
Digital Semiconductor
Alpha 21164PC Microprocessor

Hardware Reference Manual

Order Number: EC–R2W0A–TE
Digital Equipment Corporation
Maynard, Massachusetts

http://www.digital.com/semiconductor

Revision/Update Information: This is a preliminary document.

Preliminary

September 1997

While DIGITAL believes the information included in this publication is correct as of the date of publication, it is
subject to change without notice.

Digital Equipment Corporation makes no representations that the use of its products in the manner described in this
publication will not infringe on existing or future patent rights, nor do the descriptions contained in this publication
imply the granting of licenses to make, use, or sell equipment or software in accordance with the description.

©Digital Equipment Corporation 1997. All rights reserved.
Printed in U.S.A.

DIGITAL, Digital Semiconductor, OpenVMS, VAX, the AlphaGeneration design mark, and the DIGITAL logo are
trademarks of Digital Equipment Corporation.

Digital Semiconductor is a Digital Equipment Corporation business.

29 September 1997 – Subject to Change

GRAFOIL is a registered trademark of Union Carbide Corporation.
IEEE is a registered trademark of The Institute of Electrical and Electronics Engineers, Inc.
Windows NT is a trademark of Microsoft Corporation.

 All other trademarks and registered trademarks are the property of their respective owners.

 Contents
29 September 1997 – Subject to Change iii

Preface

1 Introduction

1.1 The Architecture . 1-1
1.1.1 Addressing. 1-2
1.1.2 Integer Data Types . 1-3
1.1.3 Floating-Point Data Types . 1-3
1.2 21164PC Microprocessor Features . 1-4

2 Internal Architecture

2.1 21164PC Microarchitecture . 2-2
2.1.1 Instruction Fetch/Decode Unit and Branch Unit. 2-3
2.1.1.1 Instruction Decode and Issue . 2-4
2.1.1.2 Instruction Prefetch. 2-4
2.1.1.3 Branch Execution . 2-5
2.1.1.4 Instruction Translation Buffer . 2-7
2.1.1.5 Interrupts . 2-8
2.1.2 Integer Execution Unit . 2-9
2.1.3 Floating-Point Execution Unit . 2-9
2.1.4 Memory Address Translation Unit . 2-10
2.1.4.1 Data Translation Buffer. 2-10
2.1.4.2 Load Instruction and the Miss Address File . 2-11
2.1.4.3 Dcache Control and Store Instructions. 2-11
2.1.4.4 Write Buffer. 2-12
2.1.5 Cache Control and Bus Interface Unit . 2-12
2.1.6 Cache Organization . 2-12
2.1.6.1 Data Cache. 2-13
2.1.6.2 Instruction Cache . 2-13
2.1.6.3 External Cache . 2-13
2.1.7 Serial Read-Only Memory Interface. 2-13

2.2 Pipeline Organization . 2-13
2.2.1 Pipeline Stages and Instruction Issue . 2-17
2.2.2 Aborts and Exceptions. 2-17
2.2.3 Nonissue Conditions . 2-19
2.3 Scheduling and Issuing Rules. 2-19
2.3.1 Instruction Class Definition and Instruction Slotting. 2-19
2.3.2 Coding Guidelines . 2-22
2.3.3 Instruction Latencies . 2-23
2.3.3.1 Producer–Producer Latency. 2-26
2.3.4 Issue Rules . 2-27
2.4 Replay Traps. 2-28
2.5 Miss Address File and Load-Merging Rules . 2-29
iv 29 September 1997 – Subject to Change

2.5.1 Merging Rules . 2-29
2.5.1.1 Cacheable Space Load-Merge Rules. 2-29
2.5.1.2 Noncacheable Space Load-Merge Rules. 2-30
2.5.2 Read Requests to the CBU . 2-30
2.5.3 MAF Entries and MAF Full Conditions. 2-31
2.5.4 Fill Operation . 2-31
2.6 MTU Store Instruction Execution . 2-32
2.7 Write Buffer and the WMB Instruction. 2-33
2.7.1 The Write Buffer. 2-34
2.7.2 The Write Memory Barrier (WMB) Instruction . 2-34
2.7.3 Entry-Pointer Queues . 2-34
2.7.4 Write Buffer Entry Processing . 2-35
2.7.5 Ordering of Noncacheable Space Write Instructions. 2-36
2.8 Performance Measurement Support–Performance Counters 2-36
2.8.1 CBU Performance Counters . 2-37
2.9 Floating-Point Control Register . 2-40
2.10 Design Examples . 2-42

3 Hardware Interface

3.1 21164PC Microprocessor Logic Symbol . 3-1
3.2 21164PC Signal Names and Functions . 3-3

4 Clocks, Cache, and External Interface

4.1 Introduction to the External Interface . 4-2
4.1.1 System Interface . 4-2
4.1.1.1 Commands and Addresses . 4-3
4.1.2 Bcache Interface . 4-4
4.1.2.1 Bcache Interface Enhancements . 4-4
4.1.2.2 Pipelined Bcache . 4-4
4.1.2.3 Write Interleaving . 4-5

4.2 Clocks . 4-6
4.2.1 CPU Clock . 4-7
4.2.2 System Clock. 4-8
4.2.3 Delayed System Clock. 4-9
4.3 Physical Address Considerations . 4-10
4.3.1 Physical Address Regions . 4-10
4.3.2 Data Wrapping. 4-11
4.3.3 Noncached Read Operations . 4-12
4.3.4 Noncached Write Operations. 4-12
4.4 Bcache Structure . 4-12
4.4.1 Bcache Victim Buffers . 4-13
4.5 Cache Coherency . 4-13
29 September 1997 – Subject to Change v

4.5.1 Flush Cache Coherency Protocol . 4-14
4.6 21164PC-to-Bcache Transactions . 4-16
4.6.1 Synchronous Burst-Mode Cache Support . 4-16
4.6.2 Bcache Timing . 4-18
4.6.3 Bcache Private Read Transaction . 4-20
4.6.4 Bcache st_clk Timing. 4-21
4.6.5 Bcache Private Write Transactions . 4-22
4.6.5.1 Bcache Private Write-Probe Operation . 4-22
4.6.5.2 Bcache Private Data-Write Operation . 4-23
4.6.5.3 Interleaving Write-Probes . 4-26
4.6.6 Selecting Bcache Options . 4-27
4.7 21164PC-Initiated System Transactions. 4-27
4.7.1 READ MISS Clean - No Victim . 4-30
4.7.2 FILL . 4-32
4.7.3 READ MISS with Victim. 4-33
4.7.4 WRITE BLOCK . 4-37
4.8 System-Initiated Transactions. 4-38
4.8.1 Sending Commands to the 21164PC . 4-38
4.8.2 Write Invalidate Protocol Commands. 4-40
4.8.2.1 21164PC Responses to Flush-Based Protocol Commands. 4-41
4.8.2.2 FLUSH . 4-41
4.8.2.3 INVALIDATE. 4-43
4.8.2.4 READ . 4-43
4.9 Data Bus and Command/Address Bus Contention. 4-45
4.9.1 Command/Address Bus. 4-45
4.9.2 Read/Write Spacing—Data Bus Contention . 4-46
4.9.3 Using idle_bc_h and fill_h . 4-46
4.9.4 Using data_bus_req_h. 4-47
4.9.5 Tristate Overlap . 4-48
4.9.5.1 Private READ or WRITE to FILL . 4-48
4.9.5.2 System READ to FILL (System WRITE) Spacing. 4-49
4.9.5.3 FILL to Private READ or WRITE Operation . 4-50
4.10 21164PC Interface Restrictions . 4-50
4.10.1 Fill Operations After Other Transactions . 4-50
4.10.2 Command Acknowledge for WRITE BLOCK Commands 4-51

4.11 21164PC/System Race Conditions. 4-51
4.11.1 Rules for 21164PC and System Use of External Interface 4-51
4.11.2 READ MISS with Victim Aborted by FILL Example . 4-53
4.11.3 idle_bc_h and cack_h Race Example . 4-54
4.11.4 READ MISS with idle_bc_h Asserted Example . 4-55
4.11.5 READ MISS with Victim Aborted by System Command Example. 4-56
4.11.6 Bcache Hit Under READ MISS Example. 4-57
4.12 Data Integrity and Bcache Errors . 4-57
4.12.1 Data Parity . 4-57
4.12.2 Bcache Tag Data Parity . 4-58
4.12.3 Fill Error . 4-58
4.13 Interrupts. 4-58
vi 29 September 1997 – Subject to Change

4.13.1 Interrupt Signals During Initialization . 4-59
4.13.2 Interrupt Signals During Normal Operation . 4-59
4.13.3 Interrupt Priority Level . 4-59

5 Internal Processor Registers

5.1 Instruction Fetch/Decode Unit and Branch Unit (IDU) IPRs 5-5
5.1.1 Istream Translation Buffer Tag (ITB_TAG) Register (101) 5-5
5.1.2 Instruction Translation Buffer Page Table Entry (ITB_PTE) Register (102) . 5-5
5.1.3 Instruction Translation Buffer Address Space Number (ITB_ASN)

Register (103) . 5-7
5.1.4 Instruction Translation Buffer Page Table Entry Temporary

(ITB_PTE_TEMP) Register (104) . 5-7
5.1.5 Instruction Translation Buffer Invalidate All Process (ITB_IAP)

Register (106) . 5-7
5.1.6 Instruction Translation Buffer Invalidate All (ITB_IA) Register (105) 5-8
5.1.7 Instruction Translation Buffer IS (ITB_IS) Register (107) 5-8
5.1.8 Formatted Faulting Virtual Address (IFAULT_VA_FORM) Register (112) . . 5-9
5.1.9 Virtual Page Table Base (IVPTBR) Register (113) . 5-10
5.1.10 Icache Parity Error Status (ICPERR_STAT) Register (11A) 5-11
5.1.11 Icache Flush Control (IC_FLUSH_CTL) Register (119). 5-11
5.1.12 Exception Address (EXC_ADDR) Register (10B) . 5-12
5.1.13 Exception Summary (EXC_SUM) Register (10C) . 5-12
5.1.14 Exception Mask (EXC_MASK) Register (10D) . 5-14
5.1.15 PAL Base Address (PAL_BASE) Register (10E). 5-15
5.1.16 IDU Current Mode (ICM) Register (10F) . 5-15
5.1.17 IDU Control and Status (ICSR) Register (118) . 5-16
5.1.18 Interrupt Priority Level (IPLR) Register (110). 5-18
5.1.19 Interrupt ID (INTID) Register (111) . 5-19
5.1.20 Asynchronous System Trap Request (ASTRR) Register (109) 5-20
5.1.21 Asynchronous System Trap Enable (ASTER) Register (10A). 5-20
5.1.22 Software Interrupt Request (SIRR) Register (108) . 5-21
5.1.23 Hardware Interrupt Clear (HWINT_CLR) Register (115) 5-22

5.1.24 Interrupt Summary (ISR) Register (100) . 5-23
5.1.25 Serial Line Transmit (SL_XMIT) Register (116). 5-25
5.1.26 Serial Line Receive (SL_RCV) Register (117). 5-26
5.1.27 Performance Counter (PMCTR) Register (11C) . 5-27
5.2 Memory Address Translation Unit (MTU) IPRs. 5-31
5.2.1 Dstream Translation Buffer Address Space Number (DTB_ASN)

Register (200) . 5-31
5.2.2 Dstream Translation Buffer Current Mode (DTB_CM) Register (201) 5-31
5.2.3 Dstream Translation Buffer Tag (DTB_TAG) Register (202) 5-32
5.2.4 Dstream Translation Buffer Page Table Entry (DTB_PTE) Register (203) . . 5-32
5.2.5 Dstream Translation Buffer Page Table Entry Temporary (DTB_PTE_TEMP)

Register (204) . 5-34
29 September 1997 – Subject to Change vii

5.2.6 Dstream Memory Management Fault Status (MM_STAT) Register (205). . . 5-35
5.2.7 Faulting Virtual Address (VA) Register (206). 5-36
5.2.8 Formatted Virtual Address (VA_FORM) Register (207). 5-37
5.2.9 MTU Virtual Page Table Base (MVPTBR) Register (208) 5-38
5.2.10 Dcache Parity Error Status (DC_PERR_STAT) Register (212). 5-39
5.2.11 Dstream Translation Buffer Invalidate All Process (DTB_IAP)

Register (209) . 5-40
5.2.12 Dstream Translation Buffer Invalidate All (DTB_IA) Register (20A) 5-40
5.2.13 Dstream Translation Buffer Invalidate Single (DTB_IS) Register (20B) 5-41
5.2.14 MTU Control (MCSR) Register (20F). 5-42
5.2.15 Dcache Mode (DC_MODE) Register (216) . 5-44
5.2.16 Miss Address File Mode (MAF_MODE) Register (217) 5-46
5.2.17 Dcache Flush (DC_FLUSH) Register (210). 5-49
5.2.18 Alternate Mode (ALT_MODE) Register (20C) . 5-49
5.2.19 Cycle Counter (CC) Register (20D) . 5-50
5.2.20 Cycle Counter Control (CC_CTL) Register (20E) . 5-51
5.2.21 Dcache Test Tag Control (DC_TEST_CTL) Register (213). 5-52
5.2.22 Dcache Test Tag (DC_TEST_TAG) Register (214). 5-54
5.2.23 Dcache Test Tag Temporary (DC_TEST_TAG_TEMP) Register (215) 5-56
5.3 External Interface Control (CBU) IPRs . 5-58
5.3.1 CBU Configuration (CBOX_CONFIG) Register (FF FFF0 0008). 5-59
5.3.2 CBU Address (CBOX_ADDR) Register (FF FFF0 0088). 5-62
5.3.3 CBU Status (CBOX_STATUS) Register (FF FFF0 0108) 5-63
5.3.4 CBU Configuration #2 (CBOX_CONFIG2) Register (FF FFF0 0188) 5-65
5.4 PALcode Storage Registers . 5-68
5.5 Restrictions . 5-68
5.5.1 CBU IPR PALcode Restrictions. 5-68
5.5.2 PALcode Restrictions—Instruction Definitions. 5-69

6 Privileged Architecture Library Code

6.1 PALcode Description . 6-1
6.2 PALmode Environment . 6-2

6.3 Invoking PALcode . 6-3
6.4 PALcode Entry Points . 6-5
6.4.1 CALL_PAL Entry . 6-5
6.4.2 PALcode Trap Entry Points . 6-6
6.5 Required PALcode Function Codes . 6-7
6.6 21164PC Implementation of the Architecturally Reserved Opcodes 6-7
6.6.1 HW_LD Instruction. 6-8
6.6.2 HW_ST Instruction. 6-10
6.6.3 HW_REI Instruction . 6-11
6.6.4 HW_MFPR and HW_MTPR Instructions . 6-12
viii 29 September 1997 – Subject to Change

7 Initialization and Configuration

7.1 Input Signals sys_reset_l and dc_ok_h and Booting . 7-1
7.1.1 Pin State with dc_ok_h Not Asserted . 7-5
7.2 sysclk Ratio and Delay . 7-6
7.3 Built-In Self-Test (BiSt) . 7-6
7.4 Serial Read-Only Memory Interface Port . 7-6
7.4.1 Serial Instruction Cache Load Operation. 7-7
7.5 Serial Terminal Port . 7-8
7.6 Cache Initialization . 7-8
7.6.1 Icache Initialization . 7-9
7.6.2 Flushing Dirty Blocks . 7-9
7.7 External Interface Initialization . 7-9
7.8 Internal Processor Register Reset State. 7-10
7.9 Timeout Reset. 7-12
7.10 IEEE 1149.1 Test Port Reset . 7-13

8 Error Detection and Error Handling

8.1 Error Flows . 8-1
8.1.1 Icache Data or Tag Parity Error . 8-1
8.1.2 Dcache Data Parity Error . 8-2
8.1.3 Dcache Tag Parity Error . 8-2
8.1.4 Istream Data Parity Errors (Bcache or Memory) . 8-3
8.1.5 Dstream Data Parity Errors (Bcache or Memory) . 8-3
8.1.6 Bcache Tag Parity Errors—Istream . 8-4
8.1.7 Bcache Tag Parity Errors—Dstream . 8-4
8.1.8 System Read Operations of the Bcache . 8-5
8.1.9 Fill Timeout (FILL_ERROR_H) . 8-5
8.1.10 System Machine Check . 8-5
8.1.11 IDU Timeout. 8-5
8.2 MCHK Flow. 8-6
8.3 MCK_INTERRUPT Flow. 8-7

9 Electrical Data

9.1 Electrical Characteristics. 9-1
9.2 DC Characteristics . 9-2
9.2.1 Power Supply. 9-2
9.2.2 Input Signal Pins . 9-2
9.2.3 Output Signal Pins . 9-3
9.3 Clocking Scheme . 9-5
9.3.1 Input Clocks . 9-5
9.3.2 Clock Termination and Impedance Levels. 9-6
9.3.3 AC Coupling. 9-8
9.4 AC Characteristics . 9-8
29 September 1997 – Subject to Change ix

9.4.1 Test Configuration . 9-8
9.4.2 Pin Timing . 9-10
9.4.2.1 Backup Cache Loop Timing . 9-10
9.4.2.2 sys_clk-Based Systems . 9-13
9.4.3 Timing—Additional Signals . 9-15
9.4.4 Timing of Test Features. 9-17
9.4.4.1 Icache BiSt Operation Timing. 9-17
9.4.4.2 Automatic SROM Load Timing . 9-19
9.4.5 Clock Test Modes . 9-20
9.4.5.1 Normal (1× Clock) Mode. 9-20
9.4.5.2 Clock Test Reset Mode . 9-20
9.4.6 IEEE 1149.1 (JTAG) Performance . 9-21
9.5 Power Supply Considerations. 9-21
9.5.1 Decoupling. 9-22
9.5.1.1 Vdd Decoupling . 9-22
9.5.1.2 Vddi Decoupling . 9-22
9.5.2 Power Supply Sequencing. 9-23

10 Thermal Management

10.1 Operating Temperature. 10-1
10.2 Heat-Sink Specifications . 10-3
10.3 Thermal Design Considerations . 10-4

11 Mechanical Packaging Information

11.1 Mechanical Specifications. 11-1
11.2 Signal Descriptions and Pin Assignment . 11-3
11.2.1 Signal Pin Lists . 11-3
11.2.2 Pin Assignment . 11-8

12 Testability and Diagnostics

12.1 Test Port Pins . 12-1
12.2 Test Interface . 12-2
12.2.1 IEEE 1149.1 Test Access Port . 12-2
12.2.2 Test Status Pin . 12-6
12.3 Boundary-Scan Register . 12-6

A Alpha Instruction Set

A.1 Alpha Instruction Summary. A-1
x 29 September 1997 – Subject to Change

A.1.1 Opcodes Reserved for DIGITAL . A-9
A.1.2 Opcodes Reserved for PALcode . A-10
A.2 IEEE Floating-Point Instructions . A-10
A.3 VAX Floating-Point Instructions . A-12
A.4 Opcode Summary . A-13
A.5 Required PALcode Function Codes . A-15
A.6 21164PC Microprocessor IEEE Floating-Point Conformance. A-15

B 21164PC Microprocessor Specifications

C Serial Icache Load Predecode Values

D Errata Sheet

E Support, Products, and Documentation

Glossary

Index

Figures

2–1 21164PC Microprocessor Block/Pipe Flow Diagram . 2-2
2–2 Instruction Pipeline Stages . 2-14
2–3 Floating-Point Control Register (FPCR) Format . 2-40
2–4 Typical Uniprocessor Configuration . 2-42
3–1 21164PC Microprocessor Logic Symbol . 3-2
4–1 21164PC System/Bcache Interface . 4-3
4–2 Merits of a Multiprobes In Flight – Pipelined Cache . 4-5
4–3 Tag/Data Store Interleaving . 4-6
4–4 Clock Signals and Functions. 4-8
4–5 21164PC Uniprocessor Clock. 4-9
29 September 1997 – Subject to Change xi

4–6 Flush-Based Protocol 21164PC States . 4-15
4–7 Flush-Based Protocol System/Bus States . 4-16
4–8 SSRAM/Bcache Interface . 4-17
4–9 Bcache Private Read Transaction . 4-21
4–10 Bcache Private Write Probe . 4-23
4–11 Bcache Private Data – Write Hit Clean . 4-24
4–12 Bcache Private Data – Write Hit Dirty . 4-25
4–13 Bcache Interleaving . 4-26
4–14 READ MISS Clean – Bcache Timing Diagram . 4-31
4–15 READ MISS with Victim Timing Diagram, Pipelined Mode. 4-35
4–16 READ MISS with Victim Timing Diagram, Flow-Through Mode 4-36
4–17 WRITE BLOCK Timing Diagram. 4-38
4–18 Algorithm for System Sending Commands to the 21164PC 4-39
4–19 FLUSH Timing Diagram (Bcache Hit) Flow-Through SSRAM 4-42
4–20 INVALIDATE Timing Diagram – Bcache Hit . 4-43
4–21 READ Timing Diagram (Bcache Hit) Flow-Through SSRAM 4-44
4–22 Driving the Command/Address Bus . 4-45
4–23 Using data_bus_req_h . 4-48
4–24 System READ to FILL Spacing. 4-49
4–25 FILL to Private READ or WRITE Operation . 4-50
4–26 READ MISS with Victim Aborted by FILL Example. 4-53
4–27 idle_bc_h and cack_h Race Examples . 4-54
4–28 READ MISS with idle_bc_h Asserted Example . 4-55
4–29 READ MISS with Victim Abort Example . 4-56
4–30 Bcache Hit Under READ MISS Example . 4-57
4–31 21164PC Interrupt Signals . 4-58
5–1 Istream Translation Buffer Tag (ITB_TAG) Register. 5-5
5–2 Instruction Translation Buffer Page Table Entry (ITB_PTE) Register Write Format 5-6
5–3 Instruction Translation Buffer Page Table Entry (ITB_PTE) Register Read Format 5-6
5–4 Instruction Translation Buffer Address Space Number (ITB_ASN) Register 5-7
5–5 Instruction Translation Buffer IS (ITB_IS) Register . 5-8
5–6 Formatted Faulting Virtual Address (IFAULT_VA_FORM) Register (NT_Mode=0) 5-9
5–7 Formatted Faulting Virtual Address (IFAULT_VA_FORM) Register (NT_Mode=1) 5-9
5–8 Virtual Page Table Base (IVPTBR) Register (NT_Mode=0) 5-10

5–9 Virtual Page Table Base (IVPTBR) Register (NT_Mode=1) 5-10
5–10 Icache Parity Error Status (ICPERR_STAT) Register. 5-11
5–11 Exception Address (EXC_ADDR) Register. 5-12
5–12 Exception Summary (EXC_SUM) Register. 5-13
5–13 Exception Mask (EXC_MASK) Register . 5-14
5–14 PAL Base Address (PAL_BASE) Register . 5-15
5–15 IDU Current Mode (ICM) Register. 5-15
5–16 IDU Control and Status (ICSR) Register. 5-16
5–17 Interrupt Priority Level (IPLR) Register . 5-18
5–18 Interrupt ID (INTID) Register . 5-19
5–19 Asynchronous System Trap Request (ASTRR) Register 5-20
5–20 Asynchronous System Trap Enable (ASTER) Register . 5-20
xii 29 September 1997 – Subject to Change

5–21 Software Interrupt Request (SIRR) Register. 5-21
5–22 Hardware Interrupt Clear (HWINT_CLR) Register . 5-22
5–23 Interrupt Summary (ISR) Register. 5-23
5–24 Serial Line Transmit (SL_XMIT) Register . 5-25
5–25 Serial Line Receive (SL_RCV) Register . 5-26
5–26 Performance Counter (PMCTR) Register . 5-27
5–27 Dstream Translation Buffer Address Space Number (DTB_ASN) Register 5-31
5–28 Dstream Translation Buffer Current Mode (DTB_CM) Register 5-31
5–29 Dstream Translation Buffer Tag (DTB_TAG) Register . 5-32
5–30 Dstream Translation Buffer Page Table Entry (DTB_PTE) Register—Write Format 5-33
5–31 Dstream Translation Buffer Page Table Entry Temporary (DTB_PTE_TEMP)

Register . 5-34
5–32 Dstream Memory Management Fault Status (MM_STAT) Register 5-35
5–33 Faulting Virtual Address (VA) Register . 5-36
5–34 Formatted Virtual Address (VA_FORM) Register (NT_Mode=1) 5-37
5–35 Formatted Virtual Address (VA_FORM) Register (NT_Mode=0) 5-37
5–36 MTU Virtual Page Table Base (MVPTBR) Register . 5-38
5–37 Dcache Parity Error Status (DC_PERR_STAT) Register 5-39
5–38 Dstream Translation Buffer Invalidate Single (DTB_IS) Register 5-41
5–39 MTU Control (MCSR) Register . 5-42
5–40 Dcache Mode (DC_MODE) Register . 5-44
5–41 Miss Address File Mode (MAF_MODE) Register . 5-46
5–42 Alternate Mode (ALT_MODE) Register. 5-49
5–43 Cycle Counter (CC) Register . 5-50
5–44 Cycle Counter Control (CC_CTL) Register . 5-51
5–45 Dcache Test Tag Control (DC_TEST_CTL) Register . 5-52
5–46 Dcache Test Tag (DC_TEST_TAG) Register . 5-54
5–47 Dcache Test Tag Temporary (DC_TEST_TAG_TEMP) Register. 5-56
5–48 CBU Configuration (CBOX_CONFIG) Register . 5-59
5–49 CBU Address (CBOX_ADDR) Register . 5-62
5–50 CBU Status (CBOX_STATUS) Register . 5-63
5–51 CBU Configuration #2 (CBOX_CONFIG2) Register . 5-65
6–1 HW_LD Instruction Format . 6-9
6–2 HW_ST Instruction Format . 6-10
6–3 HW_REI Instruction Format . 6-11

6–4 HW_MFPR and HW_MTPR Instruction Format . 6-12
9–1 osc_clk_in_h,l Input Network and Terminations . 9-6
9–2 Impedance vs Clock Input Frequency. 9-7
9–3 Input/Output Pin Timing . 9-9
9–4 Bcache Timing . 9-12
9–5 sys_clk System Timing . 9-14
9–6 BiSt Timing Event —Timeline . 9-18
9–7 SROM Load Timing Event—Timeline . 9-19
9–8 Serial ROM Load Timing. 9-20
10–1 Heat Sink 1 . 10-3
11–1 Package Dimensions . 11-2
11–2 21164PC Top View (Pin Down) . 11-8
29 September 1997 – Subject to Change xiii

11–3 21164PC Bottom View (Pin Up) . 11-9
12–1 IEEE 1149.1 Test Access Port . 12-3
12–2 TAP Controller State Machine . 12-4

Tables

2–1 Effect of Branching Instructions on the Branch—Prediction Stack 2-6
2–2 Pipeline Examples—All Cases . 2-15
2–3 Pipeline Examples—Integer Add . 2-15
2–4 Pipeline Examples—Floating Add. 2-15
2–5 Pipeline Examples—Load (Dcache Hit) . 2-16
2–6 Pipeline Examples—Load (Dcache Miss) . 2-16
2–7 Pipeline Examples—Store (Dcache Hit) . 2-17
2–8 Instruction Classes and Slotting . 2-19
2–9 Instruction Latencies . 2-24
2–10 Floating-Point Control Register Bit Descriptions. 2-40
xiv 29 September 1997 – Subject to Change

3–1 21164PC Signal Descriptions . 3-4
3–2 21164PC Signal Descriptions by Function . 3-14
4–1 CPU Clock Generation Control . 4-7
4–2 System Clock Divisor . 4-8
4–3 System Clock Delay . 4-10
4–4 Physical Memory Regions. 4-11
4–5 Bcache States for Cache Coherency Protocols . 4-14
4–6 Bcache Transactions . 4-19
4–7 Bcache Options. 4-27
4–8 21164PC-Initiated Interface Commands. 4-28
4–9 System-Initiated Interface Commands (Write Invalidate Protocol) 4-40
4–10 21164PC Responses to Flush-Based Protocol Commands 4-41
4–11 Interrupt Priority Level Effect. 4-59
5–1 IDU, MTU, Dcache, and PALtemp IPR Encodings . 5-1
5–2 Granularity Hint Bits in ITB_PTE_TEMP Read Format. 5-7
5–3 Icache Parity Error Status Register Fields . 5-11
5–4 Exception Summary Register Fields . 5-13
5–5 IDU Control and Status Register Fields . 5-16
5–6 Software Interrupt Request Register Fields . 5-21
5–7 Hardware Interrupt Clear Register Fields . 5-22
5–8 Interrupt Summary Register Fields . 5-23
5–9 Serial Line Transmit Register Fields . 5-25
5–10 Serial Line Receive Register Fields . 5-26
5–11 Performance Counter Register Fields. 5-28
5–12 PMCTR Counter Select Options . 5-29
5–13 Measurement Mode Control . 5-30
5–14 Dstream Memory Management Fault Status Register Fields 5-35
5–15 Formatted Virtual Address Register Fields . 5-38
5–16 Dcache Parity Error Status Register Fields. 5-40
5–17 MTU Control Register Fields. 5-43
5–18 Dcache Mode Register Fields. 5-45
5–19 Miss Address File Mode Register Fields. 5-47
5–20 Alternate Mode Register Settings . 5-49
5–21 Cycle Counter Control Register Fields . 5-51

5–22 Dcache Test Tag Control Register Fields . 5-52
5–23 Dcache Test Tag Register Fields . 5-55
5–24 Dcache Test Tag Temporary Register Fields . 5-57
5–25 CBU Internal Processor Register Descriptions . 5-58
5–26 CBU Configuration Register Fields . 5-59
5–27 CBU Address Register Fields . 5-62
5–28 CBU Status Register Fields . 5-63
5–29 CBU Configuration #2 Register Fields . 5-65
5–30 CBU IPR PALcode Restrictions . 5-68
5–31 PALcode Restrictions Table . 5-69
6–1 PALcode Trap Entry Points. 6-6
6–2 Required PALcode Function Codes . 6-7
29 September 1997 – Subject to Change xv

6–3 Opcodes Reserved for PALcode . 6-8
6–4 HW_LD Format Description . 6-9
6–5 HW_ST Format Description . 6-10
6–6 HW_REI Format Description. 6-11
6–7 HW_MFPR and HW_MTPR Format Description . 6-12
7–1 21164PC Signal Pin Reset State . 7-3
7–2 Internal Processor Register Reset State. 7-10
9–1 21164PC Absolute Maximum Ratings . 9-1
9–2 Operating Voltages . 9-2
9–3 CMOS DC Input/Output Characteristics . 9-3
9–4 Input Clock Specification. 9-8
9–5 Bcache Loop Timing . 9-10
9–6 Normal Output Driver Characteristics . 9-11
9–7 Big Output Driver Characteristics . 9-11
9–8 21164PC System Clock Output Timing (sysclk=Tø) . 9-13
9–9 Input Timing for sys_clk_out-Based Systems . 9-15
9–10 Output Timing for sys_clk_out-Based Systems . 9-16
9–11 Bcache Control Signal Timing. 9-17
9–12 BiSt Timing for Some System Clock Ratios, Port Mode=Normal (System Cycles) 9-18
9–13 BiSt Timing for Some System Clock Ratios, Port Mode=Normal (CPU Cycles). . 9-18
9–14 SROM Load Timing for Some System Clock Ratios (System Cycles) 9-19
9–15 SROM Load Timing for Some System Clock Ratios (CPU Cycles) 9-19
9–16 Clock Test Modes . 9-21
9–17 IEEE 1149.1 Circuit Performance Specifications . 9-21
10–1 Θca at Various Airflows . 10-1
10–2 Maximum Ta at Various Airflows. 10-2
11–1 Alphabetic Signal Pin List . 11-3
11–2 Voltage Reference, Power, and Ground Pins . 11-7
12–1 21164PC Test Port Pins . 12-1
12–2 Compliance Enable Inputs . 12-2
12–3 Instruction Register . 12-5
12–4 Boundary-Scan Register Organization . 12-7
A–1 Instruction Format and Opcode Notation . A-1
A–2 Architecture Instructions . A-2
A–3 Opcodes Reserved for DIGITAL . A-9

A–4 Opcodes Reserved for PALcode . A-10
A–5 IEEE Floating-Point Instruction Function Codes. A-10
A–6 VAX Floating-Point Instruction Function Codes . A-12
A–7 Opcode Summary . A-14
A–8 Required PALcode Function Codes . A-15
B–1 21164PC Microprocessor Specifications . B-1
D–1 Document Revision History. D-1
xvi 29 September 1997 – Subject to Change

 Preface
29 September 1997 – Subject To Change xvii

This manual provides information about the architecture, internal design, external
interface, and specifications of the Digital Semiconductor Alpha 21164PC micropro-
cessor (referred to as the 21164PC) and its associated software.

Audience

This reference manual is for system designers and programmers who use the
21164PC.

Manual Organization

This manual includes the following chapters and appendixes, and an index.

• Chapter 1, Introduction, introduces the 21164PC and provides an overview of
the Alpha architecture.

• Chapter 2, Internal Architecture, describes the major hardware functions and the
internal chip architecture. It describes performance measurement facilities, cod-
ing rules, and design examples.

• Chapter 3, Hardware Interface, lists and describes the external hardware inter-
face signals.

• Chapter 4, Clocks, Cache, and External Interface, describes the external bus
functions and transactions, lists bus commands, and describes the clock func-
tions.

• Chapter 5, Internal Processor Registers, lists and describes the 21164PC internal
processor register set.

• Chapter 6, Privileged Architecture Library Code, describes the privileged archi-
tecture library code (PALcode).

• Chapter 7, Initialization and Configuration, describes the initialization and con-
figuration sequence.

• Chapter 8, Error Detection and Error Handling, describes error detection and
error handling.

• Chapter 9, Electrical Data, provides electrical data and describes signal integrity
issues.

• Chapter 10, Thermal Management, provides information about thermal manage-
ment.
xviii 29 September 1997 – Subject To Change

• Chapter 11, Mechanical Packaging Information, provides mechanical data and
packaging information, including signal pin lists.

• Chapter 12, Testability and Diagnostics, describes chip and system testability
features.

• Appendix A, Alpha Instruction Set, summarizes the Alpha instruction set.

• Appendix B, 21164PC Microprocessor Specifications, summarizes the
21164PC specifications.

• Appendix C, Serial Icache Load Predecode Values, provides a C code example
that calculates the predecode values of a serial Icache load.

• Appendix D, Errata Sheet, lists changes and revisions to this manual.

• Appendix E, Support, Products, and Documentation, provides phone numbers
for support and lists related DIGITAL and third-party publications with order
information.

• The Glossary lists and defines terms associated with the 21164PC.

The companion volume to this manual, the Alpha AXP Architecture Reference Man-
ual, contains the Alpha architecture information.

Conventions

This section defines product-specific terminology, abbreviations, and other conven-
tions used throughout this manual.

Abbreviations

• Binary Multiples

The abbreviations K, M, and G (kilo, mega, and giga) represent binary multiples
and have the following values.

-

s
ture
29 September 1997 – Subject To Change xix

For example:

• Register Access

The abbreviations used to indicate the type of access to register fields and bits
have the following definitions:

IGN — Ignore

Register bits specified as IGN are ignored when written and are UNPRE
DICTABLE when read if not otherwise specified.

MBZ — Must Be Zero

Software must never place a nonzero value in bits and fields specified a
MBZ. Reads return unpredictable values. Such fields are reserved for fu
use.

RAO — Read As One

Register bits specified as RAO return a 1 when read.

RAZ — Read As Zero

Register bits specified as RAZ return a 0 when read.

K = 210 (1024)
M = 220 (1,048,576)
G = 230 (1,073,741,824)

2KB = 2 kilobytes = 2 × 210 bytes
4MB = 4 megabytes = 4 × 220 bytes
8GB = 8 gigabytes = 8 × 230 bytes

RC — Read To Clear

A register field specified as RC is written by hardware and remains
unchanged until read. The value may be read by software, at which point,
hardware may write a new value into the field.

RES — Reserved

Bits and fields specified as RES are reserved by Digital Semiconductor and
should not be used; however, zeros can be written to reserved fields that can-
not be masked.

) on

 bits

 bits

ts

 of 64.

e
xx 29 September 1997 – Subject To Change

RO — Read Only

Bits and fields specified as RO can be read and are ignored (not written
writes.

RW — Read/Write

Bits and fields specified as RW can be read and written.

W0C — Write Zero to Clear

Bits and fields specified as W0C can be read. Writing a zero clears these
for the duration of the write; writing a one has no effect.

W1C — Write One to Clear

Bits and fields specified as W1C can be read. Writing a one clears these
for the duration of the write; writing a zero has no effect.

WO — Write Only

Bits and fields specified as WO can be written but not read.

Addresses

Unless otherwise noted, all addresses and offsets are hexadecimal.

Aligned and Unaligned

The terms aligned and naturally aligned are interchangeable and refer to data objec
that are powers of two in size. An aligned datum of size 2n is stored in memory at a
byte address that is a multiple of 2n; that is, one that has n low-order zeros. For ex-
ample, an aligned 64-byte stack frame has a memory address that is a multiple

A datum of size 2n is unaligned if it is stored in a byte address that is not a multipl
of 2n.

Bit Notation

Multiple-bit fields can include contiguous and noncontiguous bits contained in angle
brackets (<>). Multiple contiguous bits are indicated by a pair of numbers separated
by a colon (:). For example, <9:7,5,2:0> specifies bits 9,8,7,5,2,1, and 0. Similarly,
single bits are frequently indicated with angle brackets. For example, <27> specifies
bit 27.

Caution

Cautions indicate potential damage to equipment or loss of data.
29 September 1997 – Subject To Change xxi

Data Units

The following data-unit terminology is used throughout this manual.

External

Unless otherwise stated, external means not contained in the 21164PC.

Numbering

All numbers are decimal or hexadecimal unless otherwise indicated. The prefix 0x
indicates a hexadecimal number. For example, 19 is decimal, but 0x19 and 0x19A
are hexadecimal (also see Addresses). Otherwise, the base is indicated by a sub-
script; for example, 1002 is a binary number.

Ranges and Extents

Ranges are specified by a pair of numbers separated by two periods (..) and are inclu-
sive. For example, a range of integers 0..4 includes the integers 0, 1, 2, 3, and 4.

Extents are specified by a pair of numbers in angle brackets (<>) separated by a
colon (:) and are inclusive. Bit fields are often specified as extents. For example, bits
<7:3> specifies bits 7, 6, 5, 4, and 3.

Term Words Bytes Bits Other

Byte ½ 1 8 —
Word 1 2 16 —
Dword 2 4 32 Longword
Quadword 4 8 64 2 Dwords

Security Holes

Security holes exist when unprivileged software (that is, software that is running out-
side of kernel mode) can:

• Affect the operation of another process without authorization from the operating
system.

• Amplify its privilege without authorization from the operating system.

• Communicate with another process, either overtly or covertly, without authori-
zation from the operating system.
xxii 29 September 1997 – Subject To Change

Signal Names

Signal names are printed in lowercase, boldface type. Low-asserted signals are indi-
cated by the _l suffix, while high-asserted signals have the _h suffix. For example,
osc_clk_in_h is a high-asserted signal, and osc_clk_in_l is a low-asserted signal.

Unpredictable and Undefined

Throughout this manual, the terms UNPREDICTABLE and UNDEFINED are used.
Their meanings are quite different and must be carefully distinguished.

In particular, only privileged software (that is, software running in kernel mode) can
trigger UNDEFINED operations. Unprivileged software cannot trigger UNDE-
FINED operations. However, either privileged or unprivileged software can trigger
UNPREDICTABLE results or occurrences.

UNPREDICTABLE results or occurrences do not disrupt the basic operation of the
processor. The processor continues to execute instructions in its normal manner. In
contrast, UNDEFINED operations can halt the processor or cause it to lose informa-
tion.

The terms UNPREDICTABLE and UNDEFINED can be further described as fol-
lows:

Unpredictable

• Results or occurrences specified as UNPREDICTABLE may vary from moment
to moment, implementation to implementation, and instruction to instruction
within implementations. Software can never depend on results specified as
UNPREDICTABLE.

• An UNPREDICTABLE result may acquire an arbitrary value subject to a few
constraints. Such a result may be an arbitrary function of the input operands or of
any state information that is accessible to the process in its current access mode.
UNPREDICTABLE results may be unchanged from their previous values.

Operations that produce UNPREDICTABLE results may also produce excep-
tions.

• An occurrence specified as UNPREDICTABLE may happen or not based on an
arbitrary choice function. The choice function is subject to the same constraints
as are UNPREDICTABLE results and, in particular, must not constitute a secu-

he

essor
29 September 1997 – Subject To Change xxiii

rity hole.

Specifically, UNPREDICTABLE results must not depend upon, or be a function
of the contents of memory locations or registers that are inaccessible to the cur-
rent process in the current access mode.

Also, operations that may produce UNPREDICTABLE results must not:

– Write or modify the contents of memory locations or registers to which t
current process in the current access mode does not have access.

– Halt or hang the system or any of its components.

For example, a security hole would exist if some UNPREDICTABLE result
depended on the value of a register in another process, on the contents of proc
temporary registers left behind by some previously running process, or on a
sequence of actions of different processes.

Undefined

• Operations specified as UNDEFINED may vary from moment to moment,
implementation to implementation, and instruction to instruction within imple-
mentations. The operation may vary in effect from nothing, to stopping system
operation.

• UNDEFINED operations may halt the processor or cause it to lose information.
However, UNDEFINED operations must not cause the processor to hang, that is,
reach an unhalted state from which there is no transition to a normal state in
which the machine executes instructions. Only privileged software (that is, soft-
ware running in kernel mode) may trigger UNDEFINED operations.

 1
Introduction

res of

f

me,

ith
nd

gis-
e
29 September 1997 – Subject To Change Introduction 1–1

This chapter provides a brief introduction to the Alpha architecture, Digital
Equipment Corporation’s RISC (reduced instruction set computing) architecture
designed for high performance. The chapter then summarizes the specific featu
the Digital Semiconductor Alpha 21164PC microprocessor (hereafter called the
21164PC) that implements the Alpha architecture. Appendix A provides a list o
Alpha instructions.

For a complete definition of the Alpha architecture, refer to the companion volu
the Alpha AXP Architecture Reference Manual.

1.1 The Architecture

The Alpha architecture is a 64-bit load and store RISC architecture designed w
particular emphasis on speed, multiple instruction issue, multiple processors, a
software migration from many operating systems.

All registers are 64 bits long and all operations are performed between 64-bit re
ters. All instructions are 32 bits long. Memory operations are either load or stor
operations. All data manipulation is done between registers.

The Alpha architecture supports the following data types:

• 8-, 16-, 32-, and 64-bit integers

• IEEE 32-bit and 64-bit floating-point formats

• VAX architecture 32-bit and 64-bit floating-point formats

In the Alpha architecture, instructions interact with each other only by one instruc-
tion writing to a register or memory location and another instruction reading from
that register or memory location. This use of resources makes it easy to build imple-
mentations that issue multiple instructions every CPU cycle.

The Architecture

The 21164PC uses a set of subroutines, called privileged architecture library code
(PALcode), that is specific to a particular Alpha operating system implementation
and hardware platform. These subroutines provide operating system primitives for
context switching, interrupts, exceptions, and memory management. These subrou-
tines can be invoked by hardware or CALL_PAL instructions. CALL_PAL instruc-
tions use the function field of the instruction to vector to a specified subroutine.
PALcode is written in standard machine code with some implementation-specific
extensions to provide direct access to low-level hardware functions. PALcode sup-
ports optimizations for multiple operating systems, flexible memory-management
implementations, and multi-instruction atomic sequences.
1–2 Introduction 29 September 1997 – Subject To Change

The Alpha architecture performs byte shifting and masking with normal 64-bit, reg-
ister-to-register instructions; it does not include single-byte load and store instruc-
tions.

1.1.1 Addressing

The basic addressable unit in the Alpha architecture is the 8-bit byte. The 21164PC
supports a 43-bit virtual address.

Virtual addresses as seen by the program are translated into physical memory
addresses by the memory-management mechanism. The 21164PC supports a 40-bit
uncached and a 33-bit cached physical address space.

The Architecture

1.1.2 Integer Data Types

Alpha architecture supports four integer data types.

Data Type Description

Byte A byte is eight contiguous bits that start at an addressable byte boundary. A
byte is an 8-bit value. A byte is supported in Alpha architecture by the
EXTRACT, INSERT, LDBU, MASK, SEXTB, STB, ZAP, PACK,
UNPACK, MIN, MAX, and PERR instructions.

Word A word is two contiguous bytes that start at an arbitrary byte boundary. A
29 September 1997 – Subject To Change Introduction 1–3

Note: Alpha implementations may impose a significant performance penalty
when accessing operands that are not NATURALLY ALIGNED. Refer
to the Alpha AXP Architecture Reference Manual for details.

1.1.3 Floating-Point Data Types

The 21164PC supports the following floating-point data types:

• Longword integer format in floating-point unit

• Quadword integer format in floating-point unit

• IEEE floating-point formats

– S_floating

– T_floating

word is a 16-bit value. A word is supported in Alpha architecture by the
EXTRACT, INSERT, LDWU, MASK, SEXTW, STW, PACK, UNPACK,
MIN, and MAX instructions.

Longword A longword is four contiguous bytes that start at an arbitrary byte bound-
ary. A longword is a 32-bit value. A longword is supported in Alpha archi-
tecture by sign-extended load and store instructions and by longword
arithmetic instructions.

Quadword A quadword is eight contiguous bytes that start at an arbitrary byte bound-
ary. A quadword is supported in Alpha architecture by load and store
instructions and quadword integer operate instructions.

21164PC Microprocessor Features

• VAX floating-point formats

– F_floating

– G_floating

– D_floating (limited support)

1.2 21164PC Microprocessor Features

The 21164PC is a superscalar pipelined processor manufactured using 0.35-µm
CMOS technology. It is packaged in a 413-pin IPGA carrier and has removable

sor
the

zing

the

dou-

d

try.
1–4 Introduction 29 September 1997 – Subject To Change

application-specific heat sinks. The 21164PC has been optimized for uniproces
systems with very high cache and memory bandwidth. The 21164PC supports
new motion video instructions (MVI) added to the Alpha instruction set.

The 21164PC can issue four Alpha instructions in a single cycle, thereby minimi
the average cycles per instruction (CPI). A number of low-latency and/or high-
throughput features in the instruction issue unit and the onchip components of
memory subsystem further reduce the average CPI.

The 21164PC and associated PALcode implements IEEE single-precision and
ble-precision, VAX F_floating and G_floating data types, and supports longword
(32-bit) and quadword (64-bit) integers. Byte (8-bit) and word (16-bit) support is
provided by byte-manipulation instructions. Limited hardware support is provide
for the VAX D_floating data type.

Other 21164PC features include:

• A peak instruction execution rate of four times the CPU clock frequency.

• The ability to issue up to four instructions during each clock cycle.

• An onchip, demand-paged memory-management unit with translation buffer,
which, when used with PALcode, can implement a variety of page table struc-
tures and translation algorithms. The unit consists of a 64-entry data translation
buffer (DTB) and a 48-entry instruction translation buffer (ITB), with each entry
able to map a single 8KB page or a group of 8, 64, or 512 8KB pages. The size of
each translation buffer entry’s group is specified by hint bits stored in the en
The DTB and ITB implement 7-bit address space numbers (ASN),
(MAX_ASN=127).

• Two onchip, high-throughput pipelined floating-point units, capable of execut-
ing both DIGITAL and IEEE floating-point data types.

• An onchip, 16KB virtual instruction cache with 7-bit ASNs (MAX_ASN=127).

21164PC Microprocessor Features

• An onchip, dual-read-ported, 8KB data cache.

• An onchip write buffer with six 32-byte entries.

• A 128-bit data bus with onchip parity and offchip longword parity.

• Support for an external second-level cache. The size and access time of the
external second-level cache is programmable.

• An internal clock generator providing a high-speed clock used by the 21164PC,
and a pair of programmable system clocks for use by the CPU module.

• Onchip performance counters to measure and analyze CPU and system perfor-
29 September 1997 – Subject To Change Introduction 1–5

mance.

• Chip and module level test support, including an instruction cache test interface
to support chip and module level testing.

• A 3.3-V external interface and 2.5-V internal interface.

Refer to Chapter 9 for 21164PC dc and ac electrical characteristics. Refer to the
Alpha AXP Architecture Reference Manual for a description of address space num-
bers (ASNs).

 2
Internal Architecture

The
ry

func-
AL-

to be
29 September 1997 – Subject To Change Internal Architecture 2–1

This chapter provides both an overview of the 21164PC microarchitecture and a sys-
tem designer’s view of the 21164PC implementation of the Alpha architecture.
combination of the 21164PC microarchitecture and privileged architecture libra
code (PALcode) defines the chip’s implementation of the Alpha architecture. If a
certain piece of hardware seems to be “architecturally incomplete,” the missing
tionality is implemented in PALcode. Chapter 6 provides more information on P
code.

This chapter describes the major functional hardware units and is not intended
a detailed hardware description of the chip. It is organized as follows:

• 21164PC microarchitecture

• Pipeline organization

• Scheduling and issuing rules

• Replay traps

• Miss address file (MAF) and load-merging rules

• MTU store instruction execution

• Write buffer and the WMB instruction

• Performance measurement support

• Floating-point control register

• Design examples

21164PC Microarchitecture

2.1 21164PC Microarchitecture

The 21164PC microprocessor is a high-performance implementation of Digital
Equipment Corporation’s Alpha architecture. Figure 2–1 is a block diagram of the
21164PC that shows the major functional blocks relative to pipeline stage flow. The
following paragraphs provide an overview of the chip’s architecture and major func-
tional units.

Figure 2–1 21164PC Microprocessor Block/Pipe Flow Diagram

S-1
Pipe Stages

S0 S1 S2 S3 S4 S5 S6 S7 S8

Floating-Point Execution Unit
2–2 Internal Architecture 29 September 1997 – Subject To Change

The 21164PC microprocessor consists of the following internal sections:

• Clock generation logic (Section 4.2)

• Instruction fetch/decode unit and branch unit (IDU) (Section 2.1.1), which
includes:

– Instruction prefetcher and instruction decoder

MK145513B

Refill
Buffer

Next
Index
Logic

Istream
Fill

Instruction
Cache

16KB
64-Byte Block
Direct-Mapped

Program

Logic

0

1

Instruction
Translation

Buffer

48-Entry
Associative

Instruction
Buffer

Slot
Logic

Issue
Scoreboard

Logic

Integer
Register

File

Floating-
Point

Register
File

Integer
Multiplier

Integer Pipe 0

Integer Pipe 1

ADD, LOG, SHIFT, LD,
ST, IMUL, CMP, SEXT,
CMOV, BYTE, WORD

ADD, LOG, LD, BR,
CMP, CMOV

Floating-Point
Divider

Floating-Point Add Pipe and Divider

Floating-Point Multiply Pipe

Load Data

Floating-Point
Store Data

Integer Unit
Store Data

Store and
Fill Data

Data Cache (Dcache)

8KB
32-Byte Block
Direct-Mapped
Dual Read-Ported

Translation Buffer
Dual-Read

64-Entry
Associative
Dual-Ported

Miss
Address

File

6 Data Misses
4 Istream
Misses

Write Buffer

6, 32-Byte
Entries

Bus Address
File

3 Entries

To Floating-Point Unit

Store
Data

Address to Pins

Cache Control andMemory Address

Integer Execution Unit

Instruction Fetch/Decode Unit

Instruction

Backup Cache (Bcache)

512KB to 4MB
Direct-Mapped

(Offchip)

Instruction Stream Miss (Physical Address)

Counter

Translation Unit Bus Interface Unit

21164PC Microarchitecture

– Instruction translation buffer

– Branch prediction

– Instruction slotting/issue

– Interrupt support

• Integer execution unit (IEU) (Section 2.1.2)

• Floating-point execution unit (FPU) (Section 2.1.3)

• Memory address translation unit (MTU) (Section 2.1.4), which includes:
29 September 1997 – Subject To Change Internal Architecture 2–3

– Data translation buffer (DTB)

– Miss address file (MAF)

– Write buffer

– Dcache control

• Cache control and bus interface unit (CBU) with interface to external cache
(Section 2.1.5)

• Data cache (Dcache) (Section 2.1.6.1)

• Instruction cache (Icache) (Section 2.1.6.2)

• Serial read-only memory (SROM) interface (Section 2.1.7)

2.1.1 Instruction Fetch/Decode Unit and Branch Unit

The primary function of the instruction fetch/decode unit and branch unit (IDU) is to
manage and issue instructions to the IEU, MTU, and FEU. It also manages the
instruction cache. The IDU contains:

• Prefetcher and instruction buffer

• Instruction slot and issue logic

• Program counter (PC) and branch prediction logic

• 48-entry instruction translation buffers (ITBs)

• Abort logic

• Register conflict logic

• Interrupt and exception logic

21164PC Microarchitecture

2.1.1.1 Instruction Decode and Issue

The IDU decodes up to four instructions in parallel and checks that the required
resources are available for each instruction. The IDU issues only the instructions for
which all required resources are available. The IDU does not issue instructions out of
order, even if the resources are available for a later instruction and not for an earlier
one.

In other words:

• If resources are available, and multiple issue is possible, then all four instruc-
tions are issued.
2–4 Internal Architecture 29 September 1997 – Subject To Change

• If resources are available only for a later instruction and not for an earlier one,
then only the instructions up to the latest one for which resources are available
are issued.

The IDU handles only NATURALLY ALIGNED groups of four instructions
(INT16). The IDU does not advance to a new group of four instructions until all
instructions in a group are issued. If a branch to the middle of an INT16 group
occurs, then the IDU attempts to issue the instructions from the branch target to the
end of the current INT16; the IDU then proceeds to the next INT16 of instructions
after all the instructions in the target INT16 are issued. Thus, achieving maximum
issue rate and optimal performance requires that code be be scheduled properly and
that floating or integer NOP instructions be used to fill empty slots in the scheduled
instruction stream.

For more information on instruction scheduling and issuing, including detailed rules
governing multiple instruction issue, refer to Section 2.3.

2.1.1.2 Instruction Prefetch

The IDU contains an instruction prefetcher and a four-entry, 32-byte-per-entry,
prefetch buffer called the refill buffer. Each instruction cache (Icache) miss is
checked in the refill buffer. If the refill buffer contains the instruction data, it fills the
Icache and instruction buffer simultaneously. If the refill buffer does not contain the
necessary data, a fetch and a number of prefetches are sent to the MTU. One prefetch
is sent per cycle until each of the four entries in the refill buffer is filled or has a
pending fill. The refill buffer holds all returned fill data until the data is required by
the IDU pipeline or until it is overwritten by a subsequent fetch/prefetch sequence
caused by a future Icache miss.

21164PC Microarchitecture

Prefetching does not begin until there is a “true” miss. A true miss is a reference that
misses in the Icache and then also misses in the refill buffer. If an Icache miss results
in a refill buffer hit, prefetching is not started until all the data has been moved from
the refill buffer entry into the pipeline.

Each fill of the Icache by the refill buffer occurs when the instruction buffer stage in
the IDU pipeline requires a new INT16. The INT16 is written into the Icache and the
instruction buffer simultaneously. This can occur at a maximum rate of one Icache
fill per cycle. The actual rate depends on how frequently the instruction buffer stage
requires a new INT16, and on availability of data in the refill buffer.

 fill

he is

CBU

C) is
t miss.
 the

has

, the
rget
t the
tching

r
ss
f the
s on
d taken
29 September 1997 – Subject To Change Internal Architecture 2–5

Once an Icache miss occurs, the Icache enters fill mode. When the Icache is in
mode, the refill buffer is checked each cycle to see if it contains the next INT16
required by the instruction buffer.

When the required data is not available in the refill buffer (also a miss), the Icac
checked for a hit while it awaits the arrival of the data from the Bcache or main
memory. The IDU sends a read request to the CBU by means of the MTU. The
checks the Bcache, and if the request misses, the CBU drives a main memory
request.

If there is an Icache hit at this time, the Icache returns to access mode and the
prefetcher stops sending fetches to the MTU. When a new program counter (P
loaded (that is, taken branches), the Icache returns to access mode until the firs
The refill buffer receives and holds instruction data from fetches initiated before
Icache returned to access mode.

The Icache has a 64-byte block size, whereas the refill buffer is able to load the
Icache with only one INT16 (16 bytes) per cycle. Therefore, each Icache block
four valid bits, one for each 16-byte subblock.

2.1.1.3 Branch Execution

When a branch or jump instruction is fetched from the Icache by the prefetcher
IDU needs one cycle to calculate the target PC before it is ready to fetch the ta
instruction stream. In the second cycle after the fetch, the Icache is accessed a
target address. Branch and PC prediction are necessary to predict and begin fe
the target instruction stream before the branch or jump instruction is issued.

The Icache records the outcome of branch instructions in a 2048-entry, 2-bit pe
entry branch history table. The table is indexed by the instruction’s virtual addre
bits <13:03>. This information is used as the prediction for the next execution o
branch instruction. The 2-bit history state is a saturating counter that increment
taken branches and decrements on not-taken branches. The branch is predicte

21164PC Microarchitecture

on the top two count values and is predicted not-taken on the bottom two count val-
ues. The history status is not initialized on Icache fill, therefore it may “remember” a
branch that was evicted from the Icache and subsequently reloaded.

The 21164PC does not limit the number of branch predictions outstanding to one. It
predicts branches even while waiting to confirm the prediction of previously pre-
dicted branches. There can be one branch prediction pending for each of pipeline
stages 3 and 4, plus up to four in pipeline stage 2. Refer to Section 2.2 for a descrip-
tion of pipeline stages.

When a predicted branch is issued, the IEU or FEU checks the prediction. The
 trap

 and

ound

h-pre-

edict
ed to
 data

ion.
2–6 Internal Architecture 29 September 1997 – Subject To Change

branch history table is updated accordingly. On branch mispredict, a mispredict
occurs and the IDU restarts execution from the correct PC.

The 21164PC provides a 12-entry subroutine return stack that is controlled by
decoding the opcode (BSR, HW_REI, and JMP/JSR/RET/JSR_COROUTINE),
DISP<15:14> in JMP/JSR/RET/JSR_COROUTINE. The stack stores an Icache
index in each entry. The stack is implemented as a circular queue that wraps ar
in the overflow and underflow cases.

Table 2–1 lists the effect each of these instructions has on the state of the branc
diction stack.

The 21164PC uses the Icache index hint in the JMP and JSR instructions to pr
the target PC. The Icache index hint in the instruction’s displacement field is us
access the direct-mapped Icache. The upper bits of the PC are formed from the
in the Icache tag store at that index. Later in the pipeline, the PC prediction is
checked against the actual PC generated by the IEU. A mismatch causes a PC
mispredict trap and restart from the correct PC. This is similar to branch predict

Table 2–1 Effect of Branching Instructions on the Branch—Prediction Stack

Instruction
Stack Used for
Prediction? Effect on Stack

BSR, JSR No Push PC+4

RET Yes Pop

JMP, BR, BRxx No No effect

JSR_COROUTINE Yes Pop, then push PC+4

PAL entry No Push PC+4

HW_REI Yes Pop

21164PC Microarchitecture

The RET, JSR_COROUTINE, and HW_REI instructions predict the next PC by
using the index from the subroutine return stack. The upper bits of the PC are formed
from the data in the Icache tag at that index. These predictions are checked against
the actual PC in exactly the same way that JMP and JSR predictions are checked.

The branch-prediction stack never predicts a target address in PALmode. This pre-
vents the possibility of nonprivileged code accessing privileged modes through
incorrect stack predictions (for example, by underflow/overflow of the stack). This
implies that PALcode libraries should avoid using instructions such as RET and
JSR_COROUTINE for internal jumps with PALmode targets, as the 21164PC will
always mispredict the target address.

127)
e-
r.

.

exe-
29 September 1997 – Subject To Change Internal Architecture 2–7

2.1.1.4 Instruction Translation Buffer

The IDU includes a 48-entry, fully associative instruction translation buffer (ITB).
The buffer stores recently used Istream address translations and protection informa-
tion for pages ranging from 8KB to 4MB and uses a not-last-used replacement algo-
rithm.

PALcode fills and maintains the ITB. Each entry supports all four granularity hint bit
combinations, so that any single ITB entry can provide translation for up to 512 con-
tiguously mapped 8KB pages. The operating system, using PALcode, must ensure
that virtual addresses can only be mapped through a single ITB entry or superpage
mapping at one time. Multiple simultaneous mapping can cause UNDEFINED
results.

While not executing in PALmode, the 43-bit virtual PC is routed to the ITB each
cycle. If the page table entry (PTE) associated with the PC is cached in the ITB, the
protection bits for the page that contains the PC are used by the IDU to do the neces-
sary access checks. If there is an Icache miss and the PC is cached in the ITB, the
page frame number (PFN) and protection bits for the page that contains the PC are
used by the IDU to do the address translation and access checks.

The 21164PC’s ITB supports 128 address space numbers (ASNs) (MAX_ASN=
by means of a 7-bit ASN field in each ITB entry. PALcode uses the hardware-sp
cific HW_MTPR instruction to write to the architecturally defined ITB_IAP registe
This has the effect of invalidating ITB entries that do not have their ASM bit set

The 21164PC provides two optional translation extensions called superpages.
Access to superpages is enabled using ICSR<SPE> and is allowed only while
cuting in privileged mode.

21164PC Microarchitecture

• One superpage maps virtual address bits <39:13> to physical address bits
<39:13>, on a one-to-one basis, when virtual address bits <42:41> equal 2. This
maps the entire physical address space four times over to the quadrant of the vir-
tual address space.

• The other superpage maps virtual address bits <29:13> to physical address bits
<29:13>, on a one-to-one basis, and forces physical address bits <39:30> to 0
when virtual address bits <42:30> equal 1FFE16. This effectively maps a 30-bit
region of physical address space to a single region of the virtual address space
defined by virtual address bits <42:30> = 1FFE16.
2–8 Internal Architecture 29 September 1997 – Subject To Change

Access to either superpage mapping is allowed only while executing in kernel mode.
Superpage mapping allows the operating system to map all physical memory to a
privileged virtual memory region.

2.1.1.5 Interrupts

The IDU exception logic supports three sources of interrupts:

• Hardware interrupts

There are 7 level-sensitive hardware interrupt sources supplied by the following
signals:

irq_h<3:0>
mch_hlt_irq_h
pwr_fail_irq_h
sys_mch_chk_irq_h

• Software interrupts

There are 15 prioritized software interrupts sourced by the software interrupt
request register (SIRR) (see Section 5.1.22).

• Asynchronous system traps (ASTs)

There are 4 ASTs sourced by the asynchronous system trap request (ASTRR)
register.

The serial interrupt, the performance counter interrupts, and irq_h<3:0> are all
maskable by bits in the ICSR (see Section 5.1.17). The four AST traps are maskable
by bits in the ASTER (see Section 5.1.21). In addition, the AST traps are qualified
by the current processor mode. All interrupts are disabled when the processor is exe-
cuting PALcode.

21164PC Microarchitecture

Each interrupt source, or group of sources, is assigned an interrupt priority level
(IPL), as shown in Table 4–11. The current IPL is set using the IPLR register (see
Section 5.1.18). Any interrupts that have an equal or lower IPL are masked. When an
interrupt occurs that has an IPL greater than the value in the IPLR register, program
control passes to the INTERRUPT PALcode entry point. PALcode processes the
interrupt by reading the ISR (see Section 5.1.24) and the INTID register (see
Section 5.1.19).

2.1.2 Integer Execution Unit

The integer execution unit (IEU) contains two 64-bit integer execution pipelines, E0
29 September 1997 – Subject To Change Internal Architecture 2–9

and E1, which include the following:

• Two adders

• Two logic boxes

• A barrel shifter

• Byte-manipulation logic

• An integer multiplier

• A motion video instruction unit

The IEU also includes the 40-entry, 64-bit integer register file (IRF) that contains the
32 integer registers defined by the Alpha architecture and 8 PAL shadow registers.
The register file has four read ports and two write ports that provide operands to both
integer execution pipelines and accept results from both pipes. The register file also
accepts load instruction results (memory data) on the same two write ports.

2.1.3 Floating-Point Execution Unit

The onchip, pipelined floating-point unit (FPU) can execute both IEEE and VAX
floating-point instructions. The 21164PC supports IEEE S_floating and T_floating
data types, and all rounding modes. It also supports VAX F_floating and G_floating
data types, and provides limited support for the D_floating format. The FPU con-
tains:

• A 32-entry, 64-bit floating-point register file

• A user-accessible control register

• A floating-point multiply pipeline

• A floating-point add pipeline

21164PC Microarchitecture

The floating-point divide unit is associated with the floating-point add pipeline
but is not pipelined.

The FPU can accept two instructions every cycle, with the exception of floating-
point divide instructions. The result latency for nondivide, floating-point instructions
is four cycles.

The floating-point register file (FRF) has five read ports and four write ports. Four of
the read ports are used by the two pipelines to source operands. The remaining read
port is used by floating-point stores. Two of the write ports are used to write results
from the two pipelines. The other two write ports are used to write fills from float-
ing-point loads.
2–10 Internal Architecture 29 September 1997 – Subject To Change

2.1.4 Memory Address Translation Unit

The memory address translation unit (MTU) contains three major sections:

• Data translation buffer (dual ported)

• Miss address file

• Write buffer address file

The MTU receives up to two virtual addresses every cycle from the IEU. The trans-
lation buffer generates the corresponding physical addresses and access control
information for each virtual address. The 21164PC implements a 43-bit virtual
address, a 40-bit noncacheable physical address, and a 33-bit cacheable physical
address. Cacheable addresses consist of bits <32:0> when bit <39> = 0. Physical
addresses that set bits <38:33> are not supported by the 21164PC. These addresses
are not checked by the 21164PC and could result in erroneous data.

2.1.4.1 Data Translation Buffer

The 64-entry, fully associative, dual-read-ported data translation buffer (DTB) stores
recently used data stream (Dstream) page table entries (PTEs). Each entry supports
all four granularity hint-bit combinations, so that a single DTB entry can provide
translation for up to 512 contiguously mapped, 8KB pages. The translation buffer
uses a not-last-used replacement algorithm.

For load and store instructions, and other MTU instructions requiring address trans-
lation, the effective 43-bit virtual address is presented to the DTB. If the PTE of the
supplied virtual address is cached in the DTB, the page frame number (PFN) and
protection bits for the page that contains the address are used by the MTU to com-
plete the address translation and access checks.

21164PC Microarchitecture

The DTB also supports the optional superpage extensions that are enabled using
ICSR<SPE>. The DTB superpage maps provide virtual-to-physical address transla-
tion for two regions of the virtual address space, as described in Section 2.1.1.4.

PALcode fills and maintains the DTB. The operating system, using PALcode, must
ensure that virtual addresses be mapped either through a single DTB entry or through
superpage mapping. Multiple simultaneous mapping can cause UNDEFINED
results. The only exception to this rule is that any given virtual page may be mapped
twice with identical data in two different DTB entries. This occurs in operating sys-
tems, such as OpenVMS, which utilize virtually accessible page tables. If the level 1
page table is accessed virtually, PALcode loads the translation information twice;
29 September 1997 – Subject To Change Internal Architecture 2–11

once in the double-miss handler, and once in the primary handler. The PTE mapping
the level 1 page table must remain constant during accesses to this page to meet this
requirement.

2.1.4.2 Load Instruction and the Miss Address File

The MTU begins the execution of each load instruction by translating the virtual
address and by accessing the data cache (Dcache). Translation and Dcache tag read
operations occur in parallel. If the addressed location is found in the Dcache (a hit),
then the data from the Dcache is formatted and written to either the integer register
file (IRF) or floating-point register file (FRF). The formatting required depends on
the particular load instruction executed. If the data is not found in the Dcache (a
miss), then the address, target register number, and formatting information are
entered in the miss address file (MAF).

The MAF performs a load-merging function. When a load miss occurs, each MAF
entry is checked to see if it contains a load miss that addresses the same Dcache (32-
byte) block. If it does, and certain merging rules are satisfied, then the new load miss
is merged with an existing MAF entry. This allows the MTU to service two or more
load misses with one data fill from the CBU.

There are six MAF entries for load misses and four more for IDU instruction fetches
and prefetches. Load misses are usually the highest MTU priority.

Refer to Section 2.5 for information on load-merging rules.

2.1.4.3 Dcache Control and Store Instructions

The Dcache follows a write-through protocol. During the execution of a store
instruction, the MTU probes the Dcache to determine whether the location to be
overwritten is currently cached. If so (a Dcache hit), the Dcache is updated. Regard-
less of the Dcache state, the MTU forwards the data to the CBU.

21164PC Microarchitecture

A load instruction that is issued one cycle after a store instruction in the pipeline cre-
ates a conflict if both the load and store operations access the same memory location.
(The store instruction has not yet updated the location when the load instruction
reads it.) This conflict is handled by forcing the load instruction to take a replay trap;
that is, the IDU flushes the pipeline and restarts execution from the load instruction.
By the time the load instruction arrives at the Dcache the second time, the conflicting
store instruction has written the Dcache and the load instruction is executed nor-
mally.

Replay traps can be avoided by scheduling the load instruction to issue three cycles
after the store instruction. If the load instruction is scheduled to issue two cycles after
2–12 Internal Architecture 29 September 1997 – Subject To Change

the store instruction, then it will be issue-stalled for one cycle.

2.1.4.4 Write Buffer

The MTU contains a write buffer that has six 32-byte entries, each of which holds
the data from one or more store instructions that access the same 32-byte block in
memory until the data is written into the Bcache. The write buffer provides a finite,
high-bandwidth resource for receiving store data to minimize the number of CPU
stall cycles. The write buffer and associated WMB instruction are described in Sec-
tion 2.7.

