
Advanced Configuration and
Power Interface Specification
Revision 2.0 Errata

Compaq Computer Corporation
Intel Corporation
Microsoft Corporation
Phoenix Technologies Ltd.
Toshiba Corporation

Errata document revision 1.5
April 13, 2001

ii

Copyright © 1996, 1997, 1998, 1999, 2000, 2001 Compaq Computer Corporation, Intel Corporation, Microsoft
Corporation, Phoenix Technologies Ltd., Toshiba Corporation
All rights reserved.

INTELLECTUAL PROPERTY DISCLAIMER

THIS SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER INCLUDING
ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY
WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION, OR SAMPLE.

NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED OR INTENDED HEREBY.

COMPAQ, INTEL, MICROSOFT, PHOENIX, AND TOSHIBA DISCLAIM ALL LIABILITY, INCLUDING
LIABILITY FOR INFRINGEMENT OF PROPRIETARY RIGHTS, RELATING TO IMPLEMENTATION
OF INFORMATION IN THIS SPECIFICATION. COMPAQ, INTEL, MICROSOFT, PHOENIX, AND
TOSHIBA DO NOT WARRANT OR REPRESENT THAT SUCH IMPLEMENTATION(S) WILL NOT
INFRINGE SUCH RIGHTS.

Microsoft, Win32, Windows, and Windows NT are registered trademarks of Microsoft Corporation.
All other product names are trademarks, registered trademarks, or service marks of their respective owners.

iii

Compaq/Intel/Microsoft/Phoenix/Toshiba

Revision Change Description
Affected
Sections

1.5 Clarified Power / Sleep button override action will cause system to enter soft-
off state. Override action will not cause the system to reset.

Updated “SRAT” DESCRIPTION_HEADER signature reference.

Replaced ASL Data Type section with a new section that clarifies ASL Data
Type conversions.

1.5

5.2.5

16.2.2

1.4 Corrected Figure 5-1 location of system description tables. Removed
redundant description of finding the RSDP on IA-PC systems – added
reference to other sections.

Corrected FADT Boot Architecture Flags Reserved field bit offset from 3 to
2.

Clarified _INI object evaluation – OSPM evaluates _SB._INI

Corrected ElseTerm definition. Changed CMOS RegionSpaceKeyword to
SystemCMOS to avoid collisions with existing ASL.

Corrected description of Mutex object.

Changed ASL CopyTerm to CopyObjectTerm to avoid collision with existing
ASL.

5.1

5.2.8.3

6.5.1

16.1.3

16.2.3.3.1.14

16.2.3.4.2.8

1.3 Corrected location of Firmware ACPI Control Structure may exist anywhere
in the system’s memory address map.

Corrected description of the Local APIC Address Override Structure.

Corrected Local SAPIC Structure’s ACPI Processor ID field length from two
bytes to one byte to enable a correct comparison with processor term’s
ProcessorID field. Rearranged field ordering to more closely match the Local
APIC Structure.

Corrected _SCP reference section.

Corrected TermArg and NameTerm to reference DataObject rather than
DataRefObject. Added NameString to TermArg. Added missing DDBHandle
and ObjectReference to ASL type definitions.

Corrected Load and Unload operator descriptions – does not apply to
Differentiated Definition Block

Corrected table reference.

5.2.9

5.2.10.11

5.2.10.13

5.6.5

16.1.3

16.2.3.4.1.7,
16.2.3.4.1.17

16.2.3.4.2.37

1.2 Clarified that OSPM is only required to write non-zero values of FADT fields
PSTATE_CNT and CST_CNT to the SMI Command Port. Corrected
PM1_CNT_LEN value is ≥ 2.

Changed ASL type conversion function names to avoid collision with
existing ASL (Buff >ToBuffer, DecStr>ToDecimalString,
HexStr>ToHexString, Int>ToInteger, String>ToString).

5.2.8

16.1.3,
16.2.3.4.2,
16.2.3.4.2.4,
16.2.3.4.2.10,
16.2.3.4.2.16,
16.2.3.4.2.19,
16.2.3.4.2.44

1.1 Clarified hardware interfaces may be defined as Functional Fixed Hardware
only when directed by the CPU manufacturer as proprietary OS support is
required that must be coordinated with the OS vendor.

4.1.1

iv

Clarified Definition Block support expanding from 32-bit to 64-bit integers.

Local SAPIC Structure length corrected to 8 from 10 bytes.

Updated DSDT DefinitionBlock example compliance revision.

End value correction of event values for status bits in GPE0_BLK.

Corrected Defined Generic Object and Control Method section references.

Corrected Generic Register Descriptor Definition to include GAS reserved
field.

Corrected memory term’s type field from TranslationType to Type

Corrected Switch ACPI 1.0 translation

5.2.10, 5.2.10.1,
5.2.10.2

5.2.10.13

5.5

5.6.2.2

5.6.5

6.4.3.7

16.1.3

16.2.3.4.1.16

1.0 Initial errata document for ACPI 2.0.

Re-inserted mistakenly deleted sentence fragment.

FADT SCI_INT field - clarified to be the SCI interrupts’s Global System
Interrupt number when no 8259 exists in the system.

Incorrect reference to Processor declaration section.

Local APIC Address Override Structure length field corrected.

I/O SAPIC Strucure - length field corrected, Global System Interrupt Base
and I/O SAPIC Address field descriptions expanded/clarified.

Local SAPIC Structure flags length corrected to 4 from 2. Other offsets
adjusted accordingly. Incorrect reference to Processor declaration section.

_CS4 critical thermal trip point renamed to _HOT

Corrected Embedded Controller method name - removed trailing numbers

LNOT(Logical Not) evaluation result correction.

ASL macro for fixed I/O port descriptor listed incorrectly in previous section.

AML Root-Path only encoding for NamePath was missing as was NullName

5.2

5.2.8

5.2.10.5

5.2.10.11

5.2.10.12

5.2.10.13

12.4, 12.5

14.2

16.2.3.4.2.26

16.2.4.5, 16.2.4.6

17.2.1

1.5 Power and Sleep Buttons
OSPM provides a new appliance interface to consumers. In particular, it provides for a sleep button that is a
“soft” button that does not turn the machine physically off but signals the OS to put the machine in a soft
off or sleeping state. ACPI defines two types of these “soft” buttons: one for putting the machine to sleep
and one for putting the machine in soft off.

This gives the OEM two different ways to implement machines: A one-button model or a two-button
model. The one-button model has a single button that can be used as a power button or a sleep button as
determined by user settings. The two-button model has an easily accessible sleep button and a separate
power button. In either model, an override feature that forces the machine to the soft-off stateor resets it
without OSPM interactionconsent is also needed to deal with various rare, but problematic, situations.

2.3 Device Power State Definitions
Device power states are states of particular devices; as such, they are generally not visible to the user. For
example, some devices may be in the Off state even though the system as a whole is in the Working state.

Error! No text of specified style in document. 5

Compaq/Intel/Microsoft/Phoenix/Toshiba

Device states apply to any device on any bus. They are generally defined in terms of four principal criteria:
• Power consumption. How much power the device uses.
• Device context. How much of the context of the device is retained by the hardware. The OS is

responsible for restoring any lost device context (this may be done by resetting the device).
• Device driver. What the device driver must do to restore the device to full on.
• Restore time. How long it takes to restore the device to full on.

The device power states are defined below, although very generically. Many devices do not have all four
power states defined. Devices may be capable of several different low-power modes, but if there is no user-
perceptible difference between the modes only the lowest power mode will be used. The Device Class
Power Management Specifications, included in Appendix A of this specification, describe which of these
power states are defined for a given type (class) of device and define the specific details of each power state
for that device class. For a list of the available Device Class Power Management Specifications, see
“Appendix A: Device Class Specifications.”

D3 Off
Power has been fully removed from the device. The device context is lost when this state is entered, so
the OS software will reinitialize the device when powering it back on. Since device context and power
are lost, devices in this state do not decode their address lines. Devices in this state have the longest
restore times. All classes of devices define this state.

D2
The meaning of the D2 Device State is defined by each device class. Many device classes may not
define D2. In general, D2 is expected to save more power and preserve less device context than D1 or
D0. Buses in D2 may cause the device to lose some context (for example, by reducing power on the
bus, thus forcing the device to turn off some of its functions).

D1
The meaning of the D1 Device State is defined by each device class. Many device classes may not
define D1. In general, D1 is expected to save less power and preserve more device context than D2.

D0 Fully-On
This state is assumed to be the highest level of power consumption. The device is completely active
and responsive, and is expected to remember all relevant context continuously.

6 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 2-2 Summary of Device Power States

Device State
Power
Consumption

Device Context
Retained Driver Restoration

D0 - Fully-
On

As needed for
operation

All None

D1 D0>D1>D2>D3 >D2 <D2

D2 D0>D1>D2>D3 <D1 >D1

D3 - Off 0 None Full initialization and load

Note: Devices often have different power modes within a given state. Devices can use these modes as long
as they can automatically transparently switch between these modes from the software, without violating
the rules for the current Dx state the device is in. Low-power modes that adversely affect performance (in
other words, low speed modes) or that are not transparent to software cannot be done automatically in
hardware; the device driver must issue commands to use these modes.

4.1.1 Functional Fixed Hardware
ACPI defines the fixed hardware low-level interfaces as a means to convey to the system OEM the
minimum interfaces necessary to achieve a level of capability and quality for motherboard configuration
and system power management. Additionally, the definition of these interfaces, as well as others defined in
this specification, conveys to OS Vendors (OSVs) developing ACPI-compatible operating systems, the
necessary interfaces that operating systems must manipulate to provide robust support for system
configuration and power management.

While the definition of low-level hardware interfaces defined by ACPI 1.0 afforded OSPM
implementations a certain level of stability, controls for existing and emerging diverse CPU architectures
cannot be accommodated by this model as they can require a sequence of hardware manipulations
intermixed with native CPU instructions to provide the ACPI-defined interface function. In this case, an
ACPI-defined fixed hardware interface can be functionally implemented by the CPU manufacturer through
an equivalent combination of both hardware and software and is defined by ACPI 2.0 as Functional Fixed
Hardware.

In IA-32-based systems, functional fixed hardware can be accommodated in an OS independent manner by
using System Management Mode (SMM) based system firmware. Unfortunately, the nature of SMM-based
code makes this type of OS independent implementation difficult if not impossible to debug. As such, this
implementation approach is not recommended. In some cases, Functional Fixed Hardware implementations
may require coordination with other OS components. As such, an OS independent implementation may not
be viable.

OS-specific implementations of functional fixed hardware can be implemented using technical information
supplied by the CPU manufacturer. The downside of this approach is that functional fixed hardware
support must be developed for each OS. In some cases, the CPU manufacturer may provide a software
component providing this support. In other cases support for the functional fixed hardware may be
developed directly by the OS vendor.

In ACPI 2.0, the hardware register definition has been expanded to allow registers to exist in address spaces
other than the System I/O address space. This is accomplished through the specification of an address space
ID in the register definition (see section 5.2.3.1, “Generic Address Structure,” for more information).
When specifically directed by the CPU manufacturer, the system firmware mayTo define an interface as
functional fixed hardware by supplying, the system firmware supplies a special address space identifier,
FfixedHW (0x7F), in the address space ID field for register definitions. It is emphasized that functional
fixed hardware definitions may be declared in the ACPI system firmware only as indicated by the CPU
Manufacturer for specificaffected interfaces. as the use of functional fixed hardware requires specific
coordination with the OS vendor.

Error! No text of specified style in document. 7

Compaq/Intel/Microsoft/Phoenix/Toshiba

Only certain ACPI-defined interfaces may be implemented using functional fixed hardware and only when
the interfaces are common across machine designs for example, systems sharing a common CPU
architecture that does not support fixed hardware implementation of an ACPI-defined interface. OEMs are
cautioned not to anticipate that functional fixed hardware support will be provided by OSPM differently on
a system-by-system basis. The use of functional fixed hardware carries with it a reliance on OS specific
software that must be considered. OEMs should consult OS vendors to ensure that specific functional fixed
hardware interfaces are supported by specific operating systems.

5.1 Overview of the System Description Table Architecture
The Root System Description Pointer (RSDP) structure is located in the system’s memory address space
and is setup by the BIOS. This structure contains the address of the Root System Description Table
(RSDT), which references other description tables that provide data to OSPM, supplying it with knowledge
of the base system’s implementation and configuration (see Figure 5-1).

Located in memory space (0 - 4G)

Extended System
Description Table

Header

XSDT

Entry

Entry

...

Entry

...

In low memory space on
16 byte boundry

Root System
Description Pointer

Header

Sig

 contents

Header

Sig

 contents

RSD PTR

Pointer

Pointer

Located in system's memory address space

Extended System
Description Table

Header

XSDT

Entry

Entry

...

Entry

...

Root System
Description Pointer

Header

Sig

 contents

Header

Sig

 contents

RSD PTR

Pointer

Pointer

Figure 5-1 Root System Description Pointer and Table

All system description tables start with identical headers. The primary purpose of the system description
tables is to define for OSPM various industry-standard implementation details. Such definitions enable
various portions of these implementations to be flexible in hardware requirements and design, yet still
provide OSPM with the knowledge it needs to control hardware directly.

8 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

The Root System Description Table (RSDT) points to other tables in memory. Always the first table, it
points to the Fixed ACPI Description table (FADT). The data within this table includes various fixed-
length entries that describe the fixed ACPI features of the hardware. The FADT table always refers to the
Differentiated System Description Table (DSDT), which contains information and descriptions for various
system features. The relationship between these tables is shown in Figure 5-2.

Device I/O
Device Memory

PCI configuration
Embedded Controller space

Firmware ACPI
Control Structure

Wake Vector
Shared Lock

FACS

GPx_BLK

PM2x_BLK

Differentiated System
Description Table

Header

DSDT

Differentiated
Definition

Block

PM1x_BLK

Fixed ACPI
Description Table

Header

FACP

Static info

Located in
port space

OEM-Specific

ACPI
Driver

Software

Hardware

FIRM
DSDT
BLKs

...

Figure 5-2 Description Table Structures

OSPM finds the RSDP structure as described in section 5.2.4.1 (“Finding the RSDP on IA-PC Systems”) or
section 5.2.4.2 (“Finding the RSDP on EFI Enabled Systems”).searches the following physical ranges on
16-byte boundaries for a RSDP structure. This structure is located by searching the areas listed below for a
valid signature and checksum match:
�The first 1 KB of the Extended BIOS Data Area (EBDA). For EISA or MCA systems, the EBDA can be

found in the two-byte location 40:0Eh on the BIOS data area.
�In the BIOS read-only memory space between 0E0000h and 0FFFFFh.

When OSPM locates the structure, it looks at the physical address for the Root System Description Table.
The Root System Description Table starts with the signature “RSDT” and contains one or more physical
pointers to other system description tables that provide various information about the system. As shown in
Figure 5-1, there is always a physical address in the Root System Description Table for the Fixed ACPI
Description table (FADT).

5.2.5 System Description Table Header
All system description tables begin with the structure shown in Table 5-4. The Signature field determines
the content of the system description table. System description table signatures defined by this specification
are listed in Table 5-5.

Error! No text of specified style in document. 9

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 5-4 DESCRIPTION_HEADER Fields

Field
Byte
Length

Byte
Offset Description

Signature 4 0 The ASCII string representation of the table identifier. Notice
that if OSPM finds a signature in a table that is not listed in
Table 5-5, OSPM ignores the entire table (it is not loaded into
ACPI namespace); OSPM ignores the table even though the
values in the Length and Checksum fields are correct.

Length 4 4 The length of the table, in bytes, including the header, starting
from offset 0. This field is used to record the size of the entire
table.

Revision 1 8 The revision of the structure corresponding to the signature field
for this table. Larger revision numbers are backward compatible
to lower revision numbers with the same signature.

Checksum 1 9 The entire table, including the checksum field, must add to zero
to be considered valid.

OEMID 6 10 An OEM-supplied string that identifies the OEM.

OEM Table ID 8 16 An OEM-supplied string that the OEM uses to identify the
particular data table. This field is particularly useful when
defining a definition block to distinguish definition block
functions. The OEM assigns each dissimilar table a new OEM
Table ID.

OEM Revision 4 24 An OEM-supplied revision number. Larger numbers are
assumed to be newer revisions.

Creator ID 4 28 Vendor ID of utility that created the table. For tables containing
Definition Blocks, this is the ID for the ASL Compiler.

Creator Revision 4 32 Revision of utility that created the table. For tables containing
Definition Blocks, this is the revision for the ASL Compiler.

For OEMs, good design practices will ensure consistency when assigning OEMID and OEM Table ID
fields in any table. The intent of these fields is to allow for a binary control system that support services can
use. Because many support functions can be automated, it is useful when a tool can programmatically
determine which table release is a compatible and more recent revision of a prior table on the same OEMID
and OEM Table ID.

Table 5-5 contains the system description table signatures defined by this specification. These system
description tables may be defined by ACPI or reserved by ACPI and declared by other industry
specifications. This allows OS and platform specific tables to be defined and pointed to by the
RSDT/XSDT as needed. For tables defined by other industry specifications, the ACPI specification acts as
gatekeeper to avoid collisions in table signatures. Table signatures will be reserved by the ACPI promoters
and posted independently of this specification on the ACPI Web site between specification revisions with
the goal of avoiding collisions.

10 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 5-5 DESCRIPTION_HEADER Signatures

Signature Description Reference

“APIC” Multiple APIC Description Table Section 5.2.10.4, “Multiple APIC Description
Table”

“BOOT” Simple Boot Flag Table Microsoft Simple Boot Flag Specification
http://www.microsoft.com/HWDEV/
desinit/simp_bios.htm

“DBGP” Debug Port Table Microsoft Debug Port Specification
http://www.microsoft.com/hwdev/
newPC/debugspec.htm

“DSDT” Differentiated System Description Table Section 5.2.10.1, “Differentiated System
Description Table”

“ECDT” Embedded Controller Boot Resources Table Section 5.2.13, “Embedded Controller Boot
Resources Table”

“ETDT” Event Timer Description Table IA-PC Multimedia Timers Specification

”FACP” Fixed ACPI Description Table (FADT) Section 5.2.8, “Fixed ACPI Description
Table”

“FACS” Firmware ACPI Control Structure Section 5.2.9, “Firmware ACPI Control
Structure”

“OEMx” OEM Specific Information Tables OEM Specific tables. All table signatures
starting with “OEM” are reserved for OEM
use.

