink fan, performance does not depend on system airflow.
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10.2 Heat-Sink Specifications

Figure 10-1 describes the specifications of heat sink 1. Heat sink 2 has the exact
same specifications, plus an added 52x10 mm fan.

Figure 10-1 Heat Sink 1
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29 September 1997 — Subject To Change Thermal Management 10-3



Thermal Design Considerations

10.3 Thermal Design Considerations

Follow these guidelines for printed circuit board (PCB) component placement:

*  Orient the 21164PC on the PCB with the heat-sink fins aligned with the airflow
direction.

* Avoid preheating ambient air. Place the 21164PC on the PCB so that inlet air is
not preheated by any other PCB components.

* Do not place other high-power devicesin the vicinity of the 21164PC.

¢ Do not restrict the airflow across the 21164PC heat sink. Placement of other
devices must allow for maximum system airflow in order to maximize the per-
formance of the heat sink.
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Mechanical Packaging Information

This chapter describes the 21164PC mechanical packaging including chip package
physical specifications and a signal/pin list. For heat-sink dimensions, refer to
Chapter 10.

11.1 Mechanical Specifications

Figure 11-1 shows the package physical dimensions without a heat sink.
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Figure 11-1 Package Dimensions
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11.2 Signal Descriptions and Pin Assignment

This section provides detailed information about the 21164PC pinout. The 21164PC
has 413 pins aligned in an interstitial pin grid array (IPGA) design.

11.2.1 Signal Pin Lists

Table 11-1 lists the 21164PC signal pins and their corresponding pin grid array
(PGA) locations in alphabetic order; Table 11-2 lists the voltage reference, power,
and ground pins. There are 264 functional signal pins, 2 spare signal pins (unused),
5 voltage reference pins (unused), 46 external poved) pins, 22 internal power
(Vddi) pins, and 74 ground/&s) pins, for a total of 413 pins in the array.

Table 11-1 Alphabetic Signal Pin List

(Sheet 1 of 4)

PGA PGA PGA
Signal Location Signal Location Signal Location
addr_h<4> AH12 addr_h<5> AN11 addr_h<6> AJ13
addr_h<7> AL9 addr_h<8> AKS8 addr_h<9> AJll
addr_h<10> AN9 addr_h<11> AJ7 addr_h<12> AX
addr_h<13> AL5 addr_h<14> AK6 addr_h<15> AH6
addr_h<16> AG7 addr_h<17> AK4 addr_h<18> AJ3
addr_h<19> AH4 addr_h<20> AJl addr_h<21> AF6
addr_h<22> AC31 addr_h<23> AJ35 addr_h<24> AH32
addr_h<25> AE37 addr_h<26> AK34 addr_h<27> AD32
addr_h<28> AE33 addr_h<29> AF34 addr_h<30> AL33
addr_h<31> AK32 addr_h<32> AF32 addr_h<33> AG3l
addr_h<34> AJ3l addr_h<35> AJ37 addr_h<36> AL31
addr_h<37> AN29 addr_h<38> AL29 addr_h<39> AH34
addr_bus req_h A21 addr_res h<0> D34 addr_res h<1> E37
cack_h F18 clk_mode h<0> AJ19 clk_mode h<1> AH20
cmd_h<0> F2 cmd_h<1> E3 cmd_h<2> G3
cmd_h<3> H6 cpu_clk_out_ h  AL25 dack_h F20
data_h<0> F34 data h<1> H32 data h<2> J31
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Table 11-1 Alphabetic Signal Pin List (Sheet 2 of 4)
PGA PGA PGA
Signal Location Signal Location Signal Location
data_h<3> J33 data_h<4> G37 data h<5> K32
data_h<6> H34 data_h<7> J35 data h<8> K34
data_h<9> L31 data h<10> J37 data h<11> M32
data _h<12> L35 data h<13> M36 data h<14> L37
data _h<15> M34 data h<16> N31 data h<17> P32
data h<18> P34 data h<19> Q31 data h<20> N35
data_h<21> Q33 data h<22> Q35 data h<23> Q37
data_h<24> R32 data h<25> R34 data h<26> S37
data h<27> S31 data h<28> S35 data h<29> T32
data h<30> T34 data h<31> T30 data h<32> T36
data h<33> U35 data h<34> U3l data h<35> u37
data_h<36> V36 data_h<37> V34 data_h<38> V30
data h<39> W35 data h<40> V32 data _h<41> X34
data_h<42> w37 data h<43> w3l data _h<44> Y37
data_h<45> Y35 data h<46> Z34 data_h<47> X32
data_h<48> Y33 data h<49> AB36 data_h<50> Y31
data_h<51> AC35 data h<52> AA31 data h<53> 732
data_h<54> AD34 data h<55> AE35 data_h<56> AA37
data_h<57> AB34 data h<58> AG37 data_h<59> AB32
data_h<60> AG35 data h<61> AH36 data_h<62> AE31
data h<63> AC37 data h<64> 3 data h<65> J1
data_h<66> K6 data h<67> J5 data h<68> L7
data_h<69> K4 data_h<70> L3 data h<71> M2
data_h<72> L1 data h<73> M6 data h<74> N1
data_h<75> M4 data_h<76> N3 data h<77> Q7
data_h<78> Q1 data h<79> P6 data h<80> P4
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Table 11-1 Alphabetic Signal Pin List (Sheet 3 of 4)
PGA PGA PGA
Signal Location Signal Location Signal Location
data _h<81> R6 data h<82> S1 data h<83> Q5
data _h<84> T2 data h<85> Q3 data h<86> R4
data_h<87> S3 data h<88> T6 data h<89> T4
data_h<90> S7 data h<91> T8 data h<92> U3
data h<93> u7 data h<94> Ul data h<95> V8
data_h<96> V2 data h<97> V4 data h<98> V6
data_h<99> w7 data h<100> w1l data h<101> w3
data_h<102> X4 data h<103> X6 data h<104> Y1
data_h<105> Y5 data h<106> Y7 data h<107> Y3
data_h<108> 74 data_h<109> Z6 data_h<110> AA1
data_h<111> AA3 data_h<112> AC1 data_h<113> AB4
data h<114> AB2 data h<115> AC7 data h<116> ADG6
data h<117> AB6 data h<118> AC3 data h<119> AE5
data_h<120>  AD4 data_h<121> AE1 data_h<122> AF4
data h<123> AG3 data h<124> AE3 data h<125> AE7
data h<126> AGl data h<127> AH2 data_adsc | D32
data adv | C33 data bus req_h E21 data ram_oe | D18
data ram we | B18 data ram we | A19 data ram_we | B20
<0> <1> <2>
data ram_we | D20 dc ok _h AL23 fill_h D4
<3>
fill_dirty_h AL11 fill_error_h F6 fill_id_h C5
idle bc h Fa index_h<4> E23 index_h<5> C25
index_h<6> c21 index_h<7> B26 index_h<8> A23
index_h<9> c23 index_h<10> A25 index_h<11> A27
index_h<12> F26 index_h<13> E25 index_h<14> c27
index_h<15> C29 index_h<16> E27 index_h<17> E29
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Table 11-1 Alphabetic Signal Pin List (Sheet 4 of 4)
PGA PGA PGA
Signal Location Signal Location Signal Location
index_h<18> D30 index_h<19> A29 index_h<20> A3l
index_h<21> C31 int4_valid_h<0> E35 int4 valid_h<1> F32
int4_valid_h<2> HA4 int4 valid_ h<3> E1 irq_h<0> AJ27
irq_h<1> AL27 irq_h<2> AH26 irq_h<3> AN27
Iw_parity_h<0> G35 Iw_parity_h<1> F36 lw_parity_h<2> J7
Iw_parity_ h<3> G1 mch_hlt irg h  AM26 osc clk_in_h AN19
osc clk_in_| AM20 port_mode h<0> AH18 port_mode h<1> AM18
pwr_fail irg h AJ25 srom_clk_h AL17 srom_data_h AK16
srom_oe | AJl7 srom_present | AK18 st clkl h E7
st_clk2 h E31 st_clk3 h G31 sys clk outl h  AK22
sys clk_out2 h  AJ23 sys mch chk _ AN25 sys reset | AN23
irg_h
tag data h<19> All tag_data h<20> D6 tag_data_h<21> E9
tag_data h<22> D8 tag_data h<23> C7 tag data h<24> F12
tag_data_h<25> B6 tag_data h<26> EI11 tag data h<27> C9
tag_data h<28> A9 tag_data h<29> C13 tag data h<30> Cl1
tag_data h<31> EI15 tag_data h<32> A15 tag data par_h B12
tag_dirty_h A13 tag_ram_oe | Al7 tag_ram_we | C17
tag_valid_h E17 tck_h AL13 tdi_h AN17
tdo_h AL15 temp_sense AN13 test_status h<1> AJ15
tms_h AN15 trst_| AM12 victim_pending_h C15
sparel AJ29 spare2 AK30
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Table 11-2 lists the voltage reference, power, and ground pins.

Table 11-2 Voltage Reference, Power, and Ground Pins

Signal PGA Location

Vss A3, A5, A7, A33, A35, B2, B8, B14, B24, B30, B36, C1, C37, D12,

Metal planes 2, 6 D16, D22, D26, E5, E19, E33, F10, F16, F22, F28, H2, H36, K8,
K30, L5, L33, P2, P8, P30, P36, S5, S33, W5, W33, Z2, Z8, Z30,
Z36, AC5, AC33, AD8, AD30, AF2, AF36, AH10, AH16, AH22,
AH28, AJ5, AJ33, AK12, AK20, AK26, AL1, AL19, AL21, AL37,
AM2, AM8, AM14, AM24, AM30, AM36, AN3, AN5, AN7,
AN21, AN31, AN33, AN35

vdd B4, B10, B16, B22, B28, B34, C3, C35, D2, D36, F8, F14, F24,

Metal plane 7 F30, K2, K36, M8, M30, R2, R8, R30, R36, X2, X8, X30, X36,
ABS8, AB30, AD2, AD36, AH8, AH14, AH24, AH30, AK2, AK36,
AL3, AL35 AM4, AM6, AM10, AM16, AM22, AM28, AM32,

AM34
Vddi B32, C19, D10, D14, D24, D28, E13, G5, G33, N5, N7, N33, N37,
Metal plane 4 U5, U33, AAS5, AA7, AA33, AA35, AG5, AGS33, AJ21, AK10,

AK14, AK24, AK28, AL7
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11.2.2 Pin Assignment
Figure 11-2 shows the 21164PC pinout from the top view with pins facing down.

Figure 11-2 21164PC Top View (Pin Down)
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Figure 11-3 shows the 21164PC pinout from the bottom view with pins facing up.

Figure 11-3 21164PC Bottom View (Pin Up)

MN—f ©6.6060666060660606060606060
P T R OO R OR OO CROR O CRORORCROROR)
P e R O R RO R O R O R RO O R ORI OR O O]
PR R R R O R O OO O R R0
T R RO O R O RO O RO R OR OR O O RORORORD
A A T e ORORORD
AFT—) 0 (© (ONOXO)
A AP T e ORORORD
R ORO) ORERORD
Ac e / \ OO0
P R ORS) RO
PNl s O R OO OO
7 90520 RO,
vy 2T %% ORORORD)
PO R OO RO
W——& (9 21164PC (ONONOXO)
P O O R0 ! RO OR0,
U—1+60) 0O Bottom View ONONONO)
O O OO : OREROR0)
L i O ) (Pin Up) OROROR)
R 20 RO
i s R ) ORORORE)
R R RO
N~ o6 R RO
R RO R ORO,
R s N OO R ORD)
P RO OROROR0)
I R EONORCRO R OROR0)
S 6 6.6.6.0.0.0.0.0.0.0. 65
ED—%Q%Q%Q%QQ%QQQ%QQQQ@
o OK RN OR O O CRORORCRCRORORORCROROR™
ﬁﬁﬁ

@T@T@T@T@T@T@T@T@T@T@T@T@T@T

36

04

06

08

o
N

10|12|14|16|18(20(22|24|26|28|30|32| 34

01 03 05 07 09 1113 15 1719 21 23 25 27 29 31 33 35 37
PCA029

29 September 1997 — Subject To Change Mechanical Packaging Information 11-9






12

Testability and Diagnostics

This chapter describes the 21164PC user-oriented testability features. The 21164PC
also has several interna testability features that are implemented for factory use
only. These features are beyond the scope of this document.

12.1 Test Port Pins

Table 12—1 summarizes the test port pins and their functions.

Table 12—-1 21164PC Test Port Pins

Pin Name Type Function
port_mode h<1> | Must befase
port_mode h<0> | Must befase

srom_present_|

srom_data_h/Rx

Tied low if serill ROMs (SROMs) are present in system.

Receives SROM or seria terminal data.

srom_clk_h/Tx O Suppliesclock to SROMs or transmits serial terminal data.
srom_oe | O SROM enable.

tdi_h | |EEE 1149.1 TDI port.

tdo_h O |EEE 1149.1 TDO port.

tms_h I |EEE 1149.1 TMS port.

tck_h I IEEE 1149.1 TCK port.

trst_| | 1EEE 1149.1 optional TRST port.

test_status h<1> O Outputs an IPR-written value and timeout reset.
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12.2 Test Interface

The 21164PC test interface supports a serial ROM interface, a seria diagnostic ter-
minal interface, and an IEEE 1149.1 test access port. These ports are available and
set to normal test interface mode when port_mode _h<1:0>=00. Driving these pins
to avalue of anything other than 00 redefines all other test interface pins and invokes
specia factory test modes not covered in this document.

