SparcSim – Tech Doc Rieker 8
Jan 31, 2005

Mike Rieker

CSC 500

SparcSim - The Educational Sparc Simulator

Technical Manual

Major class summary:

· SparcSim – has a static and object portion. The static portion is the main program that sets up the initial environment then exits. There is only one instance of the object portion that is the Control Buttons window.

· BigEndianMemory – has a static and object portion. The static portion holds the memory array, and instances of the object portion are the memory monitoring windows.

· SourceEditor – no static stuff here. Each instance of this class is a source editor window.

· SparcAsm – this class is completely static. It contains code to assemble a given source file and store the resultant object code directly in the big endian memory.

· SparcCPU – no static stuff here. Each instance of this class is a Sparc CPU. The window holds the register displays and the control buttons.

· IODev, IODevPrint – used to define simulated IO devices.

SparcSim

When SparcSim starts, it starts in routine main of the SparcSim class. The memwindowlist, sourceeditorlist and sparccpulist static variables are used to keep track of all respective windows opened. The main routine opens an instance of the control button window and one instance of each of the others. A FrameCloseListener instance is created for each of the dynamic frames so they will be removed from their list if and when the user closes them.

The three list variables must be synchronized as the CPUs run in sub-threads and access these lists (albeit in a read-only fashion). It is possible for the user to add or delete, for example, a memory viewing window while a CPU is running, which would modify memwindowlist. The memory array itself is not synchronized; any such synchronization would theoretically have to be done by the simulated program.

Static variables:

· memory – points to the one-and-only memory object

· monofont – points to the mono-spaced font used throughout for display purposes

· mainpane – this pane holds the contents of the main desktop. To add things, call mainpane.add to add it then call whereitsat to position it.

· sourceeditorlist – contains a list of all open source editor windows

· sparccpulist – contains a list of all open Sparc CPU windows

· memwindowlist – contains a list of all open memory display windows

· breakpointlist – bitmap array of all currently enabled breakpoints. It has one bit per 32-bits of memory, as breakpoints must be on 32-bit boundaries.

· minwindowx,y – upper left corner of main pane where new windows go

· newwindowx,y – where a new window goes, if room

Static methods:

· main – the main program for SparcSim

· addtomainpane – adds a JInternalFrame to the main pane and positions it nicely

· whereitsat – find a nice position for a new internal frame

· compileall – assembles all source files, putting object code in memory, clears breakpoints and resets all CPUs

· checkbreakpoints – checks to see if the supplied address has a breakpoint set on it

· setbreakpoint – sets a breakpoint at the given address

· clearbreakpoint – clears a breakpoint at the given address, if any

· clearallbreakpoints – clears all breakpoints

· updateselocation – updates the highlight lines of all source editor windows to reflect the current PC of halted Sparc CPUs

· updatememwindows – updates all memory windows with contents of the given address

· foad – called to exit simulator; it prompts user asking to save any source file updates

Object methods (extending JFrame):

· SparcSim – constructor sets up the control buttons and saves the window size

· SourceEditorButtonListener::actionPerformed – called when the SourceEditor Window button is clicked to create a new source editor window

· SparcCPUButtonListener::actionPerformed – called when the SparcCPU Window button is clicked to create a new SparcCPU window

· MemoryButtonListener::actionPerformed – called when the Memory Window button is clicked to create a new Memory window

· ExitButtonListener::actionPerformed – called when the Exit Simulator button is clicked to close the whole thing up

· MainWindowListener::windowClosing – called when the X button in the upper right corner of the main window is clicked, causing the simulator to exit after asking the user to save any source file updates

· FrameCloseListener::internalFrameClosing – called when an SourceEditor, SparcCPU or Memory window is closed, it removes the window from the corresponding list

BigEndianMemory

This holds the simulated memory and things related to it. When instantiated, it creates a memory viewing window that the user can use to view and modify memory. Any writes to memory are immediately reflected in any viewing windows.

Static variables:

· memorysize – size of memory array in bytes

· memoryarray – holds contents of simulated memory

· iodevs – hold list of all defined IO devices

Static methods:

· setsize – initializes the memory array to a specified size

· getsize – returns the size of the memory array

· addiodev – adds an IODev to the list so its registers will be seen by the CPU

· write8,16,32 – writes the specified data to the specified address (memory array or IODev register), updating any relevant memory displays

· read8,16,32 – reads from the specified address (memory array or IODev register)

Object variables:

· memoryframe – points to the memory frame for easy future reference

· startfield – the text box that holds the start address value

· endfield – the text box that holds the end address value

· displaypanel – holds the panel that contains all the data boxes (not start and end)

· hexdatafields – an array of text boxes that contain the hex data being displayed

· chrdatafields – an array of labels that contain the ascii data being displayed

· startaddr – binary equivalent of startfield

· endaddr – binary equivalent of endfield

Object methods:

· BigEndianMethod – constructor sets up the startfield and endfield boxes, then makes the frame visible

· updatedisplay – updates the data displayed at a given address

· StartEndFocusListener::focusLost – called when focus is lost from either the startfield or the endfield to reformat the data display area according to the address range specified in the two boxes

· DataFieldFocusListener::focusLost – called when focus is lost from a data text box to write the new value to memory

SourceEditor

For each source editor window open, there is one instance of this class. It operates all the widgets on the source editor window.