“PSDT” Persistent System Description Table Section 5.2.10.3, “Persistent System
Description Table”

“RSDT” Root System Description Table Section 5.2.6, “Root System Description
Table”

“SBST” Smart Battery Specification Table Section 5.2 12, “Smart Battery Table”

“SLIT” System Locality Information Table http://devresource.hp.com/devresource/Docs/
TechPapers/IA64/slit.pdf

“SPCR” Serial Port Console Redirection Table Microsoft Serial Port Console Redirection
Table http://www.microsoft.com/hwdev/
download/SerialPortRedir.zip

“SRAT” Static Resource Affinity Table Interim processor-memory proximity table
http://www.microsoft.com/HWDEV/design/S
RAT.htm

“SSDT” Secondary System Description Table Section 5.2.10.2, “Secondary System
Description Table”

“SPMI” Server Platform Management Interface Table http://devresource.hp.com/devresource/Docs/
TechPapers/IA64/hpspmi.pdf

“XSDT” Extended System Description Table Section 5.2.7, “Extended System Description
Table”

Error! No text of specified style in document. 11

Compaq/Intel/Microsoft/Phoenix/Toshiba

12 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

5.2.8 Fixed ACPI Description Table (FADT)
The Fixed ACPI Description Table (FADT) defines various fixed hardware ACPI information vital to an
ACPI-compatible OS, such as the base address for the following hardware registers blocks:
PM1a_EVT_BLK, PM1b_EVT_BLK, PM1a_CNT_BLK, PM1b_CNT_BLK, PM2_CNT_BLK,
PM_TMR_BLK, GPE0_BLK, and GPE1_BLK.

The FADT also has a pointer to the DSDT that contains the Differentiated Definition Block, which in turn
provides variable information to an ACPI-compatible OS concerning the base system design.

All fields in the FADT that provide hardware addresses provide processor-relative physical addresses.

Table 5-8 Fixed ACPI Description Table (FADT) Format

Field
Byte
Length

Byte
Offset Description

Header

 Signature 4 0 ‘FACP’. Signature for the Fixed ACPI Description Table.

 Length 4 4 Length, in bytes, of the entire FADT.

 Revision 1 8 3

 Checksum 1 9 Entire table must sum to zero.

 OEMID 6 10 OEM ID

 OEM Table ID 8 16 For the FADT, the table ID is the manufacture model ID.
This field must match the OEM Table ID in the RSDT.

 OEM Revision 4 24 OEM revision of FADT for supplied OEM Table ID.

 Creator ID 4 28 Vendor ID of utility that created the table. For tables
containing Definition Blocks, this is the ID for the ASL
Compiler.

 Creator Revision 4 32 Revision of utility that created the table. For tables
containing Definition Blocks, this is the revision for the
ASL Compiler.

FIRMWARE_CTRL 4 36 Physical memory address (0-4 GB) of the FACS, where
OSPM and Firmware exchange control information. See
section 5.2.6, “Root System Description Table,” for a
description of the FACS.

DSDT 4 40 Physical memory address (0-4 GB) of the DSDT.

Reserved 1 44 ACPI 1.0 defined this offset as a field named
INT_MODEL, which has been eliminated in ACPI 2.0.as
operating systems to date have had no use for this field.
New systems should set this field to zero but field values of
one are also allowed to maintain compatibility with ACPI
1.0.

Error! No text of specified style in document. 13

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 5-8 Fixed ACPI Description Table (FADT) Format (continued)

Field
Byte
Length

Byte
Offset Description

Preferred_PM_Profile 1 45 This field is set by the OEM to convey the preferred power
management profile to OSPM. OSPM can use this field to
set default power management policy parameters during OS
installation.

Field Values:

0–Unspecified

1–Desktop

2–Mobile

3–Workstation

4–Enterprise Server

5–SOHO Server

6–Appliance PC

>6–Reserved

SCI_INT 2 46 System vector the SCI interrupt is wired to in 8259 mode.
On systems that do not contain the 8259, this field contains
the Global System interrupt number of the SCI interrupt.
OSPM is required to treat the ACPI SCI interrupt as a
sharable, level, active low interrupt.

SMI_CMD 4 48 System port address of the SMI Command Port. During
ACPI OS initialization, OSPM can determine that the ACPI
hardware registers are owned by SMI (by way of the
SCI_EN bit), in which case the ACPI OS issues the
ACPI_ENABLE command to the SMI_CMD port. The
SCI_EN bit effectively tracks the ownership of the ACPI
hardware registers. OSPM issues commands to the
SMI_CMD port synchronously from the boot processor.
This field is reserved and must be zero on system that does
not support System Management mode.

ACPI_ENABLE

1 52 The value to write to SMI_CMD to disable SMI ownership
of the ACPI hardware registers. The last action SMI does to
relinquish ownership is to set the SCI_EN bit. During the
OS initialization process, OSPM will synchronously wait
for the transfer of SMI ownership to complete, so the ACPI
system releases SMI ownership as quickly as possible. This
field is reserved and must be zero on systems that do not
support Legacy Mode.

14 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 5-8 Fixed ACPI Description Table (FADT) Format (continued)

Field
Byte
Length

Byte
Offset Description

ACPI_DISABLE 1 53 The value to write to SMI_CMD to re-enable SMI
ownership of the ACPI hardware registers. This can only be
done when ownership was originally acquired from SMI by
OSPM using ACPI_ENABLE. An OS can hand ownership
back to SMI by relinquishing use to the ACPI hardware
registers, masking off all SCI interrupts, clearing the
SCI_EN bit and then writing ACPI_DISABLE to the
SMI_CMD port from the boot processor. This field is
reserved and must be zero on systems that do not support
Legacy Mode.

S4BIOS_REQ 1 54 The value to write to SMI_CMD to enter the S4BIOS state.
The S4BIOS state provides an alternate way to enter the S4
state where the firmware saves and restores the memory
context. A value of zero in S4BIOS_F indicates
S4BIOS_REQ is not supported. (See Table 5-12.)

PSTATE_CNT 1 55 If non-zero, this field contains tThe value OSPM writes to
the SMI_CMD register to assume processor performance
state control responsibility.

PM1a_EVT_BLK 4 56 System port address of the PM1a Event Register Block. See
section 4.7.3.1, “PM1 Event Grouping,” for a hardware
description layout of this register block. This is a required
field. This field is superseded in ACPI 2.0 by the
X_PM1a_EVT_BLK field.

PM1b_EVT_BLK 4 60 System port address of the PM1b Event Register Block. See
section 4.7.3.1, “PM1 Event Grouping,” for a hardware
description layout of this register block. This field is
optional; if this register block is not supported, this field
contains zero. This field is superseded in ACPI 2.0 by the
X_PM1b_EVT_BLK field.

PM1a_CNT_BLK 4 64 System port address of the PM1a Control Register Block.
See section 4.7.3.2, “PM1 Control Grouping,” for a
hardware description layout of this register block. This is a
required field. This field is superseded in ACPI 2.0 by the
X_PM1a_CNT_BLK field.

PM1b_CNT_BLK 4 68 System port address of the PM1b Control Register Block.
See section 4.7.3.2, “PM1 Control Grouping,” for a
hardware description layout of this register block. This field
is optional; if this register block is not supported, this field
contains zero. This field is superseded in ACPI 2.0 by the
X_PM1b_CNT_BLK field.

PM2_CNT_BLK 4 72 System port address of the PM2 Control Register Block.
See section 4.7.3.4, “PM2 Control (PM2_CNT),” for a
hardware description layout of this register block. This field
is optional; if this register block is not supported, this field
contains zero. This field is superseded in ACPI 2.0 by the
X_PM2_CNT_BLK field.

Error! No text of specified style in document. 15

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 5-8 Fixed ACPI Description Table (FADT) Format (continued)

Field
Byte
Length

Byte
Offset Description

PM_TMR_BLK 4 76 System port address of the Power Management Timer
Control Register Block. See section 4.7.3.3, “Power
Management Timer (PM_TMR),” for a hardware
description layout of this register block. This is a required
field. This field is superseded in ACPI 2.0 by the
X_PM_TMR_BLK field.

GPE0_BLK 4 80 System port address of General-Purpose Event 0 Register
Block. See section 5.2.8, “Fixed ACPI Description Table,”
for a hardware description of this register block. This is an
optional field; if this register block is not supported, this
field contains zero. This field is superseded in ACPI 2.0 by
the X_GPE0_BLK field.

GPE1_BLK 4 84 System port address of General-Purpose Event 1 Register
Block. See section 5.2.8, “Fixed ACPI Description Table,”
for a hardware description of this register block. This is an
optional field; if this register block is not supported, this
field contains zero. This field is superseded in ACPI 2.0 by
the X_GPE1_BLK field.

PM1_EVT_LEN 1 88 Number of bytes decoded by PM1a_EVT_BLK and, if
supported, PM1b_ EVT_BLK. This value is ≥ 4.

PM1_CNT_LEN 1 89 Number of bytes decoded by PM1a_CNT_BLK and, if
supported, PM1b_CNT_BLK. This value is ≥ 21.

PM2_CNT_LEN 1 90 Number of bytes decoded by PM2_CNT_BLK. Support for
the PM2 register block is optional. If supported, this value
is ≥ 1. If not supported, this field contains zero.

PM_TMR_LEN 1 91 Number of bytes decoded by PM_TMR_BLK. This field’s
value must be 4.

GPE0_BLK_LEN 1 92 Number of bytes decoded by GPE0_BLK. The value is a
non-negative multiple of 2.

GPE1_BLK_LEN 1 93 Number of bytes decoded by GPE1_BLK. The value is a
non-negative multiple of 2.

GPE1_BASE 1 94 Offset within the ACPI general-purpose event model where
GPE1 based events start.

CST_CNT 1 95 If non-zero, this field contains tThe value OSPM writes to
the SMI_CMD register to indicate OS support for the _CST
object and C States Changed notification.

P_LVL2_LAT 2 96 The worst-case hardware latency, in microseconds, to enter
and exit a C2 state. A value > 100 indicates the system does
not support a C2 state.

P_LVL3_LAT 2 98 The worst-case hardware latency, in microseconds, to enter
and exit a C3 state. A value > 1000 indicates the system
does not support a C3 state.

16 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 5-8 Fixed ACPI Description Table (FADT) Format (continued)

Field
Byte
Length

Byte
Offset Description

FLUSH_SIZE 2 100 If WBINVD=0, the value of this field is the number of flush
strides that need to be read (using cacheable addresses) to
completely flush dirty lines from any processor’s memory
caches. Notice that the value in FLUSH_STRIDE is
typically the smallest cache line width on any of the
processor’s caches (for more information, see the
FLUSH_STRIDE field definition). If the system does not
support a method for flushing the processor’s caches, then
FLUSH_SIZE and WBINVD are set to zero. Notice that
this method of flushing the processor caches has
limitations, and WBINVD=1 is the preferred way to flush
the processors caches. This value is typically at least 2
times the cache size. The maximum allowed value for
FLUSH_SIZE multiplied by FLUSH_STRIDE is 2 MB for
a typical maximum supported cache size of 1 MB. Larger
cache sizes are supported using WBINVD=1.

This value is ignored if WBINVD=1.

This field is maintained for ACPI 1.0 processor
compatibility on existing systems. Processors in new ACPI
2.0-compatible systems are required to support the
WBINVD function and indicate this to OSPM by setting
the WBINVD field = 1.

FLUSH_STRIDE 2 102 If WBINVD=0, the value of this field is the cache line
width, in bytes, of the processor’s memory caches. This
value is typically the smallest cache line width on any of
the processor’s caches. For more information, see the
description of the FLUSH_SIZE field.

This value is ignored if WBINVD=1.

This field is maintained for ACPI 1.0 processor
compatibility on existing systems. Processors in new ACPI
2.0-compatible systems are required to support the
WBINVD function and indicate this to OSPM by setting
the WBINVD field = 1.

DUTY_OFFSET 1 104 The zero-based index of where the processor’s duty cycle
setting is within the processor’s P_CNT register.

Error! No text of specified style in document. 17

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 5-8 Fixed ACPI Description Table (FADT) Format (continued)

Field
Byte
Length

Byte
Offset Description

DUTY_WIDTH 1 105 The bit width of the processor’s duty cycle setting value in
the P_CNT register. Each processor’s duty cycle setting
allows the software to select a nominal processor frequency
below its absolute frequency as defined by:

THTL_EN = 1

BF * DC/(2DUTY_WIDTH)

 Where:

BF–Base frequency

DC–Duty cycle setting

When THTL_EN is 0, the processor runs at its absolute BF.
A DUTY_WIDTH value of 0 indicates that processor duty
cycle is not supported and the processor continuously runs
at its base frequency.

DAY_ALRM 1 106 The RTC CMOS RAM index to the day-of-month alarm
value. If this field contains a zero, then the RTC day of the
month alarm feature is not supported. If this field has a non-
zero value, then this field contains an index into RTC RAM
space that OSPM can use to program the day of the month
alarm. See section 4.7.2.4, “Real Time Clock Alarm,” for a
description of how the hardware works.

MON_ALRM 1 107 The RTC CMOS RAM index to the month of year alarm
value. If this field contains a zero, then the RTC month of
the year alarm feature is not supported. If this field has a
non-zero value, then this field contains an index into RTC
RAM space that OSPM can use to program the month of
the year alarm. If this feature is supported, then the
DAY_ALRM feature must be supported also.

CENTURY 1 108 The RTC CMOS RAM index to the century of data value
(hundred and thousand year decimals). If this field contains
a zero, then the RTC centenary feature is not supported. If
this field has a non-zero value, then this field contains an
index into RTC RAM space that OSPM can use to program
the centenary field.

IAPC_BOOT_ARCH 2 109 IA-PC Boot Architecture Flags. See Table 5-10 for a
description of this field.

Reserved 1 111 Must be 0.

Flags 4 112 Fixed feature flags. See Table 5-9 for a description of this
field.

18 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 5-8 Fixed ACPI Description Table (FADT) Format (continued)

Field
Byte
Length

Byte
Offset Description

RESET_REG 12 116 The address of the reset register represented in Generic
Address Structure format (See section 4.7.3.6, “Reset
Register,” for a description of the reset mechanism.)

Note: Only System I/O space, System Memory space and
PCI Configuration space (bus #0) are valid for values for
Address_Space_ID. Also, Register_Bit_Width must be 8
and Register_Bit_Offset must be 0.

RESET_VALUE 1 128 Indicates the value to write to the RESET_REG port to
reset the system. (See section 4.7.3.6, “Reset Register,” for
a description of the reset mechanism.)

Reserved 3 129 Must be 0.

X_FIRMWARE_CTRL 8 132 64bit physical address of the FACS.

X_DSDT 8 140 64bit physical address of the DSDT.

X_PM1a_EVT_BLK 12 148 Extended address of the PM1a Event Register Block,
represented in Generic Address Structure format. See
section 4.7.3.1, “PM1 Event Grouping,” for a hardware
description layout of this register block. This is a required
field.

X_PM1b_EVT_BLK 12 160 Extended address of the PM1b Event Register Block,
represented in Generic Address Structure format. See
section 4.7.3.1, “PM1 Event Grouping,” for a hardware
description layout of this register block. This field is
optional; if this register block is not supported, this field
contains zero.

X_PM1a_CNT_BLK 12 172 Extended address of the PM1a Control Register Block,
represented in Generic Address Structure format. See
section 4.7.3.2, “PM1 Control Grouping,” for a hardware
description layout of this register block. This is a required
field.

X_PM1b_CNT_BLK 12 184 Extended address of the PM1b Control Register Block,
represented in Generic Address Structure format. See
section 4.7.3.2, “PM1 Control Grouping,” for a hardware
description layout of this register block. This field is
optional; if this register block is not supported, this field
contains zero.

X_PM2_CNT_BLK 12 196 Extended address of the Power Management 2 Control
Register Block, represented in Generic Address Structure
format. See section 4.7.3.4, “PM2 Control (PM2_CNT),”
for a hardware description layout of this register block. This
field is optional; if this register block is not supported, this
field contains zero.

Error! No text of specified style in document. 19

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 5-8 Fixed ACPI Description Table (FADT) Format (continued)

Field
Byte
Length

Byte
Offset Description

X_PM_TMR_BLK 12 208 Extended address of the Power Management Timer Control
Register Block, represented in Generic Address Structure
format. See section 4.7.3.3, “Power Management Timer
(PM_TMR),” for a hardware description layout of this
register block. This is a required field.

X_GPE0_BLK 12 220 Extended address of the General-Purpose Event 0 Register
Block, represented in Generic Address Structure format.
See section 5.2.8, “Fixed ACPI Description Table,” for a
hardware description of this register block. This is an
optional field; if this register block is not supported, this
field contains zero.

X_GPE1_BLK 12 232 Extended address of the General-Purpose Event 1 Register
Block, represented in Generic Address Structure format.
See section 5.2.8, “Fixed ACPI Description Table,” for a
hardware description of this register block. This is an
optional field; if this register block is not supported, this
field contains zero.

5.2.8.3 IA-PC Boot Architecture Flags
This set of flags is used by an OS to guide the assumptions it can make in initializing hardware on IA-PC
platforms. These flags are used by an OS at boot time (before the OS is capable of providing an operating
environment suitable for parsing the ACPI namespace) to determine the code paths to take during boot. In
IA-PC platforms with reduced legacy hardware, the OS can skip code paths for legacy devices if none are
present. For example, if there are no ISA devices, an OS could skip code that assumes the presence of these
devices and their associated resources. These flags are used independently of the ACPI namespace. The
presence of other devices must be described in the ACPI namespace as specified in section 6,
“Configuration.”

These flags pertain only to IA-PC platforms. On other system architectures, the entire field should be set
to 0.

20 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 5-10 Fixed ACPI Description Table Boot Architecture Flags

BOOT_ARCH
Bit
length

Bit
offset Description

LEGACY_DEVICES 1 0 If set, indicates that the motherboard supports user-visible
devices on the LPC or ISA bus. User-visible devices are
devices that have end-user accessible connectors (for
example, LPT port), or devices for which the OS must load
a device driver so that an end-user application can use a
device. If clear, the OS may assume there are no such
devices and that all devices in the system can be detected
exclusively via industry standard device enumeration
mechanisms (including the ACPI namespace).

8042 1 1 If set, indicates that the motherboard contains support for a
port 60 and 64 based keyboard controller, usually
implemented as an 8042 or equivalent micro-controller.

Reserved 14 23 Must be 0.

5.2.9 Firmware ACPI Control Structure (FACS)
The Firmware ACPI Control Structure (FACS) is a structure in read/write memory that the BIOS reserves
for ACPI usage. This structure is passed to an ACPI-compatible OS using the FADT. For more information
about the FADT FIRMWARE_CTRL field, see section 5.2.8, “Fixed ACPI Description Table (FADT).”

The BIOS aligns the FACS on a 64-byte boundary anywhere within the system’s0-4G memory address
space. The memory where the FACS structure resides must not be reported as system
AddressRangeMemory in the system address map. For example, the E820 address map reporting interface
would report the region as AddressRangeReserved. For more information about system address map
reporting interfaces, see section 15, “System Address Map Interfaces.”