The SROM port is described in Section 7.4 and the serial terminal port is described
in Section 7.5.

12.2.1 |IEEE 1149.1 Test Access Port

Pinstdi_h, tdo_h, tck_h, tms_h, and trst_| constitute the IEEE 1149.1 test access

port. This port accesses the 21164PC chip’s boundary-scan register and chip tristate
functions for board-level manufacturing test. The port also allows access to factory
manufacturing features not described in this document. The port is compliant with
most requirements of IEEE 1149.1 test access port.

Compliance Enable Inputs

Table 12-2 shows the compliance enable inputs and the pattern that must be driven
to those inputs in order to activate the 21164PC IEEE 1149.1 circuits.

Table 12-2 Compliance Enable Inputs

Input Compliance Enable Pattern
port_mode h<1.0> 00
dc ok _h 1

Exceptions to Compliance

The 21164PC is compliant with IEEE Standard 1149.1—1993, with two exceptions.
Both exceptions provide enhanced value to the user.

1. trst_| pin

The optionatrst_| pin has an internal pull-down, instead of a pull-up as required
by IEEE 1149.1 (non-complied spec 3.6.1(b) in IEEE 1149.1-1993)r$hé
pull-down allows the chip to automatically force reset to the IEEE 1149.1 cir-
cuits in a system in which the IEEE 1149.1 port is unconnected. This may be
considered a feature for most system designs that use IEEE 1149.1 circuits
solely during module manufacturing.
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Note: DIGITAL recommendsthat thetrst_| pin be driven low (asserted) when
the JTAG (IEEE 1149.1) logic isnot in use.

2. Coverage of oscillator differential input pins

Thetwo differential clock input pins, osc_clk_in_h and osc_clk_in_I, do not

have any boundary-scan cells associated with them (noncompliant spec

10.4.1(b) in IEEE 1149.1-1993). Instead, there is an extra input BSR cell in the
boundary-scan register in bit position 241 (atginok_h). This cell captures

the output of a “clock sniffer” circuit. It captures a 1 when the oscillator is con-
nected, and captures a 0 if the chip’s oscillator connections are broken.

This exception to the standard is made to permit a meaningful test of the oscilla-
tor input pins.

Refer to IEEE Standard 1149.1-19%3est Access Port and Boundary Scan Archi-
tecture for a full description of the specification.

Figure 12—-1 shows the user-visible features from this port.

Figure 12-1 IEEE 1149.1 Test Access Port
TRST_L

TAP Controller
State Machine &
. —>
™S _H [ >—> Control Dispatch CONTROL
Logic
TCK_H [ >—>

TDO_H

<]
TDI_H D——»' Instruction Register (IR) I
—>| Bypass Register (BPR) |—
| Die-ID Register (IDR) |——————
—>| Boundary-Scan Register (BSR) |—

LJ-03463.A14
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TAP Controller

The TAP controller contains a state machine. It interprets |EEE 1149.1 protocols
received on signal tms_h and generates appropriate clocks and control signalsfor the
testability features under its jurisdiction. The state machine is shown in Figure 12-2.

Figure 12—-2 TAP Controller State Machine
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Reset
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are for
TMS.

Scan Sequence Scan Sequence
MK145508.A14

Instruction Register

The 5-bit-wide instruction register (IR) supports |IEEE 1149.1 mandated public
instructions (EXTEST, SAMPLE, BYPASS, HIGHZ) and a number of optional
instructions for public and private factory use. Table 12—3 summarizes the public
instructions and their functions.
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During the capture operation, the shift register stage of IR isloaded with the value
00001. Thisautomatic load feature is useful for testing the integrity of the IEEE
1149.1 scan chain on the module.

Table 12—3 Instruction Register

Selected
IR<4:0> Name Scan Register Operation
00000 EXTEST BSR BSR drives pins. Interconnect test mode.
00010 SAMPLE/PRELOAD BSR Preloads BSR.
00010  Private BSR Private.
00011 Private BSR Private.
00100 CLAMP BPR BSR drives pins.
00101 HIGHZ BPR Tristate all output and /O pins.
00110  Private IDR Private.
00111  Private IDR Private.
01000 Private BPR Private.
through
11110
11111 BYPASS BPR Defaullt.

Bypass Register

The bypassregister is a 1-bit shift register. It provides a short single-bit scan path
through the port (chip).

Boundary-Scan Register

The 261-bit boundary-scan register is accessed during SAMPLE, EXTEST, and
CLAMP instructions. Refer to Section 12.3 for the organization of this register.
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12.2.2 Test Status Pin

Onetest status signal test_status_h<1> pinisused for extracting test status informa-
tion from the chip. System reset drives the test status pin low. The default operation
for test_status_h<1> isto output the IPR-written value.

* |PR read and write operations to the test status pin

PAL code can write to thetest_status _h<1> signal pin through hardware IPR
access. Refer to Chapter 6.

*  Timeout reset

The 21164PC generates atimeout reset if an instruction is not retired within

1 billion cycles. The CPU signals the timeout reset event by outputting a 256
CPU cycle wide pulse on thetest_status _h<1> pin. The pulse on the
test_status_h<1> pinisclocked by sysclk and therefore appears as an approxi-
mately 256 CPU cycle pulse that rises and falls on system clock rising edges.

12.3 Boundary-Scan Register

The 21164PC boundary-scan register (BSR) is 261 bits long. Table 12—4 provides
the boundary-scan register organization. The BSR is connected betweédinfthe
andtdo_h pins whenever an instruction selects it (Table 12—-3). The scan register
runs clockwise beginning at the upper-left corner of the chip.

There are six groups of bidirectional pins, each group controlled from a group con-
trol cell. Loading a value of 1 in the control cell tristates the output drivers, and all
bidirectional pins in the group are configured as input pins. The bidirectional pin
groups are identified as groups gr_1 through gr_6 in the Control Group column in
Table 12-4.

Information on Boundary Scan Description Language (BSDL) as it applies to the
21164PC boundary-scan register is available through your local DIGITAL distribu-
tor (see Appendix E).

Notes: The following notes apply to Table 12—4:

* Thedirection of shiftisfrom top to bottom, and from left to right.

* The bottom-most signals appear first at the tdo_h pin when shifting.

* Given an arrayed signal of the form signal<a:b>, signal<b> appears at
thetdo_h pin prior to signal<a>.
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Table 12—-4 Boundary-Scan Register Organization

Boundary-Scan Register

(Sheet 1 of 3)

BSR Control

Signal Name Pin Type BSR Count Cell Type Group Remarks

addr_h<11:4> B 260:253 io_bcell g 6 —

fill_dirty_h I 252 in_bcell — —

temp_sense (0] — None — Analog pin.

test_status h<1> (0] 251 io_bcell — —

trst_| I — None — —

tck_h I — None — —

tms h I — None — —

tdo h (0] — None — —

tdi_h I — None — —

srom_oe | (0] 250 io_bcell — —

srom_clk_h (0] 249 io_bcell — —

srom_data_h I 248 in_bcell — —

srom_present_| I 247 in_bcell — —

port_mode h<0:1> I — None — Compliance enable pins.

clk_mode_h<0> I 246 in_bcell — —

osc clk_in_h,l I — None — Analog pins.

clk_mode h<1> I 245 in_bcell — —

sys clk_outl h (0] 244 io_bcell — —

sys clk_out2 h (0] 243 io_bcell — —

sys reset | I 242 in_bcell — —

dc_ok_h I — None — Compliance enable pin.

OSC_SNIFFER_H Internal 241 in_bcell — Captures 1 if osc is con-
nected, otherwise, cap-
tures 0.

cpu_clk_out_h (0] — None — For chip test.
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Table 12—-4 Boundary-Scan Register Organization (Sheet 2 of 3)
BSR Control
Signal Name Pin Type BSR Count Cell Type Group Remarks
sys mch_chk_irg_h I 240 in_bcell — —
mch_hlt_irg_h I 239 in_bcell — —
pwr_fail irg_h I 238 in_bcell — —
irg_h<3:0> I 237:234 in_bcell — —
SPARE<2> B 233 io_bcell — Tied off as input.
TR_ADR Control 232 io_bcell or 1 —
addr_h<39:37> B 231:229 io_bcell or 1 Upper-right corner.
SPARE<3> B 228 io_bcell — Tied off as input.
addr_h<36:22> B 227:213 io_bcell or 1l
TR_DDR Control 212 io_bcell gr 2 —
data h<63:0> B 211:148 io_bcell gr 2 —
Iw_parity_h<0:1> B 147:146 io_bcell gr 2 —
int4 valid_h<1:0> (0] 145:144 io_bcell — —
addr_res h<1:0> (0] 143:142 io_bcell — —
st _clk3 h (0] 141 io_bcell — —
data_adsc | (0] 140 io_bcell — —
data adv | (0] 139 io_bcell — —
st _clk2 h (0] 138 io_bcell — Lower-right corner.
index_h<21:4> (0] 137:120 io_bcell — —
data bus req_h I 119 in_bcell — —
dack_h I 118 in_bcell — —
addr_bus req_h I 117 in_bcell — —
data ram_we I<3:0> O 116:113 io_bcell — —
data ram_oe | (0] 112 io_bcell — —
cack_h I 111 in_bcell — —
tag_ram_we | (0] 110 io_bcell — —
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Table 12—-4 Boundary-Scan Register Organization (Sheet 3 of 3)
BSR Control
Signal Name Pin Type BSR Count Cell Type Group Remarks
tag_ram_oe | (0] 109 io_bcell — —
victim_pending_h (0] 108 io_bcell — —
TMIS1 Control 107 io_bcell gr 3 —
tag_dirty h B 106 io_bcell gr 3 —
tag_data par_h B 105 io_bcell gr 3 —
tag_valid_h B 104 io_bcell gr 3 —
tag_data h<19> B 103 io_bcell gr 3 —
tag_data h<32:20> B 102:90 io_bcell gr 3 —
st _clkl h (0] 89 io_bcell — Lower-left corner.
idle bc h I 88 in_bcell — —
fill_error_h I 87 in_bcell — —
fill_id_h I 86 in_bcell — —
fill_h I 85 in_bcell — —
TTAG1 Control 84 io_bcell gr 4 —
cmd_h<0:3> B 83:80 io_bcell gr 4 —
int4 valid_h<2:3> (0] 79:78 io_bcell — —
TTAG2 Control 77 io_bcell gr 5 —
Iw_parity h<3:2> B 76:75 io_bcell gr 5 —
data h<64:127> B 74:11 io_bcell gr 5 —
TR_DDL Control 10 io_bcell gr 6 —
addr_h<21:12> B 09:00 io_bcell gr_6 —
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Alpha Instruction Set

A.1 Alpha Instruction Summary

This appendix contains asummary of al Alpha architecture instructions. All values
are in hexadecimal radix. Table A—1 describes the contents of the Format and
Opcode columns that are in Table A-2.

Table A-1 Instruction Format and Opcode Notation

Instruction Format Opcode

Format Symbol Notation Meaning

Branch Bra 00 oo isthe 6-bit opcode field.
Floating- F-P o0o.fff 00 isthe 6-bit opcode field.

point fff is the 11-bit function code field.
Memory Mem oo 00 isthe 6-bit opcode field.
Memory/ Mfc oo.ffff oo isthe 6-bit opcode field.

function code ffff is the 16-bit function code in the

displacement field.

Memory/ Mbr 00.h 00 isthe 6-bit opcode field.
branch h isthe high-order 2 bits of the displacement
field.

Operate Opr oo.ff 0o isthe 6-bit opcode field.
ff isthe 7-bit function code field.

PAL code Pcd 00 oo isthe 6-bit opcode field; the particular
PAL code instruction is specified in the 26-bit
function code field.
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Quialifiers for operate instructions are shown in Table A-2. Qualifiers for IEEE and
VAX floating-point instructions are shown in Tables A-5 and A—6, respectively.