2.1.5 Cache Control and Bus Interface Unit

The cache control and bus interface unit (CBU) processes all accesses sent by the
MTU and implements all memory-related external interface functions, particularly
the coherence protocol functions for write-back caching. It controls the board-level
backup cache (Bcache). The CBU handles all instruction and primary Dcache read
misses and performs the function of writing data from the write buffer into the
shared coherent memory subsystem. The CBU also controls the 128-bit bidirectional
data bus, address bus, and I/O control. Chapter 4 describes the external interface.

2.1.6 Cache Organization

The 21164PC has two onchip caches−a primary data cache (Dcache) and a primary
instruction cache (Icache). All memory cells in the onchip caches are fully static,
six-transistor, CMOS structures.

The 21164PC also provides control for the external cache (Bcache).

Pipeline Organization

2.1.6.1 Data Cache

The data cache (Dcache) is a dual-read-ported, single-write-ported, 8KB cache. It is
a write-through, read-allocate, direct-mapped, byte-accessible, physical cache with
32-byte blocks and data parity at the byte level.

2.1.6.2 Instruction Cache

The instruction cache (Icache) is a 16KB, virtual, direct-mapped cache with 64-byte
blocks and 32-byte fills. Each block tag contains:

• A 7-bit address space number (ASN) field as defined by the Alpha architecture

erate
 the
are
and of

stages
29 September 1997 – Subject To Change Internal Architecture 2–13

• A 1-bit address space match (ASM) field as defined by the Alpha architecture

• A 1-bit PALcode (physically addressed) indicator

Software, rather than Icache hardware, maintains Icache coherence with memory.

2.1.6.3 External Cache

The CBU implements control for an external, direct-mapped, physical, write-back,
write-allocate cache with 64-byte blocks. The 21164PC supports board-level cache
sizes of 512KB, 1MB, 2MB, and 4MB.

2.1.7 Serial Read-Only Memory Interface

The serial read-only memory (SROM) interface provides the initialization data load
path from a system SROM to the Icache. Chapter 7 provides information about the
SROM interface.

2.2 Pipeline Organization

The 21164PC has a 7-stage (or 7-cycle) pipeline for integer operate and memory ref-
erence instructions, and a 9-stage pipeline for floating-point operate instructions. The
IDU maintains state for all pipeline stages to track outstanding register write opera-
tions.

Figure 2–2 shows the integer operate, memory reference, and floating-point op
pipelines for the IDU, FPU, IEU, and MTU. The first four stages are executed in
IDU. Remaining stages are executed by the IEU, FEU, MTU, and CBU. There
bypass paths that allow the result of one instruction to be used as a source oper
a following instruction before it is written to the register file.

Tables 2–2, 2–3, 2–4, 2–5, 2–6, and 2–7 provide examples of events at various
of pipelining during instruction execution.

Pipeline Organization

Figure 2–2 Instruction Pipeline Stages

IC
0

IB SL
1 2

AC
3 4 5 6

Integer
Operate
Pipeline

Instruction Cache Read

Instruction Buffer, Branch Decode,
Determine Next PC

Slot by Function Unit

Register File Access Checks,
Integer Register File Access

First Integer
Operate Stage

Arithmetic, logical, shift, and compare
instructions complete in pipeline stage 4
(1-cycle latency). CMOV completes in
stage 5 (2-cycle latency). IMULL has
an 8-cycle or 9-cycle latency. CMOV
2–14 Internal Architecture 29 September 1997 – Subject To Change

HLO019B

IC

IC

0

0

IB

IB

SL

SL

1

1

2

2

AC

AC

3

3

4

4

5

5

6

6

7 8

7

Floating-
Point
Pipeline

Memory
Reference
Pipeline

If Needed, Second Integer
Operate Stage

Write Integer Register File

or BR can issue in parallel (0-cycle
latency) with a dependent CMP
instruction.

Floating-Point Register
File Access

First Floating-Point
Operate Stage

Write Floating-Point Register File,
Last Floating-Point Operate Stage

Dcache Read Begins

Dcache Read Ends

Use Dcache Data, Store Writes Dcache

Bcache Tag/Data Access Begins

Bcache Tag Access Ends, 1st Datum Returned

Fill Dcache/Icache (1st OW)

Use Bcache Data

119 10

Bcache Read Latency
(5-20 CPU cycles)

109

Bcache Cycle Time
(2-10 CPU cycles)

2nd Datum Returned

Fill Dcache/Icache (2nd OW)

. . .

Pipeline Organization

Table 2–2 Pipeline Examples—All Cases

Pipeline Stage Events

0 Access Icache tag and data.

1 Buffer four instructions, check for branches, calculate branch displace-
ments, and check for Icache hit.

2 Slot-swap instructions around so they are headed for pipelines capable of
executing them. Stall preceding stages if all instructions in this stage can-
29 September 1997 – Subject To Change Internal Architecture 2–15

Table 2–4 Pipeline Examples—Floating Add

not issue simultaneously because of function unit conflicts.

3 Check the operands of each instruction to see that the source is valid and
available and that no write-write hazards exist. Read the IRF. Stall preced-
ing stages if any instruction cannot be issued. All source operands must be
available at the end of this stage for the instruction to issue.

Table 2–3 Pipeline Examples—Integer Add

Pipeline Stage Events

4 Perform the add operation.

5 Result is available for use by an operate function in this cycle.

6 Write the IRF. Result is available for use by an operate function in this
cycle.

Pipeline Stage Events

4 Read the FRF.

5 First stage of FEU add pipeline.

6 Second stage of FEU add pipeline.

7 Third stage of FEU add pipeline.

8 Fourth stage of FEU add pipeline. Write the FRF.

9 Result is available for use by an operate function in this cycle. For
instance, pipeline stage 5 of the user instruction can coincide with pipeline
stage 9 of the producer (latency of 4).

Pipeline Organization

Table 2–5 Pipeline Examples—Load (Dcache Hit)

Pipeline Stage1 Events

4 Calculate the effective address. Begin the Dcache data and tag store
access.

5 Finish the Dcache data and tag store access. Detect Dcache hit. Format
the data as required. Bcache arbitration defaults to pipe E0 in anticipation
of a possible miss.
2–16 Internal Architecture 29 September 1997 – Subject To Change

Table 2–6 Pipeline Examples—Load (Dcache Miss)

1 Pipe E0 has not been defined at this point.

1 Pipes E0 and E1 have not been defined at this point.

6 Write the IRF or FRF. Data is available for use by an operate function in
this cycle.

Pipeline Stage1 Events

4 Calculate the effective address. Begin the Dcache data and tag store
access.

5 Finish the Dcache data and tag store access. Detect Dcache miss. Bcache
arbitration defaults to pipe E0 in anticipation of a possible miss. If there
are load instructions in both E0 and E1, the load instruction in E1 would
be delayed at least one more cycle because default arbitration specula-
tively assumes the load in E0 will miss.

6 Forward physical address to pins.

7 Begin Bcache access, cycle 1.

8 N more CPU cycles waiting for Bcache data.

9 Receive Bcache data at the pins, send data to the Dcache.

10 Begin Dcache fill. Format the data as required.

11 Finish the Dcache fill. Write the integer or floating-point register file.
Data is available for use by an operate function in this cycle.

Pipeline Organization

Table 2–7 Pipeline Examples—Store (Dcache Hit)

Pipeline Stage Events

4 Calculate the effective address. Begin the Dcache tag store access.

5 Finish the Dcache tag store access. Detect Dcache hit. Send store to the
write buffer simultaneously.

6 Write the Dcache data store if hit (write begins this cycle).
29 September 1997 – Subject To Change Internal Architecture 2–17

2.2.1 Pipeline Stages and Instruction Issue

The 21164PC pipeline divides instruction processing into four static and a number of
dynamic stages of execution. The first four stages consist of the instruction fetch,
buffer and decode, slotting, and issue-check logic. These stages are static in that
instructions may remain valid in the same pipeline stage for multiple cycles while
waiting for a resource or stalling for other reasons. Dynamic stages (IEU and FEU)
always advance state and are unaffected by any stall in the pipeline. A pipeline stall
may occur while zero instructions issue, or while some instructions of a set of four
issue and the others are held at the issue stage. A pipeline stall implies that a valid
instruction is (or instructions are) presented to be issued but cannot proceed.

Upon satisfying all issue requirements, instructions are issued into their slotted pipe-
line. After issuing, instructions cannot stall in a subsequent pipeline stage. The issue
stage is responsible for ensuring that all resource conflicts are resolved before an
instruction is allowed to continue. The only means of stopping instructions after the
issue stage is an abort condition. (The term abort as used here is different from its use
in the Alpha AXP Architecture Reference Manual.)

2.2.2 Aborts and Exceptions

Aborts result from a number of causes. In general, they can be grouped into two
classes, exceptions (including interrupts) and nonexceptions. The difference between
the two is that exceptions require that the pipeline be drained of all outstanding
instructions before restarting the pipeline at a redirected address. In either case, the
pipeline must be flushed of all instructions that were fetched subsequent to the
instruction that caused the abort condition (arithmetic exceptions are an exception to
this rule). This includes aborting some instructions of a multiple-issued set in the
case of an abort condition on the one instruction in the set.

Pipeline Organization

The nonexception case does not need to drain the pipeline of all outstanding instruc-
tions ahead of the aborting instruction. The pipeline can be restarted immediately at a
redirected address. Examples of nonexception abort conditions are branch mispre-
dictions, subroutine call/return mispredictions, and replay traps. Data cache misses
can cause aborts or issue stalls depending on the cycle-by-cycle timing.

In the event of an exception other than an arithmetic exception, the processor aborts
all instructions issued after the exceptional instruction, as described in the preceding
paragraphs. Due to the nature of some exception conditions, this may occur as late as
the integer register file (IRF) write cycle. In the case of an arithmetic exception, the
processor may execute instructions issued after the exceptional instruction.

esult
2–18 Internal Architecture 29 September 1997 – Subject To Change

After aborting, the address of the exceptional instruction or the immediately subse-
quent instruction is latched in the EXC_ADDR internal processor register (IPR). In
the case of an arithmetic exception, EXC_ADDR contains the address of the instruc-
tion immediately after the last instruction executed. (Every instruction prior to the
last instruction executed was also executed.) For machine check and interrupts,
EXC_ADDR points to the instruction immediately following the last instruction exe-
cuted. For the remaining cases, EXC_ADDR points to the exceptional instruction;
where, in all cases, its execution should naturally restart.

When the pipeline is fully drained, the processor begins instruction execution at the
address given by the PALcode dispatch. The pipeline is drained when all outstanding
write operations to both the IRF and FRF have completed and all outstanding
instructions have passed the point in the pipeline such that they are guaranteed to
complete without an exception in the absence of a machine check.

Replay traps are aborts that occur when an instruction requires a resource that is not
available at some point in the pipeline. These are usually MTU resources whose
availability could not be anticipated accurately at issue time (refer to Section 2.4). If
the necessary resource is not available when the instruction requires it, the instruc-
tion is aborted and the IDU begins fetching at exactly that instruction, thereby
replaying the instruction in the pipeline. A slight variation on this is the load-miss-
and-use replay trap in which an operate instruction is issued just as a Dcache hit is
being evaluated to determine if one of the instruction’s operands is valid. If the r
is a Dcache miss, then the operate instruction is aborted and replayed.

Scheduling and Issuing Rules

2.2.3 Nonissue Conditions

There are two reasons for nonissue conditions. The first is a pipeline stall wherein a
valid instruction or set of instructions are prepared to issue but cannot due to a
resource conflict (register conflict or function unit conflict). These types of nonissue
cycles can be minimized through code scheduling.

The second type of nonissue conditions consists of pipeline bubbles where there is
no valid instruction in the pipeline to issue. Pipeline bubbles result from the abort
conditions described in the previous section. In addition, a single pipeline bubble is
produced whenever a branch type instruction is predicted to be taken, including sub-

l of
a few
func-
ycle.
29 September 1997 – Subject To Change Internal Architecture 2–19

routine calls and returns.

Pipeline bubbles are reduced directly by the instruction buffer hardware and through
bubble squashing, but can also be effectively minimized through careful coding
practices. Bubble squashing involves the ability of the first four pipeline stages to
advance whenever a bubble or buffer slot is detected in the pipeline stage immedi-
ately ahead of it while the pipeline is otherwise stalled.

2.3 Scheduling and Issuing Rules

The following sections define the classes of instructions and provide rules for
instruction slotting, instruction issuing, and latency.

2.3.1 Instruction Class Definition and Instruction Slotting

The scheduling and multiple issue rules presented here are performance related only;
that is, there are no functional dependencies related to scheduling or multiple issu-
ing. The rules are defined in terms of instruction classes. Table 2–8 specifies al
the instruction classes and the pipeline that executes the particular class. With
additional rules, the table provides the information necessary to determine the
tional resource conflicts that determine which instructions can issue in a given c

Table 2–8 Instruction Classes and Slotting (Sheet 1 of 3)

Class Name Pipeline Instruction List

LD E01 or E12 All loads except LDx_L

ST E0 All stores except STx_C

MBX E0 LDx_L, MB, WMB, STx_C, HW_LD-lock, HW_ST-cond,
FETCH

RX E0 RS, RC

Scheduling and Issuing Rules

MXPR E0 or E1
(depends
on the IPR)

HW_MFPR, HW_MTPR

IBR E1 Integer conditional branches

FBR FA3 Floating-point conditional branches

JSR E1 Jump-to-subroutine instructions: JMP, JSR, RET, or
JSR_COROUTINE, BSR, BR, HW_REI, CALLPAL

Table 2–8 Instruction Classes and Slotting (Sheet 2 of 3)

Class Name Pipeline Instruction List
2–20 Internal Architecture 29 September 1997 – Subject To Change

IADD E0 or E1 ADDL, ADDL/V, ADDQ, ADDQ/V, SUBL, SUBL/V, SUBQ,
SUBQ/V, S4ADDL, S4ADDQ, S8ADDL, S8ADDQ, S4SUBL,
S4SUBQ, S8SUBL, S8SUBQ, LDA, LDAH

ILOG E0 or E1 AND, BIS, XOR, BIC, ORNOT, EQV

SEXT E0 SEXTB, SEXTW

SHIFT E0 SLL, SRL, SRA, EXTQL, EXTLL, EXTWL, EXTBL,
EXTQH, EXTLH, EXTWH, MSKQL, MSKLL, MSKWL,
MSKBL, MSKQH, MSKLH, MSKWH, INSQL, INSLL,
INSWL, INSBL, INSQH, INSLH, INSWH, ZAP, ZAPNOT

CMOV E0 or E1 CMOVEQ, CMOVNE, CMOVLT, CMOVLE, CMOVGT,
CMOVGE, CMOVLBS, CMOVLBC

ICMP E0 or E1 CMPEQ, CMPLT, CMPLE, CMPULT, CMPULE, CMPBGE

IMULL E0 MULL, MULL/V

IMULQ E0 MULQ, MULQ/V

IMULH E0 UMULH

MVI E0 PERR, UNPKBW, UNPKBL, PKWB, PKLB, MINSB8,
MINSB4, MINUB8, MINUW4, MAXUB8, MAXUW4,
MAXSB8, MAXSW4

FADD FA Floating-point operates, including CPYSN and CPYSE, except
multiply, divide, and CPYS

FDIV FA Floating-point divide

FMUL FM4 Floating-point multiply

Scheduling and Issuing Rules

1 IEU pipeline 0.
2 IEU pipeline 1.
3 FEU add pipeline.
4 FEU multiply pipeline.
5

FCPYS FM or FA CPYS, not including CPYSN or CPYSE

MISC E0 RPCC, TRAPB

UNOP None UNOP5

Table 2–8 Instruction Classes and Slotting (Sheet 3 of 3)

Class Name Pipeline Instruction List
29 September 1997 – Subject To Change Internal Architecture 2–21

Slotting

The slotting function in the IDU determines which instructions will be sent forward
to attempt to issue. The slotting function detects and removes all static functional
resource conflicts. The set of instructions output by the slotting function will issue if
no register or other dynamic resource conflict is detected in stage 3 of the pipeline.
The slotting algorithm follows:

Starting from the first (lowest addressed) valid instruction in the INT16 in stage
2 of the 21164PC IDU pipeline, attempt to assign that instruction to one of the
four pipelines (E0, E1, FA, FM). If it is an instruction that can issue in either E0
or E1, assign it to E0. However, if one of the following is true, assign it to E1:

• E0 is not free and E1 is free.

• The next integer instruction1 in this INT16 can issue only in E0.

If the current instruction is one that can issue in either FA or FM, assign it to FA
unless FA is not free. If it is an FA-only instruction, it must be assigned to FA. If
it is an FM-only instruction, it must be assigned to FM. Mark the pipeline
selected by this process as taken and resume with the next sequential instruction.
Stop when an instruction cannot be allocated in an execution pipeline because
any pipeline it can use is already taken.

The slotting logic does not send instructions forward out of logical instruction order
because the 21164PC always issues instructions in order. The slotting logic also
enforces the special rules in the following list, stopping the slotting process when a
rule would be violated by allocating the next instruction an execution pipeline:

UNOP is LDQ_U R31,0(Rx).

1 In this context, an integer instruction is one that can issue in one or both of E0 or E1, but
not FA or FM.

Scheduling and Issuing Rules

• An instruction of class LD cannot be issued simultaneously with an instruction
of class ST.

• All instructions are discarded at the slotting stage after a predicted-taken IBR or
FBR class instruction, or a JSR class instruction.

• After a predicted not-taken IBR or FBR, no other IBR, FBR, or JSR class can be
slotted together.

• The following cases are detected by the slotting logic:

– From lowest address to highest within an INT16, with the following arrange-
ment:

.

ge-

d to
 two
nd

is is
lit-
2–22 Internal Architecture 29 September 1997 – Subject To Change

I-instruction, F-instruction, I-instruction, I-instruction

I-instruction is any instruction that can issue in one or both of E0 or E1.
F-instruction is any instruction that can issue in one or both of FA or FM

– From lowest address to highest within an INT16, with the following arran
ment:

F-instruction, I-instruction, I-instruction, I-instruction

When this type of case is detected, the first two instructions are forwarde
the issue point in one cycle. The second two are sent only when the first
have both issued, provided no other slotting rule would prevent the seco
two from being slotted in the same cycle.

2.3.2 Coding Guidelines

Code should be scheduled according to latency and function unit availability. Th
good practice in most RISC architectures. Code alignment and the effects of sp
issue2 should be considered.

2 Split-issue is the situation in which not all instructions sent from the slotting stage to the
issue stage issue. One or more stalls result.

Scheduling and Issuing Rules

Instructions [a] (the LDL) and [b] (the first ADDL) in the following example are
slotted together. Instruction [b] stalls (split-issue), thus preventing instruction [c]
from advancing to the issue stage:

Code example showing Code example showing
incorrect ordering correct ordering

(1) [a] LDL R2, 0 (R1) (1) [d] LDL R2, 0 (R1)
(3) [b] ADDL R2, R3, R4 (1) [e] NOP
(4) [c] ADDL R2, R5, R6 (3) [f] ADDL R2, R3, R4

(3) [g] ADDL R2, R5, R6

enden-

ns
s the
 used
s are
 are

ative
tion
’s
 when
29 September 1997 – Subject To Change Internal Architecture 2–23

NOTES: The instruction examples are assumed to begin on an INT16
alignment. (n) = Expected execute cycle.

Eventually [b] issues when the result of [a] is returned from a presumed Dcache hit.
Instruction [c] is delayed because it cannot advance to the issue stage until [b] issues.

In the improved sequence, the LDL [d] is slotted with the NOP [e]. Then the first
ADDL [f] is slotted with the second ADDL [g] and those two instructions dual-issue.
This sequence takes one less cycle to complete than the first sequence.

2.3.3 Instruction Latencies

After slotting, instruction issue is governed by the availability of registers for read or
write operations, and the availability of the floating divide unit and the integer multi-
ply unit. There are producer–consumer dependencies, producer–producer dep
cies (also known as write-after-write conflicts), and dynamic function unit
availability dependencies (integer multiply and floating divide). The IDU logic in
stage 3 of the 21164PC pipeline detects all these conflicts.

The latency to produce a valid result for most instructions is fixed. The exceptio
are loads that miss, floating-point divides, and integer multiplies. Table 2–9 give
latencies for each instruction class. A latency of 1 means that the result may be
by an instruction issued one cycle after the producing instruction. Most latencie
only a property of the producer. An exception is integer multiply latencies. There
no variations in latency due to which a particular unit produces a given result rel
to the particular unit that consumes it. In the case of integer multiply, the instruc
is issued at the time determined by the standard latency numbers. The multiply
latency is dependent on which previous instructions produced its operands and
they executed.

Scheduling and Issuing Rules

Table 2–9 Instruction Latencies (Sheet 1 of 2)

Class Latency

Additional Time Before
Result Available to
Integer Multiply Unit1

LD Dcache hits, latency=2.
Dcache miss/Bcache hit, latency=10 or longer.2

1 cycle

ST Store operations produce no result. —
2–24 Internal Architecture 29 September 1997 – Subject To Change

MBX LD x_L Dcache hits, latency=2.
LDx_L Dcache miss/Bcache hit, latency=10 or longer.2

LDx_L Dcache miss/Bcache miss, latency depends on memory
subsystem state.
STx_C, latency depends on memory subsystem state.
MB, WMB, and FETCH produce no result.

—

RX RS, RC, latency=1. 2 cycles

MXPR HW_MFPR, latency=1, 2, or longer, depending on the IPR.
HW_MTPR, produces no result.

1 or 2 cycles

IBR Produces no result. (Taken branch issue latency minimum=1
cycle, branch mispredict penalty=5 cycles.)

—

FBR Produces no result. (Taken branch issue latency minimum=1
cycle, branch mispredict penalty=5 cycles.)

—

JSR All but HW_REI, latency=1.
HW_REI produces no result. (Issue latency—minimum 1 cycle.)

2 cycles

SEXT Latency=1. 2 cycles

IADD Latency=1. 2 cycles

ILOG Latency=1.3 2 cycles

SHIFT Latency=1. 2 cycles

CMOV Latency=2. 1 cycle

ICMP Latency=1.3 2 cycles

IMULL Latency=8, plus up to 2 cycles of added latency, depending on the
source of the data.1 Latency until next IMULL, IMULQ, or
IMULH instruction can issue (if there are no data dependencies) is
4 cycles plus the number of cycles added to the latency.

1 cycle

Scheduling and Issuing Rules

IMULQ Latency=12, plus up to 2 cycles of added latency, depending on
the source of the data.1 Latency until next IMULL, IMULQ, or
IMULH instruction can issue (if there are no data dependencies) is
8 cycles plus the number of cycles added to the latency.

1 cycle

IMULH Latency=14, plus up to 2 cycles of added latency, depending on
the source of the data.1 Latency until next IMULL, IMULQ, or

1 cycle

Table 2–9 Instruction Latencies (Sheet 2 of 2)

Class Latency

Additional Time Before
Result Available to
Integer Multiply Unit1
29 September 1997 – Subject To Change Internal Architecture 2–25

1 The multiplier is unable to receive data from IEU bypass paths. The instruction issues at the expected time,
but its latency is increased by the time it takes for the input data to become available to the multiplier. For
example, an IMULL instruction issued one cycle later than an ADDL instruction, which produced one of its
operands, has a latency of 10 (8 + 2). If the IMULL instruction is issued two cycles later than the ADDL
instruction, the latency is 9 (8 + 1).

2 When idle, Bcache arbitration predicts a load miss in E0. If a load actually does miss in E0, it is sent to the
Bcache immediately. If it hits in the Bcache, and no other event in the CBU affects the operation, the requested
data is available for use in 10 or more cycles. Otherwise, the request takes longer (possibly much longer,
depending on the state of the CBU and memory). It should be possible to schedule some unrolled code loops
for Bcache by prefetching data into the Dcache using LDQ R31, x(Rx).

3 A special bypass provides an effective latency of 0 (zero) cycles for an ICMP or ILOG instruction producing
the test operand of an IBR or CMOV instruction. This is true only when the IBR or CMOV instruction issues
in the same cycle as the ICMP or ILOG instruction that produced the test operand of the IBR or CMOV
instruction. In all other cases, the effective latency of ICMP and ILOG instructions is 1 cycle.

IMULH instruction can issue (if there are no data dependencies) is
8 cycles plus the number of cycles added to the latency.

MVI Latency=2. 1 cycle

FADD Latency=4. —

FDIV Data-dependent latency: 15 to 31 single precision, 22 to 60 double
precision. Next floating divide can be issued in the same cycle.
The result of the previous divide is available, regardless of data
dependencies.

—

FMUL Latency=4. —

FCYPS Latency=4. —

MISC RPCC, latency=2. TRAPB produces no result. 1 cycle

UNOP UNOP produces no result. —

Scheduling and Issuing Rules

2.3.3.1 Producer–Producer Latency

Producer–producer latency, also known as write-after-write conflicts, cause issue-
stalls to preserve write order. If two instructions write the same register, they are
forced to do so in different cycles by the IDU. This is necessary to ensure that the
correct result is left in the register file after both instructions have executed. For most
instructions, the order in which they write the register file is dictated by issue order.
However IMUL, FDIV, and LD instructions may require more time than other
instructions to complete. Subsequent instructions that write the same destination reg-
ister are issue-stalled to preserve write ordering at the register file.

m-
o-

rall

ister
).
one
 their

alled
-
cle

 the
 load
second
s the
2–26 Internal Architecture 29 September 1997 – Subject To Change

Conditions that involve an intervening producer–consumer conflict can occur co
monly in a multiple-issue situation when a register is reused. In these cases, pr
ducer–consumer latencies are equal to or greater than the required producer–
producer latency as determined by write ordering and therefore dictate the ove
latency.

An example of this case is shown in the following code:

LDQ R2,0(R0) ;R2 destination
ADDQ R2,R3,R4 ;wr-rd conflict stalls execution waiting for R2
LDQ R2,D(R1) ;wr-wr conflict may dual issue when ADDQ issues

Producer–producer latency is generally determined by applying the rule that reg
file write operations must occur in the correct order (enforced by IDU hardware
Two IADD or ILOG class instructions that write the same register issue at least
cycle apart. The same is true of a pair of CMOV-class instructions, even though
latency is 2. For IMUL, FDIV, and LD instructions, producer–producer conflicts
with any subsequent instruction results in the second instruction being issue-st
until the IMUL, FDIV, or LD instruction is about to complete. The second instruc
tion is issued as soon as it is guaranteed to write the register file at least one cy
after the IMUL, FDIV, or LD instruction.

If a load writes a register, and within two cycles a subsequent instruction writes
same register, the subsequent instruction is issued speculatively, assuming the
hits. If the load misses, a load-miss-and-use trap is generated. This causes the
instruction to be replayed by the IDU. When the second instruction again reache
issue point, it is issue-stalled until the load fill occurs.

Scheduling and Issuing Rules

2.3.4 Issue Rules

The following is a list of conditions that prevent the 21164PC from issuing an
instruction:

• No instruction can be issued until all of its source and destination registers are
clean; that is, all outstanding write operations to the destination register are guar-
anteed to complete in issue order and there are no outstanding write operations to
the source registers, or those write operations can be bypassed.

Technically, load-miss-and-use replay traps are an exception to this rule. The
consumer of the load’s result issues, and is aborted, because a load was predicted

n
er
ime
29 September 1997 – Subject To Change Internal Architecture 2–27

to hit and was discovered to miss just as the consumer instruction issued. I
practice, the only difference is that the latency of the consumer may be long
than it would have been had the issue logic “known” the load would miss in t
to prevent issue.

• An instruction of class LD cannot be issued in the second cycle after an instruc-
tion of class ST is issued.

• No LD, ST, MXPR (to an MTU register), or MBX class instructions can be
issued after an MB instruction has been issued until the MB instruction has been
acknowledged by the CBU.

• No LD, ST, MXPR (to an MTU register), or MBX class instructions can be
issued after a STx_C (or HW_ST-cond) instruction has been issued until the
MTU writes the success/failure result of the STx_C (HW_ST-cond) in its desti-
nation register.

• No IMUL instructions can be issued if the integer multiplier is busy.

• No floating-point divide instructions can be issued if the floating-point divider is
busy.

• No instruction can be issued to pipe E0 exactly two cycles before an integer mul-
tiplication completes.

• No instruction can be issued to pipe FA exactly five cycles before a floating-
point divide completes.

• No Store instruction can be issued exactly three cycles before a fill. The data
store write operation, if the store hits, will conflict with the fill operation.

Replay Traps

• No instruction can be issued to pipe E0 or E1 exactly two cycles before an inte-
ger register fill is requested (speculatively) by the CBU, except IMULL,
IMULQ, and IMULH instructions and instructions that do not produce any
result.

• No LD, ST, or MBX class instructions can be issued to pipe E0 or E1 exactly
one cycle before an integer register fill is requested (speculatively) by the CBU.

• No instruction issues after a TRAPB instruction until all previously issued
instructions are guaranteed to finish without generating a trap other than a
machine check.
2–28 Internal Architecture 29 September 1997 – Subject To Change

All instructions sent to the issue stage (stage 3) by the slotting logic (stage 2) are
issued subject to the previous rules. If issue is prevented for a given instruction at the
issue stage, all logically subsequent instructions at that stage are prevented from
issuing automatically. The 21164PC only issues instructions in order.

2.4 Replay Traps

There are no stalls after the instruction issue point in the pipeline. In some situations,
an MTU instruction cannot be executed because of insufficient resources (or some
other reason). These instructions trap and the IDU restarts their execution from the
beginning of the pipeline. This is called a replay trap. Replay traps occur in the fol-
lowing cases:

• The write buffer is full when a store instruction is executed and there are already
six write buffer entries allocated. The trap occurs even if the entry would have
merged in the write buffer.

• A load instruction is issued in pipe E0 when all six MAF entries are valid (not
available), or a load instruction issued in pipe E1 when five of the six MAF
entries are valid. The trap occurs even if the load instruction would have hit in
the Dcache or merged with an MAF entry.

• Alpha shared memory model order trap (Litmus test 1 trap): If a load instruction
issues that address matches with any miss in the MAF (down to the quadword
boundary), the load instruction is aborted through a replay trap regardless of
whether the newly issued load instruction hits or misses in the Dcache. This
ensures that the two loads execute in issue order.

Miss Address File and Load-Merging Rules

• Load-after-store trap: A replay trap occurs if a load instruction is issued in the
cycle immediately following a store instruction that hits in the Dcache, and both
access the same location. The address match is exact for address bits <12:2>
(longword granularity), but ignores address bits <42:13>.

• When a load instruction is followed, within one cycle, by any instruction that
uses the result of that load, and the load misses in the Dcache, the consumer
instruction traps and is restarted from the beginning of the pipeline. This occurs
because the consumer instruction is issued speculatively while the Dcache hit is
being evaluated. If the load misses in the Dcache, the speculative issue of the
consumer instruction was incorrect. The replay trap generally brings the con-
29 September 1997 – Subject To Change Internal Architecture 2–29

sumer instruction to the issue point before or simultaneously with the availability
of fill data.

2.5 Miss Address File and Load-Merging Rules

The following sections describe the miss address file (MAF) and its load-merging
function, and the load-merging rules that apply after a load miss.

2.5.1 Merging Rules

When a load miss occurs, each MAF entry is checked to see if it contains a load miss
that addresses the same 32-byte Dcache block. If it does, and certain merging rules3
are satisfied, then the new load miss is merged with an existing MAF entry. This
allows the MTU to service two or more load misses with one data fill from the CBU.
The merging rules for an individual MAF entry are different for cacheable and non-
cacheable space.

2.5.1.1 Cacheable Space Load-Merge Rules

The merging rules for cacheable space loads (physical address bit <39>=0) are as
follows:

• Merging only occurs if the new load miss addresses a different INT8 from all
loads previously entered or merged to that MAF entry. If it addresses the same
INT8, the machine traps and replays the instruction. This continues until the
MAF entry is retired, at which time the trapping load hits in the Dcache.

• Bytes, words, longwords, and quadwords can merge with each other, provided
that they are not in the same INT8.

3 Merging rules result primarily from limitations of the implementation.

Miss Address File and Load-Merging Rules

• Merging is prevented for the MAF entry after the first data fill (to that MAF
entry) from the Bcache, regardless of whether the Bcache access hits or not.

• Load misses that match any MAF address down to the INT32 boundary, but
could not merge (for any reason), are replay trapped. Once the Dcache is filled,
this load instruction executes and hits in the Dcache.

All DREAD load-merging is prevented when MAF_MODE<00>=1 (see
Section 5.2.16).

2.5.1.2 Noncacheable Space Load-Merge Rules
2–30 Internal Architecture 29 September 1997 – Subject To Change

The merging rules for noncacheable space loads (physical address bit <39>=1) are as
follows:

• Merging only occurs if the new load miss addresses a different INT8 from all
loads previously entered or merged to that MAF entry. If it addresses the same
INT8, the machine traps and replays the instruction. This continues until the
MAF entry is retired, at which time the trapping load hits in the Dcache.

• Only quadwords can merge with other quadwords, provided they are not in the
same INT8. Bytes, words, and longwords cannot merge.

• Merging stops for a load instruction to noncacheable space as soon as the CBU
accepts the reference. This permits the system environment to access only those
INT8s that are actually requested by load instructions.

• All accesses that could not merge (except those to the same INT8) are allocated
new MAF entries.

Noncacheable space load-merging is prevented when MAF_MODE<03>=1. All
DREAD load-merging is prevented when MAF_MODE<00>=1 (see
Section 5.2.16).

At the external interface, noncacheable read instructions indicate to the system envi-
ronment which INT32 is addressed and which of the INT8s within the INT32 are
actually accessed. Each load for longword, word, or byte data results in a separate
request to the CBU.

2.5.2 Read Requests to the CBU

Merging is done for two load instructions that issued simultaneously, and both miss;
in effect, as if they were issued sequentially with the load from IEU pipe E0 first.
The MTU sends a read request to the CBU for each MAF entry allocated.

Miss Address File and Load-Merging Rules

A bypass is provided so that if the load instruction issues in IEU pipe E0, and no
MAF requests are pending, the load instruction’s read request is sent to the CBU
immediately, provided the CBU is ready for such an access. Similarly, if a load
instruction from IEU pipe E1 misses, and there was no load instruction in pipe E0 to
begin with, the E1 load miss is sent to the CBU immediately. In either case, the
bypassed read request is aborted if the load hits in the Dcache, merges in the MAF,
or is replay trapped by the MTU.

2.5.3 MAF Entries and MAF Full Conditions

There are six MAF entries for load misses and four for IDU instruction fetches and

F
rs
AF
F

The
he
sec-
nly
t
ses
t the

2).
ction
tore
of

rite)
 load
bble
29 September 1997 – Subject To Change Internal Architecture 2–31

prefetches. Load misses are usually the highest MTU priority request.

If the MAF is full and a load instruction issues in pipe E0, or if five of the six MA
entries are valid and a load instruction issues in pipe E1, an MAF full trap occu
causing the IDU to restart execution with the load instruction that caused the M
overflow. When the load instruction arrives at the MAF the second time, an MA
entry may have become available. If not, the MAF full trap occurs again.

2.5.4 Fill Operation

Eventually, the CBU provides the data requested for a given MAF entry (a fill).
CBU requests that the IDU allocate up to three consecutive “bubble” cycles in t
IEU pipelines. The first bubble prevents any store instruction from issuing. The
ond bubble prevents any instructions from issuing. The third bubble prevents o
MTU instructions (particularly load and store instructions) from issuing. The firs
bubble prevents store data from colliding with the fill in the data cache. The fill u
the second bubble cycle as it progresses down the IEU/MTU pipelines to forma
data and load the register file. It uses the third bubble cycle to fill the Dcache.

An instruction typically writes the register file in pipeline stage 6 (see Figure 2–
Because there is only one register file write port per integer pipeline, a no-instru
bubble cycle is required to reserve a register file write port for the fill. A load or s
instruction accesses the Dcache in the second half of stage 4 and the first half
stage 5. The fill operation writes the Dcache, making it unavailable for other
accesses at that time. Relative to the register file write operation, the Dcache (w
access for a fill occurs a cycle later than the Dcache access for a load hit. Only
and store instructions use the Dcache in the pipeline. Therefore, the second bu
reserved for a fill is a no-MTU-instruction bubble.

MTU Store Instruction Execution

Up to two floating or integer registers may be written for each CBU fill cycle. Fills
deliver 32 bytes in two cycles: two INT8s per cycle. The MAF merging rules ensure
that there is no more than one register to write for each INT8, so that there is a regis-
ter file write port available for each INT8. After appropriate formatting, data from
each INT8 is written into the IRF or FRF provided there is a miss recorded for that
INT8.

Load misses are all checked against the write buffer contents for conflicts between
new load instructions and previously issued store instructions. Refer to Section 2.7
for more information on write operations.
2–32 Internal Architecture 29 September 1997 – Subject To Change

LDL_L and LDQ_L instructions always allocate a new MAF entry if they miss the
Dcache. LDL_L and LDQ_L instructions that hit in the Dcache are retired by the
MTU immediately. No load instructions that follow an LDL_L or LDQ_L instruc-
tion are allowed to merge with it. After an LDL_L or LDQ_L instruction is issued
(and misses in the Dcache), the IDU does not issue any more MTU instructions until
the MTU has successfully sent the LDL_L or LDQ_L instruction to the CBU. This
guarantees correct ordering between an LDL_L or LDQ_L instruction and a subse-
quent STL_C or STQ_C instruction even if they access different addresses.

2.6 MTU Store Instruction Execution

Store instructions execute in the MTU by:

1. Reading the Dcache tag store in the pipeline stage in which a load instruction
would read the Dcache

2. Checking for a hit in the next stage

3. Writing the Dcache data store instruction if there is a hit in the second (follow-
ing) pipeline stage

Load instructions are not allowed to issue in the second cycle after a store instruction
(one bubble cycle). Other instructions can be issued in that cycle. Store instructions
can issue at the rate of one per cycle because store instructions in the Dstream do not
conflict in their use of resources. The Dcache tag store and Dcache data store are the
principal resources. However, a load instruction uses the Dcache data store in the
same early stage that it uses the Dcache tag store. Therefore, a load instruction would
conflict with a store instruction if it were issued in the second cycle after any store
instruction. Refer to Section 2.2 for more information on store instruction execution
in the pipeline.

Write Buffer and the WMB Instruction

A load instruction that is issued one cycle after a store instruction in the pipeline cre-
ates a conflict if both access exactly the same memory location. This occurs because
the store instruction has not yet updated the location when the load instruction reads
it. This conflict is handled by forcing the load instruction to replay trap. The IDU
flushes the pipeline and restarts execution from the load instruction. By the time the
load instruction arrives at the Dcache the second time, the conflicting store instruc-
tion has written the Dcache and the load instruction is executed normally.

Software should not load data immediately after storing it. The replay trap that is
incurred “costs” seven cycles. The best solution is to schedule the load instruction to
issue three cycles after the store. No issue stalls or replay traps will occur in that

uc-
re-

ore
sent in

 in
m

e

d in

uffer
2.7
29 September 1997 – Subject To Change Internal Architecture 2–33

case. If the load instruction is scheduled to issue two cycles after the store instr
tion, it will be issue-stalled for one cycle. This is not an optimal solution, but is p
ferred over incurring a replay trap on the load instruction.

For each store instruction, a search of the MAF is done to detect load-before-st
hazards. If a store instruction is executed, and a load of the same address is pre
the MAF, two things happen:

1. Bits are set in each conflicting MAF entry to prevent its fill from being placed
the Dcache when it arrives, and to prevent subsequent load instructions fro
merging with that MAF entry.

2. Conflict bits are set with the store instruction in the write buffer to prevent th
store instruction from being issued until all conflicting load instructions have
been issued to the CBU.

Conflict checking is done at the 32-byte block granularity. This ensures proper
results from the load instructions and prevents incorrect data from being cache
the Dcache.

A check is performed for each new store against store instructions in the write b
that have already been sent to the CBU but have not been completed. Section
describes this process.

2.7 Write Buffer and the WMB Instruction

The following sections describe the write buffer and the WMB instruction.

Write Buffer and the WMB Instruction

2.7.1 The Write Buffer

The write buffer contains six fully associative 32-byte entries. The purpose of the
write buffer is to minimize the number of CPU stall cycles by providing a finite,
high-bandwidth resource for receiving store data. This is required because the
21164PC can generate store data at the peak rate of one INT8 every CPU cycle. This
is greater than the average rate at which the Bcache can accept the data.

In addition to HW_ST and other store instructions, the STQ_C and STL_C instruc-
tions are also written into the write buffer and sent to the CBU. However, unlike
store instructions, these write buffer-directed instructions are never merged into a
2–34 Internal Architecture 29 September 1997 – Subject To Change

write buffer entry with other instructions.

2.7.2 The Write Memory Barrier (WMB) Instruction

The memory barrier (MB) instruction is suitable for ordering memory references of
any kind. The WMB instruction forces ordering of write operations only (store
instructions). The WMB instruction has a special effect on the write buffer. When it
is executed, a bit is set in every write buffer entry containing valid store data that will
prevent future store instructions from merging with any of the entries. Also, the next
entry to be allocated is marked with a WMB flag. At this point, the entry marked
with the WMB flag does not yet have valid data in it. When an entry marked with a
WMB flag is ready to issue to the CBU, the entry is not issued until every previously
issued write instruction is complete. This ensures correct ordering between store
instructions issued before the WMB instruction and store instructions issued after it.

Each write buffer entry contains a content-addressable memory (CAM) for holding
physical address bits <39:05>, 32 bytes of data, 32-byte mask bits (that indicate
which of the 32 bytes in the entry contain valid data), and miscellaneous control bits.
Among the control bits are the WMB flag, and a no-merge bit, which indicates that
the entry is closed to further merging.

2.7.3 Entry-Pointer Queues

Two entry-pointer queues are associated with the write buffer: a free-entry queue and
a pending-request queue. The free-entry queue contains pointers to available invalid
write buffer entries. The pending-request queue contains pointers to valid write
buffer entries that have not yet been issued to the CBU. The pending-request queue
is ordered in allocation order.

Write Buffer and the WMB Instruction

Each time the write buffer is presented with a store instruction, the physical address
generated by the instruction is compared to the address in each valid write buffer
entry that is open for merging. If the address is in the same INT32 as an address in a
valid write buffer entry (that also contains a store instruction), and the entry is open
for merging, then the new store data is merged into that entry and the entry’s byte
mask bits are updated. If no matching address is found, or all entries are closed to
merging, then the store data is written into the entry at the top of the free-entry
queue. This entry is validated, and a pointer to the entry is moved from the free-entry
queue to the pending-request queue.

 pro-

ds the
oves
eue.
TU,
U
iting
 in

 differ-

is
rit-

 one
29 September 1997 – Subject To Change Internal Architecture 2–35

2.7.4 Write Buffer Entry Processing

When the number of entries in the pending-request queue reaches the number
grammed in MAF_MODE<WB_SET_LO_THRESH>4, the MTU begins arbitration
with the other MTU queue requests. Once the request is granted, the MTU sen
entry at the head of the pending-request queue to the CBU. The MTU then rem
the entry from the pending-request queue without placing it in the free-entry qu
When the CBU has completely processed the write buffer entry, it notifies the M
and the now invalid write buffer entry is placed in the free-entry queue. The MT
may request that up to five additional write buffer entries be processed while wa
for the CBU to finish the first. The write buffer entries are invalidated and placed
the free-entry queue in the order that the requests complete. This order may be
ent from the order in which the requests were made.

The MTU sends write requests from the write buffer to the CBU. The CBU pro-
cesses these requests according to the cache coherence protocol. Typically, th
involves loading the target block into the Bcache, making it writable, and then w
ing it. Because the Bcache is write-back, this completes the operation.

The MTU continues to request that write buffer entries be processed as long as
of the following occurs:

• One buffer contains an STQ_C or STL_C instruction

• One buffer is marked by a WMB flag

• An MB instruction is being executed by the MTU

4 The following actions can also cause the WB to begin arbitration: (1) an MB or WMB
instruction is issued, or (2) 264 cycles have elapsed without completing a write operation
while there were pending write operations in the WB (triggered by the WB write counter).

Performance Measurement Support–Performance Counters

• The number of entries in the write buffer exceeds the number programmed in
MAF_MODE<WB_CLR_LO_THRESH>.

This ensures that these instructions complete as quickly as possible.

The MTU requests that a write buffer entry be processed every 264 cycles (provided
there is a valid entry in the write buffer), even if the write buffer is not arbitrating.
This ensures that write instructions do not wait forever to be written to memory.
(This is triggered by a free-running timer that is reset each time a write operation is
completed.)

When an LDL_L or LDQ_L instruction is processed by the MTU, the MTU requests

s is
e
c-
BU
ame

r
con-

hip in
ding-
2–36 Internal Architecture 29 September 1997 – Subject To Change

processing of the next pending write buffer request. This increases the chances of the
write buffer being empty when an STL_C or STQ_C instruction is issued.

Every store instruction that does not merge in the write buffer is checked against
every valid entry. If any entry is an address match, then the WMB flag is set on the
newly allocated write buffer entry. This prevents the MTU from concurrently send-
ing two write instructions to exactly the same block in the CBU.

Load misses are checked in the write buffer for conflicts. The granularity of this
check is an INT32. Any load instruction matching any write buffer entry’s addres
considered a hit even if it does not access a byte marked for update in that writ
buffer entry. If a load hits in the write buffer, a conflict bit is set in the load instru
tion’s MAF entry, which prevents the load instruction from being issued to the C
before the conflicting write buffer entry has been issued and completed. At the s
time, the no-merge bit is set in every write buffer entry with which the load hit. A
write buffer flush flag is also set. The MTU continues to request that write buffe
entries be processed until all the entries that were ahead of, and including, the
flicting write instructions at the time of the load hit have been processed.

2.7.5 Ordering of Noncacheable Space Write Instructions

Special logic ensures that write instructions to noncacheable space are sent offc
the order in which their corresponding buffers were allocated (placed in the pen
request queue).

2.8 Performance Measurement Support–Performance
Counters

The 21164PC contains a performance-recording feature. The implementation of this
feature provides a mechanism to count various hardware events and causes an inter-
rupt upon counter overflow. Interrupts are triggered six cycles after the event and,

Performance Measurement Support–Performance Counters

therefore, the exception PC might not reflect the exact instruction causing counter
overflow. Three counters are provided to allow accurate comparison of two variables
under a potentially nonrepeatable experimental condition. The three counters are
designated counter 0 (16 bits), counter 1 (16 bits), and counter 2 (14 bits).

Counter inputs include:

• Issues

• Nonissues

• Total cycles
29 September 1997 – Subject To Change Internal Architecture 2–37

• Pipe dry

• Pipe freeze

• Mispredicts and cache misses

• Counts for various instruction classifications

For information about counter control, refer to the following IPR descriptions:

• Hardware interrupt clear (HWINT_CLR) register (see Section 5.1.23)

• Interrupt summary register (ISR) (see Section 5.1.24)

• Performance counter (PMCTR) register (see Section 5.1.27)

• CBU configuration control (CBOX_CONFIG2) register bits <13:08> (see
Section 5.3.4)

2.8.1 CBU Performance Counters

The counters in the CBU (counters 0 and 1) are used to count Bcache and system bus
events. There are request events from the MTU to the CBU (three types), requests
from the CBU to the system (three types), and requests from the system to the CBU
(four types).

MTU-to-CBU Requests

The MTU can issue the following requests:

• Istream read request (32 bytes of instruction data), due to an Icache miss

• Dstream read request (32 bytes of noninstruction data), due to a Dcache miss

• Write request (32 bytes)

Performance Measurement Support–Performance Counters

Read and write requests can be to either cacheable or I/O space addresses, but the
CBU performance counters only count requests to cacheable address space. The
total number of read requests is equal to the sum of the Dstream read requests and
the Istream read requests.

CBU-to-System Requests

The CBU can issue the following requests to the system:

• READ MISS commands

• BCACHE VICTIM commands
2–38 Internal Architecture 29 September 1997 – Subject To Change

• WRITE BLOCK commands

READ MISS commands to I/O space and WRITE BLOCK commands (which are
always to I/O space on the 21164PC) are not counted by the performance counters.
BCACHE VICTIM commands are always to cacheable space and, therefore, are
always counted. READ MISS commands to cacheable space are generated when the
21164PC detects either a read miss or write miss in the Bcache. A BCACHE
VICTIM command is also generated along with the READ MISS command if the
block the request misses on is valid and dirty in the cache. In this case, the 64-byte
Bcache block is read from the Bcache and sent to the system.

System-to-CBU Requests

The system can issue the following requests to the 21164PC:

• FILL commands

• READ commands

• FLUSH commands

• INVAL commands

Cacheable FILL commands are in response to READ MISS commands and write 64
bytes of data into the Bcache. I/O space FILL commands are not counted by the
CBU performance counters. Depending on whether the miss was for a read or write
request, the 21164PC will either forward the data to the onchip caches or write data
from the write buffer into the newly filled block. The total number of FILL com-
mands is the same as the total number of READ MISS commands.

The other three system commands are external probes of the Bcache. INVAL com-
mands are not counted by the CBU performance counter.

Performance Measurement Support–Performance Counters

Misses in the onchip caches can merge in the MTU before being issued to the CBU.
Therefore, MTU read or write requests are not the same as onchip cache misses.
Also, two Bcache misses can merge in the CBU and appear on the system bus as a
single READ MISS request. Requests only merge with other requests of the same
type (that is, Istream and Dstream requests do not merge, nor does a write request
merge with a read request).

Using the Counters

The two counters work in parallel, so they can be used to determine simple ratios like
Bcache miss rate or more complex statistics like Dstream read merging in the CBU
29 September 1997 – Subject To Change Internal Architecture 2–39

(by running several tests and normalizing the results).

For example:

Bcache miss rate = 1 − (Bcache read hits/Total read requests)

Counter 0 selects 0x0 and counter 1 selects 0x1.

Dstream read merge
rate in the CBOX

= 1 − (Bcache Dstream read hits/Bcache Dstream read requests) −
(Bcache Dstream read fills/Bcache Dstream read requests)

Counter 0 selects 0x1 and counter 1 selects 0x0 on the first pass,
then counter 0 selects 0x2 and counter 1 selects 0x0 on the second
pass.

Floating-Point Control Register

2.9 Floating-Point Control Register

Figure 2–3 shows the format of the floating-point control register (FPCR) and
Table 2–10 describes the fields.

Figure 2–3 Floating-Point Control Register (FPCR) Format
31 00

63 325556575859606162

RAZ/IGN

5051525354 4849

RAZ/IGN
2–40 Internal Architecture 29 September 1997 – Subject To Change

Table 2–10 Floating-Point Control Register Bit Descriptions (Sheet 1 of 2)

Name Extent Description (Meaning When Set)

SUM <63> Summary bit. Records bitwise OR of FPCR exception bits. Equal to
FPCR<57 | 56 | 55 | 54 | 53 | 52>

INED <62> Inexact disable. Suppress INE trap and place correct IEEE nontrap-
ping result in the destination register if the 21164PC is capable of
producing correct IEEE nontrapping result.

UNFD <61> Underflow disable. Subset support: Suppress UNF trap if UNDZ is
also set and the /S qualifier is set on the instruction.

UNDZ <60> Underflow to zero. When set together with UNFD, on underflow,
the hardware places a true zero (all 64 bits zero) in the destination
register rather than the denormal number specified by the IEEE stan-
dard.

INVD
DZED

INV
DZE
OVF
UNF
INE
IOV
DYN_RM
UNDZ
UNFD

OVFD

INED
SUM LJ-05358.AI4

Floating-Point Control Register

DYN_RM <59:58> Dynamic routing mode. Indicates the rounding mode to be used by
an IEEE floating-point operate instruction when the instruction’s
function field specifies dynamic mode (/D). The assignments are:

DYN IEEE Rounding Mode Selected
00 Chopped rounding mode
01 Minus infinity
10 Normal rounding
11 Plus infinity

 a

e

-
he

Table 2–10 Floating-Point Control Register Bit Descriptions (Sheet 2 of 2)

Name Extent Description (Meaning When Set)
29 September 1997 – Subject To Change Internal Architecture 2–41

IOV <57> Integer overflow. An integer arithmetic operation or a conversion
from floating to integer overflowed the destination precision.

INE <56> Inexact result. A floating arithmetic or conversion operation gave
result that differed from the mathematically exact result.

UNF <55> Underflow. A floating arithmetic or conversion operation under-
flowed the destination exponent.

OVF <54> Overflow. A floating arithmetic or conversion operation overflowed
the destination exponent.

DZE <53> Division by zero. An attempt was made to perform a floating divid
operation with a divisor of zero.

INV <52> Invalid operation. An attempt was made to perform a floating arith
metic, conversion, or comparison operation, and one or more of t
operand values were illegal.

OVFD <51> Overflow disable. Not supported.

DZED <50> Division by zero disable. Not supported.

INVD <49> Invalid operation disable. Not supported.

Reserved <48:0> Reserved. Read as zero; ignored when written.

Design Examples

2.10 Design Examples

The 21164PC can be designed into many different uniprocessor system configura-
tions. Figure 2–4 illustrates one possible configuration. This configuration employs
additional system/memory controller chipsets.

Figure 2–4 shows a typical uniprocessor system with a board-level cache. This sys-
tem configuration could be used in standalone or networked workstations.

Figure 2–4 Typical Uniprocessor Configuration
2–42 Internal Architecture 29 September 1997 – Subject To Change

PCA019

21164PC

Memory
and

External
Cache
Tag

External
Cache
Data

I/O
Interface

DRAM
Bank

DRAM
Bank

Main Memory

I/O Bus

Addr/cmd

Data

 3
Hardware Interface
29 September 1997 – Subject To Change Hardware Interface 3–1

This chapter contains the 21164PC microprocessor logic symbol and provides a list
of signal names and their functions.

3.1 21164PC Microprocessor Logic Symbol

Figure 3–1 shows the logic symbol for the 21164PC chip.

21164PC Microprocessor Logic Symbol

Figure 3–1 21164PC Microprocessor Logic Symbol

addr_bus_req_h

21164PC

Interface

System/Bcache

addr_h<39:4>

cack_h

data_bus_req_h
dack_h

fill_h

fill_error_h

fill_id_h

idle_bc_h

data_h<127:0>

addr_res_h<1:0>
cmd_h<3:0>

data_ram_oe_l
data_ram_we_l<3:0>

data_adsc_l
data_adv_l

fill_dirty_h
3–2 Hardware Interface 29 September 1997 – Subject To Change

MK145506B

Interrupts

Clocks

Test Modes and

Miscellaneous

clk_mode_h<1:0>

dc_ok_h

irq_h<3:0>
mch_hlt_irq_h

osc_clk_in_l

port_mode_h<1:0>

pwr_fail_irq_h

srom_data_h

sys_mch_chk_irq_h

sys_reset_l

tck_htdi_h

temp_sense

Vss

Vddi

osc_clk_in_h

tms_h

index_h<21:4>

int4_valid_h<3:0>

tag_data_h<32:19>

tag_data_par_h
tag_dirty_h
tag_ram_oe_l
tag_ram_we_l
tag_valid_h
victim_pending_h

cpu_clk_out_h

srom_clk_h

srom_oe_l

srom_present_l

sys_clk_out1_h

sys_clk_out2_h

tdo_h

test_status_h<1>

trst_l

st_clk1_h
st_clk2_h

Vdd

st_clk3_h

lw_parity_h<3:0>

21164PC Signal Names and Functions

3.2 21164PC Signal Names and Functions

The 21164PC is contained in a 413-pin interstitial pin grid array (IPGA) package.
There are 264 functional signal pins, 2 spare signal pins (unused), 5 voltage refer-
ence pins (unused), 46 external power (Vdd) pins, 22 internal power (Vddi) pins,
and 74 ground (Vss) pins.

The following table defines the 21164PC signal types referred to in this section:

Signal Type Definition
29 September 1997 – Subject To Change Hardware Interface 3–3

B Bidirectional

I Input only

O Output only

21164PC Signal Names and Functions

The remaining two tables describe the function of each 21164PC external signal.
Table 3–1 lists all signals in alphanumeric order. This table provides full signal
descriptions. Table 3–2 lists signals by function and provides an abbreviated descrip-
tion.

Table 3–1 21164PC Signal Descriptions (Sheet 1 of 10)

Signal Type Count Description

addr_h<39:4> B 36 Address bus. These bidirectional signals provide the address of
the requested data or operation between the 21164PC and the
system. If addr_h<39> is asserted, then the reference is to

,
ck

nal
3–4 Hardware Interface 29 September 1997 – Subject To Change

noncached, I/O memory space.

When the byte/word instructions are used and addr_h<39> is
asserted, six additional bits of information are communicated
over the pin bus. Two of the new bits are driven over
addr_h<38:37>, becoming transfer_size<1:0>, with the fol-
lowing values:

00 Size = 8 bytes
01 Size = 4 bytes
10 Size = 2 bytes
11 Size = 1 byte

addr_bus_req_h I 1 Address bus request. The system interface uses this signal to
gain control of the addr_h<39:4> and cmd_h<3:0> pins (see
Figure 4–22).

addr_res_h<1:0> O 2 Address response bits <1> and <0>. For system commands
the 21164PC uses these pins to indicate the state of the blo
in the Bcache:

cack_h I 1 Command acknowledge. The system interface uses this sig
to acknowledge any one of the commands driven by the
21164PC.

Bits Command Meaning

00 NOP Nothing.

01 NOACK Data not found or clean.

10 — Reserved.

11 ACK/Bcache Data from Bcache.

21164PC Signal Names and Functions

clk_mode_h<1:0> I 2 Clock test mode. These signals specify a relationship between
osc_clk_in_h,l, the CPU cycle time, and the duty-cycle equal-
izer. These signals should be deasserted in normal operation
mode.

Table 3–1 21164PC Signal Descriptions (Sheet 2 of 10)

Signal Type Count Description

Bits Description

00 CPU clock frequency is equal to the input clock fre-
quency.
29 September 1997 – Subject To Change Hardware Interface 3–5

01 CPU clock frequency is equal to the input clock fre-
quency, with the onchip duty-cycle equalizer enabled.

10 Initialize the CPU clock, allowing the system clock to be
synchronized to a stable reference clock.

11 Initialize the CPU clock, allowing the system clock to be
synchronized to a stable reference clock, with the onchip
duty-cycle equalizer enabled.

21164PC Signal Names and Functions

cmd_h<3:0> B 4 Command bus. These signals drive and receive the commands
from the command bus. The following tables define the com-
mands that can be driven on the cmd_h<3:0> bus by the
21164PC or the system. For additional information, refer to
Section 4.1.1.1.

Table 3–1 21164PC Signal Descriptions (Sheet 3 of 10)

Signal Type Count Description

21164PC Commands to System:

cmd_h
3–6 Hardware Interface 29 September 1997 – Subject To Change

<3:0> Command Meaning

0000 NOP Nothing.

0001 — Reserved.

0010 — Reserved.

0011 — Reserved.

0100 — Reserved.

0101 — Reserved.

0110 WRITE BLOCK Request to write a block.

0111 — Reserved.

1000 READ MISS0 Request for data.

1001 READ MISS1 Request for data.

1010 — Reserved.

1011 — Reserved.

1100 BCACHE VICTIM Bcache victim should be
removed.

1101 — Reserved.

1110 — Reserved.

1111 — Reserved.

21164PC Signal Names and Functions

Table 3–1 21164PC Signal Descriptions (Sheet 4 of 10)

Signal Type Count Description

System Commands to 21164PC:

cmd_h
<3:0> Command Meaning

0000 NOP Nothing.

0001 FLUSH Removes block from caches;
return dirty data.
29 September 1997 – Subject To Change Hardware Interface 3–7

cpu_clk_out_h O 1 CPU clock output. This signal is used for test purposes.

dack_h I 1 Data acknowledge. The system interface uses this signal to
control data transfer between the 21164PC and the system.

data_h<127:0> B 128 Data bus. These signals are used to move data between the
21164PC, the system, and the Bcache.

data_adsc_l O 1 Load a new address into the Bcache SSRAM.

data_adv_l O 1 Advances the Bcache index to the next address.

data_bus_req_h I 1 Data bus request. If the 21164PC samples this signal asserted
on the rising edge of sysclk n, then the 21164PC does not drive
the data bus on the rising edge of sysclk n+1. Before asserting
this signal, the system should assert idle_bc_h for the correct
number of cycles. If the 21164PC samples this signal deas-
serted on the rising edge of sysclk n, then the 21164PC drives
the data bus on the rising edge of sysclk n+1. For timing
details, refer to Section 4.9.4.

data_ram_oe_l O 1 Data RAM output enable. This signal is asserted for Bcache
read operations.

0010 INVALIDATE Invalidates the block from
caches.

0011 — Reserved.

0100 READ Read a block.

0101 — Reserved.

0111 — Reserved.

1xxx — Reserved.

21164PC Signal Names and Functions

data_ram_we_l<3:0> O 4 Data RAM write-enable. These signals are asserted for any
Bcache write operation. Refer to Section 5.3.1 for timing
details.

dc_ok_h I 1 dc voltage OK. Must be deasserted until dc voltage reaches
proper operating level. After that, dc_ok_h is asserted.

fill_h I 1 Fill warning. If the 21164PC samples this signal asserted on
the rising edge of sysclk n, then the 21164PC provides the
address indicated by fill_id_h to the Bcache on the rising edge

Table 3–1 21164PC Signal Descriptions (Sheet 5 of 10)

Signal Type Count Description
3–8 Hardware Interface 29 September 1997 – Subject To Change

of sysclk n+1. The Bcache begins to write in that sysclk. At the
end of sysclk n+1, the 21164PC waits for the next sysclk and
then begins the write operation again if dack_h is not asserted.
Refer to Section 4.9.3 for timing details.

fill_dirty_h I 1 Fill dirty. If the block being filled is dirty, this pin should be
asserted.

fill_error_h I 1 Fill error. If this signal is asserted during a fill from memory, it
indicates to the 21164PC that the system has detected an
invalid address or hard error. The system still provides an
apparently normal read sequence with correct ECC/parity
though the data is not valid. The 21164PC traps to the machine
check (MCHK) PALcode entry point and indicates a serious
hardware error. fill_error_h should be asserted when the data
is returned. Each assertion produces a MCHK trap.

fill_id_h I 1 Fill identification. Asserted with fill_h to indicate which regis-
ter is used. The 21164PC supports two outstanding load
instructions. If this signal is asserted when the 21164PC sam-
ples fill_h asserted, then the 21164PC provides the address
from miss register 1. If it is deasserted, then the address in miss
register 0 is used for the read operation.

idle_bc_h I 1 Idle Bcache. When asserted, the 21164PC finishes the current
Bcache read or write operation but does not start a new read or
write operation until the signal is deasserted. The system inter-
face must assert this signal in time to idle the Bcache before
fill data arrives.

index_h<21:4> O 18 Index. These signals index the Bcache.

21164PC Signal Names and Functions

int4_valid_h<3:0> O 4 INT4 data valid. During write operations to noncached space,
these signals are used to indicate which INT4 bytes of data are
valid. This is useful for noncached write operations that have
been merged in the write buffer.

Table 3–1 21164PC Signal Descriptions (Sheet 6 of 10)

Signal Type Count Description

int4_valid_h<3:0> Write Meaning

xxx1 data_h<31:0> valid
29 September 1997 – Subject To Change Hardware Interface 3–9

During read operations to noncached space, these signals indi-
cate which INT8 bytes of a 32-byte block need to be read and
returned to the processor. This is useful for read operations to
noncached memory.

Note: For both read and write operations, multiple
int4_valid_h<3:0> bits can be set simultaneously.

xx1x data_h<63:32> valid

x1xx data_h<95:64> valid

1xxx data_h<127:96> valid

int4_valid_h<3:0> Read Meaning

xxx1 data_h<63:0> valid

xx1x data_h<127:64> valid

x1xx data_h<191:128> valid

1xxx data_h<255:192> valid

21164PC Signal Names and Functions

When addr_h<39> is asserted, the int4_valid_h<3:0> signals
are considered the addr_h<3:0> bits required for byte/word
transactions. The functionality of these bits is tied to the value
stored in addr_h<38:37>.

For read transactions:

Table 3–1 21164PC Signal Descriptions (Sheet 7 of 10)

Signal Type Count Description

addr_h
<38:37> int4_valid_h<3:0> Value
3–10 Hardware Interface 29 September 1997 – Subject To Change

For write transactions:

00 Valid INT8 mask

01 addr_h<3:2> valid on int4_valid_h<3:2>;
int4_valid<1:0> undefined

10 addr_h<3:1> valid on int4_valid_h<3:1>;
int4_valid<0> undefined

11 addr_h<3:0> valid on int4_valid_h<3:0>

addr_h
<38:37> int4_valid_h<3:0> Value

00 Valid INT4 mask

01 Valid INT4 mask

10 addr_h<3:1> valid on int4_valid_h<3:1>;
int4_valid<0> undefined

11 addr_h<3:0> valid on int4_valid_h<3:0>

21164PC Signal Names and Functions

irq_h<3:0> I 4 System interrupt requests. These signals have multiple modes
of operation. During normal operation, these level-sensitive
signals are used to signal interrupt requests. During initializa-
tion, these signals are used to set up the CPU cycle time divi-
sor for sys_clk_out1_h as follows:

al

ted.

Table 3–1 21164PC Signal Descriptions (Sheet 8 of 10)

Signal Type Count Description

irq_h<3> irq_h<2> irq_h<1> irq_h<0> Ratio

Low High Low Low 4
29 September 1997 – Subject To Change Hardware Interface 3–11

lw_parity_h<3:0> B 4 Longword parity. These signals set even INT4 parity for the
current data cycle. Refer to Section 4.12.1 for information on
the purpose of each lw_parity_h bit.

mch_hlt_irq_h I 1 Machine halt interrupt request. This signal has multiple modes
of operation. During initialization, this signal is used to set up
sys_clk_out2_ h delay (see Table 4–3). During normal opera-
tion, it is used to signal a halt request.

osc_clk_in_h
osc_clk_in_l

I
I

1
1

Oscillator clock inputs. These signals provide the differential
clock input that is the fundamental timing of the 21164PC.
These signals are driven at the same frequency as the intern
clock frequency (clk_mode_h<1:0> = 01).

port_mode_h<1:0> I 2 Select test port interface modes (normal, manufacturing, and
debug). For normal operation, both signals must be deasser

Low High Low High 5

Low High High Low 6

Low High High High 7

High Low Low Low 8

High Low Low High 9

High Low High Low 10

High Low High High 11

High High Low Low 12

High High Low High 13

High High High Low 14

High High High High 15

21164PC Signal Names and Functions

pwr_fail_irq_h I 1 Power failure interrupt request. This signal has multiple modes
of operation. During initialization, this signal is used to set up
sys_clk_out2_ h delay (see Table 4–3). During normal opera-
tion, this signal is used to signal a power failure.

srom_clk_h O 1 Serial ROM clock. Supplies the clock that causes the SROM to
advance to the next bit. The cycle time of this clock is 128
times the cycle time of the CPU clock.

srom_data_h I 1 Serial ROM data. Input for the SROM.

dy

lti-

e

 its

Table 3–1 21164PC Signal Descriptions (Sheet 9 of 10)

Signal Type Count Description
3–12 Hardware Interface 29 September 1997 – Subject To Change

srom_oe_l O 1 Serial ROM output enable. Supplies the output enable to the
SROM.

srom_present_l1 B 1 Serial ROM present. Indicates that SROM is present and rea
to load the Icache.

st_clk1_h O 1 STRAM clock. Clock for synchronously timed RAMs
(STRAMs). For Bcache, this signal is synchronous with
index_h<21:4> during private read and write operations, and
with sys_clk_out1_h during read and fill operations.

st_clk2_h O 1 This signal is a duplicate of st_clk1_h, to increase the fanout
capability of the signal.

st_clk3_h O 1 This signal is another duplicate of st_clk1_h, to increase the
fanout capability of the signal.

sys_clk_out1_h O 1 System clock output. Programmable system clock
(cpu_clk_out_h divided by a value of 3 to 15) is used for
board-level cache and system logic.

sys_clk_out2_h O 1 System clock output. A version of sys_clk_out1_h delayed by
a programmable amount from 0 to 7 CPU cycles.

sys_mch_chk_irq_h I 1 System machine check interrupt request. This signal has mu
ple modes of operation. During initialization, it is used to set
up sys_clk_out2_h delay (see Table 4–3). During normal
operation, it is used to signal a machine interrupt check
request.

sys_reset_l I 1 System reset. This signal protects the 21164PC from damag
during initial power-up. It must be asserted until dc_ok_h is
asserted. After that, it is deasserted and the 21164PC begins
reset sequence.

21164PC Signal Names and Functions

tag_data_h<32:19> B 14 Bcache tag data bits. This bit range supports .5MB to 4MB
Bcaches.

tag_data_par_h B 1 Tag data parity bit. This signal indicates odd parity for
tag_data_h<32:19>.

tag_dirty_h B 1 Tag dirty state bit. This bit is private to the 21164PC.

tag_ram_oe_l O 1 Tag RAM output enable. This signal is asserted during any
Bcache read operation.

em-
-

an-
or-

Table 3–1 21164PC Signal Descriptions (Sheet 10 of 10)

Signal Type Count Description
29 September 1997 – Subject To Change Hardware Interface 3–13

1 This signal is shown as bidirectional. However, for normal operation, it is input only. The output function is
used during manufacturing test and verification only.

tag_ram_we_l O 1 Tag RAM write-enable. This signal is asserted during any tag
write operation.

tag_valid_h B 1 Tag valid bit. During fills, this signal is asserted to indicate
that the block has valid data. See Table 4–5 for information
about Bcache protocol.

tck_h B 1 JTAG boundary-scan clock.

tdi_h I 1 JTAG serial boundary-scan data-in signal.

tdo_h O 1 JTAG serial boundary-scan data-out signal.

temp_sense I 1 Temperature sense. This signal is used to measure the die t
perature and is for manufacturing use only. For normal opera
tion, this signal must be left disconnected.

test_status_h<1> O 1 Icache test status or timeout reset. This signal is used for m
ufacturing test purposes only to extract Icache test status inf
mation from the chip.

tms_h I 1 JTAG test mode select signal.

trst_l1 B 1 JTAG test access port (TAP) reset signal.

victim_pending_h O 1 Victim pending. When asserted, this signal indicates that the
current read miss has generated a victim.