Error! No text of specified style in document. 21

Compaq/Intel/Microsoft/Phoenix/Toshiba

5.2.10 Definition Blocks
A Definition Block consists of data in AML format (see section 5.4 “Definition Block Encoding”) and
contains information about hardware implementation details in the form of AML objects that contain data,
AML code, or other AML objects. The top-level organization of this information after a definition block is
loaded is name-tagged in a hierarchical namespace.

OSPM “loads” or “unloads” an entire definition block as a logical unit. OSPM will load a definition block
either as a result of executing the AML Load() or LoadTable() operator or encountering a table definition
during initialization. During initialization, OSPM loads the Differentiated System Description Table
(DSDT), which contains the Differentiated Definition Block, using the DSDT pointer retrieved from the
FADT. OSPM will load other definition blocks during initialization as a result of encountering Secondary
System Description Table (SSDT) definitions in the RSDT/XSDT. The DSDT and SSDT are described in
the following sections.

As mentioned, the AML Load() and LoadTable() operators make it possible for a Definition Block to load
other Definition Blocks, either statically or dynamically, where they in turn can either define new system
attributes or, in some cases, build on prior definitions. Although this gives the hardware the ability to vary
widely in implementation, it also confines it to reasonable boundaries. In some cases, the Definition Block
format can describe only specific and well-understood variances. In other cases, it permits implementations
to be expressible only by means of a specified set of “built in” operators. For example, the Definition Block
has built in operators for I/O space.

In theory, it might be possible to define something like PCI configuration space in a Definition Block by
building it from I/O space, but that is not the goal of the definition block. Such a space is usually defined as
a “built in” operator.

22 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Some AML operators perform simple functions, and others encompass complex functions. The power of
the Definition block comes from its ability to allow these operations to be glued together in numerous
ways, to provide functionality to OSPM.

The AML operators defined in this specification are intended to allow many useful hardware designs to be
easily expressed, not to allow all hardware designs to be expressed.

Note: To accommodate addressing beyond 32 bits, the integer type is expanded to 64 bits in ACPI 2.0, see
section 16.2.2, “ASL Data Types”. Existing ACPI definition block implementations may contain an
inherent assumption of a 32-bit integer width. Therefore, to maintain backwards compatibility, OSPM uses
the Revision field, in the header portion of system description tables containing Definition Blocks, to
determine whether integers declared within the Definition Block are to be evaluated as 32-bit or 64-bit
values. A Revision field value greater than or equal to 2 signifies that integers declared within the
Definition Block are to be evaluated as 64-bit values. The ASL writer specifies the value for the Definition
Block table header’s Revision field via the ASL DefinitionBlockTerm’s ComplianceRevision field. See
section 16.2.3.1, “Definition Block Term”, for more information. It is the responsibility of the ASL writer
to ensure the Definition Block’s compatibility with the corresponding integer width when setting the
ComplianceRevision field.

5.2.10.1 Differentiated System Description Table (DSDT)
The Differentiated System Description Table (DSDT) is part of the system fixed description. The DSDT is
comprised of a system description table header followed by data in Definition Block format. This
Definition Block is like all other Definition Blocks, with the exception that it cannot be unloaded. See
section 5.2.10, “Definition Blocks,” for a description of Definition Blocks.

Table 5-13a Differentiated System Description Table Fields (DSDT)

Field
Byte
Length

Byte
Offset Description

Header

 Signature 4 0 ‘DSDT.’ Signature for the Differentiated System
Description Table.

 Length 4 4 Length, in bytes, of the entire DSDT (including the header).

 Revision 1 8 2

 Checksum 1 9 Entire table must sum to zero.

 OEMID 6 10 OEM ID

 OEM Table ID 8 16 The manufacture model ID.

 OEM Revision 4 24 OEM revision of DSDT for supplied OEM Table ID.

 Creator ID 4 28 Vendor ID for the ASL Compiler.

 Creator Revision 4 32 Revision number of the ASL Compiler.

Definition Block n 36 n bytes of AML code (see section 5.4, “Definition Block
Encoding”)

5.2.10.2 Secondary System Description Table (SSDT)
Secondary System Description Tables (SSDT) are a continuation of the DSDT. The SSDT is comprised of
a system description table header followed by data in Definition Block format. There can be multiple
SSDTs present. OSPM first loads theAfter the DSDT and then loadsis loaded, each SSDT is loaded. This

Error! No text of specified style in document. 23

Compaq/Intel/Microsoft/Phoenix/Toshiba

allows the OEM to provide the base support in one table and add smaller system options in other tables. For
example, the OEM might put dynamic object definitions into a secondary table such that the firmware can
construct the dynamic information at boot without needing to edit the static DSDT. A SSDT can only rely
on the DSDT being loaded prior to it.

Table 5-13b Secondary System Description Table Fields (SSDT)

Field
Byte
Length

Byte
Offset Description

Header

 Signature 4 0 ‘SSDT.’ Signature for the Secondary System Description
Table.

 Length 4 4 Length, in bytes, of the entire SSDT (including the header).

 Revision 1 8 2

 Checksum 1 9 Entire table must sum to zero.

 OEMID 6 10 OEM ID

 OEM Table ID 8 16 The manufacture model ID.

 OEM Revision 4 24 OEM revision of DSDT for supplied OEM Table ID.

 Creator ID 4 28 Vendor ID for the ASL Compiler.

 Creator Revision 4 32 Revision number of the ASL Compiler.

Definition Block n 36 n bytes of AML code (see section 5.4 , “Definition Block
Encoding”)

5.2.10.5 Processor Local APIC
When using the APIC interrupt model, each processor in the system is required to have a Processor Local
APIC record and an ACPI Processor object. OSPM does not expect the information provided in this table
to be updated if the processor information changes during the lifespan of an OS boot. While in the sleeping
state, processors are not allowed to be added, removed, nor can their APIC ID or Flags change. When a
processor is not present, the Processor Local APIC information is either not reported or flagged as disabled.

Table 5-17 Processor Local APIC Structure

Field
Byte
Length

Byte
Offset Description

Type 1 0 0–Processor Local APIC structure

Length 1 1 8

ACPI Processor ID 1 2 The ProcessorId for which this processor is listed in the
ACPI Processor declaration operator. For a definition of the
Processor operator, see section 16.2.3.3.1.176, “Processor
(Declare Processor).”

APIC ID 1 3 The processor’s local APIC ID.

Flags 4 4 Local APIC flags. See Table 5-18 for a description of this
field.

24 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

5.2.10.11 Local APIC Address Override Structure
This optional structure supports 64-bit systems by providing an overrides of the physical address of the
local APIC in the MADT’stable header, which is defined as a 32-bit field using the Generic Address
Structure.

If defined, OSPM must use the address specified in this structure for all local APICs (and local SAPICs),
rather than the address contained in the MADT’s table header. Only one Local APIC Address Override
Structure may be defined.

Table 5-24 Local APIC Address Override Structure

Field
Byte
Length

Byte
Offset Description

Type 1 0 5–Local APIC Address Override Structure

Length 1 1 126

Reserved 2 2 Reserved (must be set to zero)

Local APIC Address 8 4 Physical address of Local APIC

5.2.10.12 I/O SAPIC Structure
The I/O SAPIC structure is very similar to the I/O APIC structure. If both I/O APIC and I/O SAPIC
structures exist for a specific APIC ID, the information in the I/O SAPIC structure must be used.

The I/O SAPIC structure uses the I/O_APIC_ID field as defined in the I/O APIC table. The Vector_Base
field remains unchanged but has been moved. The I/O APIC address has been deleted. A new address and
reserved field have been added.

Table 5-25 I/O SAPIC Structure

Field
Byte
Length

Byte
Offset Description

Type 1 0 6–I/O SAPIC Structure

Length 1 1 1620

I/O APIC ID 1 2 I/O SAPIC ID

Reserved 1 3 Reserved (must be zero)

Global System
Interrupt Base

4 4 The global system interrupt number where this I/O SAPIC’s
interrupt inputs start. The number of interrupt inputs is
determined by the I/O SAPIC’s Max Redir Entry
register.Global System Interrupt Base

I/O SAPIC Address 8 8 The 64-bit physical address to access this I/O SAPIC. Each
I/O SAPIC resides at a unique address.Physical address for
I/O SAPIC

If defined, OSPM must use the information contained in the I/O SAPIC structure instead of the information
from the I/O APIC structure.

Error! No text of specified style in document. 25

Compaq/Intel/Microsoft/Phoenix/Toshiba

If both I/O APIC and an I/O SAPIC structures exist in an MADT, the OEM/BIOS writer must prevent
“mixing” I/O APIC and I/O SAPIC addresses. This is done by ensuring that there are at least as many I/O
SAPIC structures as I/O APIC structures and that every I/O APIC structure has a corresponding I/O SAPIC
structure (same APIC ID).

5.2.10.13 Local SAPIC Structure
The Processor local SAPIC structure is very similar to the processor local APIC structure. When using the
SAPIC interrupt model, each processor in the system is required to have a Processor Local SAPIC record
and an ACPI Processor object. OSPM does not expect the information provided in this table to be updated
if the processor information changes during the lifespan of an OS boot. While in the sleeping state,
processors are not allowed to be added, removed, nor can their SAPIC ID or Flags change. When a
processor is not present, the Processor Local SAPIC information is either not reported or flagged as
disabled.

Table 5-26 Processor Local SAPIC Structure

Field
Byte
Length

Byte
Offset Description

Type 1 0 7–Processor Local SAPIC structure

Length 1 1 128

ACPI Processor ID 12 2 The Processor Id listed in the processor object. For a
definition of the Processor object, see section
16.2.3.3.1.176, “Processor (Declare Processor).”

FlagsLocal SAPIC ID 12 34 Local SAPIC flags. See Table 5-18 for a description of this
field.The processor’s local SAPIC ID

Local SAPIC EID 1 46 The processor’s local SAPIC EID

Reserved 3 5 Reserved (must be set to zero)

Local SAPIC
EIDFlags

41 87 The processor’s local SAPIC EIDLocal SAPIC flags. See
Table 5-18 for a description of this field.

5.6.2.2 General-Purpose Event Handling
When OSPM receives a general-purpose event, it either passes control to an ACPI-aware driver, or uses an
OEM-supplied control method to handle the event. An OEM can implement up to 128 general-purpose
event inputs in hardware per GPE block, each as either a level or edge event. It is also possible to
implement a single 256-pin block as long as it’s the only block defined in the system.

An example of a general-purpose event is specified in section 4, “ACPI Hardware Specification,” where
EC_STS and EC_EN bits are defined to enable OSPM to communicate with an ACPI-aware embedded
controller device driver. The EC_STS bit is set when either an interface in the embedded controller space
has generated an interrupt or the embedded controller interface needs servicing. Notice that if a platform
uses an embedded controller in the ACPI environment, then the embedded controller’s SCI output must be
directly and exclusively tied to a single GPE input bit.

Hardware can cascade other general-purpose events from a bit in the GPEx_BLK through status and enable
bits in Operational Regions (I/O space, memory space, PCI configuration space, or embedded controller
space). For more information, see the specification of the General-Purpose Event Blocks (GPEx_BLK) in
section 4.7.4.1, “General-Purpose Event Register Blocks.”

OSPM manages the bits in the GPEx blocks directly, although the source to those events is not directly
known and is connected into the system by control methods. When OSPM receives a general-purpose event
(the event is from a GPEx_BLK STS bit), OSPM does the following:
1. Disables the interrupt source (GPEx_BLK EN bit).

26 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

2. If an edge event, clears the status bit.
3. Performs one of the following:

• Dispatches to an ACPI-aware device driver.
• Queues the matching control method for execution.
• Manages a wake event using device _PRW objects.

4. If a level event, clears the status bit.
5. Enables the interrupt source.

The OEM AML code can perform OEM-specific functions custom to each event the particular platform
might generate by executing a control method that matches the event. For GPE events, OSPM will execute
the control method of the name _GPE._TXX where XX is the hex value format of the event that needs to be
handled and T indicates the event handling type (T must be either ‘E’ for an edge event or ‘L’ for a level
event). The event values for status bits in GPE0_BLK start at zero (_T00) and end at the
(GPE0_BLK_LEN / 2) - 1. The event values for status bits in GPE1_BLK start at GPE1_BASE and end at
GPE1_BASE + (GPE1_BLK_LEN / 2) - 1. GPE0_BLK_LEN, GPE1_BASE, and GPE1_BLK_LEN are all
defined in the FADT.

For OSPM to manage the bits in the GPEx_BLK blocks directly:
• Enable bits must be read/write.
• Status bits must be latching.
• Status bits must be read/clear, and cleared by writing a “1” to the status bit.

5.5 Using the ACPI Control Method Source Language
OEMs and BIOS vendors write definition blocks using the ACPI Control Method Source language (ASL)
and use a translator to produce the byte stream encoding described in section 5.4. For example, the ASL
statements that produce the example byte stream shown in that earlier section are shown in the following
ASL example. For a full specification of the ASL statements, see section 16, “ACPI Source Language
Reference.”

// ASL Example
DefinitionBlock (

"forbook.aml", // Output Filename
"DSDT", // Signature
0x102, // DSDT Compliance Revision
"OEM", // OEMID
"forbook", // TABLE ID
0x1000 // OEM Revision
)

{ // start of definition block
OperationRegion(\GIO, SystemIO, 0x125, 0x1)
Field(\GIO, ByteAcc, NoLock, Preserve) {

CT01, 1,
}

Scope(_SB){ // start of scope
Device(PCI0) { // start of device

PowerResource(FET0, 0, 0) { // start of pwr
Method(_ON){

Store (Ones, CT01) // assert power
Sleep (30) // wait 30ms

}
Method(_OFF) {

Store (Zero, CT01) // assert reset#
}
Method(_STA) {

Return (CT01)
}

} // end of pwr
} // end of device

} // end of scope
} // end of definition block

Error! No text of specified style in document. 27

Compaq/Intel/Microsoft/Phoenix/Toshiba

5.6.5 Defined Generic Objects and Control Methods
The following table lists all of the generic object and control methods defined in this specification and
provides a reference to the defining section of the specification.

Table 5-43 Defined Generic Object and Control Methods

Object Description Reference

_Acx Thermal Zone object that returns active cooling policy threshold values in
tenths of degrees Kelvin.

12.3.1

_ADR Device object that evaluates to a device’s address on its parent bus. For the
display output device, this object returns a unique ID. (B.5.1, “_ADR -
Return the Unique ID for this Device.”)

6.1.1

_ALx Thermal zone object containing a list of cooling device objects. 12.3.2

_ALN Resource data type reserved field name 16.2.4

_ASI Resource data type reserved field name 16.2.4.16

28 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 5-43 Defined Generic Object and Control Methods (continued)

Object Description Reference

_BAS Resource data type reserved field name 16.2.4
_BBN PCI bus number setup by the BIOS 6.5.5
_BCL Returns a buffer of bytes indicating list of brightness control levels

supported.
B.5.2

_BCM Sets the brightness level of the built-in display output device. B.5.3
_BDN Correlates a docking station between ACPI and legacy interfaces. 6.5.3
_BFS Control method executed immediately following a wake event. 7.3.1
_BIF Control Method Battery information object 11.2.2.1
_BM Resource data type reserved field name 16.2.4
_BST Control Method Battery status object 11.2.2.2
_BTP Sets Control Method Battery trip point 11.2.2.3
_CID Device identification object that evaluates to a device’s Plug and Play

Compatible ID list.
6.1.2

_CRS Device configuration object that specifies a device’s current resource
settings, or a control method that generates such an object.

6.2.1

_CRT Thermal zone object that returns critical trip point in tenths of degrees
Kelvin.

12.3.3

_CST Processor power state declaration object 8.3.2
_DCK Indicates that the device is a docking station. 6.5.2
_DCS Returns the status of the display output device. B.5.5
_DDC Returns the EDID for the display output device B.5.4
_DDN Object that associates a logical software name (for example, COM1) with a

device.
6.1.3

_DEC Resource data type reserved field name 16.2.4
_DGS Control method used to query the state of the output device. B.5.6
_DIS Device configuration control method that disables a device. 6.2.2
_DMA Object that specifies a device’s current resources for DMA transactions. 6.2.3
_DOD Control method used to enumerate devices attached to the display adapter. B.4.2
_DOS Control method used to enable/disable display output switching. B.4.1
_DSS Control method used to set display device state. B.5.7
_Exx Control method executed as a result of a general-purpose event. 5.6.2.2,

5.6.2.2.35.3
_EC Control Method used to define the offset address and Query value of an

SMB-HC defined within an embedded controller device.
13.12

_EDL Device removal object that returns a packaged list of devices that are
dependent on a device.

6.3.1

_EJx Device insertion/removal control method that ejects a device. 6.3.3

Error! No text of specified style in document. 29

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 5-43 Defined Generic Object and Control Methods (continued)

Object Description Reference

_EJD Device removal object that evaluates to the name of a device object upon
which a device is dependent. Whenever the named device is ejected, the
dependent device must receive an ejection notification.

6.3.2

_FDE Object that indicates the presence or absence of floppy disks. 10.9.1
_FDI Object that returns floppy drive information. 10.9.2
_FDM Control method that changes the mode of floppy drives. 10.9.3
_FIX Object used to provide correlation between the fixed hardware register

blocks defined in the FADT and the devices that implement these fixed
hardware registers.

6.2.4

_GL OS-defined Global Lock mutex object 5.7.1
_ GLK Indicates the need to acquire the Global Lock, must be acquired when

accessing the device.
6.5.7

_GPD Control method that returns which VGA device will be posted at boot B.4.4
_GPE 1. General-Purpose Events root name space

2. Object that returns the SCI interrupt within the GPx_STS register that
is connected to the EC.

5.3.14
13.11

_GRA Resource data type reserved field name. 16.2.4
_GTF IDE device control method to get the Advanced Technology Attachement

(ATA) task file needed to re-initialize the drive to bootup defaults.
10.8.1

_GTM IDE device control method to get the IDE controller timing information. 10.8.2
_GTS Control method executed just prior to setting the sleep enable (SLP_EN)

bit.
7.3.3

_HE Resource data type reserved field name 16.2.4
_HID Device identification object that evaluates to a device’s Plug and Play

Hardware ID.
6.1.4

_HPP An object that specifies the Cache-line size, Latency timer, SERR enable,
and PERR enable values to be used when configuring a PCI device
inserted into a hot-plug slot or initial configuration of a PCI device at
system boot.