Table A—2 Architecture Instructions (Sheet 1 of 8)
Mnemonic Format Opcode Description

ADDF F-P 15.080 Add F_floating
ADDG F-P 15.0A0 Add G_floating
ADDL Opr 10.00 Add longword
ADDL/V Opr 10.40 Add longword
ADDQ Opr 10.20 Add quadword
ADDQ/V Opr 10.60 Add quadword
ADDS F-P 16.080 Add S floating
ADDT F-P 16.0A0 Add T_floating
AMASK Opr 11.61 Determi ne byte/word instruction implementa-

tion

AND Opr 11.00 Logical product

BEQ Bra 39 Branch if = zero

BGE Bra 3E Branch if = zero

BGT Bra 3F Branch if > zero

BIC Opr 11.0 Bit clear

BIS Opr 11.20 Logica sum

BLBC Bra 38 Branch if low bit clear
BLBS Bra 3C Branch if low bit set
BLE Bra 3B Branch if < zero

BLT Bra 3A Branch if < zero

BNE Bra 3D Branch if # zero

BR Bra 30 Unconditional branch
BSR Mbr 34 Branch to subroutine
CALL_PAL Pcd 00 Trap to PALcode
CMOVEQ Opr 11.24 CMOVEif = zero
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Table A—2 Architecture Instructions (Sheet 2 of 8)
Mnemonic Format Opcode Description
CMOVGE Opr 11.46 CMOVE if = zero
CMOVGT Opr 11.66 CMOVEif > zero
CMOVLBC Opr 11.16 CMOVE if low bit clear
CMOVLBS Opr 11.14 CMOVE if low bit set
CMOVLE Opr 11.64 CMOVEIf £ zero
CMOVLT Opr 11.44 CMOVEif < zero
CMOVNE Opr 11.26 CMOVEif # zero
CMPBGE Opr 10.0F Compare byte
CMPEQ Opr 10.2D Compare signed quadword equal
CMPGEQ F-P 15.0A5 Compare G_floating equal
CMPGLE F-P 15.0A7 Compare G_floating less than or equal
CMPGLT F-P 15.0A6 Compare G_floating less than
CMPLE Opr 10.6D Compare signed quadword less than or equal
CMPLT Opr 10.4D Compare signed quadword less than
CMPTEQ F-P 16.0A5 Compare T_floating equal
CMPTLE F-P 16.0A7 Compare T_floating less than or equal
CMPTLT F-P 16.0A6 Compare T_floating less than
CMPTUN F-P 16.0A4 Compare T_floating unordered
CMPULE Opr 10.3D Compare unsigned quadword less than or equal
CMPULT Opr 10.1D Compare unsigned quadword less than
CPYS F-P 17.020 Copy sign
CPYSE F-P 17.022 Copy sign and exponent
CPYSN F-P 17.021 Copy sign negate
CVTDG F-P 15.09E Convert D_floating to G_floating
CVTGD F-P 15.0AD Convert G_floating to D_floating
CVTGF F-P 15.0AD Convert G_floating to F_floating
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A4

Table A—2 Architecture Instructions (Sheet 3 of 8)
Mnemonic Format Opcode Description
CVTGQ F-P 15.0AF Convert G_floating to quadword
CVTLQ F-P 17.010 Convert longword to quadword
CVTQF F-P 15.0BC Convert quadword to F_floating
CVTQG F-P 15.0BE Convert quadword to G_floating
CVTQL F-P 17.030 Convert quadword to longword
CVvTQL/svV F-P 17.530 Convert quadword to longword
CVTQL/NV F-P 17.130 Convert quadword to longword
CVTQS F-P 16.0BC Convert quadword to S_floating
CVvTQT F-P 16.0BE Convert quadword to T_floating
CVTST F-P 16.2AC Convert S floatingto T_floating
CVTTQ F-P 16.0AF Convert T_floating to quadword
CVTTS F-P 16.0AC Convert T_floatingto S _floating
DIVF F-P 15.083 Divide F_floating
DIVG F-P 15.0A3 Divide G_floating
DIVS F-P 16.083 Divide S floating
DIVT F-P 16.0A3 Divide T_floating
EQV Opr 11.48 Logical equivalence
EXCB Mfc 18.0400 Exception barrier
EXTBL Opr 12.06 Extract byte low
EXTLH Opr 12.6A Extract longword high
EXTLL Opr 12.26 Extract longword low
EXTQH Opr 12.7A Extract quadword high
EXTQL Opr 12.36 Extract quadword low
EXTWH Opr 12.5A Extract word high
EXTWL Opr 12.16 Extract word low
FBEQ Bra 31 Floating branch if = zero

Alpha Instruction Set
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Table A—2 Architecture Instructions (Sheet 4 of 8)
Mnemonic Format Opcode Description
FBGE Bra 36 Floating branch if = zero
FBGT Bra 37 Floating branch if > zero
FBLE Bra 33 Floating branch if < zero
FBLT Bra 32 Floating branch if < zero
FBNE Bra 35 Floating branch if # zero
FCMOVEQ F-P 17.02A FCMOVE if = zero
FCMOVGE F-P 17.02D FCMOVE if = zero
FCMOVGT F-P 17.02F FCMOVE if > zero
FCMOVLE F-P 17.02E FCMOVE if < zero
FCMOVLT F-P 17.02C FCMOVEif < zero
FCMOVNE F-P 17.02B FCMOVE if # zero
FETCH Mfc 18.80 Prefetch data
FETCH_M Mfc 18.A0 Prefetch data, modify intent
IMPLVER Opr 11.6C Determine CPU type
INSBL Opr 12.0B Insert byte low
INSLH Opr 12.67 Insert longword high
INSLL Opr 12.2B Insert longword low
INSQH Opr 12.77 Insert quadword high
INSQL Opr 12.3B Insert quadword low
INSWH Opr 12.57 Insert word high
INSWL Opr 12.1B Insert word low
JMP Mbr 1A.0 Jump
JSR Mbr 1A1 Jump to subroutine
JSR_COROUTINE Mbr 1A3 Jump to subroutine return
LDA Mem 08 Load address
LDAH Mem 09 Load address high
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Alpha Instruction Summary

Table A—2 Architecture Instructions (Sheet 5 of 8)
Mnemonic Format Opcode Description
LDBU Mem  OA Load zero-extended byte
LDF Mem 20 Load F_floating
LDG Mem 21 Load G_floating
LDL Mem 28 L oad sign-extended longword
LDL_L Mem  2A L oad sign-extended longword locked
LDQ Mem 29 L oad quadword
LDQ L Mem 2B L oad quadword locked
LDQ U Mem 0B Load unaligned quadword
LDS Mem 22 Load S floating
LDT Mem 23 Load T_floating
LDWU Mem 0C Load zero-extended word
MAXSBS8 Opr 1C.3E Vector signed byte maximum
MAXSwW4 Opr 1C.3F Vector signed word maximum
MAXUBS Opr 1C.3C Vector unsigned byte maximum
MAXUWA4 Opr 1C.3D Vector unsigned word maximum
MB Mfc 18.4000 Memory barrier
MF_FPCR F-P 17.025 Move from floating-point control register
MINSB8 Opr 1C.3E Vector signed byte minimum
MINSW4 Opr 1C.3F Vector signed word minimum
MINUB8 Opr 1C.3C Vector unsigned byte minimum
MINUW4 Opr 1C.3D Vector unsigned word minimum
MSKBL Opr 12.02 Mask byte low
MSKLH Opr 12.62 Mask longword high
MSKLL Opr 12.22 Mask longword low
MSKQH Opr 12.72 Mask quadword high
MSKQL Opr 12.32 Mask quadword low
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Alpha Instruction Summary

Table A—2 Architecture Instructions (Sheet 6 of 8)
Mnemonic Format Opcode Description

MSKWH Opr 12.52 Mask word high

MSKWL Opr 12.12 Mask word low

MT_FPCR F-P 17.024 Move to floating-point control register
MULF F-P 15.082 Multiply F_floating

MULG F-P 15.0A2 Multiply G_floating

MULL Opr 13.00 Multiply longword

MULL/NV Opr 13.40 Multiply longword

MULQ Opr 13.20 Multiply quadword

MULQ/V Opr 13.60 Multiply quadword

MULS F-P 16.082 Multiply S _floating

MULT F-P 16.0A2 Multiply T_floating

ORNOT Opr 11.28 Logica sum with complement
PERR Opr 1C.31 Pixel error

PKLB Opr 1C.37 Pack longwords to bytes
PKWB Opr 1C.36 Pack words to bytes

RC Mfc 18.E0 Read and clear

RET Mbr 1A.2 Return from subroutine

RPCC Mfc 18.C0 Read process cycle counter
RS Mfc 18.F0O00  Read and set

SAADDL Opr 10.02 Scaled add longword by 4
SAADDQ Opr 10.22 Scaled add quadword by 4
HASUBL Opr 10.0B Scaled subtract longword by 4
HASUBQ Opr 10.2B Scaled subtract quadword by 4
SBADDL Opr 10.12 Scaled add longword by 8
SBADDQ Opr 10.32 Scaled add quadword by 8
S8SUBL Opr 10.1B Scaled subtract longword by 8
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Alpha Instruction Summary

A-8

Table A—2 Architecture Instructions

(Sheet 7 of 8)

Mnemonic Format Opcode Description

S8SUBQ Opr 10.3B Scaled subtract quadword by 8
SEXTB Opr 1C.00 Store byte

SEXTW Opr 1C.01 Store word

SLL Opr 12.39 Shift left logical

SRA Opr 12.3C Shift right arithmetic

SRL Opr 12.34 Shift right logical

STB Mem OE Store byte

STF Mem 24 Store F_floating

STG Mem 25 Store G_floating

STS Mem 26 Store S floating

STL Mem  2C Store longword

STL C Mem 2E Store longword conditional
STQ Mem 2D Store quadword

STQ C Mem 2F Store quadword conditional
STQ U Mem  OF Store unaligned quadword
STT Mem 27 Store T_floating

STW Mem 0D Storeword

SUBF F-P 15.081 Subtract F_floating

SUBG F-P 15.0A1 Subtract G_floating

SUBL Opr 10.09 Subtract longword
SUBL/V 10.49

SUBQ Opr 10.29 Subtract quadword
SUBQIV 10.69

SUBS F-P 16.081 Subtract S floating

SUBT F-P 16.0A1 Subtract T_floating
TRAPB Mfc 18.00 Trap barrier

Alpha Instruction Set
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Alpha Instruction Summary

Table A—2 Architecture Instructions (Sheet 8 of 8)
Mnemonic Format Opcode Description
UMULH Opr 13.30 Unsigned multiply quadword high
UNPKBL Opr 1C.35 Unpack bytes to longwords
UNPKBW Opr 1C.34 Unpack bytes to words
WMB Mfc 18.44 Write memory barrier
XOR Opr 11.40 Logical difference
ZAP Opr 12.30 Zero bytes
ZAPNOT Opr 12.31 Zero bytes not
A.1.1 Opcodes Reserved for DIGITAL
Table A-3 lists opcodes reserved for DIGITAL.
Table A—3 Opcodes Reserved for DIGITAL
Mnemonic Opcode Mnemonic Opcode Mnemonic Opcode
OPCO1 01 OPCO05 05 OPCOB 0B
OPC02 02 OPCO06 06 OPCOC oct
OPCO03 03 OPCO7 o7 OPCOD ob?
OPCO4 04 OPCOA  O0A! OPCOE  OE!

1 Reserved when byte/word instructions are not enabled.
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IEEE Floating-Point Instructions

A.1.2 Opcodes Reserved for PALcode

Table A—4 lists the 21164-specific instructions. For more information, refer to
Section 6.6.

Table A—4 Opcodes Reserved for PALcode

21164 Architecture

Mnemonic Opcode Mnemonic Function

HW_LD 1B PAL1B Performs Dstream load instructions.

HW_ST 1F PAL1F Performs Dstream store instructions.

HW_REI 1E PAL1E Returnsinstruction flow to the program counter

(PC) pointed to by the EXC_ADDR internal pro-
cessor register (IPR).

HW_MFPR 19 PAL19 Accesses the IDU, MTU, and Dcache I PRs.
HW_MTPR 1D PAL1D Accesses the IDU, MTU, and Dcache I PRs.

A.2 |IEEE Floating-Point Instructions

Table A-5 lists the hexadecimal value of the 11-bit function code field for the IEEE
floating-point instructions, with and without qualifiers. The opcode for these instruc-

tions is 1Gg.

Table A-5 |IEEE Floating-Point Instruction Function Codes (Sheet 1 of 3)
Mnemonic None /C M /D J{V] /uc /UM /UD
ADDS 080 000 040 0CO 180 100 140 1CO
ADDT O0AO 020 060 OEO 1A0 120 160 1E0
CMPTEQ 0A5 — — — — — — —
CMPTLT 0A6 — — — — — — —
CMPTLE OA7 — — — — — — —
CMPTUN 0A4 — — — — — — —
CVTQS 0BC 03C o7C OFC — — — —
CVTQT OBE 03E 07E OFE — — — —
CVTTS OAC 02C 06C OEC 1AC 12C 16C 1EC
DIVS 083 003 043 0C3 183 103 143 1C3
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IEEE Floating-Point Instructions

Table A-5 IEEE Floating-Point Instruction Function Codes (Sheet 2 of 3)
Mnemonic None /C M /D J{V] /uc /UM /UD
DIVT OA3 023 063 OE3 1A3 123 163 1E3
MULS 082 002 042 0C2 182 102 142 1C2
MULT 0A2 022 062 OE2 1A2 122 162 1E2
SUBS 081 001 041 0C1 181 101 141 1C1
SUBT OA1 021 061 OE1 1A1 121 161 1E1
Mnemonic /SU /SUC /SUM /SUD /SUI /SUIC /SUIM /SUID
ADDS 580 500 540 5CO0 780 700 740 7CO
ADDT 5A0 520 560 5EO0 7A0 720 760 7EO
CMPTEQ 5A5 — — — — — — —
CMPTLT 5A6 — — — — — — —
CMPTLE 5A7 — — — — — — —
CMPTUN 5A4 — — — — — — —
CVTQS — — — — 7BC 73C 77C 7FC
CVTQT — — — — 7BE 73E 77E 7F3
CVTTS 5AC 52C 56C 5EC 7AC 72C 76C 7EC
DIVS 583 503 543 5C3 783 703 743 7C3
DIVT 5A3 523 563 5E3 7A3 723 763 7E3
MULS 582 502 542 5C2 782 702 742 7C2
MULT 5A2 522 562 5E2 TA2 722 762 TE2
SUBS 581 501 541 5C1 781 701 741 7C1
SUBT 5A1 521 561 5E1 7A1 721 761 7E1
Mnemonic None /S
CVTST 2AC 6AC
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Table A-5

VAX Floating-Point Instructions

IEEE Floating-Point Instruction Function Codes

(Sheet 3 of 3)
Mnemonic None /C N NVC ISV /SVC  /sVI /SVIC
CVTTQ OAF 02F 1AF 12F 5AF 52F TAF T2F
Mnemonic D VD /SVD /SVID /M NM /ISVM  /SVIM
CVTTQ OEF 1EF 5EF TEF O6F 16F 56F T6F
Note:

Because underflow cannot occur for CMPTxXx, thereis no differencein
function or performance between CMPTxx/S and CMPTxx/SU. It is
intended that software generate CMPTxx/SU in place of CMPTxx/S.