21164PC Signal Names and Functions

Table 3–2 lists signals by function and provides an abbreviated description.

Table 3–2 21164PC Signal Descriptions by Function (Sheet 1 of 3)

Signal Type Count Description

Clocks

clk_mode_h<1:0> I 2 Clock test mode.

cpu_clk_out_h O 1 CPU clock output.

osc_clk_in_h,l I 2 Oscillator clock inputs.
3–14 Hardware Interface 29 September 1997 – Subject To Change

st_clk1_h O 1 Bcache STRAM clock output.

st_clk2_h O 1 Bcache STRAM clock output.

st_clk3_h O 1 Bcache STRAM clock output.

sys_clk_out1_h O 1 System clock output.

sys_clk_out2_h O 1 System clock output.

sys_reset_l I 1 System reset.

Bcache

data_h<127:0> B 128 Data bus.

data_adsc_l O 1 Data RAM address load enable.

data_adv_l O 1 Data RAM address advance enable.

data_ram_oe_l O 1 Data RAM output enable.

data_ram_we_l<3:0> O 4 Data RAM write-enable bits.

index_h<21:4> O 18 Index.

lw_parity_h<3:0> B 4 Data check.

tag_data_h<32:19> B 14 Bcache tag data bits.

tag_data_par_h B 1 Tag data parity bit.

tag_dirty_h B 1 Tag dirty state bit.

tag_ram_oe_l O 1 Tag RAM output enable.

tag_ram_we_l O 1 Tag RAM write-enable.

tag_valid_h B 1 Tag valid bit.

21164PC Signal Names and Functions

System Interface

addr_h<39:4> B 36 Address bus.

addr_bus_req_h I 1 Address bus request.

addr_res_h<1:0> O 2 Address response.

cack_h I 1 Command acknowledge.

cmd_h<3:0> B 4 Command bus.

Table 3–2 21164PC Signal Descriptions by Function (Sheet 2 of 3)

Signal Type Count Description
29 September 1997 – Subject To Change Hardware Interface 3–15

dack_h I 1 Data acknowledge.

data_bus_req_h I 1 Data bus request.

fill_h I 1 Fill warning.

fill_dirty_h I 1 Fill dirty.

fill_error_h I 1 Fill error.

fill_id_h I 1 Fill identification.

idle_bc_h I 1 Idle Bcache.

int4_valid_h<3:0> O 4 INT4 data valid.

victim_pending_h O 1 Victim pending.

Interrupts

irq_h<3:0> I 4 System interrupt requests.

mch_hlt_irq_h I 1 Machine halt interrupt request.

pwr_fail_irq_h I 1 Power failure interrupt request.

sys_mch_chk_irq_h I 1 System machine check interrupt request.

Test Modes and Miscellaneous

dc_ok_h I 1 dc voltage OK.

port_mode_h<1:0> I 2 Selects the test port interface mode (normal, man-
ufacturing, and debug).

srom_clk_h O 1 Serial ROM clock.

srom_data_h I 1 Serial ROM data.

21164PC Signal Names and Functions

srom_oe_l O 1 Serial ROM output enable.

srom_present_l1 B 1 Serial ROM present.

tck_h B 1 JTAG boundary-scan clock.

tdi_h I 1 JTAG serial boundary-scan data in.

tdo_h O 1 JTAG serial boundary-scan data out.

temp_sense I 1 Temperature sense.

Table 3–2 21164PC Signal Descriptions by Function (Sheet 3 of 3)

Signal Type Count Description
3–16 Hardware Interface 29 September 1997 – Subject To Change

1 This signal is shown as bidirectional. However, for normal operation, it is input only. The output
function is used during manufacturing test and verification only.

test_status_h<1> O 1 Icache test status or timeout reset.

tms_h I 1 JTAG test mode select.

trst_l1 B 1 JTAG test access port (TAP) reset.

 4
Clocks, Cache, and External Interface
29 September 1997 – Subject To Change Clocks, Cache, and External Interface 4–1

This chapter describes the 21164PC microprocessor external interface, which
includes the backup cache (Bcache) and system interfaces. It also describes the clock
circuitry, interrupt signals, and parity generation. It is organized as follows:

• Introduction to the external interface

• Clocks

• Physical address considerations

• Bcache structure and operation

• Cache coherency

• 21164PC-to-Bcache transactions

• 21164PC-initiated system transactions

• System-initiated transactions

• Data bus and command/address bus contention

• 21164PC interface restrictions

• 21164PC/system race conditions

• Data integrity and Bcache errors

• Interrupts

Chapter 3 lists and defines all 21164PC hardware interface signal pins. Chapter 9
describes the 21164PC hardware interface electrical requirements.

Introduction to the External Interface

4.1 Introduction to the External Interface

A 21164PC-based system can be divided into three major sections:

• 21164PC microprocessor

• External Bcache

• System interface logic

The 21164PC external interface is optimized for uniprocessor-based systems and
mandates few design rules. The interface includes a 128-bit bidirectional data bus, a
36-bit bidirectional address bus, and several control signals.

ur-

ce is
d with

BU.

s the
by

pter 9.
4–2 Clocks, Cache, and External Interface 29 September 1997 – Subject To Change

Read latencies and data repetition rates of the external Bcache can be programmed
by means of register bits. The Bcache clock frequency for private read and write
operations is independent of the system interface clock frequency and makes for a
more flexible design.

The cache system supports a 64-byte block size to the external Bcache.

Figure 4–1 shows a simplified view of the external interface. The function and p
pose of each signal is described in Chapter 3.

4.1.1 System Interface

This section describes the system or external bus interface. The system interfa
made up of bidirectional address and command buses, a data bus that is share
the Bcache interface, and several control signals.

The system interface is under the control of the bus interface unit (BIU) in the C
The system interface is a 128-bit bidirectional data bus.

The cycle time of the system interface is programmable to speeds of 4 to 15 time
CPU cycle time (sysclk ratio). All system interface signals are driven or sampled
the 21164PC on the rising edge of signal sys_clk_out1_h. In this chapter, this edge
is sometimes referred to as “sysclk.” Precisely when interface signals rise and fall
does not matter as long as they meet the setup and hold times specified in Cha

Introduction to the External Interface

Figure 4–1 21164PC System/Bcache Interface

System Memory
and I/O

21164PC
addr_h<39:4>

addr_bus_req_h

cack_h

cmd_h<3:0>

dack_h

data_bus_req_h

fill_h

System
Interface

addr_res_h<1:0>
29 September 1997 – Subject To Change Clocks, Cache, and External Interface 4–3

4.1.1.1 Commands and Addresses

The 21164PC can take up to two commands from the system at a time. The Bcache is
probed to determine what must be done with the command.

• If nothing is to be done, the 21164PC acknowledges receiving the command.

• If a Bcache read or invalidate operation is required, the 21164PC performs the
task as soon as the Bcache becomes free. The 21164PC acknowledges receiving
the command at the start of the Bcache transaction.

MK5504B

Tag State
V DSRAM

index_h<21:4>

data_h<127:0>

fill_error_h

fill_id_h

idle_bc_h

int4_valid_h<3:0>

victim_pending_h

tag_data_h<32:19>,p
tag_valid_h

tag_dirty_h

lw_parity_h<3:0>

irq_h<3:0>

mch_hlt_irq_h

pwr_fail_irq_h

sys_mch_chk_irq_h

Miss

Bcache
Interface

Interrupts

Victim
Buffers

Optional

Dcache

data_adsc_l

data_adv_l

fill_dirty_h

data_ram_we_l<3:0>

Bcache
Data

SRAM

Introduction to the External Interface

The BIU contains a three-entry BIU command/address buffer (BAF) capable of
queueing up to three Bcache misses or I/O references. These buffers are capable of
merging both read and write miss references, to reduce external system bus traffic.

4.1.2 Bcache Interface

The 21164PC includes an interface and control for a required backup cache
(Bcache). The Bcache interface features the following:

• Support for pipelined and flow-through synchronous burst SRAMs (SSRAMs)

• Nonblocking, pipelined Bcache (up to three probes in flight)

ght”
ht
4–4 Clocks, Cache, and External Interface 29 September 1997 – Subject To Change

• Fully interleaved writes to saturate write-hit traffic

• Flexible Bcache sizes (512KB - 4MB)

• Direct-mapped organization with 64-byte block size

• Read/write-allocate replacement policy

• Write-back cache policy

• A 128-bit data bus (shared with the system interface)

• 4.8 GB/s peak data transfer rate

• Programmable Bcache clock rate up to 300-MHz operation

4.1.2.1 Bcache Interface Enhancements

With the advent of commodity SSRAMs, offchip high-speed caches can now be built
at low cost to take advantage of the same performance techniques that until now had
been restricted to onchip caches. The SSRAMs contain an address register, a self-
incrementing address mechanism, and optionally, a data output register (pipelined).
The 21164PC uses these additional control features to deliver a high-performance
nonblocking, interleaved, fully pipelined Bcache interface.

4.1.2.2 Pipelined Bcache

A pipelined cache allows the processor to issue multiple cache operations that are
overlapped in time to increase throughput. The 21164PC supports pipelining of up to
three outstanding read or write probes at any given time to attain 100% data bus uti-
lization. The outstanding Bcache probes are tracked by the BIU's “Bcache in fli
(or BIF) buffer. Figure 4–2 shows the benefits of a having multiple probes in flig
for a pipelined cache.

Introduction to the External Interface

Figure 4–2 Merits of a Multiprobes In Flight – Pipelined Cache

ing

index

data

A1 A2 A3

D10 D11 D20 D21

Nonpipelined Cache:

Pipelined Cache:

latency 1 latency 2

Pipelining allows 100% utilization of the data bus.
29 September 1997 – Subject To Change Clocks, Cache, and External Interface 4–5

4.1.2.3 Write Interleaving

The 21164PC Bcache interface takes advantage of the SSRAM address input register
to employ interleaving techniques to maximize write-hit dirty bandwidth. The
Bcache interface decouples the tag and data store control to allow tag write probes to
be interleaved with data writes. Figure 4–3 shows an example of write interleav
and its ability to keep the data bus at 100% utilization.

PCA002

A1index

data

A2 A3 A4 A5 A6 A8A7

D10 D11 D20 D30D21 D31 D40 D50D41 D51

latency 1
latency 2

latency 3

Multiple probes in flight

Clocks

Figure 4–3 Tag/Data Store Interleaving

A1index A2 A3 A4 A5 A6

latency 1

Interleaving tag write probes with data write

latency 2

A1 A2 A3

Data writes interleaved with tag probes

operations allows 100% utilization of the data bus.
4–6 Clocks, Cache, and External Interface 29 September 1997 – Subject To Change

Tag probes for writes that hit clean (valid, not dirty) in the Bcache must schedule a
tag store write to update the dirty bit.

4.2 Clocks

The 21164PC develops three clock signals that are available at output pins.

The behavior of the programmable clocks during the reset sequence is described in
Section 7.1.

Signal Description

cpu_clk_out_h A 21164PC internal clock that may or may not drive the system clock.

sys_clk_out1_h A clock of programmable speed supplied to the external interface.

sys_clk_out2_h A delayed copy of sys_clk_out1_h. The delay is programmable and is
an integer number of cpu_clk_out_h periods.

PCA003

tag

data D10 D11 D20 D30D21 D31 D40 D41

latency 3
latency 4

latency 5

T1 T2 T3 T4

Hit 1 Hit 2 Hit 3 Hit 4

Clocks

4.2.1 CPU Clock

The 21164PC uses the differential input clock lines osc_clk_ in_h,l as a source to
generate its CPU clock. The input signals clk_mode_h<1:0> control generation of
the CPU clock, as listed in Table 4–1 and as shown in Figure 4–4.

The 21164PC uses clk_mode_h<0> to provide onchip capability to equalize the
duty cycle of the input clock (eliminating the need for a 2× oscillator). When
clk_mode_h<0> is asserted, the equalizing circuitry, called a symmetrator, is
enabled.

The 21164PC uses clk_mode_h<1> to reset the CPU clock. When clk_mode_h<1>
U
29 September 1997 – Subject To Change Clocks, Cache, and External Interface 4–7

is set, the internal CPU clock is reset to a known state. When it is clear, the CP
clock is driven at the same frequency as the osc_clk_h,l differential input.

Caution: A clock source should always be provided on osc_clk_ in_h,l when sig-
nal dc_ok_h is asserted.

Table 4–1 CPU Clock Generation Control

Mode clk_mode_h<1:0> Description

Normal 0 0 CPU clock frequency is the same as the input clock
frequency; symmetrator is disabled.

Normal 0 1 CPU clock frequency is the same as the input clock
frequency; symmetrator is enabled. Also used to
accommodate chip testers.

Reset 1 0 Initializes CPU clock, allowing system clock to be
synchronized to a stable reference clock; symmetrator
is disabled.

Reset 1 1 Initializes CPU clock, allowing system clock to be
synchronized to a stable reference clock; symmetrator
is enabled.

Clocks

Figure 4–4 Clock Signals and Functions

eter-
or

CPU Clock
Divider

System Clock
Divider

(/4 through /15)

(/1 or /4)

21164PC

osc_clk_in_h, l

clk_mode_h<1:0>

irq_h<3:0>

cpu_clk_out_h

sys_clk_out1_h

Symmetrator
4–8 Clocks, Cache, and External Interface 29 September 1997 – Subject To Change

4.2.2 System Clock

The CPU clock is the source clock used to generate the system clock
sys_clk_out1_h. The system clock divider controls the frequency of
sys_clk_out1_h. The divisor, 4 to 15, is obtained from the four interrupt lines
irq_h<3:0> at power-up as listed in Table 4–2. The system clock frequency is d
mined by dividing the ratio into the CPU clock frequency. Refer to Section 7.2 f
information on sysclk behavior during reset. The value is also latched into the
SYS_CLK_RATIO<3:0> field of the CBOX_STATUS IPR (bits <7:4>) for read-
only purposes.

Table 4–2 System Clock Divisor (Sheet 1 of 2)

irq_h<3> irq_h<2> irq_h<1> irq_h<0> Ratio

Low High Low Low 4

Low High Low High 5

Low High High Low 6

Low High High High 7

High Low Low Low 8

MK5502B

System Clock
Delay

(0 through 7)

sys_clk_out2_h
mch_hlt_irq_h
pwr_fail_irq_h
sys_mch_chk_irq_h

sys_reset_l

dc_ok_h

Clocks

tem.

High Low Low High 9

High Low High Low 10

High Low High High 11

High High Low Low 12

High High Low High 13

High High High Low 14

Table 4–2 System Clock Divisor (Sheet 2 of 2)

irq_h<3> irq_h<2> irq_h<1> irq_h<0> Ratio
29 September 1997 – Subject To Change Clocks, Cache, and External Interface 4–9

Figure 4–5 shows the 21164PC driving the system clock on a uniprocessor sys

Figure 4–5 21164PC Uniprocessor Clock

4.2.3 Delayed System Clock

The system clock sys_clk_out1_h is the source clock for the delayed system clock
sys_clk_out2_h. These clock signals provide flexible timing for system use. The
delay unit, from 0 to 7 CPU CLK cycles, is obtained from the three interrupt signals:
mch_hlt_irq_h, pwr_fail_irq_h, and sys_mch_chk_irq_h at power-up, as listed in
Table 4–3. The output of this programmable divider is symmetric if the divisor is

High High High High 15

HLO004B

21164PC
sys_clk_out

Memory
ASIC

Bus
ASIC

Physical Address Considerations

even. The output is asymmetric if the divisor is odd. When the divisor is odd, the
clock is high for an extra cycle. Refer to Section 7.2 for information on sysclk
behavior during reset.

Table 4–3 System Clock Delay

sys_mch_chk_irq_h pwr_fail_irq_h mch_hlt_irq_h Delay Cycles

Low Low Low 0

Low Low High 1

Low High Low 2
4–10 Clocks, Cache, and External Interface 29 September 1997 – Subject To Change

4.3 Physical Address Considerations

This section lists and describes the physical address regions. Cache and data wrap-
ping characteristics of physical addresses are also described.

4.3.1 Physical Address Regions

Physical memory of the 21164PC is divided into three regions:

1. The first region is the first half of the physical address space. It is treated by the
21164PC as memory-like.

2. The second region is the second half of the physical address space except for a
1MB region reserved for CBU IPRs. It is treated by the 21164PC as noncache-
able.

3. The third region is the 1MB region reserved for CBU IPRs.

In the first region, write merging and load merging are permitted. All 21164PC
accesses in this region are 64-byte, the Bcache block size. This memory-like region
is limited to 8GB (maximum).

The 21164PC does not cache data accessed in the second and third region of the
physical address space; 21164PC read accesses in these regions are always INT32
requests. Load merging is permitted, but the request includes a mask to inform the

Low High High 3

High Low Low 4

High Low High 5

High High Low 6

High High High 7

Physical Address Considerations

system environment as to which INT8s are accessed. Write merging is permitted.
Write accesses are INT32 requests with a mask indicating which INT4s are actually
modified.

The 21164PC never writes more than 32 bytes at a time in noncached space.

The 21164PC does not broadcast accesses to the CBU IPR region if they map to a
CBU IPR. Accesses in this region, that are not to a defined CBU IPR, produce
UNDEFINED results. The system should not probe this region.

Table 4–4 shows the 21164PC physical memory regions.

ound-

 the

read
29 September 1997 – Subject To Change Clocks, Cache, and External Interface 4–11

4.3.2 Data Wrapping

The 21164PC requires that wrapped read operations be performed on INT16 b
aries. READ and FLUSH commands are all wrapped on INT16 boundaries as
described here. The valid wrap orders for 64-byte blocks are selected by
addr_h<5:4>. They are:

0, 1, 2, 3
1, 0, 3, 2
2, 3, 0, 1
3, 2, 1, 0

Similarly, when the system interface supplies a command that returns data from
21164PC caches, the values that the system drives on addr_h<5:4> determine the
order in which data is supplied by the 21164PC.

BCACHE VICTIM commands provide the data with the same wrap order as the
miss that produced them.

Table 4–4 Physical Memory Regions

Region Address Range Description

Memory-like 00 0000 0000 –
01 FFFF FFFF 16

Write invalidate cached, load, and store merging
allowed.

Noncacheable 80 0000 0000 –
FF FFEF FFFF 16

Not cached, load merging limited.

IPR region FF FFF0 0000 –
FF FFFF FFFF 16

Accesses do not appear on the interface unless an
undefined location is accessed (which produces
UNDEFINED results).

Bcache Structure

4.3.3 Noncached Read Operations

Read operations to physical addresses that have addr_h<39> asserted are not cached
in the Dcache or Bcache. They are merged like other read operations in the miss
address file (MAF). To prevent several read operations to noncached memory from
being merged into a single 32-byte bus request, software must insert memory barrier
(MB) instructions or set MAF_MODE IPR bit (IO_NMERGE). The MAF merges as
many Dstream read operations together as it can and sends the request to the BIU.

Rather than merging two 32-byte requests into a single 64-byte request, the BIU
requests a READ MISS from the system. Signals int4_valid_h<3:0> indicate which
4–12 Clocks, Cache, and External Interface 29 September 1997 – Subject To Change

of the four quadwords are being requested by software. The system should return the
fill data to the 21164PC as usual. The 21164PC does not write the Dcache or Bcache
with the fill data. The requested data is written in the register file or Icache.

Note: A special case using int4_valid_h<3:0> occurs during an Icache fill. In
this case the entire returned block is valid although int4_valid_h<3:0>
indicates zero.

4.3.4 Noncached Write Operations

Write operations to physical addresses that have addr_h<39> asserted are not writ-
ten to any of the caches. These write operations are merged in the write buffer before
being sent to the system. If software does not want write operations to merge, it must
insert MB or WMB instructions between them.

When the write buffer decides to write data to noncached memory, the BIU requests
a WRITE BLOCK. During each data cycle, int4_valid_h<3:0> indicates which
INT4s within the INT16 are valid.

4.4 Bcache Structure

The 21164PC supports a .5, 1, 2, and 4MB Bcache. The size is under program con-
trol and is specified by CBOX_CONFIG<13:12> (BC_SIZE<1:0>). The Bcache
block size is 64-byte blocks.

Industry-standard, burst-mode synchronous static RAMs (SSRAMs) may be con-
nected to the 21164PC without many extra components, although fanout buffers may
be required for the index lines. The SSRAMs are directly controlled by the 21164PC,
and the Bcache data lines are connected to the 21164PC data bus.

Cache Coherency

The 21164PC partitions physical address (addr_h<32:4>) into an index field and a
tag field. The 21164PC presents index_ h<21:4> and tag_data_h<32:19> to the
Bcache interface. The tag size required is Bcache_size/block_size.

The system designer uses the signal lines needed for a particular size Bcache. For
example, the 1MB Bcache needs index_h<19:4> to address the cache block while
the tag field would be tag_data_h<32:20>.

The 21164PC uses only the relevant tag address bits during the tag compare for the
selected Bcache size. A larger Bcache has more index bits and fewer unused tag
address bits, while a smaller Bcache has fewer index bits and more unused tag
29 September 1997 – Subject To Change Clocks, Cache, and External Interface 4–13

address bits. Unused index bits are driven to 0.

All private Bcache transactions operate on 32-byte subblocks. All system Bcache
transactions (memory fill, Bcache victim, system commands that require data move-
ment) operate on the 64-byte Bcache block size. The CPU data bus is 16 bytes wide
(128 bits), thus private Bcache transactions require two data cycles and system
Bcache transactions require four data cycles.

Longword write enables are provided to the data store for Bcache write operations.
To support byte and word write transactions, the 21164PC performs a read-modify-
write sequence at the Bcache interface.

4.4.1 Bcache Victim Buffers

A Bcache victim is generated when the 21164PC deallocates a dirty block from the
Bcache. Each time a Bcache victim is produced, the 21164PC asserts
victim_pending_h and stops reading the Bcache until the system takes the current
victim. Then Bcache transactions resume.

External logic is required to maintain at least one victim buffer that acts as temporary
storage that can be written faster and with lower latency than system memory. The
victim buffer(s) hold Bcache victims and enable the Bcache location to be filled with
data from the desired address. Data in the victim buffer(s) will be written to memory
at a later time. This action reduces the time that the 21164PC is waiting for data.

4.5 Cache Coherency

Cache coherency rules must be followed when designing 21164PC-based uniproces-
sor systems as there are two levels of caches on a processor module that may be
snooped for data by I/O devices.

Cache Coherency

The system hardware designer need not be concerned about Icache and Dcache
coherency. Coherency of the Icache is a software concern—it is flushed with an IMB
(PALcode) instruction.

The 21164PC requires the system to allow only one change to a block at a time. This
means that if the 21164PC gains the bus to read or write a block, I/O devices on the
system bus should not be allowed to access that block until the data has been moved.

Flush Cache Coherency Protocol

The 21164PC provides hardware mechanisms to support a flush-based cache coher-
ence protocol. This protocol is best suited for low-cost uniprocessor systems. It is

 when
the

If the
m-

 the

tocol.
ed in

 sys-
he
4–14 Clocks, Cache, and External Interface 29 September 1997 – Subject To Change

typically used by an I/O subsystem to ensure that data coherence is maintained
DMA transactions are performed. Flush protocol does not allow shared data in
cache. Table 4–5 shows the Bcache states for the cache coherency protocols.

The Bcache is probed for each transaction to determine if the block is present.
block is present, the requested action is taken. If the block is not present, the co
mand is still acknowledged, but no other action is taken. The Flush protocol for
21164PC does not support a duplicate tag store.

Section 4.5.1 provides a more detailed description of flush cache coherency pro
The system commands that are used to maintain cache coherency are describ
more detail in Section 4.8.2.

4.5.1 Flush Cache Coherency Protocol

System logic notifies the 21164PC of all DMA read operations that occur on the
tem bus by using the interface READ command. The 21164PC returns data if t
block is dirty.

1 The tag_valid_h and tag_dirty_h signals are described in Table 3–1.

Table 4–5 Bcache States for Cache Coherency Protocols

Valid1 Dirty1 State of Cache Line

0 X Not valid.

1 0 Valid for read or write operations. This cache line contains the only
cached copy of the block and the copy in memory is identical to this
line.

1 1 Valid for read or write operations. This cache line contains the only
cached copy of the block. The contents of the block have been modified
more recently than the copy in memory.

Cache Coherency

System logic notifies the 21164PC of all DMA write operations that occur on the
system bus by using the interface FLUSH command. If the block is dirty, the
21164PC provides the data to the system and invalidates the block in the Bcache. If
the block is not dirty (clean), data is not returned, and the block is invalidated.

 System logic may choose to notify the 21164PC of full cache line DMA write oper-
ations that occur on the system bus by using the interface INVALIDATE system
command. The 21164PC invalidates the Bcache block if the block was found.

Figure 4–6 shows the 21164PC cache state transitions that can occur as a result of
transactions with the system. Figure 4–7 shows the 21164PC cache state transitions

ystem
sitions
29 September 1997 – Subject To Change Clocks, Cache, and External Interface 4–15

maintained by the 21164PC as a result of transactions by other nodes on the s
bus. These two figures both represent the same state machine. They show tran
caused by the 21164PC, and by the system, separately for clarity.

Note : The abbreviations “I”, “M” and “E” indicate the /VALID, VALID and
DIRTY, and the VALID and /DIRTY states, respectively.

Figure 4–6 Flush-Based Protocol 21164PC States

PCA009

READ MISS MOD

CPU Private Write Operation

(CPU Read for Write
Intent Operation)

READ
(CPU Read Operation)

V D

V

V D

I

E M

21164PC-to-Bcache Transactions

Figure 4–7 Flush-Based Protocol System/Bus States

FLUSH

V

I

E M

FLUSH
(DMA Write Operation)

No Data Returned
to System

(DMA Write Operation)
Data Returned
to SystemINVAL

INVAL
No Data Returned

Data Returned
to System
4–16 Clocks, Cache, and External Interface 29 September 1997 – Subject To Change

4.6 21164PC-to-Bcache Transactions

When initiating an Istream or Dstream data transaction, the 21164PC first probes the
Icache or Dcache, respectively. If the probe misses in the onchip caches, then the
Bcache is probed.

The 21164PC interface to the system and Bcache is controlled by the CBU. The
CBU provides address and control signals for transactions to and from the Bcache
and the system interface logic. The CBU also transfers data across the 128-bit bidi-
rectional data bus.

The 21164PC controls all Bcache transactions and will be able to process read and
write hits to the Bcache without assistance from the system. When system logic
writes to or reads from the Bcache, it transfers data to and from the Bcache, but only
under the direct control of the 21164PC.

4.6.1 Synchronous Burst-Mode Cache Support

The 21164PC supports both pipelined and flow-through SSRAMs. These SSRAMs
provide several new control functions that are capitalized on to deliver a high-perfor-
mance Bcache interface. All control pins driven from the 21164PC to the SSRAMs
are synchronous (except the output enables) and are sampled relative to the SSRAM
clock (st_clk). Figure 4–8 shows the SSRAM/Bcache interface.

PCA017

READ
(DMA Read Operation)

V D V D

READ
(DMA Read Operation)

to System

21164PC-to-Bcache Transactions

Figure 4–8 SSRAM/Bcache Interface

21164PC

index_h<21:4>

GW_L

ADSC_L

ADSP_L

ADV_L

A<X:0>

Vss

Vdd

Vdd

tag_ram_we_l
29 September 1997 – Subject To Change Clocks, Cache, and External Interface 4–17

HLO-PCA001

GW_L

ADSC_L

LW0

ADSP_L

BWE_L<3:0>

LW1

OE_L

MODE

LW2

CE_L

LW3

CLK

GW_L

GW_L

GW_L

A<X:0>

A<X:0>

A<X:0>

A<X:0>

Store
TAGBWE_L<3:0>

OE_L

MODE

CE_L

CLK

ADV_L

DATA

DATA

128 32

Vss

Vss

Vdd

Vdd

Vdd

Vdd

tag_ram_oe_l

st_clkx_h

tag_data_h<32:19>

data_ram_we_l<3>

data_ram_we_l<2>

data_ram_we_l<1>

data_ram_we_l<0>

data_adsc_l

data_adv_l

data_ram_oe_l

data_h<127:0>
32 32 32

Vdd

Store
DATA

X 32

21164PC-to-Bcache Transactions

For every Bcache access, the 21164PC drives the index, address strobe
(data_adsc_l), and the SSRAM clock (st_clk) to the SSRAMs to load the initial
address. The st_clk may be delayed a programmable number of CPU cycles to facil-
itate better control over module timing. For additional data reads or writes, the data
advance (data_adv_l) is driven to the SSRAMs and is used to autoadvance the
address in interleaved burst mode to facilitate the data wrap order described in
Section 4.3.2.

For Bcache read and write probes, the tag store and data store have separate asyn-
chronous output enables (tag_ram_oe_l and data_ram_oe_l) that control the
SSRAM output drivers. A unique tag RAM output enable is required to facilitate the
4–18 Clocks, Cache, and External Interface 29 September 1997 – Subject To Change

interleaved writes as described in Section 4.1.2.3. When switching from a Bcache
read to a write transaction, the 21164PC provides a programmable read-to-write
spacing to avoid data contention on the bidirectional tag and data buses (refer to Sec-
tion 4.9.2 for more details).

For Bcache data writes, the 21164PC supports the early write protocol using the
ADSC# pin (the ADSP# late-write is not supported). During data transfers, the
21164PC drives longword write enables (data_ram_we_l<3:0>) to the SSRAMs
that correspond to the appropriate longword lanes within the 128-bit data bus. For
byte and word granularity data writes, the 21164PC performs a read-modify-write
operation to the Bcache. Tag store updates are necessary for memory fills and private
writes that hit clean and are facilitated using the tag write enable (tag_ram_we_l).

There are subtle but important differences between the pipelined and flow-through
SSRAMs that must be accounted for when interfacing to the 21164PC. The pipelined
SSRAM (PBSRAM) includes an additional data output register that drives the data
one st_clk later than the flow-through SSRAM. These differences and their effect on
the 21164PC are explained in greater detail in Section 4.7.3.

4.6.2 Bcache Timing

The 21164PC provides a flexible Bcache interface with many programmable fea-
tures, including the following:

• Programmable read latency

• Programmable data repetition rate

• Programmable st_clk delay

• Programmable read-to-write spacing

21164PC-to-Bcache Transactions

Bcache timing is configured using the CBOX_CONFIG and CBOX_CONFIG2
IPRs. Figures 5–48 and 5–51 show the layout of these registers. These registers are
normally configured by 21164PC initialization code.

Both the 21164PC and system require access to the Bcache through a shared 128-bit
data bus. When the 21164PC requires access to the Bcache (private mode), the
st_clk is switched to the bc_clk regime where the clock is based on
CBOX_CONFIG<BC_CLK_RATIO<3:0>. When the system requires access to the
Bcache (system mode), the st_clk is switched to the sysclk regime where the clock is
based on the sysclk ratio.

res for

ds
 the
rt rel-

 data
ite the
 the
29 September 1997 – Subject To Change Clocks, Cache, and External Interface 4–19

Table 4–6 describes the clocking regime and access type to the tag and data sto
each Bcache transaction.

System transactions include memory fills, Bcache victims, and system comman
that require data movement. System transactions read and write the Bcache in
sys_clk regime (see Section 4.2.2). System Bcache read or write operations sta
ative to a sysclk edge. It is the responsibility of the system to control the rate of
Bcache transactions by using the dack_h signal.

Private transactions include CPU-initiated read and write probes, CPU-initiated
writes, system probes, and system invalidates. Private transactions read and wr
Bcache in the bc_clk regime (see Section 5.3.1). For private Bcache reads, both

1 A tag store write during a system data movement is conditional.

Table 4–6 Bcache Transactions

Bcache Access

Transaction Clock Regime Tag Store Data Store

Memory Fill System Write Write

Bcache Victim System — Read

System Data Movement System Write1 Read

CPU Read Probe Private Read Read

CPU Write Probe Private Read —

System Probe Private Read —

CPU Data Write-Dirty Private — Write

CPU Data Write-Clean Private Write Write

Invalidate-Hit Private Write —

21164PC-to-Bcache Transactions

latency and repetition rate are programmable using the CBOX_CONFIG register
fields <11:08> (BC_LATENCY_OFF<3:0>) and <07:04>
(BC_CLK_RATIO<3:0>). For private Bcache writes, the 21164PC uses the early
write SSRAM protocol controlled by the ADSC# pin. The repetition rate for data
writes is programmable through the (BC_CLK_RATIO<3:0>). Read and write oper-
ations that are private to the 21164PC and Bcache may start on any CPU clock.

There is no relation between sysclk and private Bcache latency. The bc_clk ratio is
required to be less than or equal to the sysclk ratio for proper operation.

Note: Timing diagrams do not explicitly show tristated buses. For examples of

e by

ays

fol-
4–20 Clocks, Cache, and External Interface 29 September 1997 – Subject To Change

tristate timing, refer to Section 4.9.

4.6.3 Bcache Private Read Transaction

CPU-initiated reads must probe the Bcache to determine hit or miss status. CPU-ini-
tiated reads always perform the tag store lookup in parallel with a speculative
32-byte data store read.

Figure 4–9 shows an example of the timing for a private read operation to Bcach
the 21164PC. CBOX_CONFIG<BC_LATENCY_OFF> = 0, which represents a
minimum read latency value of five cpu_clk cycles.

The index is launched from an arbitrary internal cpu_clk edge (t=0). The data store
address strobe, data_adsc_l, is also asserted at this time and is deasserted one
bc_clk cycle later. The tag store address strobe is tied at the module level to alw
be asserted so that a new address is latched every bc_clk cycle. The data store
address is autoadvanced for the next 16-byte data read with the assertion of
data_adv_l one bc_clk cycle after the launch of the index. It is deasserted in the
lowing bc_clk cycle.

The asynchronous tag RAM output enable, tag_ram_oe_l, is asserted at index
launch plus one cpu_clk cycle and is deasserted bc_rd_latency cpu_clk cycles after
the index launch.

The asynchronous data RAM output enable, data_ram_oe_l, is also asserted at
index launch plus one cpu_clk cycle and is deasserted
(bc_rd_latency + bc_clk_ratio) cpu_clk cycles after the index launch. All private
Bcache operations return a 32-byte subblock (two data cycles).

21164PC-to-Bcache Transactions

Figure 4–9 Bcache Private Read Transaction

st_clk x_h

cpu_clk

0 1 2 3 4 5 6 7 8

bc_clk_ratio (=3)

bc_clk_delay (=1)

Arrows indicate when the 21164PC clocks
Bcache data into the pad ring.
29 September 1997 – Subject To Change Clocks, Cache, and External Interface 4–21

4.6.4 Bcache st_clk Timing

The SSRAM clock (st_clk) is asserted bc_clk_delay cpu_clk cycles from the index
launch. The minimum pulse width for st_clk is dependent upon the
CBOX_CONFIG<BC_CLK_RATIO> programmable parameter. For a bc_clk_ratio
greater than 5, the st_clk remains asserted for 3 cpu_clk cycles. For a bc_clk_ratio
from 3 to 5, the st_clk remains asserted for 2 cpu_clk cycles. For a bc_clk_ratio of
2, the st_clk remains asserted for 1 cpu_clk cycle.

FM-05560.AI4

index_h<21:4>

tag_ram_oe_l

tag_ram_we_l

data_adsc_l

tag_data<32:19>

data_adv_l

data_ram_oe_l

data_ram_we_l<3:0>

data<127:0>

bc_rd_latency (=5)

A0

T0

F

D00 D01

bc_rd_latency+bc_clk_ratio (=8)

21164PC-to-Bcache Transactions

4.6.5 Bcache Private Write Transactions

CPU-initiated write operations are broken into two suboperations, namely a write-
probe operation and a subsequent data-write operation. The write-probe operation
performs the tag store lookup to determine hit or miss status as well as to determine
the tag state, clean (V */D) or dirty (V*D). Once a write hit has been detected, a data-
write operation is performed to update the data store. Additionally, if the write-probe
operation hits clean, the tag store must be updated to reflect dirty (or modified) sta-
tus. If the write-probe operation hits dirty, then the tag store will not be updated. The
two suboperations that make up a CPU-initiated write operation are not atomic and
are pipelined with other read and write operations. Up to three Bcache probe opera-

ce.
4–22 Clocks, Cache, and External Interface 29 September 1997 – Subject To Change

tions can be in flight at any given time to increase overall Bcache performance.

4.6.5.1 Bcache Private Write-Probe Operation

Figure 4–10 shows an example of the timing for a write-probe operation to the
Bcache by the 21164PC. CBOX_CONFIG<BC_CLK_RATIO> is set to three
cpu_clk cycles.

The write-probe operation is identical to the Bcache read at the tag store interfa
The index is launched from an arbitrary internal cpu_clk clock edge (t=0). The
asynchronous tag RAM output enable, tag_ram_oe_l, is asserted at index launch
plus one cpu_clk cycle and is deasserted bc_rd_latency cpu_clk cycles after the
index launch.

21164PC-to-Bcache Transactions

Figure 4–10 Bcache Private Write Probe

st_clk x_h

cpu_clk

0 1 2 3 4 5 6 7 8

bc_clk_ratio (=3)

bc_clk_delay (=1)

Arrow indicates when the 21164PC
clocks Bcache probe data.
29 September 1997 – Subject To Change Clocks, Cache, and External Interface 4–23

4.6.5.2 Bcache Private Data-Write Operation

If a CPU-initiated write command hits in the Bcache, the data-write operation is
scheduled immediately. If the write hits clean, then the data-write operation must
update the tag state to dirty. If the write hits dirty, then the data-write operation does
not update the tag store.

If the CPU-initiated write command misses in the Bcache, the data-write is sched-
uled after the fill data from memory has returned. During the fill operation, the
Bcache tag store is updated to reflect the new tag and control state (modified). There-

FM-05561.AI4

index_h<21:4>

tag_ram_oe_l

tag_ram_we_l

data_adsc_l

tag_data<32:19>

data_adv_l

data_ram_oe_l

data_ram_we_l<3:0>

data<127:0>

bc_rd_latency (=5)

A0

T0

F

21164PC-to-Bcache Transactions

fore, the data-write operation after the fill operation completes does not update the
tag store. The Bcache is nonblocking and allows other transactions to use the Bcache
while waiting for outstanding Bcache misses.

 Figure 4–11 shows an example of the timing for a data-write operation that hits
clean to the Bcache during the write probe. CBOX_CONFIG<BC_CLK_RATIO> is
set to three cpu_clk cycles.

Figure 4–11 Bcache Private Data – Write Hit Clean

cpu_clk

0 1 2 3 4 5 6 7 8
4–24 Clocks, Cache, and External Interface 29 September 1997 – Subject To Change

The index is launched from an arbitrary internal cpu_clk edge (t=0). The data store
address strobe, data_adsc_l, is also asserted at this time and is deasserted one
bc_clk cycle later. The tag store address strobe is tied at the module level to always
be asserted so that a new address is latched every bc_clk cycle. The data store
address is autoadvanced for the next 16-byte data write with the assertion of

FM-05562.AI4

index_h<21:4>

tag_ram_oe_l

st_clk x_h

tag_ram_we_l

data_adsc_l

tag_data<32:19>

data_adv_l

data_ram_oe_l

data_ram_we_l<3:0>

data<127:0>

A0

bc_clk_ratio (=3)

bc_clk_delay (=1)

V D

D00 D01

0 0F F

21164PC-to-Bcache Transactions

data_adv_l one bc_clk cycle after the launch of the index. It is deasserted in the fol-
lowing bc_clk cycle. The longword write enables, data_ram_we_l<3:0>, are driven
for each 16-byte of write data at index launch time and at the subsequent bc_clk
cycle.

Figure 4–12 shows an example of the timing for a data-write operation that hits dirty
to the Bcache during the write probe. CBOX_CONFIG<BC_CLK_RATIO> is set to
three cpu_clk cycles. Note that the tag update is not required for a write hit to a dirty
block.

Figure 4–12 Bcache Private Data – Write Hit Dirty
29 September 1997 – Subject To Change Clocks, Cache, and External Interface 4–25

FM-05563.AI4

index_h<21:4>

tag_ram_oe_l

st_clk x_h

tag_ram_we_l

data_adsc_l

tag_data<32:19>

data_adv_l

data_ram_oe_l

data_ram_we_l<3:0>

data<127:0>

cpu_clk

0 1 2 3 4 5 6 7 8

A0

bc_clk_ratio (=3)

bc_clk_delay (=1)

A0

D00 D01

0 0F F

21164PC-to-Bcache Transactions

4.6.5.3 Interleaving Write-Probes

The 21164PC is able to interleave data-write operations that hit dirty with write-
probe operations, since both operations access different stores (tag and data). This
technique is used to fully saturate the data bus during write-hit streams as is shown in
Figure 4–13.

Figure 4–13 Bcache Interleaving
0 1 2 3 4 5 6 7 8

cpu_clk

bc_clk_delay (=1)
4–26 Clocks, Cache, and External Interface 29 September 1997 – Subject To Change

FM-05564.AI4

index_h<21:4>

tag_ram_oe_l

st_clk x_h

tag_ram_we_l

data_adsc_l

tag_data<32:19>

data_adv_l

data_ram_oe_l

data_ram_we_l<3:0>

data<127:0>

bc_rd_latency (=5)

A3

T3

D00

A0 A4 A1

bc_rd_latency (=5)

T4

D01 D10 D11

0 0 0 0F

bc_clk_ratio (=3)

21164PC-Initiated System Transactions

4.6.6 Selecting Bcache Options

Table 4–7 lists the variables to consider when designing and implementing a Bcache.

64PC

s of

Table 4–7 Bcache Options

Parameter Selection

sysclk ratio (4-15) ____ CPU cycles

Cache protocol, flush or flush invalidate ____

Longword parity or no parity ____
29 September 1997 – Subject To Change Clocks, Cache, and External Interface 4–27

4.7 21164PC-Initiated System Transactions

This section describes how commands are used to move data between the 211
and its cache system.

Note: Timing diagrams do not explicitly show tristated buses. For example
tristate timing, refer to Section 4.9.

The 21164PC starts an external transaction when:

• It encounters a “miss.”

• The CPU addresses a noncached region of memory.

For example, the sequence for a 21164PC-initiated transaction caused by a Bcache
miss is:

• At the start of a Bcache transaction, the 21164PC checks the tag and tag control
status of the target block.

Bcache size (.5MB to 4MB) ____ MB

Bcache read latency (5-20) ____ CPU cycles

Bcache cycle time (2-10) ____ CPU cycles

Bcache victim buffer Must be present

Bcache read-to-write spacing (1-8) ____

Bcache fill offset (1-8) ____

SSRAM type, pipelined or flow-through ____

st_clk delay (0-3) ____

21164PC-Initiated System Transactions

• If there is a tag mismatch or the valid bit is clear, a Bcache miss has been
detected. If the block to be replaced is clean, the Bcache continues operation
while the READ MISS request is sent to the system. If the block to be replaced is
dirty, the 21164PC waits for all outstanding probes in flight to complete, and
then starts an external READ MISS with VICTIM PENDING transaction that
instructs the system logic to access and return data.

• System logic acknowledges acceptance of the command from the 21164PC by
asserting cack_h.

• Because the transaction is a read operation, requiring a fill operation, the transac-
4–28 Clocks, Cache, and External Interface 29 September 1997 – Subject To Change

tion is broken (pended) while system logic obtains the fill data. The Bcache is
nonblocking and allows other transactions to use the Bcache while a miss is
being serviced.

• Prior to the fill data arriving, the system asserts idle_bc_h back to the 21164PC
to arbitrate for the shared 128-bit data bus. Any private read or write operations
in progress are allowed to complete before the fill data arrives from the system.

• At a later time, the system asserts fill_h.

• The 21164PC asserts the tag and tag control bits, and controls the write action
during the fill operation.

• The system logic provides the data. As each of the two (or four) data cycles
becomes valid, the system logic asserts dack_h to cause the 21164PC to sample
the data and write it into the Bcache.

Interface commands from the 21164PC to the system are driven on the cmd_h<3:0>
signals. Table 4–8 lists and describes the set of interface commands.

Table 4–8 21164PC-Initiated Interface Commands (Sheet 1 of 2)

Command
cmd_h
<3:0> Description

NOP 0000 The NOP command is driven by the owner of the cmd_h bus
when it has no tasks queued.

— 0001 Reserved.

— 0010 Reserved.

— 0011 Reserved.

— 0100 Reserved.

— 0101 Reserved.

21164PC-Initiated System Transactions

WRITE BLOCK 0110 Request to write a block. When the 21164PC wants to write a
32-byte block of data to noncached memory, it drives the com-
mand, address, and first INT16 of data on a sysclk edge. The
21164PC outputs the next INT16 of data when dack_h is
received. When the system asserts cack_h, the 21164PC
removes the command and address from the bus and begins the
write of the Bcache. Signal cack_h can be asserted before all
the data is removed.

C

C

n
 vic-

a.

Table 4–8 21164PC-Initiated Interface Commands (Sheet 2 of 2)

Command
cmd_h
<3:0> Description
29 September 1997 – Subject To Change Clocks, Cache, and External Interface 4–29

— 0111 Reserved.

READ MISS0 1000 Request for data. This command indicates that the 21164P
has probed its caches and that the addressed block is not
present.

READ MISS1 1001 Request for data. This command indicates that the 21164P
has probed its caches and that the addressed block is not
present.

— 1010 Reserved.

— 1011 Reserved.

BCACHE
VICTIM

1100 Bcache victim should be removed. If there is a victim buffer i
the system, this command is used to pass the address of the
tim to the system. The READ MISS command that produced
the victim precedes the BCACHE VICTIM command. Signal
victim_pending_h is asserted during the READ MISS com-
mand to indicate that a BCACHE VICTIM command is wait-
ing, and that the Bcache is starting the read of the victim dat

— 1101 Reserved.

— 1110 Reserved.

— 1111 Reserved.

21164PC-Initiated System Transactions

4.7.1 READ MISS Clean - No Victim

A READ MISS command is launched to the system interface when:

1. The Bcache probe for a CPU-initiated READ command detects a miss.

2. The Bcache probe for a CPU-initiated WRITE command detects a miss.

3. A CPU-initiated READ command to noncached memory space is detected.

The 21164PC starts a Bcache probe operation on any CPU clock. If a miss is
detected to a clean or invalid block, then a victim does not need to be processed, and
the address and command can be immediately issued to the system interface on the

ISS

also

4–30 Clocks, Cache, and External Interface 29 September 1997 – Subject To Change

next sysclk edge. However, if a miss is detected to a dirty block, the CBU will
require the data bus to process victims, and must wait for any in-flight probes to
complete.

Figure 4–14 shows the timing of several Bcache reads and the resulting READ M
Clean request. The system immediately asserts cack_h to acknowledge the com-
mand. This allows the 21164PC to make additional READ MISS requests. It is
possible for the system to defer assertion of cack_h until the fill data is returned. The
assertion of cack_h should arrive no later than the last fill dack_h.

Note: A READ MISS command with int4_valid_h<3:0> of zero is a request
for Istream data while int4_valid_h<3:0> of nonzero is a request for
Dstream data.

21164PC-Initiated System Transactions

Figure 4–14 READ MISS Clean – Bcache Timing Diagram

F
M

-0
55

65
.A

I4

y
+

 fi
ll_

of
fs

et

19
20

F
03

D
04

21
22

23
24

25

F
02

F
01

A
1 T
0 /d V 0

0
0

29 September 1997 – Subject To Change Clocks, Cache, and External Interface 4–31

vi
ct

im
_p

en
di

ng
_h

ad
dr

_h
<3

9:
4>

fil
l_

h

fil
l_

id
_h

ca
ck

_h

da
ta

_h
<1

27
:0

>

st
_c

lk
x_

h

da
ck

_h

sy
s_

cl
k

0
1

2
3

4
5

6
7

8

A
0

9
10

11
12

14
13

bc
_c

lk
_d

el
a

in
de

x_
h<

21
:4

>

id
le

_b
c_

h

15
16

17
18

A
1

R
M

0
R

M
1

N
O

P
N

O
P

N
O

P

F
00

D
31

D
30

D
21

D
20

D
b1

D
b0

D
a1

D
a0

A
0

A
1

A
2

A
3

A
0

ta
g_

da
ta

_<
32

:1
9>

T
0

T
1

T
2

T
3

T
0

ta
g_

di
rty

_h
/D

/D
/D

/D
/D

ta
g_

va
lid

_h
/V

/V
V

V
V

ta
g_

ra
m

_o
e_

l

ta
g_

ra
m

_w
e_

l

da
ta

_a
ds

c_
l

da
ta

_a
dv

_l

da
ta

_r
am

_o
e_

l

da
ta

_r
am

_w
e_

l<
3:

0>
0

0
F

cm
d_

h<
3:

0>

21164PC-Initiated System Transactions

4.7.2 FILL

The 21164PC provides an st_clkx_h pulse a certain number of cycles after the rising
edge of the system clock, determined by the sum of the BC_CLK_DELAY<1:0> and
the FILL_OFFSET<2:0> values in the CBOX_CONFIG register (see Section 5.3.1).
The value must be from 1 to 7 and cannot be greater than the sysclk ratio. This
allows the SSRAM write operation to take place later in the sysclk cycle, allowing
more time for the data to get to the 21164PC.

Signals fill_h, fill_id_h, and fill_error_h are used to control the return of fill data to
the 21164PC and the Bcache. Signal idle_bc_h must be used to stop CPU requests in

nd.

ite

ite
e

ll,

 the
ill
and
e.

ng

 not
4–32 Clocks, Cache, and External Interface 29 September 1997 – Subject To Change

the Bcache in such a way that the Bcache will be idle when the fill data arrives (but
not the FILL command). Signal fill_h must be asserted so that it is sampled by the
CPU at least one sysclk period before the fill data is driven by the system. Signal
fill_id_h should be asserted at the same time to indicate whether the fill operation is
for a READ MISS0 or READ MISS1 operation. The 21164PC uses this information
to select the correct fill address. Figure 4–14 shows the timing of a FILL comma
Refer also to Section 4.9.3 for more information on using signals idle_bc_h and
fill_h.

If fill_h is asserted at the rising edge of sysclk N, the 21164PC samples fill_id_h,
then ensures that data_h<127:0> are tristated at the rising edge of sysclk N+1. Also
at sysclk N+1, the 21164PC asserts the Bcache index, and begins a Bcache wr
operation. The system should drive the data onto the data bus and assert dack_h
before the end of the sysclk cycle. If dack_h has not been asserted, the Bcache wr
operation starts again at the same index. If dack_h is asserted, the Bcache data-writ
operation starts again at the same index. If dack_h is asserted, the advance pin,
data_ram_adv_l, is asserted, which advances the index to the next part of the fi
and the data-write operation begins again.

For all cacheable memory fill operations, the 21164PC updates the tag store in
same cycle that the Bcache index is driven, to reflect the new tag and control. F
operations for READ commands update the tag store to the clean (V*/D) state,
fill operations for WRITE commands update the tag store to the dirty (V*D) stat

For system logic that returns fill data directly from its victim buffer without updati
memory (Victim Buffer Fill Hit), the fill_dirty_h signal is used to remark the tag
store to the dirty (V*D) state. This maintains data coherency. In systems that do
support Victim Buffer Fill Hits, it is recommended to tie the fill_dirty_h signal deas-
serted.

21164PC-Initiated System Transactions

At the end of the fill transaction, the 21164PC does not assert data_ram_oe_l or
begin to drive the data bus until the fifth cpu_clk cycle after the sysclk that loads the
last dack_h. If systems require more time to turn off their drivers, they must use
idle_bc_h in combination with data_bus_req_h to stop 21164PC requests and not
send any system requests.

4.7.3 READ MISS with Victim

The 21164PC requires that the system contain a victim buffer to displace dirty
blocks from the Bcache. The 21164PC requests the new block from memory while it
starts to read the victim from the Bcache. The VICTIM command and address follow

 to

e sys-
cle

lock.
m.

d, it
D
S
em

 the
tem
 the
ys-
-

and

S
sued
ali-
29 September 1997 – Subject To Change Clocks, Cache, and External Interface 4–33

the miss request. This technique, known as “victims under fills,” allows the victim
be processed in parallel with the memory read.

When a miss is detected to a dirty block, the 21164PC waits for all outstanding
Bcache probes in flight to complete. Then on the next sysclk edge, the 21164PC
asserts a READ MISS command, the read miss address, the victim_pending_h sig-
nal, and indexes the Bcache to begin the read operation of the victim. When th
tem asserts cack_h, the 21164PC sends out a NOP command. In the following cy
the BCACHE VICTIM command is driven along with the victim address. Each
assertion of dack_h causes the Bcache index to advance to the next part of the b
Figures 4–15 and 4–16 show the timing of a READ MISS command with a victi

The 21164PC and system must treat a READ MISS/BCACHE VICTIM as an atomic
transaction pair. Once the system has acknowledged the READ MISS comman
must guarantee not to start a system command or a FILL command until the REA
MISS/BCACHE VICTIM atomic pair have completed. However, if the READ MIS
command has not yet been acknowledged, the system is allowed to start a syst
command or a FILL command (by the assertion of addr_bus_req_h or idle_bc_h).
The unacknowledged READ MISS command is retracted from the pin bus, and
system command or fill transaction is serviced at a higher priority. After the sys
or FILL command has completed, the READ MISS command is then replayed to
pin bus. For example, if the 21164PC sends the READ MISS command to the s
tem, victim data can be removed from the Bcache without the READ MISS com
mand being acknowledged. If the system sends an INVALIDATE system comm
to the same address before the READ MISS command is acknowledged, the
21164PC processes the INVALIDATE request and then restarts the READ MIS
command from the beginning. The second time, the READ MISS command is is
to the pin bus without victim_pending_h asserted, because the data had been inv
dated.

21164PC-Initiated System Transactions

The use of dack_h for a system Bcache read command (Bcache victim or system
command with data movement) is very dependent on the SSRAM style, either pipe-
lined or flow-through. The assertion of dack_h is responsible for the assertion of the
data_adv_l pin, and is not to be confused with the sampling of data. When using the
pipelined SSRAMs, the data output register delays the data an additional sysclk
cycle. When the CBOX_CONFIG<BC_REG_REG> bit is set, the data_ram_oe_l
deassertion is delayed an additional sysclk cycle to allow the system ample time to
sample the delayed Bcache read data.

System designers must also maintain the proper read-to-write spacing when going
from BCACHE VICTIM commands to FILL commands. When using the pipelined
4–34 Clocks, Cache, and External Interface 29 September 1997 – Subject To Change

SSRAMs, this delayed data on the victims impacts the earliest fill_h assertion (see
Section 4.9.5.2 for more details).

21164PC-Initiated System Transactions

Figure 4–15 READ MISS with Victim Timing Diagram, Pipelined Mode
19

20
21

22
23

24
25

F
M

-0
55

67
.A

I4

/D V

N
O

P

3
F

00
F

01

d
e

la
y

+
 f

il
l_

o
ff

se
t

T
0

0
0

A
0

 c
yc

le
29 September 1997 – Subject To Change Clocks, Cache, and External Interface 4–35

sy
s_

cl
k

0
1

2
3

4
5

6
7

8
9

10
11

12
14

13
15

16
17

18

ad
dr

_h
<3

9:
4>

cm
d_

h<
3:

0>

A
0

da
ta

_h
<1

27
:0

>

in
de

x_
h<

21
:4

>

ta
g_

ra
m

_o
e_

l

ta
g_

ra
m

_w
e_

l

V
00

da
ck

_h

st
_c

lk
x_

h

b
c_

cl
k_

d
e

la
y

A
0

A
0

ta
g_

da
ta

<3
2:

19
>

T
1

ta
g_

di
rty

_h
/D

ta
g_

va
lid

_h
/V

da
ta

_a
ds

c_
l

da
ta

_a
dv

_l

da
ta

_r
am

_o
e_

l

da
ta

_r
am

_w
e_

l<
3:

0>
F

vi
ct

im
_p

en
di

ng
_h

R
M

0
N

O
P

B
C

T
V

M

V
0

ca
ck

_h

fil
l_

h

fil
l_

id
_h

D
a0

D
a1

D
b0

D
b1

V
01

V
02

V
0

b
c_

cl
k_

A
1

T
0

/D /V

m
is

s0
m

is
s1

d
e

a
ss

e
rt

io
n

 a
t

fi
n

a
l d

a
ck

 s
a

m
p

le
 +

 1
 s

ys
cl

k
+

 1
 C

P
U

id
le

_b
c_

h

21164PC-Initiated System Transactions

Figure 4–16 READ MISS with Victim Timing Diagram, Flow-Through Mode
19

20
21

22
23

24
25

F
M

-0
55

66
.A

I4

/D V

N
O

P

F
01

F
02

fs
e

t

T
0

0
0

A
0F
00

0

4–36 Clocks, Cache, and External Interface 29 September 1997 – Subject To Change

sy
s_

cl
k

0
1

2
3

4
5

6
7

8
9

10
11

12
14

13
15

16
17

18

ad
dr

_h
<3

9:
4>

cm
d_

h<
3:

0>

A
0

da
ta

_h
<1

27
:0

>

in
de

x_
h<

21
:4

>

ta
g_

ra
m

_o
e_

l

ta
g_

ra
m

_w
e_

l

V
01

da
ck

_h

st
_c

lk
x_

h

b
c_

cl
k_

d
e

la
y

A
0

A
0

ta
g_

da
ta

<3
2:

19
>

T
1

ta
g_

di
rty

_h
/D

ta
g_

va
lid

_h
/V

da
ta

_a
ds

c_
l

da
ta

_a
dv

_l

da
ta

_r
am

_o
e_

l

da
ta

_r
am

_w
e_

l<
3:

0>
F

vi
ct

im
_p

en
di

ng
_h

R
M

0
N

O
P

B
C

T
V

M

V
0

ca
ck

_h

fil
l_

h

fil
l_

id
_h

id
le

_b
c_

h

D
a0

D
a1

D
b0

D
b1

V
02

V
03

b
c_

cl
k_

d
e

la
y

+
 f

il
l_

o
f

A
1

T
0

/D /V

m
is

s0
m

is
s1

d
e

a
ss

e
rt

io
n

 a
t

fi
n

a
l d

a
ck

 s
a

m
p

le
 +

 1
 C

P
U

 c
yc

le

V
00

21164PC-Initiated System Transactions

4.7.4 WRITE BLOCK

The WRITE BLOCK command is used to complete write operations to noncached
memory. The 21164PC asserts the WRITE BLOCK command, along with the
address at the start of a sysclk cycle. The first 16 bytes of data and the int4_valid
signals are driven one cpu_clk cycle later, so that system interface can be assured a
one cpu_clk cycle minimum hold time when sampling data on the next sysclk edge.
If the system removes ownership of the cmd_h<3:0> bus, the 21164PC retains the
WRITE command and waits for bus ownership to be returned.

When the system takes the first part of the data, it asserts dack_h. This causes the
29 September 1997 – Subject To Change Clocks, Cache, and External Interface 4–37

21164PC to drive the next 16 bytes of data on the same sysclk edge plus one
cpu_clk cycle delay.

If the system asserts cack_h, the 21164PC outputs the next command in the next
sysclk. Receipt of cack_h indicates to the 21164PC that the write operation will be
taken.

During each cycle, the int4_valid_h<3:0> signals indicate which INT4 parts of the
write operation are really being written by the processor. For write operations to
noncached memory, only those INT4 with the int4_valid_h<n> signal asserted are
valid. See the definition for int4_valid_h<n> in Table 3–1.

Figure 4–17 shows the timing of a WRITE BLOCK command.

System-Initiated Transactions

Figure 4–17 WRITE BLOCK Timing Diagram

cmd_h<3:0>

victim_pending_h

addr_h<39:4>

sys_clk(4:1)

0 1 2 3 4 5 6 7 8

WRBLK

9 10 11 12

A0
4–38 Clocks, Cache, and External Interface 29 September 1997 – Subject To Change

4.8 System-Initiated Transactions

System commands to the 21164PC are driven on the cmd_h<3:0> signal lines.
Before driving these signals, the system must gain control of the command and
address buses by using addr_bus_req_h, as described in Section 4.9.1. The algo-
rithm used by the 21164PC for accepting system commands to be processed in paral-
lel by the 21164PC is presented in Section 4.8.1.

Note: Timing diagrams do not explicitly show tristated buses. For examples of
tristate timing, refer to Section 4.9.

4.8.1 Sending Commands to the 21164PC

The rules used by the CBU BIU to process commands sent by the system to the
21164PC are listed in Section 4.11.1.

FM-05560.AI4

fill_h

fill_id_h

cack_h

idle_bc_h

data_h<127:0>

dack_h

D00 D01

System-Initiated Transactions

The 21164PC can hold two outstanding commands from the system at any time. The
algorithm used by the system to send commands to the 21164PC without overflow-
ing the two CBU BIU command buffers is shown in Figure 4–18.

Figure 4–18 Algorithm for System Sending Commands to the 21164PC

Start
29 September 1997 – Subject To Change Clocks, Cache, and External Interface 4–39

PCA016

Yes

No

?

CPU
response equals

(ACK/Bcache
or NACK)

Is
(CMD Not NOP)

and
(Count=2)

?

Init? Set count to zero.

Increment count.

Send command.

Decrement count.

Yes

Yes

No

No

System-Initiated Transactions

4.8.2 Write Invalidate Protocol Commands

All 21164PC-based systems that use the write invalidate protocol are expected to use
the READ, FLUSH, and INVALIDATE commands to maintain cache coherency.
These commands are defined in Table 4–9.

Table 4–9 System-Initiated Interface Commands (Write Invalidate
Protocol)

Command
cmd_h
<3:0> Description
4–40 Clocks, Cache, and External Interface 29 September 1997 – Subject To Change

NOP 0000 The NOP command is driven by the owner of the cmd_h<3:0>
bus when it has no tasks queued.

FLUSH 0001 Remove block from caches; return dirty data. The FLUSH com-
mand causes a block to be removed from the 21164PC cache sys-
tem.

If the block is not found, the 21164PC responds with NOACK.

If the block is found and is clean, the 21164PC responds with
NOACK. The block is invalidated in the Dcache and Bcache.

If the block is found and is dirty, the 21164PC responds with
ACK/Bcache and the Bcache read operation begins in the same
sysclk cycle as the ACK. The block is invalidated in the Dcache
and Bcache.

INVALIDATE 0010 Remove the block. When the system issues the INVALIDATE
command, the 21164PC probes its Bcache. If the block is found,
the 21164PC responds with ACK/Bcache and invalidates the
block. If the block is not found, the 21164PC responds with a
NOACK.

READ 0100 Read a block. The READ command probes the Bcache to see if
the requested block is present.

If the block is present and is dirty, the 21164PC responds with
ACK/Bcache and the Bcache read operation begins in the same
sysclk cycle as the ACK.

If the block is not present or is present and clean, the 21164PC
responds with a NOACK on addr_res_h<1:0>.

System-Initiated Transactions

4.8.2.1 21164PC Responses to Flush-Based Protocol Commands

The system responds to flush-based protocol commands on addr_res_h<1:0>, as
shown in Table 4–10.

m.

t
,

stem

 addi-

Table 4–10 21164PC Responses to Flush-Based Protocol Commands

READ and FLUSH Commands

Bcache 21164PC Response

Bcache Miss NOACK

Bcache Hit, Not Dirty NOACK
29 September 1997 – Subject To Change Clocks, Cache, and External Interface 4–41

4.8.2.2 FLUSH

The FLUSH command is used to remove blocks from the 21164PC cache syste
Figure 4–19 shows the timing of a FLUSH transaction.

If the block is dirty, the 21164PC will respond with an ACK and the system mus
read data from the cache using dack_h to control the rate at which data is supplied
and write it to memory.

In the timing diagram shown in Figure 4–19, the cache block state changes from
DIRTY, VALID to DIRTY, VALID . When the block state changes to VALID, the
state of DIRTY does not matter.

If the block is clean, the 21164PC invalidates both the Dcache and Bcache and
responds to the system with a NOACK. If the block is not found, the 21164PC
responds to the system with a NOACK.

The system probe is performed in private mode, and if data is found dirty in the
Bcache, the subsequent tag invalidate and data movement are performed in sy
mode.

When using the pipelined SSRAMs, the data output register delays the data an
tional sysclk cycle. When the CBOX_CONFIG<BC_REG_REG> bit is set, the
data_ram_oe_l deassertion is delayed an additional sysclk cycle to allow the system
ample time to sample the delayed Bcache read data.

Bcache Hit, Dirty ACK/Bcache

System-Initiated Transactions

Figure 4–19 FLUSH Timing Diagram (Bcache Hit) Flow-Through SSRAM

F
M

-0
55

69
.A

I4

15
16

17
18

19
20

D
02

D
03
4–42 Clocks, Cache, and External Interface 29 September 1997 – Subject To Change

da
ta

_h
<1

27
:0

>

in
de

x_
h<

21
:4

>

ta
g_

ra
m

_o
e_

l

ta
g_

ra
m

_w
e_

l

sy
s_

cl
k

0
1

2
3

4
5

6
7

8
9

10
11

12
14

13

ad
dr

_b
us

_r
eq

_h

ad
dr

_h
<3

9:
4>

A
0

cm
d_

h<
3:

0>
F

LS
H

ad
dr

_r
es

_h
<1

:0
>

A
C

K
B

C D
00

D
01

da
ck

_h

st
_c

lk
x_

h

bc
_c

lk
_d

el
ay

A
0

bc
_r

d_
la

te
nc

y

A
0

ta
g_

da
ta

<3
2:

19
>

T
0

ta
g_

di
rt

y_
h

D
/V

ta
g_

va
lid

_h
V

/D

da
ta

_a
ds

c_
l

da
ta

_a
dv

_l

da
ta

_r
am

_o
e_

l

da
ta

_r
am

_w
e_

l<
3:

0>
F

System-Initiated Transactions

4.8.2.3 INVALIDATE

The INVALIDATE command can be used to remove a block from the cache system.
Unlike the FLUSH command, any modified data will not be read. The Bcache is
probed and invalidated if the block is found. Figure 4–20 shows the timing of an
INVALIDATE transaction. Both the system probe and the invalidate are performed
in private mode to reduce overall latency.

Figure 4–20 INVALIDATE Timing Diagram – Bcache Hit

ol sta-

sys_clk(4:1)

0 1 2 3 4 5 6 7 8 9 10 11 12 1413
29 September 1997 – Subject To Change Clocks, Cache, and External Interface 4–43

4.8.2.4 READ

The READ command is used by the system to read dirty data from the 21164PC. The
tag control status does not change. Figure 4–21 shows the timing and tag contr
tus of a read transaction.

FM-05571.AI4

addr_h<39:4>

cmd_h<3:0>

addr_bus_req_h

dack_h

st_clk

addr_res_h<1:0>

tag_ram_oe_l

tag_valid_h

tag_data_h<32:19>

A0

INVL

ACKBC

bc_clk_delay

bc_rd_latency

A0 A0

T0

tag_ram_we_l

/V

index_h<21:4>

System-Initiated Transactions

When using the pipelined SSRAMs, the data output register delays the data an addi-
tional sysclk cycle. When the CBOX_CONFIG<BC_REG_REG> bit is set, the
data_ram_oe_l deassertion is delayed an additional sysclk cycle to allow the system
ample time to sample the delayed Bcache read data.

Figure 4–21 READ Timing Diagram (Bcache Hit) Flow-Through SSRAM

F
M

-0
55

70
.A

I4

18
19

20

18
19

20
4–44 Clocks, Cache, and External Interface 29 September 1997 – Subject To Change

da
ta

_h
<1

27
:0

>

in
de

x_
h<

21
:4

>

ta
g_

ra
m

_o
e_

l

ta
g_

ra
m

_w
e_

l

sy
s_

cl
k

0
1

2
3

4
5

6
7

8
9

10
11

12
14

13
15

16
17

ad
dr

_b
us

_r
eq

_h

ad
dr

_h
<3

9:
4>

A
0

cm
d_

h<
3:

0>
R

E
A

D

ad
dr

_r
es

_h
<1

:0
>

A
C

K
B

C D
00

D
01

D
02

D
03

da
ck

_h

st
_c

lk
x_

h

bc
_c

lk
_d

el
ay

A
0

bc
_r

d_
la

te
nc

y

A
0

ta
g_

da
ta

_h
<3

2:
19

>
T

0

ta
g_

di
rt

y_
h

D

ta
g_

va
lid

_h
V

da
ta

_a
ds

c_
l

da
ta

_a
dv

_l

da
ta

_r
am

_o
e_

l

da
ta

_r
am

_w
e_

l<
3:

0>
F

0
1

2
3

4
5

6
7

8
9

10
11

12
14

13
15

16
17

Data Bus and Command/Address Bus Contention

4.9 Data Bus and Command/Address Bus Contention

The data bus is composed of data_h<127:0> and lw_parity_h<3:0>. The com-
mand/address bus is composed of cmd_h<3:0> and addr_h<39:4>.

The following sections describe situations that have contention for use of the data
bus or contention for use of the command/address bus.