6.2.5

_INI Device initialization method that performs device specific initialization. 6.5.1
_INT Resource data type reserved field name 16.2.4
_IRC Power management object that signifies the device has a significant inrush

current draw.
 7.2.11

_Lxx Control method executed as a result of a general-purpose event. 5.6.2.2,
5.6.2.2.35.3

_LCK Device insertion/removal control method that locks or unlocks a device. 6.3.4
_LEN Resource data type reserved field name 16.2.4
_LID Object that returns the status of the Lid on a mobile system. 10.3.1
_LL Resource data type reserved field name 16.2.4

30 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 5-43 Defined Generic Object and Control Methods (continued)

Object Description Reference

_MAF Resource data type reserved field name 16.2.4
_MAT Object evaluates to a buffer of MADT APIC Structure entries. 6.2.6
_MAX Resource data type reserved field name 16.2.4
_MEM Resource data type reserved field name 16.2.4
_MIF Resource data type reserved field name 16.2.4
_MIN Resource data type reserved field name 16.2.4
_MSG System indicator control that indicates messages are waiting. 10.1.2
_OFF Power resource object that sets the resource off. 7.1.2
_ON Power resource object that sets the resource on. 7.1.3
_OS Object that evaluates to a string that identifies the operating system. 5.7.2
_PCL Power source object that contains a list of devices powered by a power

source.
11.3.2

_PCT Processor performance control object 8.3.3.1
_PIC Control method that conveys interrupt model in use to the system firmware. 5.8.1
_PPC Control method used to determine number of performance states currently

supported by the platform.
8.3.3.3

_PR ACPI 1.0 Processor Namespace 5.3.1
_PR0 Power management object that evaluates to the device’s power

requirements in the D0 device state (device fully on).
7.2.6

_PR1 Power management object that evaluates to the device’s power
requirements in the D1 device state. Only devices that can achieve the
defined D1 device state according to its given device class would supply
this level.

7.2.7

_PR2 Power management object that evaluates to the device’s power
requirements in the D2 device state. Only devices that can achieve the
defined D2 device state according to its given device class would supply
this level.

7.2.8

_PRS Device configuration object that specifies a device’s possible resource
settings, or a control method that generates such an object.

6.2.7

_PRT An object that specifies the PCI interrupt Routing Table. 6.2.8
_PRW Power management object that evaluates to the device’s power

requirements in order to wake the system from a system sleeping state.
7.2.9

_PS0 Power management control method that puts the device in the D0 device
state. (device fully on).

7.2.1

_PS1 Power management control method that puts the device in the D1 device
state.

7.2.2

_PS2 Power management control method that puts the device in the D2 device
state.

7.2.3

Error! No text of specified style in document. 31

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 5-43 Defined Generic Object and Control Methods (continued)

Object Description Reference

_PS3 Power management control method that puts the device in the D3 device
state (device off).

7.2.4

_PSC Power management object that evaluates to the device’s current power
state.

7.2.5

_PSL Thermal zone object that returns list of passive cooling device objects. 12.3.4
_PSR Power source object that returns present power source device. 11.3.1
_PSS Object indicates the number of supported processor performance states. 8.3.3.2
_PSV Thermal zone object that returns Passive trip point in tenths of degrees

Kelvin.
12.3.5

_PSW Power management control method that enables or disables the device’s
wake function.

7.2.10

_PTC Object used to define a processor throttling control register. 8.3.1
_PTS Control method used to prepare to sleep. 7.3.2
_PXM Object used to describe proximity domains within a machine. 6.2.9
_Qxx Embedded Controller Query control method 5.6.2.2.3
_RBO Resource data type reserved field name 16.2.4
_RBW Resource data type reserved field name 16.2.4
_REG Notifies AML code of a change in the availability of an operation region. 6.5.4
_REV Revision of the ACPI specification that OSPM implements. 5.7.3
_RMV Device insertion/removal object that indicates that the given device is

removable.
6.3.5

_RNG Resource data type reserved field name 16.2.4
_ROM Control method used to get a copy of the display devices’ ROM data. B.4.3
_RW Resource data type reserved field name 16.2.4
_S0 Power management package that defines system _S0 state mode. 7.3.4.1
_S1 Power management package that defines system _S1 state mode. 7.3.4.2
_S2 Power management package that defines system _S2 state mode. 7.3.4.3
_S3 Power management package that defines system _S3 state mode. 7.3.4.4
_S4 Power management package that defines system _S4 state mode. 7.3.4.5
_S5 Power management package that defines system _S5 state mode. 7.3.4.6
_S1D Highest D-state supported by the device in the S1 state. 7.2.12
_S2D Highest D-state supported by the device in the S2 state. 7.2.13
_S3D Highest D-state supported by the device in the S3 state. 7.2.14
_S4D Highest D-state supported by the device in the S4 state. 7.2.15
_SB System bus scope 5.3.1

32 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 5-43 Defined Generic Object and Control Methods (continued)

Object Description Reference

_SBS Smart Battery object that returns Smart Battery configuration. 11.1.2
_SCP Thermal zone object that sets user cooling policy (Active or Passive). 12.3.76
_SEG Bus identification object that evaluates to a bus’s segment number. 6.5.6
_SHR Resource data type reserved field name 16.4.2
_SI System indicators scope 5.3.1
_SIZ Resource data type reserved field name 16.4.2
_SPD Control method used to update which video device will be posted at boot. B.4.5
_SRS Device configuration control method that sets a device’s settings. 6.2.10
_SST System indicator control method that indicates the system status. 10.1.1
_STA 1. Device insertion/removal control method that returns a device’s status.

2. Power resource object that evaluates to the current on or off state of the
Power Resource.

6.3.6
7.1.4

_STM IDE device control method used to set the IDE controller transfer timings. 10.8.3
_STR Object evaluates to a Unicode string to describe a device. 6.1.5
_SUN Object that evaluates to the slot unique ID number for a slot. 6.1.6
_T_x Reserved for use by the ASL compiler. 16.2.1.1
_TC1 Thermal zone object that contains thermal constant for Passive cooling. 12.3.7
_TC2 Thermal zone object that contains thermal constant for Passive cooling. 12.3.8
_TMP Thermal zone object that returns current temperature in tenths of degrees

Kelvin.
12.3.9

_TRA Resource data type reserved field name 16.4.2
_TRS Resource data type reserved field name 16.4.2
_TSP Thermal zone object that contains thermal sampling period for Passive

cooling.
12.3.10

_TTP Resource data type reserved field name 16.4.2
_TYP Resource data type reserved field name 16.4.2
_TZ ACPI 1.0 thermal zone scope 5.3.1
_TZD Object evaluates to a package of device names associated with a Thermal

Zone.
12.3.11

_TZP Thermal zone polling frequency in tenths of seconds. 12.3.12
_UID Device identification object that specifies a device’s unique persistent ID,

or a control method that generates it.
6.1.7

_VPO Returns 32-bit integer indicating the video post options. B.4.6
_WAK Power management control method run once system is awakened. 7.3.5

6.4.3.7 Generic Register Descriptor (Type 1, Large Item Name 0x2)
The generic register descriptor describes the location of a fixed width register within any of the ACPI-
defined address spaces.

Error! No text of specified style in document. 33

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 6-32 Generic Register Descriptor Definition

Offset Field Name, ASL Field Name Definition

Byte 0 Generic register descriptor Value = 10000010B (Type = 1, Large item name =
0x2)

Byte 1 Length, bits[7:0] Value = 00001011100B (121)

Byte 2 Length, bits[15:8] Value = 00000000B (0)

Byte 3 Address Space ID, _ASI The address space where the data structure or
register exists.
Defined values are:

0–System Memory

1–System I/O

2–PCI Configuration Space

3–Embedded Controller

4–SMBus

0x7F–Functional Fixed Hardware

Byte 4 Register Bit Width, _RBW Indicates the register width in bits.

Byte 5 Register Bit Offset, _RBO Indicates the offset to the start of the register in bits
from the Register Address.

34 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 6-32 Generic Register Descriptor Definition (continued)

Offset Field Name, ASL Field Name Definition

Byte 6 Reserved Must be 0.

Byte 76 Register Address, _ADR
bits[7:0]

Register Address

Byte 87 Register Address, _ADR
bits[15:8]

Byte 98 Register Address, _ADR
bits[23:16]

Byte 109 Register Address, _ADR
bits[31:24]

Byte 110 Register Address, _ADR
bits[39:32]

Byte 121 Register Address, _ADR
bits[47:40]

Byte 132 Register Address, _ADR
bits[55:48]

Byte 143 Register Address, _ADR
bits[63:56]

See section 16.2.4.16, “ASL Macro for Generic Register Descriptor,” for a description of the ASL macro
that creates a Generic Register descriptor.

6.5.1 _INI (Init)
_INI is a device initialization object that performs device specific initialization. This control method is
located under a device object and is run only when OSPM loads a description table. There are restrictions
related to when this method is called and governing writing code for this method. The _INI method must
only access Operation Regions that have been indicated to available as defined by the _REG method. The
_REG method is described in section 6.5.4, “_REG (Region).” This control method is run before _ADR,
_CID, _HID, _SUN, and _UID are run.

Error! No text of specified style in document. 35

Compaq/Intel/Microsoft/Phoenix/Toshiba

If the _STA method indicates that the device is present, OSPM will evaluate the __INI for the device (if the
_INI method exists) and will examine each of the children of the device for _INI methods. If the _STA
method indicates that the device is not present, OSPM will not run the _INI and will not examine the
children of the device for _INI methods. If the device becomes present after the table has already been
loaded, OSPM will not evaluate the _INI method, nor examine the children for _INI methods.

The _INI control method is generally used to switch devices out of a legacy operating mode. For example,
BIOSes often configure CardBus controllers in a legacy mode to support legacy operating systems. Before
enumerating the device with an ACPI operating system, the CardBus controllers must be initialized to
CardBus mode. For such systems, the vendor can include an _INI control method under the CardBus
controller to switch the device into CardBus mode.

In addition to device initialization, OSPM unconditionally evaluates an _INI object under the _SB
namespace, if present, at the beginning of namespace initialization.

12.4 Thermal Zone Object Requirements
While not all thermal zone objects are required to be present in each thermal zone defined in the
namespace, OSPM levies conditional requirements for the presence of specific thermal zone objects based
on the definition of other related thermal zone objects. These requirements are outlined below:
• All thermal zones must contain the _TMP object.
• A thermal zone must define at least one trip point: _CRT, _HOTCS4, _ACx, or _PSV.
• If _ACx is defined then an associated _ALx must be defined (e.g. defining _AC0 requires _AL0 also

be defined).
• If _PSV is defined then either _PSL or _TZD must be defined. _PSL and _TZD may both be defined.
• If _PSL is defined then:
If a performance control register is defined (via either P_BLK or _PTC) for a processor defined in _PSL
then _TC1, _TC2, and _TSP must be defined.
If a performance control register is not defined (via either P_BLK or _PTC) for a processor defined in
_PSL then the processor must support processor performance states (in other words, the processor’s
processor object must include _PCT, _PSS, and _PPC).
• If _PSV is defined and _PSL is not defined (in other words, only _TZD is defined) then at least one

device in the _TZD device list must support device performance states.
• _SCP is optional.
• _TZD is optional outside of the _PSV requirement outlined above.
• If _HOTCS4 is defined then the system must support the S4 sleeping state.

12.5 Thermal Zone Examples

12.5.1 Example: The Basic Thermal Zone
The following ASL describes a basic configuration where the entire system is treated as a single thermal
zone. Cooling devices for this thermal zone consist of a processor and one single-speed fan. This is an
example only.

Notice that this thermal zone object (TZ0) is defined in the _SB scope. Thermal zone objects should
appear in the namespace under the portion of the system that comprises the thermal zone. For example, a
thermal zone that is isolated to a docking station should be defined within the scope of the docking station
device. Besides providing for a well-organized namespace, this configuration allows OSPM to dynamically
adjust its thermal policy as devices are added or removed from the system.

Scope(_SB) {
Processor(

CPU0,
1, // unique number for this processor
0x110, // system IO address of Pblk Registers
0x06 // length in bytes of PBlk
) {}

36 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Scope(_SB.PCI0.ISA0) {
Device(EC0) {

Name(_HID, EISAID("PNP0C09")) // ID for this EC
// current resource description for this EC
Name(_CRS,

ResourceTemplate() {
IO(Decode16,0x62,0x62,0,1)
IO(Decode16,0x66,0x66,0,1)

})
Name(_GPE, 0) // GPE index for this EC

// create EC's region and field for thermal support
OperationRegion(EC0, EmbeddedControl, 0, 0xFF)
Field(EC0, ByteAcc, Lock, Preserve) {

MODE, 1, // thermal policy (quiet/perform)
FAN, 1, // fan power (on/off)
, 6, // reserved
TMP, 8, // current temp
AC0, 8, // active cooling temp (fan high)
, 8, // reserved
PSV, 8, // passive cooling temp
HOTCS4 8, // critical S4 temp
CRT, 8 // critical temp
}

// following is a method that OSPM will schedule after
// it receives an SCI and queries the EC to receive value 7
Method(_Q07) {

Notify (_SB.PCI0.ISA0.EC0.TZ0, 0x80)
} // end of Notify method

// fan cooling on/off - engaged at AC0 temp
PowerResource(PFAN, 0, 0) {

Method(_STA) { Return (_SB.PCI0.ISA0.EC0.FAN) } // check power state
Method(_ON) { Store (One, _SB.PCI0.ISA0.EC0.FAN) } // turn on fan
Method(_OFF) { Store (Zero, _SB.PCI0.ISA0.EC0.FAN) } // turn off fan

}

// Create FAN device object
Device (FAN) {

// Device ID for the FAN
Name(_HID, EISAID("PNP0C0B"))
// list power resource for the fan
Name(_PR0, Package(){PFAN})

}

// create a thermal zone
ThermalZone (TZ0) {

Method(_TMP) { Return (_SB.PCI0.ISA0.EC0.TMP)} // get current temp
Method(_AC0) { Return (_SB.PCI0.ISA0.EC0.AC0) } // fan high temp
Name(_AL0, Package(){_SB.PCI0.ISA0.EC0.FAN}) // fan is act cool dev
Method(_PSV) { Return (_SB.PCI0.ISA0.EC0.PSV) } // passive cooling temp
Name(_PSL, Package (){_SB.CPU0}) // passive cooling devices
Method(_HOTCS4) { Return (_SB.PCI0.ISA0.EC0.HOTCS4) } // get critical S4

temp
Method(_CRT) { Return (_SB.PCI0.ISA0.EC0.CRT) } // get critical temp
Method(_SCP, 1) { Store (Arg1, _SB.PCI0.ISA0.EC0.MODE) } // set cooling mode
Name(_TC1, 4) // bogus example constant
Name(_TC2, 3) // bogus example constant
Name(_TSP, 150) // passive sampling = 15 sec
Name(_TZP, 0) // polling not required

} // end of TZ0

} // end of ECO
} // end of _SB.PCI0.ISA0 scope-

} // end of _SB scope

Error! No text of specified style in document. 37

Compaq/Intel/Microsoft/Phoenix/Toshiba

12.5.2 Example: Multiple-Speed Fans
The following ASL describes a thermal zone consisting of a processor and one dual-speed fan. As with the
previous example, this thermal zone object (TZ0) is defined in the _SB scope and represents the entire
system. This is an example only.

Scope(_SB) {
Processor(

CPU0,
1, // unique number for this processor
0x110, // system IO address of Pblk Registers
0x06 // length in bytes of PBlk
) {}

Scope(_SB.PCI0.ISA0) {
Device(EC0) {

Name(_HID, EISAID("PNP0C09")) // ID for this EC
// current resource description for this EC
Name(_CRS,

ResourceTemplate() {
IO(Decode16,0x62,0x62,0,1)
IO(Decode16,0x66,0x66,0,1)

})
Name(_GPE, 0) // GPE index for this EC

// create EC's region and field for thermal support
OperationRegion(EC0, EmbeddedControl, 0, 0xFF)
Field(EC0, ByteAcc, Lock, Preserve) {

MODE, 1, // thermal policy (quiet/perform)
FAN0, 1, // fan strength high/off
FAN1, 1, // fan strength low/off
, 5, // reserved
TMP, 8, // current temp
AC0, 8, // active cooling temp (high)
AC1, 8, // active cooling temp (low)
PSV, 8, // passive cooling temp
HOTCS4 8, // critical S4 temp
CRT, 8 // critical temp

}

// following is a method that OSPM will schedule after it
// receives an SCI and queries the EC to receive value 7
Method(_Q07) {

Notify (_SB.PCI0.ISA0.EC0.TZ0, 0x80)
} end of Notify method

// fan cooling mode high/off - engaged at AC0 temp
PowerResource(FN10, 0, 0) {

Method(_STA) { Return (_SB.PCI0.ISA0.EC0.FAN0) } // check power state
Method(_ON) { Store (One, _SB.PCI0.ISA0.EC0.FAN0) } // turn on fan at high
Method(_OFF) { Store (Zero, _SB.PCI0.ISA0.EC0.FAN0) }// turn off fan

}

// fan cooling mode low/off - engaged at AC1 temp
PowerResource(FN11, 0, 0) {

Method(_STA) { Return (_SB.PCI0.ISA0.EC0.FAN1) } // check power state
Method(_ON) { Store (One, _SB.PCI0.ISA0.EC0.FAN1) } // turn on fan at low
Method(_OFF) { Store (Zero, _SB.PCI0.ISA0.EC0.FAN1) }// turn off fan

}

38 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

// Following is a single fan with two speeds. This is represented
// by creating two logical fan devices. When FN2 is turned on then
// the fan is at a low speed. When FN1 and FN2 are both on then
// the fan is at high speed.
//
// Create FAN device object FN1
Device (FN1) {

// Device ID for the FAN
Name(_HID, EISAID("PNP0C0B"))
Name(_PR0, Package(){FN10, FN11})

}

// Create FAN device object FN2
Device (FN2) {

// Device ID for the FAN
Name(_HID, EISAID("PNP0C0B"))
Name(_PR0, Package(){FN10})

}

// create a thermal zone
ThermalZone (TZ0) {

Method(_TMP) { Return (_SB.PCI0.ISA0.EC0.TMP)} // get current temp
Method(_AC0) { Return (_SB.PCI0.ISA0.EC0.AC0) } // fan high temp
Method(_AC1) { Return (_SB.PCI0.ISA0.EC0.AC1) } // fan low temp
Name(_AL0, Package() {_SB.PCI0.ISA0.EC0.FN1}) // active cooling (high)
Name(_AL1, Package() {_SB.PCI0.ISA0.EC0.FN2}) // active cooling (low)
Method(_PSV) { Return (_SB.PCI0.ISA0.EC0.PSV) } // passive cooling temp
Name(_PSL, Package() {_SB.CPU0}) // passive cooling devices
Method(_HOTCS4) { Return (_SB.PCI0.ISA0.EC0.HOTCS4) } // get critical S4 temp
Method(_CRT) { Return (_SB.PCI0.ISA0.EC0.CRT) } // get crit. temp
Method(_SCP, 1) { Store (Arg1, _SB.PCI0.ISA0.EC0.MODE) } // set cooling mode
Name(_TC1, 4) // bogus example constant
Name(_TC2, 3) // bogus example constant
Name(_TSP, 150) // passive sampling = 15 sec
Name(_TZP, 0) // polling not required

} // end of TZ0

} // end of ECO
} // end of _SB.PCI0.ISA0 scope

} // end of _SB scope

Error! No text of specified style in document. 39

Compaq/Intel/Microsoft/Phoenix/Toshiba

14.2 Declaring SMBus Host Controller Objects
EC-based SMBus 1.0-compatible HCs should be modeled in the ACPI namespace as described in section
13.12, “Defining an Embedded Controller SMBus Host Controller in ACPI Namespace.” An example
definition is given below. Using the HID value “ACPI0001” identifies that this SMB-HC is implemented
on an embedded controller using the standard SMBus register set defined in section 13.9, SMBus Host
Controller Interface via Embedded Controller.”