In the same manner, CVTQS and CVTQT can take an inexact result
trap, but not an underflow. Because there is no encoding for aCVTQx/
Sl instruction, it isintended that software generate CVTQX/SUI in place

of CVTQX/S!.

A.3 VAX Floating-Point Instructions

Table A—6 lists the hexadecimal value of the 11-bit function code field for the VAX
floating-point instructions. The opcode for these instructions;ig 15

Table A—6 VAX Floating-Point Instruction Function Codes

(Sheet 1 of 2)

Mnemonic None /C /U /uc IS /sC IS|Y) /suc
ADDF 080 000 180 100 480 400 580 500
CVTDG 09E 01E 19 11E 49E 41E 59E 51E
ADDG 0A0 020 1A0 120 4A0 420 5A0 520
CMPGEQ 0A5 — — — 4A5  — — —
CMPGLT 0A6  — — — 4A6  — — —
CMPGLE 0A7 — — — 4A7 — — —
CVTGF 0AC 02C 1AC 12C 4AC  42C 5AC 52C
CVTGD OAD 02D 1AD 12D 4AD 42D 5AD 52D
CVTQF 0BC 03C — — — — — —
CVTQG OBE O03E — — — — — —
DIVF 083 003 183 103 483 403 583 503
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Opcode Summary

Table A—6 VAX Floating-Point Instruction Function Codes (Sheet 2 of 2)
Mnemonic None /C V] /uc /S /SC /SU /SUC
DIVG 0A3 023 1A3 123 4A3 423 5A3 523
MULF 082 002 182 102 482 402 582 502
MULG 0A2 022 1A2 122 4A2 422 5A2 522
SUBF 081 001 181 101 481 401 581 501
SUBG 0A1 021 1A1 121 4A1 421 A1l 521
Mnemonic None /C N vVC /S /SC ISV /ISVC
CVTGQ 0AF  02F 1AF  12F AAF  42F 5AF  B2F

A.4 Opcode Summary

Table A-7 lists all Alpha opcodes from 00 (CALL_PAL) through 3F (BGT). In the
table, the column headings that appear over the instructions have a granulggty of 8
The rows beneath the Offset column supply the individual hexadecimal number to
resolve that granularity.

If an instruction column has a 0 in the right (low) hexadecimal digit, replace that O
with the number to the left of the slash in the Offset column on the instruction's row.
If an instruction column has an 8 in the right (low) hexadecimal digit, replace that 8
with the number to the right of the slash in the Offset column.

For example, the third row (2/A) under the d6olumn contains the symbol INTS*,
representing the all-integer shift instructions. The opcode for those instructions
would then be 1g because the 0 in 10 is replaced by the 2 in the Offset column.
Likewise, the third row under the {fcolumn contains the symbol JSR*, represent-
ing all jump instructions. The opcode for those instructions is 1A because the 8 in the
heading is replaced by the number to the right of the slash in the Offset column.
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Opcode Summary

The instruction format is listed under the instruction symbol.

Table A—7 Opcode Summary

Offset 00 08 10 18 20 28 30 38
0/8 PAL* LDA INTA*  MISC* LDF LDL BR BLBC
(pal) (mem)  (op) (mem)  (mem) (mem)  (br) (br)

19 Res LDAH INTL* \PAL\ LDG LDQ FBEQ BEQ
(mem)  (op) (mem)  (mem)  (br) (br)

2/A Res LDBU INTS* JSR* LDS LDL_L FBLT BLT
(mem)  (op) (mem)  (mem) (mem)  (br) (br)

3/B Res LDQ U INTM* \PAL\ LDT LDQ L FBLE BLE
(mem)  (op) (mem)  (mem)  (br) (br)

4/C Res LDWU Res SEXT/ STF STL BSR BLBS
(mem) MVI* (mem)  (mem)  (br) (br)

(op)

5/D Res STW FLTV*  \PAL\ STG STQ FBNE BNE
(mem)  (op) (mem)  (mem)  (br) (br)

6/E Res STB FLTI* \PAL\ STS STL_.C FBGE BGE
(mem)  (op) (mem)  (mem)  (br) (br)

7IF Res STQ U FLTL* \PAL\ STT STQ C FBGT BGT
(mem)  (op) (mem)  (mem)  (br) (br)

Symbol M eaning

FLTI* |EEE floating-point instruction opcodes

FLTL* Floating-point operate instruction opcodes

FLTV* VAX floating-point instruction opcodes

INTA* Integer arithmetic instruction opcodes

INTL* Integer logical instruction opcodes

INTM* Integer multiply instruction opcodes

INTS* Integer shift instruction opcodes

JSR* Jump instruction opcodes

MISC* Miscellaneous instruction opcodes

PAL* PALcode instruction (CALL_PAL) opcodes

\PAL\ Reserved for PALcode

Res Reserved for DIGITAL

SEXT/MVI* Sign extend and motion video instruction set opcodes
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Required PALcode Function Codes

A.5 Required PALcode Function Codes

The opcodes listed in Table A—8 are required for all Alpha implementations. The
notation used is oo.ffff, where oo is the hexadecimal 6-bit opcode and ffff is the
hexadecimal 26-bit function code.

Table A—8 Required PALcode Function Codes

Mnemonic Type Function Code
DRAINA Privileged 00.0002
HALT Privileged 00.0000
IMB Unprivileged  00.0086

A.6 21164PC Microprocessor IEEE Floating-Point
Conformance

The 21164PC supports the IEEE floating-point operations as defined by the Alpha
architecture. Support for a complete implementation of the I§&tfelard for

Binary Floating-Point Arithmetic (ANSI/IEEE Standard 754 1985) is provided by a
combination of hardware and software as described iAlfe AXP Architecture
Reference Manual.

Additional information about writing code to support precise exception handling
(necessary for complete conformance to the standard) is Apha AXP Architec-
ture Reference Manual.

The following information is specific to the 21164PC:
* |nvalid operation (INV)

Theinvalid operation trap is aways enabled. If the trap occurs, then the destina-

tion register is UNPREDICTABLE. This exception issignaled if any VAX
architecture operand is nonfinite (reserved operand or dirty zero) and the opera-

tion can take an exception (that is, certain instructions, such as CPY S, never take

an exception). This exception is signaled if any IEEE operand is nonfinite

(NAN, INF, denorm) and the operation can take an exception. Thistrap isalso
signaled for an IEEE format divide of £0 divided by *0. If the exception occurs,
then FPCR<INV> is set and the trap is signaled to the IDU.

* Divide-by-zero (DZE)
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21164PC Microprocessor IEEE Floating-Point Conformance

Thedivide-by-zero trap isaways enabled. If the trap occurs, then the destination
register is UNPREDICTABLE. For VAX architecture format, this exception is
signaled whenever the numerator isvalid and the denominator is zero. For IEEE
format, this exception is signaled whenever the numerator is valid and nonzero,

with a denominator of 0. If the exception occurs, then FPCR<DZE> is set and
the trap is signaled to the IDU.

For IEEE format divides, 0/0 signals INV, not DZE.
* Floating overflow (OVF)

The floating overflow trap is always enabled. If the trap occurs, then the destina
tion register is UNPREDICTABLE. The exception is signaled if the rounded
result exceeds in magnitude the largest finite number, which can be represented
by the destination format. This applies only to operations whose destination isa
floating-point datatype. If the exception occurs, then FPCR<OV F> is set and the
trap issignaled to the IDU.

e Underflow (UNF)

The underflow trap can be disabled. If underflow occurs, then the destination
register isforced to atrue zero, consisting of afull 64 bits of zero. Thisis done
even if the proper |EEE result would have been -0. The exception is signaled if
the rounded result is smaller in magnitude than the smallest finite number that
can be represented by the destination format. If the exception occurs, then
FPCR<UNF> is set. If the trap is enabled, then the trap is signaled to the IDU.
The 21164PC never produces a denormal number; underflow occursinstead.

* Inexact (INE)

The inexact trap can be disabled. The destination register always contains the
properly rounded result, whether the trap is enabled. The exception issignaled if
the rounded result is different from what would have been produced if infinite
precision (infinitely wide data) were available. For floating-point results, this
requires both an infinite precision exponent and fraction. For integer results, this
requires an infinite precision integer and an integral result. If the exception
occurs, then FPCR<INE> is set. If thetrap is enabled, then the trap issignaled to
the IDU.

The |EEE-754 specification allows INE to occur concurrently with either OVF
or UNF. Whenever OVF issignaled (if the inexact trap is enabled), INE isalso
signaled. Whenever UNF is signaled (if the inexact trap is enabled), INE is aso
signaled. The inexact trap also occurs concurrently with integer overflow. All
valid opcodes that enable INE also enable both overflow and underflow.
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If aCVTQL resultsin an integer overflow (I0V), then FPCR<INE> is automati-
cally set. (The INE trap is never signaled to the IDU because thereisno CVTQL
opcode that enables the inexact trap.)

* Integer overflow (I0OV)

The integer overflow trap can be disabled. The destination register always con-
tainsthe low-order bits (<64> or <32>) of the true result (not the truncated bits).
Integer overflow can occur with CVTTQ, CVTGQ, or CVTQL. In conversions
from floating to quadword integer or longword integer, an integer overflow
occursif the rounded result is outside the range —2%2 ..25371, In conversionsfrom
quadword integer to longword integer, an integer overflow occursif theresult is
outside the range —23% ..23172, | the exception occurs, then the appropriate bit in
the FPCR is set. If the trap is enabled, then the trap is signaled to the IDU.

* Software completion (SWC)

The software completion signal is not recorded in the FPCR. The state of this
signal is always sent to the IDU. If the IDU detects the assertion of any of the
listed exceptions concurrent with the assertion of the SWC signal, then it sets
EXC _SUM<SWC>.

Input exceptions always take priority over output exceptions. If both exception types
occur, then only the input exception is recorded in the FPCR and only the input
exception issignaled to the IDU.
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B

21164PC Microprocessor Specifications

Table B-1 lists specifications for the 21164PC.

Table B-1 21164PC Microprocessor Specifications (Sheet 1 of 2)
Feature Description

Cycletime range 2.50 ns (400 MHz) to 1.87 ns (533 MHz)

Process technology 0.35-um CMOS

Transistor count 3.5 million

Die size 8.65 x 16.28 mm

Package 413-pin IPGA (interstitial pin grid array)

Number of signal pins 264

Typical worst-case 24 W (int.) and 2.5 W (ext.) @ 2.50 ns cycle time (400 MHz)
power @/dd = 3.3V 32 W (int.) and 3.0 W (ext.) @ 1.87 ns cycle time (533 MHz)

@vddi=25V

Power supply 3.3Vdc, 25Vdc

Clocking input One times the internal clock speed
Virtual address size 43 bits

Physical address size 33 bits

Page size 8KB

Issue rate 2 integer instructions and 2 floating-point instructions per cycle
Integer instruction 7 stage

pipeline

Floating instruction 9 stage

pipeline

29 September 1997 — Subject To Change 21164PC Microprocessor Specifications B-1



B-2

Table B-1 21164PC Microprocessor Specifications (Sheet 2 of 2)

Feature

Description

Onchip L1 Dcache

Onchip L1 Icache

Onchip data
translation buffer

Onchip instruction
translation buffer

Floating-point unit
Bus

Serial ROM interface

8K B, physical, direct-mapped, write-through, 32-byte block,
32-bytefill

16K B, virtual, direct-mapped, 64-byte block, 32-bytefill,
128 address space numbers (ASNs) (MAX_ASN=127)

64-entry, fully associative, not-last-used replacement, 8K pages,
128 ASNs (MAX_ASN=127), full granularity hint support

48-entry, fully associative, not-last-used replacement,
128 ASNs (MAX_ASN=127), full granularity hint support

Onchip FPU supports both IEEE and DIGITAL floating point
Separate data and address bus, 128-bit/64-bit data bus

Allows microprocessor to access a serial ROM
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Serial Icache Load Predecode Values

The following C code calculates the predecode values of a serial Icache load. A soft-
waretool called the SROM Packer converts abinary image into aformat suitable for
Icache serial loading. Thistool isavailable from DIGITAL.