4.9.1 Command/Address Bus

Figure 4–22 shows the 21164PC and the system alternately driving the command/
address bus. If signal addr_bus_req_h is asserted at the rising edge of sysclk N, the

turns

n
-

29 September 1997 – Subject To Change Clocks, Cache, and External Interface 4–45

next cycle on the command/address bus belongs to the system. The 21164PC
off its drivers at the rising edge of sysclk N. While the system must turn on its driv-
ers between sysclk N and sysclk N+1, it must ensure that the drivers do not turn o
before the 21164PC drivers turn off. The 21164PC samples the state of the com
mand/address bus at the end of sysclk N+1. If addr_bus_req_h remains asserted,
the system should continue to drive the command/address bus.

Figure 4–22 Driving the Command/Address Bus

To pass control of the command/address bus back to the 21164PC, the system should
turn off its drivers during a sysclk cycle and deassert addr_bus_req_h. The
21164PC does not sample the state of the bus if addr_bus_req_h is deasserted. The
21164PC drives the command/address bus at the rising edge of sysclk N+2.

MK145503B

sys_clk_out1_h

addr_bus_req_h

21164PC Drive

System Drive

21164PC Sample Point

N N+1 N+2

Data Bus and Command/Address Bus Contention

4.9.2 Read/Write Spacing—Data Bus Contention

The data bus, data_h<127:0>, can be driven by the 21164PC, the Bcache array, or
the system.

In the case of private Bcache write operations followed by private Bcache read oper-
ations, the 21164PC stops driving the data bus well in advance of the Bcache turning
on.

For private Bcache read operations followed by private Bcache write operations, the
21164PC inserts a programmable number of cpu_clk cycles between the read and
the write operation (controlled by CBOX_CONFIG<BC_RW_OFF>). This allows

4–46 Clocks, Cache, and External Interface 29 September 1997 – Subject To Change

time for the Bcache drivers to turn off before the 21164PC data drivers are turned on.

4.9.3 Using idle_bc_h and fill_h

The 21164PC uses the idle_bc_h and fill_h signals to fill data into the Bcache. The
system must assert the idle_bc_h signal early enough to ensure that the 21164PC
completes any private Bcache transaction it might have started while waiting for the
fill data.

Signal fill_h is asserted a fixed number of sysclk cycles before the start of a fill
transaction.

At the end of the fill, the 21164PC waits five cpu_clk cycles before starting a read or
write operation. This time should allow the system to turn off its drivers. If, in prac-
tice, this is not enough time, the system may assert data_bus_req_h to gain addi-
tional cycles.

Calculating Time to Assert idle_bc_h

The idle_bc_time equation, for calculating the number of sysclk cycles that
idle_bc_h must sample prior to fill data being driven, can be expressed as:

When determining the tristate turnoff times, if the system will not turn on its drivers
for some number of nanoseconds after the 21164PC starts driving Bcache
index_h<21:4>; this time can be used to reduce the tristate_turn_off time.

idle_cpu_cycles = (4 + BC_RD_LATENCY + BC_CLK_RATIO + tristate_ram_turn_off);
All values expressed as # of cpu cycles

idle_bc_time = ROUNDUP(idle_cpu_cycles / sysclk_ratio);
All values expressed as # of sysclk cycles

Data Bus and Command/Address Bus Contention

For example, if the sysclk ratio is 7, the Bcache read latency is 5, the bc_clk ratio is
3, and two cycles are necessary for tristate turnoff, then the equations would work
out to:

cpu_clk

sys_clk

N-2 N-1 N

7 sysclk ratio
29 September 1997 – Subject To Change Clocks, Cache, and External Interface 4–47

4.9.4 Using data_bus_req_h

The signal data_bus_req_h can be used along with the idle_bc_h signal to prevent
the 21164PC and the Bcache from driving the data bus. In general, the system should
not need to use this feature but it may be useful if the system places other devices on
the data bus. Figure 4–23 shows an example of this timing.

idle_cpu_cycles = 4 + bc_rd_latency + bc_clk_ratio +
tristate_ram_turn_off

= 4 + 5 + 3 + 2

= 14 CPU cycles

idle_bc_time(sysclk)= ROUNDUP(14/7)

= 2 sysclk cycles

This requires idle_bc_h to be sampled two sysclk cycles before the fill data
is driven.

idle_bc_h

fill_h

data_h<127:0>

data_ram_oe_l

st_clk

Private Read Fill Data

bc_read_latency4
5 3

2

bc_clk_ratio

turnoff

bc_clk_ratio3

Data Bus and Command/Address Bus Contention

To gain control of the data bus, the system must ensure that the Bcache is idle by
asserting idle_bc_h for the required time. It can then assert data_bus_req_h. If
data_bus_req_h is received asserted at the rising edge of sysclk N, the 21164PC
stops driving the bus on the rising edge of sysclk N+1.

To return the bus to the 21164PC, the system should deassert data_bus_req_h and
then deassert idle_bc_h on the next sysclk.

Figure 4–23 Using data_bus_req_h

ate
t the
0-ns

and,

N N+1
4–48 Clocks, Cache, and External Interface 29 September 1997 – Subject To Change

4.9.5 Tristate Overlap

The addr_h<39:4>, cmd_h<3:0>, data_h<127:0>, and tag_data_h<32:19> buses
must be operated in such a way that no more than one driver may drive the bus at a
time. This section describes particular cases where tristate overlap may be a problem
that needs to be corrected using features described in previous sections.

The “owner” of each bus must drive the bus to some value for each cycle. Trist
drivers in the 21164PC turn on and off very fast (in the 0.5-ns to 1.0-ns range). A
other end of the range, SSRAM memory devices turn on and off slowly (in the 4.
to 7.0-ns range). Generally, system drivers fall somewhere in the middle.

4.9.5.1 Private READ or WRITE to FILL

The time required to tristate the 21164PC drivers at the end of a WRITE comm
or the Bcache drivers at the end of a READ command is part of the idle_bc_h equa-
tion.

PCA015

sys_clk_out1_h

data_bus_req_h

21164PC Drive

idle_bc_h

Data Bus and Command/Address Bus Contention

4.9.5.2 System READ to FILL (System WRITE) Spacing

The time to turn off the Bcache drivers at the end of a system READ (Bcache victim
or system command with data movement) is fixed by the 21164PC design (refer to
Figure 4–24). The CBOX_CONFIG<BC_REG_REG> bit is set when using pipe-
lined SSRAMs, which delays the deassertion of data_ram_oe_l by one sysclk cycle
after the detection of the final dack_h. When the bit is clear (for use with flow-
through SSRAMs), data_ram_oe_l is deasserted one cpu_clk cycle after the detec-
tion of the final dack_h. The system must allow time for data_ram_oe_l to turn off
and the RAMs to stop driving the bus, before the system drives fill data to avoid data
bus contention.
29 September 1997 – Subject To Change Clocks, Cache, and External Interface 4–49

Figure 4–24 System READ to FILL Spacing

FM-05572.AI4

data_ram_oe_l

data_h

dack_h

fill_h

sys_clk

0 1 2 3 4 5 6 7 8

final dack detected

earliest fill sample point to avoid data bus contention

Pipelined SSRAM

fill data driven by system

data_ram_oe_l

data_h

dack_h

fill_h

sys_clk

final dack detected

earliest fill sample point to avoid data bus contention

turnoff time

fill data driven by system

delayed oe deassertion <bc reg reg>=1

turnoff time

fill data driven by system

+ 1 cpu_clk cycle

Flow-Through SSRAM

+ 1 cpu_clk cycle

21164PC Interface Restrictions

4.9.5.3 FILL to Private READ or WRITE Operation

At the end of the fill, the 21164PC does not begin to drive the data bus until the fifth
cpu_clk cycle after the sysclk that loads the last dack_h (refer to Figure 4–25). The
21164PC does not assert data_ram_oe_l until the fifth cycle after the sysclk that
loads the last dack_h.

Systems requiring more time to turn off their drivers must not send any more
requests and must use idle_bc_h and data_bus_req_h at the end of the fill to pro-
vide adequate write-to-read spacing to avoid data bus contention.

Figure 4–25 FILL to Private READ or WRITE Operation
4–50 Clocks, Cache, and External Interface 29 September 1997 – Subject To Change

4.10 21164PC Interface Restrictions

This section lists restrictions on the use of 21164PC interface features.

4.10.1 Fill Operations After Other Transactions

For a system Bcache read operation (Bcache victim or a system-initiated data move-
ment) followed by a fill operation, the earliest assertion of fill_h by the system is
dependent upon the CBOX_CONFIG<BC_REG_REG> bit to avoid a read-to-write
data bus contention. When the BC_REG_REG bit is set, the 21164PC will deassert
data_ram_oe_l a full sysclk cycle after the final dack_h is detected to allow the
system adequate time to sample the Bcache read data. See Section 4.9.5.2 for timing
diagrams and assumptions that must be met by the system.

PCA018

dack_h

index_h<21:4>

cpu_clk

data_h<127:0>

data_ram_oe_l

D0

I0

N

sys_clk_out1_h

I3

D3

N+3N+1 N+2 N+4 N+5

21164PC/System Race Conditions

For a WRITE BLOCK operation followed by a fill operation, the earliest point the
system can assert the fill_h signal is at the sysclk after the last assertion of dack_h.

Fill operations followed by fill operations are special cases. Fill operations can be
pipelined back-to-back so that 100% of the data bus bandwidth can be used.

4.10.2 Command Acknowledge for WRITE BLOCK Commands

When the 21164PC requests a WRITE BLOCK operation, the system can acknowl-
edge the data by asserting dack_h before asserting cack_h. The system must assert
cack_h no later than the last assertion of dack_h.
29 September 1997 – Subject To Change Clocks, Cache, and External Interface 4–51

4.11 21164PC/System Race Conditions

When certain sequences of transactions occur on the interface between the 21164PC,
the Bcache, and the system, race conditions may occur. The rules for use of the inter-
face by the 21164PC and the system are listed in Section 4.11.1.

Examples of race conditions to be avoided are described and illustrated in
Section 4.11.2 through Section 4.11.6.

4.11.1 Rules for 21164PC and System Use of External Interface

This section lists the rules for determining the order in which 21164PC and system
requests are allowed by the CBU BIU. In general, the order allowed is determined by
use of cmd_h<3:0>, idle_bc_h, and fill_h.

1. If idle_bc_h is not asserted and there are no valid requests in the BIU command
buffer, then the BIU is free to perform any 21164PC request.

2. If a fill transaction is pending, the BIU only produces another READ MISS com-
mand, with a possible BCACHE VICTIM command. The BIU will not attempt
any other command.

3. The assertion of idle_bc_h, or the sending of a system command other than NOP
to the 21164PC, causes the BIU to idle. If the BIU has a command loaded in the
pad ring, it removes the command and replaces it with a NOP command. The
state of cmd_h<3:0> is unpredictable until the idle condition ends.

4. The idle condition ends when the 21164PC receives a deasserted idle_bc_h, and
the 21164PC has responded to all the system commands that were sent.

5. The system must not assert cack_h during the idle condition.

21164PC/System Race Conditions

6. There is one exception to rules 3, 4, and 5. If idle_bc_h or a system command
arrives while the 21164PC is reading the Bcache, and that read transaction turns
into a read miss transaction, and it does not produce a victim, then the 21164PC
loads the miss into the pad ring. The system may assert cack_h for this read miss
request at any time.

7. If cack_h is asserted at the same time as idle_bc_h or a valid system request,
cack_h wins and the command is taken by the system. Signal cack_h should not
be asserted if idle_bc_h has been asserted or a valid system command is under
way.

8. A read miss with a Bcache victim transaction is treated as an atomic pair. If the
4–52 Clocks, Cache, and External Interface 29 September 1997 – Subject To Change

READ MISS command is acknowledged with cack_h, then the BCACHE VIC-
TIM command must be acknowledged with cack_h and all the data acknowl-
edged with dack_h, before the 21164PC responds to any other request. The
system must also guarantee that once the read miss operation has been cacked,
system commands or fill transactions are not started until the read miss/Bcache
victim pair have completed.

9. The cack_h acknowledgment for a write block or Bcache victim transaction
must be received by the 21164PC with or before the last dack_h acknowledg-
ment of the data. For write block and Bcache victim transactions, it is possible to
acknowledge all but the last data, and then decide to do something else.

10. For a read miss transaction, cack_h must be received with or before the last data
acknowledgment (dack_h) for the requested fill operation.

21164PC/System Race Conditions

4.11.2 READ MISS with Victim Aborted by FILL Example

In Figure 4–26, the 21164PC asserts a READ MISS command with a victim. The
system asserts dack_h for two data cycles received from the Bcache and then asserts
idle_bc_h. This causes the 21164PC to remove the READ MISS command with vic-
tim pending. The 21164PC reasserts the READ MISS and BCACHE VICTIM com-
mands, if needed, at a later time.

Figure 4–26 READ MISS with Victim Aborted by FILL Example

sys_clk_out1_h

0 3 121 2 4 5 6 7 8 9 10 11
29 September 1997 – Subject To Change Clocks, Cache, and External Interface 4–53

PCA010

victim_pending_h

addr_bus_req_h

idle_bc_h

cack_h

dack_h

index_h<21:4>

cmd_h<3:0>

addr_h<39:4>

data_h<127:0>

data_ram_oe_l

READ MISS NOP

D0 D1 D2

I0 I1 I2

NOP

21164PC/System Race Conditions

4.11.3 idle_bc_h and cack_h Race Example

In Figure 4–27, idle_bc_h and cack_h are asserted in the same sysclk cycle. The
system takes the READ MISS and BCACHE VICTIM commands before doing any-
thing else. The last dack_h meets the requirement that the cack_h arrive before or
with the last dack_h.

Figure 4–27 idle_bc_h and cack_h Race Examples

sys_clk_out1_h

0 3 121 2 4 5 6 7 8 9 10 11
4–54 Clocks, Cache, and External Interface 29 September 1997 – Subject To Change

HLO-PCA011

victim_pending_h

addr_bus_req_h

idle_bc_h

cack_h

dack_h

index_h<21:4>

cmd_h<3:0>

addr_h<39:4>

data_h<127:0>

data_ram_oe_l

READ MISS NOP

D0 D1 D2

I0 I1 I2

NOP NOP Bcache Victim

D3

I3

21164PC/System Race Conditions

4.11.4 READ MISS with idle_bc_h Asserted Example

In Figure 4–28, the 21164PC has started a Bcache read operation that misses. The
signal idle_bc_h is asserted, but no victim was created, so the read miss request is
loaded into the pad ring. The system then takes the request.

Figure 4–28 READ MISS with idle_bc_h Asserted Example

sys_clk_out1_h

cmd_h<3:0> READ MISS NOP

0 3 121 2 4 5 6 7 8 9 10 11

NOP
29 September 1997 – Subject To Change Clocks, Cache, and External Interface 4–55

PCA012

victim_pending_h

addr_bus_req_h

idle_bc_h

cack_h

dack_h

index_h<21:4>

addr_h<39:4>

data_h<127:0>

data_ram_oe_l

D0 D1

I0 I1

21164PC/System Race Conditions

4.11.5 READ MISS with Victim Aborted by System Command Example

In Figure 4–29, the 21164PC produces a READ MISS command with a victim and is
waiting for the system to take it when the system takes the bus and requests a flush
transaction. The 21164PC drives the read miss request for one more cycle after it
gets command of the bus and then removes the request. The 21164PC then responds
to the FLUSH command and drives index_h<21:4> to read the Bcache. The
21164PC restarting the Bcache read operation, requesting the read miss with victim,
is not shown in the timing diagram. If the victim block was invalidated by the system
request, the 21164PC produces a clean read miss transaction.
4–56 Clocks, Cache, and External Interface 29 September 1997 – Subject To Change

Figure 4–29 READ MISS with Victim Abort Example

PCA013

victim_pending_h

addr_bus_req_h

idle_bc_h

cack_h

dack_h

index_h<21:4>

sys_clk_out1_h

cmd_h<3:0>

addr_h<39:4>

data_h<127:0>

data_ram_oe_l

READ MISS NOP

D0

I0 R0

3 21 2 4 5 6 7 8 9 0 1

NOP

3 4 5 6 7 8 9 0 1

FLUSH RM

IRI

addr_res_h<1:0> NOP ACK NOP

R1 R2 R3

D0 D1 D2 D3

Data Integrity and Bcache Errors

4.11.6 Bcache Hit Under READ MISS Example

In Figure 4–30, the 21164PC produces a read miss transaction and requests a fill
from the system. A Bcache hit to index j take places while waiting for the fill. The
system then returns the requested data in two bursts, asserting cack_h at the same
time as the last assertion of dack_h.

Figure 4–30 Bcache Hit Under READ MISS Example

sys_clk_out1_h

cmd_h<3:0> READ MISS NOP

3 21 2 4 5 6 7 8 9 0 1

NOP

3 4 5 6 70
29 September 1997 – Subject To Change Clocks, Cache, and External Interface 4–57

4.12 Data Integrity and Bcache Errors

Mechanisms for ensuring that errors on data received by the 21164PC from the
Bcache, the system, or both are described in this section. Tag data errors are also
described.

4.12.1 Data Parity

The 21164PC supports INT4 parity protection on the data bus for the external
Bcache and memory system. When the 21164PC drives data to memory, it generates
longword parity and places it on lw_parity_h<3:0> for write operations. Parity is
checked for read operations. Parity for data_h<31:0> is driven on signal
lw_parity_h<0> and so on.

PCA014

victim_pending_h

addr_bus_req_h

idle_bc_h

cack_h

dack_h

index_h<21:4>

addr_h<39:4>

data_h<127:0>

data_ram_oe_l

I0 J0

I

fill_h

J1 J2 J3 I0 I1 I2 I3

D0 D0 D1 D2 D3 D0 D1 D2 D3

Interrupts

4.12.2 Bcache Tag Data Parity

The signal line tag_data_par_h is used to maintain parity over
tag_data_h<32:19>, tag_valid_h, and tag_dirty_h. A Bcache tag data parity error
is usually not recoverable.

A Bcache hit is determined based on the tag alone, not the tag parity bit. The CBU
records the Bcache probe address and the tag value read from the Bcache. A tag data
parity error causes a trap to privileged architecture library code (PALcode), which
handles the error condition.
4–58 Clocks, Cache, and External Interface 29 September 1997 – Subject To Change

4.12.3 Fill Error

The signal fill_error_h is asserted by the system to notify the 21164PC that a fill
error has occurred.

In systems in which a fill error timeout is not expected, such as a small system with
fixed access time, it is likely that the 21164PC internal IDU timeout logic would
detect a stall if the system fails to complete a fill transaction.

Systems in which a fill error timeout could occur should contain logic to detect fill
timeouts and cleanly terminate the transaction with the 21164PC.

To properly terminate a fill in an error case, the fill_error_h line is asserted for one
cycle and the normal fill sequence involving lines fill_h, fill_id_h, and dack_h is
generated by the system.

Asserting fill_error_h forces a trap to the PALcode at the MCHK entry point but
has no other effect.

4.13 Interrupts

The 21164PC has seven interrupt signals that have different uses during initialization
and normal operation.

Figure 4–31 shows the 21164PC interrupt signals.

Figure 4–31 21164PC Interrupt Signals

MK5517B

21164PC
mch_hlt_irq_h

sys_mch_chk_irq_h

irq_h<3:0>

pwr_fail_irq_h

Interrupts

4.13.1 Interrupt Signals During Initialization

The 21164PC interrupt signals work in tandem with the sys_reset_l signal to set the
values for clock ratios and clock delays. During initialization, the 21164PC reads
system clock configuration parameters from the interrupt pins. Section 4.2.2 and
Section 4.2.3 describe how the interrupt signals are used to set system clock values
when the system is initialized.

4.13.2 Interrupt Signals During Normal Operation

During normal operation, interrupt signals indicate interrupt requests from external

l
29 September 1997 – Subject To Change Clocks, Cache, and External Interface 4–59

devices such as the real-time clock and I/O controllers.

4.13.3 Interrupt Priority Level

Table 4–11 shows which interrupts are enabled for a given interrupt priority leve
(IPL). An interrupt is enabled if the current IPL is less than the target IPL of the
interrupt.

Table 4–11 Interrupt Priority Level Effect (Sheet 1 of 2)

Interrupt Source Target IPL Source

Software Interrupt Request 1 1 Internal

Software Interrupt Request 2 2 Internal

Software Interrupt Request 3 3 Internal

Software Interrupt Request 4 4 Internal

Software Interrupt Request 5 5 Internal

Software Interrupt Request 6 6 Internal

Software Interrupt Request 7 7 Internal

Software Interrupt Request 8 8 Internal

Software Interrupt Request 9 9 Internal

Software Interrupt Request 10 10 Internal

Software Interrupt Request 11 11 Internal

Software Interrupt Request 12 12 Internal

Software Interrupt Request 13 13 Internal

Software Interrupt Request 14 14 Internal

Interrupts

Software Interrupt Request 15 15 Internal

Asynchronous system trap ATR pending (for
current or more privileged mode)

2 Internal

Performance counter interrupt 29 Internal

Powerfail interrupt1 30 pwr_fail_irq_h

System machine check interrupt1 31 sys_mch_chk_irq_h

Table 4–11 Interrupt Priority Level Effect (Sheet 2 of 2)

Interrupt Source Target IPL Source
4–60 Clocks, Cache, and External Interface 29 September 1997 – Subject To Change

When the processor receives an interrupt request and that request is enabled, an
interrupt is reported or delivered to the exception logic if the processor is not cur-
rently executing PALcode. Before vectoring to the interrupt service PAL dispatch
address, the pipeline is completely drained to the point that instructions issued before
entering the PALcode cannot trap (implied TRAPB).

The restart address is saved in the exception address (EXC_ ADDR) IPR and the
processor enters PALmode. The cause of the interrupt can be determined by examin-
ing the state of the INTID and ISR registers.

Hardware interrupt requests are level-sensitive and, therefore, may be removed
before an interrupt is serviced. PALcode must verify that the interrupt actually indi-
cated in INTID is to be serviced at an IPL higher than the current IPL. If it is not,
PALcode should ignore the spurious interrupt.

1 These interrupts are from external sources. In some cases, the system environment provides the
logic-OR of multiple interrupt sources at the same IPL to a particular pin.

2 The external interrupts 20-23 are separately maskable by setting the appropriate bits in the ICSR
register.

 and internal

External interrupt 201 202 irq_h<0>

External interrupt 211 212 irq_h<1>

External interrupt 221 222 irq_h<2>

External interrupt 231 232 irq_h<3>

Halt1 Masked only by exe-
cuting in PALmode.

mch_hlt_irq_h

Serial line interrupt Masked only by exe-
cuting in PALmode.

Internal

 5
Internal Processor Registers

um-

egion
 IPRs.

chip
29 September 1997 – Subject To Change Internal Processor Registers 5–1

This chapter describes the 21164PC microprocessor internal processor registers
(IPRs). It is organized as follows:

• Instruction fetch/decode unit and branch unit (IDU) IPRs

• Memory address translation unit (MTU) IPRs

• Cache control and bus interface unit (CBU) IPRs

• PAL storage registers

• Restrictions

IDU, MTU, data cache (Dcache), and PALtemp IPRs are accessible to PALcode by
means of the HW_MTPR and HW_MFPR instructions. Table 5–1 lists the IPR n
bers for these instructions.

CBU and backup cache (Bcache) IPRs are accessible in the physical address r
FF FFF0 0000 to FF FFFF FFFF. Table 5–25 summarizes the CBU and Bcache
Table 5–31 lists restrictions on the IPRs.

Note: Unless explicitly stated, IPRs are not cleared or set by hardware on
or timeout reset.

Table 5–1 IDU, MTU, Dcache, and PALtemp IPR Encodings (Sheet 1 of 4)

IPR Mnemonic Access Index16 IDU Slots to Pipe

IDU_IPRs

ISR R 100 E1

ITB_TAG W 101 E1

ITB_PTE R/W 102 E1

ITB_ASN R/W 103 E1

ITB_PTE_TEMP R 104 E1

ITB_IA W 105 E1

ITB_IAP W 106 E1

ITB_IS W 107 E1

SIRR R/W 108 E1

ASTRR R/W 109 E1

Table 5–1 IDU, MTU, Dcache, and PALtemp IPR Encodings (Sheet 2 of 4)

IPR Mnemonic Access Index16 IDU Slots to Pipe
5–2 Internal Processor Registers 29 September 1997 – Subject To Change

ASTER R/W 10A E1

EXC_ADDR R/W 10B E1

EXC_SUM R/W0C 10C E1

EXC_MASK R 10D E1

PAL_BASE R/W 10E E1

ICM R/W 10F E1

IPLR R/W 110 E1

INTID R 111 E1

IFAULT_VA_FORM R 112 E1

IVPTBR R/W 113 E1

HWINT_CLR W 115 E1

SL_XMIT W 116 E1

SL_RCV R 117 E1

ICSR R/W 118 E1

IC_FLUSH_CTL W 119 E1

ICPERR_STAT R/W1C 11A E1

PMCTR R/W 11C E1

PALtemp_IPRs

PALtemp0 R/W 140 E1

PALtemp1 R/W 141 E1

PALtemp2 R/W 142 E1

PALtemp3 R/W 143 E1

PALtemp4 R/W 144 E1

PALtemp5 R/W 145 E1

PALtemp6 R/W 146 E1

PALtemp7 R/W 147 E1

Table 5–1 IDU, MTU, Dcache, and PALtemp IPR Encodings (Sheet 3 of 4)

IPR Mnemonic Access Index16 IDU Slots to Pipe
29 September 1997 – Subject To Change Internal Processor Registers 5–3

PALtemp8 R/W 148 E1

PALtemp9 R/W 149 E1

PALtemp10 R/W 14A E1

PALtemp11 R/W 14B E1

PALtemp12 R/W 14C E1

PALtemp13 R/W 14D E1

PALtemp14 R/W 14E E1

PALtemp15 R/W 14F E1

PALtemp16 R/W 150 E1

PALtemp17 R/W 151 E1

PALtemp18 R/W 152 E1

PALtemp19 R/W 153 E1

PALtemp20 R/W 154 E1

PALtemp21 R/W 155 E1

PALtemp22 R/W 156 E1

PALtemp23 R/W 157 E1

MTU_IPRs

DTB_ASN W 200 E0

DTB_CM W 201 E0

DTB_TAG W 202 E0

DTB_PTE R/W 203 E0

DTB_PTE_TEMP R 204 E0

MM_STAT R 205 E0

VA R 206 E0

VA_FORM R 207 E0

MVPTBR W 208 E0

Table 5–1 IDU, MTU, Dcache, and PALtemp IPR Encodings (Sheet 4 of 4)

IPR Mnemonic Access Index16 IDU Slots to Pipe
5–4 Internal Processor Registers 29 September 1997 – Subject To Change

DTB_IAP W 209 E0

DTB_IA W 20A E0

DTB_IS W 20B E0

ALT_MODE W 20C E0

CC W 20D E0

CC_CTL W 20E E0

MCSR R/W 20F E0

DC_FLUSH W 210 E0

DC_PERR_STAT R/W1C 212 E0

DC_TEST_CTL R/W 213 E0

DC_TEST_TAG R/W 214 E0

DC_TEST_TAG_TEMP R/W 215 E0

DC_MODE R/W 216 E0

MAF_MODE R/W 217 E0

Instruction Fetch/Decode Unit and Branch Unit (IDU) IPRs

5.1 Instruction Fetch/Decode Unit and Branch Unit (IDU) IPRs

The IDU internal processor registers (IPRs) are described in Section 5.1.1 through
Section 5.1.27.

5.1.1 Istream Translation Buffer Tag (ITB_TAG) Register (101)

ITB_TAG is a write-only register written by hardware on an ITBMISS/IACCVIO,
with the tag field of the faulting virtual address. To ensure the integrity of the
instruction translation buffer (ITB), the TAG and page table entry (PTE) fields of an
ITB entry are updated simultaneously by a write operation to the ITB_PTE register.
29 September 1997 – Subject To Change Internal Processor Registers 5–5

This write operation causes the contents of the ITB_TAG register to be written into
the tag field of the ITB location, which is determined by a not-last-used replacement
algorithm. The PTE field is obtained from the HW_MTPR ITB_PTE instruction.
Figure 5–1 shows the ITB_TAG register format.

Figure 5–1 Istream Translation Buffer Tag (ITB_TAG) Register

5.1.2 Instruction Translation Buffer Page Table Entry (ITB_PTE)
Register (102)

ITB_PTE is a read/write register.

Write Format

A write operation to this register writes both the PTE and TAG fields of an ITB loca-
tion determined by a not-last-used replacement algorithm. The TAG and PTE fields
are updated simultaneously to ensure the integrity of the ITB. A write operation to
the ITB_PTE register increments the not-last- used (NLU) pointer, which allows for
writing the entire set of ITB PTE and TAG entries. If the HW_MTPR ITB_PTE
instruction falls in the shadow of a trapping instruction, the NLU pointer may be
incremented multiple times. The TAG field of the ITB location is determined by the

00121331

IGN

32424363

VA<42:13>

LJ-03473.AI4

IGN

VA<42:13>

Instruction Fetch/Decode Unit and Branch Unit (IDU) IPRs

contents of the ITB_TAG register. The PTE field is provided by the HW_ MTPR
ITB_PTE instruction. Write operations to this register use the memory format bits,
as described in the Alpha AXP Architecture Reference Manual. Figure 5–2 shows the
ITB_PTE register write format.

Figure 5–2 Instruction Translation Buffer Page Table Entry (ITB_PTE) Register
Write Format

000304050607080910111231

IGN

ASM
GH

IGN
5–6 Internal Processor Registers 29 September 1997 – Subject To Change

Read Format

A read of the ITB_PTE requires two instructions. A read of the ITB_PTE register
returns the PTE pointed to by the NLU pointer to the ITB_PTE_TEMP register and
increments the NLU pointer. If the HW_MFPR ITB_PTE instruction falls in the
shadow of a trapping instruction, the NLU pointer may be incremented multiple
times. A zero value is returned to the integer register file. A second read of the
ITB_PTE_TEMP register returns the PTE to the general-purpose integer register file
(IRF). Figure 5–3 shows the ITB_PTE register read format.

Figure 5–3 Instruction Translation Buffer Page Table Entry (ITB_PTE) Register
Read Format

IGN
KRE
ERE
SRE
URE

32585963

IGN

LJ-03474.AI4

PFN<39:13>

00121314171819202122282931

RAZ

ASM
KRE
ERE
SRE
URE
GHD<2:0>

32585963

RAZ

LJ-03475.AI4

RAZ

PFN<39:13>

RAZ

Instruction Fetch/Decode Unit and Branch Unit (IDU) IPRs

5.1.3 Instruction Translation Buffer Address Space Number (ITB_ASN)
Register (103)

ITB_ASN is a read/write register that contains the address space number (ASN) of
the current process. Figure 5–4 shows the ITB_ASN register format.

Figure 5–4 Instruction Translation Buffer Address Space Number (ITB_ASN)
Register

ll

000304101131

RAZ/IGNRAZ/IGN ASN<6:0>
29 September 1997 – Subject To Change Internal Processor Registers 5–7

5.1.4 Instruction Translation Buffer Page Table Entry Temporary
(ITB_PTE_TEMP) Register (104)

ITB_PTE_TEMP is a read-only holding register for ITB_PTE read data. A read of
the ITB_PTE register returns data to this register. A second read of the
ITB_PTE_TEMP register returns data to the general-purpose integer register file
(IRF). Figure 5–3 shows the ITB_PTE register format.

Table 5–2 shows the GHD settings for the ITB_PTE_TEMP register.

5.1.5 Instruction Translation Buffer Invalidate All Process (ITB_IAP)
Register (106)

ITB_IAP is a write-only register. Any write operation to this register invalidates a
ITB entries that have an address space match (ASM) bit that equals zero.

Table 5–2 Granularity Hint Bits in ITB_PTE_TEMP Read Format

Name Extent Type Description

GHD <29> RO Set if granularity hint equals 01, 10, or 11.

GHD <30> RO Set if granularity hint equals 10 or 11.

GHD <31> RO Set if granularity hint equals 11.

3263

RAZ/IGN

LJ-03476.AI4

Instruction Fetch/Decode Unit and Branch Unit (IDU) IPRs

5.1.6 Instruction Translation Buffer Invalidate All (ITB_IA) Register (105)

ITB_IA is a write-only register. A write operation to this register invalidates all ITB
entries, and resets the ITB not-last-used (NLU) pointer to its initial state. RESET
PALcode must execute an HW_MTPR ITB_IA instruction in order to initialize the
NLU pointer.

5.1.7 Instruction Translation Buffer IS (ITB_IS) Register (107)

ITB_IS is a write-only register. Writing a virtual address to this register invalidates
the ITB entry that meets either of the following criteria:
5–8 Internal Processor Registers 29 September 1997 – Subject To Change

• An ITB entry whose virtual address (VA) field matches ITB_IS<42:13> and
whose ASN field matches ITB_ASN<10:04>.

• An ITB entry whose VA field matches ITB_IS<42:13> and whose ASM bit is
set.

Figure 5–5 shows the ITB_IS register format.

Figure 5–5 Instruction Translation Buffer IS (ITB_IS) Register

00121331

IGN

32424363

IGN

LJ-03478.AI4

VA<42:13>

VA<42:13>

Instruction Fetch/Decode Unit and Branch Unit (IDU) IPRs

5.1.8 Formatted Faulting Virtual Address (IFAULT_VA_FORM)
Register (112)

IFAULT_VA_FORM is a read-only register containing the formatted faulting virtual
address on an ITBMISS/IACCVIO (except on IACCVIOs generated by sign-check
errors). The formatted faulting address generated depends on whether NT superpage
mapping is enabled through ICSR bit SPE<0>. Figure 5–6 shows the
IFAULT_VA_FORM register format in non-NT mode.

Figure 5–6 Formatted Faulting Virtual Address (IFAULT_VA_FORM) Register
(NT_Mode=0)
29 September 1997 – Subject To Change Internal Processor Registers 5–9

Figure 5–7 shows the IFAULT_VA_FORM register format in NT mode.

Figure 5–7 Formatted Faulting Virtual Address (IFAULT_VA_FORM) Register
(NT_Mode=1)

00020331

RAZ

323363

LJ-03479.AI4

VPTB<63:33>

VA<42:13>

VA<42:13>

30 00020321222931

RAZ

3263

LJ-03480.AI4

VPTB<63:30>

VA<31:13>RAZ

VPTB<63:30>

Instruction Fetch/Decode Unit and Branch Unit (IDU) IPRs

5.1.9 Virtual Page Table Base (IVPTBR) Register (113)

IVPTBR is a read/write register. Bits <32:30> are UNDEFINED on a read of this
register in non-NT mode. Figure 5–8 shows the IVPTBR register format in non-NT
mode.

Figure 5–8 Virtual Page Table Base (IVPTBR) Register (NT_Mode=0)

IGN

31 30 000102030405060708091011121314151617181920212223242526272829

RAZ/IGN
5–10 Internal Processor Registers 29 September 1997 – Subject To Change

Figure 5–9 shows the IVPTBR register format in NT mode.

Figure 5–9 Virtual Page Table Base (IVPTBR) Register (NT_Mode=1)

I
G
N

62 32333435363738394041424344454647484950515253545556575859606163

VPTB<63:33>

MA0602.AI4

30 002931

RAZ/IGN

3263

LJ-03481.AI4

VPTB<63:30>

VPTB<63:30>

Instruction Fetch/Decode Unit and Branch Unit (IDU) IPRs

5.1.10 Icache Parity Error Status (ICPERR_STAT) Register (11A)

ICPERR_STAT is a read/write register. The Icache parity error status bits may be
cleared by writing a 1 to the appropriate bits. Figure 5–10 and Table 5–3 describe the
ICPERR_STAT register format.

Figure 5–10 Icache Parity Error Status (ICPERR_STAT) Register
001011121331

RAZ/IGN

DPE

RAZ/IGN
29 September 1997 – Subject To Change Internal Processor Registers 5–11

5.1.11 Icache Flush Control (IC_FLUSH_CTL) Register (119)

IC_FLUSH_CTL is a write-only register. Writing any value to this register flushes
the entire Icache.

Table 5–3 Icache Parity Error Status Register Fields

Name Extent Type Description

DPE <11> W1C Data parity error

TPE <12> W1C Tag parity error

TMR <13> W1C Timeout reset error or cfail_h/no cack_h error

TPE

3263

RAZ/IGN

LJ-03482.AI4

TMR

Instruction Fetch/Decode Unit and Branch Unit (IDU) IPRs

5.1.12 Exception Address (EXC_ADDR) Register (10B)

EXC_ADDR is a read/write register used to restart the system after exceptions or
interrupts. The HW_REI instruction causes a return to the instruction pointed to by
the EXC_ADDR register. This register can be written both by hardware and soft-
ware. Hardware write operations occur as a result of exceptions/interrupts and
CALL_PAL instructions. Hardware write operations that occur as a result of excep-
tions/interrupts take precedence over all other write operations.

In case of an exception/interrupt, hardware writes a program counter (PC) to this reg-
ister. In case of precise exceptions, this is the PC value of the instruction that caused

ws

r for-
5–12 Internal Processor Registers 29 September 1997 – Subject To Change

the exception. In case of imprecise exceptions/interrupts, this is the PC value of the
next instruction that would have issued if the exception/interrupt was not reported.

In case of a CALL_PAL instruction, the PC value of the next instruction after the
CALL_PAL is written to EXC_ADDR.

Bit <00> of this register is used to indicate PALmode. On a HW_REI instruction, the
mode of the system is determined by bit <00> of EXC_ADDR. Figure 5–11 sho
the EXC_ADDR register format.

Figure 5–11 Exception Address (EXC_ADDR) Register

5.1.13 Exception Summary (EXC_SUM) Register (10C)

EXC_SUM is a read/write register that records the different arithmetic traps that
occur between EXC_SUM write operations. Any write operation to this register
clears bits <16:10>. Figure 5–12 and Table 5–4 describe the EXC_SUM registe
mat.

0031

PAL
RAZ/IGN

3263

PC<63:2>

LJ-03483.AI4

PC<63:2>

Instruction Fetch/Decode Unit and Branch Unit (IDU) IPRs

Figure 5–12 Exception Summary (EXC_SUM) Register
0009101112131415161731

SWC
INV
DZE
FOV
UNF
INE
IOV

3263

RAZ/IGNRAZ/IGN
29 September 1997 – Subject To Change Internal Processor Registers 5–13

Table 5–4 Exception Summary Register Fields

Name Extent Type Description

SWC <10> WA Indicates software completion possible. This bit is set after a
floating-point instruction containing the /S modifier com-
pletes with an arithmetic trap, and if all previous floating-
point instructions that trapped since the last HW_MTPR
EXC_SUM instruction also contained the /S modifier.

The SWC bit is cleared whenever a floating-point instruction
without the /S modifier completes with an arithmetic trap.
The bit remains cleared regardless of additional arithmetic
traps until the register is written by an HW_ MTPR instruc-
tion. The bit is always cleared upon any HW_MTPR write
operation to the EXC_SUM register.

INV <11> WA Indicates invalid operation.

DZE <12> WA Indicates divide by zero.

FOV <13> WA Indicates floating-point overflow.

UNF <14> WA Indicates floating-point underflow.

INE <15> WA Indicates floating inexact error.

IOV <16> WA Indicates floating-point execution unit (FEU) convert to inte-
ger overflow or integer arithmetic overflow.

RAZ/IGN

LJ-03484.AI4

Instruction Fetch/Decode Unit and Branch Unit (IDU) IPRs

5.1.14 Exception Mask (EXC_MASK) Register (10D)

EXC_MASK is a read/write register that records the destinations of instructions that
have caused an arithmetic trap between EXC_MASK write operations. The destina-
tion is recorded as a single bit mask in the 64-bit IPR representing F0–F31 and
I0–I31. A write operation to EXC_ SUM clears the EXC_MASK register.
Figure 5–13 shows the EXC_MASK register format.

Figure 5–13 Exception Mask (EXC_MASK) Register
0031
5–14 Internal Processor Registers 29 September 1997 – Subject To Change

3263

LJ-03485.AI4

I1 I0I31 I30 I29

F1 F0F31 F30 F29

Instruction Fetch/Decode Unit and Branch Unit (IDU) IPRs

5.1.15 PAL Base Address (PAL_BASE) Register (10E)

PAL_BASE is a read/write register containing the base address for PALcode. The
register is cleared by hardware on reset. Figure 5–14 shows the PAL_BASE register
format.

Figure 5–14 PAL Base Address (PAL_BASE) Register
00131431

RAZ/IGNPAL_BASE<39:14>
29 September 1997 – Subject To Change Internal Processor Registers 5–15

5.1.16 IDU Current Mode (ICM) Register (10F)

ICM is a read/write register containing the current mode bits of the architecturally
defined processor status, as described in the Alpha AXP Architecture Reference
Manual. Figure 5–15 shows the ICM register format.

Figure 5–15 IDU Current Mode (ICM) Register

32394063

LJ-03486.AI4

RAZ/IGN PAL_BASE<39:14>

000203040531

RAZ/IGN
CM0
CM1

3263

RAZ/IGN

LJ-03487.AI4

RAZ/IGN

Instruction Fetch/Decode Unit and Branch Unit (IDU) IPRs

5.1.17 IDU Control and Status (ICSR) Register (118)

ICSR is a read/write register containing IDU-related control and status information.
Figure 5–16 and Table 5–5 describe the ICSR register format.

Figure 5–16 IDU Control and Status (ICSR) Register
31 0007091016171819202324252627282930

RAZ/IGNRAZ/IGN

08

PME<1:0>
RSV
MBZ
5–16 Internal Processor Registers 29 September 1997 – Subject To Change

Table 5–5 IDU Control and Status Register Fields (Sheet 1 of 3)

Name Extent Type Description

PME<1:0> <09:08> RW,0 Performance counter master enable bits. If both
PME<1> and PME<0> are clear, all perfor-
mance counters in the PMCTR IPR are disabled.
If either PME<1> or PME<0> are set, the
counter is enabled according to the settings of
the PMCTR CTL fields.

RSV <17> RW,0 Reserved to DIGITAL.

MBZ <18> RW,0 Reserved to DIGITAL. Must be zero.

HLO001B

63 323334353637383940

MVE
IMSK<3:0>
TMM
TMD
FPE
HWE
SPE<1:0>
SDE
RAZ/IGN

MBZ
SLE
FMS
FBT
FBD
MBO
ISTA
TST

RAZ/IGN

Instruction Fetch/Decode Unit and Branch Unit (IDU) IPRs

MVE <19> RW,0 If set, enables the motion video instruction
(MVI) set. If clear, causes any MVI class
instructions to generate a RESDEC trap.

IMSK<3:0> <23:20> RW,0 If set, each IMSK<3:0> signal disables the cor-
responding IRQ_ H<3:0> interrupt.

TMM <24> RW,0 If set, the timeout counter counts 5000 cycles
before asserting timeout reset. If clear, the time-
out counter counts 1 billion cycles before assert-

Table 5–5 IDU Control and Status Register Fields (Sheet 2 of 3)

Name Extent Type Description
29 September 1997 – Subject To Change Internal Processor Registers 5–17

ing timeout reset.

TMD <25> RW,0 If set, disables the IDU timeout counter. Does
not affect cfail_h/no cack_h error.

FPE <26> RW,0 If set, floating-point instructions may be issued.
If clear, floating-point instructions cause FEN
exceptions.

HWE <27> RW,0 If set, allows PALRES instructions to be issued
in kernel mode.

SPE<1:0> <29:28> RW,0 If SPE<1> is set, it enables superpage mapping
of Istream virtual address VA<39:13> directly to
physical address PA<39:13> assuming
VA<42:41> = 10. Virtual address bit VA<40> is
ignored in this translation. Access is allowed
only in kernel mode.

If SPE<0> is set (NT mode), it enables super-
page mapping of Istream virtual addresses
VA<42:30> = 1FFE16 directly to physical
address PA<39:30> = 016. VA<30:13> is
mapped directly to PA<30:13>. Access is
allowed only in kernel mode.

SDE <30> RW,0 If set, enables PAL shadow registers.

MBZ <32> RW,0 Reserved to DIGITAL. Must be zero.

SLE <33> RW,0 If set, enables serial line interrupts.

FMS <34> RW,0 If set, forces miss on Icache references. MBZ in
normal operation.

FBT <35> RW,0 If set, forces bad Icache tag parity. MBZ in nor-
mal operation.

Instruction Fetch/Decode Unit and Branch Unit (IDU) IPRs

nter-

FBD <36> RW,0 If set, forces bad Icache data parity. MBZ in nor-
mal operation.

MBO <37> RW,1 Reserved to DIGITAL. Must be one.

ISTA <38> RO Reading this bit indicates ICACHE BIST status.
If set, ICACHE BIST was successful.

TST <39> RW,0 Writing a 1 to this bit asserts the
test_status_h<1> signal.

Table 5–5 IDU Control and Status Register Fields (Sheet 3 of 3)

Name Extent Type Description
5–18 Internal Processor Registers 29 September 1997 – Subject To Change

5.1.18 Interrupt Priority Level (IPLR) Register (110)

IPLR is a read/write register that is accessed by PALcode to set the value of the
interrupt priority level (IPL). Whenever hardware detects an interrupt whose target
IPL is greater than the value in IPLR<04:00>, an interrupt is taken. Figure 5–17
shows the IPLR register format. Refer to Table 4–11 for a description of which i
rupts are enabled for a given IPL.

Figure 5–17 Interrupt Priority Level (IPLR) Register
00040531

IPL<4:0>

3263

RAZ/IGN

LJ-03489.AI4

RAZ/IGN

Instruction Fetch/Decode Unit and Branch Unit (IDU) IPRs

5.1.19 Interrupt ID (INTID) Register (111)

INTID is a read-only register that is written by hardware with the target IPL of the
highest priority pending interrupt. The hardware recognizes an interrupt if the IPL
being read is greater than the IPL given by IPLR<04:00>.

Interrupt service routines may use the value of this register to determine the cause of
the interrupt. PALcode, for the interrupt service, must ensure that the IPL in INTID
is greater than the IPL specified by IPLR. This restriction is required because a level-
sensitive hardware interrupt may disappear before the interrupt service routine is
entered (passive release).
29 September 1997 – Subject To Change Internal Processor Registers 5–19

The contents of INTID are not correct on a HALT interrupt because this particular
interrupt does not have a target IPL at which it can be masked. When a HALT inter-
rupt occurs, INTID indicates the next highest priority pending interrupt. PALcode
for interrupt service must check the interrupt summary register (ISR) to determine if
a HALT interrupt has occurred. Figure 5–18 shows the INTID register format.

Figure 5–18 Interrupt ID (INTID) Register
00040531

INTID<4:0>

3263

RAZ/IGN

LJ-03490.AI4

RAZ/IGN

Instruction Fetch/Decode Unit and Branch Unit (IDU) IPRs

5.1.20 Asynchronous System Trap Request (ASTRR) Register (109)

ASTRR is a read/write register containing bits to request asynchronous system trap
(AST) interrupts in each of the four processor modes (U,S,E,K). In order to generate
an AST interrupt, the corresponding enable bit in the ASTER must be set and the
current processor mode given in the ICM<04:03> should be equal to or higher than
the mode associated with the AST request. Figure 5–19 shows the ASTRR register
format.

Figure 5–19 Asynchronous System Trap Request (ASTRR) Register

rmat.

000102030431
5–20 Internal Processor Registers 29 September 1997 – Subject To Change

5.1.21 Asynchronous System Trap Enable (ASTER) Register (10A)

ASTER is a read/write register containing bits to enable corresponding asynchronous
system trap (AST) interrupt requests. Figure 5–20 shows the ASTER register fo

Figure 5–20 Asynchronous System Trap Enable (ASTER) Register

KAR
EAR
SAR
UAR

3263

RAZ/IGN

LJ-03491.AI4

RAZ/IGN

000102030431

KAE
EAE
SAE
UAE

3263

RAZ/IGN

LJ-03492.AI4

RAZ/IGN

Instruction Fetch/Decode Unit and Branch Unit (IDU) IPRs

5.1.22 Software Interrupt Request (SIRR) Register (108)

SIRR is a read/write register used to control software interrupt requests. A software
request for a particular IPL may be requested by setting the appropriate bit in
SIRR<15:01>. Figure 5–21 and Table 5–6 describe the SIRR register format.

Figure 5–21 Software Interrupt Request (SIRR) Register
000304181931

RAZ/IGN RAZ/IGNSIRR<15:1>
29 September 1997 – Subject To Change Internal Processor Registers 5–21

Table 5–6 Software Interrupt Request Register Fields

Name Extent Type Description

SIRR<15:1> <18:04> RW Request software interrupts.

3263

RAZ/IGN

LJ-03493.AI4

Instruction Fetch/Decode Unit and Branch Unit (IDU) IPRs

5.1.23 Hardware Interrupt Clear (HWINT_CLR) Register (115)

HWINT_CLR is a write-only register used to clear edge-sensitive hardware interrupt
requests. Figure 5–22 and Table 5–7 describe the HWINT_CLR register format.

Figure 5–22 Hardware Interrupt Clear (HWINT_CLR) Register
30 002627282931

PC0C
PC1C
PC2C

IGN IGN
5–22 Internal Processor Registers 29 September 1997 – Subject To Change

Table 5–7 Hardware Interrupt Clear Register Fields

Name Extent Type Description

PC0C <27> W1C Clears performance counter 0 interrupt requests.

PC1C <28> W1C Clears performance counter 1 interrupt requests.

PC2C <29> W1C Clears performance counter 2 interrupt requests.

CRDC <32> W1C Clears correctable read data interrupt requests.

SLC <33> W1C Clears serial line interrupt requests.

32333463

LJ-03495.AI4

SLC
CRDC

IGN

Instruction Fetch/Decode Unit and Branch Unit (IDU) IPRs

5.1.24 Interrupt Summary (ISR) Register (100)

ISR is a read-only register containing information about all pending hardware, soft-
ware, and asynchronous system trap (AST) interrupt requests. Figure 5–23 and
Table 5–8 describe the ISR register format. Refer to Table 4–11 for a description of
which interrupts are enabled for a given interrupt priority level (IPL).

Figure 5–23 Interrupt Summary (ISR) Register

30 00030418192021222324252627282931

SISR<15:1>RAZ
29 September 1997 – Subject To Change Internal Processor Registers 5–23

Table 5–8 Interrupt Summary Register Fields (Sheet 1 of 2)

Name Extent Type Description

ASTRR<3:0>
 and
ASTER<3:0>

<03:00> RO Boolean AND of ASTRR<USEK> with
ASTER<USEK> used to indicate enabled AST
requests.

SISR<15:1> <18:04> RO,0 Software interrupt requests 15 through 1 corre-
sponding to IPL 15 through 1.

ATR <19> RO Set if any AST request and corresponding
enable bit is set and if the processor mode is
equal to or higher than the AST request mode.

I20 <20> RO External hardware interrupt—irq_h<0>.

I21 <21> RO External hardware interrupt—irq_h<1>.

ASTRR<3:0>
and ASTER<3:0>
ATR
I20
I21
I22
I23

3263

RAZ

LJ03496A.AI4

PC0
PC1
PC2
PFL
MCK

CRD
SLI
HLT

Instruction Fetch/Decode Unit and Branch Unit (IDU) IPRs

I22 <22> RO External hardware interrupt—irq_h<2>.

I23 <23> RO External hardware interrupt—irq_h<3>.

PC0 <27> RO External hardware interrupt—performance
counter 0 (IPL 29).

PC1 <28> RO External hardware interrupt—performance
counter 1 (IPL 29).

Table 5–8 Interrupt Summary Register Fields (Sheet 2 of 2)

Name Extent Type Description
5–24 Internal Processor Registers 29 September 1997 – Subject To Change

PC2 <29> RO External hardware interrupt—performance
counter 2 (IPL 29).

PFL <30> RO External hardware interrupt—power failure
(IPL 30).

MCK <31> RO External hardware interrupt—system machine
check (IPL 31).

CRD <32> RO Correctable ECC errors (IPL 31).

SLI <33> RO Serial line interrupt.

HLT <34> RO External hardware interrupt—halt.

Instruction Fetch/Decode Unit and Branch Unit (IDU) IPRs

5.1.25 Serial Line Transmit (SL_XMIT) Register (116)

SL_XMIT is a write-only register used to transmit bit-serial data out of the micro-
processor chip under the control of a software timing loop. The value of the TMT bit
is transmitted offchip on the srom_clk_h signal. In normal operation mode (not in
debugging mode), the srom_clk_h signal serves both the serial line transmission and
the Icache SROM interface (see Sections 7.4 and 7.5). Figure 5–24 and Table 5–9
describe the SL_XMIT register format.

Figure 5–24 Serial Line Transmit (SL_XMIT) Register
0006070831
29 September 1997 – Subject To Change Internal Processor Registers 5–25

Table 5–9 Serial Line Transmit Register Fields

Name Extent Type Description

TMT <07> WO,1 Serial line transmit data

3263

LJ-03497.AI4

TMT

IGN

IGN IGN

Instruction Fetch/Decode Unit and Branch Unit (IDU) IPRs

5.1.26 Serial Line Receive (SL_RCV) Register (117)

SL_RCV is a read-only register used to receive bit-serial data under the control of a
software timing loop. The RCV bit in the SL_RCV register is functionally connected
to the srom_data_h signal. A serial line interrupt is requested whenever a transition
is detected on the srom_data_h signal and the SLE bit in the ICSR is set. During
normal operations (not in test mode), the srom_data_h signal serves both the serial
line reception and the Icache SROM interface (see Sections 7.4 and 7.5).
Figure 5–25 and Table 5–10 describe the SL_RCV register format.

Figure 5–25 Serial Line Receive (SL_RCV) Register
5–26 Internal Processor Registers 29 September 1997 – Subject To Change

Table 5–10 Serial Line Receive Register Fields

Name Extent Type Description

RCV <06> RO Serial line receive data

0005060731

3263

LJ-03498.AI4

RCV

RAZ

RAZ RAZ

Instruction Fetch/Decode Unit and Branch Unit (IDU) IPRs

5.1.27 Performance Counter (PMCTR) Register (11C)

PMCTR is a read/write register that controls the three onchip performance counters.
Figure 5–26 and Table 5–11 describe the PMCTR register format. Performance
counter interrupt requests are summarized in Section 5.1.24. CBU inputs to the
counter select options are described in the PM0_ MUX<2:0> and PM1_ MUX<2:0>
fields of the CBOX_CONFIG2 IPR (see Table 5–29). Section 2.8 describes the per-
formance measurement support features.

Note: The arrangement of the select option tables is not meant to imply any
restrictions on permitted combinations of selections. The only cases in
29 September 1997 – Subject To Change Internal Processor Registers 5–27

which the selection for one counter influences another’s count is
SEL1=8 (SEL2=2, 3, other).

Figure 5–26 Performance Counter (PMCTR) Register
30 000304070809101112131415162931

SEL0

32474863

CTR0<15:0>

MA0601A.AI4

CTR2<13:0> CTL0 CTL1 CTL2 SEL1<3:0> SEL2<3:0>

CTR1<15:0>

K
u

K
p

K
k

Instruction Fetch/Decode Unit and Branch Unit (IDU) IPRs

Table 5–11 Performance Counter Register Fields

Name Extent Type Description

CTR0<15:0> <63:48> RW A 16-bit counter of events selected by SEL0 and
enabled by CTL0<1:0>.

CTR1<15:0> <47:32> RW A 16-bit counter.

SEL0 <31> RW Counter0 Select—refer to Table 5–12.

Ku <30> RW Kill user mode—disables all counters in user

)
5–28 Internal Processor Registers 29 September 1997 – Subject To Change

mode (refer to Table 5–13).

CTR2<13:0> <29:16> RW 14-bit counter

CTL0<1:0> <15:14> RW,0 CTR0 counter control:
00 counter disable, interrupt disable
01 counter enable, interrupt disable
10 counter enable, interrupt at count 65536
 (Refer to Section 5.1.23 and Section 5.1.24.
11 counter enable, interrupt at count 256

CTL1<1:0> <13:12> RW,0 CTR1 counter control:
00 counter disable, interrupt disable
01 counter enable, interrupt disable
10 counter enable, interrupt at count 65536
11 counter enable, interrupt at count 256

CTL2<1:0> <11:10> RW,0 CTR2 counter control:
00 counter disable, interrupt disable
01 counter enable, interrupt disable
10 counter enable, interrupt at count 16384
11 counter enable, interrupt at count 256

Kp <09> RW Kill PALmode—disables all counters in
PALmode (refer to Table 5–13).

Kk <08> RW Kill kernel, executive, supervisor mode—dis-
ables all counters in kernel, executive, and
supervisor modes (refer to Table 5–13). Ku=1,
Kp=1, and Kk=1 enables counters in executive
and supervisor modes only.

SEL1<3:0> <07:04> RW Counter1 Select—refer to Table 5–12.

SEL2<3:0> <03:00> RW Counter2 Select—refer to Table 5–12.

Instruction Fetch/Decode Unit and Branch Unit (IDU) IPRs

Table 5–12 shows the PMCTR counter select options.

Table 5–12 PMCTR Counter Select Options (Sheet 1 of 2)

Counter0
SEL0<0>

Counter1
SEL1<3:0>

Counter2
SEL2<3:0>

0:Cycles 0x0: nonissue cycles
Valid instruction in S3 but none issued.

0x0: long(>15 cycle) stalls

0x1: split-issue cycles
Some, but not all, instructions at S3 issued.

0x1: reserved
29 September 1997 – Subject To Change Internal Processor Registers 5–29

0x2: pipe-dry cycles
No valid instruction at S3.

0x3: replay trap
A replay trap occurred.

0x4: single-issue cycles
Exactly one instruction issued.

0x5: dual-issue cycles
Exactly two instructions issued.

0x6: triple-issue cycles
Exactly three instructions issued.

 0x7: quad-issue cycles
Exactly four instructions issued.

1:Instructions 0x8: jsr-ret if sel2=PC-M
Instruction issued if sel2 is PC-M.

0x2: PC-mispredicts

0x8: cond-branch if sel2=BR-M
Instruction issued if sel2 is BR-M

0x3: BR-mispredicts

0x8: all flow-change instructions if sel2=!
(PC-M or BR-M)

0x9: IntOps issued 0x4: Icache/RFB misses

0xA: FPOps issued 0x5: ITB misses

0xB: loads issued 0x6: Dcache LD misses

0xC: stores issued 0x7: DTB misses

0xD: Icache issued 0x8: LDs merged in MAF

0xE: Dcache accesses 0x9: LDU replay traps

0xA:WB/MAF full replay traps

Instruction Fetch/Decode Unit and Branch Unit (IDU) IPRs

alls

ur-
L”

s
by

0xB: Reserved

0xC: CPU cycles

0xD: MB stall cycles

0xE: LDxL instructions issued

0xF: pick CBU<0> input 0xF: pick CBU<1> input

Table 5–12 PMCTR Counter Select Options (Sheet 2 of 2)

Counter0
SEL0<0>

Counter1
SEL1<3:0>

Counter2
SEL2<3:0>
5–30 Internal Processor Registers 29 September 1997 – Subject To Change

Table 5–13 shows the measurement mode bit settings.

Note: Both the user and the operating system can make PAL subroutine c
that put the machine in PALmode. The “OS only,” “user only,” and
“executive and supervisor only” modes do not measure the events d
ing the PAL subroutine calls made by the OS or user. The “OS + PA
and “user + PAL” modes should be used carefully. “OS + PAL” mode
measures the events during the PAL calls made by the user, wherea
“user + PAL” mode measures the events during the PAL calls made
the OS.

1 In this instance, Kk means kill kernel only. The combination Ku=1, Kp=1, and Kk=1 is used to
gather events for the executive and supervisor modes only.

Table 5–13 Measurement Mode Control

Kill Bit Settings

Measurement Mode Desired Ku Kp Kk

Program 0 0 0

PAL only 1 0 1

OS only (kernel, executive, supervisor) 1 1 0

User only 0 1 1

All except PAL 0 1 0

OS + PAL (not user) 1 0 0

User + PAL (not kernel, executive, and supervisor) 0 0 1

Executive and supervisor only1 1 1 1

Memory Address Translation Unit (MTU) IPRs

5.2 Memory Address Translation Unit (MTU) IPRs

The MTU internal processor registers (IPRs) are described in Section 5.2.1 through
Section 5.2.23.

5.2.1 Dstream Translation Buffer Address Space Number (DTB_ASN)
Register (200)

DTB_ASN is a write-only register that must be written with an exact duplicate of the
ITB_ASN register ASN field. Figure 5–27 shows the DTB_ASN register format.
29 September 1997 – Subject To Change Internal Processor Registers 5–31

Figure 5–27 Dstream Translation Buffer Address Space Number (DTB_ASN)
Register

5.2.2 Dstream Translation Buffer Current Mode (DTB_CM) Register (201)

DTB_CM is a write-only register that must be written with an exact duplicate of the
IDU current mode (ICM) register CM field. These bits indicate the current mode of
the machine, as described in the Alpha AXP Architecture Reference Manual.
Figure 5–28 shows the DTB_CM register format.

Figure 5–28 Dstream Translation Buffer Current Mode (DTB_CM) Register

0031

32565763

LJ-03499.AI4

IGN

ASN<6:0> IGN

000203040531

3263

LJ-03500.AI4

IGN

CM0
CM1

IGN

IGN

Memory Address Translation Unit (MTU) IPRs

5.2.3 Dstream Translation Buffer Tag (DTB_TAG) Register (202)

DTB_TAG is a write-only register that writes the DTB tag and the contents of the
DTB_PTE register to the DTB. To ensure the integrity of the DTBs, the DTB’s PTE
array is updated simultaneously from the internal DTB_PTE register when the
DTB_TAG register is written.

The entry to be written is chosen at the time of the DTB_TAG write operation by a
not-last-used replacement algorithm implemented in hardware. A write operation to
the DTB_TAG register increments the translation buffer (TB) entry pointer of the
DTB, which allows writing the entire set of DTB PTE and TAG entries. The TB

eset
5–32 Internal Processor Registers 29 September 1997 – Subject To Change

entry pointer is initialized to entry zero and the TB valid bits are cleared on chip r
but not on timeout reset. Figure 5–29 shows the DTB_TAG register format.

Figure 5–29 Dstream Translation Buffer Tag (DTB_TAG) Register

5.2.4 Dstream Translation Buffer Page Table Entry (DTB_PTE)
Register (203)

DTB_PTE is a read/write register representing the 64-entry DTB page table entries
(PTEs). The entry to be written is chosen by a not-last-used replacement algorithm
implemented in hardware. Write operations to DTB_PTE use the memory format bit
positions, as described in the Alpha AXP Architecture Reference Manual, with the
exception that some fields are ignored. In particular, the page frame number (PFN)
valid bit is not stored in the DTB.

To ensure the integrity of the DTB, the PTE is actually written to a temporary regis-
ter and is not transferred to the DTB until the DTB_TAG register is written. As a
result, writing the DTB_PTE and then reading without an intervening DTB_TAG
write operation does not return the data previously written to the DTB_PTE register.

00121331

32424363

LJ-03501.AI4

IGNVA<42:13>

IGN VA<42:13>

Memory Address Translation Unit (MTU) IPRs

Read operations of the DTB_PTE require two instructions. First, a read from the
DTB_PTE sends the PTE data to the DTB_PTE_TEMP register. A zero value is
returned to the integer register file (IRF) on a DTB_PTE read operation. A second
instruction reading from the DTB_PTE_TEMP register returns the PTE entry to the
register file. Reading the DTB_PTE register increments the TB entry pointer of the
DTB, which allows reading the entire set of DTB PTE entries. Figure 5–30 shows
the DTB_PTE register format.

Note: The Alpha AXP Architecture Reference Manual provides descriptions of
the fields of the PTE.
29 September 1997 – Subject To Change Internal Processor Registers 5–33

Figure 5–30 Dstream Translation Buffer Page Table Entry (DTB_PTE)
Register—Write Format

000102030405060708091011121314151631

IGN
FOR
FOW
IGN
ASM
GH<1:0>
IGN
KRE
ERE

32585963

PFN<39:13>

LJ-03502.AI4

SRE
URE
KWE
EWE
SWE
UWE

IGN

IGN

Memory Address Translation Unit (MTU) IPRs

5.2.5 Dstream Translation Buffer Page Table Entry Temporary
(DTB_PTE_TEMP) Register (204)

DTB_PTE_TEMP is a read-only holding register used for DTB_PTE data. Read
operations of the DTB_PTE require two instructions to return the PTE data to the
register file. The first reads the DTB_PTE register to the DTB_PTE_TEMP register
and returns zero to the register file. The second returns the DTB_PTE_TEMP regis-
ter to the integer register file (IRF). Figure 5–31 shows the DTB_PTE_TEMP regis-
ter format.

Figure 5–31 Dstream Translation Buffer Page Table Entry Temporary (DTB_PTE_TEMP)
5–34 Internal Processor Registers 29 September 1997 – Subject To Change

Register
0001020304050607080910121331

FOR
FOW
KRE
ERE
SRE
URE
KWE
EWE
SWE

32383963

PFN<39:13>

LJ-03503.AI4

UWE
PFN<39:13>

RAZ

PFN<39:13> RAZ

Memory Address Translation Unit (MTU) IPRs

5.2.6 Dstream Memory Management Fault Status (MM_STAT)
Register (205)

MM_STAT is a read-only register that stores information on Dstream faults and
Dcache parity errors. The VA, VA_FORM, and MM_STAT registers are locked
against further updates until software reads the VA register. The MM_STAT bits are
only modified by hardware when the register is not locked and a memory manage-
ment error, DTB miss, or Dcache parity error occurs. The MM_STAT register is not
unlocked or cleared on reset. Figure 5–32 and Table 5–14 describe the MM_STAT
register format.
29 September 1997 – Subject To Change Internal Processor Registers 5–35

Figure 5–32 Dstream Memory Management Fault Status (MM_STAT) Register

Table 5–14 Dstream Memory Management Fault Status Register
Fields (Sheet 1 of 2)

Name Extent Type Description

WR <00> RO Set if reference that caused error was a write
operation.

ACV <01> RO Set if reference caused an access violation.
Includes bad virtual address.

FOR <02> RO Set if reference was a read operation and the
PTE FOR bit was set.

FOW <03> RO Set if reference was a write operation and the
PTE FOW bit was set.

DTB_MISS <04> RO Set if reference resulted in a DTB miss.

000102030405061011161731

WR
ACV
FOR
FOW
DTB_MISS
BAD_VA

3263

LJ-03504.AI4

RAZ

OPCODERAZ RA

Memory Address Translation Unit (MTU) IPRs

5.2.7 Faulting Virtual Address (VA) Register (206)

BAD_VA <05> RO Set if reference had a bad virtual address.

RA <10:06> RO RA field of the faulting instruction.

OPCODE <16:11> RO Opcode field of the faulting instruction.

Table 5–14 Dstream Memory Management Fault Status Register
Fields (Sheet 2 of 2)

Name Extent Type Description
5–36 Internal Processor Registers 29 September 1997 – Subject To Change

VA is a read-only register. When Dstream faults, DTB misses, or Dcache parity
errors occur, the effective virtual address associated with the fault, miss, or error is
latched in the VA register. The VA, VA_FORM, and MM_STAT registers are
locked against further updates until software reads the VA register. The VA register
is not unlocked on reset. Figure 5–33 shows the VA register format.

Figure 5–33 Faulting Virtual Address (VA) Register
0031

3263

Virtual Address

LJ-03505.AI4

Virtual Address

Memory Address Translation Unit (MTU) IPRs

5.2.8 Formatted Virtual Address (VA_FORM) Register (207)

VA_FORM is a read-only register containing the virtual page table entry (PTE)
address calculated as a function of the faulting virtual address and the virtual page
table base (VA and MVPTBR registers). This is done as a performance enhancement
to the Dstream TBmiss PAL flow.

The virtual address is formatted as a 32-bit PTE when the NT_Mode bit
(MCSR<01>) is set (see Figure 5–34). VA_ FORM is locked on any Dstream fault,
DTB miss, or Dcache parity error. The VA, VA_FORM, and MM_STAT registers
are locked against further updates until software reads the VA register. The

 reg-
29 September 1997 – Subject To Change Internal Processor Registers 5–37

VA_FORM register is not unlocked on reset. Figure 5–35 shows the VA_FORM
ister format when MCSR<01> is clear.

Figure 5–34 Formatted Virtual Address (VA_FORM) Register (NT_Mode=1)

Figure 5–35 Formatted Virtual Address (VA_FORM) Register (NT_Mode=0)

30 00020321222931

VPTB<63:30>

3263

LJ-03507.AI4

VPTB<63:30>

VA<31:13>RAZ RAZ

00020331

RAZ

323363

VPTB<63:33>

LJ-03506.AI4

VA<42:13>

VA<42:13>

Memory Address Translation Unit (MTU) IPRs

Table 5–15 describes the VA_FORM register fields.

e
RM

arity

Table 5–15 Formatted Virtual Address Register Fields

Name Extent Type Description

NT_Mode=0

VPTB <63:33> RO Virtual page table base address as stored in
MVPTBR.

VA<42:13> <32:03> RO Subset of the original faulting virtual address.
5–38 Internal Processor Registers 29 September 1997 – Subject To Change

5.2.9 MTU Virtual Page Table Base (MVPTBR) Register (208)

MVPTBR is a write-only register containing the virtual address of the base of th
page table structure. It is stored in the MTU to be used in calculating the VA_FO
value for the Dstream TBmiss PAL flow. Unlike the VA register, the MVPTBR is
not locked against further updates when a Dstream fault, DTB miss, or Dcache p
error occurs. Figure 5–36 shows the MVPTBR register format.