When the Assemble button is clicked, it calls the SparcSim class static routine compileall to assemble all source files, as some files may have changed size or the current one has grown and others need to be moved accordingly. Here we see use of sourceeditorlist and sparccpulist by the GUI thread.

Static variables:

· lastmanualsavedirectory – has last directory that was manually selected in a Save operation, used as default for the next save operation of a new file

· lastmanualopendirectory – has last directory that was manually selected in an Open operation, used as default for the next open operation

Object variables:

· sourceframe – copy of ‘this’ for easy reference, it’s the frame that everything goes in

· sourcepanel – the corresponding panel

· bptbuttonarray – an array of the breakpoint buttons

· assemblerlabelarray – an array for the assembler labels (object code or error message)

· sourcetextarea – the source code text area window containing the whole file

· bptbuttonpanel – sub-panel containing the breakpoint buttons

· assemblerlabelpanel – sub-panel containing the assembler labels

· linenumberpanel – sub-panel containing the line number labels

· linecount – number of source lines present

· loaddress – lowest address of any object code in this source file

· hiaddress – highest address of any object code in this source file

· sourcetextheight – height of a source text area character (monospaced font)

· sourcetextwidth – width of a source text area character (monospaced font)

· openbutton, savebutton, compilebutton – the three buttons at the bottom

· changesmade – cleared when file opened or saved, set when a change is made

· sourcefile – name of the file last opened or saved on this screen

Object methods:

· SourceEditor – constructor sets up an window with an empty source text area

· openfile – opens the specified file in the source editor window (after maybe saving any changes to existing contents)

· maybesavechages – prompts the user to save changes

· writesourcefile – asks user where to save changes then writes source text area to the specified file

· SourceEditorListener::internalFrameClosing – called when the X button in upper right corner is clicked, prompts user to save any unsaved changes

· SourceTextListener::keyTyped – called when key is typed in source text area, enables the Save As button and clears out breakpoint buttons and assembler labels

· OpenButtonListener::actionPerformed – called when Open button is clicked, opens a file in the source text area (after prompting to save any unsaved changes)

· SaveButtonListener::actionPerformed – called when Save button is clicked, writes the source text area to the specified file

· getsourcename – retrieves the name of the source file currently open in window

· gettextstring – retrieves the whole source file as a single string

· CompileButtonListener::actionPerformed – called when the Assemble button is clicked, causes all source windows to be compiled

· resetasminfo – initializes all breakpoint checkboxes as invisible, assembler labels as blanks

· objcode – displays the specified object code on the specified source line, also makes the breakpoint button for that line visible

· errormsg – displays an assembler error message on the specified source line

· updatecpulocation – marks the source line(s) corresponding to the specified address(es) in green to indicate a CPU is / CPUs are halted there

· BptButton::stateChanged – called when breakpoint checkbox clicked, either enables or disables a breakpoint at that location

SparcAsm

This class contains routines that assemble source files and put the object code in memory. Since there is only one assembly context at a time, it is completely static.

Static variables:

· currentlocation – holds the memory address for the next item to be assembled

· pass2 – Boolean that is false for the first pass, true for the second pass

· sourceeditor – points to the source editor object for the source file currently being assembled

· sourcfilebuf – a string containing the whole source file being assembled

· sourcelinebuf – a string containing the single source line being assembled

· sourcelinenum – the line number of sourcelinebuf within sourcfilebuf, 1-based

· sourcefileidx – index within sourcelinebuf for beginning of next source line

· haveerrors – a Boolean flag that gets set true if any error is found in the source file

· dot – points to the ‘.’ Symbol table entry

· ops – the opcode decoding table, indexed by opcode/directive name

· globalsymbols – global symbol table, indexed by symbol name

· localsymboltables – each source file’s local symbol table, indexed by source editor pointer

· localsymbols – current source file’s local symbol table, indexed by symbol name

· definitions – current source file’s ‘define’s

· permasymbols – permanently defined symbols, such as IO registers

Static methods:

· defpermasym – define a permanent symbol (called by IO routines to define symbols for their registers)

· reset – prepares the assembler to assemble a set of source files

· assemble – performs one pass of assembly on a single source file

· getstartaddr – retrieves value of ‘_start’ symbol

· getaddrexp[nb] – gets an address expression from the current source line, optionally checking for and swallowing the terminator token