#i ncl ude <stdio. h>
#include <stdlib. h>
#i ncl ude <string. h>

#define DATA BYTES PER REC 32
#define MAX | NSTR 4096

int eparity(int) ;
int instrpredecode(int);
voi d build_vector();

/* Everything belowis off by 54 bits. I'll add in 54 in main() */

/* fillmap [0 - 127] maps data 127:0, etc. */

/* fillmap[n] is bit position in output vector. bit O of this vector is first-in;
bit 201 is last */

int dfillmap [128] = {
/* data 0:127 -- fill map[0: 127]*/

44, 46, 48, 50, 52, 54, 56, 58, /* 0:7 */
60, 62, 64, 66, 68, 70, 72, 74, /* 8:15 */
76, 78, 80, 82, 84, 86, 88, 90, /* 16:23 */
92, 94, 96, 98, 100, 102, 104, 106, /* 24:31 */
45, 47, 49, 51, 53, 55, 57, 59, /* 32:39 */
61, 63, 65, 67, 69, 71, 73, 75, [* 40:47 */
77,79, 81, 83, 85, 87, 89, 91, /* 48:55 */
93, 95, 97, 99, 101, 1083, 105, 107, /* 56:63 */

130, 132, 134, 136, 138, 140, 142, 144, I* 64:71 */
146, 148, 150, 152, 154, 156, 158, 160, [* 72:79 */
162, 164, 166, 168, 170, 172, 174, 176, /* 80:87 */
178, 180, 182, 184, 186, 188, 190, 192, /* 88:95 */
131, 133, 135, 137, 139, 141, 143, 145, /* 96:103 */
147, 149, 151, 153, 155, 157, 159, 161, [* 104: 111 */
163, 165, 167, 169, 171, 173, 175, 177, [* 112: 119 */
179, 181, 183, 185, 187, 189, 191, 193 [* 120: 127 */
}
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int BHTfillnap[8] = { /* BHT vector 0:7 -- BHTfillnap[0:7] */
201, 200, 199, 198, 197, 196, 195, 194 /* 0:7 */

¥

int predfillmap[20] = { /* predecodes 0:19 -- predfillmp[0:19] */
108, 110, 112, 114, 1186, /* 0:4 */
109, 111, 113, 115, 117, /* 5:9 */
120, 122, 124, 126, 128, /* 10:14 */
121, 123, 125, 127, 129 /* 15:19 */
¥

int octawpfillnap = /* octaword parity */
119;

int predpfillmp = /* predecode parity */
118;

int tagfillnmap[29] = { /* tag bits 13:42 -- tagfillmap[0:29] */
29, 28, 27, 26, 25, 24, 23, 22, 21, [* 13:22 */

20, 19, 18, 17, 16, 15, 14, 13, 12, 11, [* 23:32 */

10, 9, 8, 7, 6, 5 4, 3 2,1 /* 33:42 */

b

int asnfillnmap[7] = { /* asn 0:6 -- asnfillnap[0:6] */

37, 36, 35, 34, 33, 32,31 /* 0:6 */

¥

int asnfillnap = /* asm-- asnfillmap */

30;

int tagphysfillmap = /* tagphysi cal address -- tagphysfillmap */
38;

int tagval fillnap[4] = { /* tag valid bits 0:3 -- tagvalfillnap */
42,41, 40, 39 /* 0:3 */

b

int tagparfillnap = /* tag parity -- tagparfillmap */

43;
/*
**  global variables
*/

char filenane[ 256], of i | enane[ 256], hfi | enane[ 256] ;
FHLE *infile, *outfile, *hexfile;
int pdparity,

tparity,

tvalids,

t physi cal ,

bht vect or,

of fset;

int base,

asm

asn,
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tag,
pr edecodes,
owparity;

int device_size;

/*

** define the ROMsize in bits to determne the maxi num nunber of instructions all owed

** define the nunber of bits per instruction for 21164PC | Cache
*
/
#defi ne ROVBI ZE 262144
#define B_PER | NST 64

mai n(int argc, char *argv[])
{
int i, j;
int instatus, instr_count;
int lines_ witten;
char *charptr;

int chksum
int instr[4], outvector[DATA BYTES PER REC 4];
strcpy (filenanme ,"loadfile.dxe"); /* default file names */

strcpy (ofilenane, "l oadfile.sron);
strcpy (hfilenane, "l oadfile.hex");

base = 0;

tag = 0;

asn = 0;

asm= 1;

t physi cal = 1;

bht vector = 0;

of fset = 0;

/* for PCA| added 55 bits of padding. Onhe of those bits is reflected in the above

nunbers. */
for (i=0; i<128; i++)
dfi |l map[i] +=54;
for (i=0; i<8; i++)
BHTfi | | map[i] +=54;
for (i=0; i<20; i++)
predfillmap[i] +=54;
oct awpf i | | map+=54;
predpfil | map+=54;
for (i=0; i<29; i++)
tagfill map[i] +=54;
for (i=0; i<7; i+4)
asnfill map[i] +=54;
asnfil | map+=54;
tagphysfi | | map+=54;
for (i=0; i<4; i+t
tagval fill map[i] +=54;
tagparfil | map+=54;
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if (argc>1)

strepy(fil enane, argv[1]);
if (argc>2)

strepy(ofil enane, argv[2]);
if (argc>3)

strcpy(hfil enane, argv([ 3]);

if (NILL == (infile = fopen(filename, "rb")))

{
printf("input file open error: %\n", filenane);
exit(0);
}
if (NLL == (outfile = fopen(ofilenane, "wb")))
{
printf("binary output file open error: %\n", ofilenane);
exit(0);
}
if (NLL == (hexfile = fopen(hfilenane, "w')))
{
printf("hex output file open error: %\n", hfilenane);
exit(0);
}
fprintf(hexfile,":020000020000FQ n"); /* extended segnent addr record */
tparity = eparity(tag) ™ eparity(tphysical) "~ eparity(asn);
tvalids = 15;

instatus = 0O

instr_count = 0O;
/* there are 1024 full 32 byte records (MAX_INSTR instructions) */
for (lines_witten =0; lines_ witten < 1024; lines_witten++)

{
bui I d_vector(instr, outvector, & nstatus, & nstr_count); /* build the vector */
fwite(&utvector[0], 1, DATA BYTES PER REC outfile); /* print it to a
binary file */
fprintf(hexfile,": 19904X00", of fset); /* print it to the hex
file */

chksum = (offset & Oxff) + (offset >> 8) + Ox19;
for (j=0; j<DATA BYTES PER REC | ++)
{
charptr = ((char*) &utvector[0]) + j;
fprintf(hexfile,"9@2X', (Oxff& *charptr));
chksum += *charptr;

} of fset += DATA BYTES PER REC
fprintf(hexfile, "9@2Xn", (-chksun) & Oxff);
}
if (instatus == 0) /* there’s nore data inthe file to read, oops... */
{

while (instatus == 0){
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bui | d_vector(instr, outvector, & nstatus, & nstr_count); /* build the vector */
}
if (instr_count > NMAX_INSTR){
printf("\nev5fm Varning: input file too long.\n");
printf("\tThere are %l instructions in the input file\n", instr_count);
printf("\tTruncated after %l instructions\n\n", instr_count, MAX_INSTR);
}
}

fprintf(hexfile,": 15904X00", of fset);
chksum = (offset & Oxff) + (offset >> 8) + Ox15;

for (j=0; j <17; j+¥) /* special case, last record */

fprintf(hexfile,"%2X", (0x00));
chksum += *charptr;

fgr (j=0; j <4; j++) [* Put 4 bytes of FF at the end... */
{ fprintf(hexfile, "9@2X', Oxff);
chksum += Oxff;
}
fprintf(hexfile, 902X n", (-chksum) & Oxff);
fprintf(hexfile,":00000001FR n"); /* end-of-file record */

printf("Total intructions processed = %l\t(% free)\n",
instr_count, MAX_INSTR - instr_count);

fclose(infile);

fclose(outfile);

fclose(hexfile);

exit(0);
}

voi d build vector(int instr[], int outvector[], int *instatus, int *instr_count)
{
int j, k, t;
int status;
for (j=0;j<4;j++) instr[j] = 0;
for (j=0;j<DATA BYTES PER REC 4;j ++) outvector[]j]=0;

if (*instatus == 0) /* read until the file's done */
{
/* read-in 4 instructions */
if (16 > (status = fread(& nstr[0Q], 1,16,infile)))
*instatus = 1, /* we’'re done now */
*instr_count += status/4;
}
pr edecodes=0;
owparity = 0;
for (j=0;j<4;j++)
{

predecodes |= (4 ”~ instrpredecode(instr[j])) << (j*5);
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/* invert bit 2 to match fill scan chain attribute */

owparity ~= eparity(instrj]);

}
pdparity = eparity(predecodes);
/* bhtvector */
for (j=0;j<7;j++)
{
t = BHIfillnap[j];
outvector[t>>5] |= ((bhtvector >>j) & 1) << (t&0x1f);
}
/* instructions */
for (k=0; k<4; k++)
{

for (j=0;j<32;j++)

t = dfill map[j+k*32];

outvector[t>>5] |= ((instr[k] >>j) & 1) << (t&x1f);

}
}
/* predecodes */
for (j=0;j <20;] ++)
{
t = predfillnap[j];

outvector[t>>5] |= ((predecodes >> j) & 1) << (t&0x1f);

out vector[ octawpfil | nap>>5] | = owparity << (octawpfil| map&x1if);

out vector [ predpfill map>>5] |= pdparity << (predpfil | map&x1if);

outvector[tagparfillnap>>5] |= tparity << (tagparfill nap&x1f);

}
/* owparity */
/* pdparity */
/* tparity */
/* tvalids */
for (j=0;j<4;j++)
{

t =tagval fillmap[j];

outvector[t>>5] |= ((tvalids >>j) & 1) << (t&xIf);

}
/* tphysical */
out vect or [ t agphysfi | | map>>5] | =
/* asn */
for (j=0;j<7;j++)
{

t = asnfil lmap[j];

tphysi cal << (tagphysfill nap&xi1f);

outvector[t>>5] |= ((asn >>j) & 1) << (t&0x1f);

}
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/* asm*/
outvector[asnfil |l map>>5] |= asm<< (asnfill nap&Ox1f);
/* tag */
for (j=0;j<29;j++)
{
t =tagfillmp[j];
outvector[t>>5] |= ((tag >>j) & 1) << (t&0x1f);

}

}

int eparity(int Xx)

{
X =X N (x >> 16);
X =X N (x > 8);
X =X N (x > 4),;
X =X N (x> 2));
X =X N (x> 1);
return (x&l);

}

#define EXT(data, bit)\

(((data) & ((unsigned) 1 << (bit))) '=0)
#define EXT(data, hbit, Ibit)\

(((data) >> (Ibit)) &\

((((hbit) - (Ibit) + 1) == 32) ? ((unsigned)Oxffffffff) :
(~((unsi gned) OxfFFFFFff << ((hbit) - (1bit) + 1)))))

#define INS(name, bit, data)\
(nane) = (((name) & ~((unsigned) 1 << (bit))) | \
(((unsigned) (data) << (bit)) & ((unsigned) 1 << (hit))))

int instrpredecode(int inst)

{

int result;

i nt opcode;
int func;

int jsr_type;
int ra;

int outO;

int outl;

int out2;

int out3;

int out4;

int e0_only;
int el only;
int ee;

int | noop;
int fadd,
int fml;
int fe;

int br_type;
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int Id

int store;

int br;

int call_pal;

int bsr;

int ret_rei;

int jnp;

int jsr_cor;

int jsr;

int cond_br;

opcode = EXT(inst, 31, 26 );
func = BEXTinst, 12, 5);
jsr_type = EXT(inst, 15,14);
ra = BEXTV(inst, 25, 21);

e0_only = (opcode == 0x24) || /* STF */
(opcode == 0x25) /* STG */
(opcode == 0x26) [* STS */
(opcode == 0x27) [* STT */
(opcode == 0xOF) /* STQU */
(opcode == 0x2A) /* LDL_L */
(opcode == 0x2B) /* LDQL */
(opcode == 0x20 /* STL */

(opcode == 0x2E) /* STL_C*/
(opcode == 0x2F) /* STQ C */
(opcode == 0x1F) /* HWST*/

(opcode == 0x18) /* MSC nemfornmat: FETCH _M RS, RC, RPCC, TRAPB, MB) */
(opcode == 0x12) /* EXT, MK | NS, SRX, SLX, ZAP*/

(opcode == 0x13) /* MLX */

((opcode == 0x1D) && (EXT(inst,8) ==0)) || /* MBOX HWMPR */

((opcode == 0x19) &% (EXT(inst,8) ==0)) || /* MBOX HWMPR */

(opcode == 0x01) /* VR:: mght change this later RESDEC s */

[
[
[
[
[
[
[
(opcode == 0x2D) || /* STQ */
[
[
[
[
[
[

(opcode == 0x02) /* RESDEC s */
(opcode == 0x03) /* RESDEC s */
(opcode == 0x04) /* RESDEC s */
(opcode == 0x05) /* RESDEC s */
(opcode == 0x06) /* RESDEC s */

(opcode == 0x0a) /* RESDEC s */
(opcode == 0x0c) /* RESDEC s */
(opcode == 0x0d) /* RESDEC s */
(opcode == 0x0Oe) /* RESDEC s */