Figure 5–36 MTU Virtual Page Table Base (MVPTBR) Register

NT_Mode=1

VPTB <63:30> RO Virtual page table base address as stored in
MVPTBR.

VA<31:13> <21:03> RO Subset of the original faulting virtual address.

30 002931

VPTB<63:30>

3263

LJ-03508.AI4

VPTB<63:30>

IGN

Memory Address Translation Unit (MTU) IPRs

5.2.10 Dcache Parity Error Status (DC_PERR_STAT) Register (212)

DC_PERR_STAT is a read/write register that locks and stores Dcache parity error
status. The VA, VA_FORM, and MM_STAT registers are locked against further
updates until software reads the VA register. If a Dcache parity error is detected
while the Dcache parity error status register is unlocked, the error status is loaded
into DC_PERR_STAT<05:02>. The LOCK bit is set and the register is locked
against further updates (except for the SEO bit) until software writes a 1 to clear the
LOCK bit.

The SEO bit is set when a Dcache parity error occurs while the Dcache parity error
29 September 1997 – Subject To Change Internal Processor Registers 5–39

status register is locked. Once the SEO bit is set, it is locked against further updates
until the software writes a 1 to DC_PERR_STAT<00> to unlock and clear the bit.
The SEO bit is not set when Dcache parity errors are detected on both pipes within
the same cycle. In this particular situation, the pipe0/pipe1 Dcache parity error status
bits indicate the existence of a second parity error. The DC_PERR_STAT register is
not unlocked or cleared on reset.

Figure 5–37 and Table 5–16 describe the DC_PERR_STAT register format.

Figure 5–37 Dcache Parity Error Status (DC_PERR_STAT) Register
0001020304050631

SEO
LOCK
DP0
DP1
TP0
TP1

3263

LJ-03509.AI4

RAZ

RAZ

Memory Address Translation Unit (MTU) IPRs

Table 5–16 Dcache Parity Error Status Register Fields

Name Extent Type Description

SEO <00> W1C Set if second Dcache parity error occurred in a
cycle after the register was locked. The SEO bit
is not set as a result of a second parity error that
occurs within the same cycle as the first.

LOCK <01> W1C Set if parity error is detected in Dcache. Bits
<05:02> are locked against further updates when
5–40 Internal Processor Registers 29 September 1997 – Subject To Change

5.2.11 Dstream Translation Buffer Invalidate All Process (DTB_IAP)
Register (209)

DTB_IAP is a write-only register. Any write operation to this register invalidates all
data translation buffer (DTB) entries in which the address space match (ASM) bit is
equal to zero.

5.2.12 Dstream Translation Buffer Invalidate All (DTB_IA) Register (20A)

DTB_IA is a write-only register. Any write operation to this register invalidates all
64 DTB entries, and resets the DTB not-last-used (NLU) pointer to its initial state.

this bit is set. Bits <05:02> are cleared when the
LOCK bit is cleared.

DP0 <02> RO Set on data parity error in Dcache bank 0.

DP1 <03> RO Set on data parity error in Dcache bank 1.

TP0 <04> RO Set on tag parity error in Dcache bank 0.

TP1 <05> RO Set on tag parity error in Dcache bank 1.

Memory Address Translation Unit (MTU) IPRs

5.2.13 Dstream Translation Buffer Invalidate Single (DTB_IS)
Register (20B)

DTB_IS is a write-only register. Writing a virtual address to this register invalidates
the DTB entry that meets either of the following criteria:

• A DTB entry whose VA field matches DTB_IS<42:13> and whose ASN field
matches DTB_ASN<63:57>.

• A DTB entry whose VA field matches DTB_IS<42:13> and whose ASM bit is
set.
29 September 1997 – Subject To Change Internal Processor Registers 5–41

Figure 5–38 shows the DTB_IS register format.

Figure 5–38 Dstream Translation Buffer Invalidate Single (DTB_IS) Register

Note: The DTB_IS register is written before the normal IDU trap point. The
DTB invalidate single operation is aborted by the IDU only for the fol-
lowing trap conditions:

• ITB miss

• PC mispredict

• When the HW_MTPR DTB_IS is executed in user mode

00121331

32424363

LJ-03510.AI4

IGN

VA<42:13> IGN

VA<42:13>

Memory Address Translation Unit (MTU) IPRs

5.2.14 MTU Control (MCSR) Register (20F)

MCSR is a read/write register that controls features and records status in the MTU.
This register is cleared on chip reset but not on timeout reset. Figure 5–39 and
Table 5–17 describe the MCSR register format.

Figure 5–39 MTU Control (MCSR) Register
0001020304050631

RAZ/IGN

M_BIG_ENDIAN
5–42 Internal Processor Registers 29 September 1997 – Subject To Change

3263

RAZ/IGN

LJ-03511.AI4

SP<1:0>
MBZ
E_BIG_ENDIAN
MBZ

Memory Address Translation Unit (MTU) IPRs

Table 5–17 MTU Control Register Fields

Name Extent Type Description

M_BIG_
ENDIAN

 <00> RW,0 MTU Big Endian mode enable. When set, bit 2
of the physical address is inverted for all long-
word Dstream references.

SP<1:0> <02:01> RW,0 Superpage mode enables.

Note: Superpage access is only allowed in ker-

-

29 September 1997 – Subject To Change Internal Processor Registers 5–43

nel mode.

SP<1> enables superpage mapping when
VA<42:41> = 2. In this mode, virtual addresses
VA<39:13> are mapped directly to physical
addresses PA<39:13>. Virtual address bit
VA<40> is ignored in this translation.

SP<0> enables one-to-one superpage mapping
of Dstream virtual addresses with VA<42:30> =
1FFE16. In this mode, virtual addresses
VA<29:13> are mapped directly to physical
addresses PA<29:13>, with bits <39:30> of
physical address set to 0. SP<0> is the
NT_Mode bit that is used to control virtual
address formatting on a read operation from the
VA_FORM register.

Reserved <03> RW,0 Reserved to DIGITAL. Must be zero (MBZ).

E_BIG_
ENDIAN

<04> RW,0 IEU Big Endian mode enable. This bit is sent to
the IEU to enable Big Endian support for the
EXTxx, MSKxx, and INSxx byte instructions.
This bit causes the shift amount to be inverted
(one’s-complemented) prior to the shifter opera
tion.

Reserved <05> RW,0 Reserved to DIGITAL. Must be zero (MBZ).

Memory Address Translation Unit (MTU) IPRs

5.2.15 Dcache Mode (DC_MODE) Register (216)

DC_MODE is a read/write register that controls diagnostic and test modes in the
Dcache. This register is cleared on chip reset but not on timeout reset. Figure 5–40
and Table 5–18 describe the DC_MODE register format.

Note: The following bit settings are required for normal operation:

DC_ENA = 1
DC_FHIT = 0
DC_BAD_PARITY = 0
5–44 Internal Processor Registers 29 September 1997 – Subject To Change

DC_PERR_DISABLE = 0

Figure 5–40 Dcache Mode (DC_MODE) Register
000102030431

DC_ENA
DC_FHIT
DC_BAD_PARITY
DC_PERR_DISABLE

3263

LJ-03512.AI4

RAZ/IGN

RAZ/IGN

Memory Address Translation Unit (MTU) IPRs

Table 5–18 Dcache Mode Register Fields

Name Extent Type Description

DC_ENA <00> RW,0 Software Dcache enable. When set, the
DC_ENA bit enables the Dcache. When clear,
the Dcache command is not updated by ST or
FILL operations, and all LD operations are
forced to miss in the Dcache. Must be one
(MBO) in normal operation.
29 September 1997 – Subject To Change Internal Processor Registers 5–45

DC_FHIT <01> RW,0 Dcache force hit. When set, the DC_FHIT bit
forces all Dstream references to hit in the
Dcache. Must be zero in normal operation.

DC_BAD_
PARITY

<02> RW,0 When set, the DC_BAD_PARITY bit inverts the
data parity inputs to the Dcache on integer
stores. This has the effect of putting bad data
parity into the Dcache on integer stores that hit
in the Dcache. This bit has no effect on the tag
parity written to the Dcache during FILL opera-
tions, or the data parity written to the CBU write
data buffer on integer store instructions.

Floating-point store instructions should not be
issued when this bit is set because it may result
in bad parity being written to the CBU write data
buffer. Must be zero (MBZ) in normal operation.

DC_PERR_
DISABLE

<03> RW,0 When set, the DC_PERR_DISABLE bit disables
Dcache parity error reporting. When clear, this
bit enables all Dcache tag and data parity errors.
Parity error reporting is enabled during all other
Dcache test modes unless this bit is explicitly
set. Must be zero (MBZ) in normal operation.

Memory Address Translation Unit (MTU) IPRs

5.2.16 Miss Address File Mode (MAF_MODE) Register (217)

MAF_MODE is a read/write register that controls diagnostic and test modes in the
MTU miss address file (MAF). This register is cleared on chip reset.
MAF_MODE<05> is also cleared on timeout reset. Figure 5–41 and Table 5–19
describe the MAF_MODE register format.

Note: The following bit settings are required for normal operation:

DREAD_NOMERGE = 0
WB_FLUSH_ALWAYS = 0
5–46 Internal Processor Registers 29 September 1997 – Subject To Change

WB_NOMERGE = 0
MAF_ARB_DISABLE = 0
WB_CNT_DISABLE = 0

Figure 5–41 Miss Address File Mode (MAF_MODE) Register

PCA008

63 32

31 000102030405060708

RAZ/IGN

RAZ/IGN

09101112

WB_CLR_LO_THRESH<1:0>
WB_SET_LO_THRESH<1:0>

DREAD_PENDING (Read-Only)
WB_PENDING (Read-Only)

MAF_ARB_DISABLE
WB_CNT_DISABLE
IO_NMERGE
WB_NOMERGE
WB_FLUSH_ALWAYS
DREAD_NOMERGE

Memory Address Translation Unit (MTU) IPRs

Table 5–19 Miss Address File Mode Register Fields (Sheet 1 of 2)

Name Extent Type Description

DREAD_
NOMERGE

<00> RW,0 Miss address file (MAF) DREAD Merge Disable. When set,
this bit disables all merging in the DREAD portion of the
MAF. Any load instruction that is issued when
DREAD_NOMERGE is set is forced to allocate a new entry.
Subsequent merging to that entry is not allowed (even if
DREAD_NOMERGE is cleared). Must be zero (MBZ) in nor-
mal operation.
29 September 1997 – Subject To Change Internal Processor Registers 5–47

WB_FLUSH_
ALWAYS

<01> RW,0 When set, this bit forces the write buffer to flush whenever
there is a valid WB entry. Must be zero (MBZ) in normal
operation.

WB_
NOMERGE

<02> RW,0 When set, this bit disables all merging in the write buffer. Any
store instruction that is issued when WB_NOMERGE is set is
forced to allocate a new entry. Subsequent merging to that
entry is not allowed (even if WB_ NOMERGE is cleared).
Must be zero (MBZ) in normal operation.

IO_NMERGE <03> RW,0 When set, this bit prevents loads from I/O space (address bit
<39>=1) from merging in the MAF. Should be zero (SBZ) in
typical operation.

WB_CNT_
DISABLE

<04> RW,0 When set, this bit disables the 256-cycle WB counter in the
MAF arbiter. The top entry of the WB arbitrates at low prior-
ity only when a LDx_L instruction is issued or the number of
WB entries equals or exceeds the value programmed in
MAF_MODE<WB_LO_PRIO_THRESH>. Must be zero
(MBZ) in normal operation.

MAF_ARB_
DISABLE

<05> RW,0 When set, this bit disables all DREAD and WB requests in the
MAF arbiter. WB_Reissue, Replay, Iref, and MB requests are
not blocked from arbitrating. This bit is cleared on both time-
out and chip reset. Must be zero (MBZ) in normal operation.

DREAD_
PENDING

<06> R,0 Indicates the status of the MAF DREAD file. When set, there
are one or more outstanding DREAD requests in the MAF file.
When clear, there are no outstanding DREAD requests.

Memory Address Translation Unit (MTU) IPRs

WB_
PENDING

<07> R,0 This bit indicates the status of the MAF WB file. When set,
there are one or more outstanding WB requests in the MAF
file. When clear, there are no outstanding WB requests.

WB_SET_LO_
THRESH<1:0>

<09:08> RW,0 These bits set the threshold at which the WB begins arbitration
at low priority. The thresholds are as follows:

00 3 entries
01 4 entries

Table 5–19 Miss Address File Mode Register Fields (Sheet 2 of 2)

Name Extent Type Description
5–48 Internal Processor Registers 29 September 1997 – Subject To Change

10 5 entries
11 2 entries (21164 mode)

WB_SET_LO_THRESH must be greater than
WB_CLR_LO_THRESH

WB_CLR_LO_
THRESH<1:0>

<11:10> RW,0 These bits set the threshold at which the WB stops arbitration.
The thresholds are as follows:

00 0 entries
01 1 entry (21164 mode)
10 2 entries
11 3 entries

WB_SET_LO_THRESH must be greater than
WB_CLR_LO_THRESH

Memory Address Translation Unit (MTU) IPRs

5.2.17 Dcache Flush (DC_FLUSH) Register (210)

DC_FLUSH is a write-only register. A write operation to this register clears all the
valid bits in both banks of the Dcache.

5.2.18 Alternate Mode (ALT_MODE) Register (20C)

ALT_MODE is a write-only register that specifies the alternate processor mode used
by some HW_LD and HW_ST instructions. Figure 5–42 and Table 5–20 describe the
ALT_MODE register format.
29 September 1997 – Subject To Change Internal Processor Registers 5–49

Figure 5–42 Alternate Mode (ALT_MODE) Register

Table 5–20 Alternate Mode Register Settings

ALT_MODE<04:03> Mode

0 0 Kernel

0 1 Executive

1 0 Supervisor

1 1 User

000203040531

3263

LJ-03514.AI4

IGN

IGN IGNAM

Memory Address Translation Unit (MTU) IPRs

5.2.19 Cycle Counter (CC) Register (20D)

CC is a read/write register. The 21164PC supports it as described in the Alpha AXP
Architecture Reference Manual. The low half of the counter, when enabled, incre-
ments once each CPU cycle. The upper half of the CC register is the counter offset.
An HW_MTPR instruction writes CC<63:32>. Bits <31:00> are unchanged.
CC_CTL<32> is used to enable or disable the cycle counter. The CC<31:00> is writ-
ten to CC_CTL by an HW_MTPR instruction.

The CC register is read by the RPCC instruction as defined in the Alpha AXP Archi-
tecture Reference Manual. The RPCC instruction returns a 64-bit value. The cycle

rmat.
5–50 Internal Processor Registers 29 September 1997 – Subject To Change

counter is enabled to increment only three cycles after the MTPR CC_CTL (with
CC_CTL<32> set) instruction is issued. This means that an RPCC instruction issued
four cycles after an HW_MTPR CC_CTL instruction that enables the counter reads a
value that is one greater than the initial count.

The CC register is disabled on chip reset. Figure 5–43 shows the CC register fo

Figure 5–43 Cycle Counter (CC) Register
0031

3263

LJ-03515.AI4

CC, OFFSET

IGN

Memory Address Translation Unit (MTU) IPRs

5.2.20 Cycle Counter Control (CC_CTL) Register (20E)

CC_CTL is a write-only register that writes the low 32 bits of the cycle counter to
enable or disable the counter. Bits CC<31:04> are written with the value in
CC_CTL<31:04> on a HW_MTPR instruction to the CC_CTL register. Bits
CC<03:00> are written with zero. Bits CC<63:32> are not changed. If
CC_CTL<32> is set, then the counter is enabled; otherwise, the counter is disabled.
Figure 5–44 and Table 5–21 describe the CC_CTL register format.

Figure 5–44 Cycle Counter Control (CC_CTL) Register
00030431
29 September 1997 – Subject To Change Internal Processor Registers 5–51

Table 5–21 Cycle Counter Control Register Fields

Name Extent Type Description

COUNT<31:04> <31:04> WO Cycle count. This value is loaded into CC<31:04>.

CC_ENA <32> WO Cycle Counter enable. When set, this bit enables the
CC register to begin incrementing three cycles later.
An RPCC that is issued four cycles after
CC_CTL<32> is written “sees” the initial count
incremented by 1.

323363

LJ-03516.AI4

IGN

COUNT<31:04>

CC_ENA

IGN

Memory Address Translation Unit (MTU) IPRs

5.2.21 Dcache Test Tag Control (DC_TEST_CTL) Register (213)

DC_TEST_CTL is a read/write register used exclusively for testing and diagnostics.
An address written to this register is used to index into the Dcache array when read-
ing or writing to the DC_TEST_TAG register. Figure 5–45 and Table 5–22 describe
the DC_TEST_CTL register format. Section 5.2.22 describes how this register is
used. DC_TEST_CTL<15> is cleared on reset.

Figure 5–45 Dcache Test Tag Control (DC_TEST_CTL) Register
31 0016 14 1213 0315 0102

RAZ/IGN INDEX<12:3>
5–52 Internal Processor Registers 29 September 1997 – Subject To Change

Table 5–22 Dcache Test Tag Control Register Fields (Sheet 1 of 2)

Name Extent Type Description

BANK0 <00> RW Dcache Bank0 enable. When set, reads from
DC_TEST_TAG return the tag from Dcache bank0,
writes to DC_TEST_TAG write to Dcache bank0. When
clear, reads from DC_TEST_TAG return the tag from
Dcache bank1.

BANK1 <01> RW Dcache Bank1 enable. When set, writes to
DC_TEST_TAG write to Dcache bank1. This bit has no
effect on reads.

INDEX<12:3> <12:03> RW Dcache tag index. This field is used on reads from and
writes to the DC_TEST_TAG register to index into the
Dcache tag array.

PCA021

63 32

RAZ/IGN
DATA
SHIFT

RAZ/IGN

BANK0
BANK1

LOAD

Memory Address Translation Unit (MTU) IPRs

DATA <13> RW Data for Dcache soft repair. When set, a logic level 1 for
the programmable soft repair fuses is sent to the Dcache.
When clear, a logic level 0 is sent to the Dcache. A write
to this location should be followed by an MB instruction.

SHIFT <14> RW/
RAZ

Shift signal for Dcache soft repair. When set, a pulse
(that is, a logic level signal for one cycle) is sent to the
Dcache, enabling it to shift the data from one scan latch
to the next.

Table 5–22 Dcache Test Tag Control Register Fields (Sheet 2 of 2)

Name Extent Type Description
29 September 1997 – Subject To Change Internal Processor Registers 5–53

Consecutively setting this bit has the effect of shifting
soft repair data into the Dcache programmable soft repair
logic. A write to this location should be followed by an
MB instruction.

LOAD <15> RW,0 Load signal for Dcache soft repair. When set, the data
shifted into the soft repair scan chain is selected, thus
enabling soft repair. When clear, the data is not selected
and the default selection is the data from the hardware
fuses. A write to this location should be followed by an
MB instruction.

Memory Address Translation Unit (MTU) IPRs

5.2.22 Dcache Test Tag (DC_TEST_TAG) Register (214)

DC_TEST_TAG is a read/write register used exclusively for testing and diagnostics.
When DC_TEST_TAG is read, the value in the DC_TEST_CTL register is used to
index into the Dcache. The value in the tag, tag parity, valid, and data parity bits for
that index are read out of the Dcache and loaded into the DC_TEST_TAG_TEMP
register. A zero value is returned to the integer register file (IRF). If BANK0 is set,
the read operation is from Dcache bank0. Otherwise, the read operation is from
Dcache bank1.

When DC_TEST_TAG is written, the value written to DC_TEST_ TAG is written to
5–54 Internal Processor Registers 29 September 1997 – Subject To Change

the Dcache index referenced by the value in the DC_TEST_CTL register. The tag,
tag parity, and valid bits are affected by this write operation. Data parity bits are not
affected by this write operation (use DC_MODE<02> and force hit modes). If
BANK0 is set, the write operation is to Dcache bank0. If BANK1 is set, the write
operation is to Dcache bank1. If both are set, both banks are written.

Figure 5–46 and Table 5–23 describe the DC_TEST_TAG register format.

Figure 5–46 Dcache Test Tag (DC_TEST_TAG) Register

PCA020

31 00

63 32

0710111213 03040506 01

33

TAG_PARITY
OW0_VALID
OW1_VALID

IGN

02

TAG<32:13>

TAG<32:13> IGN IGN

Memory Address Translation Unit (MTU) IPRs

Table 5–23 Dcache Test Tag Register Fields

Name Extent Type Description

TAG_PARITY <02> WO Tag parity. This bit refers to the Dcache tag parity bit that
covers tag bits 32 through 13 (valid bits not covered).

OW0_VALID <11> WO Octaword valid bit 0. This bit refers to the Dcache valid
bit for the low-order octaword within a Dcache 32-byte
block.
29 September 1997 – Subject To Change Internal Processor Registers 5–55

OW1_VALID <12> WO Octaword valid bit 1. This bit refers to the Dcache valid
bit for the high-order octaword within a Dcache 32-byte
block.

TAG<32:13> <32:13> WO TAG<32:13>. These bits refer to the tag field in the
Dcache array.

Memory Address Translation Unit (MTU) IPRs

5.2.23 Dcache Test Tag Temporary (DC_TEST_TAG_TEMP)
Register (215)

DC_TEST_TAG_TEMP is a read-only register used exclusively for testing and
diagnostics.

Reading the Dcache tag array requires a two-step read process:

1. The first read operation from DC_TEST_TAG reads the tag array and data parity
bits and loads them into the DC_ TEST_TAG_TEMP register. An UNDEFINED
value is returned to the integer register file (IRF).

at.
5–56 Internal Processor Registers 29 September 1997 – Subject To Change

2. The second read operation of the DC_TEST_TAG_TEMP register returns the
Dcache test data to the integer register file (IRF).

Figure 5–47 and Table 5–24 describe the DC_TEST_TAG_TEMP register form

Figure 5–47 Dcache Test Tag Temporary (DC_TEST_TAG_TEMP) Register

HLO002B

31 00

63 32

0710111213 03040506 01

33

TAG_PARITY
OW0_VALID
OW1_VALID

RAZ

02

TAG<32:13>

TAG<32:13> DATA_PAR<7:0> RAZ

Memory Address Translation Unit (MTU) IPRs

Table 5–24 Dcache Test Tag Temporary Register Fields

Name Extent Type Description

TAG_PARITY <02> RO Tag parity. This bit refers to the Dcache tag parity
bit that covers tag bits 32 through 13 (valid bits not
covered).

DATA_PAR<7:0> <10:03> RO Data parity. When any of these bits are set, it indi-
cates a parity error occurred in a read of
DC_TEST_TAG, in the bank specified in
29 September 1997 – Subject To Change Internal Processor Registers 5–57

DC_TEST_CTL.

OW0_VALID <11> RO Octaword valid bit 0. This bit refers to the Dcache
valid bit for the low-order octaword within a Dcache
32-byte block.

OW1_VALID <12> RO Octaword valid bit 1. This bit refers to the Dcache
valid bit for the high-order octaword within a
Dcache 32-byte block.

TAG<32:13> <32:13> RO TAG<32:13>. These bits refer to the tag field in the
Dcache array.

External Interface Control (CBU) IPRs

5.3 External Interface Control (CBU) IPRs

Table 5–25 lists specific IPRs for controlling Bcache, system configuration, and log-
ging error information. These IPRs cannot be read or written from the system. They
are placed in the 1MB region of 21164PC-specific I/O address space ranging from
FF FFF0 0000 to FF FFFF FFFF. Any read or write operation to an undefined IPR in
this address space produces UNDEFINED behavior. The operating system should
not map any address in this region as writable in any mode.

The CBU internal processor registers are described in Section 5.3.1 through
Section 5.3.4.
5–58 Internal Processor Registers 29 September 1997 – Subject To Change

Table 5–25 CBU Internal Processor Register Descriptions

Register Address Type Description

CBOX_CONFIG FF FFF0 0008 RW Contains Bcache configuration parameters.

CBOX_ADDR FF FFF0 0088 R Contains the address for Bcache/system-
related errors.

CBOX_STATUS FF FFF0 0108 R Contains system-to-CPU clock ratio, chip-
ID information, and logs Bcache/system-
related errors.

CBOX_CONFIG2 FF FFF0 0188 RW Contains additional Bcache configuration
parameters.

External Interface Control (CBU) IPRs

5.3.1 CBU Configuration (CBOX_CONFIG) Register (FF FFF0 0008)

CBOX_CONFIG is a read/write register that controls Bcache activity. Figure 5–48
and Table 5–26 describe the CBOX_CONFIG register format. The bits in this regis-
ter are initialized to the value indicated in Table 5–26 on reset, but not on timeout
reset.

Figure 5–48 CBU Configuration (CBOX_CONFIG) Register
31 000712 1116 1518192023242526272830

MBZ

08 04 0322 14 13
29 September 1997 – Subject To Change Internal Processor Registers 5–59

Table 5–26 CBU Configuration Register Fields (Sheet 1 of 3)

Name Extent Type Description

Reserved <03:00> RW,0 Reserved to DIGITAL. Must be zero (MBZ).

BC_CLK_
RATIO<3:0>

<07:04> RW,3 This field determines the Bcache clock period
(st_clk) in number of CPU cycles. At power-up, the
st_clk remains 0 until the Bcache is enabled. The
supported range of values is 2 to10.

BC_
LATENCY_
OFF<3:0>

<11:08> RW,0 This offset field determines the number of CPU
cycles to wait from the CPU clock edge that launches
the index until the data is latched into the 21164PC.
(Total Latency = 5 + BC_LATENCY_OFF<3:0>.)
At power-up, this field is initialized to 0, which rep-
resents a total Bcache latency of five CPU cycles.
The supported range of values for this field is 0 to15,
which provides a total latency range of 5 to 20 CPU
cycles.

PCA004

63 32

MBZ

BC_LATENCY_OFF<3:0>

BC_CLK_DELAY<1:0>
BC_RW_OFF<2:0>
BC_PROBE_UNDER_FILL
BC_FILL_DLY_OFF<2:0>
IO_PARITY_ENABLE
MEM_PARITY_ENABLE
BC_FORCE_HIT
BC_FORCE_ERR
BC_BIG_DRV

BC_SIZE<1:0>

BC_TAG_DATA<2:0>
BC_ENABLE

BC_CLK_RATIO<3:0>

External Interface Control (CBU) IPRs

BC_
SIZE<1:0>

<13:12> RW,0 This field is used to indicate the size of the Bcache.
At power-up, this field is initialized to a value that
represents a 512KB Bcache. The field encoding is as
follows:

BC_SIZE<1:0> Size

00 512KB

01 1MB

Table 5–26 CBU Configuration Register Fields (Sheet 2 of 3)

Name Extent Type Description
5–60 Internal Processor Registers 29 September 1997 – Subject To Change

10 2MB

11 4MB

BC_CLK_
DELAY<1:0>

<15:14> RW,1 This field represents the number of CPU cycles to
delay the st_clk from the driving of the index field
during Bcache transactions. At power-up, this field is
initialized to 1, indicating a clock delay of one CPU
cycle. The supported field range is 0 to 3.

BC_RW_
OFF<2:0>

<18:16>> RW,0 This offset field is used to determine the number of
CPU cycles to insert for read-to-write spacing when
switching from private Bcache reads to private
Bcache writes. (Total read-to-write spacing =
1 + BC_RW_OFF<3:0>.) At power-up, this field is
initialized to 2, which represents a total read-to-write
spacing of three CPU cycles. The supported range of
values for this field is 2 to 7, which provides a total
read-to-write spacing of three to eight CPU cycles.
For other data movement commands, such as
FLUSH or FILL from main memory, it is up to the
system to direct systemwide data movement in a way
that is safe.

BC_PROBE_
UNDER_
FILL

<19> RW,0 When set, this bit enables Bcache tag probes under
fills. This is a performance-enhancement feature that
allows the tag store to be read (tag probe) for the next
transaction, while the data store is written with fill
data from a previous transaction. It allows systems to
gain better bus utilization during streaming read
misses.

External Interface Control (CBU) IPRs

BC_FILL_
DLY_
OFF<2:0>

<22:20> RW,1 This offset field represents the additional number of
CPU cycles to delay the st_clk when processing
FILL commands. It allows the system designer flexi-
bility to position the Bcache clock within the fill data
window. (Total delay of st_clk =
1 + BC_FILL_DLY_OFF + BC_CLK_DELAY).

IO_PARITY_
ENABLE

<23> RW,0 When set, the 21164PC checks even longword parity
during read operations to I/O space (PA<39>=1).

Table 5–26 CBU Configuration Register Fields (Sheet 3 of 3)

Name Extent Type Description
29 September 1997 – Subject To Change Internal Processor Registers 5–61

MEM_
PARITY_
ENABLE

<24> RW,0 When set, the 21164PC checks even longword parity
during read operations to memory space
(PA<39>=0).

BC_FORCE_
HIT

<25> RW,0 When set, all read and write operations with
PA<39>=0 hit in the Bcache. This is useful when ini-
tializing the Bcache on power-up.

BC_FORCE_
ERR

<26> RW,0 When set, bit zero of each longword written into the
Bcache is inverted.

BC_BIG_
DRV

<27> RW,0 When set, this bit enables 50% more drive on the fol-
lowing pins:
index_h<21:4> data_ram_oe_l
data_ram_we_l<3:0> st_clk1_h
st_clk2_h st_clk3_h
data_adsc_l data_adv_l

BC_TAG_
DATA<2:0>

<30:28> RW,0 When BC_FORCE_HIT=1, BC_TAG_DATA is
used to write the tag field:

Bcache Tag Data Description

BC_TAG_DATA<2> Bcache tag parity

BC_TAG_DATA<1> Bcache tag valid

BC_TAG_DATA<0> Bcache tag dirty

BC_ENABLE <31> RW,0 When set, this bit enables caching of data and
instructions in the Bcache. When clear, Iread and
Dread references go to read memory. Dwrites to
memory are not allowed.

External Interface Control (CBU) IPRs

5.3.2 CBU Address (CBOX_ADDR) Register (FF FFF0 0088)

CBOX_ADDR is a read-only register that contains the physical address associated
with errors reported by the CBOX_STATUS register. Its contents is meaningful only
when one of the error bits is set. A read of CBOX_STATUS unlocks the
CBOX_ADDR register. Figure 5–49 and Table 5–27 describe the CBOX_ADDR
register format.

Figure 5–49 CBU Address (CBOX_ADDR) Register
39 00030438 37 364063
5–62 Internal Processor Registers 29 September 1997 – Subject To Change

Table 5–27 CBU Address Register Fields

Name Extent Type Description

Reserved <03:00> RO Reserved to DIGITAL. Must be zero (MBZ).

ADDRESS<36:04> <36:04> RO Error address.

Reserved <38:37> RO Reserved to DIGITAL. Must be zero (MBZ).

ADDRESS<39> <39> RO Error address bit 39.

Reserved <63:40> RO Reserved to DIGITAL. Must be zero (MBZ).

PCA005

MBZ MBZADDRESS<36:04>

ADDRESS<39>

MBZ

External Interface Control (CBU) IPRs

5.3.3 CBU Status (CBOX_STATUS) Register (FF FFF0 0108)

CBOX_STATUS is a read-only register. It is locked when any of the error bits are
set. Additional errors set the MULTI_ERR error bit in CBOX_STATUS. A read of
CBOX_STATUS unlocks and clears CBOX_STATUS and unlocks CBOX_ADDR.

Figure 5–50 and Table 5–28 describe the CBOX_STATUS register format.

Figure 5–50 CBU Status (CBOX_STATUS) Register
31 000712 1116 1518192023242526272830

MBZ

08 04 0322 14 13

MBZ

17
29 September 1997 – Subject To Change Internal Processor Registers 5–63

Table 5–28 CBU Status Register Fields (Sheet 1 of 2)

Name Extent Type Description

Reserved <03:00> RO,0 Reserved to DIGITAL. Must be zero (MBZ).

SYS_CLK_
RATIO<3:0>

<07:04> RO,0 The sysclk period in CPU cycles. The sysclk ratio is
loaded from the IRQ pins on reset. Note that this field
is read only.

CHIP_REV<3:0> <11:08> RO,0 This field displays 0001, the current revision of the
chip. Future update revisions of the chip will return
different unique values.

DATA_PAR_
ERR<3:0>

<15:12> RO,0 If set, this field indicates that the corresponding long-
word had a parity error. Bit<0> corresponds to
data_h<31:0>, bit<3> corresponds to
data_h<127:96>.

TAG_PAR_ERR <16> RO,0 If set, a parity error was detected on the Bcache tag
store.

PCA006

63 32

MBZ

CHIP_REV<3:0>

TAG_PAR_ERR
TAG_DIRTY
MEMORY
MULTI_ERR

DATA_PAR_ERR<3:0>

SYS_CLK_RATIO<3:0>

External Interface Control (CBU) IPRs

TAG_DIRTY <17> RO,0 This bit is the value of the TAG_DIRTY bit for the
failing address. If set, the data had been modified and
not written to memory.

MEMORY <18> RO,0 If set, the error was detected during a fill from
memory.

MULTI_ERR <19> RO,0 If set, another error was detected after the register was
locked.

Table 5–28 CBU Status Register Fields (Sheet 2 of 2)

Name Extent Type Description
5–64 Internal Processor Registers 29 September 1997 – Subject To Change

Reserved <31:20> RO,0 Reserved to DIGITAL. Must be zero (MBZ).

External Interface Control (CBU) IPRs

5.3.4 CBU Configuration #2 (CBOX_CONFIG2) Register (FF FFF0 0188)

CBOX_CONFIG2 is a read/write register that controls Bcache and memory, the per-
formance counters, and the debug test port. Figure 5–51 and Table 5–29 describe the
CBOX_CONFIG2 register format.

Figure 5–51 CBU Configuration #2 (CBOX_CONFIG2) Register
31 000711 0610 05

MBZ

08 04 0314 13

MBZ

BC_REG_REG
DBG_SEL

15
29 September 1997 – Subject To Change Internal Processor Registers 5–65

Table 5–29 CBU Configuration #2 Register Fields (Sheet 1 of 3)

Name Extent Type Description

Reserved <03:00> RW,0 Reserved to DIGITAL. Must be zero (MBZ).

BC_REG_REG <04> RW,1 When set, this bit indicates that the Bcache is built from
REG/REG SSRAM. When clear, it indicates that the Bcache
is built from REG/FT SSRAM.

This bit is used to delay the deassertion of data_ram_oe_l
during system Bcache read transactions (for example, Bcache
victims or system probes that require data movement).

DBG_SEL <5> RW,0 Selects the Cbox debug information for the debug port.

DBG_SEL=0 DBG_SEL=1

biu_trans head merge

NOP cmd tail merge

rty or abt RMW tail

wr_now stxc

ri_wr req fmc != NOP

PCA007

63

MBZ

PM1_MUX<2:0>

MBZ
PM0_MUX<2:0>

BC_THREE_MISS

32

SYSRD_DCLK_EN

External Interface Control (CBU) IPRs

DBG_SEL=0 DBG_SEL=1

spa req spc != NOP

replay req scc code<0>

io_wr or
rmv req

scc code<1>

BC_THREE_MISS <6> RW,0 Allow three read misses to be launched to the system. This

Table 5–29 CBU Configuration #2 Register Fields (Sheet 2 of 3)

Name Extent Type Description
5–66 Internal Processor Registers 29 September 1997 – Subject To Change

feature assumes the system can guarantee that fills can be
returned in order.

Reserved <7> RW,0 Reserved to DIGITAL. Must be zero (MBZ).

PM0_MUX<2:0> <10:8> RW,0 This field selects the CBU events used for performance
counter #0.

PM0_MUX
<2:0> Counter 0 is used to count:

0x0 Total Bcache read requests (the total number
of read requests from the MTU).

0x1 Bcache Dstream read hits (total number of
Dstream read requests that hit in the Bcache).

0x2 Bcache Dstream read fills (the total number of
Dstream read fill requests to the Bcache).

0x3 Bcache write operations (the total number of
write requests from the MTU).

0x4 Undefined.

0x5 Bcache clean write hits (the total number of
write operations that hit a clean block in the
Bcache).

0x6 Bcache victims (the total number of VICTIM
commands issued by the 21164PC).

0x7 Read miss 2 launched (the number of times a
second READ MISS request is sent to the sys-
tem while there is already an outstanding
READ MISS command).

External Interface Control (CBU) IPRs

PM1_MUX<2:0> <13:11> RW,0 This field selects the CBU events used for performance
counter #1.

PM1_MUX
<2:0> Counter 1 is used to count:

0x0 Bcache Dstream read requests (the total num-
ber of Dstream read requests from the MTU).

0x1 Bcache read hits (the total number of read

Table 5–29 CBU Configuration #2 Register Fields (Sheet 3 of 3)

Name Extent Type Description
29 September 1997 – Subject To Change Internal Processor Registers 5–67

requests that hit in the Bcache).

0x2 Bcache read fills (the total number of read fill
operations in the Bcache).

0x3 Bcache write hits (the total number of write
operations that hit in the Bcache).

0x4 Bcache write fills (the total number of write
fill operations in the Bcache).

0x5 System read/flush Bcache hits (the total num-
ber of system READ or FLUSH hits in the
Bcache).

0x6 System read/flush Bcache misses (the total
number of system READ or FLUSH requests).

0x7 Read miss 3 launched (the number of times a
third READ MISS request is sent to the system
while there are already two READ MISSes
outstanding).

SYSRD_DCLK_EN <14> RW,0 When set, this bit is used to support pipelined SSRAM in a
Digital Semiconductor 21174-based core-chip environment.
It aids module timing for sampling system Bcache reads
(Bcache victims and system probes with data movement).

Restrictions:
1. 6 ≤ sysclk_ratio ≤ 11.
2. bc_clk_ratio ≤ ROUND_DOWN(sysclk_ratio/2).

PALcode Storage Registers

5.4 PALcode Storage Registers

The 21164PC IEU register file has eight extra registers that are called the
PALshadow registers. The PALshadow registers overlay R8 through R14 and R25
when the CPU is in PALmode and ICSR<SDE> is set. Thus, PALcode can consider
R8 through R14 and R25 as local scratch. PALshadow registers cannot be written in
the last two cycles of a PALcode flow. The normal state of the CPU is
ICSR<SDE> = ON. PALcode disables SDE for the unaligned trap and for error
flows.

The IDU holds a bank of 24 PALtemp registers. The PALtemp registers are accessed
5–68 Internal Processor Registers 29 September 1997 – Subject To Change

with the HW_MTPR and HW_MFPR instructions. The latency from a PALtemp
read operation to availability is one cycle.

5.5 Restrictions

The following sections list all known register access restrictions. A software tool
called the PALcode violation checker (PVC) is available. This tool can be used to
verify adherence to many of the PALcode restrictions.

5.5.1 CBU IPR PALcode Restrictions

Table 5–30 describes the CBU IPR PALcode restrictions.

Table 5–30 CBU IPR PALcode Restrictions (Sheet 1 of 2)

Condition Restriction

Store to CBOX_CONFIG or
CBOX_CONFIG2.

Must be preceded by MB, must be followed by MB,
must have no concurrent cacheable Istream refer-
ences or concurrent system commands.

Load from any CBOX IPR at initial-
ization prior to the Bcache being
enabled.

Must guarantee that there are no outstanding read
misses.

Load from CBOX_STATUS.1 Unlocks CBOX_ADDR and CBOX_STATUS.

Any CBU IPR address. No LDx_L or STx_C.

Restrictions

5.5.2 PALcode Restrictions—Instruction Definitions

1 CBOX_ADDR must be read before CBOX_STATUS to ensure error address.

Any undefined CBU IPR address. No store instructions.

Bcache in force hit mode. No STx_C to cacheable space.

Clearing of BC_FORCE_HIT in
CBOX_CONFIG.

Must be followed by MB, read operation of
CBOX_STATUS, then MB prior to subsequent store.

Table 5–30 CBU IPR PALcode Restrictions (Sheet 2 of 2)

Condition Restriction
29 September 1997 – Subject To Change Internal Processor Registers 5–69

MTU instructions are: LDx, LDQ_U, LDx_L, HW_LD, STx, STQ_U, STx_C,
HW_ST, and FETCHx.

Virtual MTU instructions are: LDx, LDQ_U, LDx_L, HW_LD (virtual), STx,
STQ_U, STx_C, HW_ST (virtual), and FETCHx.

Load instructions are: LDx, LDQ_U, LDx_L, and HW_LD.

Store instructions are: STx, STQ_U, STx_C, and HW_ST.

Table 5–31 lists PALcode restrictions.

Table 5–31 PALcode Restrictions Table (Sheet 1 of 5)

The following in cycle 0: Restrictions (Note: Numbers refer to cycle number):

 Y if
checked
by PVC1

CALL_PAL entry No HW_REI or HW_REI_STALL in cycle 0.
No HW_MFPR EXC_ADDR in cycle 0,1.

Y
Y

PALshadow write instruc-
tion

No HW_REI or HW_REI_STALL in 0, 1. Y

HW_LD, lock bit set PAL must slot to E0.
No other MTU instruction in 0.

HW_LD, VPTE bit set No other virtual reference in 0.

Any load instruction No MTU HW_MTPR or HW_MFPR in 0.
No HW_MFPR MAF_MODE in 1,2 (DREAD_PENDING
may not be updated).
No HW_MFPR DC_PERR_STAT in 1,2.
No HW_MFPR DC_TEST_TAG slotted in 0.

Y
Y

Y

Restrictions

Any store instruction No HW_MFPR DC_PERR_STAT in 1,2.
No HW_MFPR MAF_MODE in 1,2 (WB_PENDING may
not be updated).

Y
Y

Any virtual MTU instruction No HW_MTPR DTB_IS in 1. Y

Any MTU instruction or
WMB, if it traps

HW_MTPR any IDU IPR not aborted in 0,1 (except that
EXC_ADDR is updated with correct faulting PC).

Y

Table 5–31 PALcode Restrictions Table (Sheet 2 of 5)

The following in cycle 0: Restrictions (Note: Numbers refer to cycle number):

 Y if
checked
by PVC1
5–70 Internal Processor Registers 29 September 1997 – Subject To Change

HW_MTPR DTB_IS not aborted in 0,1. Y

Any IDU trap except
PC-mispredict, ITBMISS,
or OPCDEC due to user
mode

HW_MTPR DTB_IS not aborted in 0,1.

HW_REI_STALL Only one HW_REI_STALL in an aligned block of four
instructions.

HW_MTPR any undefined
IPR number

Illegal in any cycle.

ARITH trap entry No HW_MFPR EXC_SUM or EXC_MASK in cycle 0,1. Y

Machine check trap entry No register file read or write access in 0,1,2,3,4,5,6,7.
No HW_MFPR EXC_SUM or EXC_MASK in cycle 0,1. Y

HW_MTPR any IDU IPR
(including PALtemp regis-
ters)

No HW_MFPR same IPR in cycle 1,2.
No floating-point conditional branch in 0.
No FEN or OPCDEC instruction in 0.

Y

HW_MTPR ASTRR,
ASTER

No HW_MFPR INTID in 0,1,2,3,4,5.
No HW_REI in 0,1.

Y
Y

HW_MTPR SIRR No HW_MFPR INTID in 0,1,2,3,4. Y

HW_MTPR EXC_ADDR No HW_REI in cycle 0,1. Y

HW_MTPR
IC_FLUSH_CTL

Must be followed by 44 inline PALcode instructions.

HW_MTPR ICSR: HWE No HW_REI in 0,1,2,3. Y

HW_MTPR ICSR: FPE No floating-point instructions in 0, 1, 2, 3.
No HW_REI in 0,1,2.

Restrictions

HW_MTPR ICSR: SPE,
FMS

If HW_REI_STALL, then no HW_REI_STALL in 0,1.
If HW_REI, then no HW_REI in 0,1,2,3,4.

Y
Y

HW_MTPR ICSR: SPE Must flush Icache.

HW_MTPR ICSR: SDE No PALshadow read/write access in 0,1,2,3.
No HW_REI in 0,1,2. Y

Table 5–31 PALcode Restrictions Table (Sheet 3 of 5)

The following in cycle 0: Restrictions (Note: Numbers refer to cycle number):

 Y if
checked
by PVC1
29 September 1997 – Subject To Change Internal Processor Registers 5–71

HW_MTPR ICSR: BSE No LDBU, LDWU, STB, STW, SEXTB, SEXTW in
0,1,2,3.

Y

HW_MTPR ICSR: MVE No PERR, UNPKBW, UNPKBL, PKWB, PKLB,
MINSB8, MINSW4, MINUB8, MINUW4, MAXUB8,
MAXUW4, MAXSB8, MAXSW4 in 0,1,2,3.

HW_MTPR ITB_ASN Must be followed by HW_REI_STALL.
No HW_REI_STALL in cycle 0,1,2,3,4.
No HW_MTPR ITB_IS in 0,1,2,3.

Y
Y

HW_MTPR ITB_PTE Must be followed by HW_REI_STALL.

HW_MTPR ITB_IAP,
ITB_IS, ITB_IA

Must be followed by HW_REI_STALL.

HW_MTPR ITB_IS HW_REI_STALL must be in the same Istream octaword.

HW_MTPR IVPTBR No HW_MFPR IFAULT_VA_FORM in 0,1,2. Y

HW_MTPR PAL_BASE No CALL_PAL in 0,1,2,3,4,5,6,7.
No HW_REI in 0,1,2,3,4,5,6.

Y
Y

HW_MTPR ICM No HW_REI in 0,1,2.
No private CALL_PAL in 0,1,2,3.

Y

HW_MTPR CC, CC_CTL No RPCC in 0,1,2.
No HW_REI in 0,1.

Y
Y

HW_MTPR DC_FLUSH No MTU instructions in 1,2.
No outstanding fills in 0.
No HW_REI in 0,1.

Y

Y

HW_MTPR DC_MODE No MTU instructions in 1,2,3,4.
No HW_MFPR DC_MODE in 1,2.
No outstanding fills in 0.
No HW_REI in 0,1,2,3.
No HW_REI_STALL in 0,1.

Y
Y

Y
Y

Restrictions

HW_MTPR
DC_PERR_STAT

No load or store instructions in 1.
No HW_MFPR DC_PERR_STAT in 1,2.

Y
Y

HW_MTPR
DC_TEST_CTL

No HW_MFPR DC_TEST_TAG in 1,2,3.
No HW_MFPR DC_TEST_CTL issued or slotted in 1,2.

Y

HW_MTPR
DC_TEST_TAG

No outstanding DC fills in 0.
No HW_MFPR DC_TEST_TAG in 1,2,3. Y

Table 5–31 PALcode Restrictions Table (Sheet 4 of 5)

The following in cycle 0: Restrictions (Note: Numbers refer to cycle number):

 Y if
checked
by PVC1
5–72 Internal Processor Registers 29 September 1997 – Subject To Change

HW_MTPR DTB_ASN No virtual MTU instructions in 1,2,3.
No HW_REI in 0,1,2.

Y
Y

HW_MTPR DTB_CM,
ALT_MODE

No virtual MTU instructions in 1,2.
No HW_REI in 0,1.

Y
Y

HW_MTPR DTB_PTE No virtual MTU instructions in 2.
No HW_MTPR DTB_ASN, DTB_CM, ALT_MODE,
MCSR, MAF_MODE, DC_MODE, DC_ PERR_STAT,
DC_TEST_CTL, DC_TEST_TAG in 2.

Y
Y

HW_MTPR DTB_TAG No virtual MTU instructions in 1,2,3.
No HW_MTPR DTB_TAG in 1.
No HW_MFPR DTB_PTE in 1,2.
No HW_MTPR DTB_IS in 1,2.
No HW_REI in 0,1,2.

Y
Y
Y
Y
Y

HW_MTPR DTB_IAP,
DTB_IA

No virtual MTU instructions in 1,2,3.
No HW_MTPR DTB_IS in 0,1,2.
No HW_REI in 0,1,2.

Y
Y
Y

HW_MTPR DTB_IA No HW_MFPR DTB_PTE in 1. Y

HW_MTPR MAF_MODE No MTU instructions in 1,2,3.
No WMB in 1,2,3.
No HW_MFPR MAF_MODE in 1,2.
No HW_REI in 0,1,2.

Y
Y
Y
Y

HW_MTPR MCSR No virtual MTU instructions in 0,1,2,3,4.
No HW_MFPR MCSR in 1,2.
No HW_MFPR VA_FORM in 1,2,3.
No HW_REI in 0,1,2,3.
No HW_REI_STALL in 0,1.

Y
Y
Y
Y
Y

HW_MTPR MVPTBR No HW_MFPR VA_FORM in 1,2. Y

Restrictions

HW_MFPR ITB_PTE No HW_MFPR ITB_PTE_TEMP in 1,2,3. Y

HW_MFPR
DC_TEST_TAG

No outstanding DC fills in 0.
No HW_MFPR DC_TEST_TAG_TEMP issued or slotted
in 1.
No LDx instructions slotted in 0.
No HW_MTPR DC_TEST_CTL between HW_ MFPR

Table 5–31 PALcode Restrictions Table (Sheet 5 of 5)

The following in cycle 0: Restrictions (Note: Numbers refer to cycle number):

 Y if
checked
by PVC1
29 September 1997 – Subject To Change Internal Processor Registers 5–73

1 PALcode violation checker.

DC_TEST_TAG and HW_MFPR DC_TEST_
TAG_TEMP.

HW_MFPR DTB_PTE No MTU instructions in 0,1.
No HW_MTPR DC_TEST_CTL, DC_TEST_TAG in 0,1.
No HW_MFPR DTB_PTE_TEMP issued or slotted in
1,2,3.
No HW_MFPR DTB_PTE in 1.
No virtual MTU instructions in 0,1,2.

Y
Y

Y
Y

HW_MFPR VA Must be done in ARITH, MACHINE CHECK,
DTBMISS_SINGLE, UNALIGN, DFAULT traps and
ITBMISS flow after the VPTE load.

 6
Privileged Architecture Library Code

This chapter describes the 21164PC privileged architecture library code (PALcode).
29 September 1997 – Subject To Change Privileged Architecture Library Code 6–1

The chapter is organized as follows:

• PALcode description

• PALmode environment

• Invoking PALcode

• PALcode entry points

• Required PALcode function codes

• 21164PC implementation of the architecturally reserved opcodes

6.1 PALcode Description

Privileged architecture library code (PALcode) is macrocode that provides an archi-
tecturally defined operating-system-specific programming interface that is common
across all Alpha microprocessors. The actual implementation of PALcode differs for
each operating system.

PALcode runs with privileges enabled, instruction stream mapping disabled, and
interrupts disabled. PALcode has privilege to use five special opcodes that allow
functions such as physical data stream references and internal processor register
(IPR) manipulation.

PALcode can be invoked by the following events:

• Reset

• System hardware exceptions (MCHK, ARITH)

• Memory-management exceptions

• Interrupts

PALmode Environment

• CALL_PAL instructions

PALcode has characteristics that make it appear to be a combination of microcode,
ROM BIOS, and system service routines, though the analogy to any of these other
items is not exact. PALcode exists for several major reasons:

• There are some necessary support functions that are too complex to implement
directly in a processor chip’s hardware, but that cannot be handled by a normal
operating system software routine. Routines to fill the translation buffer (TB),
acknowledge interrupts, and dispatch exceptions are some examples. In some
architectures, these functions are handled by microcode, but the Alpha architec-

e chip
6–2 Privileged Architecture Library Code 29 September 1997 – Subject To Change

ture is careful not to mandate the use of microcode so as to allow reasonabl
implementations.

• There are functions that must run atomically, yet involve long sequences of
instructions that may need complete access to all the underlying computer hard-
ware. An example of this is the sequence that returns from an exception or inter-
rupt.

• There are some instructions that are necessary for backward compatibility or
ease of programming; however, these are not used often enough to dedicate them
to hardware, or are so complex that they would jeopardize the overall perfor-
mance of the computer. For example, an instruction that does a VAX style inter-
locked memory access might be familiar to someone used to programming on a
CISC machine, but is not included in the Alpha architecture. Another example is
the emulation of an instruction that has no direct hardware support in a particular
chip implementation.

In each of these cases, PALcode routines are used to provide the function. The rou-
tines are nothing more than programs invoked at specified times, and read in as
Istream code in the same way that all other Alpha code is read. Once invoked, how-
ever, PALcode runs in a special mode called PALmode.

6.2 PALmode Environment

PALcode runs in a special environment called PALmode, defined as follows:

• Istream memory mapping is disabled. Because the PALcode is used to imple-
ment translation buffer fill routines, Istream mapping clearly cannot be enabled.
Dstream mapping is still enabled.

Invoking PALcode

• The program has privileged access to all the computer hardware. Most of the
functions handled by PALcode are privileged and need control of the lowest lev-
els of the system.

• Interrupts are disabled. If a long sequence of instructions need to be executed
atomically, interrupts cannot be allowed.

An important aspect of PALcode is that it uses normal Alpha instructions for most of
its operations; that is, the same instruction set that nonprivileged Alpha programmers
use. There are a few extra instructions that are only available in PALmode, and will
cause a dispatch to the OPCDEC PALcode entry point if attempted while not in
29 September 1997 – Subject To Change Privileged Architecture Library Code 6–3

PALmode. The Alpha architecture allows some flexibility in what these special
PALmode instructions do. In the 21164PC the special PALmode-only instructions
perform the following functions:

• Read or write internal processor registers (HW_MFPR, HW_ MTPR).

• Perform memory load or store operations without invoking the normal memory-
management routines (HW_LD, HW_ST).

• Return from an exception or interrupt (HW_REI) .

When executing in PALmode, there are certain restrictions for using the privileged
instructions because PALmode gives the programmer complete access to many of
the internal details of the 21164PC. Refer to Section 6.6 for information on these
special PALmode instructions.

Caution: It is possible to cause unintended side effects by writing what appears to
be perfectly acceptable PALcode. As such, PALcode is not something
that many users will want to change.

6.3 Invoking PALcode

PALcode is invoked at specific entry points, under certain well-defined conditions.
These entry points provide access to a series of callable routines, with each routine
indexed as an offset from a base address. The base address of the PALcode is pro-
grammable (stored in the PAL_BASE IPR), and is normally set by the system reset
code. Refer to Section 6.4 for additional information on PALcode entry points.

PC<00> is used as the PALmode flag both to the hardware and to PALcode itself.
When the CPU enters a PALflow, the IDU sets PC<00>. This bit remains set as
instructions are executed in the PAL Istream. The IDU hardware ignores this and

Invoking PALcode

behaves as if the PC were still longword aligned for the purposes of Istream fetch
and execute. On HW_REI, the new state of PALmode is copied from
EXC_ADDR<00>.

When an event occurs that needs to invoke PALcode, the 21164PC first drains the
pipeline. The current PC is loaded into the EXC_ADDR IPR, and the appropriate
PALcode routine is dispatched. These operations occur under direct control of the
chip hardware, and the machine is now in PALmode. When the HW_REI instruction
is executed at the end of the PALcode routine, the hardware executes a jump to the
address contained in the EXC_ ADDR IPR. The LSB is used to indicate PALmode
to the hardware. Generally, the LSB is clear upon return from a PALcode routine, in

e:
6–4 Privileged Architecture Library Code 29 September 1997 – Subject To Change

which case, the hardware loads the new PC, enables interrupts, enables memory
mapping, and dispatches back to the user.

The most basic use of PALcode is to handle complex hardware events, and it is
called automatically when the particular hardware event is sensed. This use of PAL-
code is similar to other architectures’ use of microcode.

There are several major categories of hardware-initiated invocations of PALcod

• When the 21164PC is reset, it enters PALmode and executes the RESET
PALcode. The system will remain in PALmode until a HW_ REI instruction is
executed and EXC_ADDR<00> is cleared. It then continues execution in non-
PALmode (native mode), as just described. It is during this initial RESET PAL-
code execution that the rest of the low-level system initialization is performed,
including any modification to the PALcode base register.

• When a system hardware error is detected by the 21164PC, it invokes one of
several PALcode routines, depending upon the type of error. Errors such as
machine checks, arithmetic exceptions, reserved or privileged instruction
decode, and data fetch errors are handled in this manner.

• When the 21164PC senses an interrupt, it dispatches the acknowledgment of the
interrupt to a PALcode routine that does the necessary information gathering,
then handles the situation appropriately for the given interrupt.

• When a Dstream or Istream translation buffer miss occurs, one of several PAL-
code routines is called to perform the TB fill.

The 21164PC IEU register file has eight extra registers that are called the
PALshadow registers. The PALshadow registers overlay R8, R9, R10, R11, R12,
R13, R14, and R25 when the CPU is in PALmode and ICSR<SDE> is asserted. For
additional PAL scratch, the IDU has a register bank of 24 PALtemp registers, which
are accessible via HW_MTPR and HW_MFPR instructions.

PALcode Entry Points

6.4 PALcode Entry Points

PALcode is invoked at specific entry points. The 21164PC has two types of PAL-
code entry points: CALL_PAL and traps.

6.4.1 CALL_PAL Entry

CALL_PAL entry points are used whenever the IDU encounters a CALL_PAL
instruction in the instruction stream (Istream). CALL_ PAL instructions start at the
following offsets:

• Privileged CALL_PAL instructions start at offset 2000 .
29 September 1997 – Subject To Change Privileged Architecture Library Code 6–5

16

• Nonnprivileged CALL_PAL instructions start at offset 300016.

The CALL_PAL itself is issued into pipe E1 and the IDU stalls for the minimum
number of cycles necessary to perform an implicit TRAPB. The PC of the instruction
immediately following the CALL_PAL is loaded into EXC_ADDR and is pushed
onto the return prediction stack.

The IDU contains special hardware to minimize the number of cycles in the TRAPB
at the start of a CALL_PAL. Software can benefit from this by scheduling
CALL_PALs such that they do not fall in the shadow of:

• IMUL

• Any floating-point operate, especially FDIV

Each CALL_PAL instruction includes a function field that will be used in the calcu-
lation of the next PC. The PAL OPCDEC flow will be started if the CALL_PAL
function field is:

• In the range 4016 to 7F16 inclusive.

• Greater than BF16.

• Between 0016 and 3F16 inclusive, and ICM<04:03> is not equal to kernel.

If no OPCDEC is detected on the CALL_PAL function, then the PC of the instruc-
tion to execute after the CALL_PAL is calculated as follows:

• PC<63:14> = PAL_BASE IPR<63:14>

• PC<13> = 1

• PC<12> = CALL_PAL function field<7>

• PC<11:06> = CALL_PAL function field<5:0>

PALcode Entry Points

• PC<05:01> = 0

• PC<00> = 1 (PALmode)

The minimum number of cycles for a CALL_PAL execution is four.

SE
the
eck
s.)

Number of
Cycles Description

1 Minimum TRAPB for empty pipe. Typically this will be four cycles.

1 Issue the CALL_PAL instruction.
6–6 Privileged Architecture Library Code 29 September 1997 – Subject To Change

6.4.2 PALcode Trap Entry Points

Chip-specific trap entry points start PALcode. (No PALcode assist is required for
replay and mispredict type traps.) EXC_ ADDR is loaded with the return PC and the
IDU performs a TRAPB in the shadow of the trap. The return prediction stack is
pushed with the PC of the trapping instruction for precise traps, and with some later
PC for imprecise traps.

Table 6–1 shows the PALcode trap entry points and their offset from the PAL_BA
IPR. Entry points are listed from highest to lowest priority. (Prioritization among
Dstream traps works because DTBMISS is suppressed when there is a sign ch
error. The priority of ITBMISS and interrupt is reversed if there is an Icache mis

2 The minimum length of a PAL flow. However, in most cases there will be
more than two cycles of work for the CALL_PAL.

Table 6–1 PALcode Trap Entry Points (Sheet 1 of 2)

Entry Name Offset16 Description

RESET 0000 Reset

IACCVIO 0080 Istream access violation or sign check error on PC

INTERRUPT 0100 Interrupt: hardware, software, and AST

ITBMISS 0180 Istream TBMISS

DTBMISS_SINGLE 0200 Dstream TBMISS

DTBMISS_DOUBLE 0280 Dstream TBMISS during virtual page table entry
(PTE) fetch

UNALIGN 0300 Dstream unaligned reference

DFAULT 0380 Dstream fault or sign check error on virtual address

Required PALcode Function Codes

ed is

s the
ese

MCHK 0400 Uncorrected hardware error

OPCDEC 0480 Illegal opcode

ARITH 0500 Arithmetic exception

FEN 0580 Floating-point operation attempted with:

Table 6–1 PALcode Trap Entry Points (Sheet 2 of 2)

Entry Name Offset16 Description

• Floating-point instructions (LD, ST, and
operates) disabled through FPE bit in the
29 September 1997 – Subject To Change Privileged Architecture Library Code 6–7

6.5 Required PALcode Function Codes

Table 6–2 lists opcodes required for all Alpha implementations. The notation us
oo.ffff, where oo is the hexadecimal 6-bit opcode and ffff is the hexadecimal 26-bit
function code.

6.6 21164PC Implementation of the Architecturally Reserved
Opcodes

PALcode uses the Alpha instruction set for most of its operations. Table 6–3 list
opcodes reserved by the Alpha architecture for implementation-specific use. Th
opcodes are privileged and are only available in PALmode.

Table 6–2 Required PALcode Function Codes

Mnemonic Type Function Code

DRAINA Privileged 00.0002

HALT Privileged 00.0000

IMB Unprivileged 00.0086

ICSR IPR

• Floating-point IEEE operation with data type
other than S, T, or Q

21164PC Implementation of the Architecturally Reserved Opcodes

Note: These architecturally reserved opcodes contain different options to the
21064 opcodes of the same names.

f nor-

ion.

Table 6–3 Opcodes Reserved for PALcode

21164PC
Mnemonic Opcode

Architecture
Mnemonic Function

HW_LD 1B PAL1B Performs Dstream load instructions.

HW_ST 1F PAL1F Performs Dstream store instructions.

HW_REI 1E PAL1E Returns instruction flow to the program counter
6–8 Privileged Architecture Library Code 29 September 1997 – Subject To Change

These instructions produce an OPCDEC exception if executed while not in the
PALmode environment. If ICSR<HWE> is set, these instructions can be executed in
kernel mode. Any software executing with ICSR<HWE> set must use extreme care
to obey all restrictions listed in this chapter and in Chapter 5.

Register checking and bypassing logic is provided for PALcode instructions as it is
for non-PALcode instructions, when using general-purpose registers (GPRs).

Note: Explicit software timing is required for accessing the hardware-specific
IPRs and the PAL_TEMP registers. These constraints are described in
Table 5–31.

6.6.1 HW_LD Instruction

PALcode uses the HW_LD instruction to access memory outside of the realm o
mal Alpha memory management and to do special forms of Dstream loads.
Figure 6–1 and Table 6–4 describe the format and fields of the HW_LD instruct
Data alignment traps are inhibited for HW_LD instructions.

(PC) pointed to by EXC_ ADDR IPR.

HW_MFPR 19 PAL19 Accesses the IDU, MTU, and Dcache internal
processor registers (IPRs).

HW_MTPR 1D PAL1D Accesses the IDU, MTU, and Dcache IPRs.

21164PC Implementation of the Architecturally Reserved Opcodes

Figure 6–1 HW_LD Instruction Format

Table 6–4 HW_LD Format Description

d

s

ess

,

le

0009101112131415162021252631

LJ-03469.AI4

LOCK
VPTE
QUAD
WRTCK
ALT
PHYS

DISPOPCODE RA RB
29 September 1997 – Subject To Change Privileged Architecture Library Code 6–9

Field Value Description

OPCODE 1B16 The OPCODE field contains 1B16.

RA — Destination register number.

RB — Base register for memory address.

PHYS 0
1

The effective address for the HW_LD is virtual.
The effective address for the HW_LD is physical. Translation an
memory-management access checks are inhibited.

ALT 0

1

Memory-management checks use MTU IPR DTB_CM for acces
checks.
Memory-management checks use MTU IPR ALT_MODE for
access checks.

WRTCK 0

1

Memory-management checks fault on read (FOR) and read acc
violations.
Memory-management checks FOR, fault on write (FOW), read
and write access violations.

QUAD 0
1

Length is longword.
Length is quadword.

VPTE 1 Flags a virtual PTE fetch. Used by trap logic to distinguish sing
TBMISS from double TBMISS. Access checks are performed in
kernel mode.

LOCK 1 Load lock version of HW_LD. PAL must slot to E0 pipe.

DISP — Holds a 10-bit signed byte displacement.

21164PC Implementation of the Architecturally Reserved Opcodes

6.6.2 HW_ST Instruction

PALcode uses the HW_ST instruction to access memory outside of the realm of nor-
mal Alpha memory management and to do special forms of Dstream store instruc-
tions. Figure 6–2 and Table 6–5 describe the format and fields of the HW_ST
instruction. Data alignment traps are inhibited for HW_ST instructions. The IDU
logic will always slot HW_ST to pipe E0.

Figure 6–2 HW_ST Instruction Format

0009101112131415162021252631
6–10 Privileged Architecture Library Code 29 September 1997 – Subject To Change

Table 6–5 HW_ST Format Description

Field Value Description

OPCODE 1F16 The OPCODE field contains 1F16.

RA — Write data register number.

RB — Base register for memory address.

PHYS 0
1

The effective address for the HW_ST is virtual.
The effective address for the HW_ST is physical. Translation and
memory-management access checks are inhibited.

ALT 0

1

Memory-management checks use MTU IPR DTB_CM for access
checks.
Memory-management checks use MTU IPR ALT_MODE for
access checks.

QUAD 0
1

Length is longword.
Length is quadword.

COND 1 Store_conditional version of HW_ST. In this case, RA is written
with the value of LOCK_ FLAG.

DISP — Holds a 10-bit signed byte displacement.

MBZ — HW_ST<13,11> must be zero.

LJ-03470.AI4

COND
MBZ
QUAD
MBZ
ALT
PHYS

DISPOPCODE RA RB

21164PC Implementation of the Architecturally Reserved Opcodes

6.6.3 HW_REI Instruction

The HW_REI instruction is used to return instruction flow to the PC pointed to by
the EXC_ADDR IPR. The value in EXC_ADDR<0> will be used as the new value
of PALmode after the HW_REI instruction.

The IDU uses the return prediction stack to speed the execution of HW_REI. There
are two different types of HW_REI:

• Prefetch: In this case, the IDU begins fetching the new Istream as soon as possi-
ble. This is the version of HW_REI that is normally used.

tion.
29 September 1997 – Subject To Change Privileged Architecture Library Code 6–11

• Stall prefetch: This encoding of HW_REI inhibits Istream fetch until the
HW_REI itself is issued. Thus, this is the method used to synchronize IDU
changes (such as ITB write instructions) with the HW_REI. There is a rule that
PALcode can have only one such HW_REI in an aligned block of four instruc-
tions.

Figure 6–3 and Table 6–6 describe the format and fields of the HW_ REI instruc
The IDU logic will slot HW_REI to pipe E1.

Figure 6–3 HW_REI Instruction Format

Table 6–6 HW_REI Format Description

Fields Value Description

OPCODE 1E16 The OPCODE field contains 1E16.

RA/RB — Register numbers; should be R31 to avoid unnecessary stalls.

TYP 10
11

Normal version.
Stall version.

MBZ 0 HW_REI<13:00> must be zero.

00131415162021252631

LJ-03471.AI4

MBZOPCODE RA RB TYP

21164PC Implementation of the Architecturally Reserved Opcodes

6.6.4 HW_MFPR and HW_MTPR Instructions

The HW_MFPR and HW_MTPR instructions are used to access internal state from
the IDU, MTU, and Dcache. The HW_MFPR from IDU IPRs has a latency of one
cycle (HW_MFPR in cycle n results in data available to the using instruction in
cycle n+1). HW_MFPR from MTU and Dcache IPRs has a latency of two cycles.
IDU hardware slots each type of MXPR to the correct IEU pipe (refer to
Table 5–1).

Figure 6–4 and Table 6–7 describe the format and fields of the HW_MFPR and
HW_MTPR instructions.

n

6–12 Privileged Architecture Library Code 29 September 1997 – Subject To Change

Figure 6–4 HW_MFPR and HW_MTPR Instruction Format

Table 6–7 HW_MFPR and HW_MTPR Format Description

Field Value Description

OPCODE 1916
1D16

The OPCODE field contains 1916 for HW_MFPR.
The OPCODE field contains 1D16 for HW_MTPR.

RA/RB — Must be the same; source register for HW_MTPR and destinatio
register for HW_MFPR.

Index — Specifies the IPR. Refer to Table 5–1 for field encoding. Refer to
Chapter 5 for more details about specific IPRs.

0015162021252631

LJ-03472.AI4

IndexOPCODE RA RB

 7
Initialization and Configuration
29 September 1997 – Subject To Change Initialization and Configuration 7–1

This chapter provides information on 21164PC-specific microprocessor/system ini-
tialization and configuration. It is organized as follows:

• Input signals sys_reset_l and dc_ok_h and booting

• sysclk ratio and delay

• Built-in self-test (BiSt)

• Serial read-only memory (SROM) interface port

• Serial terminal port

• Cache initialization

• External interface initialization

• Internal processor register (IPR) reset state

• Timeout reset

• IEEE 1149.1 test port reset

7.1 Input Signals sys_reset_l and dc_ok_h and Booting

The 21164PC reset sequence uses two input signals: sys_reset_l and dc_ok_h.
When transitioning from a powered-down state to a powered-up state, signal
dc_ok_h must be deasserted, and signal sys_reset_l must be asserted until power has
reached the proper operating point and the input clock to the 21164PC is stable. If
the input clock is derived from a PLL, it may take many milliseconds for the input
oscillator to start and the PLL output to stabilize.