Device (SMB0)
{

Name(_HID, "ACPI0001") // EC-based SMBus 1.0 compatible Host Controller
Name(_EC0, 0x2030) // EC offset 0x20, query bit 0x30
:

}

EC-based SMBus 2.0-compatible host controllers should be defined similarly in the name space as follows:

Device (SMB0)
{

Name(_HID, "ACPI0005") // EC-based SMBus 2.0 compatible Host Controller
Name(_EC1, 0x2030) // EC offset 0x20, query bit 0x30
:

}

Non–EC-based SMB-HCs should be modeled in a manner similar to the EC-based SMBus HC. An
example definition is given below. These devices use a vendor-specific hardware identifier (HID) to
specify the type of SMB-HC (do not use “ACPI0001” or “ACPI0005”). Using a vendor-specific HID
allows the correct software to be loaded to service this segment’s SMBus address space.

Device(SMB0)
{

Name(_HID, "<Vendor-Specific HID>") // Vendor-Specific HID
:

}

Regardless of the type of hardware, some OS software element (for example, the SMBus HC
driver) must register with OSPM to support all SMBus operation regions defined for the segment.
This software allows the generic SMBus interface defined in this section to be used on a specific
hardware implementation by translating between the conceptual (for example, SMBus address
space) and physical (for example, process of writing/reading registers) models. Because of this
linkage, SMBus operation regions must be defined immediately within the scope of the
corresponding SMBus device.

16.1.3 ASL Language and Terms
ASLCode := DefinitionBlockTerm

DefinitionBlockTerm := DefinitionBlock(
AMLFileName, //StringData
TableSignature, //StringData
ComplianceRevision, //ByteConst
OEMID, //StringData
TableID, //StringData
OEMRevision //DWordConst

) {TermList}

TermList := Nothing | <Term TermList>
Term := Object | Type1Opcode | Type2Opcode

CompilerDirective := IncludeTerm | ExternalTerm

ObjectList := Nothing | <Object ObjectList>
Object := CompilerDirective | NamedObject | NameSpaceModifier

DataObject := BufferData | PackageData | IntegerData | StringData
DataRefObject := DataObject | ObjectReference | DDBHandle

40 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

ComputationalData := BufferData | IntegerData | StringData
BufferData := Type5Opcode | BufferTerm
PackageData := PackageTerm
IntegerData := Type3Opcode | Integer | ConstTerm
StringData := Type4Opcode | String

NamedObject := BankFieldTerm | CreateBitFieldTerm | CreateByteFieldTerm
| CreateDWordFieldTerm | CreateFieldTerm |
CreateQWordFieldTerm | CreateWordFieldTerm |
DataRegionTerm | DeviceTerm | EventTerm | FieldTerm |
IndexFieldTerm | MethodTerm | MutexTerm | OpRegionTerm |
PowerResTerm | ProcessorTerm | ThermalZoneTerm

NameSpaceModifier := AliasTerm | NameTerm | ScopeTerm

UserTerm := NameString(//NameString=>Method
ArgList

) => Nothing | DataRefObject
ArgList := Nothing | <TermArg ArgListTail>
ArgListTail := Nothing | <’,’ TermArg ArgListTail>
TermArg := Type2Opcode | DataRefObject | ArgTerm | LocalTerm |

NameString
Target := Nothing | SuperName

Error! No text of specified style in document. 41

Compaq/Intel/Microsoft/Phoenix/Toshiba

Type1Opcode := BreakTerm | BreakPointTerm | ContinueTerm | FatalTerm |
IfElseTerm | LoadTerm | NoOpTerm | NotifyTerm |
ReleaseTerm | ResetTerm | ReturnTerm | SignalTerm |
SleepTerm | StallTerm | SwitchTerm | UnloadTerm |
WhileTerm
// A Type1OpCode term can only be used standing alone on
a
// line of ASL code; because these types of terms do not
// return a value so they cannot be used as a term in an
// expression.

Type2Opcode := AcquireTerm | AddTerm | AndTerm | ConcatTerm |
ConcatResTerm | CondRefOfTerm | CopyObjectTerm |
DecTerm | DerefOfTerm | DivideTerm |
FindSetLeftBitTerm | FindSetRightBitTerm | FromBCDTerm |
IncTerm | IndexTerm | LAndTerm | LEqualTerm |
LGreaterTerm | LGreaterEqualTerm | LLessTerm |
LLessEqualTerm | LNotTerm | LNotEqualTerm |
LoadTableTerm | LOrTerm | MatchTerm | MidTerm |
ModTerm | MultiplyTerm | NAndTerm | NOrTerm | NotTerm |
ObjectTypeTerm | OrTerm | RefOfTerm | ShiftLeftTerm |
ShiftRightTerm | SizeOfTerm | StoreTerm | SubtractTerm |
ToBCDTerm | ToBufferTerm | ToDecimalStringTerm |
ToHexStringTerm | ToIntegerTerm | ToStringTerm |
WaitTerm | XorTerm | UserTerm
// A Type2Opcode term returns a value that can be used
// inan expression.

Type3Opcode := AddTerm | AndTerm | DecTerm | DivideTerm | EISAIDTerm |
FindSetLeftBitTerm | FindSetRightBitTerm | FromBCDTerm |
IncTerm | IndexTerm | LAndTerm | LEqualTerm |
LGreaterTerm | LGreaterEqualTerm | LLessTerm |
LLessEqualTerm | LNotTerm | LNotEqualTerm | LOrTerm |
MatchTerm | ModTerm | MultiplyTerm | NAndTerm |
NOrTerm | NotTerm | OrTerm | ShiftLeftTerm |
ShiftRightTerm | SubtractTerm | ToBCDTerm |
ToIntegerTerm | XorTerm
// A Type3Opcode evaluates to an Integer, can’t have a
// destination and must have either Type3Opcode,
// Type4Opcode, Type5Opcode, ConstExprTerm, Integer,
// BufferTerm, Package or String for all arguments.

Type4Opcode := ConcatTerm | MidTerm | ToDecimalStringTerm |
ToHexStringTerm | ToStringTerm
// A Type4Opcode evaluates to an String, can’t have a
// destination and must have either Type3Opcode,
// Type4Opcode, Type5Opcode, ConstExprTerm, Integer,
// BufferTerm, PackageTerm or String for all arguments.

Type5Opcode := ConcatTerm | ConcatResTerm | MidTerm |
ResourceTemplateTerm | ToBufferTerm | UnicodeTerm
// A Type5Opcode evaluates to a BufferTerm, can’t
// have a destination and must have either Type3Opcode,
// Type4Opcode, Type5Opcode, ConstExprTerm, Integer,
// BufferTerm, PackageTerm or String for all arguments.

Type6Opcode := RefOfTerm | DerefOfTerm | IndexTerm | UserTerm

IncludeTerm := Include(
IncFilePathName //StringData

)

ExternalTerm := External(
ObjName, //NameString
ObjType //Nothing | ObjectTypeKeyword

)

42 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

BankFieldTerm := BankField(
RegionName, //NameString=>OperationRegion
BankName, //NameString=>FieldUnit
BankValue, //TermArg=>Integer
AccessType, //AccessTypeKeyword
LockRule, //LockRuleKeyword
UpdateRule //UpdateRuleKeyword

) {FieldUnitList}

Error! No text of specified style in document. 43

Compaq/Intel/Microsoft/Phoenix/Toshiba

FieldUnitList := Nothing | <FieldUnit FieldUnitListTail>
FieldUnitListTail := Nothing | <‘,’ FieldUnit FieldUnitListTail>

FieldUnit := FieldUnitEntry | OffsetTerm | AccessAsTerm
FieldUnitEntry := <Nothing | NameSeg> ‘,’ Integer

OffsetTerm := Offset(
ByteOffset //IntegerData

)

AccessAsTerm := AccessAs(
AccessType, //AccessTypeKeyword
AccessAttribute //Nothing | ByteConstExpr |

//AccessAttribKeyword
)

CreateBitFieldTerm := CreateBitField(
SourceBuffer, //TermArg=>Buffer
BitIndex, //TermArg=>Integer
BitFieldName //NameString

)

CreateByteFieldTerm := CreateByteField(
SourceBuffer, //TermArg=>Buffer
ByteIndex, //TermArg=>Integer
ByteFieldName //NameString

)

CreateDWordFieldTerm := CreateDWordField(
SourceBuffer, //TermArg=>Buffer
ByteIndex, //TermArg=>Integer
DWordFieldName //NameString

)

CreateFieldTerm := CreateField(
SourceBuffer, //TermArg=>Buffer
BitIndex, //TermArg=>Integer
NumBits, //TermArg=>Integer
FieldName //NameString

)

CreateQWordFieldTerm := CreateQWordField(
SourceBuffer, //TermArg=>Buffer
ByteIndex, //TermArg=>Integer
QWordFieldName //NameString

)

CreateWordFieldTerm := CreateWordField(
SourceBuffer, //TermArg=>Buffer
ByteIndex, //TermArg=>Integer
WordFieldName //NameString

)

DataRegionTerm := DataTableRegion(
RegionName, // NameString
SignatureString, // TermArg=>String
OemIDString, // TermArg=>String
OemTableIDString // TermArg=>String

)

DeviceTerm := Device(
DeviceName //NameString

) {ObjectList}

EventTerm := Event(
EventName //NameString

)

44 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

FieldTerm := Field(
RegionName, //NameString=>OperationRegion
AccessType, //AccessTypeKeyword
LockRule, //LockRuleKeyword
UpdateRule //UpdateRuleKeyword

) {FieldUnitList}

IndexFieldTerm := IndexField(
IndexName, //NameString=>FieldUnit
DataName, //NameString=>FieldUnit
AccessType, //AccessTypeKeyword
LockRule, //LockRuleKeyword
UpdateRule //UpdateRuleKeyword

) {FieldUnitList}

MethodTerm := Method(
MethodName, //NameString
NumArgs, //Nothing | ByteConstExpr
SerializeRule, //Nothing |

//SerializeRuleKeyword
SyncLevel //Nothing | ByteConstExpr

) {TermList}

MutexTerm := Mutex(
MutexName, //NameString
SyncLevel //ByteConstExpr

)

OpRegionTerm := OperationRegion(
RegionName, //NameString
RegionSpace, //RegionSpaceKeyword
Offset, //TermArg=>Integer
Length //TermArg=>Integer

)

PowerResTerm := PowerResource(
ResourceName, //NameString
SystemLevel, //ByteConstExpr
ResourceOrder //WordConstExpr

) {ObjectList}

ProcessorTerm := Processor(
ProcessorName, //NameString
ProcessorID, //ByteConstExpr
PBlockAddress, //DWordConstExpr|Nothing (=0)
PblockLength //ByteConstExpr|Nothing (=0)

) {ObjectList}

ThermalZoneTerm := ThermalZone(
ThermalZoneName //NameString

) {ObjectList}

AliasTerm := Alias(
SourceObject, //NameString
AliasObject //NameString

)

NameTerm := Name(
ObjectName, //NameString
Object //DataRefObject

)

ScopeTerm := Scope(
Location //NameString

) {ObjectList}

BreakTerm := Break

BreakPointTerm := BreakPoint

ContinueTerm := Continue

Error! No text of specified style in document. 45

Compaq/Intel/Microsoft/Phoenix/Toshiba

FatalTerm := Fatal(
Type, //ByteConstExpr
Code, //DWordConstExpr
Arg //TermArg=>Integer

)

IfElseTerm := IfTerm ElseTerm

IfTerm := If(
Predicate //TermArg=>Integer

) {TermList}

ElseTerm := Nothing | <Else {TermList}> | <ElseIf (
Predicate //TermArg=>Integer

) {TermList} ElseTerm>

LoadTerm := Load(
Object, //NameString
DDBHandle //SuperName

)

NoOpTerm := Noop

NotifyTerm := Notify(
Object,
//SuperName=>ThermalZone|Processor|Device
NotificationValue //TermArg=>Integer

)

ReleaseTerm := Release(
SyncObject //SuperName

)

ResetTerm := Reset(
SyncObject //SuperName

)

ReturnTerm := Return(
Arg //TermArg=>DataRefObject

)

SignalTerm := Signal(
SyncObject //SuperName

)

SleepTerm := Sleep(
MilliSecs //TermArg=>Integer

)

StallTerm := Stall(
MicroSecs //TermArg=>Integer

)

SwitchTerm := Switch(
Predicate //TermArg=>ComputationalData

) {CaseTermList}
CaseTermList := Nothing | CaseTerm | DefaultTerm DefaultTermList |

CaseTerm CaseTermList
DefaultTermList := Nothing | CaseTerm | CaseTerm DefaultTermList
CaseTerm := Case(

Value //DataObject
) {TermList}

DefaultTerm := Default {TermList}

UnloadTerm := Unload(
DDBHandle //SuperName

)

WhileTerm := While(
Predicate //TermArg=>Integer

) {TermList}

46 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

AcquireTerm := Acquire(
SyncObject, //SuperName=>Mutex
TimeoutValue //WordConstExpr

) => Boolean // True means timed-out

AddTerm := Add(
Addend1, //TermArg=>Integer
Addend2, //TermArg=>Integer
Result //Target

) => Integer

AndTerm := And(
Source1, //TermArg=>Integer
Source2, //TermArg=>Integer
Result //Target

) => Integer

ConcatTerm := Concatenate(
Source1, //TermArg=>ComputationalData
Source2, //TermArg=>ComputationalData
Result //Target

) => ComputationalData

ConcatResTerm := ConcatenateResTemplate(
Source1, //TermArg=>Buffer
Source2, //TermArg=>Buffer
Result //Target

) => Buffer

CondRefOfTerm := CondRefOf(
Source, //SuperName
Destination //Target

) => Boolean

CopyObjectTerm := CopyObject(
Source, //TermArg=>DataRefObject
Result, //NameString | LocalTerm |

ArgTerm
) => DataRefObject

DecTerm := Decrement(
Addend //SuperName

) => Integer

DerefOfTerm := DerefOf(
Source //TermArg=>ObjectReference

//ObjectReference is an
object

//produced by terms such as
//Index, RefOf or CondRefOf.

) => DataRefObject

DivideTerm := Divide(
Dividend, //TermArg=>Integer
Divisor, //TermArg=>Integer
Remainder, //Target
Result //Target

) => Integer //returns Result

Error! No text of specified style in document. 47

Compaq/Intel/Microsoft/Phoenix/Toshiba

FindSetLeftBitTerm := FindSetLeftBit(
Source, //TermArg=>Integer
Result //Target

) => Integer

FindSetRightBitTerm := FindSetRightBit(
Source, //TermArg=>Integer
Result //Target

) => Integer

FromBCDTerm := FromBCD(
BCDValue, //TermArg=>Integer
Result //Target

) => Integer

IncTerm := Increment(
Addend //SuperName

) => Integer

IndexTerm := Index(
Source, //TermArg=>

//< String | Buffer |
PackageTerm>

Index, //TermArg=>Integer
Destination //Target

) => ObjectReference

LAndTerm := LAnd(
Source1, //TermArg=>Integer
Source2 //TermArg=>Integer

) => Boolean

LEqualTerm := LEqual(
Source1, //TermArg=>ComputationalData
Source2 //TermArg=>ComputationalData

) => Boolean

LGreaterTerm := LGreater(
Source1, //TermArg=>ComputationalData
Source2 //TermArg=>ComputationalData

) => Boolean

LGreaterEqualTerm := LGreaterEqual(
Source1, //TermArg=>ComputationalData
Source2 //TermArg=>ComputationalData

) => Boolean

LLessTerm := LLess(
Source1, //TermArg=>ComputationalData
Source2 //TermArg=>ComputationalData

) => Boolean

LLessEqualTerm := LLessEqual(
Source1, //TermArg=>ComputationalData
Source2 //TermArg=>ComputationalData

) => Boolean

LNotTerm := LNot(
Source, //TermArg=>ComputationalData

) => Boolean

48 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

LNotEqualTerm := LNotEqual(
Source1, //TermArg=>ComputationalData
Source2 //TermArg=>ComputationalData

) => Boolean

LoadTableTerm := LoadTable(
SignatureString, // TermArg=>String
OemIDString, // TermArg=>String
OemTableIDString, // TermArg=>String
RootPathString, // Nothing | TermArg=>String
ParameterPathString, // Nothing | TermArg=>String
ParameterData // Nothing |

TermArg=>DataRefObject
) => DDBHandle

LOrTerm := LOr(
Source1, //TermArg=>ComputationalData
Source2 //TermArg=>ComputationalData

) => Boolean

MatchTerm := Match(
SearchPackage, //TermArg=>Package
Op1, //MatchOpKeyword
MatchObject1, //TermArg=>Integer
Op2, //MatchOpKeyword
MatchObject2, //TermArg=>Integer
StartIndex //TermArg=>Integer

) => Ones | Integer

MidTerm := Mid(
Source, //TermArg=>Buffer|String
Index, //TermArg=>Integer
Length, //TermArg=>Integer
Result //Target

) => Buffer|String

ModTerm := Mod(
Dividend, //TermArg=>Integer
Divisor, //TermArg=>Integer
Result //Target

) => Integer //returns Result

MultiplyTerm := Multiply(
Multiplicand, //TermArg=>Integer
Multiplier, //TermArg=>Integer
Result //Target

) => Integer

NAndTerm := NAnd(
Source1, //TermArg=>Integer
Source2 //TermArg=>Integer
Result //Target

) => Integer

NOrTerm := NOr(
Source1, //TermArg=>Integer
Source2 //TermArg=>Integer
Result //Target

) => Integer

NotTerm := Not(
Source, //TermArg=>Integer
Result //Target

) => Integer

ObjectTypeTerm := ObjectType(
Object //SuperName

) => Integer

Error! No text of specified style in document. 49

Compaq/Intel/Microsoft/Phoenix/Toshiba

OrTerm := Or(
Source1, //TermArg=>Integer
Source2 //TermArg=>Integer
Result //Target

) => Integer

RefOfTerm := RefOf(
Object //SuperName

) => ObjectReference

ShiftLeftTerm := ShiftLeft(
Source, //TermArg=>Integer
ShiftCount //TermArg=>Integer
Result //Target

) => Integer

ShiftRightTerm := ShiftRight(
Source, //TermArg=>Integer
ShiftCount //TermArg=>Integer
Result //Target

) => Integer

SizeOfTerm := SizeOf(
DataObject
//SuperName=>String|Buffer|Package

) => Integer

StoreTerm := Store(
Source, //TermArg=>DataRefObject
Destination //SuperName

) => DataRefObject

SubtractTerm := Subtract(
Addend1, //TermArg=>Integer
Addend2, //TermArg=>Integer
Result //Target

) => Integer

ToBCDTerm := ToBCD(
Value, //TermArg=>Integer
Result //Target

) => Integer

ToBufferTerm := ToBuffer(
Data, //TermArg=>ComputationalData
Result //Target

) => ComputationalData

ToDecimalStringTerm := ToDecimalString(
Data, //TermArg=>ComputationalData
Result //Target

) => String

ToHexStringTerm := ToHexString(
Data, //TermArg=>ComputationalData
Result //Target

) => String

ToIntegerTerm := ToInteger(
Data, //TermArg=>ComputationalData
Result //Target

) => Integer

ToStringTerm := ToString(
Source, //TermArg=>Buffer
Length, //Nothing | TermArg=>Integer
Result //Target

) => String

50 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

WaitTerm := Wait(
SyncObject, //SuperName=>Event
TimeoutValue //TermArg=>Integer

) => Boolean // True means timed-out

XOrTerm := XOr(
Source1, //TermArg=>Integer
Source2 //TermArg=>Integer
Result //Target

) => Integer

ObjectTypeKeyword := UnknownObj | IntObj | StrObj | BuffObj | PkgObj |
FieldUnitObj | DeviceObj | EventObj | MethodObj |
MutexObj | OpRegionObj | PowerResObj | ThermalZoneObj |
BuffFieldObj | DDBHandleObj

AccessTypeKeyword := AnyAcc | ByteAcc | WordAcc | DWordAcc | QWordAcc |
BufferAcc

AccessAttribKeyword := SMBQuick | SMBSendReceive | SMBByte | SMBWord | SMBBlock
| SMBProcessCall
// Note: AccessAttribKeywords are for SMBus BufferAcc
only.