[

[

[

[

[

[

(opcode == 0x07) || /* RESDEC s */
[

[

[

[

(opcode == 0x14) || /* RESDEC s */

(opcode == 0x1c); /* RESDEC s */
el only = (opcode == 0x30) || /* BR*/
(opcode == 0x34) || /* BSR */
(opcode == 0x38) || /* BLBC */
(opcode == 0x39) || /* BEQ */
(opcode == 0x3A) || /* BLT */
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(opcode == 0x3B) || /* BLE */
(opcode == 0x3Q || /* BLBS */
(opcode == 0x3D || /* BNE */
(opcode == 0x3E) || /* BCGE */
(opcode == Ox3F) || /* BGT */
(opcode == Ox1A) || /* JMP, JSR RET, JSR GCROT */
(opcode == Ox1E) || /* HWRE */
(opcode == 0x00) || /* CALL_PAL */
((opcode == 0x1D) && (EXT(inst,8) == 1)) || /* I BOX HWMPR */
((opcode == 0x19) && (BEXT(inst,8) ==1)); /* IBOX HWMPR */
ee = (opcode == 0x10) || /* ADD, SUB, Qw, */
(opcode == 0x11) || /* AND, BICetc. logicals */
(opcode == 0x28) || /* LDL */
(opcode == 0x29) || /* LDQ */
(opcode == 0xOB) &ra != Ox1F) || /* LDQU */
(opcode == 0x08) || /* LDA */
(opcode == 0x09) || /* LDAH */
(opcode == 0x20) || /* LDF */
(opcode == 0x21) || /* LDG */
(opcode == 0x22) || /* LDS */
(opcode == 0x23) || [* LDT */
(opcode == 0x1B); /* HWLD */
I noop = (opcode == OxOB) & ra == Ox1F); /* LDQ U R31, x(y) - NooP*/
fadd = ((opcode == 0x17) && (func != 0x20)) || /* Flt, datatype indep excl
((opcode == 0x15) && ((func & Oxf) != 0x2)) || /* VAX excl MWL's */
((opcode == 0x16) && ((func & Oxf) !'= 0x2)) || /* | EEE excl ML's */
(opcode == 0x31) || /* FBEQ */
(opcode == 0x32) || /* FBLT */
(opcode == 0x33) || /* FBLE */
(opcode == 0x35) || /* FBNE */
(opcode == 0x36) || /* FB&E */
(opcode == 0x37); /* FBGT */
foul = ((opcode == 0x15) &% ((func & Oxf) == 0x2)) || /* VAX ML’ s */
((opcode == 0x16) && ((func & Oxf) == 0x2)); /* |EEE ML’ s */
fe = ((opcode == 0x17) && (func == 0x20)); /* CPYS */
br_type = ((opcode & 0x30) == 0x30) || /* all branches */
(opcode == Ox1A) || [* IMP' s */
(opcode == 0x00) || /* CALL PAL */
(opcode == 0x1E); /* HWREl */
Id = (opcode == 0x28) || /* LDL */
(opcode == 0x29) || /* LDQ */
(opcode == 0x0B) || /* LDQU */
(opcode == 0x20) || [* LDF */
(opcode == 0x21) || /* LDG */
(opcode == 0x22) || /* LDS */
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(opcode == 0x23) || [* LDT */

(opcode == 0x1B); /* HWLD */

store = (opcode == 0x24) || [* STF */
(opcode == 0x25) [* STG */
(opcode == 0x26) /* STS */
(opcode == 0x27) [* STT */
(opcode == 0xOF) [* STQU */

[
[
[
[
(opcode == 0x2Q || /* STL */
[
[
[

(opcode == 0x2D) [* STQ */

(opcode == 0x2E) [* STL_C */

(opcode == 0x2F) /* STQC */

(opcode == 0x18) || /* Msc: TRAPB, MB, RS, RC RPCC etc. */
(opcode == Ox1F) || [* HWST */

(opcode == 0x2A) || /* LDL_L */

(opcode == 0x2B); /* LDQL */

br = (opcode == 0x30); /* all branches */
call _pal = (opcode == 0x00); /* call PAL */
bsr = (opcode == 0x34);

ret_rei = ((opcode == 0x1A) && (jsr_type == 0x2)) ||
((opcode == Ox1E) && (jsr_type != 0x3));

jmp = ((opcode == 0x1A) && (jsr_type == 0x0));
jsr_cor = ((opcode == Ox1A) && (jsr_type == 0x3));
jsr = ((opcode == Ox1A) &% (jsr_type == 0x1));

cond_br = (opcode == 0x31) ||
(opcode == 0x32) ||
(opcode == 0x33) ||
(opcode == 0x35) ||
(opcode == 0x36) ||
(opcode == 0x37) ||
(opcode == 0x38) ||
(opcode == 0x39) ||
(opcode == 0x3A) ||
(opcode == 0x3B) ||
(opcode == 0x3Q ||
(opcode == 0x3D ||
(opcode == 0x3E) ||

(opcode == 0x3F);
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outO =br || bsr || joap || jsr || (ee & '1d) || (e0O_only & !store);

outl =ret_rei ||(el_only & !br_type)|| jnp ||jsr_cor|| jsr || Inoop || (fadd &&
Tbr_type) || fe;;

out2 =call_pal || bsr || jsr_cor || e0O_only [|jsr ||[fml || fe;

out3 = (el_only & cond br) || (el_only & !br_type) || fadd || frul || fe;
out4 =ee || Inoop || e0_only || fadd || fmul || fe;

result = 0;

INS( result, O, outO);

INS( result, 1, outl);

INS( result, 2, out2);

INS( result, 3, out3);

INS( result, 4, outd);

return (result);
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Errata Sheet

Table D-1 lists the revision history for this document.

Table D-1 Document Revision History

Date Revision

September 29, 1997 Preliminary version, EC-R2WOA-TE
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Support, Products, and Documentation

If you need technical support, a Digital Semiconductor Product Catalog, or help
deciding which documentation best meets your needs, visit the Digital
Semiconductor World Wide Web Internet site:

http://www.digital.com/semiconductor

You can also call the Digital Semiconductor Information Line or the Digital
Semiconductor Customer Technology Center. Please use the following information
lines for support.

For documentation and general information:

Digital Semiconductor Information Line
United States and Canada: 1-800-332-2717
Outside North America: 1-510-490-4753

Electronic mail address: semiconductor@digital.com

For technical support:

Digital Semiconductor Customer Technology Center
Phone (U.S. and international): 1-978-568-7474
Fax: 1-978-568-6698

Electronic mail address: ctc@hlo.mts.dec.com
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Digital Semiconductor Products

To order the Digital Semiconductor Alpha 21164PC microprocessor, contact your
local distributor. The following table lists some of the semiconductor products avail-
able from Digital Semiconductor.

Note: The following products and order numbers might have been revised. For
the latest versions, contact your local distributor.

Chips Order Number
Digital Semiconductor Alpha21164PC 400-MHz microprocessor 211PC-01
Digital Semiconductor Alpha 21164PC 466-MHz microprocessor 211PC-02
Digital Semiconductor Alpha 21164PC 533-MHz microprocessor 211PC-03

For information about other Alpha microprocessors, visit the Digital Semiconductor
World Wide Web Internet site:

http://www.alpha.digital.com
Digital Semiconductor Documentation

The following table lists some of the available Digital Semiconductor documenta-

tion.

Title Order Number
Alpha AXP Architecture Reference Mantal EY-T132E-DP
Alpha Architecture Handbodk EC-QD2KB-TE

Digital Semiconductor Alpha 21164PC Microprocessor Data Sheet EC-R2W1A-TE
Digital Semiconductor Alpha 21164PC Microprocessor Product Brief EC-R2W2A-TE

Digital Semiconductor 21172 Core Logic Chipset Product Brief EC-QUQHA-TE
Digital Semiconductor 21172 Core Logic Chipset Technical RefereB¢2-QUQJA-TE
Manual

Answers to Common Questions about PALcode for Alpha AXP  EC-N0647-72
Systems

PALcode for Alpha Microprocessors System Design Guide EC-QFGLC-TE

Alpha Microprocessors Motherboard Windows NT 3.51 and 4.0 EC-QLUAG-TE
Installation Guide
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Title Order Number

SPICE Modelsfor AlphaMicroprocessors and Peripheral Chips: An EC-QA4XE-TE
Application Note

Alpha Microprocessors SROM Mini-Debugger User’s Guide EC-QHUXC-TE
Alpha Microprocessors Motherboard Debug Monitor User’s Guide EC-QHUVE-TE
Alpha Microprocessors Motherboard Software Design Tools EC-QHUWC-TE
User’s Guide

1 To purchase the Alpha AXP Architecture Reference Manual, contact your local distributor or call
Butterworth-Heinemann (Digital Press) at 1-800-366-2665.
2 This handbook providesinformation subsequent to the Alpha AXP Architecture Reference Manual.

Third—Party Documentation

You can order the following third-party documentation directly from the vendor.

Title Vendor
PCI Local Bus Specification, Revision 2.1 PCI Special Interest Group
PCI System Design Guide U.S. 1-800-433-5177
International 1-503-797-4207
Fax 1-503-234-6762
IEEE Standard 754, Standard for Binary Floating-PoinfThe Institute of Electrical and
Arithmetic Electronics Engineers, Inc.
IEEE Standard 1149.1, A Test Access Port and Boundahys. 1-800-701-4333
Scan Architecture International 1-908-981-0060
Fax 1-908-981-9667
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Glossary

The glossary defines terms and spells out acronyms associated with the Alpha
21164PC microprocessor and chipsin general.

abort

The unit stops the operation it is performing, without saving status, to perform some
other operation.

ABT
Advanced bipolar/CMOS technol ogy.
address space number (ASN)

An optionally implemented register used to reduce the need for invalidation of
cached address trand ations for process-specific addresses when a context switch
occurs. ASNs are processor specific; the hardware makes no attempt to maintain
coherency across multiple processors.

address translation
The process of mapping addresses from one address space to another.
ALIGNED

A datum of size 2N is stored in memory at abyte addressthat isamultiple of 2V (that
is, one that has N low-order zeros).

ALU
Arithmetic logic unit.
ANSI

American National Standards Institute. An organization that devel ops and publishes
standards for the computer industry.

ASIC

Application-specific integrated circuit.
ASN

See address space number.
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assert

To cause asignal to changeto itslogical true state.
AST

See asynchronous system trap.

asynchronous system trap (AST)

A software-simulated interrupt to a user-defined routine. ASTs enable a user process
to be notified asynchronously, with respect to that process, of the occurrence of a
specific event. If a user process has defined an AST routine for an event, the system
interrupts the process and executes the AST routine when that event occurs. When
the AST routine exits, the system resumes execution of the process at the point
where it was interrupted.

backmap
A memory unit that is used to note addresses of valid entries within a cache.
bandwidth

Bandwidth is often used to express “high rate of data transfer” in a bus or an I/O
channel. This usage assumes that a wide bandwidth may contain a high frequency,
which can accommodate a high rate of data transfer.

barrier transaction

A transaction on the external interface as a result of an MB (memory barrier) instruc-
tion.

Bcache

See external cache.

BCT

Bipolar/CMOS technology.
BiCMOS

Bipolar/CMOS. The combination of bipolar and MOSFET transistors in a common
integrated circuit.

bidirectional

Flowing in two directions. The buses are bidirectional; they carry both input and out-
put signals.
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BiSr

Built-in self-repair.

BiSt

Built-in self-test.

bit

Binary digit. The smallest unit of datain abinary notation system, designated as O or
1

BIU
Bus interface unit. See CBU.
block exchange

Memory feature that improves bus bandwidth by paralleling a cache victim write-
back with a cache missfill.

board-level cache

See external cache.

boot

Short for bootstrap. L oading an operating system into memory is called booting.
BSR

Boundary-scan register.

buffer

An internal memory area used for temporary storage of data records during input or
output operations.

bugcheck

A software condition, usually the response to software’s detection of an “internal
inconsistency,” which results in the execution of the system bugcheck code.

bus

A group of signals that consists of many transmission lines or wires. It interconnects
computer system components to provide communications paths for addresses, data,
and control information.
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byte

Eight contiguous bits starting on an addressable byte boundary. The bits are num-
bered right to left, O through 7.

byte granularity

Memory systems are said to have byte granularity if adjacent bytes can be written
concurrently and independently by different processes or processors.

cache
See cache memory.
cache block

The smallest unit of storage that can be alocated or manipulated in a cache. Also
known as acacheline.

cache coherence

Maintaining cache coherence requires that when a processor accesses data cached in
another processor, it must not receive incorrect data and when cached datais modi-
fied, all other processors that access that data receive modified data. Schemes for
maintaining consistency can be implemented in hardware or software. Also called
cache consistency.

cache fill

An operation that |oads an entire cache block by using multiple read cycles from
main memory.

cache flush
An operation that marks all cache blocks asinvalid.
cache hit

The status returned when alogic unit probes a cache memory and finds avalid cache
entry at the probed address.

cache interference

Theresult of an operation that adversely affects the mechanisms and procedures used
to keep frequently used items in a cache. Such interference may cause frequently
used items to be removed from a cache or incur significant overhead operations to
ensure correct results. Either action hampers performance.
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cache line
See cache block.

cache line buffer

A buffer used to store a block of cache memory.

cache memory

A small, high-speed memory placed between slower main memory and the proces-
sor. A cache increases effective memory transfer rates and processor speed. It con-
tains copies of data recently used by the processor and fetches severa bytes of data
from memory in anticipation that the processor will access the next sequential series
of bytes. The Alpha 21164PC microprocessor contains two onchip internal caches.
See also write-through cache and write-back cache.

cache miss

The status returned when cache memory is probed with no valid cache entry at the
probed address.

CALL_PAL Instructions
Special instructions used to invoke PAL code.
CBU

Cache control and bus interface unit. The logic unit within the 21164PC micropro-
cessor that provides an interface to the external data bus and board-level Bcache.

central processing unit (CPU)

The unit of the computer that is responsible for interpreting and executing instruc-
tions.

CISC

Complex instruction set computing. An instruction set consisting of alarge number
of complex instructions that are managed by microcode. Contrast with RISC.

clean

In the cache of a system bus node, refersto a cache line that is valid but has not been
written.

clock

A signal used to synchronize the circuits in a computer.
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CMOS

Complementary metal-oxide semiconductor. A silicon device formed by a process
that combines PMOS and NMOS semiconductor material.

conditional branch instructions

Instructions that test a register for positive/negative or for zero/nonzero. They can
also test integer registers for even/odd.

control and status register (CSR)

A device or controller register that resides in the processor’s /0O space. The CSR ini-
tiates device activity and records its status.