Input Signals sys_reset_l and dc_ok_h and Booting

After power has reached the proper operating point, signal dc_ok_h must be
asserted. Then, signal sys_reset_l must be deasserted. At this point, the 21164PC
recognizes a powered-up state. If signal dc_ok_h is not asserted, signal sys_reset_l
is forced asserted internally. After sys_reset_l is deasserted, the 21164PC begins the
following sequence of operations:

1. Icache built-in self-test (BiSt)

2. An optional automatic Icache initialization, using an external serial ROM
(SROM) interface

3. Dispatch to the reset PALcode trap entry point (physical location 0)
7–2 Initialization and Configuration 29 September 1997 – Subject To Change

a. If step 2 initialized the Icache by using the SROM interface, the cache
should contain code that appears to be at location 0, that is, the cache
should be initialized such that it hits on the dispatch. Typically the code
in the Icache should configure the IPRs in the 21164PC as necessary
before causing any offchip read or write commands. This allows the
21164PC to be configured to match the external system implementation.

b. If step 2 did not initialize the Icache, the Icache has been flushed by
reset. The reset PALcode trap dispatch misses in the Icache and pro-
duces an offchip read command. The external system implementation
must be compatible with the default configuration of the 21164PC after
reset (refer to Section 7.8). The code that is executed at this point should
complete the 21164PC configuration as necessary.

4. After configuring the 21164PC, control can be transferred to code anywhere in
memory, including the noncacheable regions. If the SROM interface was used to
initialize the Icache, the Icache can be flushed by a write operation to
IC_FLUSH_CTL after control is transferred. This transfer of control should be
to addresses not loaded in the Icache by the SROM interface or the Icache may
provide unexpected instructions.

5. Typically, PALbase and any state required by PALcode are initialized and the
console is started (switching out of PALmode and into native mode). The con-
sole code initializes and configures the system and boots an operating system
from an I/O device such as a disk or the network.

Signal sys_reset_l forces the CPU into a known state. Signal sys_reset_l must
remain asserted while signal dc_ok_h is deasserted, and for some period of time
after dc_ok_h assertion. It should remain asserted for at least 400 internal CPU
cycles in length. Then, signal sys_reset_l may be deasserted. Signal sys_reset_l
deassertion need not be synchronous with respect to sysclk. Section 7.8 lists the reset
state of each IPR.

Input Signals sys_reset_l and dc_ok_h and Booting

Table 7–1 provides the reset state of each external signal pin.

Table 7–1 21164PC Signal Pin Reset State (Sheet 1 of 3)

Signal Reset State

Clocks

clk_mode_h<1:0> NA (input).

cpu_clk_out_h Clock output.

osc_clk_in_h,l Must be clocking.
29 September 1997 – Subject To Change Initialization and Configuration 7–3

st_clk1_h Deasserted.

st_clk2_h Deasserted.

st_clk3_h Deasserted.

sys_clk_out1_h Clock output.

sys_clk_out2_h Clock output.

sys_reset_l NA (input).

Bcache

data_h<127:0> Tristated.

data_adsc_l Deasserted.

data_adv_l Deasserted.

data_ram_oe_l Deasserted.

data_ram_we_l<3:0> Deasserted.

index_h<21:4> Unspecified.

lw_parity_h<3:0> Tristated.

tag_data_h<32:19> Tristated.

tag_data_par_h Tristated.

tag_dirty_h Tristated.

tag_ram_oe_l Deasserted.

tag_ram_we_l Deasserted.

tag_valid_h Tristated.

Input Signals sys_reset_l and dc_ok_h and Booting

System Interface

addr_h<39:4> Driven or tristated depending upon addr_bus_req_h at most
recent sysclk edge. If driven, the value is unspecified.

addr_bus_req_h NA (input).

addr_res_h<1:0> NOP.

cack_h Must be deasserted.

Table 7–1 21164PC Signal Pin Reset State (Sheet 2 of 3)

Signal Reset State
7–4 Initialization and Configuration 29 September 1997 – Subject To Change

cmd_h<3:0> Driven or tristated depending upon addr_bus_req_h at most
recent sysclk edge. If driven, the command is NOP.

dack_h Must be deasserted.

data_bus_req_h NA (input).

fill_h Must be deasserted.

fill_dirty_h NA (input).

fill_error_h Must be deasserted.

fill_id_h Must be deasserted.

idle_bc_h Must be deasserted.

int4_valid_h<3:0> Unspecified.

victim_pending_h Unspecified.

Interrupts

irq_h<3:0> sysclk divisor ratio input.

mch_hlt_irq_h sysclk delay input.

pwr_fail_irq_h sysclk delay input.

sys_mch_chk_irq_h sysclk delay input.

Test Modes

dc_ok_h NA (input).

port_mode_h<1:0> NA (input).

srom_clk_h Deasserted.

Input Signals sys_reset_l and dc_ok_h and Booting

srom_data_h NA (input).

srom_oe_l Deasserted.

srom_present_l NA (input).

tck_h NA (input).

tdi_h NA (input).

tdo_h NA (input).

Table 7–1 21164PC Signal Pin Reset State (Sheet 3 of 3)

Signal Reset State
29 September 1997 – Subject To Change Initialization and Configuration 7–5

While signal dc_ok_h is deasserted, the 21164PC provides its own internal clock
source from an onchip ring oscillator. When dc_ok_h is asserted, the 21164PC clock
source is the differential clock input pins osc_clk_in_h,l.

When the 21164PC is free-running from the internal ring oscillator, the internal
clock frequency is in the range of 10 MHz to 100 MHz (varies from chip to chip).
The sysclk divisor and sys_clk_out2_h delay are determined by input pins while
signal sys_reset_l remains asserted. Refer to Section 4.2.2 and Section 4.2.3 for ratio
and delay values.

7.1.1 Pin State with dc_ok_h Not Asserted

While dc_ok_h is deasserted, and sys_reset_l is asserted, every output and bidirec-
tional 21164PC pin is tristated and pulled weakly to ground by a small pull-down
transistor.

temp_sense NA (input).

test_status_h<1> Deasserted.

tms_h NA (input).

trst_l Must be asserted (input).

sysclk Ratio and Delay

7.2 sysclk Ratio and Delay

While in reset, the 21164PC reads sysclk configuration parameters from the interrupt
signal pins. These inputs should be driven with the correct configuration values
whenever sys_reset_l is asserted. Refer to Section 4.2.2 and Section 4.2.3 for rele-
vant input signals and ratio/delay values.

If the signal inputs reflecting configuration parameters change while sys_reset_l is
asserted, allow 20 internal CPU cycles before the new sysclk behavior is correct.

7.3 Built-In Self-Test (BiSt)
7–6 Initialization and Configuration 29 September 1997 – Subject To Change

Upon deassertion of signal sys_reset_l, the 21164PC automatically executes the
Icache built-in self-test (BiSt). The Icache is automatically tested and the result is
made available in the ICSR IPR and on signal test_status_h<1>. Internally, the CPU
reset continues to be asserted throughout the BiSt process. For additional informa-
tion, refer to Section 9.4.4.1.

7.4 Serial Read-Only Memory Interface Port

The serial read-only memory (SROM) interface provides the initialization data load
path from a system SROM to the instruction cache (Icache). Following initialization,
this interface can function as a diagnostic port using privileged architecture library
code (PALcode).

The following signals make up the SROM interface:

srom_present_l
srom_data_h
srom_oe_l
srom_clk_h

During system reset, the 21164PC samples the srom_present_l signal for the pres-
ence of SROM. If srom_present_l is deasserted, the SROM load is disabled and the
reset sequence clears the Icache valid bits. This causes the first instruction fetch to
miss the Icache and read instructions from offchip memory.

Serial Read-Only Memory Interface Port

If srom_present_l is asserted during setup, then the system performs an SROM load
as follows:

1. The srom_oe_l signal supplies the output enable to the SROM.

2. The srom_clk_h signal supplies the clock to the ROM that causes it to advance
to the next bit. The cycle time of this clock is 126± times the CPU clock period.

3. The srom_data_h signal inputs the SROM data.

7.4.1 Serial Instruction Cache Load Operation

All Icache bits, including each block’s tag, address space number (ASN), address
off-
ence,
t
lid bits

er-
a-

f 15,
 range
t
for-

writ-
in the
it is
he
ares.”
29 September 1997 – Subject To Change Initialization and Configuration 7–7

space match (ASM), valid, and branch history bits, can be loaded serially from
chip serial ROMs. Once the serial load has been invoked by the chip reset sequ
the first 8KB of the Icache is loaded automatically from the lowest to the highes
addresses. The second 8KB of the Icache cannot be loaded serially. The tag va
for this bank should reflect this.

The automatic serial Icache fill invoked by the chip reset sequence operates int
nally at a frequency of 126 × CPU clock period. However, due to the synchroniz
tion with the system clocks, consecutive access cycles to SROM may shrink or
stretch by a system cycle. For example, for a system with a system clock ratio o
the time between the two consecutive SROM accesses may be anywhere in the
111 to 141 CPU cycles. The SROM used in the system must be able to suppor
access times in this range. Refer to Section 9.4.4 for additional SROM timing in
mation.

The serial bits are received in a 256-bit-long fill scan path, from which they are
ten in parallel into the Icache address. The fill scan path is organized as shown
text following this paragraph. The farthest bit is shifted in first and the nearest b
shifted in last. The data and predecode bits in the data array are interleaved. T
placeholders are merely for padding the record to a power of 2 and are “don’t c

Serial Terminal Port

srom_data_h serial input ->
BHT Array 0 -> 1 -> ... -> 7 ->
Data 127 -> 95 -> 126 -> 94 -> ... -> 96 -> 64 ->
Predecodes 19 -> 14 -> 18 -> 13 -> ... -> 15 -> 10 ->
Data parity 1 -> 0 ->
Predecodes 9 -> 4 -> 8 -> 3 -> ... -> 5 -> 0 ->
Data 63 -> 31 -> 62 -> 30 -> ... -> 32 -> 0 ->
Tag Parity b ->
Tag Valids 0 -> 1 -> 2 -> 3 ->
TAG Phy.Address b ->
TAG ASN 0 -> 1 -> ... -> 6 ->
TAG ASM b ->

ive a

 the
che

eset.

PAL-
7–8 Initialization and Configuration 29 September 1997 – Subject To Change

TAGs 14 -> ... -> 42 ->
Placeholder 0 -> ... -> 54
 b = Single bit signal

Refer to Appendix C for an example of C code that calculates the predecode values
of a serial Icache load.

7.5 Serial Terminal Port

After the SROM data is loaded into the Icache, the three SROM interface signals can
be used as a software “UART” and the pins become parallel I/O pins that can dr
diagnostic terminal by using an interface such as RS-232 or RS-423.

7.6 Cache Initialization

Regardless of whether the Icache BiSt is executed, the Icache is flushed during
reset sequence prior to the SROM load. If the SROM load is bypassed, the Ica
will be in the flushed state initially.

The data cache (Dcache) is disabled by reset. It is not initialized or flushed by r
It should be initialized by PALcode before being enabled.

The external board-level Bcache is disabled by reset. It should be initialized by
code before being enabled.

External Interface Initialization

7.6.1 Icache Initialization

The Icache is not kept coherent with memory. When it is necessary to make it coher-
ent with memory, the following procedure is used. The CALL_PAL IMB function
performs this function by using this procedure.

1. Execute an MB instruction. This forces all write data in the write buffer into
memory.

– Stall until write buffer is drained.

– Carry load or issue a HW_MFPR from any MTU IPR.

h

ce
ain

igu-
ions.
esses
om-
 ini-
al
29 September 1997 – Subject To Change Initialization and Configuration 7–9

2. Write to IC_FLUSH_CTL with an HW_MTPR to flush the Icache.

3. Execute a total of 44 NOP instructions (BIS r31,r31,r31) to clear the prefetc
buffers and IDU pipeline. The 44 NOP instructions must start on an INT16
boundary. Pad with additional NOP instructions if necessary.

7.6.2 Flushing Dirty Blocks

During a power failure recovery, dirty blocks must be flushed out of the backup
cache (Bcache).

To flush out dirty blocks from the Bcache on power failure, the following sequen
must be used to guarantee that all the dirty blocks have been written back to m
memory:

 Perform loads at a stride of Bcache block size = 2 × size of the Bcache

7.7 External Interface Initialization

After reset, the cache control and bus interface unit (CBU) is in the default conf
ration dictated by the reset state of the IPR bits that select the configuration opt
The CBU response to system commands and internally generated memory acc
is determined by this default configuration. System environments that are not c
patible with the default configuration must use the SROM Icache load feature to
tially load and execute a PALcode program. This program configures the extern
interface control (CBU) IPRs as needed.

Internal Processor Register Reset State

7.8 Internal Processor Register Reset State

Many IPR bits are not initialized by reset. They are located in error-reporting regis-
ters and other IPR states. They must be initialized by initialization PALcode.
Table 7–2 lists the state of all internal processor registers (IPRs) immediately follow-
ing reset. The table also specifies which registers need to be initialized by power-up
PALcode.

Table 7–2 Internal Processor Register Reset State (Sheet 1 of 3)

IPR Reset State Comments
7–10 Initialization and Configuration 29 September 1997 – Subject To Change

IDU Registers

ITB_TAG UNDEFINED

ITB_PTE UNDEFINED

ITB_ASN UNDEFINED PALcode must initialize.

ITB_PTE_TEMP UNDEFINED

ITB_IAP UNDEFINED

ITB_IA UNDEFINED PALcode must initialize.

ITB_IS UNDEFINED

IFAULT_VA_FORM UNDEFINED

IVPTBR UNDEFINED PALcode must initialize.

ICPERR_STAT UNDEFINED PALcode must initialize.

IC_FLUSH_CTL UNDEFINED

EXC_ADDR UNDEFINED

EXC_SUM UNDEFINED PALcode must clear exception summary and
exception register write mask by writing
EXC_SUM.

EXC_MASK UNDEFINED

PAL_BASE Cleared Cleared on reset.

ICM UNDEFINED PALcode must set current mode.

ICSR See Comments All bits are cleared on reset except ICSR<37>,
which is set, and ICSR<38>, which is UNDE-
FINED.

IPLR UNDEFINED PALcode must initialize.

Internal Processor Register Reset State

INTID UNDEFINED

ASTRR UNDEFINED PALcode must initialize.

ASTER UNDEFINED PALcode must initialize.

SIRR UNDEFINED PALcode must initialize.

HWINT_CLR UNDEFINED PALcode must initialize.

ISR UNDEFINED

Table 7–2 Internal Processor Register Reset State (Sheet 2 of 3)

IPR Reset State Comments
29 September 1997 – Subject To Change Initialization and Configuration 7–11

SL_XMIT Cleared Appears on external pin.

SL_RCV UNDEFINED

PMCTR See Comments PMCTR<15:10> are cleared on reset. All other
bits are UNDEFINED.

MTU Registers

DTB_ASN UNDEFINED PALcode must initialize.

DTB_CM UNDEFINED PALcode must initialize.

DTB_TAG Cleared Valid bits are cleared on chip reset but not on
timeout reset.

DTB_PTE UNDEFINED

DTB_PTE_TEMP UNDEFINED

MM_STAT UNDEFINED Must be unlocked by PALcode by reading VA
register.

VA UNDEFINED Must be unlocked by PALcode by reading VA
register.

VA_FORM UNDEFINED Must be unlocked by PALcode by reading VA
register.

MVPTBR UNDEFINED PALcode must initialize.

DC_PERR_STAT UNDEFINED PALcode must initialize.

DTB_IAP UNDEFINED

DTB_IA UNDEFINED

DTB_IS UNDEFINED

Timeout Reset

ntry

MCSR Cleared Cleared on chip reset but not on timeout reset.

DC_MODE Cleared Cleared on chip reset but not on timeout reset.

MAF_MODE Cleared Cleared on chip reset. MAF_MODE<05>
cleared on timeout reset.

DC_FLUSH UNDEFINED PALcode must write this register to clear
Dcache valid bits.

Table 7–2 Internal Processor Register Reset State (Sheet 3 of 3)

IPR Reset State Comments
7–12 Initialization and Configuration 29 September 1997 – Subject To Change

7.9 Timeout Reset

The instruction fetch/decode unit and branch unit (IDU) contains a timer that times
out when a very long period of time passes with no instruction completing. When
this timeout occurs, an internal reset event occurs. This clears sufficient internal state
to allow the CPU to begin executing again. Registers, IPRs (except as noted in
Table 7–2), and caches are not affected. Dispatch to the PALcode MCHK trap e
point occurs immediately.

ALT_MODE UNDEFINED

CC UNDEFINED CC is disabled on chip reset.

CC_CTL UNDEFINED

DC_TEST_CTL <15> cleared Cleared on chip reset but not on timeout reset.

DC_TEST_TAG UNDEFINED

DC_TEST_TAG_TEMP UNDEFINED

CBU Registers

CBOX_CONFIG See Section 5.3.1 for power-up state.

CBOX_CONFIG2 See Section 5.3.4 for power-up state.

CBOX_ADDR See Section 5.3.2 for power-up state.

CBOX_STATUS See Section 5.3.3 for power-up state.

IEEE 1149.1 Test Port Reset

7.10 IEEE 1149.1 Test Port Reset

Signal trst_l must be asserted when sys_reset_l is asserted or when dc_ok_h is
deasserted. Continuous trst_l assertion during normal operation is used to guarantee
that the IEEE 1149.1 test port does not affect 21164PC operation.
29 September 1997 – Subject To Change Initialization and Configuration 7–13

 8
Error Detection and Error Handling
29 September 1997 – Subject To Change Error Detection and Error Handling 8–1

This chapter provides an overview of the error handling strategy of the 21164PC.
Each internal cache (instruction cache [Icache] and data cache [Dcache]) implements
parity protection for tag and data. Longword parity protection is implemented for
memory and backup cache (Bcache) data. Bcache tag and control (valid and dirty
bits) are parity protected. The instruction fetch/decode unit and branch unit (IDU)
implements logic that detects when no progress has been made for a very long time
and forces a machine check trap.

PALcode handles all error traps (machine checks and parity error interrupts). Where
possible, the address of affected data is latched in an onchip IPR. Most of the Istream
errors can be retried by the operating system because the machine check occurs
before any part of the instruction causing the error is executed. In some other cases,
the system may be able to recover from an error by terminating all processes that had
access to the affected memory location.

8.1 Error Flows

The following flows describe the events that take place during an error, the recom-
mended responses necessary to determine the source of the error, and the suggested
actions to resolve them.

8.1.1 Icache Data or Tag Parity Error

• Machine check occurs before the instruction causing the parity error is executed.

• EXC_ADDR contains either the PC of the instruction that caused the parity error
or that of an earlier trapping instruction.

• ICPERR_STAT<TPE> or <DPE> is set.

• Can be retried.

Error Flows

Note: The Icache is not flushed by hardware in this event. If an Icache parity
error occurs early in the PALcode routine at the machine check entry
point, an infinite loop may result.

• Recommendation: Flush the Icache early in the MCHK routine.

8.1.2 Dcache Data Parity Error

• Machine check occurs. Machine state may have changed.

• Cannot be retried, but may only need to delete the process if data is confined to a
single process and no second error occurred.
8–2 Error Detection and Error Handling 29 September 1997 – Subject To Change

• DCPERR_STAT: <DP0> or <DP1> is set. <LOCK> is set. <SEO> is set if there
are multiple errors.

Note: For multiple parity errors in the same cycle, the <SEO> bit is not set, but
more than one error bit will be set.

• VA: Contains the virtual address of the quadword with the error.

• MM_STAT locked. Contents contain information about instruction causing par-
ity error.

Note: Fault information on another instruction in same cycle may be lost.

8.1.3 Dcache Tag Parity Error

• Machine check occurs. Machine state may have changed.

• DCPERR_STAT: <TP0> or <TP1> is set. <LOCK> is set. <SEO> is set if there
are multiple errors.

Note: For multiple parity errors in the same cycle, the <SEO> bit is not set, but
more than one error bit will be set.

• VA: Contains the virtual address of the Dcache block (hexword) with the error.

• MM_STAT locked. Contents contain information about instruction causing par-
ity error. <WR> bit is set if error occurred on a store instruction.

Note: Fault information on another instruction in the same cycle may be lost.

Error Flows

• Probably will not be able to recover by deleting a single process, because exact
address is unknown, and a load may have falsely hit.

8.1.4 Istream Data Parity Errors (Bcache or Memory)

• Machine check occurs before the instruction causing the error is executed.

• Bad data may be written to the Icache or Icache refill buffer and validated.

• Can be retried if there are no multiple errors.

• Must flush Icache to remove bad data. The Icache refill buffer may be flushed by

f
 is

29 September 1997 – Subject To Change Error Detection and Error Handling 8–3

executing enough instructions to fill the refill buffer with new data (32 instruc-
tions). Then flush the Icache again.

• CBOX_STATUS: <DATA_PAR_ERR<3:0>> is set; <MULTI_ERR> is set if
there are multiple errors.

• CBOX_STATUS: <MEMORY> is set if source of fill data is memory/system; is
clear if source is Bcache.

• CBOX_ADDR: Contains the physical address bits <39:04> of the octaword
associated with the error.

Note: If the Istream parity error occurs early in the PALcode routine at the
machine check entry point, an infinite loop may result.

• Recommendation: On data parity errors, it may be feasible for the operating
system to “flush” the block of data out of the Bcache by requesting a block o
data with the same Bcache index, but a different tag. If the requested block
loaded with no problems, then the “bad data” has been replaced. If the “bad
data” is marked dirty, then when the new data tries to replace the old data,
another parity error may result during the write-back (this is a reason not to
attempt this in PALcode, because a MCHK from PALcode is always fatal).

8.1.5 Dstream Data Parity Errors (Bcache or Memory)

• Machine check occurs. Machine state may have changed.

• Cannot be retried, but may only need to delete the process if data is confined to a
single process and no second error occurred.

• CBOX_STATUS: <DATA_PAR_ERR<3:0>> is set; <MULTI_ERR> is set if
there are multiple errors.

Error Flows

• CBOX_STATUS: <MEMORY> is set if source of fill data is memory/system; is
clear if source is Bcache.

• CBOX_ADDR: Contains the physical address bits <39:04> of the octaword
associated with the error.

8.1.6 Bcache Tag Parity Errors—Istream

• Machine check occurs before the instruction causing the error is executed.

• Bad data may be written to the Icache or Icache refill buffer and validated.
8–4 Error Detection and Error Handling 29 September 1997 – Subject To Change

• Can be retried if there are no multiple errors.

• Must flush Icache to remove bad data. The Icache refill buffer may be flushed by
executing enough instructions to fill the refill buffer with new data (32 instruc-
tions). Then flush the Icache again.

• CBOX_STATUS: <TAG_PAR_ERR> is set; <MULTI_ERR> is set if there are
multiple errors.

• CBOX_ADDR: Contains the physical address bits <39:04> of the octaword
associated with the error.

Note: The Bcache hit is determined based on the tag alone, not the parity bit.
The victim is processed according to the status bits in the tag, ignoring
the control field parity. PALcode can distinguish fatal from nonfatal
occurrences by checking for the case in which a potentially dirty block is
replaced without the victim being properly written back and the case of
false hit when the tag parity is incorrect.

8.1.7 Bcache Tag Parity Errors—Dstream

• Machine check occurs. Machine state may have changed.

• Cannot be retried, but may only need to delete the process if data is confined to a
single process and no second error occurred. The Bcache hit is determined based
on the tag alone, not the parity bit. The victim is processed according to the sta-
tus bits in the tag, ignoring the control field parity. PALcode can distinguish fatal
from nonfatal occurrences by checking for the case in which a potentially dirty
block is replaced without the victim being properly written back and the case of
false hit when the tag parity is incorrect.

• CBOX_STATUS: <TAG_PAR_ERR> is set; <MULTI_ERR> is set if there are
multiple errors.

Error Flows

• CBOX_ADDR: Contains the physical address bits <39:04> of the octaword
associated with the error.

8.1.8 System Read Operations of the Bcache

The 21164PC does not check the parity on outgoing Bcache data. If it is bad, the
receiving processor will detect it.

8.1.9 Fill Timeout (FILL_ERROR_H)

• For systems in which fill timeout can occur, the system environment should
29 September 1997 – Subject To Change Error Detection and Error Handling 8–5

detect fill timeout and cleanly terminate the reference to 21164PC. If the system
environment expects fill timeout to occur, it should detect them. If it does not
expect them (as might be true in small systems with fixed memory access tim-
ing), it is likely that the internal IDU timeout will eventually detect a stall if a fill
fails to occur. To properly terminate a fill in an error case, the fill_error_h pin is
asserted for one cycle and the normal fill sequence involving the fill_h,
fill_id_h, and dack_h pins is generated by the system environment.

• A fill_error_h assertion forces a PALcode trap to the MCHK entry point, but
has no other effect.

Note: No internal status is saved to show that this happened. If necessary, sys-
tems must save this status, and include read operations of the appropriate
status registers in the MCHK PALcode.

8.1.10 System Machine Check

• The 21164PC has a maskable machine check interrupt input pin. It is used by
system environments to signal fatal errors that are not directly connected to a
read access from the 21164PC. It is masked at IPL 31 and anytime the 21164PC
is in PALmode.

• ISR: <MCK> is set.

8.1.11 IDU Timeout

• When the IDU detects a timeout, it causes a PALcode trap to the MCHK entry
point.

• Simultaneously, a partial internal reset occurs: most states (except the IPR state)
are reset. This should not be depended on by systems in which fill timeouts
occur in typical use (such as, operating system or console code probing locations

MCHK Flow

to determine if certain hardware is present). The purpose of this error detection
mechanism is to attempt to prevent system hang in order to write a machine
check stack frame.

• ICPERR_STAT: <TMR> is set.

8.2 MCHK Flow

The following flow is the recommended IPR access order to determine the source of
a machine check.

• Must flush Icache to remove bad data on Istream errors. The Icache refill buffer
8–6 Error Detection and Error Handling 29 September 1997 – Subject To Change

may be flushed by executing enough instructions to fill the refill buffer with new
data (32 instructions). Then flush the Icache again.

• Read EXC_ADDR.

• If EXC_ADDR=PAL, then halt.

• Issue MB to clear out MTU/CBU before reading CBU registers or issuing
DC_FLUSH.

• Flush Dcache to remove bad data on Dstream errors.

• Read ICSR.

• Read ICPERR_STAT.

• Read DCPERR_STAT.

• Read CBOX_ADDR.

• Use an MB instruction to ensure that read operations of CBOX_ADDR occur
before subsequent read operations of CBOX_STATUS.

• Read CBOX_STATUS and save (unlocks CBOX_STATUS and
CBOX_ADDR).

• Read CBOX_STATUS again to be sure it is unlocked; discard result.

• Check for cases that cannot be retried. If any one of the following are true, then
skip retry:

– CBOX_STATUS<TAG_PAR_ERR>

– CBOX_STATUS<DATA_PAR_ERR>

– CBOX_STATUS<MULTI_ERR>

MCK_INTERRUPT Flow

• If none of the previous conditions are true, then there is either an IRD that can be
retried or the source of the MCHK is a fill_error_h. Add code for query of sys-
tem status.

• The case can be retried if any one or several of the following are true (and none
of the previous conditions were true):

– CBOX_STATUS<DATA_PAR_ERR>

– ICPERR_STAT<TPE>

– ICPERR_STAT<DPE>

pe-
29 September 1997 – Subject To Change Error Detection and Error Handling 8–7

• Unlock the following IPRs:

– ICPERR_STAT (write 0x1800)

– DCPERR_STAT (write 0x03)

– VA and CBOX_STATUS are already unlocked

• Check for arithmetic exceptions:

– Read EXC_SUM.

– Check for arithmetic errors and handle according to operating-system-s
cific requirements.

– Clear EXC_SUM (unlocks EXC_MASK).

• Report the processor-uncorrectable MCHK according to operating-system-spe-
cific requirements.

8.3 MCK_INTERRUPT Flow

• Arrived here through interrupt routine because ISR<MCK> bit is set.

• Report the system-uncorrectable MCHK according to operating-system-specific
requirements.

 9
Electrical Data

erat-
29 September 1997 – Subject To Change Electrical Data 9–1

This chapter describes the electrical characteristics of the 21164PC component and
its interface pins. It is organized as follows:

• Electrical characteristics

• dc characteristics

• Clocking scheme

• ac characteristics

• Power supply considerations

9.1 Electrical Characteristics

Table 9–1 lists the maximum ratings for the 21164PC and Table 9–2 lists the op
ing voltages.

Table 9–1 21164PC Absolute Maximum Ratings (Sheet 1 of 2)

Characteristics Ratings

Storage temperature −55°C to 125°C (−67°F to 257°F)

Junction temperature 15°C to 85°C (59°F to 185°F)

Supply voltage Vss = −0.5 V, Vddi = 2.5 V, Vdd = 3.3 V

DC Characteristics

axi-

Signal input or output applied −0.5 V to 4.6 V

Typical Vdd worst case power @ Vdd = 3.3 V
Frequency = 400 MHz
Frequency = 466 MHz
Frequency = 533 MHz

2.5 W
2.5 W
3.0 W

Typical Vddi worst case power @ Vddi = 2.5 V
Frequency = 400 MHz
Frequency = 466 MHz

24.0 W
28.0 W

Table 9–1 21164PC Absolute Maximum Ratings (Sheet 2 of 2)

Characteristics Ratings
9–2 Electrical Data 29 September 1997 – Subject To Change

Caution: Stress beyond the absolute maximum rating can cause permanent dam-
age to the 21164PC. Exposure to absolute maximum rating conditions
for extended periods of time can affect the 21164PC reliability.

9.2 DC Characteristics

The 21164PC is designed to run in a 3.3-V CMOS/TTL environment. The 21164PC
is tested and characterized in a CMOS environment.

9.2.1 Power Supply

The Vss pins are connected to 0.0 V, and the Vddi pins are connected to
2.5 V ±0.1 V, and the Vdd pins are connected to 3.3 V ±5%.

9.2.2 Input Signal Pins

Nearly all input signals are ordinary CMOS inputs with standard TTL levels (see
Table 9–3). (See Section 9.3.1 for a description of an exception—osc_clk_in_h,l.)

After power has been applied, input and bidirectional pins can be driven to a m
mum dc voltage of Vclamp at a maximum current of Iclamp without harming the
21164PC. Refer to Table 9–3 for Vclamp and Iclamp values. Inputs greater than

Frequency = 533 MHz 32.0 W

Table 9–2 Operating Voltages

Nominal Maximum Minimum

Vdd Vddi Vdd Vddi Vdd Vddi

3.3 V 2.5 V 3.46 V 2.6 V 3.13 V 2.4 V

DC Characteristics

Vclamp will be clamped to Vclamp provided that the current does not exceed
Iclamp. The 21164PC may be damaged if the voltage exceeds Vclamp or the current
exceeds Iclamp.

9.2.3 Output Signal Pins

Output pins are ordinary 3.3-V CMOS outputs. Although output signals are rail-to-
rail, timing is specified to Vdd/2.

Note: The 21164PC microprocessor chips do not have an onchip resistor for an
output driver.
29 September 1997 – Subject To Change Electrical Data 9–3

Bidirectional pins are either input or output pins, depending on control timing. When
functioning as output pins, they are ordinary 3.3-V CMOS outputs.

Table 9–3 shows the CMOS dc input and output pins.

Table 9–3 CMOS DC Input/Output Characteristics (Sheet 1 of 2)

Parameter Requirements

Symbol Description Min. Max. Units Test Conditions

Vih High-level input voltage 2.0 — V —

Vil Low-level input voltage — 0.8 V —

Voh High-level output voltage 2.4 — V Ioh = −6.0 mA

Vol Low-level output voltage — 0.4 V Iol = 6.0 mA

Iil_pd Input with pull-down leakage
current

— ±50 µA Vin = 0 V

Iih_pd Input with pull-down current — 250 µA Vin = 2.4 V

Iil_pu Input with pull-up current — −800 µA Vin = 0.4 V

Iih_pu Input with pull-up leakage
current

— ±50 µA Vin = Vdd V

Iozl_pd Output with pull-down
leakage current (tristate)

— ±100 µA Vin = 0 V

Iozh_pd Output with pull-down current
(tristate)

— 500 µA Vin = 2.4 V

Iozl_pu Output with pull-up current
(tristate)

— −800 µA Vin = 0.4 V

DC Characteristics

Iozh_pu Output with pull-up leakage
current (tristate)

— ±100 µA Vin = Vdd V

Vclamp Maximum clamping voltage — Vdd + 1.0 V Iclamp = 100 mA

Idd Peak power supply current for
Vdd power supply

— 1.01 A Vdd = 3.465 V
Frequency = 400 MHz

1

Table 9–3 CMOS DC Input/Output Characteristics (Sheet 2 of 2)

Parameter Requirements

Symbol Description Min. Max. Units Test Conditions
9–4 Electrical Data 29 September 1997 – Subject To Change

Most pins have low current pull-down devices to Vss. However, two pins have a
pull-up device to Vdd. The pull-downs (or pull-ups) are always enabled. This means
that some current will flow from the 21164PC (if the pin has a pull-up device) or into
the 21164PC (if the pin has a pull-down device) even when the pin is in the high-
impedance state. All pins have pull-down devices, except for the pins in the follow-
ing table:

1 This assumes a sysclk ratio of 4 and worst-case loading of output pins.

Idd Peak power supply current for
Vdd power supply

— 1.0 A Vdd = 3.465 V
Frequency = 466 MHz

Idd Peak power supply current for
Vdd power supply

— 1.31 A Vdd = 3.465 V
Frequency = 533 MHz

Iddi Peak power supply current for
Vddi power supply

— 11.25 A Vddi = 2.6 V
Frequency = 400 MHz

Iddi Peak power supply current for
Vddi power supply

— 13.0 A Vddi = 2.6 V
Frequency = 466 MHz

Iddi Peak power supply current for
Vddi power supply

— 14.75 A Vddi = 2.6 V
Frequency = 533 MHz

Signal Name Notes

tms_h Has a pull-up device

tdi_h Has a pull-up device

osc_clk_in_h 50 Ω to Vterm (≈ Vdd/2) (See Figure 9–1)

osc_clk_in_l 50 Ω to Vterm (≈ Vdd/2) (See Figure 9–1)

temp_sense 150 Ω to Vss

Clocking Scheme

9.3 Clocking Scheme

The differential input clock signals osc_clk_in_h,l run at the internal frequency of
the time base for the 21164PC. The output signal cpu_clk_out_h toggles with an
unspecified propagation delay relative to the transitions on osc_clk_in_h,l.

The 21164PC provides a system clock to run the chip synchronous to the system.

The 21164PC generates and drives out a system clock, sys_clk_out1_h. It runs syn-
chronous to the system clock at a selected ratio of the internal clock frequency. There
is a small clock skew between the internal clock and sys_clk_out1_h.
29 September 1997 – Subject To Change Electrical Data 9–5

Refer to Section 4.2 for more information on clock functions.

9.3.1 Input Clocks

The differential input clocks osc_clk_in_h,l provide the time base for the chip when
dc_ok_h is asserted. These pins are self-biasing, and must be capacitively coupled to
the clock source on the module.

Note: It is not desirable to drive the osc_clk_in_h,l pins directly.

The terminations on these signals are designed to be compatible with system oscilla-
tors of arbitrary dc bias. The oscillator must have a duty cycle of 60%/40% or
tighter. Figure 9–1 shows the input network and the schematic equivalent of
osc_clk_in_h,l terminations.

Clocking Scheme

Figure 9–1 osc_clk_in_h,l Input Network and Terminations

ng
o
ge

age at

50 Ohms

3.5 nH

4.0 pF 6.0 pF

osc_clk_in_h

To
Differential
Amplifier

*

Module Circuitry Onchip Circuitry

6.0 pF

3.5 nH

VREF
9–6 Electrical Data 29 September 1997 – Subject To Change

Ring Oscillator

When signal dc_ok_h is deasserted, the clock outputs follow the internal ring oscil-
lator. The 21164PC runs off the ring oscillator, just as it would when an external
clock is applied. The frequency of the ring oscillator varies from chip to chip within
a range of 10 MHz to 100 MHz. This corresponds to an internal CPU clock fre-
quency range of 5 MHz to 50 MHz. The system clock divisor is forced to 8, and the
sys_clk_out2 delay is forced to 3.

9.3.2 Clock Termination and Impedance Levels

In Figure 9–1, the clock is designed to approximate a 50-Ω termination for the pur-
pose of impedance matching for those systems that drive input clocks across lo
traces. The clock input pins appear as a 50-Ω series termination resistor connected t
a high-impedance voltage source. The voltage source produces a nominal volta
value of Vdd/2. The source has an impedance of between 130 Ω and 600 Ω. This
voltage is called the self-bias voltage and sources current when the applied volt
the clock input pins is less than the self-bias voltage. It sinks current when the
applied voltage exceeds the self-bias voltage. This high-impedance bias driver

50 Ohms

50 Ohms

3.5 nH

4.0 pF 6.0 pF

osc_clk_in_l

Oscillator

*

Note:
Coupling capacitors 47 pF to 220 pF*

6.0 pF

3.5 nH

LJ-05357.AI4

Clocking Scheme

allows a clock source of arbitrary dc bias to be ac coupled to the 21164PC. The peak-
to-peak amplitude of the clock source must be between 0.6 V and 3.0 V. Either a
square-wave or a sinusoidal source may be used. Full-rail clocks may be driven by
testers. In any case, the oscillator should be ac coupled to the osc_clk_in_h,l inputs
by 47 pF through 220 pF capacitors.

Figure 9–2 shows a plot of the simulated impedance versus the clock input fre-
quency. Figure 9–1 is a simplified circuit of the complex model used to create
Figure 9–2.

Figure 9–2 Impedance vs Clock Input Frequency
29 September 1997 – Subject To Change Electrical Data 9–7

Differential Impedance ocs_clk_in_h to osc_clk_in_l

LJ-04724.AI4

140

120

100

80

Im
pe

da
nc

e
in

 O
hm

s

60

40

20

0
10 100

Frequency in MHz
1000

AC Characteristics

9.3.3 AC Coupling

Using series coupling (blocking) capacitors renders the 21164PC clock input pins
insensitive to the oscillator’s dc level. When connected this way, oscillators with any
dc offset relative to Vss can be used provided they can drive a signal into the
osc_clk_in_h,l pins with a peak-to-peak level of at least 600 mV, but no greater than
3.0 V peak-to-peak.

The value of the coupling capacitor is not overly critical. However, it should be suf-
ficiently low impedance at the clock frequency so that the oscillator’s output signal
(when measured at the osc_clk_in_h,l pins) is not attenuated below the 600-mV,

dal
ality

of
9–8 Electrical Data 29 September 1997 – Subject To Change

peak-to-peak lower limit. For sine waves or oscillators producing nearly sinusoi
(pseudo square wave) outputs, 220 pF is recommended at 433 MHz. A high-qu
dielectric such as NPO is required to avoid dielectric losses.

Table 9–4 shows the input clock specification.

9.4 AC Characteristics

This section describes the ac timing specifications for the 21164PC.

9.4.1 Test Configuration

All input timing is specified relative to the crossing of standard TTL input levels
0.8 V and 2.0 V. Output timing is to the nominal CMOS switch point of Vdd/2 (see
Figure 9–3).

1 Minimum clock frequency = 50.0 MHz; Maximum clock frequency = 533 MHz = 1/Tcycle

Table 9–4 Input Clock Specification

Signal Parameter Nominal Bin1 Unit

osc_clk_in_h,l symmetry 50 ± 10 %

osc_clk_in_h,l minimum voltage 0.6 V (peak-to-peak)

osc_clk_in_h,l Z input 50 Ω

AC Characteristics

Figure 9–3 Input/Output Pin Timing

30

Tdsu Tdh

50%

2.0 V
Vdd

Internal

Input
Signals

CPU Clock

Tcycle
29 September 1997 – Subject To Change Electrical Data 9–9

Because the speed and complexity of microprocessors has increased substantially
over the years, it is necessary to change the way they are tested. Traditional assump-
tions that all loads can be lumped into some accumulation of capacitance cannot be
employed any more. Rather, the model of a transmission line with discrete loads is a
much more realistic approach for current test technology.

Typically, printed circuit board (PCB) etch has a characteristic impedance of approx-
imately 75 Ω. This may vary from 60 Ω to 90 Ω with tolerances. If the line is driven
in the electrical center, the load could be as low as 30 Ω. Therefore, a characteristic
impedance range of 30 Ω to 90 Ω could be experienced.

The 21164PC output drivers are designed with typical printed circuit board applica-
tions in mind rather than trying to accommodate a 40-pF test load specification. As
such, it “launches” a voltage step into a characteristic impedance, ranging from Ω
to 90 Ω.

MK−1455−19

Input Timing

0.8 V

Output Timing

Tdd

50%

Vdd
2

Vss

Vdd

Vss

Output
Signals

Internal
CPU Clock

AC Characteristics

There is no source termination resistor in the 21164PC fabricated in 0.35-µm CMOS
process technology. The source impedance of the driver is approximately 32 Ω ±17.
The circuit is designed to deliver a TTL signal under worst-case conditions. Under
light load, high drive voltages, and fast process conditions there may be considerable
overdrive. It may be necessary to install termination or clamping elements to the sig-
nal etches or loads.

9.4.2 Pin Timing

The following sections describe Bcache loop timing and sys_clk-based system tim-
ing.

. Pri-
nt of
 the
9–10 Electrical Data 29 September 1997 – Subject To Change

9.4.2.1 Backup Cache Loop Timing

The 21164PC must be configured to support an offchip backup cache (Bcache)
vate Bcache read or write transactions initiated by the 21164PC are independe
the system clocking scheme. Bcache loop timing must be an integer multiple of
21164PC cycle time.

Table 9–5 lists the Bcache loop timing.

1 The value 0.2 ns accounts for onchip driver and clock skew.

3 For private Bcache write operations, 21164PC drives data_h<127:0> coincident with driving
index_h<21:4>.

2 For big drive enabled or big drive disabled, respectively. See Table 9–7.

Table 9–5 Bcache Loop Timing

Signal Specification Value Name

data_h<127:0> Input setup 1.1 ns Tdsu

data_h<127:0> Input hold 0.0 ns Tdh

data_h<127:0> Output delay Tdd + 0.2 ns1 Tdbd3

data_h<127:0> Output hold Tmdd Tdbh3

index_h<21:4>,
st_clk1_h,
st_clk2_h,
 st_clk3_h

Output delay Tbedd + 0.2 ns,
or Tbddd + 0.2 ns1,2

Tiod

index_h<21:4>,
st_clk1_h,
st_clk2_h,
st_clk3_h

Output hold time Tmdd Tioh

AC Characteristics

Outgoing Bcache index and data signals are driven off the internal clock edge and
the incoming Bcache tag and data signals are latched on the same internal clock
edge. Table 9–6 and Table 9–7 show the output driver characteristics for the normal
driver and big driver, respectively.

Additional drive for the following pins can be enabled by setting bit <27>
(BC_BIG_DRV) of the CBOX_CONFIG register, described in Section 5.3.1:

• index_h<21:4>

• tag_ram_oe_l, tag_ram_we_l
29 September 1997 – Subject To Change Electrical Data 9–11

• data_ram_oe_l, data_ram_we_l<3:0>

• st_clk1_h, st_clk2_h, st_clk3_h

• data_adsc_l, data_adv_l

If any of the previous pins are connected to lightly loaded lines (less than 40 pF)
additional drive should not be enabled or the lines should be properly terminated to
avoid transmission line ringing.

1 NA = Not applicable.

Table 9–6 Normal Output Driver Characteristics

Specification 40-pF Load 10-pF Load Name

Maximum driver delay 2.7 ns 1.4 ns Tdd

Minimum driver delay 0.8 ns 0.8 ns Tmdd

Table 9–7 Big Output Driver Characteristics

Specification 60-pF Load 40-pF Load 10-pF Load Name

Extra Drive Disabled

Maximum driver delay NA1 2.6 ns 1.5 ns Tbddd

Minimum driver delay NA1 0.8 ns 0.8 ns Tmdd

Extra Drive Enabled

Maximum driver delay 2.7 ns 2.0 ns 1.5 ns Tbedd

Minimum driver delay 1.0 ns 0.8 ns 0.8 ns Tmdd

AC Characteristics

 Output pin timing is specified for lumped 40-pF and 10-pF loads for the normal
driver and lumped 60-pF, 40-pF, and 10-pF loads for the big driver. In some cases,
the circuit may have loads higher than 40 pF (60 pF for big driver). The 21164PC
can safely drive higher loads provided the average charging or discharging current
from each pin is 11 mA or less for normal output drivers or 25 mA or less for big
output drivers. The following equation can be used to determine the maximum
capacitance that can be safely driven by each pin:

• For normal output drivers: Cmax (in pF) = 5t, where t is the waveform period
(measured from rising to rising or falling to falling edge), in nanoseconds.
9–12 Electrical Data 29 September 1997 – Subject To Change

• For big output drivers: Cmax (in pF) = 7t, where t is the waveform period (mea-
sured from rising to rising or falling to falling edge), in nanoseconds.

For example, if the waveform appearing on a given normal I/O pin has a 15.0-ns
period, it can safely drive up to and including 75 pF.

Figure 9–4 shows the Bcache read and write timing.

Figure 9–4 Bcache Timing

FM-05981.AI4

CPU Clock

Index Out

Bcache Loop (Read)

Data in

CPU Clock

Index Out

Bcache Loop (Write)

Data Out

Tiod

Tdsu

Tioh

Tdh

BC_RD_LATENCY

Tiod Tioh

BC_CLK_RATIO

Tdbd Tdbh

AC Characteristics

9.4.2.2 sys_clk-Based Systems

All timing is specified relative to the rising edge of the internal CPU clock.

Table 9–8 shows 21164PC system clock sys_clk_out1_h output timing. Setup and
hold times are specified independent of the relative capacitive loading of
sys_clk_out1_h,l, addr_h<39:4>, data_h<127:0>, and cmd_h<3:0> signals.

Table 9–8 21164PC System Clock Output Timing (sysclk=T ø)

Signal Specification Value Name

sys_clk_out1_h Output delay Tdd Tsysd
29 September 1997 – Subject To Change Electrical Data 9–13

1 The value 0.2 ns accounts for onchip driver and clock skew.
2 For all system write transactions initiated by the 21164PC, data is driven Tcycle (= 1 cpu_clk) after the

sys_clk_out1_h pin. For all private write transactions, data is driven coincident with Tcycle (= 0 cpu_clk) the
driving of index_h<21:4>.

sys_clk_out1_h Minimum output delay Tmdd Tsysdm

data_bus_ req_h, data_h<127:0>,
addr_h<39:4>

Input setup 1.1 ns Tdsu

data_bus_ req_h, data_h<127:0>,
addr_h<39:4>

Input hold 0 ns Tdh

addr_h<39:4> Output delay Tdd + 0.2 ns1 Taod

addr_h<39:4> Output hold time Tmdd Taoh

data_h<127:0> Output delay Tdd [+ Tcycle]2 + 0.2 ns1 Tdod2

data_h<127:0> Output hold time Tmdd [+ Tcycle]2 Tdoh2

addr_bus_req_h Input setup 3.4 ns Tabrsu

addr_bus_req_h Input hold −1.0 ns Tabrh

dack_h Input setup 3.2 ns Tntacksu

cack_h Input setup 3.4 ns Tntcacksu

cack, dack Input hold −1.0 ns Tntackh

AC Characteristics

Figure 9–5 shows sys_clk system timing.

Figure 9–5 sys_clk System Timing

CPU Clock

sys_clk_out1

Relationship of CPU Clock and sys_clk_out1

Memory Read (Pipe_Latch Mode)

Tsysd
9–14 Electrical Data 29 September 1997 – Subject To Change

LJ-03410.AI4

CPU Clock

Address/Command Out

dack

sys_clk_out1

Data In

CPU Clock

Address/Command Out

dack

Memory Read (Non-Pipe_Latch Mode)

sys_clk_out1

Data In

Taod

Tdsu

Taoh

TsysdTsysdTsysd

Taod Tntacksu

Tdsu

Taoh

TsysdTsysdTsysd

Tntackh

Ttacksu

cack
Tntcacksu

AC Characteristics

9.4.3 Timing—Additional Signals

This section lists timing for all other signals.

Asynchronous Input Signals

The following is a list of the asynchronous input signals:

t-

1 These signals can also be used synchronously.

clk_mode_h<1:0> dc_ok_h sys_reset_l irq_h<3:0>1

mch_hlt_irq_h1 pwr_fail_irq_h1 sys_mch_chk_irq_h1
29 September 1997 – Subject To Change Electrical Data 9–15

Miscellaneous Signals

Table 9–9 and Table 9–10 list the timing for miscellaneous input-only and outpu
only signals. All timing is expressed in nanoseconds.

Table 9–9 Input Timing for sys_clk_out-Based Systems

Signal Specification Value Name

fill_h, fill_error_h, fill_id_h, idle_bc_h

irq_h<3:0>, mch_hlt_irq_h, pwr_fail_irq_h,
sys_mch_chk_irq_h

Testability pins:
port_mode_h, srom_data_h, srom_present_l

Input setup 1.1 ns Tdsu

fill_h, fill_error_h, fill_id_h, idle_bc_h

irq_h<3:0>, mch_hlt_irq_h, pwr_fail_irq_h,
sys_mch_chk_irq_h

sys_reset_l

Testability pins:
port_mode_h, srom_data_h, srom_present_l

Input hold 0 ns Tdh

AC Characteristics

Table 9–10 Output Timing for sys_clk_out-Based Systems

Signal Specification Value Name

Unidirectional Signals

addr_res_h, int4_valid_h,1 srom_clk_h,
srom_oe_l, victim_pending_h

Output delay Tdd + 0.2 ns Taod

addr_res_h, int4_valid_h,1 srom_clk_h,
srom_oe_l, victim_pending_h

Output hold Tmdd Taoh

int4_valid_h2 Output delay Tdd + Tcycle + 0.2 ns Tdod
2

9–16 Electrical Data 29 September 1997 – Subject To Change

1 Read transaction
2 Write transaction
3 Fills from memory
4 Only for write broadcasts and system transactions

int4_valid_h Output hold Tmdd + Tcycle Tdoh

Bidirectional Signals

Input mode:

cmd_h, lw_parity_h,1 tag_dirty_h3 Input setup 1.1 ns Tdsu

cmd_h, lw_parity_h,1 tag_dirty_h3 Input hold 0 ns Tdh

Output mode:

cmd_h, tag_dirty_h,4 tag_valid_h4 Output delay Tdd + 0.2 ns Taod

lw_parity_h2 Output delay Tdd + Tcycle + 0.2 ns Tdod

cmd_h, tag_dirty_h,4 tag_valid_h4 Output hold Tmdd Taoh

lw_parity_h2 Output hold Tmdd + Tcycle Tdoh

AC Characteristics

Signals in Table 9–11 are used to control Bcache data transfers. These signals are
driven off the CPU clock. The timing of these signals does not change when switch-
ing over to the sys_clk_out timing domain.

e test
ded

s.

Table 9–11 Bcache Control Signal Timing

Signal Specification Value Name

 Input mode:

tag_data_h, tag_data_par_h,
tag_valid_h

Input setup 1.1 ns Tdsu
29 September 1997 – Subject To Change Electrical Data 9–17

9.4.4 Timing of Test Features

Timing of 21164PC testability features depends on the system clock rate and th
port’s operating mode. This section provides timing information that may be nee
for most common operations.

9.4.4.1 Icache BiSt Operation Timing

The Icache BiSt is invoked by deasserting the external reset signal sys_reset_l.
Figure 9–6 shows the timing between various events relevant to BiSt operation

1 The value 0.2 ns accounts for onchip driver and clock skew.
2 For big drive enabled or big drive disabled, respectively. See Table 9–7.

tag_data_h, tag_data_par_h,
tag_valid_h

Input hold 0 ns Tdh

Output mode:

data_ram_oe_l, data_ram_we_l<3:0>,
tag_ram_oe_l, tag_ram_we_l

Output delay Tbedd + 0.2 ns or
Tbddd + 0.2 ns1,2

Taod

tag_data_h, tag_data_par_h,
tag_valid_h

Output delay Tdd + 0.2 ns1 Taod

data_ram_oe_l, data_ram_we_l<3:0>,
tag_ram_oe_l, tag_ram_we_l

Output hold Tmdd Taoh

tag_data_h, tag_data_par_h,
tag_valid_h

Output hold Tmdd Taoh

AC Characteristics

Figure 9–6 BiSt Timing Event —Timeline

e

em

Deassert
sys_reset_l

BiSt Start
(test_status_h<1:0>=01)

Deassert*
Internal Reset

(T%Z_RESET_B_L)

BiSt Done
(test_status_h<1:0>=00)

t3

t2

t1
9–18 Electrical Data 29 September 1997 – Subject To Change

The timing for deassertion of internal reset (time t2, see asterisk) is valid only if an
SROM is not present (indicated by keeping signal srom_present_l deasserted). If an
SROM is present, the SROM load is performed once the BiSt completes. The inter-
nal reset signal T%Z_RESET_B_L is extended until the end of the SROM load (Sec-
tion 9.4.4.2). In this case, the end of the timeline shown in Figure 9–6 connects to th
beginning of the timeline shown in Figure 9–7.

Table 9–12 and Table 9–13 list timing shown in Figure 9–6 for some of the syst
clock ratios. Time t1 is measured starting from the rising edge of sysclk following
the deassertion of the sys_reset_l signal.

Table 9–12 BiSt Timing for Some System Clock Ratios, Port Mode=Normal
(System Cycles)

System Cycles

Sysclk Ratio t1 t2 t3

4 7 28569 + 3½ 28570

15 7 15749 + 14½ 15750

Table 9–13 BiSt Timing for Some System Clock Ratios, Port Mode=Normal
(CPU Cycles)

CPU Cycles

Sysclk Ratio t1 t2 t3

4 28 114279½ 114280

15 105 236249½ 236250

AC Characteristics

9.4.4.2 Automatic SROM Load Timing

The SROM load is triggered by the conclusion of BiSt if srom_present_l is asserted.
The SROM load occurs at the internal cycle time of approximately 126 CPU cycles
for srom_clk_h, but the behavior at the pins may shift slightly. Refer to Chapter 7
for more information on input signals, booting, and the SROM interface port.

Timing events are shown in Figure 9–7 and are listed in Table 9–14 and Table 9–15.

Figure 9–7 SROM Load Timing Event—Timeline

BiSt Done
test_status_h

Deassert
Internal Reset

(T%Z_RESET_B_L)
Assert

srom_oe_l
First Rise

srom_clk_h
Last Rise

srom_clk_h
Deassert
srom_oe_l
29 September 1997 – Subject To Change Electrical Data 9–19

1 Measured in sysclk cycles, where “+ n” refers to an additional n CPU cycles

Table 9–14 SROM Load Timing for Some System Clock Ratios (System Cycles)

System Cycles1

Sysclk Ratio t1 t2 t3 t4 t5

4 3 48 4209267 4209361 + 3½ 4209362

15 3 13 1122472 1122496 + 14½ 1122497

Table 9–15 SROM Load Timing for Some System Clock Ratios (CPU Cycles)

CPU Cycles

Sysclk Ratio t1 t2 t3 t4 t5

4 12 192 16837068 16837447½ 16837448

15 45 195 16837080 16837454½ 16837455

MK145510B

t 1

t

t

3

5

t 4

t 2

AC Characteristics

Figure 9–8 is a timing diagram of an SROM load sequence.

Figure 9–8 Serial ROM Load Timing

sys_reset_l

su hot t

srom_oe_l

srom_clk_h
9–20 Electrical Data 29 September 1997 – Subject To Change

The minimum srom_clk_h cycle = (126 − sysclk ratio) × (CPU cycle time).

The maximum srom_clk_h to srom_data_h delay allowable (in order to meet the
required setup time) = [126 − (5 × sysclk ratio)] × (CPU cycle time).

9.4.5 Clock Test Modes

This section describes the 21164PC clock test modes.

9.4.5.1 Normal (1× Clock) Mode

When clk_mode_h<1> is not asserted, the osc_clk_in_h,l frequency is used to drive
the input clock frequency. The clk_mode_h<0> signal is used to enable/disable a
clock equalizing circuit, called a symmetrator. The symmetrator equalizes the duty-
cycle of the input clock for use onchip. The osc_clk_ in_h,l signals must have a duty
cycle of at least 60/40 for the symmetrator to work properly. Normal clock mode
with the symmetrator enabled is the preferred clocking mode of the 21164PC.

9.4.5.2 Clock Test Reset Mode

When clk_mode_h<1> is asserted, the sys_clk_out generator circuit is forced to
reset to a known state. This allows the chip manufacturing tester to synchronize the
chip to the tester cycle. This mode can be used with the symmetrator either enabled
or disabled.

MK145507B

sut

hot
= 4 x sysclk period + 1.1 ns

= 0 ns

131, 072 Bits Total

srom_data_h

Power Supply Considerations

Table 9–16 lists the clock test modes.

 all
e
 pins,

Table 9–16 Clock Test Modes

clk_mode_h

Mode <1> <0> Notes

Normal (1×) clock mode 0 0

Normal (1×) clock mode 0 1 Symmetrator is enabled.

Clock reset 1 0
29 September 1997 – Subject To Change Electrical Data 9–21

9.4.6 IEEE 1149.1 (JTAG) Performance

Table 9–17 lists the standard mandated performance specifications for the
IEEE 1149.1 circuits.

9.5 Power Supply Considerations

For correct operation of the 21164PC, all of the Vss pins must be connected to
ground, all of the Vdd pins must be connected to a 3.3-V ±5% power source, and
of the Vddi pins must be connected to a 2.5-V ±0.1 V power source. This sourc
voltage should be guaranteed (even under transient conditions) at the 21164PC
and not just at the PCB edge.

Clock reset 1 1 Symmetrator is enabled.

Table 9–17 IEEE 1149.1 Circuit Performance Specifications

Item Specification

trst_l is asynchronous. Minimum pulse width. 4 ns

trst_l setup time for deassertion before a transition on tck_h. 4 ns

Maximum acceptable tck_h clock frequency. 16.6 MHz

tdi_h/tms_h setup time (referenced to tck_h rising edge). 4 ns

tdi_h/tms_h hold time (referenced to tck_h rising edge). 4 ns

Maximum propagation delay at pin tdo_h (referenced to tck_h falling
edge).

14 ns

Maximum propagation delay at system output pins (referenced to tck_h
falling edge).

20 ns

Power Supply Considerations

Plus 5 V is not used in the 21164PC. The voltage difference between the Vdd pins
and Vss pins must never be greater than 3.46 V, and the voltage difference between
the Vddi pins and Vss pins must never be greater than 2.6 V. If the differentials
exceed these limits, the 21164PC chip will be damaged.

9.5.1 Decoupling

The effectiveness of decoupling capacitors depends on the amount of inductance
placed in series with them. The inductance depends both on the capacitor style (con-
struction) and on the module design. In general, the use of small, high-frequency
capacitors placed close to the chip package’s power and ground pins with very short

ower
.

d to
% on

r
the

uld

veral
ould
9–22 Electrical Data 29 September 1997 – Subject To Change

module etch will give best results. Depending on the user’s power supply and p
supply distribution system, bulk decoupling may also be required on the module

The 21164PC requires two sets of decoupling capacitors: one for Vdd and one for
Vddi.

9.5.1.1 Vdd Decoupling

The amount of decoupling capacitance connected between Vdd and Vss should be
roughly equal to 10 times the amount of capacitive load that 21164PC is require
drive at any one time. This should guarantee a voltage drop of no more than 10
Vdd during heavy drive conditions.

Use capacitors that are as physically small as possible. Connect the capacitors
directly to the 21164PC Vdd and Vss pins by short surface etch (0.64 cm [0.25 in] o
less). The small capacitors generally have better electrical characteristics than
larger units and will more readily fit close to the IPGA pin field.

When designing the placement of decoupling capacitors, Vdd decoupling capacitors
should be favored over Vddi decoupling capacitors (that is, Vdd capacitors should
be placed closer to the 21164PC than the Vddi capacitors).

9.5.1.2 Vddi Decoupling

Each individual case must be separately analyzed, but generally designers sho
plan to use at least 4 µF of capacitance connected between Vddi and Vss. Typically,
30 to 40 small, high-frequency 0.1-µF capacitors are placed near the chip’s Vddi and
Vss pins. Actually placing the capacitors in the pin field is the best approach. Se
tens of µF of bulk decoupling (comprised of tantalum and ceramic capacitors) sh
be positioned near the 21164PC chip.

Power Supply Considerations

Use capacitors that are as physically small as possible. Connect the capacitors
directly to the 21164PC Vddi and Vss pins by short surface etch (0.64 cm [0.25 in]
or less). The small capacitors generally have better electrical characteristics than the
larger units, and will more readily fit close to the IPGA pin field.

9.5.2 Power Supply Sequencing

When applying or removing power to the 21164PC, Vdd (the 3.3-V supply voltage)
must be no less than Vddi (the 2.5-V supply voltage).

The following rules must be followed when either applying or removing the supply

low

-

ICs

ignal

e

lowed
the
to it.
29 September 1997 – Subject To Change Electrical Data 9–23

voltages:

1. Vdd must always be at the same or a higher voltage than Vddi during normal
operation.

2. The signal voltage must not exceed Vclamp.

3. The signal voltage must not be more than 2.4 V higher than Vddi.

Rule 1 means that either Vdd and Vddi can be brought up and down in unison or
Vddi can be applied after and removed before Vdd.

Rule 2 means that the signal voltage must not be allowed to exceed Vclamp during
the application or removal of power. Refer to Table 9–3 for the value of Vclamp.
Note that it is acceptable for the signal voltage either to be held at zero or to fol
Vdd during the application or removal of power.

Rule 3 means that, if the signal voltage follows Vdd, the signal voltage must never
be greater than 2.4 V above the value of Vddi. This applies equally during the appli
cation or the removal of power.

Note that if the signal voltage is held at 0 V during power-up reset (that is, the AS
and SRAMs are set to drive 0 V during reset), Vdd and Vddi can be brought up
together. In a similar manner, the power-down situation can be managed if the s
voltages are forced to 0 V when the loss of Vddi is detected.

During power-up, Vddi can momentarily exceed the maximum steady-state valu
under the following conditions:

• The transient voltage is 200 mV or less.

• The transient period lasts for 200 µs or less.

The transient voltage is defined as the voltage that rises above the maximum-al
steady-state value. The transient period is defined as the time beginning when
transient voltage exceeds the steady-state value and ending when it falls back

Power Supply Considerations

There is no derating for shorter transient periods or lower transient voltages (for
example, a 400-mV transient voltage lasting for 100 µs is not acceptable).

All input and bidirectional signals are diode-clamped to Vdd and Vss. A current
greater than Iclamp on an individual pin could damage the 21164PC. Designers
must take care that currents greater than Iclamp will not be achieved during power-
supply sequencing. While currents less than Iclamp will not damage the 21164PC,
other source drivers connected to the 21164PC could be damaged by the clamp.
Designers must verify that the source drivers will not be damaged by currents up to
Iclamp.
9–24 Electrical Data 29 September 1997 – Subject To Change

 10
Thermal Management

 two
ge

es
29 September 1997 – Subject To Change Thermal Management 10–1

This chapter describes the 21164PC thermal management and thermal design consid-
erations.

10.1 Operating Temperature

The 21164PC is specified to operate when the temperature at the center of the heat
sink (Tc) is 71.8°C for 400 MHz, 69.8°C for 466 MHz, or 67.5°C for 533 MHz.
Temperature (Tc) should be measured at the center of the heat sink (between the
package studs). The GRAFOIL pad is the interface material between the packa
and the heat sink.

Table 10–1 lists the values for the center of heat-sink-to-ambient (Θca) for the 413-
pin grid array. Table 10–2 shows the allowable Ta (without exceeding Tc) at various
airflows.

Note: DIGITAL recommends using the heat sink because it greatly improv
the ambient temperature requirement.

1 With the heat-sink fan, performance does not depend on system airflow.

Table 10–1 Θca at Various Airflows

Frequency: 400 MHz, 466 MHz, and 533 MHz

Airflow (linear ft/min)

100 200 400 600 800 1000

Θca with heat sink 1 (°C/W) 3.2 1.7 0.95 0.75 0.65 0.55

Θca with heat sink 2 (°C/W)
(includes 52×10 mm fan)

0.751

Operating Temperature

Table 10–2 Maximum T a at Various Airflows

Airflow (linear ft/min)

100 200 400 600 800 1000

Frequency: 400 MHz, Power: 26.5 W @Vdd = 3.3 V and @Vddi = 2.5 V

Ta with heat sink 1 (°C) — 26.8 46.6 51.9 54.6 57.2

Ta with heat sink 2 (°C)
(includes 52×10 mm fan)

51.91
10–2 Thermal Management 29 September 1997 – Subject To Change

1 With the heat-sink fan, performance does not depend on system airflow.

Frequency: 466 MHz, Power: 30.5 W @Vdd = 3.3 V and @Vddi = 2.5 V

Ta with heat sink 1 (°C) — 18.0 40.8 46.9 50.0 53.0

Ta with heat sink 2 (°C)
(includes 52×10 mm fan)

46.91

Frequency: 533 MHz, Power: 35 W @Vdd = 3.3 V and @Vddi = 2.5 V

Ta with heat sink 1 (°C) — — 34.3 41.3 44.8 48.3

Ta with heat sink 2 (°C)
(includes 52×10 mm fan)

41.31

Heat-Sink Specifications

10.2 Heat-Sink Specifications

Figure 10–1 describes the specifications of heat sink 1. Heat sink 2 has the exact
same specifications, plus an added 52×10 mm fan.

Figure 10–1 Heat Sink 1

(1.870 in)4.75 cm
29 September 1997 – Subject To Change Thermal Management 10–3

2.16 cm
(.850 in)

4.20 cm (1.655 in)

4.75 cm
(1.870 in)

3.18 cm (1.25 in)

PCA030

3.56 cm
(1.40 in)

4.20 cm
(1.655 in)

Thermal Design Considerations

10.3 Thermal Design Considerations

Follow these guidelines for printed circuit board (PCB) component placement:

• Orient the 21164PC on the PCB with the heat-sink fins aligned with the airflow
direction.

• Avoid preheating ambient air. Place the 21164PC on the PCB so that inlet air is
not preheated by any other PCB components.

• Do not place other high-power devices in the vicinity of the 21164PC.

• Do not restrict the airflow across the 21164PC heat sink. Placement of other
10–4 Thermal Management 29 September 1997 – Subject To Change

devices must allow for maximum system airflow in order to maximize the per-
formance of the heat sink.

 11
Mechanical Packaging Information
29 September 1997 – Subject To Change Mechanical Packaging Information 11–1

This chapter describes the 21164PC mechanical packaging including chip package
physical specifications and a signal/pin list. For heat-sink dimensions, refer to
Chapter 10.

11.1 Mechanical Specifications

Figure 11–1 shows the package physical dimensions without a heat sink.

Mechanical Specifications

Figure 11–1 Package Dimensions

2X 10-32 Stud

Lid

1.75 mm
(.069 in)

1.27 mm typ.
(.050 in)

AN
AM

AK

AH

AF

AD

AB

Z

X

V

T
R

P

AL

AJ

AG

AE

AC

AA

Y

W

U

S

Q

2.54 mm typ.
(.100 in)

4X Standoff

413X 1.40 mm
(.055 in)
11–2 Mechanical Packaging Information 29 September 1997 – Subject To Change

PCA027

4.32 mm (.170 in)

6.35 mm

1.02 mm

1.27 mm

(.040 in)

(.050 in)

R .13 mm

.46 mm

(.005 in)

(.018 in) (.250 in)

49.78 mm square
(1.960 in)

24.89 mm
(.980 in)

24.89 mm
(.980 in)

21.59 mm
(.850 in)

31.75 mm square
(1.250 in)

22.86 mm
(.900 in)

02

1903 05 07 09 11 13 15 1701 21 23 25 27 29 31 33 35 37

04 06 08 10 12 14 16 18 20 22 24 26 28 30 32 34 36

M

K

H
F

D

B

N

L

J
G

E

C

A

22.86 mm
(.900 in)

Signal Descriptions and Pin Assignment

11.2 Signal Descriptions and Pin Assignment

This section provides detailed information about the 21164PC pinout. The 21164PC
has 413 pins aligned in an interstitial pin grid array (IPGA) design.

11.2.1 Signal Pin Lists

Table 11–1 lists the 21164PC signal pins and their corresponding pin grid array
(PGA) locations in alphabetic order; Table 11–2 lists the voltage reference, power,
and ground pins. There are 264 functional signal pins, 2 spare signal pins (unused),
5 voltage reference pins (unused), 46 external power (Vdd) pins, 22 internal power
29 September 1997 – Subject To Change Mechanical Packaging Information 11–3

(Vddi) pins, and 74 ground (Vss) pins, for a total of 413 pins in the array.