Error! No text of specified style in document. 51

Compaq/Intel/Microsoft/Phoenix/Toshiba

LockRuleKeyword := Lock | NoLock
UpdateRuleKeyword := Preserve | WriteAsOnes | WriteAsZeros

RegionSpaceKeyword := UserDefRegionSpace | SystemIO | SystemMemory |
PCI_Config | EmbeddedControl | SMBus | SystemCMOS |
PciBarTarget

AddressSpaceKeyword := RegionSpaceKeyword | FFixedHW
UserDefRegionSpace := IntegerData=>0x80-0xff

SerializeRuleKeyword := Serialized | NotSerialized

MatchOpKeyword := MTR | MEQ | MLE | MLT | MGE | MGT

DMATypeKeyword := Compatibility | TypeA | TypeB | TypeF
BusMasterKeyword := BusMaster | NotBusMaster
XferTypeKeyword := Transfer8 | Transfer16 | Transfer8_16

ResourceTypeKeyword := ResourceConsumer | ResourceProducer
MinKeyword := MinFixed | MinNotFixed
MaxKeyword := MaxFixed | MaxNotFixed
DecodeKeyword := SubDecode | PosDecode
RangeTypeKeyword := ISAOnlyRanges | NonISAOnlyRanges | EntireRange
MemTypeKeyword := Cacheable | WriteCombining | Prefetchable | NonCacheable
ReadWriteKeyword := ReadWrite | ReadOnly
InterruptTypeKeyword := Edge | Level
InterruptLevel := ActiveHigh | ActiveLow
ShareTypeKeyword := Shared | Exclusive
IODecodeKeyword := Decode16 | Decode10
TypeKeyword := TypeTranslation | TypeStatic
TranslationKeyword := SparseTranslation | DenseTranslation
AddressKeyword := AddressRangeMemory | AddressRangeReserved |

AddressRangeNVS | AddressRangeACPI

SuperName := NameString | ArgTerm | LocalTerm | DebugTerm |
Type6Opcode | UserTerm

ArgTerm := Arg0 | Arg1 | Arg2 | Arg3 | Arg4 | Arg5 | Arg6
LocalTerm := Local0 | Local1 | Local2 | Local3 | Local4 | Local5 |

Local6 | Local7
DebugTerm := Debug

LeadDigitChar := ‘1’-‘9’
OctalDigitChar := ‘0’-‘7’
HexDigitChar := DigitChar | ‘A’-‘F’ | ‘a’-‘f’

Integer := DecimalConst | OctalConst | HexConst
DecimalConst := LeadDigitChar | <DecimalConst DigitChar>
OctalConst := ‘0’ | <OctalConst OctalDigitChar>
HexConst := <0x HexDigitChar> | <0X HexDigitChar> | <HexConst

HexDigitChar>
ByteConst := Integer=>0x00-0xff
WordConst := Integer=>0x0000-0xffff
DWordConst := Integer=>0x00000000-0xffffffff
QWordConst := Integer=>0x0000000000000000-0xffffffffffffffff

DDBHandle := Integer
ObjectReference := Integer
String := ‘”’ AsciiCharList ‘”’
AsciiCharList := Nothing | <EscapeSeq AsciiCharList> | <AsciiChar

AsciiCharList>
AsciiChar := 0x01-0x21 | 0x23-0x5B | 0x5D-0x7F
EscapeSeq := SimpleEscapeSeq | OctalEscapeSeq | HexEscapeSeq
SimpleEscapeSeq := \' | \" | \a | \b | \f | \n | \r | \t | \v | \\
OctalEscapeSeq := \ OctalDigit |

\ OctalDigit OctalDigit |
\ OctalDigit OctalDigit OctalDigit

OctalDigitChar := ‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’
HexEscapeSeq := \x HexDigitChar |

\x HexDigitChar HexDigitChar
NullChar := 0x00
ConstTerm := Zero | One | Ones | Revision

52 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Boolean := True | False
True := Ones
False := Zero

Error! No text of specified style in document. 53

Compaq/Intel/Microsoft/Phoenix/Toshiba

ByteConstExpr := <Type3Opcode | ConstExprTerm | Integer> => ByteConst
WordConstExpr := <Type3Opcode | ConstExprTerm | Integer> => WordConst
DwordConstExpr := <Type3Opcode | ConstExprTerm | Integer> => DWordConst
QwordConstExpr := <Type3Opcode | ConstExprTerm | Integer> => QWordConst
ConstExprTerm := Zero | One | Ones

BufferTerm := Buffer(
BuffSize //Nothing |

//TermArg=>Integer
) {StringData | ByteList}

ByteList := Nothing | <ByteConstExpr ByteListTail>
ByteListTail := Nothing | <‘,’ ByteConstExpr ByteListTail>

DWordList := Nothing | <DWordConstExpr DWordListTail>
DWordListTail := Nothing | <‘,’ DWordConstExpr DWordListTail>

PackageTerm := Package(
NumElements //Nothing |

//ByteConstExpr |
//TermArg=>Integer

) {PackageList}

PackageList := Nothing | <PackageElement PackageListTail>
PackageListTail := Nothing | <‘,’ PackageElement PackageListTail>
PackageElement := DataObject | NameString

EISAIDTerm := EISAID(
EISAIDString //StringData

) => DWordConst

ResourceTemplateTerm := ResourceTemplate() {ResourceMacroList} => Buffer

UnicodeTerm := Unicode(
ASCIIString //StringData

) => Buffer

ResourceMacroList := Nothing | <ResourceMacroTerm ResourceMacroList>
ResourceMacroTerm := DMATerm | DWordIOTerm | DWordMemoryTerm |

EndDependentFnTerm | FixedIOTerm | InterruptTerm |
IOTerm | IRQNoFlagsTerm | IRQTerm | Memory24Term |
Memory32FixedTerm | Memory32Term | QWordIOTerm |
QWordMemoryTerm | RegisterTerm | StartDependentFnTerm |
StartDependentFnNoPriTerm | VendorLongTerm |
VendorShortTerm | WordBusNumberTerm | WordIOTerm

DMATerm := DMA(
DMAType, //DMATypeKeyword (_TYP)
BusMaster, //BusMasterKeyword (_BM)
XferType, //XferTypeKeyword (_SIZ)
ResourceTag //Nothing | NameString

) {ByteList} //List of channels (0-7)

54 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

DWordIOTerm := DWordIO(
ResourceType, //Nothing (ResourceConsumer)|

//ResourceTypeKeyword
MinType, //Nothing (MinNotFixed) |

//MinKeyword (_MIF)
MaxType, //Nothing (MaxNotFixed) |

//MaxKeyword (_MAF)
Decode, //Nothing (PosDecode) |

//DecodeKeyword (_DEC)
RangeType, //Nothing (EntireRange) |

//RangeTypeKeyword (_RNG)
AddressGranularity, //DWordConstExpr (_GRA)
MinAddress, //DWordConstExpr (_MIN)
MaxAddress, //DWordConstExpr (_MAX)
Translation, //DWordConstExpr (_TRA)
AddressLen, //DWordConstExpr (_LEN)
ResSourceIndex, //Nothing | ByteConstExpr
ResSource, //Nothing | StringData
ResourceTag //Nothing | NameString
Type //Nothing | TypeKeyword
TranslationType //Nothing |

TranslationKeyword

)

DWordMemoryTerm := DWordMemory(
ResourceType, //Nothing (ResourceConsumer)|

//ResourceTypeKeyword
Decode, //Nothing (PosDecode) |

//DecodeKeyword (_DEC)
MinType, //Nothing (MinNotFixed) |

//MinKeyword (_MIF)
MaxType, //Nothing (MaxNotFixed) |

//MaxKeyword (_MAF)
MemType, //Nothing (NonCacheable) |

//MemTypeKeyword (_MEM)
ReadWriteType, //ReadWriteKeyword (_RW)
AddressGranularity, //DWordConstExpr (_GRA)
MinAddress, //DWordConstExpr (_MIN)
MaxAddress, //DWordConstExpr (_MAX)
Translation, //DWordConstExpr (_TRA)
AddressLen, //DWordConstExpr (_LEN)
ResSourceIndex, //Nothing | ByteConstExpr
ResSource, //Nothing | StringData
ResourceTag //Nothing | NameString
AddressRange //Nothing | AddressKeyword

(_MTP)
TranslationType //Nothing |

TranslationTypeKeyword (_TTP)

)

EndDependentFnTerm := EndDependentFn()

FixedIOTerm := FixedIO(
AddressBase, //WordConstExpr (_BAS)
RangeLen, //ByteConstExpr (_LEN)
ResourceTag //Nothing | NameString

)

Error! No text of specified style in document. 55

Compaq/Intel/Microsoft/Phoenix/Toshiba

InterruptTerm := Interrupt(
ResourceType, //Nothing (ResourceConsumer)|

//ResourceTypeKeyword
InterruptType, //InterruptTypeKeyword

//(_LL, _HE)
InterruptLevel, //InterruptLevelKeyword

//(_LL, _HE)
ShareType, //Nothing (Exclusive)

//ShareTypeKeyword (_SHR)
ResSourceIndex, //Nothing | ByteConstExpr
ResSource, //Nothing | StringData
ResourceTag //Nothing | NameString

) {DWordList} //list of interrupts (_INT)

56 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

IOTerm := IO(
IODecode, //IODecodeKeyword (_DEC)
MinAddress, //WordConstExpr (_MIN)
MaxAddress, //WordConstExpr (_MAX)
Alignment, //ByteConstExpr (_ALN)
RangeLen, //ByteConstExpr (_LEN)
ResourceTag //Nothing | NameString

)

IRQNoFlagsTerm := IRQNoFlags(
ResourceTag //Nothing | NameString

) {ByteList} //list of interrupts (0-15)

IRQTerm := IRQ(
InterruptType, //InterruptTypeKeyword

//(_LL, _HE)
InterruptLevel, //InterruptLevelKeyword

//(_LL, _HE)
ShareType, //Nothing (Exclusive)

//ShareTypeKeyword (_SHR)
ResourceTag //Nothing | NameString

) {ByteList} //list of interrupts (0-15)

Memory24Term := Memory24(
ReadWriteType, //ReadWriteKeyword (_RW)
MinAddress[23:8], //WordConstExpr (_MIN)
MaxAddress[23:8], //WordConstExpr (_MAX)
Alignment, //WordConstExpr (_ALN)
RangeLen, //WordConstExpr (_LEN)
ResourceTag //Nothing | NameString

)

Memory32FixedTerm := Memory32Fixed(
ReadWriteType, //ReadWriteKeyword (_RW)
AddressBase, //DWordConstExpr (_BAS)
RangeLen, //DWordConstExpr (_LEN)
ResourceTag //Nothing | NameString

)

Memory32Term := Memory32(
ReadWriteType, //ReadWriteKeyword (_RW)
MinAddress, //DWordConstExpr (_MIN)
MaxAddress, //DWordConstExpr (_MAX)
Alignment, //DWordConstExpr (_ALN)
RangeLen, //DWordConstExpr (_LEN)
ResourceTag //Nothing | NameString

)

QWordIOTerm := QWordIO(
ResourceType, //Nothing (ResourceConsumer)|

//ResourceTypeKeyword
MinType, //Nothing (MinNotFixed) |

//MinKeyword (_MIF)
MaxType, //Nothing (MaxNotFixed) |

//MaxKeyword (_MAF)
Decode, //Nothing (PosDecode) |

//DecodeKeyword (_DEC)
RangeType, //Nothing (EntireRange) |

//RangeTypeKeyword (_RNG)
AddressGranularity, //QWordConstExpr (_GRA)
MinAddress, //QWordConstExpr (_MIN)
MaxAddress, //QWordConstExpr (_MAX)
Translation, //QWordConstExpr (_TRA)
AddressLen, //QWordConstExpr (_LEN)
ResSourceIndex, //Nothing | ByteConstExpr
ResSource, //Nothing | StringData
ResourceTag //Nothing | NameString
Type //Nothing | TypeKeyword
TranslationType //Nothing |

TranslationKeyword)

Error! No text of specified style in document. 57

Compaq/Intel/Microsoft/Phoenix/Toshiba

QWordMemoryTerm := QWordMemory(
ResourceType, //Nothing (ResourceConsumer)|

//ResourceTypeKeyword
Decode, //Nothing (PosDecode) |

//DecodeKeyword (_DEC)
MinType, //Nothing (MinNotFixed) |

//MinKeyword (_MIF)
MaxType, //Nothing (MaxNotFixed) |

//MaxKeyword (_MAF)
MemType, //Nothing (NonCacheable) |

//MemTypeKeyword (_MEM)
ReadWriteType, //ReadWriteKeyword (_RW)
AddressGranularity, //QWordConstExpr (_GRA)
MinAddress, //QWordConstExpr (_MIN)
MaxAddress, //QWordConstExpr (_MAX)
Translation, //QWordConstExpr (_TRA)
AddressLen, //QWordConstExpr (_LEN)
ResSourceIndex, //Nothing | ByteConstExpr
ResSource, //Nothing | StringData
ResourceTag //Nothing | NameString
AddressRange //Nothing | AddressKeyword

(_MTP)
TranslationType //Nothing |

TranslationTypeKeyword
(_TTP)

)

RegisterTerm := Register(
AddressSpaceID, //AddressSpaceKeyword (_ASI)
RegisterBitWidth, //ByteConstExpr (_RBW)
RegisterOffset, //ByteConstExpr (_RBO)
RegisterAddress, //QWordConstExpr (_ADR)
)

StartDependentFnTerm := StartDependentFn(
CompatPriority, //ByteConstExpr (0-2)
PerfRobustPriority //ByteConstExpr (0-2)

) {ResourceMacroList}

StartDependentFnNoPriTerm :=StartDependentFnNoPri() {ResourceMacroList}

VendorLongTerm := VendorLong(
ResourceTag //Nothing | NameString

) {ByteList}

VendorShortTerm := VendorShort(
ResourceTag //Nothing | NameString

) {ByteList} //up to 7 bytes

WordBusNumberTerm := WordBusNumber(
ResourceType, //Nothing (ResourceConsumer)|

//ResourceTypeKeyword
MinType, //Nothing (MinNotFixed) |

//MinKeyword (_MIF)
MaxType, //Nothing (MaxNotFixed) |

//MaxKeyword (_MAF)
Decode, //Nothing (PosDecode) |

//DecodeKeyword (_DEC)
AddressGranularity, //WordConstExpr (_GRA)
MinAddress, //WordConstExpr (_MIN)
MaxAddress, //WordConstExpr (_MAX)
Translation, //WordConstExpr (_TRA)
AddressLen, //WordConstExpr (_LEN)
ResSourceIndex, //Nothing | ByteConstExpr
ResSource, //Nothing | StringData
ResourceTag //Nothing | NameString

)

58 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

WordIOTerm := WordIO(
ResourceType, //Nothing (ResourceConsumer)|

//ResourceTypeKeyword
MinType, //Nothing (MinNotFixed) |

//MinKeyword (_MIF)
MaxType, //Nothing (MaxNotFixed) |

//MaxKeyword (_MAF)
Decode, //Nothing (PosDecode) |

//DecodeKeyword (_DEC)
RangeType, //Nothing (EntireRange) |

//RangeTypeKeyword (_RNG)
AddressGranularity, //WordConstExpr _GRA)
MinAddress, //WordConstExpr (_MIN)
MaxAddress, //WordConstExpr (_MAX)
Translation, //WordConstExpr (_TRA)
AddressLen, //WordConstExpr (_LEN)
ResSourceIndex, //Nothing | ByteConstExpr
ResSource, //Nothing | StringData
ResourceTag //Nothing | NameString
Type //Nothing | TypeKeyword
TranslationType //Nothing |

TranslationKeyword

)

16.2.2ASL Data Types
ASL provides a wide variety of data types and operators that work on these data types. It also provides both
explicit and implicit conversion between these data types when used with ASL operators. To avoid these
implicit conversions, the Copy operator may be used.

In ASL, conversion can take place in two places during an operation. First, when the source operands are
converted to the operand type expected by the operator and second, when the result of the operator are
stored into the destination.

For example:
Store(“XYZ”,Local1)
Store(10,Local0)
Add(Local0,”5”,Local1)

In this case, the Add operator converts the first two operands (Local0 and “5”) to Integers. Then the result
of the operation (15) is converted into a String, since this is the type of Local1.

In some cases, the operator may take more than one type of operand (such as Integer and String). In this
case, depending on the type of the operand, the highest priority conversion is applied. Table 16-4, column
describes the source operand conversions available. For example:
Store(Buffer(1){},Local0)
Name(ABCD, Buffer(10) {1,2,3,4,5,6,7,8,9,0})
CreateDWordField(ABCD,2,XYZ)
Name(MNOP,”1234”)
Concatenate(XYZ,MNOP,Local0)

Concatenate can take an Integer, Buffer or String for its first two parameters and the type of the first
parameter determines how the second parameter will be converted. In this example, the first parameter is of
type Buffer Field (from the CreateDWordField operator). What should it be converted to: Integer, Buffer or
String? According to Table 16-4, the highest priority conversion is to Integer. So XYZ (0x05040302) and
MNOP (0x31,0x32,0x33,0x34) will be converted to Integers, joined together and the resulting type will be
Buffer (0x02,0x03,0x04,0x05,0x31,0x32,0x33,0x34).