CPLD

Complex programmable logic device.
CPU

See central processing unit.

CSR

See control and status register.

cycle

One clock interval.

data bus

The bus used to carry data between the 21164PC and external devices. Also called
the pin bus.

Dcache

Data cache. A cache reserved for storage of data. The Dcache does not contain
instructions.

DIP
Dual inline package.
direct-mapping cache

A cache organization in which only one address comparison is needed to locate any
data in the cache, because any block of main memory data can be placed in only one
possible position in the cache.
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direct memory access (DMA)
Access to memory by an 1/0O device that does not reguire processor intervention.
dirty

One status item for a cache block. The cache block is valid and has been written so
that it may differ from the copy in system main memory.

dirty victim

Used in reference to a cache block in the cache of a system bus node. The cache
block isvalid but is about to be replaced due to a cache block resource conflict. The
data must therefore be written to memory.

DRAM

Dynamic random-access memory. Read/write memory that must be refreshed (read
from or written to) periodically to maintain the storage of information.

DTL
Diode-transistor logic.
dual issue

Two instructions are issued, in parallel, during the same microprocessor cycle. The
instructions use different resources and so do not conflict.

ECC

Error correction code. Code and algorithms used by logic to facilitate error detection
and correction. See also ECC error.

ECC error

An error detected by ECC logic, to indicate that data (or the protected “entity” has
been corrupted. The error may be correctable (soft error) or uncorrectable (hard
error).

ECL
Emitter-coupled logic.
EEPROM

Electrically erasable programmable read-only memory. A memory device that can
be byte-erased, written to, and read fr@ontrast with FEPROM.
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EPLD
Erasable programmable logic device.
external cache

A cache memory provided outside of the microprocessor chip, usually located on the
same module. Also called board-level or module-level cache.

FEPROM

Flash-erasabl e programmabl e read-only memory. FEPROM S can be bank- or bulk-
erased. Contrast with EEPROM.

FET

Field-effect transistor.

firmware

Machine instructions stored in hardware.
floating point

A number system in which the position of the radix point isindicated by the expo-
nent part and another part represents the significant digits or fractional part.

flush

See cache flush.

FPGA

Field-programmable gate array.
FPLA

Field-programmable logic array.
FPU

Foating-point execution unit. The logic unit within the 21164PC microprocessor
that performs floating-point cal culations.
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granularity

A characteristic of storage systems that defines the amount of data that can be read
and/or written with a single instruction, or read and/or written independently. VAX
systems have byte or multibyte granularities, whereas disk systems typicaly have
512-byte or greater granularities. For a given storage device, a higher granularity
generally yields a greater throughput.

hardware interrupt request (HIR)

Aninterrupt generated by a peripheral device.

high-impedance state

An electrical state of high resistance to current flow, which makes the device appear
not physically connected to the circuit.

hit
See cache hit.
Icache

Instruction cache. A cache reserved for storage of instructions. One of the two areas
of primary cache (located on the 21164PC) used to store instructions. The Icache
contains 16K B of memory space. It isadirect-mapped cache. |cache blocks, or lines,
contain 64 bytes of instruction stream data with associated tag as well as a 6-bit
ASM field and an 8-bit branch history field per block. Icache does not contain hard-
ware for maintaining cache coherency with memory and is unaffected by the invali-
date bus.

IDU

Instruction fetch/decode unit. The logic unit within the 21164PC microprocessor that
fetches, decodes, and issuesinstructions. It aso controls the microprocessor pipeline.

IEEE Standard 754

A set of formats and operations that apply to floating-point numbers. The formats
cover 32-, 64-, and 80-bit operand sizes.

IEEE Standard 1149.1

A standard for the Test Access Port and Boundary Scan Architecture used in board-
level manufacturing test procedures. Commonly referred to as the Joint Test Action
Group (JTAG) standard.
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IEU

Integer execution unit. The logic unit within the 21164PC microprocessor that con-
tains the 64-bit integer execution data path.

INTnn

Theterm INTnn, wherennisoneof 2, 4, 8, 16, 32, or 64, refersto adatafield size of
nn contiguous NATURALLY ALIGNED bytes. For example, INT4 refersto a NAT-
URALLY ALIGNED longword.

internal processor register (IPR)

One of many registers internal to the Alpha 21164PC microprocessor.
IPGA

Interdtitial pin grid array.

JFET

Junction field-effect transistor.

latency

The amount of time it takes the system to respond to an event.
LCC

Leadless chip carrier.

LFSR

Linear feedback shift register.

load/store architecture

A characteristic of a machine architecture where dataitems are first loaded into a
processor register, operated on, and then stored back to memory. No operations on
memory other than load and store are provided by the instruction set.

longword

Four contiguous bytes starting on an arbitrary byte boundary. The bits are numbered
from right to left, O through 31.

LSB
Least significant bit.
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LSI

Large-scale integration.
machine check

An operating system action triggered by certain system hardware-detected errorsthat
can be fatal to system operation. Once triggered, machine check handler software
analyzes the error.

MAF
Miss addressfile.
main memory

The large memory, external to the microprocessor, used for holding most instruction
code and data. Usually built from cost-effective DRAM memory chips. May be used

in connection with the microprocessor’s internal caches and an optional external
cache.

masked write

A write cycle that only updates a subset of a nominal data block.
MBO

See must be one.

MBZ

See must be zero.

MESI protocol

A cache consistency protocol with full support for multiprocessing. The MESI proto-
col consists of four states that define whether a block is modified (M), exclusive (E),
shared (S), or invalid (1).

MIPS

Millions of instructions per second.
miss

See cache miss.
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module

A board on which logic devices (such as transistors, resistors, and memory chips) are
mounted and connected to perform a specific system function.

module-level cache

See external cache.

MOS

M etal -oxide semiconductor.

MOSFET

M etal -oxide semiconductor field-effect transistor.
MSI

Medium-scal e integration.

MTU

Memory address translation unit. The logic unit within the 21164PC microprocessor
that performs address translation, interfaces to the Dcache, and performs several
other functions.

multiprocessing

A processing method that replicates the sequential computer and interconnects the
collection so that each processor can execute the same or a different program at the
sametime.

Must be one (MBO)
A field that must be supplied as one.
Must be zero (MBZ)

A field that is reserved and must be supplied as zero. If examined, it must be
assumed to be UNDEFINED.

NATURALLY ALIGNED
See ALIGNED.
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NATURALLY ALIGNED data

Data stored in memory such that the address of the datais evenly divisible by the
size of the datain bytes. For example, an ALIGNED longword is stored such that the
address of the longword is evenly divisible by 4.

NMOS

N-type metal-oxide semiconductor.
NVRAM

Nonvolatile random-access memory.

OBL

Observability linear feedback shift register.
octaword

Sixteen contiguous bytes starting on an arbitrary byte boundary. The bits are num-
bered from right to left, O through 127.

OpenVMS Alpha operating system

The open version of the DIGITAL VMS operating system, which runs on Alpha
platforms.

operand

The data or register upon which an operation is performed.

PAL

Privileged architecture library (software). See also PALcode.
Programmable array logic (hardware). See programmable array logic.
PALcode

Alphaprivileged architecture library code, written to support Alpha microproces-
sors. PALcode implements architecturally defined behavior.

PALmode

A special environment for running PAL code routines.

parameter

A variable that is given aspecific value that is passed to a program before execution.
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parity

A method for checking the accuracy of data by calculating the sum of the number of
onesin apiece of binary data. Even parity requires the correct sum to be an even
number. Odd parity requires the correct sum to be an odd number.

PGA
Pin grid array.
pipeline

A CPU design technique whereby multiple instructions are simultaneously over-
lapped in execution.

PLA

Programmable logic array.

PLCC

Plastic leadless chip carrier or plastic-leaded chip carrier.
PLD

Programmable logic device.

PLL

Phase-locked loop.

PMOS

P-type metal -oxide semiconductor.
PQFP

Plastic quad flat pack.

primary cache

The cache that is the fastest and closest to the processor. The first-level caches,
located on the CPU chip, composed of the Dcache and I cache.

program counter

That portion of the CPU that contains the virtual address of the next instruction to be
executed. Most current CPUs implement the program counter (PC) as aregister. This
register may be visible to the programmer through the instruction set.
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programmable array logic (PAL)

A devicethat can be programmed by a process that blowsindividual fusesto create a
circuit.

PROM

Programmabl e read-only memory.

pull-down resistor

A resistor placed between asignal line and a negative voltage.
pull-up resistor

A resistor placed between asignal line to a positive voltage.
quad issue

Four instructions are issued, in parallel, during the same microprocessor cycle. The
instructions use different resources and so do not conflict.

quadword

Eight contiguous bytes starting on an arbitrary byte boundary. The bits are numbered
from right to left, O through 63.

RAM

Random-access memory.

READ BLOCK

A transaction where the 21164PC requests that an external logic unit fetch read data.
read data wrapping

System feature that reduces apparent memory latency by allowing read data cyclesto
differ the usual low-to- high sequence. Requires cooperation between the 21164PC
and external hardware.

read stream buffers

Arrangement whereby each memory module independently prefetches DRAM data
prior to an actual read request for that data. Reduces average memory latency while
improving total memory bandwidth.

register

A temporary storage or control location in hardware logic.
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reliability

The probability adevice or system will not fail to perform its intended functions dur-
ing a specified time interval when operated under stated conditions.

reset

An action that causes alogic unit to interrupt the task it is performing and go to its
initialized state.

RISC

Reduced instruction set computing. A computer with an instruction set that is paired
down and reduced in complexity so that most instructions can be performed in asin-
gle processor cycle. High-level compilers synthesize the more complex, least fre-
quently used instructions by breaking them down into simpler instructions. This
approach allows the RISC architecture to implement a small, hardware-assisted
instruction set, thus eliminating the need for microcode.

ROM

Read-only memory.
RTL

Register-transfer logic.
SAM

Serial access memory.
SBO

Should be one.

SBz

Should be zero.
scheduling

The process of ordering instruction execution to obtain optimum performance.
set-associative

A form of cache organization in which the location of a data block in main memory
constrains, but does not completely determine, itslocation in the cache. Set-associa
tive organization is a compromise between direct-mapped organization, in which

datafrom a given address in main memory has only one possible cache location, and
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fully associative organization, in which data from anywhere in main memory can be
put anywhere in the cache. An-ivay set-associative” cache allows data from a
given address in main memory to be cached in amjatations.

SIMM

Single inline memory module.
SIP

Single inline package.

SIPP

Single inline pin package.

SMD

Surface mount device.

SRAM

Static random-access memoaory.
SROM

Serial read-only memory.

SSI

Small-scale integration.
SSRAM

Synchronous static random-access memory.
stack

An area of memory set aside for temporary data storage or for procedure and inter-
rupt service linkages. A stack uses the last-in/first-out concept. As items are added to
(pushed on) the stack, the stack pointer decrements. As items are retrieved from
(popped off) the stack, the stack pointer increments.

STRAM

Self-timed random-access memory.
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superpipelined

Describes a pipelined machine that has alarger number of pipe stages and more
complex scheduling and control. See also pipeline.

superscalar

Describes a machine architecture that allows multiple independent instructions to be
issued in parallel during a given clock cycle.

tag

The part of a cache block that holds the address information used to determineif a
memory operation isahit or amiss on that cache block.

TB

Translation buffer.

tristate

Refersto abused line that has three states: high, low, and high-impedance.
TTL

Transistor-transistor logic.

UART

Universal asynchronous receiver-transmitter.

UNALIGNED

A datum of size 2\ stored at a byte address that is not amultiple of 2.
unconditional branch instructions

Instructions that write a return address into a register.

UNDEFINED

An operation that may halt the processor or cause it to lose information. Only privi-
leged software (that is, software running in kernel mode) can trigger an UNDE-
FINED operation.

UNPREDICTABLE

Results or occurrences that do not disrupt the basic operation of the processor; the
processor continues to execute instructions in its normal manner. Privileged or
unprivileged software can trigger UNPREDICTABLE results or occurrences.
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UVPROM
Ultraviolet (erasable) programmable read-only memory.

valid

Allocated. Valid cache blocks have been loaded with data and may return cache hits
when accessed.

victim
Used in reference to a cache block in the cache of a system bus node. The cache
block isvalid but is about to be replaced due to a cache block resource conflict.

virtual cache

A cache that is addressed with virtual addresses. The tag of the cache isavirtual
address. This process allows direct addressing of the cache without having to go
through the trandation buffer making cache hit times faster.