· getregimm – gets a register or immediate value from the current source line and swallows the terminator token

· getregnum – get register from current source line, optionally checking for and swallowing the terminator token

· evaluate – evaluates the expression from the current source line, optionally checking for and swallowing the terminator token

· getoperand – used by evaluate to get an operand from the current source line

· Tok – source line tokens

· Tok::undo – backs up source pointer to jus before this token (in current source line)

· getquotedstring – gets a quoted string from the source line, either single or double quotes

· output32/16/8 – writes a value that was assembled to memory, updating the source editor window’s assembler label area

· errormessage – writes an error message to the source editor window’s assembler label area in red

SparcCPU

This class defines the CPU object. The CPU object holds the CPU context and the methods needed to modify it. It is an extension of the JinternalFrame class and contains the CPU’s GUI context as well.

Object variables:

· opcode – the current opcode being executed by the step routine

· running – set false except when running as a result of the Run button

· runthread – the sub-thread that is executing CPU instructions as a result of the Run button

· cpuframe – points to ‘this’ for convenience

· runbutton – points to the Run button object

· stepbutton – points to the Step button object

· resetbutton – points to the Reset button object

· globalregisters – an array of 8 ints that hold the global registers

· negativeregisters – an array of 4 ints that hold the PC,NPC,PS,Y registers

· outermostregisters – points to the outermost register set

· activeregisters – points to the innermost register set (currently active in CPU)

· displayedregisters – points to the register set being displayed by the GUI

· active_index – index of the active register set, where 0 means the outermost set

· registerscrollbar – points to the register scrollbar GUI object

· globalregistervalues – an array of 8 HexTextField boxes for global register display

· negativeregistervalues – an array of 4 HexTextField boxes for PC,NPC,PS,Y display

· windowregistervalues – an array of 24 HexTextField boxes for local register display

Object methods:

· SparcCPU – constructor that creates all the GUI objects then calls reset to initialize the internal state

· constructregisterpanel – constructs the internal panel that contains the negative, global and local registers as well as the local register scrollbar

· constructbuttonpanel – constructs the panel that contains the CPU control buttons

· reset – (re-)initializes CPU state after aborting any running thread. State is set to have all registers zeroes (except %sp=top of memory, and %pc=_start), and there is only one register set

· step – executes the one instruction pointed to by %pc, then sets %pc=%npc and sets up a new %pc according to the instruction

· getarithop2 – gets the value for an arithmetic instruction’s op2

· getmemaddr – gets the memory address for an load/store instruction

· get(n/v/c)bit – returns 1/0 depending on state of condition-code bit in %ps

· test(n/z/v/c)bit – returns true/false depending on state of condition-code bit in %ps

· setnzvc – sets the condition code bits in %ps

· memread32/16/8 – read memory (or IO register) location

· memwrite32/16/8 – write memory (or IO register) location, update memory window displays

· cpuexception – throw an CPU exception causing the processor to halt and display an error message

· setrunflag – set the run flag as indicated then enable/disable the control buttons appropriately

· ResetButtonListener::actionPerformed – calls the reset routine as a result of the Reset button being pressed

· StepButtonListener::actionPerformed – calls the step routine as a result of the Step button being pressed

· RunButtonListener::actionPerformed – forks a thread that calls the step routine in a loop which executes CPU instructions in the background

· RunThread::run – this is the sub-thread that executes CPU instructions until halted, a breakpoint is hit, or it gets an exception

· HaltButtonListener::actionPerformed – calls killoldthread which kills the sub-thread

· killoldthread – if there is a sub-thread active, flag it to exit then wait for it to exit

· getregister – gets contents of a register from active register set

· setregister – sets contents of an active register, updating the display if necessary

· saveregisters – step in a register set (as for a ‘save’ instruction)

· restoreregisters – step out a register set (as for a ‘restore’ instruction)

· RegisterScrollbarListener::adjustmentValueChanged – changes which register set is being displayed as a result of the user moving the local register scroll bar

· RegisterFocusListener::focusLost – updates active registers with change made by user to the GUI screen

IODev

This is an abstract class that simulated IO devices extend when defining themselves. Use IODevPrint as an example.

A device’s registers are memory mapped in the upper 4K of address space. The device’s constructor should call the super constructor to define its base memory address and number of bytes to reserve. Calling the super constructor also links it to the memory table so it will actually get called when a simulated program accesses its registers. The constructor should also call SparAsm.defpermsym to define symbols for its registers that a simulated program can reference, although it’s not technically necessary.

A class that extends this one must declare two routines: readreg gets called when the simulated program wants to read one of its registers; writereg gets called when the simulated program wants to write one of its registers. Beyond that, the class can do anything it wants.

Class IODevMuldiv contains IO registers which perform multiplies and divides. Class IODevPrint contains IO registers which perform ‘printf’ functions.

[End.]