The following table describes the default source and destination conversions. If a particular conversion is
not described, then it will generate a fatal error at run-time.

Error! No text of specified style in document. 59

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 16-4 ASL Data Types

Data Type Description

Default
Source
Conversion
(Operand)

Destination
Conversion
From… What Happens

Integer Integer

String String

Buffer Buffer

Package Package

DDB
Handle

DDB Handle

Uninitialized No assigned type. The
type of all Localx
variables at the beginning
of a Method’s execution
and uninitialized Package
elements.

Nothing.
Generates a
fatal error
when used as
an operand.

Object
Reference

Object Reference

60 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 16-4 ASL Data Types (continued)

Data Type Description

Default
Source
Conversion
(Operand)

Destination
Conversion
From… What Happens

String The ASCII string is interpreted
as a hexadecimal content. Starts
with the first hexadecimal
ASCII character (‘0’-‘9’, ‘A’-
‘F’, ‘a’, ‘f’) and ends with the
first non-hexadecimal character.

Integer An n-bit little-endian,
unsigned integer. In ACPI
1.0 this was at least 32-
bits. In ACPI 2.0 this is at
least 64.bits.

Integer

Buffer

String

DDB Handle

Buffer The contents of the buffer,
starting with the least -
significant bit and continuing
through the minimum of the
most significant bit number (in
other words, # of bytes * 8) in
the buffer or the number of bits
in an Integer (at least 64 in
ACPI 2.0) are copied as an
Integer.

Integer Creates an ASCII hexadecimal
string.

Buffer Converted to a string of two-
character hexadecimal numbers,
separated by a space. Fatal error
if greater than two hundred
ASCII characters generated.

String Null-terminated ASCII
string with up to 200
characters.

String

Integer

Buffer

Package Generates an error.

If the integer requires more bits
than the size of the Buffer, then
the integer is truncated before
being copied to the Buffer. If
the integer contains fewer
significant bits than the size of
the buffer, then the Integer is
zero-extended to fill the entire
buffer.

Buffer Buffer

Integer

String

Integer

String

The string is treated as a Buffer,
with each ASCII character
making one Buffer byte.

Error! No text of specified style in document. 61

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 16-4 ASL Data Types (continued)

Data Type Description

Default
Source
Conversion
(Operand)

Destination
Conversion
From… What Happens

Package Collection of ASL objects
with a fixed number of
members (up to 255).

Package Package All contents of the package are
removed. Contents of the
source are copied into the
package.

Integer If the integer requires more bits
than the size of the Field Unit, it
is broken into pieces and
written to the Field Unit, least
significant bits first. If the
integer (or the last piece of the
integer, if broken up) is smaller
or equal in size to the Field
Unit, then it is zero extended
before being written.

String Each character of the string is
written, starting with the first,
to the Field Unit. If the Field
Unit is less than eight bits, then
the upper bits of each character
is lost. If the Field Unit is
greater than eight bits, then the
additional bits are zeroed.

Operation
Region
Field Unit

Bit-aligned variable in an
address space.

Integer

Buffer

String

If the Field
Unit is larger
than the size
of an Integer,
it will be
treated as a
Buffer.

Buffer If the buffer requires more bits
than the size of the Field Unit, it
is broken into pieces and
written to the Field Unit, lower
chunks first. If the integer (or
the last piece of the integer, if
broken up) is smaller or equal
in size to the Field Unit, then it
is zero extended before being
written.

62 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 16-4 ASL Data Types (continued)

Data Type Description

Default
Source
Conversion
(Operand)

Destination
Conversion
From… What Happens

Integer If the integer is smaller than the
size of the buffer field, it is zero-
extended. If the integer is larger
than the size of the buffer field,
the upper bits are truncated.

Compatibility Note: New in
ACPI 2.0. The behavior in ACPI
1.0 was undefined.

Buffer
Field

Piece of a buffer created
using CreateBitField,
CreateByteField,
CreateWordField,
CreateQWordField,
CreateField or returned by
the Index command.

Integer

Buffer

String

String The string is treated as a buffer.
If this buffer is smaller than the
size of the buffer field, it is zero
extended. If the buffer is larger
than the size of the buffer field,
the upper bits are truncated.

Compatibility Note: New in
ACPI 2.0. The behavior in ACPI
1.0 was undefined.

 Buffer If this buffer is smaller than the
size of the buffer field, it is zero
extended. If the buffer is larger
than the size of the buffer field,
the upper bits are truncated.

Compatibility Note: New in
ACPI 2.0. The behavior in ACPI
1.0 was undefined.

DDB
Handle

Definition block handle DDB Handle

Integer

Integer DDB Handle

Device Device or bus Nothing None Generates an error.

Event Event Nothing None Generates an error.

Method Method (function) Nothing None Generates an error.

Mutex Mutex Nothing None Generates an error.

Operation
Region

Operation Region Nothing None Generates an error.

Power
Resource

Power Resource Nothing None Generates an error.

Processor Processor Nothing None Generates an error.

Thermal
Zone

Thermal Zone Nothing None Generates an error.

Error! No text of specified style in document. 63

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 16-4 ASL Data Types (continued)

Data Type Description

Default
Source
Conversion
(Operand)

Destination
Conversion
From… What Happens

Integer Displayed as hexadecimal
integer.

String Display as ASCII characters.

Buffer Each byte displayed as
hexadecimal integer , delimited.

Package Each element of the package
displayed based on its type.

Operation
Region
Field Unit

Displayed as hexadecimal
integer (if less than or equal to
the size of an integer).
Otherwise displayed as a buffer.

Buffer Field Displayed as a hexadecimal
integer.

Debug
Object

Debug-output object. Has
no effect if debugging is
not active.

Nothing.
Will
generate an
error when
used as a
source.

DDB
Handle

Displayed including
information about the DDB.

Zero, One,
Ones

Integer constants Integer None Cannot be a destination.

Object
Reference

Reference to an object. Object
Reference

Object
Reference

Object Reference

Many of the ASL operators can store their result optionally into an object specified by the last parameter. In
these operators, if the destination is specified, the action is exactly as if a Store operator had been used to
place the result in the destination.

Compatibility Note: The ability to store and manipulate object references is new in ACPI 2.0. In ACPI 1.0
references could not be stored in variables, passed as parameters or returned from functions.

16.2.2 ASL Data Types
ASL provides a wide variety of data types and operators that manipulate data. It also provides mechanisms
for both explicit and implicit conversion between the data types when used with ASL operators.

The table below describes each of the available data types.

Table 16-4 Summary of ASL Data Types

ASL Data Type Description

[Uninitialized] No assigned type or value. This is the type of all control method LocalX variables
and unused ArgX variables at the beginning of method execution, as well as all
uninitialized Package elements. Uninitialized objects must be initialized (via Store
or CopyObject) before they may be used as source operands in ASL expressions.

Buffer An array of bytes. Uninitialized elements are zero by default.

64 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

ASL Data Type Description

Buffer Field Portion of a buffer created using CreateBitField, CreateByteField,
CreateWordField, CreateQWordField, CreateField, or returned by the Index
operator.

DDB Handle Definition block handle returned by the Load operator
Debug Object Debug output object. Formats an object and prints it to the system debug port. Has

no effect if debugging is not active.
Device Device or bus object
Event Event synchronization object
Field Unit (within an
Operation Region)

Portion of an address space, bit-aligned and of one-bit granularity. Created using
Field, BankField, or IndexField.

Integer An n-bit little-endian unsigned integer. In ACPI 1.0 this was at least 32-bits. In
ACPI 2.0 this is at least 64.bits.

Integer Constant Created by the ASL terms “Zero”, “One”, “Ones”, and “Revision”.
Method Control Method (Executable AML function)
Mutex Mutex synchronization object
Object Reference Reference to an object created using the RefOf operator
Operation Region Operation Region (A region within an Address Space)
Package Collection of ASL objects with a fixed number of elements (up to 255).
Power Resource Power Resource description object
Processor Processor description object
String Null-terminated ASCII string with up to 200 characters.
Thermal Zone Thermal Zone description object

Compatibility Note: The ability to store and manipulate object references is new in ACPI 2.0. In ACPI 1.0
references could not be stored in variables, passed as parameters or returned from functions.

16.2.2.1 Data Type Conversion Overview
ASL provides two mechanisms to convert objects from one data type to another data type at run-time
(during execution of the AML interpreter). The first mechanism, Explicit Data Type Conversion, allows
the use of explicit ASL operators to convert an object to a different data type. The second mechanism,
Implicit Data Type Conversion, is invoked by the AML interpreter when it is necessary to convert a data
object to an expected data type before it is used or stored.

Both of these mechanisms are described in detail in the sections that follow.

16.2.2.2 Explicit Data Type Conversions
The following ASL operators are provided to explicitly convert an object from one data type to another:
• FromBCD — Convert an Integer to a BCD Integer
• ToBCD — Convert a BCD Integer to a standard binary Integer.
• ToBuffer — Convert an Integer, String, or Buffer to an object of type Buffer
• ToDecimalString — Convert an Integer, String, or Buffer to an object of type String. The string

contains the ASCII representation of the decimal value of the source operand.

Error! No text of specified style in document. 65

Compaq/Intel/Microsoft/Phoenix/Toshiba

• ToHexString — Convert an Integer, String, or Buffer to an object of type String. The string contains
the ASCII representation of the hexadecimal value of the source operand.

• ToInteger — Convert an Integer, String, or Buffer to an object of type Integer.
• ToString — Convert a Buffer to an object of type String.

The following ASL operators are provided to copy and transfer objects:
• CopyObject — Explicitly store a copy of the operand object to the target name. No implicit type

conversion is performed. (This operator is used to avoid the implicit conversion inherent in the ASL
Store operator.)

• Store — Store a copy of the operand object to the target name. Implicit conversion is performed if the
target name is of a fixed data type (see below). However, Stores to method locals and arguments do
not perform implicit conversion and are therefore the same as using CopyObject.

16.2.2.3 Implicit Data Type Conversions
Automatic or Implicit type conversions can take place at two different times during the execution of an
ASL operator. First, it may be necessary to convert one or more of the source operands to the data type(s)
expected by the ASL operator. Second, the result of the operation may require conversion before it is stored
into the destination. (Many of the ASL operators can store their result optionally into an object specified
by the last parameter. In these operators, if the destination is specified, the action is exactly as if a Store
operator had been used to place the result in the destination.)

Such data conversions are performed by an AML interpreter during execution of AML code and are known
collectively as Implicit Operand Conversions. As described briefly above, there are two different types of
implicit operand conversion:

1. Conversion of a source operand from a mismatched data type to the correct data type required by an
ASL operator, called Implicit Source Conversion. This conversion occurs when a source operand
must be converted to the operand type expected by the operator. Any or all of the source operands
may be converted in this manner before the execution of the ASL operator can proceed.

2. Conversion of the result of an operation to the existing type of a target operand before it is stored into
the target operand, called Implicit Result Conversion. This conversion occurs when the target is a
fixed type such as a named object or a field. When storing to a method Local or Arg, no conversion is
required because these data types are of variable type (the store simply overwrites any existing object
and the existing type).

16.2.2.3.1 Implicit Source Operand Conversion
During the execution of an ASL operator, each source operand is processed by the AML interpreter as
follows:
• If the operand is of the type expected by the operator, no conversion is necessary.
• If the operand type is incorrect, attempt to convert it to the proper type.
• For the Concatenate operator, the data type of the first operand dictates both the required type of the

second operand and the type of the result object. (The second operator is converted, if necessary, to
match the type of the first operand.)

• If conversion is impossible, abort the running control method and issue a fatal error.

An implicit source conversion will be attempted anytime a source operand contains a data type that is
different that the type expected by the operator. For example:

Store (“5678”, Local1)
Add (0x1234, Local1, BUF1)

In the Add statement above, Local1 contains a String object and must undergo conversion to an Integer
object before the Add operation can proceed.

66 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

In some cases, the operator may take more than one type of operand (such as Integer and String). In this
case, depending on the type of the operand, the highest priority conversion is applied. Table 16-4 describes
the source operand conversions available. For example:

Store (Buffer(1){}, Local0)
Name (ABCD, Buffer(10){1,2,3,4,5,6,7,8,9,0})
CreateDWordField (ABCD, 2, XYZ)
Name (MNOP, ”1234”)
Concatenate (XYZ, MNOP, Local0)

The Concatenate operator can take an Integer, Buffer or String for its first two parameters and the type of
the first parameter determines how the second parameter will be converted. In this example, the first
parameter is of type Buffer Field (from the CreateDWordField operator). What should it be converted to:
Integer, Buffer or String? According to Table 16-4, the highest priority conversion is to Integer. Therefore,
both of the following objects will be converted to Integers:

XYZ (0x05040302)
MNOP (0x31, 0x32, 0x33, 0x34)

And will then joined together and the resulting type and value will be:
Buffer (0x02, 0x03 ,0x04, 0x05, 0x31, 0x32, 0x33, 0x34).

16.2.2.3.2 Implicit Result Object Conversion
For all ASL operators that generate and store a result value (including the Store operator), the result object
is processed and stored by the AML interpreter as follows:
• If the ASL operator is one of the explicit conversion operators (ToString, ToInteger, etc., and the

CopyObject operator), no conversion is performed. (In other words, the result object is stored directly
to the target and completely overwrites any existing object already stored at the target.)

• If the target is a method local or argument (LocalX or ArgX), no conversion is performed and the
result is stored directly to the target.

• If the target is a fixed type such as a named object or field object, an attempt is made to convert the
source to the existing target type before storing.

• If conversion is impossible, abort the running control method and issue a fatal error.

An implicit result conversion can occur anytime the result of an operator is stored into an object that is of a
fixed type. For example:

Name (BUF1, Buffer(10))
Add (0x1234, 0x789A, BUF1)

Since BUF1 is a named object of fixed type Buffer, the Integer result of the Add operation must be
converted to a Buffer before it is stored into BUF1.

16.2.2.4 Data Types and Type Conversions
The following table lists the available ASL data types and the available data type conversions (if any) for
each. The entry for each data type is fully cross-referenced, showing both the types to which the object
may be converted as well as all other types that may be converted to the data type.

The allowable conversions apply to both explicit and implicit conversions.

Table 16-4a Data Types and Type Conversions

ASL Data Type
Can be implicitly or explicitly converted
to these Data Types: (In priority order)

Can be implicitly or explicitly
converted from these Data Types:

[Uninitialized] None. Causes a fatal error when used as a
source operand in any ASL statement.

Integer, String, Buffer, Package,
DDB Handle, Object Reference

Buffer Integer, String, Debug Object Integer, String

Error! No text of specified style in document. 67

Compaq/Intel/Microsoft/Phoenix/Toshiba

ASL Data Type
Can be implicitly or explicitly converted
to these Data Types: (In priority order)

Can be implicitly or explicitly
converted from these Data Types:

Buffer Field Integer, Buffer, String, Debug Object Integer, Buffer, String
DDB Handle Integer, Debug Object Integer
Debug Object None. Causes a fatal error when used as a

source operand in any ASL statement.
Integer, String, Buffer, Package,
Field Unit, Buffer Field, DDB
Handle

Device None None
Event None None
Field Unit (within an
Operation Region)

Integer, Buffer, String, Debug Object Integer, Buffer, String

Integer Buffer, Buffer Field, DDB Handle, Field
Unit, String, Debug Object

Buffer, String

Integer Constant Integer, Debug Object None. Also, storing any object to a
constant is a no-op, not an error.

Method None None
Mutex None None
Object Reference None None
Operation Region None None
Package Debug Object None
String Integer, Buffer, Debug Object Integer, Buffer
Power Resource None None
Processor None None
Thermal Zone None None

16.2.2.5 Data Type Conversion Rules
The following table presents the detailed data conversion rules for each of the allowable data type
conversions. These conversion rules are implemented by the AML Interpreter and apply to all conversion
types — explicit conversions, implicit source conversions, and implicit result conversions.

68 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 16-4b Object Conversion Rules

To convert
from an
object of this
Data Type

To an object
of this Data
Type

This action is performed by the AML Interpreter:

Buffer Field The contents of the buffer are copied to the Buffer Field. If the buffer is
smaller than the size of the buffer field, it is zero extended. If the buffer
is larger than the size of the buffer field, the upper bits are truncated.
Compatibility Note: This conversion is new in ACPI 2.0. The behavior
in ACPI 1.0 was undefined.

Debug Object Each buffer byte is displayed as hexadecimal integer, delimited by
spaces and/or commas.

Field Unit The entire contents of the buffer are copied to the Field Unit. If the
buffer is larger (in bits) than the size of the Field Unit, it is broken into
pieces and completely written to the Field Unit, lower chunks first. If the
integer (or the last piece of the integer, if broken up) is smaller or equal
in size to the Field Unit, then it is zero extended before being written.

Integer The contents of the buffer are copied to the Integer, starting with the
least-significant bit and continuing until the buffer has been completely
copied — up to the maximum number of bits in an Integer (64 in ACPI
2.0).

Buffer

String The entire contents of the buffer are converted to a string of two-
character hexadecimal numbers, each separated by a space. A fatal error
is generated if greater than two hundred ASCII characters are created.

[See Rule] If the Buffer Field is smaller than or equal to the size of an Integer (in
bits), it will be treated as an Integer. Otherwise, it will be treated as a
Buffer. (See the conversion rules for the Integer and Buffer data types.)

Buffer Field

Debug Object Each byte is displayed as hexadecimal integer , delimited by spaces
and/or commas

DDB Handle [See Rule] The object is treated as an Integer (See conversion rules for the Integer
data type.)

[See Rule] If the Field Unit is smaller than or equal to the size of an Integer (in
bits), it will be treated as an Integer. Otherwise, it will be treated as a
Buffer. (See the conversion rules for the Integer and Buffer data types.)

Field Unit

Debug Object Each byte is displayed as hexadecimal integer , delimited by spaces
and/or commas

Error! No text of specified style in document. 69

Compaq/Intel/Microsoft/Phoenix/Toshiba

To convert
from an
object of this
Data Type

To an object
of this Data
Type

This action is performed by the AML Interpreter:

Buffer The Integer overwrites the entire Buffer object. If the integer requires
more bits than the size of the Buffer, then the integer is truncated before
being copied to the Buffer. If the integer contains fewer bits than the
size of the buffer, the Integer is zero-extended to fill the entire buffer

Buffer Field The Integer overwrites the entire Buffer Field. If the integer is smaller
than the size of the buffer field, it is zero-extended. If the integer is
larger than the size of the buffer field, the upper bits are truncated.
Compatibility Note: This conversion is new in ACPI 2.0. The behavior
in ACPI 1.0 was undefined.