Table 11–1 Alphabetic Signal Pin List (Sheet 1 of 4)

Signal
PGA
Location Signal

PGA
Location Signal

PGA
Location

addr_h<4> AH12 addr_h<5> AN11 addr_h<6> AJ13

addr_h<7> AL9 addr_h<8> AK8 addr_h<9> AJ11

addr_h<10> AN9 addr_h<11> AJ7 addr_h<12> AJ9

addr_h<13> AL5 addr_h<14> AK6 addr_h<15> AH6

addr_h<16> AG7 addr_h<17> AK4 addr_h<18> AJ3

addr_h<19> AH4 addr_h<20> AJ1 addr_h<21> AF6

addr_h<22> AC31 addr_h<23> AJ35 addr_h<24> AH32

addr_h<25> AE37 addr_h<26> AK34 addr_h<27> AD32

addr_h<28> AE33 addr_h<29> AF34 addr_h<30> AL33

addr_h<31> AK32 addr_h<32> AF32 addr_h<33> AG31

addr_h<34> AJ31 addr_h<35> AJ37 addr_h<36> AL31

addr_h<37> AN29 addr_h<38> AL29 addr_h<39> AH34

addr_bus_req_h A21 addr_res_h<0> D34 addr_res_h<1> E37

cack_h F18 clk_mode_h<0> AJ19 clk_mode_h<1> AH20

cmd_h<0> F2 cmd_h<1> E3 cmd_h<2> G3

cmd_h<3> H6 cpu_clk_out_h AL25 dack_h F20

data_h<0> F34 data_h<1> H32 data_h<2> J31

Signal Descriptions and Pin Assignment

data_h<3> J33 data_h<4> G37 data_h<5> K32

data_h<6> H34 data_h<7> J35 data_h<8> K34

data_h<9> L31 data_h<10> J37 data_h<11> M32

data_h<12> L35 data_h<13> M36 data_h<14> L37

data_h<15> M34 data_h<16> N31 data_h<17> P32

Table 11–1 Alphabetic Signal Pin List (Sheet 2 of 4)

Signal
PGA
Location Signal

PGA
Location Signal

PGA
Location
11–4 Mechanical Packaging Information 29 September 1997 – Subject To Change

data_h<18> P34 data_h<19> Q31 data_h<20> N35

data_h<21> Q33 data_h<22> Q35 data_h<23> Q37

data_h<24> R32 data_h<25> R34 data_h<26> S37

data_h<27> S31 data_h<28> S35 data_h<29> T32

data_h<30> T34 data_h<31> T30 data_h<32> T36

data_h<33> U35 data_h<34> U31 data_h<35> U37

data_h<36> V36 data_h<37> V34 data_h<38> V30

data_h<39> W35 data_h<40> V32 data_h<41> X34

data_h<42> W37 data_h<43> W31 data_h<44> Y37

data_h<45> Y35 data_h<46> Z34 data_h<47> X32

data_h<48> Y33 data_h<49> AB36 data_h<50> Y31

data_h<51> AC35 data_h<52> AA31 data_h<53> Z32

data_h<54> AD34 data_h<55> AE35 data_h<56> AA37

data_h<57> AB34 data_h<58> AG37 data_h<59> AB32

data_h<60> AG35 data_h<61> AH36 data_h<62> AE31

data_h<63> AC37 data_h<64> J3 data_h<65> J1

data_h<66> K6 data_h<67> J5 data_h<68> L7

data_h<69> K4 data_h<70> L3 data_h<71> M2

data_h<72> L1 data_h<73> M6 data_h<74> N1

data_h<75> M4 data_h<76> N3 data_h<77> Q7

data_h<78> Q1 data_h<79> P6 data_h<80> P4

Signal Descriptions and Pin Assignment

data_h<81> R6 data_h<82> S1 data_h<83> Q5

data_h<84> T2 data_h<85> Q3 data_h<86> R4

data_h<87> S3 data_h<88> T6 data_h<89> T4

data_h<90> S7 data_h<91> T8 data_h<92> U3

data_h<93> U7 data_h<94> U1 data_h<95> V8

Table 11–1 Alphabetic Signal Pin List (Sheet 3 of 4)

Signal
PGA
Location Signal

PGA
Location Signal

PGA
Location
29 September 1997 – Subject To Change Mechanical Packaging Information 11–5

data_h<96> V2 data_h<97> V4 data_h<98> V6

data_h<99> W7 data_h<100> W1 data_h<101> W3

data_h<102> X4 data_h<103> X6 data_h<104> Y1

data_h<105> Y5 data_h<106> Y7 data_h<107> Y3

data_h<108> Z4 data_h<109> Z6 data_h<110> AA1

data_h<111> AA3 data_h<112> AC1 data_h<113> AB4

data_h<114> AB2 data_h<115> AC7 data_h<116> AD6

data_h<117> AB6 data_h<118> AC3 data_h<119> AE5

data_h<120> AD4 data_h<121> AE1 data_h<122> AF4

data_h<123> AG3 data_h<124> AE3 data_h<125> AE7

data_h<126> AG1 data_h<127> AH2 data_adsc_l D32

data_adv_l C33 data_bus_req_h E21 data_ram_oe_l D18

data_ram_we_l
<0>

B18 data_ram_we_l
<1>

A19 data_ram_we_l
<2>

B20

data_ram_we_l
<3>

D20 dc_ok_h AL23 fill_h D4

fill_dirty_h AL11 fill_error_h F6 fill_id_h C5

idle_bc_h F4 index_h<4> E23 index_h<5> C25

index_h<6> C21 index_h<7> B26 index_h<8> A23

index_h<9> C23 index_h<10> A25 index_h<11> A27

index_h<12> F26 index_h<13> E25 index_h<14> C27

index_h<15> C29 index_h<16> E27 index_h<17> E29

Signal Descriptions and Pin Assignment

index_h<18> D30 index_h<19> A29 index_h<20> A31

index_h<21> C31 int4_valid_h<0> E35 int4_valid_h<1> F32

int4_valid_h<2> H4 int4_valid_h<3> E1 irq_h<0> AJ27

irq_h<1> AL27 irq_h<2> AH26 irq_h<3> AN27

lw_parity_h<0> G35 lw_parity_h<1> F36 lw_parity_h<2> J7

Table 11–1 Alphabetic Signal Pin List (Sheet 4 of 4)

Signal
PGA
Location Signal

PGA
Location Signal

PGA
Location
11–6 Mechanical Packaging Information 29 September 1997 – Subject To Change

lw_parity_h<3> G1 mch_hlt_irq_h AM26 osc_clk_in_h AN19

osc_clk_in_l AM20 port_mode_h<0> AH18 port_mode_h<1> AM18

pwr_fail_irq_h AJ25 srom_clk_h AL17 srom_data_h AK16

srom_oe_l AJ17 srom_present_l AK18 st_clk1_h E7

st_clk2_h E31 st_clk3_h G31 sys_clk_out1_h AK22

sys_clk_out2_h AJ23 sys_mch_chk_
irq_h

AN25 sys_reset_l AN23

tag_data_h<19> A11 tag_data_h<20> D6 tag_data_h<21> E9

tag_data_h<22> D8 tag_data_h<23> C7 tag_data_h<24> F12

tag_data_h<25> B6 tag_data_h<26> E11 tag_data_h<27> C9

tag_data_h<28> A9 tag_data_h<29> C13 tag_data_h<30> C11

tag_data_h<31> E15 tag_data_h<32> A15 tag_data_par_h B12

tag_dirty_h A13 tag_ram_oe_l A17 tag_ram_we_l C17

tag_valid_h E17 tck_h AL13 tdi_h AN17

tdo_h AL15 temp_sense AN13 test_status_h<1> AJ15

tms_h AN15 trst_l AM12 victim_pending_h C15

spare1 AJ29 spare2 AK30

Signal Descriptions and Pin Assignment

Table 11–2 lists the voltage reference, power, and ground pins.

Table 11–2 Voltage Reference, Power, and Ground Pins

Signal PGA Location

Vss
Metal planes 2, 6

A3, A5, A7, A33, A35, B2, B8, B14, B24, B30, B36, C1, C37, D12,
D16, D22, D26, E5, E19, E33, F10, F16, F22, F28, H2, H36, K8,
K30, L5, L33, P2, P8, P30, P36, S5, S33, W5, W33, Z2, Z8, Z30,
Z36, AC5, AC33, AD8, AD30, AF2, AF36, AH10, AH16, AH22,
AH28, AJ5, AJ33, AK12, AK20, AK26, AL1, AL19, AL21, AL37,
AM2, AM8, AM14, AM24, AM30, AM36, AN3, AN5, AN7,
AN21, AN31, AN33, AN35
29 September 1997 – Subject To Change Mechanical Packaging Information 11–7

Vdd
Metal plane 7

B4, B10, B16, B22, B28, B34, C3, C35, D2, D36, F8, F14, F24,
F30, K2, K36, M8, M30, R2, R8, R30, R36, X2, X8, X30, X36,
AB8, AB30, AD2, AD36, AH8, AH14, AH24, AH30, AK2, AK36,
AL3, AL35, AM4, AM6, AM10, AM16, AM22, AM28, AM32,
AM34

Vddi
Metal plane 4

B32, C19, D10, D14, D24, D28, E13, G5, G33, N5, N7, N33, N37,
U5, U33, AA5, AA7, AA33, AA35, AG5, AG33, AJ21, AK10,
AK14, AK24, AK28, AL7

Signal Descriptions and Pin Assignment

11.2.2 Pin Assignment

Figure 11–2 shows the 21164PC pinout from the top view with pins facing down.

Figure 11–2 21164PC Top View (Pin Down)

AN

AL

AJ

AG

AM

AK

AH

AF
11–8 Mechanical Packaging Information 29 September 1997 – Subject To Change

PCA028

AE

AC

AA

Y

W

U

S

Q

N

L

J
G

E

C

A

21164PC
Top View

(Pin Down)

AD

AB

Z

X

V

T
R

P

M

K

H
F

D

B

37 35 33 19 0305070911131517 01212325272931

36 34 32 30 28 26 24 22 20 18 16 14 12 10 08 06 04 02

Signal Descriptions and Pin Assignment

Figure 11–3 shows the 21164PC pinout from the bottom view with pins facing up.

Figure 11–3 21164PC Bottom View (Pin Up)

AN
AM

AK

AH

AF

AD

AL

AJ

AG

AE

AC
29 September 1997 – Subject To Change Mechanical Packaging Information 11–9

PCA029

02

1903 05 07 09 11 13 15 1701 21 23 25 27 29 31 33 35 37

04 06 08 10 12 14 16 18 20 22 24 26 28 30 32 34 36

AB

Z

X

V

T
R

P

M

K

H
F

D

B

AA

Y

W

U

S

Q

N

L

J
G

E

C

A

Bottom View
(Pin Up)

21164PC

 12
Testability and Diagnostics
29 September 1997 – Subject To Change Testability and Diagnostics 12–1

This chapter describes the 21164PC user-oriented testability features. The 21164PC
also has several internal testability features that are implemented for factory use
only. These features are beyond the scope of this document.

12.1 Test Port Pins

Table 12–1 summarizes the test port pins and their functions.

Table 12–1 21164PC Test Port Pins

Pin Name Type Function

port_mode_h<1> I Must be false.

port_mode_h<0> I Must be false.

srom_present_l I Tied low if serial ROMs (SROMs) are present in system.

srom_data_h/Rx I Receives SROM or serial terminal data.

srom_clk_h/Tx O Supplies clock to SROMs or transmits serial terminal data.

srom_oe_l O SROM enable.

tdi_h I IEEE 1149.1 TDI port.

tdo_h O IEEE 1149.1 TDO port.

tms_h I IEEE 1149.1 TMS port.

tck_h I IEEE 1149.1 TCK port.

trst_l I IEEE 1149.1 optional TRST port.

test_status_h<1> O Outputs an IPR-written value and timeout reset.

Test Interface

12.2 Test Interface

The 21164PC test interface supports a serial ROM interface, a serial diagnostic ter-
minal interface, and an IEEE 1149.1 test access port. These ports are available and
set to normal test interface mode when port_mode_h<1:0>=00. Driving these pins
to a value of anything other than 00 redefines all other test interface pins and invokes
special factory test modes not covered in this document.

The SROM port is described in Section 7.4 and the serial terminal port is described
in Section 7.5.

istate
tory
ith

riven

ons.

ed

-
e

12–2 Testability and Diagnostics 29 September 1997 – Subject To Change

12.2.1 IEEE 1149.1 Test Access Port

Pins tdi_h, tdo_h, tck_h, tms_h, and trst_l constitute the IEEE 1149.1 test access
port. This port accesses the 21164PC chip’s boundary-scan register and chip tr
functions for board-level manufacturing test. The port also allows access to fac
manufacturing features not described in this document. The port is compliant w
most requirements of IEEE 1149.1 test access port.

Compliance Enable Inputs

Table 12–2 shows the compliance enable inputs and the pattern that must be d
to those inputs in order to activate the 21164PC IEEE 1149.1 circuits.

Exceptions to Compliance

The 21164PC is compliant with IEEE Standard 1149.1—1993, with two excepti
Both exceptions provide enhanced value to the user.

1. trst_l pin

The optional trst_l pin has an internal pull-down, instead of a pull-up as requir
by IEEE 1149.1 (non-complied spec 3.6.1(b) in IEEE 1149.1–1993). The trst_l
pull-down allows the chip to automatically force reset to the IEEE 1149.1 cir
cuits in a system in which the IEEE 1149.1 port is unconnected. This may b
considered a feature for most system designs that use IEEE 1149.1 circuits
solely during module manufacturing.

Table 12–2 Compliance Enable Inputs

Input Compliance Enable Pattern

port_mode_h<1:0> 00

dc_ok_h 1

Test Interface

Note: DIGITAL recommends that the trst_l pin be driven low (asserted) when
the JTAG (IEEE 1149.1) logic is not in use.

2. Coverage of oscillator differential input pins

The two differential clock input pins, osc_clk_in_h and osc_clk_in_l, do not
have any boundary-scan cells associated with them (noncompliant spec
10.4.1(b) in IEEE 1149.1–1993). Instead, there is an extra input BSR cell in the
boundary-scan register in bit position 241 (at pin dc_ok_h). This cell captures
the output of a “clock sniffer” circuit. It captures a 1 when the oscillator is con-
nected, and captures a 0 if the chip’s oscillator connections are broken.

cilla-
29 September 1997 – Subject To Change Testability and Diagnostics 12–3

This exception to the standard is made to permit a meaningful test of the os
tor input pins.

Refer to IEEE Standard 1149.1–1993 A Test Access Port and Boundary Scan Archi-
tecture for a full description of the specification.

Figure 12–1 shows the user-visible features from this port.

Figure 12–1 IEEE 1149.1 Test Access Port

Instruction Register (IR)

Bypass Register (BPR)

Die-ID Register (IDR)

Boundary-Scan Register (BSR)

TAP Controller
State Machine &
Control Dispatch
Logic

TRST_L

TMS_H

TCK_H

TDO_H

TDI_H

CONTROL

LJ-03463.AI4

Test Interface

TAP Controller

The TAP controller contains a state machine. It interprets IEEE 1149.1 protocols
received on signal tms_h and generates appropriate clocks and control signals for the
testability features under its jurisdiction. The state machine is shown in Figure 12–2.

Figure 12–2 TAP Controller State Machine

ic

Test Logic
 Reset

0
1

12–4 Testability and Diagnostics 29 September 1997 – Subject To Change

Instruction Register

The 5-bit-wide instruction register (IR) supports IEEE 1149.1 mandated public
instructions (EXTEST, SAMPLE, BYPASS, HIGHZ) and a number of optional
instructions for public and private factory use. Table 12–3 summarizes the publ
instructions and their functions.

Run-Test/Idle Select-IR-Scan

0
0

0

0

0

0

0

0

0

0

0

0

0

0

1 1 1

1

1

1

11

11

1

1

1

1

1

0

Select-DR-Scan

Capture-DR

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

Scan SequenceScan Sequence

Values
shown
are for
TMS.

MK145508.AI4

Test Interface

During the capture operation, the shift register stage of IR is loaded with the value
00001. This automatic load feature is useful for testing the integrity of the IEEE
1149.1 scan chain on the module.

Table 12–3 Instruction Register

IR<4:0> Name
Selected
Scan Register Operation

00000 EXTEST BSR BSR drives pins. Interconnect test mode.

00010 SAMPLE/PRELOAD BSR Preloads BSR.
29 September 1997 – Subject To Change Testability and Diagnostics 12–5

Bypass Register

The bypass register is a 1-bit shift register. It provides a short single-bit scan path
through the port (chip).

Boundary-Scan Register

The 261-bit boundary-scan register is accessed during SAMPLE, EXTEST, and
CLAMP instructions. Refer to Section 12.3 for the organization of this register.

00010 Private BSR Private.

00011 Private BSR Private.

00100 CLAMP BPR BSR drives pins.

00101 HIGHZ BPR Tristate all output and I/O pins.

00110 Private IDR Private.

00111 Private IDR Private.

01000
through
11110

Private BPR Private.

11111 BYPASS BPR Default.

Boundary-Scan Register

12.2.2 Test Status Pin

One test status signal test_status_h<1> pin is used for extracting test status informa-
tion from the chip. System reset drives the test status pin low. The default operation
for test_status_h<1> is to output the IPR-written value.

• IPR read and write operations to the test status pin

PALcode can write to the test_status_h<1> signal pin through hardware IPR
access. Refer to Chapter 6.

• Timeout reset

es

r

on-
all

 in

e
u-
12–6 Testability and Diagnostics 29 September 1997 – Subject To Change

The 21164PC generates a timeout reset if an instruction is not retired within
1 billion cycles. The CPU signals the timeout reset event by outputting a 256
CPU cycle wide pulse on the test_status_h<1> pin. The pulse on the
test_status_h<1> pin is clocked by sysclk and therefore appears as an approxi-
mately 256 CPU cycle pulse that rises and falls on system clock rising edges.

12.3 Boundary-Scan Register

The 21164PC boundary-scan register (BSR) is 261 bits long. Table 12–4 provid
the boundary-scan register organization. The BSR is connected between the tdi_h
and tdo_h pins whenever an instruction selects it (Table 12–3). The scan registe
runs clockwise beginning at the upper-left corner of the chip.

There are six groups of bidirectional pins, each group controlled from a group c
trol cell. Loading a value of 1 in the control cell tristates the output drivers, and
bidirectional pins in the group are configured as input pins. The bidirectional pin
groups are identified as groups gr_1 through gr_6 in the Control Group column
Table 12–4.

Information on Boundary Scan Description Language (BSDL) as it applies to th
21164PC boundary-scan register is available through your local DIGITAL distrib
tor (see Appendix E).

Notes: The following notes apply to Table 12–4:

• The direction of shift is from top to bottom, and from left to right.
• The bottom-most signals appear first at the tdo_h pin when shifting.
• Given an arrayed signal of the form signal<a:b>, signal appears at

the tdo_h pin prior to signal<a>.

Boundary-Scan Register

Table 12–4 Boundary-Scan Register Organization (Sheet 1 of 3)

Signal Name Pin Type BSR Count
BSR
Cell Type

Control
Group Remarks

addr_h<11:4> B 260:253 io_bcell gr_6 —

fill_dirty_h I 252 in_bcell — —

temp_sense O — None — Analog pin.

test_status_h<1> O 251 io_bcell — —
29 September 1997 – Subject To Change Testability and Diagnostics 12–7

trst_l I — None — —

tck_h I — None — —

tms_h I — None — —

tdo_h O — None — —

tdi_h I — None — —

srom_oe_l O 250 io_bcell — —

srom_clk_h O 249 io_bcell — —

srom_data_h I 248 in_bcell — —

srom_present_l I 247 in_bcell — —

port_mode_h<0:1> I — None — Compliance enable pins.

clk_mode_h<0> I 246 in_bcell — —

osc_clk_in_h,l I — None — Analog pins.

clk_mode_h<1> I 245 in_bcell — —

sys_clk_out1_h O 244 io_bcell — —

sys_clk_out2_h O 243 io_bcell — —

sys_reset_l I 242 in_bcell — —

dc_ok_h I — None — Compliance enable pin.

OSC_SNIFFER_H Internal 241 in_bcell — Captures 1 if osc is con-
nected, otherwise, cap-
tures 0.

cpu_clk_out_h O — None — For chip test.

Boundary-Scan Register

sys_mch_chk_irq_h I 240 in_bcell — —

mch_hlt_irq_h I 239 in_bcell — —

pwr_fail_irq_h I 238 in_bcell — —

irq_h<3:0> I 237:234 in_bcell — —

SPARE<2> B 233 io_bcell — Tied off as input.

Table 12–4 Boundary-Scan Register Organization (Sheet 2 of 3)

Signal Name Pin Type BSR Count
BSR
Cell Type

Control
Group Remarks
12–8 Testability and Diagnostics 29 September 1997 – Subject To Change

TR_ADR Control 232 io_bcell gr_1 —

addr_h<39:37> B 231:229 io_bcell gr_1 Upper-right corner.

SPARE<3> B 228 io_bcell — Tied off as input.

addr_h<36:22> B 227:213 io_bcell gr_1

TR_DDR Control 212 io_bcell gr_2 —

data_h<63:0> B 211:148 io_bcell gr_2 —

lw_parity_h<0:1> B 147:146 io_bcell gr_2 —

int4_valid_h<1:0> O 145:144 io_bcell — —

addr_res_h<1:0> O 143:142 io_bcell — —

st_clk3_h O 141 io_bcell — —

data_adsc_l O 140 io_bcell — —

data_adv_l O 139 io_bcell — —

st_clk2_h O 138 io_bcell — Lower-right corner.

index_h<21:4> O 137:120 io_bcell — —

data_bus_req_h I 119 in_bcell — —

dack_h I 118 in_bcell — —

addr_bus_req_h I 117 in_bcell — —

data_ram_we_l<3:0> O 116:113 io_bcell — —

data_ram_oe_l O 112 io_bcell — —

cack_h I 111 in_bcell — —

tag_ram_we_l O 110 io_bcell — —

Boundary-Scan Register

tag_ram_oe_l O 109 io_bcell — —

victim_pending_h O 108 io_bcell — —

TMIS1 Control 107 io_bcell gr_3 —

tag_dirty_h B 106 io_bcell gr_3 —

tag_data_par_h B 105 io_bcell gr_3 —

Table 12–4 Boundary-Scan Register Organization (Sheet 3 of 3)

Signal Name Pin Type BSR Count
BSR
Cell Type

Control
Group Remarks
29 September 1997 – Subject To Change Testability and Diagnostics 12–9

tag_valid_h B 104 io_bcell gr_3 —

tag_data_h<19> B 103 io_bcell gr_3 —

tag_data_h<32:20> B 102:90 io_bcell gr_3 —

st_clk1_h O 89 io_bcell — Lower-left corner.

idle_bc_h I 88 in_bcell — —

fill_error_h I 87 in_bcell — —

fill_id_h I 86 in_bcell — —

fill_h I 85 in_bcell — —

TTAG1 Control 84 io_bcell gr_4 —

cmd_h<0:3> B 83:80 io_bcell gr_4 —

int4_valid_h<2:3> O 79:78 io_bcell — —

TTAG2 Control 77 io_bcell gr_5 —

lw_parity_h<3:2> B 76:75 io_bcell gr_5 —

data_h<64:127> B 74:11 io_bcell gr_5 —

TR_DDL Control 10 io_bcell gr_6 —

addr_h<21:12> B 09:00 io_bcell gr_6 —

 A
Alpha Instruction Set
29 September 1997 – Subject To Change Alpha Instruction Set A–1

A.1 Alpha Instruction Summary

This appendix contains a summary of all Alpha architecture instructions. All values
are in hexadecimal radix. Table A–1 describes the contents of the Format and
Opcode columns that are in Table A–2.

Table A–1 Instruction Format and Opcode Notation

Instruction
Format

Format
Symbol

Opcode
Notation Meaning

Branch Bra oo oo is the 6-bit opcode field.

Floating-
point

F-P oo.fff oo is the 6-bit opcode field.
fff is the 11-bit function code field.

Memory Mem oo oo is the 6-bit opcode field.

Memory/
function code

Mfc oo.ffff oo is the 6-bit opcode field.
ffff is the 16-bit function code in the
displacement field.

Memory/
branch

Mbr oo.h oo is the 6-bit opcode field.
h is the high-order 2 bits of the displacement
field.

Operate Opr oo.ff oo is the 6-bit opcode field.
ff is the 7-bit function code field.

PALcode Pcd oo oo is the 6-bit opcode field; the particular
PALcode instruction is specified in the 26-bit
function code field.

Alpha Instruction Summary

Qualifiers for operate instructions are shown in Table A–2. Qualifiers for IEEE and
VAX floating-point instructions are shown in Tables A–5 and A–6, respectively.

Table A–2 Architecture Instructions (Sheet 1 of 8)

Mnemonic Format Opcode Description

ADDF F-P 15.080 Add F_floating

ADDG F-P 15.0A0 Add G_floating

ADDL Opr 10.00 Add longword

ADDL/V Opr 10.40 Add longword
A–2 Alpha Instruction Set 29 September 1997 – Subject To Change

ADDQ Opr 10.20 Add quadword

ADDQ/V Opr 10.60 Add quadword

ADDS F-P 16.080 Add S_floating

ADDT F-P 16.0A0 Add T_floating

AMASK Opr 11.61 Determine byte/word instruction implementa-
tion

AND Opr 11.00 Logical product

BEQ Bra 39 Branch if = zero

BGE Bra 3E Branch if ≥ zero

BGT Bra 3F Branch if > zero

BIC Opr 11.0 Bit clear

BIS Opr 11.20 Logical sum

BLBC Bra 38 Branch if low bit clear

BLBS Bra 3C Branch if low bit set

BLE Bra 3B Branch if ≤ zero

BLT Bra 3A Branch if < zero

BNE Bra 3D Branch if ≠ zero

BR Bra 30 Unconditional branch

BSR Mbr 34 Branch to subroutine

CALL_PAL Pcd 00 Trap to PALcode

CMOVEQ Opr 11.24 CMOVE if = zero

Alpha Instruction Summary

CMOVGE Opr 11.46 CMOVE if ≥ zero

CMOVGT Opr 11.66 CMOVE if > zero

CMOVLBC Opr 11.16 CMOVE if low bit clear

CMOVLBS Opr 11.14 CMOVE if low bit set

CMOVLE Opr 11.64 CMOVE if ≤ zero

CMOVLT Opr 11.44 CMOVE if < zero

Table A–2 Architecture Instructions (Sheet 2 of 8)

Mnemonic Format Opcode Description
29 September 1997 – Subject To Change Alpha Instruction Set A–3

CMOVNE Opr 11.26 CMOVE if ≠ zero

CMPBGE Opr 10.0F Compare byte

CMPEQ Opr 10.2D Compare signed quadword equal

CMPGEQ F-P 15.0A5 Compare G_floating equal

CMPGLE F-P 15.0A7 Compare G_floating less than or equal

CMPGLT F-P 15.0A6 Compare G_floating less than

CMPLE Opr 10.6D Compare signed quadword less than or equal

CMPLT Opr 10.4D Compare signed quadword less than

CMPTEQ F-P 16.0A5 Compare T_floating equal

CMPTLE F-P 16.0A7 Compare T_floating less than or equal

CMPTLT F-P 16.0A6 Compare T_floating less than

CMPTUN F-P 16.0A4 Compare T_floating unordered

CMPULE Opr 10.3D Compare unsigned quadword less than or equal

CMPULT Opr 10.1D Compare unsigned quadword less than

CPYS F-P 17.020 Copy sign

CPYSE F-P 17.022 Copy sign and exponent

CPYSN F-P 17.021 Copy sign negate

CVTDG F-P 15.09E Convert D_floating to G_floating

CVTGD F-P 15.0AD Convert G_floating to D_floating

CVTGF F-P 15.0AD Convert G_floating to F_floating

Alpha Instruction Summary

CVTGQ F-P 15.0AF Convert G_floating to quadword

CVTLQ F-P 17.010 Convert longword to quadword

CVTQF F-P 15.0BC Convert quadword to F_floating

CVTQG F-P 15.0BE Convert quadword to G_floating

CVTQL F-P 17.030 Convert quadword to longword

CVTQL/SV F-P 17.530 Convert quadword to longword

Table A–2 Architecture Instructions (Sheet 3 of 8)

Mnemonic Format Opcode Description
A–4 Alpha Instruction Set 29 September 1997 – Subject To Change

CVTQL/V F-P 17.130 Convert quadword to longword

CVTQS F-P 16.0BC Convert quadword to S_floating

CVTQT F-P 16.0BE Convert quadword to T_floating

CVTST F-P 16.2AC Convert S_floating to T_floating

CVTTQ F-P 16.0AF Convert T_floating to quadword

CVTTS F-P 16.0AC Convert T_floating to S_floating

DIVF F-P 15.083 Divide F_floating

DIVG F-P 15.0A3 Divide G_floating

DIVS F-P 16.083 Divide S_floating

DIVT F-P 16.0A3 Divide T_floating

EQV Opr 11.48 Logical equivalence

EXCB Mfc 18.0400 Exception barrier

EXTBL Opr 12.06 Extract byte low

EXTLH Opr 12.6A Extract longword high

EXTLL Opr 12.26 Extract longword low

EXTQH Opr 12.7A Extract quadword high

EXTQL Opr 12.36 Extract quadword low

EXTWH Opr 12.5A Extract word high

EXTWL Opr 12.16 Extract word low

FBEQ Bra 31 Floating branch if = zero

Alpha Instruction Summary

FBGE Bra 36 Floating branch if ≥ zero

FBGT Bra 37 Floating branch if > zero

FBLE Bra 33 Floating branch if ≤ zero

FBLT Bra 32 Floating branch if < zero

FBNE Bra 35 Floating branch if ≠ zero

FCMOVEQ F-P 17.02A FCMOVE if = zero

Table A–2 Architecture Instructions (Sheet 4 of 8)

Mnemonic Format Opcode Description
29 September 1997 – Subject To Change Alpha Instruction Set A–5

FCMOVGE F-P 17.02D FCMOVE if ≥ zero

FCMOVGT F-P 17.02F FCMOVE if > zero

FCMOVLE F-P 17.02E FCMOVE if ≤ zero

FCMOVLT F-P 17.02C FCMOVE if < zero

FCMOVNE F-P 17.02B FCMOVE if ≠ zero

FETCH Mfc 18.80 Prefetch data

FETCH_M Mfc 18.A0 Prefetch data, modify intent

IMPLVER Opr 11.6C Determine CPU type

INSBL Opr 12.0B Insert byte low

INSLH Opr 12.67 Insert longword high

INSLL Opr 12.2B Insert longword low

INSQH Opr 12.77 Insert quadword high

INSQL Opr 12.3B Insert quadword low

INSWH Opr 12.57 Insert word high

INSWL Opr 12.1B Insert word low

JMP Mbr 1A.0 Jump

JSR Mbr 1A.1 Jump to subroutine

JSR_COROUTINE Mbr 1A.3 Jump to subroutine return

LDA Mem 08 Load address

LDAH Mem 09 Load address high

Alpha Instruction Summary

LDBU Mem 0A Load zero-extended byte

LDF Mem 20 Load F_floating

LDG Mem 21 Load G_floating

LDL Mem 28 Load sign-extended longword

LDL_L Mem 2A Load sign-extended longword locked

LDQ Mem 29 Load quadword

Table A–2 Architecture Instructions (Sheet 5 of 8)

Mnemonic Format Opcode Description
A–6 Alpha Instruction Set 29 September 1997 – Subject To Change

LDQ_L Mem 2B Load quadword locked

LDQ_U Mem 0B Load unaligned quadword

LDS Mem 22 Load S_floating

LDT Mem 23 Load T_floating

LDWU Mem 0C Load zero-extended word

MAXSB8 Opr 1C.3E Vector signed byte maximum

MAXSW4 Opr 1C.3F Vector signed word maximum

MAXUB8 Opr 1C.3C Vector unsigned byte maximum

MAXUW4 Opr 1C.3D Vector unsigned word maximum

MB Mfc 18.4000 Memory barrier

MF_FPCR F-P 17.025 Move from floating-point control register

MINSB8 Opr 1C.3E Vector signed byte minimum

MINSW4 Opr 1C.3F Vector signed word minimum

MINUB8 Opr 1C.3C Vector unsigned byte minimum

MINUW4 Opr 1C.3D Vector unsigned word minimum

MSKBL Opr 12.02 Mask byte low

MSKLH Opr 12.62 Mask longword high

MSKLL Opr 12.22 Mask longword low

MSKQH Opr 12.72 Mask quadword high

MSKQL Opr 12.32 Mask quadword low

Alpha Instruction Summary

MSKWH Opr 12.52 Mask word high

MSKWL Opr 12.12 Mask word low

MT_FPCR F-P 17.024 Move to floating-point control register

MULF F-P 15.082 Multiply F_floating

MULG F-P 15.0A2 Multiply G_floating

MULL Opr 13.00 Multiply longword

Table A–2 Architecture Instructions (Sheet 6 of 8)

Mnemonic Format Opcode Description
29 September 1997 – Subject To Change Alpha Instruction Set A–7

MULL/V Opr 13.40 Multiply longword

MULQ Opr 13.20 Multiply quadword

MULQ/V Opr 13.60 Multiply quadword

MULS F-P 16.082 Multiply S_floating

MULT F-P 16.0A2 Multiply T_floating

ORNOT Opr 11.28 Logical sum with complement

PERR Opr 1C.31 Pixel error

PKLB Opr 1C.37 Pack longwords to bytes

PKWB Opr 1C.36 Pack words to bytes

RC Mfc 18.E0 Read and clear

RET Mbr 1A.2 Return from subroutine

RPCC Mfc 18.C0 Read process cycle counter

RS Mfc 18.F000 Read and set

S4ADDL Opr 10.02 Scaled add longword by 4

S4ADDQ Opr 10.22 Scaled add quadword by 4

S4SUBL Opr 10.0B Scaled subtract longword by 4

S4SUBQ Opr 10.2B Scaled subtract quadword by 4

S8ADDL Opr 10.12 Scaled add longword by 8

S8ADDQ Opr 10.32 Scaled add quadword by 8

S8SUBL Opr 10.1B Scaled subtract longword by 8

Alpha Instruction Summary

S8SUBQ Opr 10.3B Scaled subtract quadword by 8

SEXTB Opr 1C.00 Store byte

SEXTW Opr 1C.01 Store word

SLL Opr 12.39 Shift left logical

SRA Opr 12.3C Shift right arithmetic

SRL Opr 12.34 Shift right logical

Table A–2 Architecture Instructions (Sheet 7 of 8)

Mnemonic Format Opcode Description
A–8 Alpha Instruction Set 29 September 1997 – Subject To Change

STB Mem 0E Store byte

STF Mem 24 Store F_floating

STG Mem 25 Store G_floating

STS Mem 26 Store S_floating

STL Mem 2C Store longword

STL_C Mem 2E Store longword conditional

STQ Mem 2D Store quadword

STQ_C Mem 2F Store quadword conditional

STQ_U Mem 0F Store unaligned quadword

STT Mem 27 Store T_floating

STW Mem 0D Store word

SUBF F-P 15.081 Subtract F_floating

SUBG F-P 15.0A1 Subtract G_floating

SUBL Opr 10.09 Subtract longword

SUBL/V 10.49

SUBQ Opr 10.29 Subtract quadword

SUBQ/V 10.69

SUBS F-P 16.081 Subtract S_floating

SUBT F-P 16.0A1 Subtract T_floating

TRAPB Mfc 18.00 Trap barrier

Alpha Instruction Summary

UMULH Opr 13.30 Unsigned multiply quadword high

UNPKBL Opr 1C.35 Unpack bytes to longwords

UNPKBW Opr 1C.34 Unpack bytes to words

WMB Mfc 18.44 Write memory barrier

XOR Opr 11.40 Logical difference

ZAP Opr 12.30 Zero bytes

Table A–2 Architecture Instructions (Sheet 8 of 8)

Mnemonic Format Opcode Description
29 September 1997 – Subject To Change Alpha Instruction Set A–9

A.1.1 Opcodes Reserved for DIGITAL

Table A–3 lists opcodes reserved for DIGITAL.

1 Reserved when byte/word instructions are not enabled.

ZAPNOT Opr 12.31 Zero bytes not

Table A–3 Opcodes Reserved for DIGITAL

Mnemonic Opcode Mnemonic Opcode Mnemonic Opcode

OPC01 01 OPC05 05 OPC0B 0B

OPC02 02 OPC06 06 OPC0C 0C1

OPC03 03 OPC07 07 OPC0D 0D1

OPC04 04 OPC0A 0A1 OPC0E 0E1

IEEE Floating-Point Instructions

A.1.2 Opcodes Reserved for PALcode

Table A–4 lists the 21164-specific instructions. For more information, refer to
Section 6.6.

EE
ruc-

Table A–4 Opcodes Reserved for PALcode

21164
Mnemonic Opcode

Architecture
Mnemonic Function

HW_LD 1B PAL1B Performs Dstream load instructions.

HW_ST 1F PAL1F Performs Dstream store instructions.
A–10 Alpha Instruction Set 29 September 1997 – Subject To Change

A.2 IEEE Floating-Point Instructions

Table A–5 lists the hexadecimal value of the 11-bit function code field for the IE
floating-point instructions, with and without qualifiers. The opcode for these inst
tions is 1616.

HW_REI 1E PAL1E Returns instruction flow to the program counter
(PC) pointed to by the EXC_ADDR internal pro-
cessor register (IPR).

HW_MFPR 19 PAL19 Accesses the IDU, MTU, and Dcache IPRs.

HW_MTPR 1D PAL1D Accesses the IDU, MTU, and Dcache IPRs.

Table A–5 IEEE Floating-Point Instruction Function Codes (Sheet 1 of 3)

Mnemonic None /C /M /D /U /UC /UM /UD

ADDS 080 000 040 0C0 180 100 140 1C0

ADDT 0A0 020 060 0E0 1A0 120 160 1E0

CMPTEQ 0A5 — — — — — — —

CMPTLT 0A6 — — — — — — —

CMPTLE 0A7 — — — — — — —

CMPTUN 0A4 — — — — — — —

CVTQS 0BC 03C 07C 0FC — — — —

CVTQT 0BE 03E 07E 0FE — — — —

CVTTS 0AC 02C 06C 0EC 1AC 12C 16C 1EC

DIVS 083 003 043 0C3 183 103 143 1C3

IEEE Floating-Point Instructions

Mnemonic None /C /M /D /U /UC /UM /UD

DIVT 0A3 023 063 0E3 1A3 123 163 1E3

MULS 082 002 042 0C2 182 102 142 1C2

MULT 0A2 022 062 0E2 1A2 122 162 1E2

SUBS 081 001 041 0C1 181 101 141 1C1

SUBT 0A1 021 061 0E1 1A1 121 161 1E1

Table A–5 IEEE Floating-Point Instruction Function Codes (Sheet 2 of 3)
29 September 1997 – Subject To Change Alpha Instruction Set A–11

Mnemonic /SU /SUC /SUM /SUD /SUI /SUIC /SUIM /SUID

ADDS 580 500 540 5C0 780 700 740 7C0

ADDT 5A0 520 560 5E0 7A0 720 760 7E0

CMPTEQ 5A5 — — — — — — —

CMPTLT 5A6 — — — — — — —

CMPTLE 5A7 — — — — — — —

CMPTUN 5A4 — — — — — — —

CVTQS — — — — 7BC 73C 77C 7FC

CVTQT — — — — 7BE 73E 77E 7F3

CVTTS 5AC 52C 56C 5EC 7AC 72C 76C 7EC

DIVS 583 503 543 5C3 783 703 743 7C3

DIVT 5A3 523 563 5E3 7A3 723 763 7E3

MULS 582 502 542 5C2 782 702 742 7C2

MULT 5A2 522 562 5E2 7A2 722 762 7E2

SUBS 581 501 541 5C1 781 701 741 7C1

SUBT 5A1 521 561 5E1 7A1 721 761 7E1

Mnemonic None /S

CVTST 2AC 6AC

VAX Floating-Point Instructions

Note: Because underflow cannot occur for CMPTxx, there is no difference in
function or performance between CMPTxx/S and CMPTxx/SU. It is

X

Mnemonic None /C /V /VC /SV /SVC /SVI /SVIC

CVTTQ 0AF 02F 1AF 12F 5AF 52F 7AF 72F

Mnemonic D /VD /SVD /SVID /M /VM /SVM /SVIM

CVTTQ 0EF 1EF 5EF 7EF 06F 16F 56F 76F

Table A–5 IEEE Floating-Point Instruction Function Codes (Sheet 3 of 3)
A–12 Alpha Instruction Set 29 September 1997 – Subject To Change

intended that software generate CMPTxx/SU in place of CMPTxx/S.

In the same manner, CVTQS and CVTQT can take an inexact result
trap, but not an underflow. Because there is no encoding for a CVTQx/
SI instruction, it is intended that software generate CVTQx/SUI in place
of CVTQx/SI.

A.3 VAX Floating-Point Instructions

Table A–6 lists the hexadecimal value of the 11-bit function code field for the VA
floating-point instructions. The opcode for these instructions is 1516.

Table A–6 VAX Floating-Point Instruction Function Codes (Sheet 1 of 2)

Mnemonic None /C /U /UC /S /SC /SU /SUC

ADDF 080 000 180 100 480 400 580 500

CVTDG 09E 01E 19E 11E 49E 41E 59E 51E

ADDG 0A0 020 1A0 120 4A0 420 5A0 520

CMPGEQ 0A5 — — — 4A5 — — —

CMPGLT 0A6 — — — 4A6 — — —

CMPGLE 0A7 — — — 4A7 — — —

CVTGF 0AC 02C 1AC 12C 4AC 42C 5AC 52C

CVTGD 0AD 02D 1AD 12D 4AD 42D 5AD 52D

CVTQF 0BC 03C — — — — — —

CVTQG 0BE 03E — — — — — —

DIVF 083 003 183 103 483 403 583 503

Opcode Summary

e
f 8
 to

t 0
row.
at 8

.
t-
n the
.

DIVG 0A3 023 1A3 123 4A3 423 5A3 523

MULF 082 002 182 102 482 402 582 502

MULG 0A2 022 1A2 122 4A2 422 5A2 522

SUBF 081 001 181 101 481 401 581 501

SUBG 0A1 021 1A1 121 4A1 421 5A1 521

Table A–6 VAX Floating-Point Instruction Function Codes (Sheet 2 of 2)

Mnemonic None /C /U /UC /S /SC /SU /SUC
29 September 1997 – Subject To Change Alpha Instruction Set A–13

A.4 Opcode Summary

Table A–7 lists all Alpha opcodes from 00 (CALL_PAL) through 3F (BGT). In th
table, the column headings that appear over the instructions have a granularity o16.
The rows beneath the Offset column supply the individual hexadecimal number
resolve that granularity.

If an instruction column has a 0 in the right (low) hexadecimal digit, replace tha
with the number to the left of the slash in the Offset column on the instruction's
If an instruction column has an 8 in the right (low) hexadecimal digit, replace th
with the number to the right of the slash in the Offset column.

For example, the third row (2/A) under the 1016 column contains the symbol INTS*,
representing the all-integer shift instructions. The opcode for those instructions
would then be 1216 because the 0 in 10 is replaced by the 2 in the Offset column
Likewise, the third row under the 1816 column contains the symbol JSR*, represen
ing all jump instructions. The opcode for those instructions is 1A because the 8 i
heading is replaced by the number to the right of the slash in the Offset column

Mnemonic None /C /V /VC /S /SC /SV /SVC

CVTGQ 0AF 02F 1AF 12F 4AF 42F 5AF 52F

Opcode Summary

The instruction format is listed under the instruction symbol.

Table A–7 Opcode Summary

Offset 00 08 10 18 20 28 30 38

0/8 PAL*
(pal)

LDA
(mem)

INTA*
(op)

MISC*
(mem)

LDF
(mem)

LDL
(mem)

BR
(br)

BLBC
(br)

1/9 Res LDAH
(mem)

INTL*
(op)

\PAL\ LDG
(mem)

LDQ
(mem)

FBEQ
(br)

BEQ
(br)

2/A Res LDBU INTS* JSR* LDS LDL_L FBLT BLT
A–14 Alpha Instruction Set 29 September 1997 – Subject To Change

(mem) (op) (mem) (mem) (mem) (br) (br)

3/B Res LDQ_U
(mem)

INTM*
(op)

\PAL\ LDT
(mem)

LDQ_L
(mem)

FBLE
(br)

BLE
(br)

4/C Res LDWU
(mem)

Res SEXT/
MVI*
(op)

STF
(mem)

STL
(mem)

BSR
(br)

BLBS
(br)

5/D Res STW
(mem)

FLTV*
(op)

\PAL\ STG
(mem)

STQ
(mem)

FBNE
(br)

BNE
(br)

6/E Res STB
(mem)

FLTI*
(op)

\PAL\ STS
(mem)

STL_C
(mem)

FBGE
(br)

BGE
(br)

7/F Res STQ_U
(mem)

FLTL*
(op)

\PAL\ STT
(mem)

STQ_C
(mem)

FBGT
(br)

BGT
(br)

Symbol
FLTI*
FLTL*
FLTV*
INTA*
INTL*
INTM*
INTS*
JSR*
MISC*
PAL*
\PAL\
Res
SEXT/MVI*

Meaning
IEEE floating-point instruction opcodes
Floating-point operate instruction opcodes
VAX floating-point instruction opcodes
Integer arithmetic instruction opcodes
Integer logical instruction opcodes
Integer multiply instruction opcodes
Integer shift instruction opcodes
Jump instruction opcodes
Miscellaneous instruction opcodes
PALcode instruction (CALL_PAL) opcodes
Reserved for PALcode
Reserved for DIGITAL
Sign extend and motion video instruction set opcodes

Required PALcode Function Codes

A.5 Required PALcode Function Codes

The opcodes listed in Table A–8 are required for all Alpha implementations. The
notation used is oo.ffff, where oo is the hexadecimal 6-bit opcode and ffff is the
hexadecimal 26-bit function code.

ha

a

rs,

Table A–8 Required PALcode Function Codes

Mnemonic Type Function Code

DRAINA Privileged 00.0002

HALT Privileged 00.0000
29 September 1997 – Subject To Change Alpha Instruction Set A–15

A.6 21164PC Microprocessor IEEE Floating-Point
Conformance

The 21164PC supports the IEEE floating-point operations as defined by the Alp
architecture. Support for a complete implementation of the IEEE Standard for
Binary Floating-Point Arithmetic (ANSI/IEEE Standard 754 1985) is provided by
combination of hardware and software as described in the Alpha AXP Architecture
Reference Manual.

Additional information about writing code to support precise exception handling
(necessary for complete conformance to the standard) is in the Alpha AXP Architec-
ture Reference Manual.

The following information is specific to the 21164PC:

• Invalid operation (INV)

The invalid operation trap is always enabled. If the trap occurs, then the destina-
tion register is UNPREDICTABLE. This exception is signaled if any VAX
architecture operand is nonfinite (reserved operand or dirty zero) and the opera-
tion can take an exception (that is, certain instructions, such as CPYS, never take
an exception). This exception is signaled if any IEEE operand is nonfinite
(NAN, INF, denorm) and the operation can take an exception. This trap is also
signaled for an IEEE format divide of ±0 divided by ±0. If the exception occu
then FPCR<INV> is set and the trap is signaled to the IDU.

• Divide-by-zero (DZE)

IMB Unprivileged 00.0086

21164PC Microprocessor IEEE Floating-Point Conformance

The divide-by-zero trap is always enabled. If the trap occurs, then the destination
register is UNPREDICTABLE. For VAX architecture format, this exception is
signaled whenever the numerator is valid and the denominator is zero. For IEEE
format, this exception is signaled whenever the numerator is valid and nonzero,
with a denominator of ±0. If the exception occurs, then FPCR<DZE> is set and
the trap is signaled to the IDU.

For IEEE format divides, 0/0 signals INV, not DZE.

• Floating overflow (OVF)

The floating overflow trap is always enabled. If the trap occurs, then the destina-
tion register is UNPREDICTABLE. The exception is signaled if the rounded
A–16 Alpha Instruction Set 29 September 1997 – Subject To Change

result exceeds in magnitude the largest finite number, which can be represented
by the destination format. This applies only to operations whose destination is a
floating-point data type. If the exception occurs, then FPCR<OVF> is set and the
trap is signaled to the IDU.

• Underflow (UNF)

The underflow trap can be disabled. If underflow occurs, then the destination
register is forced to a true zero, consisting of a full 64 bits of zero. This is done
even if the proper IEEE result would have been -0. The exception is signaled if
the rounded result is smaller in magnitude than the smallest finite number that
can be represented by the destination format. If the exception occurs, then
FPCR<UNF> is set. If the trap is enabled, then the trap is signaled to the IDU.
The 21164PC never produces a denormal number; underflow occurs instead.

• Inexact (INE)

The inexact trap can be disabled. The destination register always contains the
properly rounded result, whether the trap is enabled. The exception is signaled if
the rounded result is different from what would have been produced if infinite
precision (infinitely wide data) were available. For floating-point results, this
requires both an infinite precision exponent and fraction. For integer results, this
requires an infinite precision integer and an integral result. If the exception
occurs, then FPCR<INE> is set. If the trap is enabled, then the trap is signaled to
the IDU.

The IEEE-754 specification allows INE to occur concurrently with either OVF
or UNF. Whenever OVF is signaled (if the inexact trap is enabled), INE is also
signaled. Whenever UNF is signaled (if the inexact trap is enabled), INE is also
signaled. The inexact trap also occurs concurrently with integer overflow. All
valid opcodes that enable INE also enable both overflow and underflow.

21164PC Microprocessor IEEE Floating-Point Conformance

If a CVTQL results in an integer overflow (IOV), then FPCR<INE> is automati-
cally set. (The INE trap is never signaled to the IDU because there is no CVTQL
opcode that enables the inexact trap.)

• Integer overflow (IOV)

The integer overflow trap can be disabled. The destination register always con-
tains the low-order bits (<64> or <32>) of the true result (not the truncated bits).
Integer overflow can occur with CVTTQ, CVTGQ, or CVTQL. In conversions
from floating to quadword integer or longword integer, an integer overflow
occurs if the rounded result is outside the range −263 ..263−1. In conversions from
quadword integer to longword integer, an integer overflow occurs if the result is
29 September 1997 – Subject To Change Alpha Instruction Set A–17

outside the range −231 ..231−1. If the exception occurs, then the appropriate bit in
the FPCR is set. If the trap is enabled, then the trap is signaled to the IDU.

• Software completion (SWC)

The software completion signal is not recorded in the FPCR. The state of this
signal is always sent to the IDU. If the IDU detects the assertion of any of the
listed exceptions concurrent with the assertion of the SWC signal, then it sets
EXC_SUM<SWC>.

Input exceptions always take priority over output exceptions. If both exception types
occur, then only the input exception is recorded in the FPCR and only the input
exception is signaled to the IDU.

 B
21164PC Microprocessor Specifications

le
29 September 1997 – Subject To Change 21164PC Microprocessor Specifications B–1

Table B–1 lists specifications for the 21164PC.

Table B–1 21164PC Microprocessor Specifications (Sheet 1 of 2)

Feature Description

Cycle time range 2.50 ns (400 MHz) to 1.87 ns (533 MHz)

Process technology 0.35-µm CMOS

Transistor count 3.5 million

Die size 8.65 × 16.28 mm

Package 413-pin IPGA (interstitial pin grid array)

Number of signal pins 264

Typical worst-case
power @Vdd = 3.3 V
@Vddi = 2.5 V

24 W (int.) and 2.5 W (ext.) @ 2.50 ns cycle time (400 MHz)
32 W (int.) and 3.0 W (ext.) @ 1.87 ns cycle time (533 MHz)

Power supply 3.3 V dc, 2.5 V dc

Clocking input One times the internal clock speed

Virtual address size 43 bits

Physical address size 33 bits

Page size 8KB

Issue rate 2 integer instructions and 2 floating-point instructions per cyc

Integer instruction
pipeline

7 stage

Floating instruction
pipeline

 9 stage

Onchip L1 Dcache 8KB, physical, direct-mapped, write-through, 32-byte block,
32-byte fill

Onchip L1 Icache 16KB, virtual, direct-mapped, 64-byte block, 32-byte fill,
128 address space numbers (ASNs) (MAX_ASN=127)

Onchip data
translation buffer

64-entry, fully associative, not-last-used replacement, 8K pages,
128 ASNs (MAX_ASN=127), full granularity hint support

Onchip instruction 48-entry, fully associative, not-last-used replacement,

Table B–1 21164PC Microprocessor Specifications (Sheet 2 of 2)

Feature Description
B–2 21164PC Microprocessor Specifications 29 September 1997 – Subject To Change

translation buffer 128 ASNs (MAX_ASN=127), full granularity hint support

Floating-point unit Onchip FPU supports both IEEE and DIGITAL floating point

Bus Separate data and address bus, 128-bit/64-bit data bus

Serial ROM interface Allows microprocessor to access a serial ROM

 C
Serial Icache Load Predecode Values
29 September 1997 – Subject To Change Serial Icache Load Predecode Values C–1

The following C code calculates the predecode values of a serial Icache load. A soft-
ware tool called the SROM Packer converts a binary image into a format suitable for
Icache serial loading. This tool is available from DIGITAL.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define DATA_BYTES_PER_REC 32
#define MAX_INSTR 4096

int eparity(int) ;
int instrpredecode(int);
void build_vector();

/* Everything below is off by 54 bits. I’ll add in 54 in main() */
/* fillmap [0 - 127] maps data 127:0, etc. */
/* fillmap[n] is bit position in output vector. bit 0 of this vector is first-in;
 bit 201 is last */

int dfillmap [128] = {
 /* data 0:127 -- fillmap[0:127]*/
44,46,48,50,52,54,56,58, /* 0:7 */
60,62,64,66,68,70,72,74, /* 8:15 */
76,78,80,82,84,86,88,90, /* 16:23 */
92,94,96,98,100,102,104,106, /* 24:31 */
45,47,49,51,53,55,57,59, /* 32:39 */
61,63,65,67,69,71,73,75, /* 40:47 */
77,79,81,83,85,87,89,91, /* 48:55 */
93,95,97,99,101,103,105,107, /* 56:63 */
130,132,134,136,138,140,142,144, /* 64:71 */
146,148,150,152,154,156,158,160, /* 72:79 */
162,164,166,168,170,172,174,176, /* 80:87 */
178,180,182,184,186,188,190,192, /* 88:95 */
131,133,135,137,139,141,143,145, /* 96:103 */
147,149,151,153,155,157,159,161, /* 104:111 */
163,165,167,169,171,173,175,177, /* 112:119 */
179,181,183,185,187,189,191,193 /* 120:127 */
};

int BHTfillmap[8] = { /* BHT vector 0:7 -- BHTfillmap[0:7] */
201,200,199,198,197,196,195,194 /* 0:7 */
};

int predfillmap[20] = { /* predecodes 0:19 -- predfillmap[0:19] */
108,110,112,114,116, /* 0:4 */
109,111,113,115,117, /* 5:9 */
120,122,124,126,128, /* 10:14 */
121,123,125,127,129 /* 15:19 */
};

int octawpfillmap = /* octaword parity */
119;

int predpfillmap = /* predecode parity */
C–2 Serial Icache Load Predecode Values 29 September 1997 – Subject To Change

118;

int tagfillmap[29] = { /* tag bits 13:42 -- tagfillmap[0:29] */
29,28,27,26,25,24,23,22,21, /* 13:22 */
20,19,18,17,16,15,14,13,12,11, /* 23:32 */
10, 9, 8, 7, 6, 5, 4, 3, 2, 1 /* 33:42 */
};

int asnfillmap[7] = { /* asn 0:6 -- asnfillmap[0:6] */
37,36,35,34,33,32,31 /* 0:6 */
};

int asmfillmap = /* asm -- asmfillmap */
30;

int tagphysfillmap = /* tagphysical address -- tagphysfillmap */
38;

int tagvalfillmap[4] = { /* tag valid bits 0:3 -- tagvalfillmap */
42,41,40,39 /* 0:3 */
};

int tagparfillmap = /* tag parity -- tagparfillmap */
43;

/*
** global variables
*/
char filename[256],ofilename[256],hfilename[256];
FILE *infile, *outfile, *hexfile;
int pdparity,
tparity,
tvalids,
tphysical,
bhtvector,
offset;
int base,
asm,
asn,

tag,
predecodes,
owparity;

int device_size;

/*
** define the ROM size in bits to determine the maximum number of instructions allowed
** define the number of bits per instruction for 21164PC ICache
*/
#define ROMSIZE 262144
#define B_PER_INST 64

main(int argc, char *argv[])
{

29 September 1997 – Subject To Change Serial Icache Load Predecode Values C–3

int i, j;
int instatus, instr_count;
int lines_written;
char *charptr;
int chksum;
int instr[4], outvector[DATA_BYTES_PER_REC/4];

strcpy (filename ,"loadfile.dxe"); /* default file names */
strcpy (ofilename,"loadfile.srom");

strcpy (hfilename,"loadfile.hex");
base = 0;
tag = 0;
asn = 0;
asm = 1;
tphysical= 1;
bhtvector = 0;
offset = 0;

/* for PCA I added 55 bits of padding. One of those bits is reflected in the above
numbers. */

for (i=0; i<128; i++)
dfillmap[i]+=54;

for (i=0; i<8; i++)
BHTfillmap[i]+=54;

for (i=0; i<20; i++)
predfillmap[i]+=54;

octawpfillmap+=54;
predpfillmap+=54;
for (i=0; i<29; i++)

tagfillmap[i]+=54;
for (i=0; i<7; i++)

asnfillmap[i]+=54;
asmfillmap+=54;
tagphysfillmap+=54;
for (i=0; i<4; i++)

tagvalfillmap[i]+=54;
tagparfillmap+=54;

if (argc>1)
strcpy(filename,argv[1]);

if (argc>2)
strcpy(ofilename,argv[2]);

if (argc>3)
strcpy(hfilename,argv[3]);

if (NULL == (infile = fopen(filename,"rb")))
{

printf("input file open error: %s\n", filename);
exit(0);

}

if (NULL == (outfile = fopen(ofilename, "wb")))
{

C–4 Serial Icache Load Predecode Values 29 September 1997 – Subject To Change

printf("binary output file open error: %s\n", ofilename);
exit(0);

}

if (NULL == (hexfile = fopen(hfilename, "w")))
{

printf("hex output file open error: %s\n", hfilename);
exit(0);

}

fprintf(hexfile,":020000020000FC\n"); /* extended segment addr record */

tparity = eparity(tag) ^ eparity(tphysical) ^ eparity(asn);
tvalids = 15;
instatus = 0;

instr_count = 0;
/* there are 1024 full 32 byte records (MAX_INSTR instructions) */

for (lines_written = 0; lines_written < 1024; lines_written++)
{

build_vector(instr, outvector, &instatus, &instr_count); /* build the vector */

fwrite(&outvector[0],1,DATA_BYTES_PER_REC,outfile); /* print it to a
binary file */

fprintf(hexfile,":19%04X00",offset); /* print it to the hex
file */
chksum = (offset & 0xff) + (offset >> 8) + 0x19;
for (j=0; j<DATA_BYTES_PER_REC; j++)

{
charptr = ((char*) &outvector[0]) + j;
fprintf(hexfile,"%02X", (0xff& *charptr));
chksum += *charptr;

}
offset += DATA_BYTES_PER_REC;
fprintf(hexfile,"%02X\n", (-chksum) & 0xff);

}

if (instatus == 0) /* there’s more data in the file to read, oops... */
{

while (instatus == 0){

build_vector(instr, outvector, &instatus, &instr_count); /* build the vector */
}
if (instr_count > MAX_INSTR){

printf("\nev5fmt Warning: input file too long.\n");
printf("\tThere are %d instructions in the input file\n", instr_count);
printf("\tTruncated after %d instructions\n\n", instr_count, MAX_INSTR);

}
}

fprintf(hexfile,":15%04X00",offset);
chksum = (offset & 0xff) + (offset >> 8) + 0x15;
for (j=0; j < 17; j++) /* special case, last record */
{

fprintf(hexfile,"%02X", (0x00));
29 September 1997 – Subject To Change Serial Icache Load Predecode Values C–5

chksum += *charptr;
}

for (j=0; j < 4; j++) /* Put 4 bytes of FF at the end... */
{

fprintf(hexfile, "%02X", 0xff);
chksum += 0xff;

}

fprintf(hexfile,"%02X\n", (-chksum) & 0xff);

fprintf(hexfile,":00000001FF\n"); /* end-of-file record */
printf("Total intructions processed = %d\t(%d free)\n",
 instr_count, MAX_INSTR - instr_count);
 fclose(infile);
 fclose(outfile);
 fclose(hexfile);
 exit(0);
}

void build_vector(int instr[], int outvector[], int *instatus, int *instr_count)
{

int j, k, t;
int status;

for (j=0;j<4;j++) instr[j] = 0;
for (j=0;j<DATA_BYTES_PER_REC/4;j++) outvector[j]=0;

if (*instatus == 0) /* read until the file’s done */
{

/* read-in 4 instructions */
if (16 > (status = fread(&instr[0],1,16,infile)))

instatus = 1; / we’re done now */
*instr_count += status/4;

}

predecodes=0;
owparity = 0;
for (j=0;j<4;j++)

{
predecodes |= (4 ^ instrpredecode(instr[j])) << (j*5);

/* invert bit 2 to match fill scan chain attribute */
owparity ^= eparity(instr[j]);

}

pdparity = eparity(predecodes);

/* bhtvector */
for (j=0;j<7;j++)

{
t = BHTfillmap[j];
outvector[t>>5] |= ((bhtvector >> j) & 1) << (t&0x1f);

}

/* instructions */
for (k=0;k<4;k++)
C–6 Serial Icache Load Predecode Values 29 September 1997 – Subject To Change

{
for (j=0;j<32;j++)
 {

t = dfillmap[j+k*32];
outvector[t>>5] |= ((instr[k] >> j) & 1) << (t&0x1f);

 }
}

/* predecodes */
for (j=0;j<20;j++)

{
t = predfillmap[j];
outvector[t>>5] |= ((predecodes >> j) & 1) << (t&0x1f);

}

/* owparity */
outvector[octawpfillmap>>5] |= owparity << (octawpfillmap&0x1f);

/* pdparity */
outvector[predpfillmap>>5] |= pdparity << (predpfillmap&0x1f);

/* tparity */
outvector[tagparfillmap>>5] |= tparity << (tagparfillmap&0x1f);

/* tvalids */
for (j=0;j<4;j++)

{
t =tagvalfillmap[j];
outvector[t>>5] |= ((tvalids >> j) & 1) << (t&0x1f);

}

/* tphysical */
outvector[tagphysfillmap>>5] |= tphysical << (tagphysfillmap&0x1f);

/* asn */
for (j=0;j<7;j++)

{
t = asnfillmap[j];
outvector[t>>5] |= ((asn >> j) & 1) << (t&0x1f);

}

/* asm */
outvector[asmfillmap>>5] |= asm << (asmfillmap&0x1f);
/* tag */
for (j=0;j<29;j++)

{
t = tagfillmap[j];
outvector[t>>5] |= ((tag >> j) & 1) << (t&0x1f);

}
}

int eparity(int x)
{
x = x ^ (x >> 16);
x = x ^ (x >> 8);
29 September 1997 – Subject To Change Serial Icache Load Predecode Values C–7

x = x ^ (x >> 4);
x = x ^ (x >> 2);
x = x ^ (x >> 1);
return (x&1);

}

#define EXT(data, bit)\
(((data) & ((unsigned) 1 << (bit))) != 0)

#define EXTV(data, hbit, lbit)\
(((data) >> (lbit)) & \

((((hbit) - (lbit) + 1) == 32) ? ((unsigned)0xffffffff) :
(~((unsigned)0xffffffff << ((hbit) - (lbit) + 1)))))

#define INS(name, bit, data)\
(name) = (((name) & ~((unsigned) 1 << (bit))) | \

(((unsigned) (data) << (bit)) & ((unsigned) 1 << (bit))))

int instrpredecode(int inst)
{

int result;
int opcode;
int func;
int jsr_type;
int ra;

int out0;
int out1;
int out2;
int out3;
int out4;
int e0_only;
int e1_only;
int ee;
int lnoop;
int fadd;
int fmul;
int fe;
int br_type;

int ld;
int store;
int br;
int call_pal;
int bsr;
int ret_rei;
int jmp;
int jsr_cor;
int jsr;
int cond_br;

 opcode = EXTV(inst, 31, 26);
 func = EXTV(inst, 12, 5);
 jsr_type = EXTV(inst, 15,14);
C–8 Serial Icache Load Predecode Values 29 September 1997 – Subject To Change

 ra = EXTV(inst,25,21);

e0_only = (opcode == 0x24) || /* STF */
(opcode == 0x25) || /* STG */
(opcode == 0x26) || /* STS */
(opcode == 0x27) || /* STT */
(opcode == 0x0F) || /* STQ_U */
(opcode == 0x2A) || /* LDL_L */
(opcode == 0x2B) || /* LDQ_L */
(opcode == 0x2C) || /* STL */
(opcode == 0x2D) || /* STQ */
(opcode == 0x2E) || /* STL_C */
(opcode == 0x2F) || /* STQ_C */
(opcode == 0x1F) || /* HW_ST*/
(opcode == 0x18) || /* MISC mem format: FETCH/_M, RS, RC, RPCC, TRAPB, MB) */
(opcode == 0x12) || /* EXT,MSK,INS,SRX,SLX,ZAP*/
(opcode == 0x13) || /* MULX */
((opcode == 0x1D) && (EXT(inst,8) == 0)) || /* MBOX HW_MTPR */
((opcode == 0x19) && (EXT(inst,8) == 0)) || /* MBOX HW_MFPR */
(opcode == 0x01) || /* VR::: might change this later RESDEC’s */
(opcode == 0x02) || /* RESDEC’s */
(opcode == 0x03) || /* RESDEC’s */
(opcode == 0x04) || /* RESDEC’s */
(opcode == 0x05) || /* RESDEC’s */
(opcode == 0x06) || /* RESDEC’s */
(opcode == 0x07) || /* RESDEC’s */
(opcode == 0x0a) || /* RESDEC’s */
(opcode == 0x0c) || /* RESDEC’s */
(opcode == 0x0d) || /* RESDEC’s */
(opcode == 0x0e) || /* RESDEC’s */
(opcode == 0x14) || /* RESDEC’s */
(opcode == 0x1c); /* RESDEC’s */

e1_only = (opcode == 0x30) || /* BR */
(opcode == 0x34) || /* BSR */
(opcode == 0x38) || /* BLBC */
(opcode == 0x39) || /* BEQ */
(opcode == 0x3A) || /* BLT */

(opcode == 0x3B) || /* BLE */
(opcode == 0x3C) || /* BLBS */
(opcode == 0x3D) || /* BNE */
(opcode == 0x3E) || /* BGE */
(opcode == 0x3F) || /* BGT */
(opcode == 0x1A) || /* JMP,JSR,RET,JSR_COROT */
(opcode == 0x1E) || /* HW_REI */
(opcode == 0x00) || /* CALL_PAL */
((opcode == 0x1D) && (EXT(inst,8) == 1)) || /* IBOX HW_MTPR */
((opcode == 0x19) && (EXT(inst,8) == 1)); /* IBOX HW_MTPR */

ee = (opcode == 0x10) || /* ADD, SUB, CMP */
(opcode == 0x11) || /* AND, BIC etc. logicals */
29 September 1997 – Subject To Change Serial Icache Load Predecode Values C–9

(opcode == 0x28) || /* LDL */
(opcode == 0x29) || /* LDQ */
(opcode == 0x0B)&(ra != 0x1F) || /* LDQ_U */
(opcode == 0x08) || /* LDA */
(opcode == 0x09) || /* LDAH */
(opcode == 0x20) || /* LDF */
(opcode == 0x21) || /* LDG */
(opcode == 0x22) || /* LDS */
(opcode == 0x23) || /* LDT */
(opcode == 0x1B); /* HW_LD */

lnoop = (opcode == 0x0B)&(ra == 0x1F); /* LDQ_U R31, x(y) - NOOP*/

fadd = ((opcode == 0x17) && (func != 0x20)) || /* Flt, datatype indep excl CPYS*/
((opcode == 0x15) && ((func & 0xf) != 0x2)) || /* VAX excl MUL’s */
((opcode == 0x16) && ((func & 0xf) != 0x2)) || /* IEEE excl MUL’s */
(opcode == 0x31) || /* FBEQ */
(opcode == 0x32) || /* FBLT */
(opcode == 0x33) || /* FBLE */
(opcode == 0x35) || /* FBNE */
(opcode == 0x36) || /* FBGE */
(opcode == 0x37); /* FBGT */

fmul = ((opcode == 0x15) && ((func & 0xf) == 0x2)) || /* VAX MUL’s */
((opcode == 0x16) && ((func & 0xf) == 0x2)); /* IEEE MUL’s */

fe = ((opcode == 0x17) && (func == 0x20)); /* CPYS */

br_type = ((opcode & 0x30) == 0x30) || /* all branches */
(opcode == 0x1A) || /* JMP’s */
(opcode == 0x00) || /* CALL PAL */
(opcode == 0x1E); /* HW_REI */

ld = (opcode == 0x28) || /* LDL */
(opcode == 0x29) || /* LDQ */
(opcode == 0x0B) || /* LDQ_U */
(opcode == 0x20) || /* LDF */
(opcode == 0x21) || /* LDG */
(opcode == 0x22) || /* LDS */

(opcode == 0x23) || /* LDT */
(opcode == 0x1B); /* HW_LD */

store = (opcode == 0x24) || /* STF */
(opcode == 0x25) || /* STG */
(opcode == 0x26) || /* STS */
(opcode == 0x27) || /* STT */
(opcode == 0x0F) || /* STQ_U */
(opcode == 0x2C) || /* STL */
(opcode == 0x2D) || /* STQ */
(opcode == 0x2E) || /* STL_C */
(opcode == 0x2F) || /* STQ_C */
(opcode == 0x18) || /* Misc: TRAPB, MB, RS, RC, RPCC etc. */
C–10 Serial Icache Load Predecode Values 29 September 1997 – Subject To Change

(opcode == 0x1F) || /* HW_ST */
(opcode == 0x2A) || /* LDL_L */
(opcode == 0x2B); /* LDQ_L */

br = (opcode == 0x30); /* all branches */

call_pal = (opcode == 0x00); /* call PAL */

bsr = (opcode == 0x34);

ret_rei = ((opcode == 0x1A) && (jsr_type == 0x2)) ||
((opcode == 0x1E) && (jsr_type != 0x3));

jmp = ((opcode == 0x1A) && (jsr_type == 0x0));

jsr_cor = ((opcode == 0x1A) && (jsr_type == 0x3));

jsr = ((opcode == 0x1A) && (jsr_type == 0x1));

cond_br = (opcode == 0x31) ||
(opcode == 0x32) ||
(opcode == 0x33) ||
(opcode == 0x35) ||
(opcode == 0x36) ||
(opcode == 0x37) ||
(opcode == 0x38) ||
(opcode == 0x39) ||
(opcode == 0x3A) ||
(opcode == 0x3B) ||
(opcode == 0x3C) ||
(opcode == 0x3D) ||
(opcode == 0x3E) ||
(opcode == 0x3F);

out0 = br || bsr || jmp || jsr || (ee && !ld) || (e0_only && !store);
out1 = ret_rei ||(e1_only && !br_type)|| jmp ||jsr_cor|| jsr || lnoop || (fadd &&
!br_type) || fe;;
out2 = call_pal || bsr || jsr_cor || e0_only ||jsr ||fmul || fe;
out3 = (e1_only && cond_br) || (e1_only && !br_type) || fadd || fmul || fe;
out4 = ee || lnoop || e0_only || fadd || fmul || fe;

result = 0;
INS(result, 0, out0);
INS(result, 1, out1);
INS(result, 2, out2);
INS(result, 3, out3);
INS(result, 4, out4);
29 September 1997 – Subject To Change Serial Icache Load Predecode Values C–11

return (result);

}

 D
Errata Sheet
29 September 1997 – Subject To Change Errata Sheet D–1

Table D–1 lists the revision history for this document.