VHSIC

Very-high-speed integrated circuit.
VLSI

Very-large-scale integration.
VRAM

Video random-access memory.
word

Two contiguous bytes (16 bits) starting on an arbitrary byte boundary. The bits are
numbered from right to left, O through 15.

write-back

A cache management technique in which write operation datais written into cache
but is not written into main memory in the same operation. This may result in tempo-
rary differences between cache data and main memory data. Some logic unit must
maintain coherency between cache and main memory.

write-back cache

Copies are kept of any datain the region; read and write operations may use the cop-
ies, and write operations use additiona state to determine whether there are other
copiesto invalidate or update.
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WRITE BLOCK

A transaction in which the 21164PC requests that an external logic unit process write
data.

write data wrapping

System feature that reduces apparent memory latency by allowing write data cycles
to differ the usual low-to-high sequence. Requires cooperation between the 21164PC
and external hardware.

write-through

A cache management technique in which awrite operation to cache also causes the
same data to be written in main memory during the same operation.

write-through cache

Copies are kept of any data in the region; read operations may use the copies, but
write operations update the actual datalocation and either update or invalidate all
copies.
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Abbreviations, Xix

register access, Xix
Aborts, 2-17
Absolute Maximum Rating, 9-1
ac coupling, 9-8
addr_bus reg_h

description, 3-4

operation, 4-38, 4-45
addr_cmd_par_h

operation, 3-4, 4-45, 9-16
addr_h<39:4>

description, 3-4

operation, 3-4, 4-11, 4-12, 4-13, 4-45,

4-48, 7-4, 9-13

addr_res h<1:0>

description, 3-4

operation, 4-41, 7-4, 9-16
Address conventions, Xxx

Addressregions
physical, 4-10

Addresstranglation, 2-10
Addressing, 1-2

Aligned convention, xx
Alpha documentation, E-2
ALT_MODE register, 5-49
Architecture, 1-1to 1-4
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Associated documentation, E-2
AST, 2-8

ASTER register, 5-20
ASTRR register, 5-20

B

Bcache, 2-13

errors, 4-57
hit under READ MISS example, 4-57
interface, 4-4

introduction, 4-2to 4-6
selecting options, 4-27
structure, 4-12
victim buffers, 4-13

BCACHE VICTIM command, 4-29
BIU, 4-2, 4-12, 4-38, 4-51
Block diagram, 21164, 2-2
Boundaries

datawrap order, 4-11
Boundary-scan register, 12-6
Branch prediction, 2-4, 2-19
Bubble cycle, 2-31
Bubble squashing, 2-19

Bus contention

command/address bus, 4-45 to 4-50
databus, 4-45to 4-50
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C

Cache coherency, 4-13t04-16
flush protocol, 4-14
Cache organization, 2-12
cack_h
description, 3-4
operation, 4-28, 4-29, 4-31, 4-51, 4-52,
4-54, 4-57, 5-11, 5-17
CBOX_ADDR register, 5-62
CBOX_CONFIG register, 5-59
CBOX_CONFIG2 register, 5-65
CBOX_STATUSTregister, 5-63

CBU, 2-3, 2-12

IPR PALcode restrictions, 5-68

IPRs, 5-581t05-68

read requests, 2-30

write buffer data store, 2-34
CCregister, 5-50
CC _CTL register, 5-51
cfail_h

operation, 5-11, 5-17, 9-15
clk_mode _h<1:0>

description, 3-5

operation, 4-7, 7-3, 9-15, 9-20
Clocks, 4-6t04-10

CPU, 4-7

system, 4-8
cmd_h<3:0>

description, 3-6

operation, 3-4, 4-28, 4-38, 4-40, 4-48,

4-51, 7-4, 9-13, 9-16

Coherency, caches, 4-13

Command/address
driving bus, 4-45
errors, 4-57
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Commands
21164PC initiated, 4-28
BCACHE VICTIM, 4-29
INVALIDATE, 4-40
NOP, 4-28, 4-40
READ MISS0, 4-29
READ MISS1, 4-29
WRITE BLOCK, 4-29

Commands, sending to 21164PC, 4-38

Conventions, Xix, Xix to xxiii
abbreviations, Xix
address, xx
aligned, xx
data units, xxi
numbering, Xxi
signal names, Xxxii
unaligned, xx

CPU

clocks, 4-7
microarchitecture, 2-2

cpu_clk_out_h
description, 3-7
operation, 4-6, 9-5

D

dack_h
description, 3-7
operation, 3-8, 4-28, 4-29, 4-32, 4-50,
4-51, 4-52, 4-53, 4-54, 4-57, 4-58,
8-5
Dataintegrity, 4-57
Bcache tag data parity, 4-58
parity, 4-57
Datatypes, 1-1
floating-point, 1-3, 2-9
integer, 1-3
Data units convention, xxXi

Datawrap order, 4-11

data_adsc |
description, 3-7
operation, 7-3

data adv_|
description, 3-7
operation, 7-3
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data bus reg_h
description, 3-7
operation, 4-46, 4-47, 4-48, 4-50, 9-13
data h<127:0>
description, 3-7
operation, 4-32, 4-45, 4-46, 4-48, 7-3,
9-10, 9-13
data ram_oe |
description, 3-7
operation, 4-50, 9-17
data ram_we 1<3:0>
description, 3-8
operation, 9-17

DC_FLUSH register, 5-49
DC_MODE register, 5-44
dc ok _h

description, 3-8
operation, 4-7, 9-5, 9-6, 9-15, 12-2, 12-3

DC_PERR_STAT register, 5-39
DC TEST_CTL register, 5-52
DC_TEST_TAG register, 5-54
DC TEST TAG_TEMPregister, 5-56
Dcache, 2-13
control, 2-11
Decoupling, 9-22
Delayed system clock, 4-9
Design examples, 2-42

Digital Semiconductor Customer Technology
Center, E-1

Digital Semiconductor documentation, E-2
Digital Semiconductor information line, E-1
Digital Semiconductor WWW site, E-1
Documentation, E-2, E-3

DTB, 2-10

DTB_ASN register, 5-31

DTB_CM register, 5-31

DTB_IA register, 5-40

DTB_IAPregister, 5-40
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DTB_ISregister, 541
DTB_PTE register, 5-32
DTB_PTE_TEMP register, 5-34
DTB_TAG register, 5-32

E

Entry-pointer queues, 2-34
EXC_ADDR register, 5-12
EXC_MASK register, 5-14
EXC_SUM register, 5-12
Exceptions, 2-17

External interface

introduction, 4-2to 4-6
rulesfor use, 4-51

F
Features, 1-4to 1-5
Fill, 2-31

FILL after other transactions, 4-50
FILL error, 4-58
FILL transaction, 4-32

fill_dirty_h
description, 3-8
fill_error_h

description, 3-8

operation, 4-32, 4-58, 8-5, 8-7, 9-15
fill_h

description, 3-8

operation, 3-8, 4-28, 4-32, 4-46, 4-50,

4-51, 4-58, 8-5, 9-15

fill_id_h

description, 3-8

operation, 3-8, 4-32, 4-58, 8-5, 9-15

Floating data types, 2-9
Flush protocol, 4-14
FPU, 2-3, 2-9
Free-entry queue, 2-34
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H

Hardware, 2-8
Heat sink, 10-3
Hint bits, 2-10
HWINT_CLR register, 5-22

IC_FLUSH_CTL register, 5-11
Icache, 2-13
ICM register, 5-15
ICPERR_STAT register, 5-11
ICSR register, 5-16
idle bc h
description, 3-8
operation, 3-7, 4-32, 4-46, 4-47, 4-48,
4-50, 4-51, 4-52, 4-53, 4-54, 4-55,
9-15
IDU, 2-2, 2-3
branch prediction, 2-4
instruction
decode, 2-4
issue, 2-4
instruction translation buffer, 2-7
interrupts, 2-8
IPRs, 5-5t05-30
encoding, 5-1
dotting, 2-21
| EEE floating-point conformance, A-15
IEU, 2-3, 2-9
registers, 2-9, 5-68
IFAULT VA_FORM register, 5-9
index_h<21:4>
description, 3-8
operation, 4-13, 4-46, 4-56, 7-3, 9-10
Initialization
role of interrupt signals, 4-59
Input clock
ac coupling, 9-8
impedance levels, 9-6
termination, 9-6
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Input clocks, 9-5

Instruction

decode, 2-4

issue, 2-4

prefetch, 2-4
Instruction issue, 1-4, 2-17
Instruction trandation buffer, 2-7

Instructions
classes, 2-19
issuerules, 2-27
latencies, 2-23
dotting, 2-19, 2-21
WMB, 2-12, 2-34
int4_valid_h<3:0>
description, 3-9
operation, 4-12, 7-4, 9-16
Interface restrictions, 4-50

Interface transactions
21164PC initiated, 4-27 to 4-38
systeminitiated, 4-38to 4-45
Interrupt signals, 4-58

Interrupts, 4-58 to 4-60
ASTs, 2-8
disabling, 2-8
hardware, 2-8
initialization, 4-59
normal operation, 4-59
priority level, 4-59
software, 2-8

INTID register, 5-19
INVALIDATE command, 4-40
IPLR register, 5-18
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IPRs SIRR, 5-21

accessibility, 5-1 SL_RCV, 5-26
ALT_MODE, 5-49 SL_XMIT, 5-25
ASTER, 5-20 VA, 5-36

ASTRR, 5-20 VA_FORM, 5-37
CBOX_ADDR, 5-62 IRF, 2-9
CBOX_CONFIG, 5-59 irq h<3:0>
CBOX_CONFIG2, 5-65 Irq_h<s.0>
CBOX_STATUS, 5-63 description, 3-11
CC, 550 operation, 2-8, 4-8, 4-60, 5-23, 7-4, 9-15
CC_CTL, 551 ISR register, 5-23
DC_FLUSH, 5-49

DC:MODE, 5-44 ISSLIeI’uleS, 2-27
DC_PERR_STAT, 5-39 Issuing rules, 2-19 to 2-28
DC_TEST _CTL, 5-52 B, 2.7
DC_TEST_TAG, 5-54 14
DC_TEST_TAG_TEMP, 5-56 ITB_ASN register, 57
DTB_ASN, 5-31 1B IA rei g
DTB_CM, 5-31 _|A register, -
B%_:ﬁi: 5-54(310 ITB_IAP register, 5-7
Bg_gg,%&zp - ITB_PTE register, 55
EXC_ADDR, 2-18, 5-12 ITB_TAG register, 5-5
EXC_MASK, 5-14 .

EXC SUM, 5-12 IVPTBR register, 5-10
HWINT CLR, 5-22

IC_FLUSH_CTL, 511 L

ICM, 5-15

ICPERR_STAT, 5-11 Latencies. 2-2

ICSR, 2-8, 5-16 atenc'.as’ g
IFAULT_VA_FORM, 5-9 Load miss, 2-29

INTID, 5-19 L oad-after-store trap. 2-2
IPLR. 2.8, 518 oat.:i after-store trap, 9
ISR, 5-23 Logic symbol, 3-2
ITB_ASN, 57

ITB_IA, 5-8 M

ITB_IAP, 57

oo MAF, 2-11, 2-29t0 2-32, 4-12
ITB_PTE_TEMP, 57 entries, 2-31
ITB_TAG, 55 entry, 2-32

IVPTBR, 5-10 rules, 2-29
MAF_MODE, 5-46 MAF_MODE register, 5-46
VSR T2 mch_hit_irq_h
MVPTBR, '5.38 operation, 2-8, 4-9, 4-60, 9-15
PAL_BASE, 515 MCSR register, 5-42
PMCTR, 5-27
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Memory regions

physical, 4-11
Merge

write buffer, 4-12
Merging

rules, 2-29
Microarchitecture, 2-2to 2-13

MM_STAT register, 5-35

MTU, 2-3, 2-10

address trandation, 2-10

data trandlation buffer, 2-10

IPRs, 5-31to 5-57
encoding, 5-3

load instruction, 2-11

miss addressfile, 2-11

store execution, 2-32to0 2-33

storeinstructions, 2-11

write buffer, 2-12

write buffer addressfile, 2-34

Multiple instruction issue, 2-4
MVPTBR register, 5-38

N

Noncached read operations, 4-12
Noncached write operations, 4-12
Nonissue conditions, 2-19

NOP command, 4-28, 4-40
Numbering convention, xxi

O

Operating temperature, 10-1
Ordering documentation, E-2, E-3
Ordering products, E-2

osc _clk_in_h|l

operation, 3-5, 4-7,9-2, 9-4, 9-5, 9-7, 9-8,

9-20, 12-3

P

PAL restrictions, 5-69

Index—6

PAL_BASE register, 5-15
PALcode, 1-2
PALshadow registers, 5-68
PALtemp IPRs, 5-68
encoding, 5-2
Pending-request queue, 2-34
Performance counters, 2-36
Physical address considerations, 4-10
Physical addressregions, 4-10
Physical memory regions, 4-11
Pipeline organization, 2-13to 2-19
Pipelines, 2-9
bubbles, 2-19
examples, 2-15
floating add, 2-15
integer add, 2-15
load (Dcache hit), 2-16
load (Dcache miss), 2-16
store (Dcache hit), 2-17
instruction issue, 2-17
stages, 2-14, 2-17
stal, 2-17, 2-19

PMCTR register, 5-27
port_mode h<1:0>
operation, 7-4, 9-15, 12-1, 12-2
Power supply
considerations, 9-21
decoupling, 9-22
sequencing, 9-23
Private Bcache transactions
21164PC to Bcache, 4-16to 4-27

Producer-consumer dependencies, 2-23
Producer-producer dependencies, 2-23
Producer-producer latency, 2-26
PTE, 2-7, 2-10
pwr_fail_irg_h

operation, 2-8, 4-9, 4-60, 9-15
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Q

Queues
entry-pointer, 2-34

R

Race conditions
21164PC and system, 4-51
Race examples
idle bc handcack _h, 4-54
READ MISS transaction (no Bcache), 4-31
READ MISSwithidle _bc_h asserted example,
4-55
READ MISS with victim abort example, 4-56
READ MISSwith victim example, 4-53
READ MISSwith victim transaction, 4-33
READ MISS0 command, 4-29
READ MISS1 command, 4-29
Read/write spacing
data bus contention, 4-46
Register access abbreviations, xix
Registers
accessihility, 5-1
integer, 2-9
PALshadow, 2-9, 5-68
PALtemp, 5-68
Related documentation, E-2
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