Debug Object Displayed as a hexadecimal integer.
Field Unit The Integer overwrites the entire Field Unit. If the integer is smaller

than the size of the buffer field, it is zero-extended. If the integer is
larger than the size of the buffer field, the upper bits are truncated.

Integer

String Creates an ASCII hexadecimal string.
Package All existing contents (if any) of the target package are deleted, and the

contents of the source package are copied into the target package. (In
other words, overwrites the same as any other object.)

Package

Debug Object Each element of the package is displayed based on its type.
Buffer The string is treated as a Buffer, with each ASCII character copied to

one Buffer byte. If the string is longer than the buffer, it is truncated. If
the string is shorter than the buffer, the buffer size is reduced

Buffer Field The string is treated as a buffer. If this buffer is smaller than the size of
the buffer field, it is zero extended. If the buffer is larger than the size of
the buffer field, the upper bits are truncated.
Compatibility Note: This conversion is new in ACPI 2.0. The behavior
in ACPI 1.0 was undefined.

Debug Object Each byte displayed as an ASCII character
Field Unit Each character of the string is written, starting with the first, to the Field

Unit. If the Field Unit is less than eight bits, then the upper bits of each
character are lost. If the Field Unit is greater than eight bits, then the
additional bits are zeroed.

String

Integer The ASCII string is interpreted as a hexadecimal constant. Starts with
the first hexadecimal ASCII character (‘0’-‘9’, ‘A’-‘F’, ‘a’, ‘f’) and ends
with the first non-hexadecimal character.

16.2.2.6 Rules for Storing and Copying Objects
The table below lists the actions performed when storing objects to different types of named targets. ASL
provides the following types of “store” operations:

• The Store operator is used to explicitly store an object to a location, with implicit conversion support
of the source object.

70 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

• Many of the ASL operators can store their result optionally into an object specified by the last
parameter. In these operators, if the destination is specified, the action is exactly as if a Store operator
had been used to place the result in the destination.

• The CopyObject operator is used to explicitly store a copy of an object to a location, with no implicit
conversion support.

Table 16-4c Object Storing and Copying Rules

When Storing an
object of any data
type to this type of
Target location

This action is performed by the
Store operator or any ASL
operator with a Target operand:

This action is performed by the
CopyObject operator:

Method ArgX
variable

The object is copied to the destination with no conversion applied, with one
exception. If the ArgX contains an Object Reference, an automatic de-reference
occurs and the object is copied to the target of the Object Reference instead of
overwriting the contents of ArgX

Method LocalX
variable

The object is copied to the destination with no conversion applied. Even if
LocalX contains an Object Reference, it is overwritten.

Field Unit or Buffer
Field

The object is copied to the
destination after implicit result
conversion is applied

Fields permanently retain their type and
cannot be changed. Therefore,
CopyObject can only be used to copy an
object of type Integer or Buffer to fields.

 Named data object The object is copied to the
destination after implicit result
conversion is applied to match the
existing type of the named location

The object and type are copied to the
named location.

16.2.3.3.1.14 Mutex (Declare Synchronization/Mutex Object)
MutexTerm := Mutex(

MutexName, //NameString
SyncLevel //ByteConstExpr

)

Creates a data mutex synchronization object named MutexName, with level from 0 to 15 specified by
SyncLevel. A SyncLevel of n allows n+1 mutex owners

A synchronization object provides a control method with a mechanism for waiting for certain events. To
prevent deadlocks, wherever more than one synchronization object must be owned, the synchronization
objects must always be released in the order opposite the order in which they were acquired. The SyncLevel
parameter declares the logical nesting level of the synchronization object. All Acquire terms must refer to a
synchronization object with an equal or greater SyncLevel to current level, and all Release terms must refer
to a synchronization object with equal or lower SyncLevel to the current level.

Mutex synchronization provides the means for mutually exclusive ownership. Ownership is acquired using
an Acquire term and is released using a Release term. Ownership of a Mutex must be relinquished before
completion of any invocation. For example, the top-level control method cannot exit while still holding
ownership of a Mutex. Acquiring ownership of a Mutex can be nested. The SyncLevel check is not
performed on a Mutex when the ownership count is nesting.-

Error! No text of specified style in document. 71

Compaq/Intel/Microsoft/Phoenix/Toshiba

The SyncLevel of a thread before acquiring any mutexes is zero. The SyncLevel of the Global Lock (_GL)
is zero. A method marked serialized has an inherent mutex of SyncLevel 0 unless SyncLevel is explicitly
specified.

16.2.3.4.1.7 Load (Load Differentiated Definition Block)
LoadTerm := Load(

Object, //NameString
DDBHandle //SuperName

)

Performs a run-time load of a Definition Block. The Object parameter can either refer to an operation
region field or an operation region directly. If the object is an operation region, the operation region must
be in SystemMemory space. The Definition Block should contain a DESCRIPTION_HEADER of type
SSDT or PSDT. The Definition Block must be totally contained within the supplied operation region or
operation region field. OSPM reads tThis table is read into memory, the checksum is verified, and then it is
loaded into the ACPI namespace. The DDBHandle parameter is the handle to the Differentiating Definition
Block that can be used to unload the Definition Block at a future time.

The OS can also check the OEM Table ID and Revision ID against a database for a newer revision
Definition Block of the same OEM Table ID and load it instead.

The default namespace location to load the Definition Block is relative to the current namespace. The new
Definition Block can override this by specifying absolute names or by adjusting the namespace location
using the Scope operator.

Loading a Definition Block is a synchronous operation. Upon completion of the operation, the Definition
Block has been loaded. The control methods defined in the Definition Block are not executed during load
time.

16.2.3.4.1.16 Switch – Select Code To Execute Based On Expression
SwitchTerm := Switch(

Predicate //ComputationalData
) {CaseTermList}

DefaultTermList := Nothing | CaseTerm | CaseTerm DefaultTermList
CaseTermList := Nothing | CaseTerm CaseTermList | DefaultTerm

DefaultTermList
CaseTerm := Case(DataObject) {TermList}
DefaultTerm := Default {TermList}

The Switch, Case and Default statements help simplify the creation of conditional and branching code.
The Switch statement transfers control to a statement within its body.

If the Case value is an Integer, Buffer or String, then control passes to the statement that matches the value
of Switch(Predicate). If the Case value is a Package, then control passes if any member of the package
matches the Switch(Predicate). The Switch CaseTermList can include any number of Case instances, but
no two Case values (or members of a value, if value is a Package) within the same Switch statement can
contain the same value.

 Execution of the statement body begins at the selected statement’s TermList and proceeds until the end of
the body or until an ExitSwitch (or other valid Exitx) statement transfers control out of the body.

Use of the Switch statement usually looks something like this:

72 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Switch (expression)
{

Case (value) {
Statements executed if Lequal(expression, value)

}
Case (Package() {value,value,value}) {

Statements executed if Lequal(expression, any value in package)
Default {

statements executed if expression does not equal
any case constant-expression

}
}

The Default statement is executed if no Case value matches the value of switch (expression). If the
Default statement is omitted, and no Case match is found, none of the statements in the Switch body are
executed. There can be at most one Default statement. The Default statement need not come at the end; it
can appear anywhere in the body of the Switch statement.

A Case or Default term can only appear inside a Switch statement. Switch statements can be nested.

Compatibility Note: The Switch, Case, and Default terms are new to ACPI 2.0. However, their
implementation is backward compatible with ACPI 1.0 AML interpreters.

Error! No text of specified style in document. 73

Compaq/Intel/Microsoft/Phoenix/Toshiba

Compiler Note: The following example demonstrates how the Switch statement should be translated into
ACPI 1.0-compatible AML:

Switch (Add(ABCD(),1)
{

Case(1) {
…statements1…
}
Case(Package() {4,5,6}) {
…statements2…
}
Default {
…statements3…
}

}

is translated as:

While(OneZero)
{

Name(_T_I,0) // Create Integer temporary variable for result
Store(Add(ABCD(),1),_T_I)
If (LEqual(_T_I,1)) {

…statements1…
}
Else {
If (LNotEqual(Match(Package() {4,5,6},MEQ,_T_I,MTR,0,0),Ones)) {

…statements2…
}
Else {

…statements3…
}
}
Break

}

Note: If the compiler is unable to determine the type of the expression, then it should generate a warning
and assume integer type. The warning should indicate that the ASL should use one of the type conversion
operators (Int, Buff, DecStr or HexStr). For example:

Switch(ABCD()) // Can’t determine the type because methods can return anything.
{

…case statements…
}

will generate a warning and the following code:

Name(_T_I,0)
Store(ABCD(),_T_I)

To remove the warning, the code should be:

Switch(Int(ABCD()))
{

…case statements…
}

16.2.3.4.1.17 Unload (Unload Differentiated Definition Block)
UnloadTerm := Unload(

DDBHandle //TermArg=>DDBHandle
)

Performs a run-time unload of a Definition Block that was loaded using a Load term. Loading or unloading
a Definition Block is a synchronous operation, and no control method execution occurs during the function.
On completion of the Unload operation, the Definition Block has been unloaded (all the namespace objects
created as a result of the corresponding Load operation will be removed from the namespace).

74 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

16.2.3.4.2 Type 2 Opcodes
Type2Opcode := AcquireTerm | AddTerm | AndTerm | ConcatTerm |

ConcateResTerm | CondRefOfTerm | DecTerm | DerefOfTerm |
DivideTerm | FindSetLeftBitTerm | FindSetRightBitTerm |
FromBCDTerm | IncTerm | IndexTerm | LAndTerm |
LEqualTerm | LGreaterTerm | LGreaterEqualTerm |
LLessTerm | LLessEqualTerm | LNotTerm | LNotEqualTerm |
LoadTableTerm | LOrTerm | MatchTerm | MidTerm |
ModTerm | MultiplyTerm | NAndTerm | NOrTerm | NotTerm |
ObjectTypeTerm | OrTerm | RefOfTerm | ShiftLeftTerm |
ShiftRightTerm | SizeOfTerm | StoreTerm | SubtractTerm |
ToBCDTerm | ToBufferTerm | ToDecimalStringTerm |
ToHexStringTerm | ToIntegerTerm | ToStringTerm |
WaitTerm | XorTerm | UserTerm

The ASL terms for Type 2 Opcodes are listed in the following table.

Table 16-9 Type 2 Opcodes

ASL Statement Description

Acquire Acquire a mutex

Add Add two values

And Bitwise And

Concatenate Concatenate two strings, integers or buffers

ConcatenateResTemplate Concatenate two resource templates

CondRefOf Conditional reference to an object

Decrement Decrement a value

DerefOf Dereference an object reference

Divide Divide

FindSetLeftBit Index of first least significant bit set

FindSetRightBit Index of first most significant bit set

FromBCD Convert from BCD to numeric

Increment Increment a value

Index Reference the nth element/byte/character of a package, buffer or string

LAnd Logical And

Error! No text of specified style in document. 75

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 16-9 Type 2 Opcodes (continued)

ASL Statement Description

LEqual Logical Equal

LGreater Logical Greater

LGreaterEqual Logical Not less

LLess Logical Less

LLessEqual Logical Not greater

LNot Logical Not

LNotEqual Logical Not equal

LoadTable Load Table from RSDT/XSDT

LOr Logical Or

Match Search for match in package array

Mid Returns a portion of buffer or string

Mod Modulo

Multiply Multiply

NAnd Bitwise Nand

NOr Bitwise Nor

Not Bitwise Not

ObjectType Type of object

Or Bitwise Or

RefOf Reference to an object

ShiftLeft Shift value left

ShiftRight Shift value right

SizeOf Get the size of a buffer, string, or package

Store Store value

Subtract Subtract values

ToBCD Convert numeric to BCD

ToBuffer Convert data type to buffer

ToDecimalString Convert data type to decimal string

ToHexString Convert data type to hexadecimal string

ToInteger Convert data type to integer

ToString Copy ASCII string from buffer

Wait Wait

Xor Bitwise Xor

76 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

16.2.3.4.2.4 ToBuffer (Convert Data Type to Buffer)
ToBufferTerm := ToBuffer(

Data, //TermArg=>ComputationalData
Result //Target

) => Buffer

Data must be evaluated to integer, string, or buffer. Data is then converted to buffer type and the result is
optionally stored into Result. If Data was an integer, it is converted into 4 bytes of buffer, taking the least
significant type of integer as the first byte of buffer. If Data is a buffer, no conversion is performed.

16.2.3.4.2.8 CopyObject – (Copy Object)
CopyObjectTerm := CopyObject(

Source, //SuperName=>DataRefObject
Destination //NameString | LocalTerm |

// ArgTerm
) => DataRefObject

Converts the contents of the Source to a DataRefObject using the conversion rules in 16.2.2 and then copies
the results without conversion to the object referred to by Destination. If Destination is already an
initialized object of type DataRefObject, the original contents of Destination are discarded and replaced
with Source. Otherwise, a fatal error is generated.

Compatibility Note: The CopyObject operator is new in ACPI 2.0.

16.2.3.4.2.10 ToDecimalString (Convert Data Type to Decimal String)
ToDecimalStringTerm := ToDecimalString(

Data, //TermArg=>ComputationalData
Result //Target

) => String

Data must be evaluated to integer, string, or buffer. Data is then converted to a decimal string, and the
result is optionally stored into Result. If Data is already a string, no action is performed. If Data is a buffer,
it is converted to a string of decimal values separated by commas.

16.2.3.4.2.16 ToHexString (Convert Data Type to Hexadecimal String)
ToHexStringTerm := ToHexString(

Data, //TermArg=>ComputationalData
Result //Target

) => String

Data must be evaluated to integer, string, or buffer. Data is then converted to a hexadecimal string, and the
result is optionally stored into Result. If Data is already a string, no action is performed. If Data is a buffer,
it is converted to a string of hexadecimal values separated by commas.

16.2.3.4.2.19 ToInteger (Convert Data Type to Integer)
ToIntegerTerm := ToInteger(

Data, //TermArg=>ComputationalData
Result //Target

) => Integer

Data must be evaluated to integer, string, or buffer. Data is then converted to integer type and the result is
optionally stored into Result. If Data was a string, it must be either a decimal or hexadecimal numeric
string (in other words, prefixed by “0x”) and the value must not exceed the maximum of an integer value. If
the value is exceeding the maximum, the result of the conversion is unpredictable. If Data was a Buffer, the
first 8 bytes of the buffer are converted to an integer, taking the first byte as the least significant byte of the
integer.

Error! No text of specified style in document. 77

Compaq/Intel/Microsoft/Phoenix/Toshiba

16.2.3.4.2.26 LNot (Logical Not)
LNotTerm := LNot(

Source, //TermArg=>Integer
) => Boolean

Source1 is evaluated as an integer. If the value is non-zero True is returned; otherwise, False is
returned.

16.2.3.4.2.37 ObjectType (Object Type)
ObjectTypeTerm := ObjectType(

Object //SuperName
) => Integer

The execution result of this operation is an integer that has the numeric value of the object type for Object.
The object type codes are listed in Table 16-124. Notice that if this operation is performed on an object
reference such as one produced by the Alias, Index, or RefOf statements, the object type of the base object
is returned. For typeless objects such as pre-defined scope names (in other words, _SB, _GPE, and so on),
the type value 0 (Uninitialized) is returned.

16.2.3.4.2.44 ToString (Create ASCII String From Buffer)
ToStringTerm := ToString(

Source, //TermArg=>Buffer
Length, //Nothing | TermArg=>Integer
Result //Target

) => String

Source is evaluated as a buffer. Starting with the first byte, the contents of the buffer are copied into the
string until the number of characters specified by Length is reached. If Length is not specified or is Ones,
then the contents of the buffer are copied until a null (0) character is found. In any case, a fatal error will be
generated if the number of characters copied exceeds 200 (not including the terminating null). The result is
copied into the Result.

16.2.4.5 ASL Macro for I/O Port Descriptor
The following macro generates a short I/O descriptor:

IO(
Decode16 | Decode10, // _DEC
WordConstExpr, // _MIN, Address minimum
WordConstExpr, // _MAX, Address max
ByteConstExpr, // _ALN, Base alignment
ByteConstExpr // _LEN, Range length
NameString | Nothing // A name to refer back to this resource

)

78 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

The following macro generates a short Fixed I/O descriptor:

FixedIO(
WordConstExpr, // _BAS, Address base
ByteConstExpr // _LEN, Range length
NameString | Nothing // A name to refer back to this resource
)

16.2.4.6 ASL Macro for Fixed I/O Port Descriptor
The following macro generates a short Fixed I/O descriptor:

FixedIO(
WordConstExpr, // _BAS, Address base
ByteConstExpr // _LEN, Range length
NameString | Nothing // A name to refer back to this resource
)

16.2.4.7 ASL Macro for Short Vendor-Defined Descriptor
The following macro generates a short Vendor-Defined descriptor:

VendorShort(
NameString | Nothing // A name to refer back to this resource
)
{
ByteConstExpr [, ByteConstExpr ...] // List of bytes, up to 7 bytes

 }

17.2.1 Name Objects Encoding
LeadNameChar := ‘A’-‘Z’ | ‘_’
DigitChar := ‘0’-‘9’
NameChar := DigitChar | LeadNameChar
RootChar := ‘\’
ParentPrefixChar := ‘^’

‘A’-‘Z’ := 0x41-0x5a
‘_’ := 0x5f
‘0’-‘9’ := 0x30-0x39
‘\’ := 0x5c
‘^’ := 0x5e

NameSeg := <LeadNameChar NameChar NameChar NameChar>
// Notice that NameSegs shorter than 4 characters are
// filled with trailing ‘_’s.

NameString := <RootChar NamePath> | <PrefixPath NamePath>
PrefixPath := Nothing | <‘^’ PrefixPath>
NamePath := NameSeg | DualNamePath | MultiNamePath | NullName

DualNamePath := DualNamePrefix NameSeg NameSeg
DualNamePrefix := 0x2e
MultiNamePath := MultiNamePrefix SegCount NameSeg(SegCount)
MultiNamePrefix := 0x2f
SegCount := ByteData

// SegCount can be from 1 to 255.
// MultiNamePrefix(35) => 0x2f 0x23
// and following by 35 NameSegs.
// So, the total encoding length
// will be 1 + 1 + 35*4 = 142.
// Notice that:
// DualNamePrefix NameSeg NameSeg
// has a smaller encoding than the
// equivalent encoding of:
// MultiNamePrefix(2) NameSeg NameSeg

SimpleName := NameString | ArgObj | LocalObj
SuperName := SimpleName | DebugObj | Type6Opcode
NullName := 0x00

Error! No text of specified style in document. 79

Compaq/Intel/Microsoft/Phoenix/Toshiba

Target := SuperName | NullName

80 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