Table D–1 Document Revision History

Date Revision

September 29, 1997 Preliminary version, EC-R2W0A-TE

 E
Support, Products, and Documentation
29 September 1997 – Subject To Change Support, Products, and Documentation E–1

If you need technical support, a Digital Semiconductor Product Catalog, or help
deciding which documentation best meets your needs, visit the Digital
Semiconductor World Wide Web Internet site:

http://www.digital.com/semiconductor

You can also call the Digital Semiconductor Information Line or the Digital
Semiconductor Customer Technology Center. Please use the following information
lines for support.

For documentation and general information:

Digital Semiconductor Information Line

United States and Canada: 1–800–332–2717

Outside North America: 1–510–490–4753

Electronic mail address: semiconductor@digital.com

For technical support:

Digital Semiconductor Customer Technology Center

Phone (U.S. and international): 1–978–568–7474

Fax: 1–978–568–6698

Electronic mail address: ctc@hlo.mts.dec.com

Digital Semiconductor Products

To order the Digital Semiconductor Alpha 21164PC microprocessor, contact your
local distributor. The following table lists some of the semiconductor products avail-
able from Digital Semiconductor.

Note: The following products and order numbers might have been revised. For
the latest versions, contact your local distributor.

Chips Order Number

Digital Semiconductor Alpha 21164PC 400-MHz microprocessor 211PC–01

E

E

E

E

E–2 Support, Products, and Documentation 29 September 1997 – Subject To Change

For information about other Alpha microprocessors, visit the Digital Semiconductor
World Wide Web Internet site:

http://www.alpha.digital.com

Digital Semiconductor Documentation

The following table lists some of the available Digital Semiconductor documenta-
tion.

Digital Semiconductor Alpha 21164PC 466-MHz microprocessor 211PC–02

Digital Semiconductor Alpha 21164PC 533-MHz microprocessor 211PC–03

Title Order Number

Alpha AXP Architecture Reference Manual1 EY–T132E–DP

Alpha Architecture Handbook2 EC–QD2KB–TE

Digital Semiconductor Alpha 21164PC Microprocessor Data Sheet EC–R2W1A–T

Digital Semiconductor Alpha 21164PC Microprocessor Product Brief EC–R2W2A–T

Digital Semiconductor 21172 Core Logic Chipset Product Brief EC–QUQHA–T

Digital Semiconductor 21172 Core Logic Chipset Technical Reference
Manual

EC–QUQJA–TE

Answers to Common Questions about PALcode for Alpha AXP
Systems

EC–N0647–72

PALcode for Alpha Microprocessors System Design Guide EC–QFGLC–T

Alpha Microprocessors Motherboard Windows NT 3.51 and 4.0
Installation Guide

EC–QLUAG–TE

1 To purchase the Alpha AXP Architecture Reference Manual, contact your local distributor or call
Butterworth-Heinemann (Digital Press) at 1-800-366-2665.

SPICE Models for Alpha Microprocessors and Peripheral Chips: An
Application Note

EC–QA4XE–TE

Alpha Microprocessors SROM Mini-Debugger User’s Guide EC–QHUXC–TE

Alpha Microprocessors Motherboard Debug Monitor User’s Guide EC–QHUVE–TE

Alpha Microprocessors Motherboard Software Design Tools
User’s Guide

EC–QHUWC–TE

Title Order Number
29 September 1997 – Subject To Change Support, Products, and Documentation E–3

Third–Party Documentation

You can order the following third-party documentation directly from the vendor.

2 This handbook provides information subsequent to the Alpha AXP Architecture Reference Manual.

Title Vendor

PCI Local Bus Specification, Revision 2.1
PCI System Design Guide

PCI Special Interest Group
U.S. 1–800–433–5177
International 1–503–797–4207
Fax 1–503–234–6762

IEEE Standard 754, Standard for Binary Floating-Point
Arithmetic
IEEE Standard 1149.1, A Test Access Port and Boundary
Scan Architecture

The Institute of Electrical and
Electronics Engineers, Inc.
U.S. 1–800–701–4333
International 1–908–981–0060
Fax 1–908–981–9667

Glossary

The glossary defines terms and spells out acronyms associated with the Alpha
21164PC microprocessor and chips in general.

abort

The unit stops the operation it is performing, without saving status, to perform some
29 September 1997 – Subject To Change Glossary–1

other operation.

ABT

Advanced bipolar/CMOS technology.

address space number (ASN)

An optionally implemented register used to reduce the need for invalidation of
cached address translations for process-specific addresses when a context switch
occurs. ASNs are processor specific; the hardware makes no attempt to maintain
coherency across multiple processors.

address translation

The process of mapping addresses from one address space to another.

ALIGNED

A datum of size 2N is stored in memory at a byte address that is a multiple of 2N (that
is, one that has N low-order zeros).

ALU

Arithmetic logic unit.

ANSI

American National Standards Institute. An organization that develops and publishes
standards for the computer industry.

ASIC

Application-specific integrated circuit.

ASN

See address space number.

assert

To cause a signal to change to its logical true state.

AST

See asynchronous system trap.

asynchronous system trap (AST)

A software-simulated interrupt to a user-defined routine. ASTs enable a user process
to be notified asynchronously, with respect to that process, of the occurrence of a
specific event. If a user process has defined an AST routine for an event, the system

ncy,

truc-

on

 out-
Glossary–2 29 September 1997 – Subject To Change

interrupts the process and executes the AST routine when that event occurs. When
the AST routine exits, the system resumes execution of the process at the point
where it was interrupted.

backmap

A memory unit that is used to note addresses of valid entries within a cache.

bandwidth

Bandwidth is often used to express “high rate of data transfer” in a bus or an I/O
channel. This usage assumes that a wide bandwidth may contain a high freque
which can accommodate a high rate of data transfer.

barrier transaction

A transaction on the external interface as a result of an MB (memory barrier) ins
tion.

Bcache

See external cache.

BCT

Bipolar/CMOS technology.

BiCMOS

Bipolar/CMOS. The combination of bipolar and MOSFET transistors in a comm
integrated circuit.

bidirectional

Flowing in two directions. The buses are bidirectional; they carry both input and
put signals.

BiSr

Built-in self-repair.

BiSt

Built-in self-test.

bit

Binary digit. The smallest unit of data in a binary notation system, designated as 0 or
1.

l

ects
 data,
29 September 1997 – Subject To Change Glossary–3

BIU

Bus interface unit. See CBU.

block exchange

Memory feature that improves bus bandwidth by paralleling a cache victim write-
back with a cache miss fill.

board-level cache

See external cache.

boot

Short for bootstrap. Loading an operating system into memory is called booting.

BSR

Boundary-scan register.

buffer

An internal memory area used for temporary storage of data records during input or
output operations.

bugcheck

A software condition, usually the response to software’s detection of an “interna
inconsistency,” which results in the execution of the system bugcheck code.

bus

A group of signals that consists of many transmission lines or wires. It interconn
computer system components to provide communications paths for addresses,
and control information.

byte

Eight contiguous bits starting on an addressable byte boundary. The bits are num-
bered right to left, 0 through 7.

byte granularity

Memory systems are said to have byte granularity if adjacent bytes can be written
concurrently and independently by different processes or processors.

cache

See cache memory.
Glossary–4 29 September 1997 – Subject To Change

cache block

The smallest unit of storage that can be allocated or manipulated in a cache. Also
known as a cache line.

cache coherence

Maintaining cache coherence requires that when a processor accesses data cached in
another processor, it must not receive incorrect data and when cached data is modi-
fied, all other processors that access that data receive modified data. Schemes for
maintaining consistency can be implemented in hardware or software. Also called
cache consistency.

cache fill

An operation that loads an entire cache block by using multiple read cycles from
main memory.

cache flush

An operation that marks all cache blocks as invalid.

cache hit

The status returned when a logic unit probes a cache memory and finds a valid cache
entry at the probed address.

cache interference

The result of an operation that adversely affects the mechanisms and procedures used
to keep frequently used items in a cache. Such interference may cause frequently
used items to be removed from a cache or incur significant overhead operations to
ensure correct results. Either action hampers performance.

cache line

See cache block.

cache line buffer

A buffer used to store a block of cache memory.

cache memory

A small, high-speed memory placed between slower main memory and the proces-
sor. A cache increases effective memory transfer rates and processor speed. It con-
tains copies of data recently used by the processor and fetches several bytes of data
29 September 1997 – Subject To Change Glossary–5

from memory in anticipation that the processor will access the next sequential series
of bytes. The Alpha 21164PC microprocessor contains two onchip internal caches.
See also write-through cache and write-back cache.

cache miss

The status returned when cache memory is probed with no valid cache entry at the
probed address.

CALL_PAL Instructions

Special instructions used to invoke PALcode.

CBU

Cache control and bus interface unit. The logic unit within the 21164PC micropro-
cessor that provides an interface to the external data bus and board-level Bcache.

central processing unit (CPU)

The unit of the computer that is responsible for interpreting and executing instruc-
tions.

CISC

Complex instruction set computing. An instruction set consisting of a large number
of complex instructions that are managed by microcode. Contrast with RISC.

clean

In the cache of a system bus node, refers to a cache line that is valid but has not been
written.

clock

A signal used to synchronize the circuits in a computer.

CMOS

Complementary metal-oxide semiconductor. A silicon device formed by a process
that combines PMOS and NMOS semiconductor material.

conditional branch instructions

Instructions that test a register for positive/negative or for zero/nonzero. They can
also test integer registers for even/odd.

control and status register (CSR)

A device or controller register that resides in the processor’s I/O space. The CSR ini-

alled

n

 any
ly one
Glossary–6 29 September 1997 – Subject To Change

tiates device activity and records its status.

CPLD

Complex programmable logic device.

CPU

See central processing unit.

CSR

See control and status register.

cycle

One clock interval.

data bus

The bus used to carry data between the 21164PC and external devices. Also c
the pin bus.

Dcache

Data cache. A cache reserved for storage of data. The Dcache does not contai
instructions.

DIP

Dual inline package.

direct-mapping cache

A cache organization in which only one address comparison is needed to locate
data in the cache, because any block of main memory data can be placed in on
possible position in the cache.

direct memory access (DMA)

Access to memory by an I/O device that does not require processor intervention.

dirty

One status item for a cache block. The cache block is valid and has been written so
that it may differ from the copy in system main memory.

dirty victim

Used in reference to a cache block in the cache of a system bus node. The cache
block is valid but is about to be replaced due to a cache block resource conflict. The

as
d

an
29 September 1997 – Subject To Change Glossary–7

data must therefore be written to memory.

DRAM

Dynamic random-access memory. Read/write memory that must be refreshed (read
from or written to) periodically to maintain the storage of information.

DTL

Diode-transistor logic.

dual issue

Two instructions are issued, in parallel, during the same microprocessor cycle. The
instructions use different resources and so do not conflict.

ECC

Error correction code. Code and algorithms used by logic to facilitate error detection
and correction. See also ECC error.

ECC error

An error detected by ECC logic, to indicate that data (or the protected “entity” h
been corrupted. The error may be correctable (soft error) or uncorrectable (har
error).

ECL

Emitter-coupled logic.

EEPROM

Electrically erasable programmable read-only memory. A memory device that c
be byte-erased, written to, and read from. Contrast with FEPROM.

EPLD

Erasable programmable logic device.

external cache

A cache memory provided outside of the microprocessor chip, usually located on the
same module. Also called board-level or module-level cache.

FEPROM

Flash-erasable programmable read-only memory. FEPROMs can be bank- or bulk-
erased. Contrast with EEPROM.
Glossary–8 29 September 1997 – Subject To Change

FET

Field-effect transistor.

firmware

Machine instructions stored in hardware.

floating point

A number system in which the position of the radix point is indicated by the expo-
nent part and another part represents the significant digits or fractional part.

flush

See cache flush.

FPGA

Field-programmable gate array.

FPLA

Field-programmable logic array.

FPU

Floating-point execution unit. The logic unit within the 21164PC microprocessor
that performs floating-point calculations.

granularity

A characteristic of storage systems that defines the amount of data that can be read
and/or written with a single instruction, or read and/or written independently. VAX
systems have byte or multibyte granularities, whereas disk systems typically have
512-byte or greater granularities. For a given storage device, a higher granularity
generally yields a greater throughput.

hardware interrupt request (HIR)

An interrupt generated by a peripheral device.
29 September 1997 – Subject To Change Glossary–9

high-impedance state

An electrical state of high resistance to current flow, which makes the device appear
not physically connected to the circuit.

hit

See cache hit.

Icache

Instruction cache. A cache reserved for storage of instructions. One of the two areas
of primary cache (located on the 21164PC) used to store instructions. The Icache
contains 16KB of memory space. It is a direct-mapped cache. Icache blocks, or lines,
contain 64 bytes of instruction stream data with associated tag as well as a 6-bit
ASM field and an 8-bit branch history field per block. Icache does not contain hard-
ware for maintaining cache coherency with memory and is unaffected by the invali-
date bus.

IDU

Instruction fetch/decode unit. The logic unit within the 21164PC microprocessor that
fetches, decodes, and issues instructions. It also controls the microprocessor pipeline.

IEEE Standard 754

A set of formats and operations that apply to floating-point numbers. The formats
cover 32-, 64-, and 80-bit operand sizes.

IEEE Standard 1149.1

A standard for the Test Access Port and Boundary Scan Architecture used in board-
level manufacturing test procedures. Commonly referred to as the Joint Test Action
Group (JTAG) standard.

IEU

Integer execution unit. The logic unit within the 21164PC microprocessor that con-
tains the 64-bit integer execution data path.

INTnn

The term INTnn, where nn is one of 2, 4, 8, 16, 32, or 64, refers to a data field size of
nn contiguous NATURALLY ALIGNED bytes. For example, INT4 refers to a NAT-
URALLY ALIGNED longword.

internal processor register (IPR)
Glossary–10 29 September 1997 – Subject To Change

One of many registers internal to the Alpha 21164PC microprocessor.

IPGA

Interstitial pin grid array.

JFET

Junction field-effect transistor.

latency

The amount of time it takes the system to respond to an event.

LCC

Leadless chip carrier.

LFSR

Linear feedback shift register.

load/store architecture

A characteristic of a machine architecture where data items are first loaded into a
processor register, operated on, and then stored back to memory. No operations on
memory other than load and store are provided by the instruction set.

longword

Four contiguous bytes starting on an arbitrary byte boundary. The bits are numbered
from right to left, 0 through 31.

LSB

Least significant bit.

LSI

Large-scale integration.

machine check

An operating system action triggered by certain system hardware-detected errors that
can be fatal to system operation. Once triggered, machine check handler software
analyzes the error.

MAF

Miss address file.

l

oto-
 (E),
29 September 1997 – Subject To Change Glossary–11

main memory

The large memory, external to the microprocessor, used for holding most instruction
code and data. Usually built from cost-effective DRAM memory chips. May be used
in connection with the microprocessor’s internal caches and an optional externa
cache.

masked write

A write cycle that only updates a subset of a nominal data block.

MBO

See must be one.

MBZ

See must be zero.

MESI protocol

A cache consistency protocol with full support for multiprocessing. The MESI pr
col consists of four states that define whether a block is modified (M), exclusive
shared (S), or invalid (I).

MIPS

Millions of instructions per second.

miss

See cache miss.

module

A board on which logic devices (such as transistors, resistors, and memory chips) are
mounted and connected to perform a specific system function.

module-level cache

See external cache.

MOS

Metal-oxide semiconductor.
Glossary–12 29 September 1997 – Subject To Change

MOSFET

Metal-oxide semiconductor field-effect transistor.

MSI

Medium-scale integration.

MTU

Memory address translation unit. The logic unit within the 21164PC microprocessor
that performs address translation, interfaces to the Dcache, and performs several
other functions.

multiprocessing

A processing method that replicates the sequential computer and interconnects the
collection so that each processor can execute the same or a different program at the
same time.

Must be one (MBO)

A field that must be supplied as one.

Must be zero (MBZ)

A field that is reserved and must be supplied as zero. If examined, it must be
assumed to be UNDEFINED.

NATURALLY ALIGNED

See ALIGNED.

NATURALLY ALIGNED data

Data stored in memory such that the address of the data is evenly divisible by the
size of the data in bytes. For example, an ALIGNED longword is stored such that the
address of the longword is evenly divisible by 4.

NMOS

N-type metal-oxide semiconductor.

NVRAM

Nonvolatile random-access memory.
29 September 1997 – Subject To Change Glossary–13

OBL

Observability linear feedback shift register.

octaword

Sixteen contiguous bytes starting on an arbitrary byte boundary. The bits are num-
bered from right to left, 0 through 127.

OpenVMS Alpha operating system

The open version of the DIGITAL VMS operating system, which runs on Alpha
platforms.

operand

The data or register upon which an operation is performed.

PAL

Privileged architecture library (software). See also PALcode.

Programmable array logic (hardware). See programmable array logic.

PALcode

Alpha privileged architecture library code, written to support Alpha microproces-
sors. PALcode implements architecturally defined behavior.

PALmode

A special environment for running PALcode routines.

parameter

A variable that is given a specific value that is passed to a program before execution.

parity

A method for checking the accuracy of data by calculating the sum of the number of
ones in a piece of binary data. Even parity requires the correct sum to be an even
number. Odd parity requires the correct sum to be an odd number.

PGA

Pin grid array.

pipeline

A CPU design technique whereby multiple instructions are simultaneously over-
Glossary–14 29 September 1997 – Subject To Change

lapped in execution.

PLA

Programmable logic array.

PLCC

Plastic leadless chip carrier or plastic-leaded chip carrier.

PLD

Programmable logic device.

PLL

Phase-locked loop.

PMOS

P-type metal-oxide semiconductor.

PQFP

Plastic quad flat pack.

primary cache

The cache that is the fastest and closest to the processor. The first-level caches,
located on the CPU chip, composed of the Dcache and Icache.

program counter

That portion of the CPU that contains the virtual address of the next instruction to be
executed. Most current CPUs implement the program counter (PC) as a register. This
register may be visible to the programmer through the instruction set.

programmable array logic (PAL)

A device that can be programmed by a process that blows individual fuses to create a
circuit.

PROM

Programmable read-only memory.

pull-down resistor

A resistor placed between a signal line and a negative voltage.
29 September 1997 – Subject To Change Glossary–15

pull-up resistor

A resistor placed between a signal line to a positive voltage.

quad issue

Four instructions are issued, in parallel, during the same microprocessor cycle. The
instructions use different resources and so do not conflict.

quadword

Eight contiguous bytes starting on an arbitrary byte boundary. The bits are numbered
from right to left, 0 through 63.

RAM

Random-access memory.

READ BLOCK

A transaction where the 21164PC requests that an external logic unit fetch read data.

read data wrapping

System feature that reduces apparent memory latency by allowing read data cycles to
differ the usual low-to- high sequence. Requires cooperation between the 21164PC
and external hardware.

read stream buffers

Arrangement whereby each memory module independently prefetches DRAM data
prior to an actual read request for that data. Reduces average memory latency while
improving total memory bandwidth.

register

A temporary storage or control location in hardware logic.

reliability

The probability a device or system will not fail to perform its intended functions dur-
ing a specified time interval when operated under stated conditions.

reset

An action that causes a logic unit to interrupt the task it is performing and go to its
initialized state.

RISC

Reduced instruction set computing. A computer with an instruction set that is paired
Glossary–16 29 September 1997 – Subject To Change

down and reduced in complexity so that most instructions can be performed in a sin-
gle processor cycle. High-level compilers synthesize the more complex, least fre-
quently used instructions by breaking them down into simpler instructions. This
approach allows the RISC architecture to implement a small, hardware-assisted
instruction set, thus eliminating the need for microcode.

ROM

Read-only memory.

RTL

Register-transfer logic.

SAM

Serial access memory.

SBO

Should be one.

SBZ

Should be zero.

scheduling

The process of ordering instruction execution to obtain optimum performance.

set-associative

A form of cache organization in which the location of a data block in main memory
constrains, but does not completely determine, its location in the cache. Set-associa-
tive organization is a compromise between direct-mapped organization, in which
data from a given address in main memory has only one possible cache location, and

fully associative organization, in which data from anywhere in main memory can be
put anywhere in the cache. An “n-way set-associative” cache allows data from a
given address in main memory to be cached in any of n locations.

SIMM

Single inline memory module.

SIP

Single inline package.

SIPP

nter-
ed to

m
29 September 1997 – Subject To Change Glossary–17

Single inline pin package.

SMD

Surface mount device.

SRAM

Static random-access memory.

SROM

Serial read-only memory.

SSI

Small-scale integration.

SSRAM

Synchronous static random-access memory.

stack

An area of memory set aside for temporary data storage or for procedure and i
rupt service linkages. A stack uses the last-in/first-out concept. As items are add
(pushed on) the stack, the stack pointer decrements. As items are retrieved fro
(popped off) the stack, the stack pointer increments.

STRAM

Self-timed random-access memory.

superpipelined

Describes a pipelined machine that has a larger number of pipe stages and more
complex scheduling and control. See also pipeline.

superscalar

Describes a machine architecture that allows multiple independent instructions to be
issued in parallel during a given clock cycle.

tag

The part of a cache block that holds the address information used to determine if a
Glossary–18 29 September 1997 – Subject To Change

memory operation is a hit or a miss on that cache block.

TB

Translation buffer.

tristate

Refers to a bused line that has three states: high, low, and high-impedance.

TTL

Transistor-transistor logic.

UART

Universal asynchronous receiver-transmitter.

UNALIGNED

A datum of size 2N stored at a byte address that is not a multiple of 2N.

unconditional branch instructions

Instructions that write a return address into a register.

UNDEFINED

An operation that may halt the processor or cause it to lose information. Only privi-
leged software (that is, software running in kernel mode) can trigger an UNDE-
FINED operation.

UNPREDICTABLE

Results or occurrences that do not disrupt the basic operation of the processor; the
processor continues to execute instructions in its normal manner. Privileged or
unprivileged software can trigger UNPREDICTABLE results or occurrences.

UVPROM

Ultraviolet (erasable) programmable read-only memory.

valid

Allocated. Valid cache blocks have been loaded with data and may return cache hits
when accessed.

victim

Used in reference to a cache block in the cache of a system bus node. The cache
block is valid but is about to be replaced due to a cache block resource conflict.
29 September 1997 – Subject To Change Glossary–19

virtual cache

A cache that is addressed with virtual addresses. The tag of the cache is a virtual
address. This process allows direct addressing of the cache without having to go
through the translation buffer making cache hit times faster.

VHSIC

Very-high-speed integrated circuit.

VLSI

Very-large-scale integration.

VRAM

Video random-access memory.

word

Two contiguous bytes (16 bits) starting on an arbitrary byte boundary. The bits are
numbered from right to left, 0 through 15.

write-back

A cache management technique in which write operation data is written into cache
but is not written into main memory in the same operation. This may result in tempo-
rary differences between cache data and main memory data. Some logic unit must
maintain coherency between cache and main memory.

write-back cache

Copies are kept of any data in the region; read and write operations may use the cop-
ies, and write operations use additional state to determine whether there are other
copies to invalidate or update.

WRITE BLOCK

A transaction in which the 21164PC requests that an external logic unit process write
data.

write data wrapping

System feature that reduces apparent memory latency by allowing write data cycles
to differ the usual low-to-high sequence. Requires cooperation between the 21164PC
and external hardware.

write-through
Glossary–20 29 September 1997 – Subject To Change

A cache management technique in which a write operation to cache also causes the
same data to be written in main memory during the same operation.

write-through cache

Copies are kept of any data in the region; read operations may use the copies, but
write operations update the actual data location and either update or invalidate all
copies.

Index
A
Abbreviations, xix

register access, xix
Aborts, 2-17

Absolute Maximum Rating, 9-1

ac coupling, 9-8

addr_bus_req_h
description, 3-4
operation, 4-38, 4-45

addr_cmd_par_h
operation, 3-4, 4-45, 9-16

Associated documentation, E-2

AST, 2-8

ASTER register, 5-20

ASTRR register, 5-20

B
Bcache, 2-13

errors, 4-57
hit under READ MISS example, 4-57
interface, 4-4

introduction, 4-2 to 4-6
selecting options, 4-27
29 September 1997 – Subject to Change Index–1

addr_h<39:4>
description, 3-4
operation, 3-4, 4-11, 4-12, 4-13, 4-45,

4-48, 7-4, 9-13
addr_res_h<1:0>

description, 3-4
operation, 4-41, 7-4, 9-16

Address conventions, xx

Address regions
physical, 4-10

Address translation, 2-10

Addressing, 1-2

Aligned convention, xx

Alpha documentation, E-2

ALT_MODE register, 5-49

Architecture, 1-1 to 1-4

structure, 4-12
victim buffers, 4-13

BCACHE VICTIM command, 4-29

BIU, 4-2, 4-12, 4-38, 4-51

Block diagram, 21164, 2-2

Boundaries
data wrap order, 4-11

Boundary-scan register, 12-6

Branch prediction, 2-4, 2-19

Bubble cycle, 2-31

Bubble squashing, 2-19

Bus contention
command/address bus, 4-45 to 4-50
data bus, 4-45 to 4-50

C
Cache coherency, 4-13 to 4-16

flush protocol, 4-14
Cache organization, 2-12

cack_h
description, 3-4
operation, 4-28, 4-29, 4-31, 4-51, 4-52,

4-54, 4-57, 5-11, 5-17
CBOX_ADDR register, 5-62

CBOX_CONFIG register, 5-59

Commands
21164PC initiated, 4-28
BCACHE VICTIM, 4-29
INVALIDATE, 4-40
NOP, 4-28, 4-40
READ MISS0, 4-29
READ MISS1, 4-29
WRITE BLOCK, 4-29

Commands, sending to 21164PC, 4-38

Conventions, xix, xix to xxiii
abbreviations, xix
address, xx
Index–2 29 September 1997 – Subject to Change

CBOX_CONFIG2 register, 5-65

CBOX_STATUS register, 5-63

CBU, 2-3, 2-12
IPR PALcode restrictions, 5-68
IPRs, 5-58 to 5-68
read requests, 2-30
write buffer data store, 2-34

CC register, 5-50

CC_CTL register, 5-51

cfail_h
operation, 5-11, 5-17, 9-15

clk_mode_h<1:0>
description, 3-5
operation, 4-7, 7-3, 9-15, 9-20

Clocks, 4-6 to 4-10
CPU, 4-7
system, 4-8

cmd_h<3:0>
description, 3-6
operation, 3-4, 4-28, 4-38, 4-40, 4-48,

4-51, 7-4, 9-13, 9-16
Coherency, caches, 4-13

Command/address
driving bus, 4-45
errors, 4-57

aligned, xx
data units, xxi
numbering, xxi
signal names, xxii
unaligned, xx

CPU
clocks, 4-7
microarchitecture, 2-2

cpu_clk_out_h
description, 3-7
operation, 4-6, 9-5

D
dack_h

description, 3-7
operation, 3-8, 4-28, 4-29, 4-32, 4-50,

4-51, 4-52, 4-53, 4-54, 4-57, 4-58,
8-5

Data integrity, 4-57
Bcache tag data parity, 4-58
parity, 4-57

Data types, 1-1
floating-point, 1-3, 2-9
integer, 1-3

Data units convention, xxi

Data wrap order, 4-11

data_adsc_l
description, 3-7
operation, 7-3

data_adv_l
description, 3-7
operation, 7-3

data_bus_req_h
description, 3-7
operation, 4-46, 4-47, 4-48, 4-50, 9-13

data_h<127:0>
description, 3-7
operation, 4-32, 4-45, 4-46, 4-48, 7-3,

9-10, 9-13
data_ram_oe_l

description, 3-7
operation, 4-50, 9-17

data_ram_we_l<3:0>
description, 3-8

DTB_IS register, 5-41

DTB_PTE register, 5-32

DTB_PTE_TEMP register, 5-34

DTB_TAG register, 5-32

E
Entry-pointer queues, 2-34

EXC_ADDR register, 5-12

EXC_MASK register, 5-14
29 September 1997 – Subject to Change Index–3

operation, 9-17
DC_FLUSH register, 5-49

DC_MODE register, 5-44

dc_ok_h
description, 3-8
operation, 4-7, 9-5, 9-6, 9-15, 12-2, 12-3

DC_PERR_STAT register, 5-39

DC_TEST_CTL register, 5-52

DC_TEST_TAG register, 5-54

DC_TEST_TAG_TEMP register, 5-56

Dcache, 2-13
control, 2-11

Decoupling, 9-22

Delayed system clock, 4-9

Design examples, 2-42

Digital Semiconductor Customer Technology
Center, E-1

Digital Semiconductor documentation, E-2

Digital Semiconductor information line, E-1

Digital Semiconductor WWW site, E-1

Documentation, E-2, E-3

DTB, 2-10

DTB_ASN register, 5-31

DTB_CM register, 5-31

DTB_IA register, 5-40

DTB_IAP register, 5-40

EXC_SUM register, 5-12

Exceptions, 2-17

External interface
introduction, 4-2 to 4-6
rules for use, 4-51

F
Features, 1-4 to 1-5

Fill, 2-31

FILL after other transactions, 4-50

FILL error, 4-58

FILL transaction, 4-32

fill_dirty_h
description, 3-8

fill_error_h
description, 3-8
operation, 4-32, 4-58, 8-5, 8-7, 9-15

fill_h
description, 3-8
operation, 3-8, 4-28, 4-32, 4-46, 4-50,

4-51, 4-58, 8-5, 9-15
fill_id_h

description, 3-8
operation, 3-8, 4-32, 4-58, 8-5, 9-15

Floating data types, 2-9

Flush protocol, 4-14

FPU, 2-3, 2-9

Free-entry queue, 2-34

H
Hardware, 2-8

Heat sink, 10-3

Hint bits, 2-10

HWINT_CLR register, 5-22

I
IC_FLUSH_CTL register, 5-11

Input clocks, 9-5

Instruction
decode, 2-4
issue, 2-4
prefetch, 2-4

Instruction issue, 1-4, 2-17

Instruction translation buffer, 2-7

Instructions
classes, 2-19
issue rules, 2-27
latencies, 2-23
Index–4 29 September 1997 – Subject to Change

Icache, 2-13

ICM register, 5-15

ICPERR_STAT register, 5-11

ICSR register, 5-16

idle_bc_h
description, 3-8
operation, 3-7, 4-32, 4-46, 4-47, 4-48,

4-50, 4-51, 4-52, 4-53, 4-54, 4-55,
9-15

IDU, 2-2, 2-3
branch prediction, 2-4
instruction

decode, 2-4
issue, 2-4

instruction translation buffer, 2-7
interrupts, 2-8
IPRs, 5-5 to 5-30

encoding, 5-1
slotting, 2-21

IEEE floating-point conformance, A-15

IEU, 2-3, 2-9
registers, 2-9, 5-68

IFAULT_VA_FORM register, 5-9

index_h<21:4>
description, 3-8
operation, 4-13, 4-46, 4-56, 7-3, 9-10

Initialization
role of interrupt signals, 4-59

Input clock
ac coupling, 9-8
impedance levels, 9-6
termination, 9-6

slotting, 2-19, 2-21
WMB, 2-12, 2-34

int4_valid_h<3:0>
description, 3-9
operation, 4-12, 7-4, 9-16

Interface restrictions, 4-50

Interface transactions
21164PC initiated, 4-27 to 4-38
system initiated, 4-38 to 4-45

Interrupt signals, 4-58

Interrupts, 4-58 to 4-60
ASTs, 2-8
disabling, 2-8
hardware, 2-8
initialization, 4-59
normal operation, 4-59
priority level, 4-59
software, 2-8

INTID register, 5-19

INVALIDATE command, 4-40

IPLR register, 5-18

IPRs
accessibility, 5-1
ALT_MODE, 5-49
ASTER, 5-20
ASTRR, 5-20
CBOX_ADDR, 5-62
CBOX_CONFIG, 5-59
CBOX_CONFIG2, 5-65
CBOX_STATUS, 5-63
CC, 5-50
CC_CTL, 5-51
DC_FLUSH, 5-49
DC_MODE, 5-44

SIRR, 5-21
SL_RCV, 5-26
SL_XMIT, 5-25
VA, 5-36
VA_FORM, 5-37

IRF, 2-9

irq_h<3:0>
description, 3-11
operation, 2-8, 4-8, 4-60, 5-23, 7-4, 9-15

ISR register, 5-23

Issue rules, 2-27
29 September 1997 – Subject to Change Index–5

DC_PERR_STAT, 5-39
DC_TEST_CTL, 5-52
DC_TEST_TAG, 5-54
DC_TEST_TAG_TEMP, 5-56
DTB_ASN, 5-31
DTB_CM, 5-31
DTB_IA, 5-40
DTB_IAP, 5-40
DTB_IS, 5-41
DTB_PTE, 5-32
DTB_PTE_TEMP, 5-34
DTB_TAG, 5-32
EXC_ADDR, 2-18, 5-12
EXC_MASK, 5-14
EXC_SUM, 5-12
HWINT_CLR, 5-22
IC_FLUSH_CTL, 5-11
ICM, 5-15
ICPERR_STAT, 5-11
ICSR, 2-8, 5-16
IFAULT_VA_FORM, 5-9
INTID, 5-19
IPLR, 2-8, 5-18
ISR, 5-23
ITB_ASN, 5-7
ITB_IA, 5-8
ITB_IAP, 5-7
ITB_IS, 5-8
ITB_PTE, 5-5
ITB_PTE_TEMP, 5-7
ITB_TAG, 5-5
IVPTBR, 5-10
MAF_MODE, 5-46
MCSR, 5-42
MM_STAT, 5-35
MVPTBR, 5-38
PAL_BASE, 5-15
PMCTR, 5-27

Issuing rules, 2-19 to 2-28

ITB, 2-7

ITB_ASN register, 5-7

ITB_IA register, 5-8

ITB_IAP register, 5-7

ITB_IS register, 5-8

ITB_PTE register, 5-5

ITB_PTE_TEMP register, 5-7

ITB_TAG register, 5-5

IVPTBR register, 5-10

L
Latencies, 2-23

Load miss, 2-29

Load-after-store trap, 2-29

Logic symbol, 3-2

M
MAF, 2-11, 2-29 to 2-32, 4-12

entries, 2-31
entry, 2-32
rules, 2-29

MAF_MODE register, 5-46

mch_hlt_irq_h
operation, 2-8, 4-9, 4-60, 9-15

MCSR register, 5-42

Memory regions
physical, 4-11

Merge
write buffer, 4-12

Merging
rules, 2-29

Microarchitecture, 2-2 to 2-13

MM_STAT register, 5-35

MTU, 2-3, 2-10
address translation, 2-10
data translation buffer, 2-10

PAL_BASE register, 5-15

PALcode, 1-2

PALshadow registers, 5-68

PALtemp IPRs, 5-68
encoding, 5-2

Pending-request queue, 2-34

Performance counters, 2-36

Physical address considerations, 4-10

Physical address regions, 4-10
Index–6 29 September 1997 – Subject to Change

IPRs, 5-31 to 5-57
encoding, 5-3

load instruction, 2-11
miss address file, 2-11
store execution, 2-32 to 2-33
store instructions, 2-11
write buffer, 2-12
write buffer address file, 2-34

Multiple instruction issue, 2-4

MVPTBR register, 5-38

N
Noncached read operations, 4-12

Noncached write operations, 4-12

Nonissue conditions, 2-19

NOP command, 4-28, 4-40

Numbering convention, xxi

O
Operating temperature, 10-1

Ordering documentation, E-2, E-3

Ordering products, E-2

osc_clk_in_h,l
operation, 3-5, 4-7, 9-2, 9-4, 9-5, 9-7, 9-8,

9-20, 12-3

P
PAL restrictions, 5-69

Physical memory regions, 4-11

Pipeline organization, 2-13 to 2-19

Pipelines, 2-9
bubbles, 2-19
examples, 2-15

floating add, 2-15
integer add, 2-15
load (Dcache hit), 2-16
load (Dcache miss), 2-16
store (Dcache hit), 2-17

instruction issue, 2-17
stages, 2-14, 2-17
stall, 2-17, 2-19

PMCTR register, 5-27

port_mode_h<1:0>
operation, 7-4, 9-15, 12-1, 12-2

Power supply
considerations, 9-21
decoupling, 9-22
sequencing, 9-23

Private Bcache transactions
21164PC to Bcache, 4-16 to 4-27

Producer-consumer dependencies, 2-23

Producer-producer dependencies, 2-23

Producer-producer latency, 2-26

PTE, 2-7, 2-10

pwr_fail_irq_h
operation, 2-8, 4-9, 4-60, 9-15

Q
Queues

entry-pointer, 2-34

R
Race conditions

21164PC and system, 4-51
Race examples

idle_bc_h and cack_h, 4-54

SIRR register, 5-21

SL_RCV register, 5-26

SL_XMIT register, 5-25

Slotting, 2-21

Specifications
mechanical, 11-1

SROM, 2-13

srom_clk_h
operation, 5-25, 9-16, 9-19, 9-20, 12-1

srom_data_h
29 September 1997 – Subject to Change Index–7

READ MISS transaction (no Bcache), 4-31

READ MISS with idle_bc_h asserted example,
4-55

READ MISS with victim abort example, 4-56

READ MISS with victim example, 4-53

READ MISS with victim transaction, 4-33

READ MISS0 command, 4-29

READ MISS1 command, 4-29

Read/write spacing
data bus contention, 4-46

Register access abbreviations, xix

Registers
accessibility, 5-1
integer, 2-9
PALshadow, 2-9, 5-68
PALtemp, 5-68

Related documentation, E-2

Replay traps, 2-28 to 2-29
as aborts, 2-18
load instruction, 2-12, 2-33
load-miss-and-use, 2-18

Resource conflict, 2-19

Restrictions
interface, 4-50

S
Scheduling rules, 2-19 to 2-28

Signal descriptions, 3-3 to 3-16

Signal name convention, xxii

operation, 5-26, 9-15, 12-1
srom_oe_l

operation, 9-16, 12-1
srom_present_l

operation, 9-15, 9-18, 9-19, 12-1
Store instruction

execution, 2-32
Store instructions, 2-11

Superpages, 2-7

sys_clk_out1_h
operation, 3-11, 4-2, 4-6, 4-8, 4-9, 9-13

sys_clk_out2_h
operation, 4-6, 9-6

sys_mch_chk_irq_h
operation, 2-8, 4-9, 4-60, 9-15

sys_reset_l
operation, 4-59, 9-15, 9-17, 9-18

System clock, 4-8
delayed, 4-9

System clock delay, 4-10

System interface, 4-2
addresses, 4-3
commands, 4-3
introduction, 4-2 to 4-6

T
tag_data_h<32:19>

description, 3-13
operation, 4-13, 4-48, 4-58, 7-3, 9-17

tag_data_par_h
description, 3-13
operation, 4-58, 9-17

tag_dirty_h
description, 3-13
operation, 9-16

tag_ram_oe_l
description, 3-13
operation, 9-17

tag_ram_we_l
description, 3-13
operation, 9-17

Timing diagrams
Bcache hit under READ MISS, 4-57
bus contention, 4-45
FILL to private read or write, 4-50
idle_bc_h and cack_h, 4-54
READ MISS with idle_bc_h asserted, 4-55
READ MISS with victim, 4-53
READ MISS with victim abort, 4-56
using data_bus_req_h, 4-48

tms_h
operation, 9-4, 9-21, 12-1, 12-2, 12-4

Transactions
Index–8 29 September 1997 – Subject to Change

tag_valid_h
description, 3-13
operation, 9-16, 9-17

tck_h
operation, 9-21, 12-1, 12-2

tdi_h
operation, 9-4, 9-21, 12-1, 12-2, 12-6

tdo_h
operation, 9-21, 12-1, 12-2, 12-6

Technical support, E-1

temp_sense
operation, 9-4

Temperature, 10-1

Terminology, xix to xxiii

test_status_h<1>
description, 3-13
operation, 5-18, 7-5, 7-6, 9-18, 12-6

Thermal design considerations, 10-4

Thermal heat sink, 10-3

Thermal management, 10-1

Thermal operating temperature, 10-1

Third-party documentation, E-3

FILL, 4-32
READ MISS (no Bcache), 4-31
READ MISS with victim, 4-33
system initiated, 4-38
WRITE BLOCK, 4-37
WRITE BLOCK LOCK, 4-37

Traps
load-after-store, 2-29
load-miss-and-use, 2-26
replay, 2-18, 2-28, 2-33

Tristate
BCACHE VICTIM to fill, 4-49
FILL to private Bcache read or write, 4-50
overlap, 4-45, 4-48
READ or WRITE to fill, 4-48

trst_l
operation, 9-21, 12-1, 12-2, 12-3

U
Unaligned convention, xx

V
VA register, 5-36

VA_FORM register, 5-37

Victim buffers, 4-13

victim_pending_h
operation, 4-13, 4-29, 9-16

W
WMB instruction, 2-12, 2-34

WRITE BLOCK command, 4-29

WRITE BLOCK command acknowledge, 4-51

WRITE BLOCK LOCK transaction, 4-37

WRITE BLOCK transaction, 4-37

Write buffer, 2-12, 2-33 to 2-36
entry processing, 2-35

Write invalidate protocol
commands, 4-40

Write ordering, 2-36
29 September 1997 – Subject to Change Index–9

	Contents
	Figures
	Tables
	Preface
	Introduction
	1.1� The Architecture
	1.1.1� Addressing
	1.1.2� Integer Data Types
	1.1.3� Floating-Point Data Types

	1.2� 21164PC Microprocessor Features

	Internal Architecture
	2.1� 21164PC Microarchitecture
	Figure 2–1� 21164PC Microprocessor Block/Pipe Flow...
	2.1.1� Instruction Fetch/Decode Unit and Branch Un...
	2.1.1.1� Instruction Decode and Issue
	2.1.1.2� Instruction Prefetch
	2.1.1.3� Branch Execution
	Table 2–1� Effect of Branching Instructions on the...

	2.1.1.4� Instruction Translation Buffer
	2.1.1.5� Interrupts

	2.1.2� Integer Execution Unit
	2.1.3� Floating-Point Execution Unit
	2.1.4� Memory Address Translation Unit
	2.1.4.1� Data Translation Buffer
	2.1.4.2� Load Instruction and the Miss Address Fil...
	2.1.4.3� Dcache Control and Store Instructions
	2.1.4.4� Write Buffer

	2.1.5� Cache Control and Bus Interface Unit
	2.1.6� Cache Organization
	2.1.6.1� Data Cache
	2.1.6.2� Instruction Cache
	2.1.6.3� External Cache

	2.1.7� Serial Read-Only Memory Interface

	2.2� Pipeline Organization
	Figure 2–2� Instruction Pipeline Stages
	Table 2–2� Pipeline Examples—All Cases
	Table 2–3� Pipeline Examples—Integer Add
	Table 2–4� Pipeline Examples—Floating Add
	Table 2–5� Pipeline Examples—Load (Dcache Hit)
	Table 2–6� Pipeline Examples—Load (Dcache Miss)
	Table 2–7� Pipeline Examples—Store (Dcache Hit)
	2.2.1� Pipeline Stages and Instruction Issue
	2.2.2� Aborts and Exceptions
	2.2.3� Nonissue Conditions

	2.3� Scheduling and Issuing Rules
	2.3.1� Instruction Class Definition and Instructio...
	Table 2–8� Instruction Classes and Slotting (Sheet...

	2.3.2� Coding Guidelines
	2.3.3� Instruction Latencies
	Table 2–9� Instruction Latencies (Sheet 2 of 2)
	2.3.3.1� Producer–Producer Latency

	2.3.4� Issue Rules

	2.4� Replay Traps
	2.5� Miss Address File and Load-Merging Rules
	2.5.1� Merging Rules
	2.5.1.1� Cacheable Space Load-Merge Rules
	2.5.1.2� Noncacheable Space Load-Merge Rules

	2.5.2� Read Requests to the CBU
	2.5.3� MAF Entries and MAF Full Conditions
	2.5.4� Fill Operation

	2.6� MTU Store Instruction Execution
	2.7� Write Buffer and the WMB Instruction
	2.7.1� The Write Buffer
	2.7.2� The Write Memory Barrier (WMB) Instruction
	2.7.3� Entry-Pointer Queues
	2.7.4� Write Buffer Entry Processing
	2.7.5� Ordering of Noncacheable Space Write Instru...

	2.8� Performance Measurement Support–Performance C...
	2.8.1� CBU Performance Counters

	2.9� Floating-Point Control Register
	Figure 2–3� Floating-Point Control Register (FPCR)...
	Table 2–10� Floating-Point Control Register Bit De...

	2.10� Design Examples
	Figure 2–4� Typical Uniprocessor Configuration

	Hardware Interface
	3.1� 21164PC Microprocessor Logic Symbol
	Figure 3–1� 21164PC Microprocessor Logic Symbol

	3.2� 21164PC Signal Names and Functions
	Table 3–1� 21164PC Signal Descriptions (Sheet 10 o...
	Table 3–2� 21164PC Signal Descriptions by Function...

	Clocks, Cache, and External Interface
	4.1� Introduction to the External Interface
	4.1.1� System Interface
	Figure 4–1� 21164PC System/Bcache Interface
	4.1.1.1� Commands and Addresses

	4.1.2� Bcache Interface
	4.1.2.1� Bcache Interface Enhancements
	4.1.2.2� Pipelined Bcache
	Figure 4–2� Merits of a Multiprobes In Flight – Pi...

	4.1.2.3� Write Interleaving
	Figure 4–3� Tag/Data Store Interleaving

	4.2� Clocks
	4.2.1� CPU Clock
	Table 4–1� CPU Clock Generation Control
	Figure 4–4� Clock Signals and Functions

	4.2.2� System Clock
	Table 4–2� System Clock Divisor (Sheet 2 of 2)
	Figure 4–5� 21164PC Uniprocessor Clock

	4.2.3� Delayed System Clock
	Table 4–3� System Clock Delay

	4.3� Physical Address Considerations
	4.3.1� Physical Address Regions
	Table 4–4� Physical Memory Regions

	4.3.2� Data Wrapping
	4.3.3� Noncached Read Operations
	4.3.4� Noncached Write Operations

	4.4� Bcache Structure
	4.4.1� Bcache Victim Buffers

	4.5� Cache Coherency
	Table 4–5� Bcache States for Cache Coherency Proto...
	4.5.1� Flush Cache Coherency Protocol
	Figure 4–6� Flush-Based Protocol 21164PC States
	Figure 4–7� Flush-Based Protocol System/Bus States...

	4.6� 21164PC-to-Bcache Transactions
	4.6.1� Synchronous Burst-Mode Cache Support
	Figure 4–8� SSRAM/Bcache Interface

	4.6.2� Bcache Timing
	Table 4–6� Bcache Transactions �

	4.6.3� Bcache Private Read Transaction
	Figure 4–9� Bcache Private Read Transaction

	4.6.4� Bcache st_clk Timing
	4.6.5� Bcache Private Write Transactions
	4.6.5.1� Bcache Private Write-Probe Operation
	Figure 4–10� Bcache Private Write Probe

	4.6.5.2� Bcache Private Data-Write Operation
	Figure 4–11� Bcache Private Data – Write Hit Clean...
	Figure 4–12� Bcache Private Data – Write Hit Dirty...

	4.6.5.3� Interleaving Write-Probes
	Figure 4–13� Bcache Interleaving

	4.6.6� Selecting Bcache Options
	Table 4–7� Bcache Options �

	4.7� 21164PC-Initiated System Transactions
	Table 4–8� 21164PC-Initiated Interface Commands (S...
	4.7.1� READ MISS Clean - No Victim
	Figure 4–14� READ MISS Clean – Bcache Timing Diagr...

	4.7.2� FILL
	4.7.3� READ MISS with Victim
	Figure 4–15� READ MISS with Victim Timing Diagram,...
	Figure 4–16� READ MISS with Victim Timing Diagram,...

	4.7.4� WRITE BLOCK
	Figure 4–17� WRITE BLOCK Timing Diagram

	4.8� System-Initiated Transactions
	4.8.1� Sending Commands to the 21164PC
	Figure 4–18� Algorithm for System Sending Commands...

	4.8.2� Write Invalidate Protocol Commands
	Table 4–9� System-Initiated Interface Commands (Wr...
	4.8.2.1� 21164PC Responses to Flush-Based Protocol...
	Table 4–10� 21164PC Responses to Flush-Based Proto...

	4.8.2.2� FLUSH
	Figure 4–19� FLUSH Timing Diagram (Bcache Hit) Flo...

	4.8.2.3� INVALIDATE
	Figure 4–20� INVALIDATE Timing Diagram – Bcache Hi...

	4.8.2.4� READ
	Figure 4–21� READ Timing Diagram (Bcache Hit) Flow...

	4.9� Data Bus and Command/Address Bus Contention
	4.9.1� Command/Address Bus
	Figure 4–22� Driving the Command/Address Bus

	4.9.2� Read/Write Spacing—Data Bus Contention
	4.9.3� Using idle_bc_h and fill_h
	4.9.4� Using data_bus_req_h
	Figure 4–23� Using data_bus_req_h

	4.9.5� Tristate Overlap
	4.9.5.1� Private READ or WRITE to FILL
	4.9.5.2� System READ to FILL (System WRITE) Spacin...
	Figure 4–24� System READ to FILL Spacing

	4.9.5.3� FILL to Private READ or WRITE Operation
	Figure 4–25� FILL to Private READ or WRITE Operati...

	4.10� 21164PC Interface Restrictions
	4.10.1� Fill Operations After Other Transactions
	4.10.2� Command Acknowledge for WRITE BLOCK Comman...

	4.11� 21164PC/System Race Conditions
	4.11.1� Rules for 21164PC and System Use of Extern...
	4.11.2� READ MISS with Victim Aborted by FILL Exam...
	Figure 4–26� READ MISS with Victim Aborted by FILL...

	4.11.3� idle_bc_h and cack_h Race Example
	Figure 4–27� idle_bc_h and cack_h Race Examples

	4.11.4� READ MISS with idle_bc_h Asserted Example
	Figure 4–28� READ MISS with idle_bc_h Asserted Exa...

	4.11.5� READ MISS with Victim Aborted by System Co...
	Figure 4–29� READ MISS with Victim Abort Example

	4.11.6� Bcache Hit Under READ MISS Example
	Figure 4–30� Bcache Hit Under READ MISS Example

	4.12� Data Integrity and Bcache Errors
	4.12.1� Data Parity
	4.12.2� Bcache Tag Data Parity
	4.12.3� Fill Error

	4.13� Interrupts
	Figure 4–31� 21164PC Interrupt Signals
	4.13.1� Interrupt Signals During Initialization
	4.13.2� Interrupt Signals During Normal Operation
	4.13.3� Interrupt Priority Level
	Table 4–11� Interrupt Priority Level Effect (Sheet...

	Internal Processor Registers
	Table 5–1� IDU, MTU, Dcache, and PALtemp IPR Encod...
	5.1� Instruction Fetch/Decode Unit and Branch Unit...
	5.1.1� Istream Translation Buffer Tag (ITB_TAG) Re...
	Figure 5–1� Istream Translation Buffer Tag (ITB_TA...

	5.1.2� Instruction Translation Buffer Page Table E...
	Figure 5–2� Instruction Translation Buffer Page Ta...
	Figure 5–3� Instruction Translation Buffer Page Ta...

	5.1.3� Instruction Translation Buffer Address Spac...
	Figure 5–4� Instruction Translation Buffer Address...

	5.1.4� Instruction Translation Buffer Page Table E...
	Table 5–2� Granularity Hint Bits in ITB_PTE_TEMP R...

	5.1.5� Instruction Translation Buffer Invalidate A...
	5.1.6� Instruction Translation Buffer Invalidate A...
	5.1.7� Instruction Translation Buffer IS (ITB_IS) ...
	Figure 5–5� Instruction Translation Buffer IS (ITB...

	5.1.8� Formatted Faulting Virtual Address (IFAULT_...
	Figure 5–6� Formatted Faulting Virtual Address (IF...
	Figure 5–7� Formatted Faulting Virtual Address (IF...

	5.1.9� Virtual Page Table Base (IVPTBR) Register (...
	Figure 5–8� Virtual Page Table Base (IVPTBR) Regis...
	Figure 5–9� Virtual Page Table Base (IVPTBR) Regis...

	5.1.10� Icache Parity Error Status (ICPERR_STAT) R...
	Figure 5–10� Icache Parity Error Status (ICPERR_ST...
	Table 5–3� Icache Parity Error Status Register Fie...

	5.1.11� Icache Flush Control (IC_FLUSH_CTL) Regist...
	5.1.12� Exception Address (EXC_ADDR) Register (10B...
	Figure 5–11� Exception Address (EXC_ADDR) Register...

	5.1.13� Exception Summary (EXC_SUM) Register (10C)...
	Figure 5–12� Exception Summary (EXC_SUM) Register
	Table 5–4� Exception Summary Register Fields �

	5.1.14� Exception Mask (EXC_MASK) Register (10D)
	Figure 5–13� Exception Mask (EXC_MASK) Register

	5.1.15� PAL Base Address (PAL_BASE) Register (10E)...
	Figure 5–14� PAL Base Address (PAL_BASE) Register

	5.1.16� IDU Current Mode (ICM) Register (10F)
	Figure 5–15� IDU Current Mode (ICM) Register

	5.1.17� IDU Control and Status (ICSR) Register (11...
	Figure 5–16� IDU Control and Status (ICSR) Registe...
	Table 5–5� IDU Control and Status Register Fields ...

	5.1.18� Interrupt Priority Level (IPLR) Register (...
	Figure 5–17� Interrupt Priority Level (IPLR) Regis...

	5.1.19� Interrupt ID (INTID) Register (111)
	Figure 5–18� Interrupt ID (INTID) Register

	5.1.20� Asynchronous System Trap Request (ASTRR) R...
	Figure 5–19� Asynchronous System Trap Request (AST...

	5.1.21� Asynchronous System Trap Enable (ASTER) Re...
	Figure 5–20� Asynchronous System Trap Enable (ASTE...

	5.1.22� Software Interrupt Request (SIRR) Register...
	Figure 5–21� Software Interrupt Request (SIRR) Reg...
	Table 5–6� Software Interrupt Request Register Fie...

	5.1.23� Hardware Interrupt Clear (HWINT_CLR) Regis...
	Figure 5–22� Hardware Interrupt Clear (HWINT_CLR) ...
	Table 5–7� Hardware Interrupt Clear Register Field...

	5.1.24� Interrupt Summary (ISR) Register (100)
	Figure 5–23� Interrupt Summary (ISR) Register
	Table 5–8� Interrupt Summary Register Fields (Shee...

	5.1.25� Serial Line Transmit (SL_XMIT) Register (1...
	Figure 5–24� Serial Line Transmit (SL_XMIT) Regist...
	Table 5–9� Serial Line Transmit Register Fields

	5.1.26� Serial Line Receive (SL_RCV) Register (117...
	Figure 5–25� Serial Line Receive (SL_RCV) Register...
	Table 5–10� Serial Line Receive Register Fields

	5.1.27� Performance Counter (PMCTR) Register (11C)...
	Figure 5–26� Performance Counter (PMCTR) Register
	Table 5–11� Performance Counter Register Fields
	Table 5–12� PMCTR Counter Select Options (Sheet 2 ...
	Table 5–13� Measurement Mode Control

	5.2� Memory Address Translation Unit (MTU) IPRs
	5.2.1� Dstream Translation Buffer Address Space Nu...
	Figure 5–27� Dstream Translation Buffer Address Sp...

	5.2.2� Dstream Translation Buffer Current Mode (DT...
	Figure 5–28� Dstream Translation Buffer Current Mo...

	5.2.3� Dstream Translation Buffer Tag (DTB_TAG) Re...
	Figure 5–29� Dstream Translation Buffer Tag (DTB_T...

	5.2.4� Dstream Translation Buffer Page Table Entry...
	Figure 5–30� Dstream Translation Buffer Page Table...

	5.2.5� Dstream Translation Buffer Page Table Entry...
	Figure 5–31� Dstream Translation Buffer Page Table...

	5.2.6� Dstream Memory Management Fault Status (MM_...
	Figure 5–32� Dstream Memory Management Fault Statu...
	Table 5–14� Dstream Memory Management Fault Status...

	5.2.7� Faulting Virtual Address (VA) Register (206...
	Figure 5–33� Faulting Virtual Address (VA) Registe...

	5.2.8� Formatted Virtual Address (VA_FORM) Registe...
	Figure 5–34� Formatted Virtual Address (VA_FORM) R...
	Figure 5–35� Formatted Virtual Address (VA_FORM) R...
	Table 5–15� Formatted Virtual Address Register Fie...

	5.2.9� MTU Virtual Page Table Base (MVPTBR) Regist...
	Figure 5–36� MTU Virtual Page Table Base (MVPTBR) ...

	5.2.10� Dcache Parity Error Status (DC_PERR_STAT) ...
	Figure 5–37� Dcache Parity Error Status (DC_PERR_S...
	Table 5–16� Dcache Parity Error Status Register Fi...

	5.2.11� Dstream Translation Buffer Invalidate All ...
	5.2.12� Dstream Translation Buffer Invalidate All ...
	5.2.13� Dstream Translation Buffer Invalidate Sing...
	Figure 5–38� Dstream Translation Buffer Invalidate...

	5.2.14� MTU Control (MCSR) Register (20F)
	Figure 5–39� MTU Control (MCSR) Register
	Table 5–17� MTU Control Register Fields

	5.2.15� Dcache Mode (DC_MODE) Register (216)
	Figure 5–40� Dcache Mode (DC_MODE) Register
	Table 5–18� Dcache Mode Register Fields

	5.2.16� Miss Address File Mode (MAF_MODE) Register...
	Figure 5–41� Miss Address File Mode (MAF_MODE) Reg...
	Table 5–19� Miss Address File Mode Register Fields...

	5.2.17� Dcache Flush (DC_FLUSH) Register (210)
	5.2.18� Alternate Mode (ALT_MODE) Register (20C)
	Figure 5–42� Alternate Mode (ALT_MODE) Register
	Table 5–20� Alternate Mode Register Settings

	5.2.19� Cycle Counter (CC) Register (20D)
	Figure 5–43� Cycle Counter (CC) Register

	5.2.20� Cycle Counter Control (CC_CTL) Register (2...
	Figure 5–44� Cycle Counter Control (CC_CTL) Regist...
	Table 5–21� Cycle Counter Control Register Fields

	5.2.21� Dcache Test Tag Control (DC_TEST_CTL) Regi...
	Figure 5–45� Dcache Test Tag Control (DC_TEST_CTL)...
	Table 5–22� Dcache Test Tag Control Register Field...

	5.2.22� Dcache Test Tag (DC_TEST_TAG) Register (21...
	Figure 5–46� Dcache Test Tag (DC_TEST_TAG) Registe...
	Table 5–23� Dcache Test Tag Register Fields

	5.2.23� Dcache Test Tag Temporary (DC_TEST_TAG_TEM...
	Figure 5–47� Dcache Test Tag Temporary (DC_TEST_TA...
	Table 5–24� Dcache Test Tag Temporary Register Fie...

	5.3� External Interface Control (CBU) IPRs
	Table 5–25� CBU Internal Processor Register Descri...
	5.3.1� CBU Configuration (CBOX_CONFIG) Register (F...
	Figure 5–48� CBU Configuration (CBOX_CONFIG) Regis...
	Table 5–26� CBU Configuration Register Fields (She...

	5.3.2� CBU Address (CBOX_ADDR) Register (FF FFF0 0...
	Figure 5–49� CBU Address (CBOX_ADDR) Register
	Table 5–27� CBU Address Register Fields

	5.3.3� CBU Status (CBOX_STATUS) Register (FF FFF0 ...
	Figure 5–50� CBU Status (CBOX_STATUS) Register
	Table 5–28� CBU Status Register Fields (Sheet 2 of...

	5.3.4� CBU Configuration #2 (CBOX_CONFIG2) Registe...
	Figure 5–51� CBU Configuration #2 (CBOX_CONFIG2) R...
	Table 5–29� CBU Configuration #2 Register Fields (...

	5.4� PALcode Storage Registers
	5.5� Restrictions
	5.5.1� CBU IPR PALcode Restrictions
	Table 5–30� CBU IPR PALcode Restrictions (Sheet 2 ...

	5.5.2� PALcode Restrictions—Instruction Definition...
	Table 5–31� PALcode Restrictions Table (Sheet 5 of...

	Privileged Architecture Library Code
	6.1� PALcode Description
	6.2� PALmode Environment
	6.3� Invoking PALcode
	6.4� PALcode Entry Points
	6.4.1� CALL_PAL Entry
	6.4.2� PALcode Trap Entry Points
	Table 6–1� PALcode Trap Entry Points (Sheet 2 of 2...

	6.5� Required PALcode Function Codes
	Table 6–2� Required PALcode Function Codes

	6.6� 21164PC Implementation of the Architecturally...
	Table 6–3� Opcodes Reserved for PALcode
	6.6.1� HW_LD Instruction
	Figure 6–1� HW_LD Instruction Format
	Table 6–4� HW_LD Format Description

	6.6.2� HW_ST Instruction
	Figure 6–2� HW_ST Instruction Format
	Table 6–5� HW_ST Format Description

	6.6.3� HW_REI Instruction
	Figure 6–3� HW_REI Instruction Format
	Table 6–6� HW_REI Format Description

	6.6.4� HW_MFPR and HW_MTPR Instructions
	Figure 6–4� HW_MFPR and HW_MTPR Instruction Format...
	Table 6–7� HW_MFPR and HW_MTPR Format Description

	Initialization and Configuration
	7.1� Input Signals sys_reset_l and dc_ok_h and Boo...
	Table 7–1� 21164PC Signal Pin Reset State (Sheet 3...
	7.1.1� Pin State with dc_ok_h Not Asserted

	7.2� sysclk Ratio and Delay
	7.3� Built-In Self-Test (BiSt)
	7.4� Serial Read-Only Memory Interface Port
	7.4.1� Serial Instruction Cache Load Operation

	7.5� Serial Terminal Port
	7.6� Cache Initialization
	7.6.1� Icache Initialization
	7.6.2� Flushing Dirty Blocks

	7.7� External Interface Initialization
	7.8� Internal Processor Register Reset State
	Table 7–2� Internal Processor Register Reset State...

	7.9� Timeout Reset
	7.10� IEEE 1149.1 Test Port Reset

	Error Detection and Error Handling
	8.1� Error Flows
	8.1.1� Icache Data or Tag Parity Error
	8.1.2� Dcache Data Parity Error
	8.1.3� Dcache Tag Parity Error
	8.1.4� Istream Data Parity Errors (Bcache or Memor...
	8.1.5� Dstream Data Parity Errors (Bcache or Memor...
	8.1.6� Bcache Tag Parity Errors—Istream
	8.1.7� Bcache Tag Parity Errors—Dstream
	8.1.8� System Read Operations of the Bcache
	8.1.9� Fill Timeout (FILL_ERROR_H)
	8.1.10� System Machine Check
	8.1.11� IDU Timeout

	8.2� MCHK Flow
	8.3� MCK_INTERRUPT Flow

	Electrical Data
	9.1� Electrical Characteristics
	Table 9–1� 21164PC Absolute Maximum Ratings (Sheet...
	Table 9–2� Operating Voltages

	9.2� DC Characteristics
	9.2.1� Power Supply
	9.2.2� Input Signal Pins
	9.2.3� Output Signal Pins
	Table 9–3� CMOS DC Input/Output Characteristics (S...

	9.3� Clocking Scheme
	9.3.1� Input Clocks
	Figure 9–1� osc_clk_in_h,l Input Network and Termi...

	9.3.2� Clock Termination and Impedance Levels
	Figure 9–2� Impedance vs Clock Input Frequency

	9.3.3� AC Coupling
	Table 9–4� Input Clock Specification

	9.4� AC Characteristics
	9.4.1� Test Configuration
	Figure 9–3� Input/Output Pin Timing

	9.4.2� Pin Timing
	9.4.2.1� Backup Cache Loop Timing
	Table 9–5� Bcache Loop Timing
	Table 9–6� Normal Output Driver Characteristics
	Table 9–7� Big Output Driver Characteristics
	Figure 9–4� Bcache Timing

	9.4.2.2� sys_clk-Based Systems
	Table 9–8� 21164PC System Clock Output Timing (sys...
	Figure 9–5� sys_clk System Timing

	9.4.3� Timing—Additional Signals
	Table 9–9� Input Timing for sys_clk_out-Based Syst...
	Table 9–10� Output Timing for sys_clk_out-Based Sy...
	Table 9–11� Bcache Control Signal Timing

	9.4.4� Timing of Test Features
	9.4.4.1� Icache BiSt Operation Timing
	Figure 9–6� BiSt Timing Event —Timeline
	Table 9–12� BiSt Timing for Some System Clock Rati...
	Table 9–13� BiSt Timing for Some System Clock Rati...

	9.4.4.2� Automatic SROM Load Timing
	Figure 9–7� SROM Load Timing Event—Timeline
	Table 9–14� SROM Load Timing for Some System Clock...
	Table 9–15� SROM Load Timing for Some System Clock...
	Figure 9–8� Serial ROM Load Timing

	9.4.5� Clock Test Modes
	9.4.5.1� Normal (1° Clock) Mode
	9.4.5.2� Clock Test Reset Mode
	Table 9–16� Clock Test Modes

	9.4.6� IEEE 1149.1 (JTAG) Performance
	Table 9–17� IEEE 1149.1 Circuit Performance Specif...

	9.5� Power Supply Considerations
	9.5.1� Decoupling
	9.5.1.1� Vdd Decoupling
	9.5.1.2� Vddi Decoupling

	9.5.2� Power Supply Sequencing

	Thermal Management
	10.1� Operating Temperature
	Table 10–1� Qca at Various Airflows
	Table 10–2� Maximum Ta at Various Airflows

	10.2� Heat-Sink Specifications
	Figure 10–1� Heat Sink 1

	10.3� Thermal Design Considerations

	Mechanical Packaging Information
	11.1� Mechanical Specifications
	Figure 11–1� Package Dimensions

	11.2� Signal Descriptions and Pin Assignment
	11.2.1� Signal Pin Lists
	Table 11–1� Alphabetic Signal Pin List (Sheet 4 of...
	Table 11–2� Voltage Reference, Power, and Ground P...

	11.2.2� Pin Assignment
	Figure 11–2� 21164PC Top View (Pin Down)
	Figure 11–3� 21164PC Bottom View (Pin Up)

	Testability and Diagnostics
	12.1� Test Port Pins
	Table 12–1� 21164PC Test Port Pins

	12.2� Test Interface
	12.2.1� IEEE 1149.1 Test Access Port
	Table 12–2� Compliance Enable Inputs
	Figure 12–1� IEEE 1149.1 Test Access Port
	Figure 12–2� TAP Controller State Machine
	Table 12–3� Instruction Register

	12.2.2� Test Status Pin

	12.3� Boundary-Scan Register
	Table 12–4� Boundary-Scan Register Organization (S...

	Alpha Instruction Set
	A.1� Alpha Instruction Summary
	Table A–1� Instruction Format and Opcode Notation
	Table A–2� Architecture Instructions (Sheet 8 of 8...
	A.1.1� Opcodes Reserved for DIGITAL
	Table A–3� Opcodes Reserved for DIGITAL

	A.1.2� Opcodes Reserved for PALcode
	Table A–4� Opcodes Reserved for PALcode

	A.2� IEEE Floating-Point Instructions
	Table A–5� IEEE Floating-Point Instruction Functio...

	A.3� VAX Floating-Point Instructions
	Table A–6� VAX Floating-Point Instruction Function...

	A.4� Opcode Summary
	Table A–7� Opcode Summary �

	A.5� Required PALcode Function Codes
	Table A–8� Required PALcode Function Codes

	A.6� 21164PC Microprocessor IEEE Floating-Point Co...

	21164PC Microprocessor Specifications
	Table B–1� 21164PC Microprocessor Specifications (...

	Serial Icache Load Predecode Values
	Errata Sheet
	Table D–1� Document Revision History

	Support, Products, and Documentation
	Glossary
	Index
	A
	B
	C
	D
	E
	F
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

